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Abstract

Aspect-oriented programming offers a new modularization concept for improving the
modularity of crosscutting concerns. This concept is mainly realized by an advanced
mechanism for composing program behavior, called pointcut and advice.

Software evolution of aspect-oriented systems, and particularly software refactoring, has
been considered as problematic, because even local changes in the source code can result
in unpredictable effects on the behavior of an aspect-oriented program.

In a first part of this thesis, we classify general attributes of existing approaches for
composing program behavior in AOP and illustrate how each attribute is responsible for
the evolution-related problems in the context of refactoring. We conclude that pointcuts
specify properties of program representations to capture a certain program behavior,
and identify the missing connection between a specification of such a property and the
targeted behavior as primary reason for the evolution problems.

To overcome these problems, we integrate ideas drawn from the study of automated
software refactoring, static change impact analysis, and qualitative program analysis
into an impact analysis approach for verifying the validity of pointcuts in aspect-oriented
programs.

We propose a model for pointcuts that represents every specification of a property of
a program representation explicitly by an individual element. Based on this pointcut
model a change impact analysis for pointcuts can detect change effects on every specified
property, assess how precise a matching element of a program representation is specified,
and derive invalidated specifications. The change impact analysis is integrated into a
refactoring approach that makes applied changes explicit and uses the impact assessment
for an automated computation of pointcut updates.

We also present a prototype refactoring tool, called SOOTHSAYER, that implements our
refactoring approach. The tool assists the developer in estimating effects on existing
aspects, in detecting invalidated pointcuts, and in defining pointcut adjustments. An
experimental evaluation of our approach using the tool has validated our expectations.
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Chapter 1

Introduction

Aspect-oriented programming (AOP) has been proposed as an enhanced programming
model for improving the modularity of software systems. In particular, it targets func-
tionalities that are often implemented by several different parts of a software system,
so called crosscutting concerns [53]. For example, in object-oriented programs function-
alities like authorization, authentication, persistence, and transaction management, are
often implemented by multiple parts of the program. AOP aims to improve the modular-
ity of such crosscutting concerns and can result in simpler code that is easier to maintain
and has a greater potential for reuse [52].

To this end, AOP introduces two advanced mechanisms for composing the structure of
different implementation modules and for adapting the behavior of the program at run-
time. While AOP as a modularization concept has shown several benefits [31, 57, [35],
its composition mechanisms still cause serious problems when aspect-oriented programs
are evolved [50], 65, 86, 94]. Any change in the source of an aspect-oriented program can
result in unpredictable effects on the program behavior. This is particularly a problem
when a developer, unaware of existing aspects, alters the parts of a program on which
aspect-oriented compositions rely on.

Software refactoring is a well established technique for improving the design of software
systems in a behavior-preserving way. In object-oriented programs, various refactor-
ings support developers in changing the structure of a program in a controlled way.
Tool-supported refactoring is less error-prone, reduces the required effort and accelerates
individual refactorings steps. It is one of the key factors for successful software engineer-
ing in changing environments.

All software systems need to be changed throughout their entire life, including aspect-
oriented ones. Hence, the success of AOP depends on how much the improved modularity
supports the continuous evolution of a software system. AOP will only be adopted for
industrial application development if resulting programs can be evolved with an effort
at least similar to object-oriented programs. Tool-supported refactoring is one major
means for keeping software systems evolvable and thus also needs to be provided for
aspect-oriented programs.

This thesis presents the results of a systematic analysis of aspect-oriented composition
mechanisms and a classification of their effects on refactoring tools, in order to ex-
pose the actual reasons for the evolution issues with AOP. This analysis has revealed
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a refactoring-compliant subset of aspect-oriented composition mechanisms for which a
reliable refactoring support can be developed. In this thesis we elaborate the realization
of such a refactoring tool for AOP as well as the reasons for which only specific language
mechanisms can be properly supported.

1.1 The Problem of Refactoring Aspect-oriented
Programs

Most software systems will have to change again and again, and that as long as they
are alive. A system may change during its development, e.g., through addition of new
functionalities, or during maintenance (even after its delivery), e.g., through changed or
new requirements. This continuous adaptation is not always about changing the system’s
behavior, but also about improving its internal structure. Developers rename types and
methods to give them a more reasonable name, extract some code into a new method
to make it more reusable, or replace duplicated code with calls to a method. Meir M.
Lehman identified this need for ”continuing change” in his so-called first law of software
evolution: Software ”systems must be continually adapted else they become progressively
less satisfactory” [62].

There is always pressure to change the system, and it is mostly an external pressure,
originating from the customers (requirements, bug-fix, feature enhancement etc.) or the
competition. This need to change a software system leads to a big problem. The changes
are applied as fast as possible, as their are applied under the ever-present time and
cost pressure. As a result, the system’s structure gets not only more and more distant
from the originally planned design, but becomes increasingly complex with every change,
which in turn makes changing the system more difficult. Therefore, software developers
need to be supported in keeping a software system evolvable.

1.1.1 Tool-supported Refactoring

Software refactoring is one of the most successful techniques dealing with how to change
software systems in a controlled way. Refactoring means changing a system’s structure
in such a (disciplined) way, that the observableE] behavior of the system is not changed
yet its internal structure is improved [29]. In short, refactoring is intended to keep a
software evolvable and should be an essential activity in software engineering, according
to Lehman’s second law ”increasing complexity: as a program is evolved its complexity
increases unless work is done to maintain or reduce it” [61].

Performing refactoring steps manually, however, is costly and error prone, so tools are
the preferred means to achieve a design improvement in a fast and reliable way. Tool
support for refactoring is offered as an integral part of many modern integrated develop-
ment environments, such as Eclipse [22] and IDEA [45]. A typical refactoring tool assists

1 Observable behavior most often denotes the functionality that is implemented by the refactored part
of the system, i.e., the impact of refactoring on other aspects, such as runtime performance, are
mostly unconsidered.
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the developer in refactoring code rather than attempting to detect better designs and
refactor the code automatically. It helps the developer to detect whether changes would
alter the program behavior, identify a certain modification as reason for the altered be-
havior, and automate the particular refactoring steps.

Tool-supported refactoring significantly reduces the effort for achieving design improve-
ments and allows developers to perform refactoring on a more regular basis. More fre-
quently refactored software systems are generally considered to be easier to understand,
maintain, and evolve [29].

Most refactoring tools have a straightforward implementation. The developer decides
which refactoring to perform and selects the refactoring target (the part of the program
to be improved). Then the tool (statically) analyzes the source code to determine if
the refactoring’s preconditions are satisfied. If the preconditions are not satisfied, the
developer is notified and no action is taken, unless the developer still wants to perform
the refactoring. If the preconditions are satisfied, the tool performs the refactoring in an
automated way [75].

1.1.2 Aspect-oriented Programming

AOP introduces an advanced modularization concept to explicitly specify the composi-
tion of program behavior on top of existing concepts, such as object-oriented program-
ming (OOP). Concrete AOP approaches usually provide a mechanism for intercepting
the program execution at well-defined points, so called joinpoints [52], and to insert new
behavior before or after, or to replace such a joinpoint. A joinpoint is, more technically
spoken, an execution of a program element at runtime, such as executions of a method
call, field access, or field assignment. The behavior that is inserted at a joinpoint is
defined by a new implementation module, the so-called aspect.

An aspect can be seen as a class-like module that provides two additional features:
pointcut and advice. The advice defines the interface for invoking the aspect behavior
at a joinpoint and is bound to a pointcut, that specifies both the set of joinpoints and
the information that is passed from the joinpoint’s context to the advice’s parameters.
A pointcut uses query-like constructs that select joinpoints by specifying their proper-
ties. Every time the execution hits a selected joinpoint some runtime-support determines
matching pointcuts and invokes the bound advices.

With this complex but powerful concept, aspects can explicitly define the adaptation of
multiple implementation modules at a single place, even without modifying the source of
any of these modules. This concept makes it possible to modularize crosscutting concerns
and ”achieve the usual benefits of improved modularity: simpler code that is easier to
develop and maintain, and that has greater potential for reuse” [52].

Most AOP approaches realize the new modularization concept as extension to an existing
object-oriented programming language. They provide certain syntactic means to support
two composition mechanisms; one to adapt the structure of an implementation module,
and another to select the joinpoints at which the program behavior is adapted.

In some cases, if an aspect inserts more than just a few additional statements at a join-
point, additional structural support is required. To this end, aspects provide an advanced
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mechanism for composing the structure of implementation modules, the so-called struc-
tural composition.

