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Abstract. We consider tangential contact between a rigid cylinder and elastic half-space in the presence of adhesion and 
Coulomb’s frictional force. In the limit of very small range of adhesive interaction, the main governing dimensionless 
parameters are identified and it is shown that the shape of the relation between the normalized force and normalized 
displacement is function of only one system parameter closely related to the Tabor parameter. However, the qualitative 
behavior is the same for arbitrary values of the Tabor parameter: the force monotonously increases from zero to the 
maximum value corresponding to the complete sliding. This behavior is qualitatively different from that known in the 
case of non-adhesive contact where—in the case of flat-ended cylindrical punch—the whole contact area remains in stick 
state until the displacement achieves some critical value, after which complete sliding starts. 

INTRODUCTION 

As noted in [1], in JKR theory [2], the total energy of an adhesive contact does not depend on the tangential 
displacement; thus the JKR contact does not formally possess any “tangential strength”. Yet the lack of tangential 
strength of adhesive contacts is obviously contradicted by experimental results. The physical cause of this 
contradiction lies in the heterogeneous structure found at the microscopic scale (or at the atomic scale, at the latest) 
of any real interface. This heterogeneity leads to appearance of frictional force and to a finite contact strength in the 
tangential direction. The problem of adhesive contact with friction was discussed recently in [3]. In [1, 4], the 
frictional tangential contact with adhesion was considered under the simplifying assumption that the adhesive forces 
create additional macroscopic pressure in the contact, which, according to Coulomb’s law of friction, leads to 
increased friction forces. In the present paper we first recapitulate briefly the main findings of the above works and 
then analyze in more detail the dependency of the tangential force on tangential displacement in the simplest case of 
a contact between an elastic half-space and a flat-ended cylindrical indenter. 

ADHESIVE TANGENTIAL CONTACT  

In this paper, we will restrict ourselves to the simplest model of an adhesive tangential contact problem with a 
properly defined “adhesion” in the normal direction and “friction” in the horizontal direction. We assume that the 
adhesive forces have sufficient range to be considered “macroscopic” with regard to the friction forces in the 
contact. However, this range is considered to be smaller than any other length of the contact problem. Since both the 
normal and the tangential contact problem of two elastic bodies can be reduced to the contact between a rigid body 
and an elastic half-space (with modified material properties), we will consider—without loss of generality—the case 
of a rigid indenter in contact with an elastic half-space. We consider the frictionless contact between two elastic 
bodies with elasticity moduli 1E  and 2E  and Poisson’s ratios 1  and 2  as well as shear moduli 1G  and 2.G  The 

difference between the profiles is ( ),z f r  where r is the polar radius of the contact plane. This contact problem is 
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equivalent to the contact of a rigid indenter with the profile ( )z f r  and an elastic half-space with the effective 

elasticity moduli *E  and [5]: 

 1 2 1 2
* *

1 2 1 2

1 1 2 21 1
, .

2 2 4 4G G G GE G

      
     (1) 

For the adhesive forces, we use the model of Dugdale, where the adhesive pressure remains constant and equal to 

0  up to a certain distance h between the surfaces and abruptly drops to zero after that distance. The theory of 

adhesive contacts for this particular interaction was created by Maugis [6] but we will use the formulation provided 
in [1]. This formulation is based on the Method of Dimensionality Reduction [7] and uses transformation in the 
MDR-space. According to the MDR, the complete information about the contact is “condensed” in the equivalent 
profile g(x): 
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  (2) 

In [1], it was shown that in the limit of very small range of interaction of adhesive forces, the following relations 

are valid for the relationship between tangential displacement (0)u  of the indenter and the radius of the stick zone c: 
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where   is the coefficient of friction, a is the contact radius, and 0h    is the specific work of separation (work 

of adhesion per unit area).  
The same approximation yields for the tangential force 
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TANGENTIAL CONTACT OF A FLAT-ENDED CYLINDER 

For a flat-ended cylinder with radius a, the equivalent profile given by (2) is especially simple:  
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For this case, Eqs. (3) and (4) can be rewritten as 
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Introducing dimensionless variables 
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we can rewrite Eqs. (6) and (7) in the form 
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 (0) 22
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   (9) 
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     (10) 

These two equations determine in implicit form the interrelation between dimensionless displacement and force. 
One can easily see that the form of this dependence is determined by only one dimensionless parameter . Note that 
the dimensionless parameter  has simple physical meaning: it relates the length of the critical “adhesive neck” 

(order of magnitude *
0 )a E  and the acting rage of adhesive forces, h, and thus is closely related to the so-called 

Tabor-parameter [8]. Dependency of the normalized force on the normalized displacement is shown in Fig. 1.  

The maximum value of tangential displacement (0)u  at the moment when the complete sliding starts and the 
corresponding value of the tangential force can be found from Eqs. (9) and (10) by setting c = 0: 

 (0) 2
1 1,u    


  (11) 

 1
2xF


    (12) 

or in dimensional form 
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One can see that the shape of curves shown in Fig. 1 which correspond to various -values is very similar. We 
therefore plotted the dependencies once more in Fig. 2 showing the tangential force normalized by its maximum 
value (14) against displacement normalized by its maximum value (13). In these variables, all the curves “condense” 
to a more or less unique “master curve”. 

 

 

FIGURE 1. Dependency of the normalized force on the normalized displacement  
for values of parameter  ranging from 0.1 to 10 
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FIGURE 2. Dependencies on the tangential force on tangential displacement  
(both normalized to the corresponding maximum values) 

CONCLUSION 

We considered tangential contact between a flat-ended cylinder and an elastic half-space in the simultaneous 
presence of adhesive and frictional forces. The relation between the normalized tangential force and the normalized 

tangential displacement is dependent only on one parameter *
0 ( ),a E h   which is very closely related to the 

Tabor parameter [8]. The qualitative behavior is the same for arbitrary values of the Tabor parameter: the force 
monotonously increases from zero to the maximum value corresponding to the complete sliding. This behavior is 
different from that known in the case of non-adhesive contact (Cattaneo [9] and Mindlin [10]) where—in the case of 
flat-ended cylindrical punch—the whole contact area remains in stick state until the displacement achieves some 
critical value, after which complete sliding starts.  
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