Current AOP languages provide various mechanisms for adapting the structure of im-
plementation modules, ranging from the static introduction of single features [6] to the
dynamic wrapping of an existing object with a role [69]. AspectJ-like programming lan-
guages provide a mechanism called inter-type declarations. It allows to introduce new
members or new relationships, such as inheritance, to multiple classes. For example, an
aspect can declare an implementation of a new interface to an existing class and add
the methods needed to fulfill that interface [I03]. Any introduction statically affects the
program code, i.e., every instance of an adapted class holds the introduced members and
relationships.

Other approaches, like OT/J [69] or CaesarJ [81], enhance the support for feature com-
position by using advanced inheritance concepts, such as multiple inheritance and mixin
composition. These concepts are even more powerful. They can augment the structure
of individual instances rather than apply the addition to all instances of a class.

Every approach to AOP provides a behavioral composition mechanism to insert a
particular behavior at a joinpoint in the execution of a program. The mechanism uses
information from the meta-level of the program, i.e., it refers to static and dynamic
representations of the program (e.g., abstract syntax tree) and its execution (e.g., stack
trace). To this end, AOP approaches provide a joinpoint model and a pointcut language.
The joinpoint model defines the types of program elements whose executions are ”ob-
served” during runtime as well as which of these executions are generally available as
joinpoints. In addition, it establishes the advanced program representations and defines
the properties within these representation that can be used to select a particular set of
joinpoints.

The pointcut language provides the means for specifying a selection of joinpoints. Var-
ious pointcut languages have been proposed, ranging from regular expressions [4, [52],
over XML-based queries [25], to complete logic meta-programming approaches [50, [72].
Most languages differ in syntax, expressiveness and the supported joinpoint model, but
they all provide query-like specifications of structural properties, i.e., they have reflective
access to the program and its execution. The pointcut developer can specify structural
properties of the program representations established by the joinpoint model to iden-
tify the desired set of joinpoints. Typical properties are code containment, inheritance
relationships, and execution order.

1.1.3 Refactoring Aspect-oriented Programs

While manual refactoring seeks to preserve the observable program behavior [29], tool-
supported refactoring informs the developer on the consequences of a particular change,
but allows her to alter the behavior. The detection of change effects on the program
behavior is achieved through precondition checks. These checks ensure that specific
properties in the structure of a program are preserved by a refactoring. William Opdyke
has discovered a set of syntactic and semantic program properties for object-oriented
programs, which must not be violated if the program behavior should be preserved [70].
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These properties are associated with inheritance, scoping, type compatibility, and se-
mantic equivalence of references and operations, i.e., they are related to fundamental
concepts of the programming language used to define the program behavior. A refactor-
ing tool implements explicit precondition checks for these properties to detect behavioral
changes.

Problem Statement:

In aspect-oriented programs, the mechanisms for structural and behavioral
composition can also be affected by a refactoring. Existing refactoring tools
can neither determine whether a refactoring invalidates the composed behav-
ior nor adjust affected references in aspects to restore the expected behavior.

The language constructs for structural composition refer to named elements in the tar-
geted implementation module, and therefore have to be considered when the program is
refactored. They use symbolic references to introduce new members or to declare new
inheritance relationships, which can simply be adjusted during the refactoring. However,
the adaptation of inheritance relationships requires additional and also more complex
precondition checks. In addition, new or re-defined situations for dynamic binding have
to be considered by aspect-oriented refactoring tools. Such dependencies require addi-
tional analyses of the inheritance relationships, but do not require a conceptually new
approach to behavior preservation in refactoring.

The mechanisms for behavioral composition define invocations of a certain aspect behav-
ior at selected joinpoints. Joinpoints have no (unique) identifier that can be referenced
by a pointcut, they are selected via properties of meta-level program representations.
Any change of a property that is specified by a pointcut, can alter the selection of
joinpoints. Since a refactoring tool cannot always ascertain every joinpoint selected at
runtime, it can only prevent pointcut-affecting changes by detecting change effects on
the referenced program representations. Pointcuts can specify various properties of even
highly dynamic program representations, such as stack trace or object heap. Every used
dynamic program representation has to be statically approximated, because refactoring
tools deal with the program’s source code usually without access to runtime informa-
tion. In addition, pointcuts can specify a property incompletely, which may intentionally
capture additional joinpoints in future program versions. The use of dynamic program
representations and incomplete specifications makes it even more difficult to determine
whether a joinpoint is supposed to be selected by a particular pointcut.

Research Question:

For which properties of (static and dynamic) program representations can a
refactoring tool detect change effects on the composed program behavior and
how do pointcuts have to specify these properties so that a valid update can
be computed?
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1.2 Our Approach

In this dissertation we propose an aspect-aware refactoring approach that is built on a
change impact analysis. The approach consists of the construction of an intermediate
pointcut representation, a change impact analysis for pointcuts, an heuristics-based up-
date decision-making and a pointcut generator. The prototype refactoring tool SOOTH-
SAYER implements the approach as an extension to the Eclipse Java IDE [22] and the
AspectJ Development Tooling [1].

The intermediate representation for pointcuts describes every specified property explic-
itly and reflects the dependencies between different properties directly.

The change impact analysis computes static representations for every program represen-
tation used by a pointcut in the program and evaluates the specified properties within
these static representations. The evaluation results before and after the refactoring are
compared, and a pointcut impact representation of all pointcuts is produced.

A set of heuristics quantifies the change effects in terms of the pointcut (specification
completeness, degree of dependency, and execution semantics), and with respect to the
set of selected joinpoints (number of affected matches). Based on these impact measures
and considering the responsible code change a pointcut update decision is inferred (Keep
Pointcut, Update Pointcut, Cancel Refactoring).

The pointcut generator computes the updated pointcut. It tries to replace only affected
parts of the pointcut, in the same way as they were specified before the refactoring. If
the updated pointcut selects a set of joinpoints that differs from the original set, it ex-
cludes additional matches or includes missing matches by an explicit pointcut extension.
The tool SOOTHSAYER supports an extended refactoring workflow that shows effects on
existing pointcuts, proposes updates, and allows for a customized pointcut update if the
proposal does not meet the developer’s expectations.

The tool is applied to various aspect-oriented programs in order to evaluate the heuristics
for classifying the change impact and the proposed update decision. In addition, specific
and more complex pointcuts are constructed to expose and evaluate the limits of our
approach.

Thesis Statement:

A meta-model that explicitly represents the change effects on pointcuts, stat-
ing which part of the pointcut is affected by which program transformation,
allows for minimal invasive adjustments, which keeps a pointcut recognizable
even after multiple updates.

1.3 Contributions

The primary contributions of our research are:

e A change impact analysis framework for pointcuts of present AOP approaches,
which computes the actually added and lost matches for every specified property
of a joinpoint, and associates it with the responsible change. The analysis provides
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static approximations for dynamic program representations, and a pointcut match-
ing algorithm which selects every element in the program code to which a pointcut
refers to.

e A change impact classification distinguishes affected from invalidated point-
cuts, using a set of qualitative heuristics to support the developer’s decision mak-
ing. The heuristics classify the effects on a pointcut (specification completeness,
degree of dependency, and execution semantics), and in terms of the set of selected
joinpoints (pointcut match impact).

e A model for decomposing pointcuts into elementary pointcut expressions is
proposed, that makes matching elements of referenced program representations
explicit, represents evaluation dependencies between pointcut expressions, and dis-
tinguishes between references to joinpoints (pointcut matches) and other references
used for expressing a certain joinpoint property (pointcut anchors).

e A prototype refactoring tool automates the proposed aspect-aware refactoring
process. It is realized as an extension to the Eclipse JDT refactoring support
[23]. It appends three additional refactoring steps to the refactoring workflow:
preview of impact on aspects, pointcut impact review and pointcut update. The
tool implements the proposed impact analysis and pointcut update patterns as well
as the impact visualization. It is the foundation for evaluating the change impact
classification and pointcut update proposition strategy.

e A heuristic-based pointcut update computation proposes an update for every
invalidated pointcut and labels the smallest affected pointcut part as to keep, to
broaden (include lost matches), to narrow (exclude new matches), or to replace.

e Pointcut update patterns define, as general extension to existing refactorings,
the least intrusive pointcut adjustment, the patterns to enclose a direct (or nar-
rowed) replacement of an affected pointcut part, as well as the broadening or nar-
rowing of the complete pointcut by explicit extensions.

e A taxonomy for characteristics of joinpoint models and pointcut lan-
guages in AOP. This taxonomy is a classification of general attributes of joinpoints,
the means for identification, and the means for specification used in present AOP
approaches considering their effects on software evolution.

e Criteria for refactoring compliant AOP. A particular subset of attributes of
joinpoint models and pointcut languages has shown its suitability for the developed
refactoring approach. AOP approaches following these criteria, can be considered
as refactoring compliant with the conceptual framework of this thesis.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:
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Chapter 2 identifies the preservation of pointcuts as a conceptually new problem in
software refactoring, and describes how refactoring can be made aspect-aware. We
analyze the nature of the construct ”pointcut”, and present a general taxonomy for
joinpoint models and pointcut languages in AOP. Furthermore, we illustrate this
problem by examples, and discuss the effects of different attributes of joinpoint
models and pointcut languages on software refactoring. In addition, we define the
core vocabulary used throughout this dissertation, and present the key challenges
in refactoring aspect-oriented programs.

Chapter 3 presents the state-of-the-art in aspect-oriented refactoring, evolution-specific
tool-support and aspect-aware mechanisms at programming language level. We
review the work of these three fields, and identify the lack of proper tool-support
for detecting change effects on pointcuts and adjusting affected pointcuts as the
major problem in the refactoring of aspect-oriented programs. We also discuss the
key challenges in the development of such a refactoring support.

Chapter 4 gives an overview of our aspect-aware refactoring process and describes the
additional process steps in detail. In particular, we illustrate how our tool supports
the developer and present extensions to standard refactorings.

Chapter 5 describes our program analysis approach for detecting affected pointcuts and
for classifying the change impact. We describe every analysis step in detail, and
illustrate employed program representations, static approximations, and algorithms
for constructing these representations. In addition, we present our approach for
the static evaluation of selected joinpoints. Also, our heuristics for classifying the
change impact are described and the results expected from their application are
discussed.

Chapter 6 describes how our refactoring tool SOOTHSAYER computes update decisions
and generates the adjusted pointcuts. We give an overview of the update determi-
nation process, present our update decision criteria, and explain how the impact
measures are used to derive a particular decision. Furthermore, we describe the con-
straints for transformations that add, change, or remove matching element based
on our impact measures. Also, we present our algorithm for computing the least
intrusive update, and give illustrating examples.

Chapter 7 gives an overview of our aspect-aware refactoring tool SOOTHSAYER. We
describe its architecture and its components implementing the impact analysis,
static approximations, the pointcut handling and the impact visualization. In
particular, we present important design decisions and explain how the developer is
supported by the prototype.

Chapter 8 presents the evaluation of our approach using SOOTHSAYER. We describe
the employed methodology, the expected results and three experiments considering
independently developed aspect-oriented programs. We also present the detected
effects, proposed update decisions as well as the updated pointcuts. The evaluation
results are discussed and compared with our expectations.
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Chapter 9 summarizes the primary results of our work and shows how they support the
statement of the thesis. Moreover, we look forward to future work and relate it to
known limitations of the current realization of our approach.
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1. Introduction




Chapter 2

Refactoring in the Presence of Aspects

In this chapter we identify the preservation of behavioral compositions in AOP as a
conceptually new problem in software refactoring and describe how a refactoring can be
made aspect-aware. We start our analysis of this problem by defining the key vocab-
ulary used throughout this dissertation (2.2). In Section [2.3] we present an illustrating
example to demonstrate how behavioral compositions can be interfered by standard
(object-oriented) refactorings and depict different change effects on pointcuts in three
refactoring scenarios.

In the main part of this chapter , we analyze the nature of the construct ”pointcut”
and present a general taxonomy for joinpoint models and pointcut languages in AOP
as the result of a comparison of numerous approaches to AOP. Based on this taxonomy
we discuss different characteristics of joinpoint models and pointcut languages and their
effects on the realization of a reliable refactoring support. In Section we present re-
sulting challenges in preserving the behavioral compositions in aspect-oriented programs.
We conclude that pointcuts are specification-like constructs that refer to (static and dy-
namic) program representations in order to specify the conditions under which the aspect
behavior is invoked. Aspect-aware refactoring must detect change effects on these speci-
fications and update invalidated ones rather than preserve the composed behavior of the
aspect-oriented program.

2.1 Preservation of Structural Composition

Aspect-oriented modularization mechanisms enable various new refactoring opportuni-
ties [40L (78] [T01], but also require a different approach for constraining the possibilities
in which a program can be refactored safely [L01} [102]. Structural and behavioral com-
position mechanisms refer to elements of the program and may be invalidated if these
elements are changed.

The mechanisms for structural composition in AOP use symbolic references to declared
program elements. An aspect can adapt the structure of every referenced element, e.g.,
add additional members to a class or object, or define new inheritance relations [44} 52].
However, an adaptation of containment or inheritance relationships does not only rely
on the referenced program elements, it also assumes particular properties of the adapted

11



12 2. Refactoring in the Presence of Aspects

structure, e.g., class members can only be added if they do not interfere with existing
inheritance relationships (e.g., overriding), and new inheritance relationships can only be
introduced if they do not conflict with existing members. Compilers for AOP languages
are responsible to check these dependencies before the composition is performed.

Refactoring tools also have to be aware of such structural dependencies if undesired effects
on structural compositions shall be prevented. A refactoring tool can be made aware of
AOP-specific structural requirements by augmenting every refactoring with additional
preconditions. Such preconditions perform two additional tasks: (i) check whether the
refactoring can be safely performed in terms of defined structural compositions and (ii)
reveal references within aspect modules to changed program elements. The particular
computation effort for evaluating these preconditions depends on the adopted means
for composition, e.g., generative, class-based inheritance or instance-based inheritance.
The more the adopted mechanism interfere with existing program behavior, the more
expensive are the required preconditions checks for every refactoring.

In the preparation of this thesis, we studied the interference of common refactorings for
Java with structural composition mechanisms. As one result of this work, a refactoring
tool for OT/J [69] was developed'] The tool is part of the Object Teams Development
Tooling for Eclipse (OTDT) and is integrated with other tool support for OT/J. It pro-
vides OT/J-specific refactorings for renaming various program elements, and for moving
and extracting methods.

The implementation of this tool has shown that extensions of existing Java refactorings
are only limited in cases where the aspect-oriented language extension affects the seman-
tics of existing Java constructs. The implementation effort for these refactorings was not
exceptionally high, mostly because OT/J is a seamless extension of Java that provides
nearly non-invasive composition mechanisms (i.e., instance-based inheritance) and new
implementation modules with strict interfaces.

For additional details on the refactoring support for OT/J we refer the reader to the
Object Teams website [69]. Additional information on the interference between refactor-
ing and structural composition mechanisms are available in the corresponding diploma
thesis [13].

The remainder of this dissertation focuses on change effects on the aspect-oriented con-
cept for behavioral composition (pointcuts and advice), and a proper handling of pointcuts
within a refactoring process. To this end, various approaches to AOP have been studied,
concentrating on extensions to the programming language Java [0, [7, [69] [74, RT, 89 O]
and concepts for advanced pointcut languages [4, 25 37, 50, 72, 99]. As one result, a gen-
eral classification of behavioral composition mechanisms was developed, that categorizes
the attributes of adopted joinpoint models and pointcut languages.

L Since OT/J does not provide a pointcut language, the refactoring support for OT/J is not integrated
with SOOTHSAYER, the refactoring tool developed and evaluated in this thesis. However, SOOTH-
SAYER was developed in a way that it can be integrated into the OTDT when a pointcut language
is supported in a future version.
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2.2 Core Terminology

Most of the vocabulary in this dissertation is borrowed from research about program
analysis and compiler construction. The presentations of addressed problems and their
causes, as well as the way in which corresponding solutions are described using the terms
and definitions of these research areas. In the following, we present the basic terms and
definitions that establish the key vocabulary in this dissertation.

2.2.1 Concerns in Software Systems

The term software concern is found in many publications about AOP, even though the
term itself appears to be hard to define. Filman et al. define a concern as ”a thing in
an engineering process about which it cares” [28]. Another definition defines a concern
as "an interest which pertains to the system’s development, its operation or any other
matters that are critical or otherwise important to one or more stakeholders” [9§]. In
this thesis we consider a concern as a concept, functionality or any kind of requirement,
which is implemented by a software system.

A crosscutting concern is a concern whose implementation is scattered throughout
the implementation of other concerns in a software system [2§]. Especially concerns that
cannot be modularized within a certain programming model are considered to be cross-
cutting, because the elements of their implementations are scattered and tangled within
elements of other concerns.

The term scattering denotes the occurrence of elements that belong to the imple-
mentation of one concern in modules encapsulating other concerns, whereas tangling
characterizes the occurrence of multiple concerns mixed together in one module. We
use the term crosscutting to characterize scattered and/or tangled elements in the
implementation of a concern.

2.2.2 AOP Language Terms

Most approaches to AOP introduce a new implementation module, i.e., a new ab-
straction in the adopted programming model. An aspect is an implementation module
designed to implement a concern [28]. It can be bound to events in the execution of the
program, so called joinpoints. The binding of joinpoints is completely specified inside the
aspect and invisible to other modules of the program. At every joinpoint, an aspect can
adapt the program behavior, by providing enhanced mechanisms for behavioral compo-
sition. To this end the aspect module holds additional features like advice and pointcut
definition.

An adwvice is a method-like construct, in many AOP languages without a name, that can
be invoked at a joinpoint. It can declare input parameters for accessing information that
is available at a joinpoint. An advice contains a block of statements that are executed
either before, or after the joinpoint, or replace it completely.
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A pointcut definition binds an advice to a set of joinpoints through a specification
of their properties. Every bound advice is invoked at any joinpoint that is selected by
the pointcut. The term pointcut denotes a specification of joinpoint properties that
is contained by a pointcut definition. A pointcut can be seen as a functional query
that specifies properties and returns matching joinpoints. Most AOP approaches pro-
vide a separate language for specifying properties of joinpoints, a so-called pointcut
language.

2.2.3 Joinpoints and Pointcuts

The term joinpoint denotes the central concept for describing the interaction of aspects
with other implementation modules. Various definitions can be found in the literature,
but it was originally coined by Kiczales et al., as a well-defined point in the execution of
a program [52]. Filman et al. define a joinpoint as ”a well-defined point in the structure
or execution flow of a program where additional behavior can be attached” [28]. Another
definition characterizes joinpoints as ”points of interest in some modules in the software
lifecycle through which two or more concerns may be composed” [08]. In this thesis,
we need a more technically definition that defines a joinpoint in terms of the program
representations that exhibit the program code or runtime conditions of its execution.

A program’s source code can be represented by static program representations,
such as an abstract syntax tree (AST). Its nodes represent the language constructs used
in the source code to define its behavior, so called program elements. The runtime
conditions of a program execution can be represented by dynamic program repre-
sentations, like a stack trace or an object graph. These representations exhibit runtime
conditions of a single program execution and are only available at runtime. In contrast
to static program representations, they cannot be obtained directly from the program’s
code.

In AOP, static and dynamic program representations are used to reason about the pro-
gram’s meta-level, i.e., a pointcut specifies their properties to identify either elements
in the program or in its execution. Since joinpoints are events at runtime and have
no unique identifier, these properties are the only way to differentiate between different
joinpoints. In terms of these program representations, we can define the term joinpoint
in a technically more precise way:

Definition 2.1: A joinpoint is an event in the execution of a program that
occurs when a program element is executed. It has no unique identifier but
it can be discriminated through properties of static and dynamic program
representations that exhibit meta-level information of the program code or
runtime conditions of its execution.

The program element defining the code region that the existence of a joinpoint depends
on, is called joinpoint shadow. The shadow is defined as the static projection of a
joinpoint onto the program code [64].

Joinpoints can be discriminated by several properties of various program representations,
which we call joinpoint properties and define as follows:
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Definition 2.2: A joinpoint property is the property of a program representa-
tion that represents the implementation of the program or runtime conditions
of its execution.

Two different kinds of properties can be distinguished if the availability of a program rep-
resentation is considered. A static property of a joinpoint addresses an element in the
program code, whose executions represent joinpoints (i.e., the joinpoint shadow). Static
properties can be used to identify all executions of a specific set of program elements as
joinpoints. Individual executions can be distinguished from each other by their dynamic
properties. A dynamic property of a joinpoint is represented by elements of a dynamic
program representation. Dynamic properties denote the runtime conditions under which
a particular joinpoint occurs and thus are related to a specific program behavior, rather
than to its implementation.

At which joinpoints the execution of a program can be intercepted in general, is defined
by the so-called joinpoint model. It can be seen as the common frame of reference
defining what kinds of joinpoints are available and how they can be accessed and used
[98].

The pointcut languages, as provided by most AOP approaches, enable a declarative
specification of joinpoint properties. Nearly every AOP approach defines its own lan-
guage, with its own syntax, expressiveness and semantics. Depending on the particular
syntax, a pointcut can be defined as a combination of specifications for elementary prop-
erties. Such a specification addresses a single property of an element and is often called
predicate or pointcut designator [98].

The term pointcut designator is defined in the literature as a description of a set of
joinpoints [28]. This definition does not clearly differentiate between pointcut and desig-
nator. Moreover, pointcut designators as constructs in existing pointcut languages often
address more than one joinpoint property. For these reasons, we introduce the term
pointcut expression to denote a specification of a single property within a pointcut
and define it as follows:

Definition 2.3: A pointcut expression is a specification pce(p) that describes
a single property p of a joinpoint. It can be evaluated for a particular program
to select a set of elements that represent a joinpoint property within a certain
program representation.

Pointcut expressions can refer to various elements of static or dynamic program repre-
sentations, e.g., to express a particular property as a relationship to another element of
the representation. These so-called pointcut anchors are elements of program repre-
sentations that are referenced by a pointcut:

Definition 2.4: A pointcut anchor is an element of an arbitrary program
representation, which is selected by a pointcut to express a joinpoint property.
The set of selected pointcut anchors also includes joinpoint shadows, which
are elements of a static program representation.

Using this terminology, a pointcut is just a more complex specification that aggregates
pointcut expressions to describe several joinpoint properties. We can define a pointcut



16 2. Refactoring in the Presence of Aspects

definition more precisely as a functional query that evaluates a set of pointcut expres-
sions PCFE for a particular program P to receive the elements of the program’s static
and dynamic representations that match the specified properties:

Definition 2.5: A pointcut definition is a functional query PCE x P — FE
that evaluates all expressions of the set PC'E for a particular program P and
returns a set of elements F that exhibit the specified properties.

2.2.4 Refactoring and Program Transformation

Refactoring, or in particular manual refactoring, is defined as the process of changing
a program’s structure without altering its observable behavior [29]. The major problem
within the context of refactoring tools is that behavior preservation is often difficult to
prove and the analyses that must be performed to ensure it are difficult to compute [75].
In automated refactoring, a refactoring is defined as a program transformation that
has particular preconditions which must be satisfied before the transformation can be
safely performed [75]. Such a definition encompasses both behavior-preserving and non-
behavior-preserving transformations. A typical example for a behavior-preserving trans-
formation is the remove class refactoring. It only removes the class, if the class exists and
if it is not referenced from other parts of the system. An example for a non-behavior-
preserving transformation is the inline local variable refactoring. It replaces any occur-
rence of the variable by its initialization, which can alter the behavior if the initialization
has side effects.

In this dissertation, we use the definition for refactoring of Donald Roberts (cf. [75],
p.25):

Definition 2.6: A refactoring is a pair R = (pre,T') where pre is the precon-
dition that the program must satisfy, and T is the program transformation.

The term program transformation was originally coined in the field of constructing
interpreters, compilers and optimizers [3]. More recently, it is used as an approach for
supporting various programming activities. Program transformations deal with elements
of formalized program representations, such as abstract syntax trees (ASTSs), call graphs
(CGs), or control flow graphs (CFGs). Such a graph represents elements of the program
as nodes and their relationships as directed edges. An AST, for example, represents the
containment relationships of all program elements.

A program transformation modifies the program code by transforming the corresponding
AST. It only performs changes for complete elements, i.e., a transformation cannot cause
partial changes, incomplete edits with syntactic errors. We define a program transfor-
mation as follows:

Definition 2.7: A program transformation is an operation T'(P,in) — P’
that rewrites the AST of program P for a given input in into a new valid
AST representing the changed program P’. The input in defines a set of
input parameters, like change values and targeted program elements.
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Since refactorings are program transformations, we call the program before the transfor-
mation original program (P) and the program after the transformation refactored
program (P').

2.2.5 Aspect-oriented Composition

In general, the integration of multiple software artifacts into a coherent whole is called
software composition [08]. AOP defines a more specialized integration of aspect mod-
ules with other implementation modules that is called aspect weaving. It is, e.g.,
defined by Filman et al. as "the process of composing core functionality modules with
aspects, thereby yielding a working system” [28]. In most AOP approaches, this com-
position is asymmetric, i.e., only aspects can be composed with other implementation
modules. We call these implementation modules the base program, in order to differen-
tiate it from the program that is yielded by aspect weaving, the composed program.

Most AOP approaches provide two different composition mechanisms. A structural
composition mechanism allows aspects to adapt the structure of one (or more) imple-
mentation module(s). Aspects can, e.g., introduce new members to a class or declare
new inheritance relationships. The advice code of an aspect can use the augmented
structures, e.g., for storing runtime values or invoking additional methods.

The behavioral composition enables an aspect to adapt the program behavior at a
joinpoint. An aspect specifies a pointcut that binds an advice to this joinpoint and
provides some code that is composed with the joinpoint’s behavior.

Both mechanisms define the composition of multiple artifacts, but differ in several ways.
The most important difference for software refactoring is in their concepts for referencing
the artifacts to compose. All references to program elements have to be ascertained and
adjusted, if the program behavior should be preserved. While mechanisms for structural
composition use symbolic references to program elements, the behavioral composition,
defined by pointcuts and advice, refers to (join)points in the program’s execution. More-
over, joinpoints have no identifier that could be referenced but instead static and dynamic
program representations are used to specify distinct properties for their selection. This
significantly complicates the determination of referenced joinpoints, the preservation of
their properties, and the adjustment of property specifications, if a refactoring has inval-
idated them by changing referenced elements.

2.3 An lllustrating Example

This section presents a small example program and three different refactoring scenarios.
The program contains a few aspects whose behavior is affected by the refactorings. At
first, the program behavior and its general design is briefly described, followed by a
detailed description of each refactoring scenario and its effects on the aspect modules.
Every refactoring scenario has a different effect on the pointcuts in the program, ranging
from very obvious to almost undeterminable.
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Figure 2.1: The domain model of the Simple Insurance Application.

2.3.1 A Simple Insurance Application

The example program is a scaled down version of an insurance application that keeps
track of customers and policies of a fictitious insurance company. It is a slightly extended
version of the Simple Insurance Application developed by Colyer et al. [17]. The basic
use cases of the application cover standard customer management including the con-
tracting of life, house, and car policies. For example, a new life policy can be created for
a certain customer, considering her basic health attitudes and fitness. The application
provides a rich-client user interface (UI), and a persistence layer that stores all entered
data.

The program is an AspectJ application. Its basic architecture is represented through
three logical tiers: presentation, business logic, and data. The business logic is imple-
mented in pure Java, whereas the other tiers also contain aspects. Figure [2.1] shows
the application’s domain model, representing its basic abstractions. The figure repre-
sents only a selected subset of methods, the actual implementation contains for every
attribute setter and getter methods. Each interface in the model is implemented by a
class with a corresponding name, e.g., LifePolicy is implemented by LifePolicyImpl
(not shown in the figure).

The implementation of the insurance application also consists of three aspects. Every
aspect implements a certain behavior that is of minor interest here, but the pointcuts
defined in each aspect exhibit different characteristics which arise interesting issues when
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the program is refactored.

The TrackFinders aspect uses the Java logging capability to log how many results are
returned by a query method in SimpleInsurance. It defines a pointcut that enumerates
three methods in SimpleInsurance that implement different possibilities to find a specific
policy in the systems:

pointcut findPolicies (String criteria):
(execution(Set Simplelnsurance.findPoliciesById (String))
|| execution(Set Simplelnsurance.findPoliciesByCustomerId (String))
|| execution(Set Simplelnsurance.findPoliciesByCustomerLastName (String)))
&& args(criteria);

The pointcut refers to each method by specifying its fully qualified signature and selects
any execution of these methods at runtime.

The PolicyChangeNotification aspect implements a notification mechanism to observe
updates of policies. The user interface is implemented as simple Model-View-Controller
design. There is a small PolicyListener interface that clients can implement, and after
registering themselves with a policy, they will receive a policyUpdated() notification
whenever the policy is updated. The PolicyChangeNotification aspect defines a point-
cut that is supposed to select every execution of a setter method defined in PolicyImpl
class or its subtypes:

pointcut policyStateUpdate (PolicyImpl policy): execution(x setx(..)) && this(policy);

The pointcut identifies a setter method by the characters ”set” at the beginning of a
method’s name and requires their containment by specifying the type of the object at
which these methods are executed. At any execution of such a method it calls the method
notifyListeners() at the underlying object.

The last aspect LifePolicyStatistics implements a handling of statistical data for
contracted life policies. It uses a cflow pointcut that intercepts any creation of a
LifePolicyImpl object when the Add-Button is pressed in the user interface:

pointcut policyContracted ():
execution(LifePolicyImpl .new(Customer))
&& cflow ( execution(public void SelectionAdpater+.widgetSelected (SelectionEvent)) );

The pointcut selects the behavior ” Add-Button pressed” by recognizing executions of
methods with the signature widgetSelected(SelectionEvent) of SelectionAdpater
types. A selection event in SWTE] represents a mouse click on widgets in the UI, like
buttons or menus. Any execution of the constructor named LifePolicyImpl(Customer)

2SWT is an abbreviation for the Standard Widget Toolkit [88], a library for building user interfaces
used by the Eclipse Platform [22].
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Figure 2.2: Effects of renaming method findPoliciesByCustomerLastName (String).

within the control flow of such a method is selected as a joinpoint. Other instantiations
of these objects are ignored.

2.3.2 Refactoring Scenarios

In this example, we rename two program elements using the Rename Method refactoring
(cf. [29], p.273) and inline a local variable using the Inline Local Variable refactoringf|
Each refactoring affects one of the pointcuts presented above. In the following sections,
we describe every scenario and illustrate the issues that result from refactoring within
the context of pointcuts.

2.3.2.1 Rename Method

The Rename Method refactoring changes the name of findPoliciesByCustomerLast-
Name (String) in class SimpleInsurancelImpl to findPoliciesByCustomerName. It af-
fects the pointcut findPolicies(String) in TrackFinders as shown by Figure[2.2] The
refactoring renames a method that overrides other methods, thus every base method also
must be renamed (cf. [29], p.273). The aspect’s pointcut uses the signature of a base
method to recognize the joinpoints at runtime. A change of this signature removes the
identifier, so the pointcut cannot recognize any joinpoint that is anchored to this method
after the refactoring.

The pointcut specifies three clearly separated sets of joinpoints, of which only one set
(marked "red” in the figure) is affected by the refactoring. This set loses all matching
anchors in the program, and thus all depended joinpoints. The renaming of the anchor
made it impossible to identify the same joinpoints in the execution, because removed the
used identifier.

An aspect-oriented version of the refactoring needs additionally to update the specifica-
tion of properties that are used to identify a set of joinpoints. In this case, the rename

3The Inline Local Variable refactoring is an automated implementation of the Inline Temp refactoring
(cf. [29], p.119), provided by the Eclipse Java IDE [23].
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Figure 2.3: Effects of renaming method createPolicyID().

refactoring changed a property of all matching anchors, so it is obvious that the spec-
ification can be adjusted in a similar way as for symbolic references. Such an update
would not only follow the developer’s intention behind a pointcut, but also preserve the
program behavior.

2.3.2.2 Rename Method, again

In the second scenario, the Rename Method refactoring changes the name of method
createPolicyID() in class PolicyImpl to setupPolicyID(). The pointcut policy-
StateUpdate(PolicyImpl) of aspect PolicyChangeNotification selects all methods
whose names start with "set” in class PolicyImpl. Hence, the refactoring causes a
newly matching pointcut anchor for this pointcut. The Figure [2.3| shows the program
structure after the refactoring and indicates affected parts in "red”. The affected part
of the pointcut incompletely specifies a method signature (name starts with set), but
defines the type at which the method has to be executed.

Even if such cases can easily be resolved by a human, no refactoring tool could infer
an updated proposal just from analyzing the program’s source. At syntactic level it is
impossible to decide whether the additionally matching method setupPolicyID() is an
intended anchor.

An aspect-oriented refactoring tool can only recognize the additional match and warn
the developer of the poorly specified property. The information for deciding such cases is
not expressed in the program. If the program was developed using certain naming con-
ventions, either the refactoring tool is made aware of adopted standards, or the developer
has to provide a decision by considering the behavior implemented by method.
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Figure 2.4: Effects of inlining the variable 1p.

public void widgetSelected(SelectionEvent event) {
if (lifePolicyButton.getSelection()) {

LifePolicy lp = (LifePolicy)company.createPolicy(customer, PolicyType.LIFE);
new LifePolicyEditor(

myShell,
SimpleInsuranceApp.getCompany(),
lp;
true);
checkClaims(Lp.getClaims());
}
else if (autoPolicyButton.getSelection()) {
// ... create a car policy
}
else {
// ... create a house policy
}

public void widgetSelected(SelectionEvent event) {
if (lifePolicyButton.getSelection()) {
new LifePolicyEditor(
myShell,
SimpleInsuranceApp.getCompany(),

(LifePolicy)company.createPolicy(customer, PolicyType.LIFE),
true);

checkClaims(((LifePolicy)company.createPolicy(customer, PolicyType.LIFE)).getClaims());
}

else if (autoPolicyButton.getSelection()) {

// ... create a car policy
}
else {

// ... create a house policy
}

Figure 2.5: The Inline Local Variable refactoring performed on variable 1p.
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2.3.2.3 Inline Local Variable

The third refactoring is performed on the variable 1p in method widgetSelected-
(SelectionEvent) of class AddPolicyListener. This refactoring replaces all variable
usages with its initialization and affects the pointcut policyContracted() of aspect
LifePolicyStatistics. The pointcut captures every instantiation of class LifePolicy-
Impl, if it occurs when a button in the Ul was pressed. The aspect counts the number
of contracted policies and uses the cflow property to filter instantiations that occur in
other contexts.

The refactoring does not affect any referenced program element, as shown in Figure [2.4
but it alters the control flow specified by the pointcut. Changes of dynamic properties,
such as the control flow, are especially difficult to recognize and an assessment of their
effects on selected joinpoints is nearly impossible without proper tool support.

In the example, the refactoring replaces two occurrences of variable 1p with its initial-
ization, shown in Figure 2.5 The variable’s initialization, however, creates an object of
LifePolicyImpl. After the refactoring, the code creates two objects of the class, and
obviously causes a different program behavior. Object-oriented refactoring tools, like the
Eclipse JDT[23], do not check such kind of side effects, i.e., the developer may have not
noticed the alteration of the base program behavior. In addition, the refactoring leads
to additional invocations of the aspect’s advice, which now would be invoked two times
if the corresponding button in the Ul is pressed.

An aspect-oriented version of this refactoring can detect such situations and point a de-
veloper to the responsible program transformation, but the tool would not be able to
propose a resolution of such behavioral interferences. It can neither restore the original
behavior nor decide whether the intention behind the pointcut is invalidated. Nonethe-
less, an aspect-oriented refactoring tool could recognize the change effects and notify the
developer in case the refactoring alters the program behavior. With this information a
developer would be able to cancel the refactoring, if the changes are not intended.

2.3.3 Summary

Aspect-oriented programs need additional refactoring support as shown in the examples
above. Essentially, developers seek for tool support for three additional activities when
refactoring an aspect-oriented program.

First, a refactoring tool can filter the change effects on existing pointcuts and confront
the developer only with impacts on the program behavior. In particular, it could hide
changed pointcut anchors that are still referenced by the pointcut and only appear under
a different name or in a different part of the program. This is especially important for
pointcuts that tend to refer to a huge number of elements, such as the pointcut in the
second example. A developer then only needs to deal with really new or lost anchors.

Second, the tool could assess the change effects on the selected behavior in terms of the
specification. Affected pointcuts with very weak specifications, i.e., use of properties
that are unrelated to the selected behavior (set of joinpoints) or incompletely specified
properties, could be detected and expected issues reported to the developer.
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Third, since pointcuts may intend alterations of their selected joinpoint sets, a refactor-
ing tool for AOP should assist the developer in the decision, whether an affected pointcut
has to be updated. In ordinary cases, like the first example, a refactoring tool should be
able to propose an update decision and automatically generate the update for invalidated
pointcuts.

Due to intended alterations of the composed program behavior, a refactoring tool for
aspect-oriented programs cannot just restore the original program behavior. A new con-
cept for behavior preservation in AOP is required, which enables the tool to differentiate
accidental from intended behavioral changes.

2.4 Selection of Joinpoints

Various approaches for the selection of joinpoints were studied during the preparation
of this thesis [4, 6, 25, 37, B0, [72, 74, 9T, 09]. Most approaches differ in syntax, ex-
pressiveness and the provided joinpoint model, but they all select program elements by
specifying properties of program representations.

These program representations implicitly define an interface either to the implementation
or the execution of a program. A developer can select elements from a representation
by specifying their properties (pointcut) and can bind an advice to it. An AOP-specfic
runtime support would recognize every execution of a program element (joinpoint), that
matches the specified properties, and would then invoke the bound advice code. The
properties and program representations used by a pointcut define the expected inter-
face for bound advice declarations.

Like "traditional” interfaces, these representations are used (even without any explicit
declaration) as a facade to a possibly changing implementation of the program behavior.
Hence, the developer expects that referenced representations and their specified proper-
ties remain unchanged during evolution of the program. The bound advice is called at
all joinpoints matched by this interface. Hence, any refactoring that affects this interface
should also adjust the pointcut that defines it.

Unlike "traditional” interfaces, these representations can be directly or indirectly affected
by arbitrary changes in the program. Even changes of program elements that do not be-
long to the interface can affect referenced program representations. Furthermore, some
advanced AOP approaches [4], [72], [09] also provide access to runtime representations, like
stack trace, execution trace, or object heap. These dynamic program representations
exhibit the runtime conditions of a program execution, which can be used by pointcuts
to select a particular behavior at runtime. Such pointcuts would require a refactoring
to adjust a specification of a certain program behavior, whenever it interferes with a
dynamic property.

The general nature of this interface is defined by the joinpoint model and the pointcut
language provided by a particular AOP approach. This section presents a classifica-
tion of general attributes that characterizes the interface used by every studied AOP
approach.

The interface consists of three separate parts, as shown in Figure 2.6 Each part deals
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Figure 2.6: Constituent parts of the meta-level interface in aspect-oriented programs.

with a different type of information, with respect to the elements that can be refer-
enced (points of reference), the properties that can be used for identifying these
elements (means of identification) and the way in which the properties can be spec-
ified (means of specification). The classification presents general attributes of each
part and characterizes the effects of each attribute on aspect-oriented refactoring.

2.4.1 Points of Reference

The joinpoint model of an AOP approach defines at which (join)points in the execution
an aspect can be applied. It exposes executions of specific program elements, that can
be intercepted to invoke the advice code. Three primary attributes of a joinpoint model
mainly influence the way in which aspects can interact with other parts of the system:
wistbility, granularity and symmetry. In this section, these three attributes are described
and resulting consequences on refactoring of aspect-oriented programs are discussed.

2.4.1.1 Visibility

The visibility of declaring elements in the program code, e.g., private, protected, or
public, can be considered by the joinpoint model. Depending on the visibility of the
declaration that is associated with a joinpoint shadow, two generally different types of
joinpoint models can be distinguished: black-box and white-box.

A black-box model only allows pointcuts to refer to publicly exposed program elements,
i.e., only exposed parts of the program’s interface can also be used as joinpoints at
runtime. Executions of other program elements are not intercepted by aspects.

A white-box model offers access to all parts of the program’s interface, including
elements declared as private.

Regardless of whether ”private joinpoints” can be accessed by aspects, a refactoring tool
needs a representation of the executed element in the program code. Otherwise, changes
in the program’s source cannot be mapped to a set of joinpoints. For white-box models,
a refactoring tool requires a more fine-grained program representation to contain every
program element that can be referenced by pointcuts. Thus, the computation can be
more costly, which however is the only difference with respect to refactoring, as long as
joinpoints are directly represented by their shadows in the program code.
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2.4.1.2 Granularity

Similar to the visibility of declared elements in a program, only specific kinds of program
elements can be allowed for a composition with aspects. In general, operation-level
and statement-level access can be distinguished. The operation level considers every
operation, i.e., constructor or method invocation, defined in the program as possible join-
point. Statement-level approaches consider execution of much more program elements
as joinpoints. They also provide access to every statement in the program. It is obvi-
ous that statement-level joinpoints are the more powerful approach, but at the price of
several disadvantages.

Ossher and Tarr investigated the pros and cons of statement-level joinpoints and high-
lighted the unpredictability of change effects on statement-level weaving as major prob-
lem [71]. They state that statement-level changes are in particular difficult to predict,
because they affect both the data- and control-flow properties of that code, which negates
any guarantees that might have been made about the code. Furthermore, Ossher and
Tarr point out that data- and control-flow analyses are inherently exponential, which
makes it difficult even for tools to reveal all effects of statement-level changes. Although
this problem is inherent to software engineering in general, the fact that aspects are
oblivious to the code they are attached to, amplifies this problem.

Also, Bergmans et al. have discovered evolution problems arising from statement-level
joinpoints. They emphasize strong dependencies to implementation details, which make
aspects less reusable and more vulnerable to implementation changes [7].

So the question is, what additional problems may be caused by statement-level joinpoints
that need to be taken into account if certain change effects shall be prevented by a refac-
toring tool.

First, existing refactoring tools only deal with effects of operation-level changes in de-
tail. They mainly consider semantic equivalence of references and operations (cf. [70],
Section 4.1.1), and provide just a few statement-level constraints, that basically allow a
refactoring to simplify expressions, or to remove dead code. Less restrictive constraints
would require, on the one hand, a more fine-grained definition of semantically equivalent
statements, and, on the other hand, the usage of additional program representations to
enable control- and data-flow analysis during the refactoring process.

Second, static control- and data-flow analysis is very expensive in terms of computation
time and memory usage, and relies on conservatively approximated program represen-
tations. Hence, not all runtime effects caused by control- or data-flow changes can be
represented by statically approximated program representations.

Third, statement-level changes are likely to affect the program behavior in more hidden
ways than operation-level changes. A refactoring tool is required, on the one hand, to
distinguish semantically equivalent but changed behavior from other behavior alterations
at the statement level, and, on the other hand, to communicate the differences in those
changes to the developer. For example, consider an error message during a refactoring
that should present the reasons for a non-equivalently modified sequence of statements.
How should the tool communicate all possible indirect and direct reasons in a compre-
hensible way, covering changes from a simple statement removal to arbitrary side effects.
The requirement for statement-level equivalence constraints, stated above, would also
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soften the general requirement for behavior preservation in refactoring. It alters the
general goal of refactoring and requires a more fine-grained model for supporting an au-
tomated decision making. Refactoring tools for present AOP approaches have to deal
with effects on statement-level joinpoints, but in turn they require precise static represen-
tations of joinpoint properties and sufficiently complete specification, to provide checks
for statement-level equivalence rules.

2.4.1.3 Symmetry

Most AOP approaches only consider joinpoints in the execution of the base program,
the part of an aspect-oriented program that is adapted by aspects. A few approaches
support symmetric composition [81, O1] that makes no distinction between aspects
and other components of the system, and provides the same composition mechanisms for
component-component, aspect-aspect, and class-class compositions [43].

In symmetric approaches, the execution of the aspect code itself provides joinpoints, in
addition to the base program. Aspects can re-use the functionalities defined by other
aspects, which make them more reusable [82, [I00]. If such approaches are combined
with white-box visibility and statement-level joinpoints, they provide the most power-
ful composition mechanisms in AOP. However, this power again comes with a price;
huge additional effort needs to be exerted in order to detect interferences with known
composition concepts, such as inheritance, and also between different aspect modules.

This causes three major issues with respect to refactoring tool-support: First, the pro-
gram representations required for the analysis of change effects are getting even more
complex. In particular, the inheritance relationships and control- and data-flows of al-
ready composed components have to be considered to reveal undesired interferences.
Second, more research is required to identify all conflicting situations between differ-
ent aspects and non-AOP components, such as discovered by Storzer and Krinke [86].
Third, the resulting constraints do not only affect new composition mechanisms, but
inverse interferences have also to be taken into account, e.g., any definition of additional
inheritance relationships would require a check for conflicts with AOP compositions.

In summary, all fully symmetric AOP approaches require more than an aspect-aware
refactoring tool to support software evolution. We consider the specific issues arisen
from fully-symmetric joinpoint models as out of the scope of this thesis.

2.4.2 Means of Identification

Joinpoints are executions of program elements and hence do not provide a unique identi-
fier. Pointcuts specify properties of joinpoints to select individual executions of program
elements for invoking bound advice declarations. During the execution of the program
a particular execution of an element is recognized by these properties, in contrast to
fully-qualified names that already identify the element in the program code. However,
as a refactoring would adapt symbolic references to changed declaration elements, it
also would be required to adapt specifications of joinpoint properties when a property is
changed.
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A symbolic reference refers to a declaration element in the code and is completely speci-
fied. Joinpoint properties, however, are usually exhibited by multiple elements, and also
more or less completely specified by pointcuts. A preservation of pointcuts that specify
these properties, therefore, differs in several ways from the handling of symbolic refer-
ences in object-oriented refactoring. In this section, we discuss three characteristics of
joinpoint properties, analyzability, dependency, and meaning, that significantly influence
their handling in an aspect-oriented refactoring process.

2.4.2.1 Analyzability

With respect to the availability of the information represented by the program represen-
tations for refactoring, we can distinguish statically available properties of the program
implementation from dynamic properties of the program execution.

Static program representations can be directly built from the program code, whereas rep-
resentations necessary for dynamic properties, like the stack trace, need a more advanced
processing when they have to be made statically available. They additionally depend
on input values available only during the program execution and therefore have to be
conservatively approximated. An approximated representation is a static structure rep-
resenting all possible program executions, and may contain more executions of program
elements than actually occur at runtime, i.e., including false positives. An approxima-
tion can also be very expensive in terms of computation time and memory usage, and
for some dynamic representations it may be very imprecise. Some runtime information,
such as values of global variables, can hardly be approximated. In such cases, the cor-
responding static representation would contain all possible executions without runtime
values. Different specification of such dynamic properties cannot be differentiated.
Depending on whether a joinpoint’s property is represented through a static or a dy-
namic representation, the properties are called either static or dynamic properties.

Static properties. A static propery is a property of a static program representation,
such as the abstract syntax tree (AST) or static type hierarchy. An AST, for example,
holds all elements of the program code and can be used to query the program’s name
space and lexical representation. Its edges represent containment relationships between
different program elements. The type hierarchy represents static typing information,
holding all super- and subtype relationships. Static properties denote properties of pro-
gram elements that are somehow associated with a joinpoint (e.g., joinpoint shadows).
They can denote the element’s kind, name, source code location or inheritance relation-
ships. For example, consider the following pointcut:

pointcut nameAdjustments() : execution(void Customer.setLastName(String));

The pointcut selects any execution of a method with the signature setLastName (String)
of class Customer. The pointcut specifies several properties of the method (joinpoint
shadow), to select it from the program’s AST:
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e clement kind = Method Declaration
e name = "setLastName”

e return type = "void”

e parameter type = ”String”

e within = type ”Customer”.

Static program representations are directly constructed from the program code, i.e.,
their elements have a non-ambiguous representation in the code. Source code changes
can be mapped to these elements and change effects can be inferred directly. Because
of this direct mapping, a refactoring tool can exactly detect the change effects on static
properties of joinpoints. Furthermore, specifications of static properties directly match
elements in the program. If a refactoring unintentionally affects a matching element, the
specification can often be adjusted using the same change values.

Dynamic properties. The observation that any seemingly safe modification in the base
program’s representation can alter the behavior of aspect-oriented programs leaded to
several enhancements to existing pointcut languages [4, 37, [72], 99]. Their common goal
is to abstract from implementation details, so that specifications can describe a specific
program behavior directly.

A dynamic property is a property of a dynamic program representation. Its elements
represent executions of program elements and may denote a particular execution order,
dynamic type, or a certain runtime value. Dynamic properties depend on the program ex-
ecution, i.e., on the behavior that actually occurs during runtime. For example, consider
the following pointcut:

pointcut bigDeals(PolicyIlmpl pol): set(double x.value)
&& target (pol)
&& if (pol.value >= 1000000);

The pointcut selects specific executions a any assignment to a field named value that
is a member of an instance of class PolicyImpl. An execution of the field assignment
is only intercepted if the field’s current runtime value is bigger than 1000000. The
pointcut specifies two properties that cannot be represented through a static program
representation:

e executing object = instance of PolicyImpl;
e dynamic value of field value >= 1000000.

Some experiments have shown that pointcuts with dynamic properties are more robust
with respect to structural changes [37, [72]. These experiments however did not consider
the impact of behavioral changes and the inherently exponential effort for detecting
change effects on dynamic properties.

Especially, the introduction of advanced dynamic program representations to the spec-
ification of joinpoints, allows for pointcuts that are not affected by simple structural
changes such as rename and move. However, other refactorings, such as Inline Method
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or Inline Temp (cf. [29], p.117, p.119), can also influence pointcuts with dynamic proper-
ties. The primary disadvantage that comes with the specification of dynamic properties
is the lack of suitable static representations. An approximation of these properties is ex-
pensive and often imprecise, and a reliable detection of change effects is even impossible
for various dynamic properties. In addition, affected specifications of dynamic properties
are difficult to adjust. Since a dynamic property denotes a particular behavior, its ad-
justment would require a refactoring tool to specify a different, but equivalent, behavior.
An automated generation of behavioral specifications is still a research problem in other
fields in software engineering (e.g., generative testing).

2.4.2.2 Dependency

If we consider the dependencies of a joinpoint property, we can make a further distinc-
tion: some of the properties inherently belong to the element representing the joinpoint
(or its shadow), e.g., its kind, name or dynamic value. These properties characterize an
intrinsic part of the element, that is completely independent from relationships to other
elements. We refer to those properties as intrinsic properties. The complementary
property is called extrinsic property, because it depends on the element’s context.
A specification of an extrinsic property refers to other elements outside of the joinpoint
shadow and expresses the property as relationships between different elements of a pro-
gram representation, e.g., within, contains, supertypes, subtypes, or cflow.

The pointcut anchors are used to express the context in which those elements that
represent the joinpoint are selected. A pointcut anchor is an element of an arbitrary
program representation that is selected by the pointcut in order to express an extrinsic
property. Since a pointcut anchor is used as a key for expressing a property’s specifica-
tion, its existence is essential to identify joinpoints that possess the specified property.
Pointcuts select anchors also through a specification of their properties. Therefore, the
existence of these anchor properties is the prerequisite under which a particular se-
lection of joinpoints is defined. For example, consider the following pointcut:

pointcut nameChanges(): call(void Customer.setLastName(String))
&& within (Account) ;

The pointcut selects every call of a method setLastName (String) of a class Customer,
when the call is defined within a class named Account. The calls of method setLast-
Name (String) are the shadows of the selected joinpoints, which are identified by two
extrinsic properties: (i) is a call of a method and (ii) is contained in class Account. Both
properties refer to properties of other elements (pointcut anchors) that lead to a selection
of the joinpoints. Any modification of an anchor property would not just alter a property
of a selected joinpoint, but also would alter the context in which the joinpoint’s property
can be recognized, and therefore the semantics of the property’s specification. Such a
change does not necessarily affect any joinpoint shadow (method call), but any other
element the pointcut relies on.

Since joinpoints are executions of program elements and have no unique identifier, their
properties are the only means for their identification. Specified properties are the iden-
tifiers for joinpoints, similar to fully-qualified names for declaration elements. Their
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specifications have to be preserved when a refactoring changes the underlying program
representation. The preservation of a property specification, however, differs in several
ways from the treatment of fully-qualified names in object-oriented refactoring. The
number of joinpoints with a specific property at runtime is unknown, and therefore a
preservation of every single joinpoint seems pointless, especially in the light of static
approximation.

Symbolic references point to a single name within an object-oriented program; only in-
heritance relationships additionally influence the actually invoked element at runtime.
Refactorings for object-oriented programs restrict the modification of existing inheritance
relationships and update all symbolic references to fully-qualified names when a decla-
ration element is changed. In aspect-oriented programs, the properties can belong to
various program representations and can depend on properties of other elements. Hence,
in addition to the program’s name space and inheritance relationships, a refactoring for
AOP also needs to deal with other program representations. For every employed program
representation:

e Elements that exhibit a specified joinpoint property,

e Elements on which extrinsic properties additionally depend on,

e Specifications of properties of both kinds of elements, and

e Any specification of relationships between different elements in the representation,

have to be preserved, so the joinpoints can be recognized by the same properties at
runtime.

2.4.2.3 Meaning

Joinpoints are selected by their properties which are represented by elements of program
representations that can only approximate a particular program behavior. For this rea-
son, one can distinguish between properties that are closer connected to this behavior
and properties that have no behavioral meaning at all.

No behavioral meaning. The most obvious property with no execution related meaning
is naming. A name of a program element can refer to anything the developer had in mind;
simply unreachable for every refactoring tool. This is especially a problem, if simple,
unscoped names are used to select elements from the program. Such names can
match elements in any part of the system, including external libraries and any extension
added in the future. This problem becomes even worse if names are partially specified.
A specification of a partial name defines a specific string of characters, which may
make sense in environments with strict naming conventions, but this conventions must
be applied to any piece of code that can possibly interact with aspects, even binary and
3rd party libraries. Without an automated verification of applied naming conventions, a
more concrete meaning for partial names cannot be ensured.
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Behavioral meaning. A specification of name-based properties, however, is not in gen-
eral meaningless, especially, if the names are bound to a particular context in which
they have a concrete meaning. In object-oriented programming, the visibility of names
is restricted, e.g., through the enclosing package, type, or block. A name can have a
scope in which it represents a concrete behavioral meaning. AOP advances this con-
cept of containment-based scopes and allows a pointcut to scope names also through
other program representations. Basically, a pointcut can scope a specified name with
a particular containment, inheritance, or control flow relationship. Data flow relation-
ships are another possible means for scoping, but they are often hard to reason about,
and the information is technically difficult to obtain. Each of these scopes can ensure
that a specified name is only associated with the program elements that represent a par-
ticular program behavior, and thus it can supplement a name with a behavioral meaning.

A containment-based scope restricts potential occurrences of a name to a specific
part in the program, which is not necessarily associated with a particular behavior. For
example, package-level scoping is often too coarse-grained, it is more or less a general
location for types that provide some implementation for the same functionality. However,
a method-level scope directly specifies the statements among which the named element
has to occur; it associates a particularly implemented behavior with the named element.
For example, consider the following three pointcuts:

pointcut pcl(): call(void x.setLastName(String));
pointcut pc2(): call(void Customer.setLastName(String));
pointcut pc3(): call(void Customer.setLastName(String))
&& withincode (boolean CustomerEditor.applyChanges());

Each of them selects method calls specifying a method signature and some containment-
based scope. The pointcut pcl does not scope the signature at all. All calls of any
method with the specified signature, anywhere in the program will be selected by pc1l.
That makes it very difficult to assume a concrete behavior at executions of these ele-
ments.

The pointcut pc2 restricts the declaring type, so the number of implementations that
can be associated with the specified signature is limited. In fact, it selects all method
calls of a single method that implements one particular behavior.

The pointcut pc3 additionally restricts where the method’s calls can occur in the pro-
gram. It selects only those joinpoints of one particular method call that is associated
with a concrete behavior implemented by the method applyChanges().

A more execution related meaning can be achieved with inheritance-based scopes. In
particular, a specification of overriding methods gives every method name in the selection
a strong behavioral meaning. Newly matching methods override the named method and
provide a different implementation to be executed at occurrences of the same behavior at
runtime. Hence, an inheritance-based scope is an indicator for elements that are invoked
at the same behavior in the execution of the program. For example, the following pointcut
specifies all methods that implement a behavior that occurs if a "mouse click” selects a
widget in the program’s Ul:
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pointcut selectionObserved () :
execution(void SelectionAdapter+.widgetSelected (SelectionEvent));

The pointcut selects all executions at runtime of every method that implements the ab-
stract declaration of method widgetSelected(SelectionEvent). FEach of these methods
is invoked if the same behavior occurs at runtime.

A control flow-based scope restricts the specified element names to a specific control
flow. It associates occurrences of a named element with a particular behavior represented
by a particular control flow. It can be seen as a temporal relationship that renders element
names valid if the behavior represented by the control flow occurs. For example, consider
the following pointcut:

pointcut policyContracted () :
execution (LifePolicyImpl.new(Customer))
&& cflow ( execution(public void SelectionAdpater+.widgetSelected (SelectionEvent)) );

The pointcut additionally filters executions of one particular constructor of class Life-
PolicyImpl. It restricts the set of selected joinpoints not only by specific program
elements, it also describes a particular program behavior that has to occur at runtime,
before a constructor execution is considered as a selected joinpoint.

Reasoning about data flows, has not yet been achieved by existing AOP approaches,
however single events in the data flow that create, exchange, or assign data still have a
meaning related to a particular program behavior. An object creation can be observed
and intercepted at several points in execution, e.g., at executions of static initializers
when the object’s class is initialized or at dynamic intializers and constructors when
an object is created. Also, data access represents points in execution with a particu-
lar meaning at runtime. Especially, assignments to an object’s field indicate a certain
behavior, since state changes in object-oriented programs are generally represented by
values of object members.

2.4.3 Means of Specification

All AOP approaches studied in the preparation of this thesis offer a separate (point-
cut) language for specifying properties of joinpoints. These pointcut languages differ in
syntax, expressiveness and the supported joinpoint model, but they all provide similar
means for selecting, filtering, and combining properties of joinpoints.

Figure gives an idea of the variety of syntactic differences in present pointcut lan-
guages. The first pointcut is defined in the AspectJ syntax, using two pointcut designa-
tors, call and withincode, combined with the logical && (and) operator. The second
pointcut is defined as XML-based path description using an XQuery-based approach for
specifying pointcuts [25]. It navigates from the root node of an abstract syntax tree (all)
over a class with the name "B”, to a method named "update” and returns all method
calls (invoke). The last pointcut is defined in a logic programming syntax using the Al-
pha approach [72]. It expresses joinpoint properties as predicates. Some predicates are
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Informal: | "Select any execution of all method calls located within method B. update( )"
AspectJ: | call(* *(..)) && withincode(* B.update())

XQuery: | $db:all/bat:class[@name="B"]/bat:method[@name = "update"]/bat:invoke

Alpha: | callWithin(ExprID) :-
within(
(, calls((, ExprlD) , _, _)),
B
“update ).

Figure 2.7: Same pointcut in different syntaxes of AspectJ, XQuery and Alpha.

composed of other predicates, such as the within contains a definition of the predicate
calls.

All pointcuts describe joinpoint properties in a declarative way. Their expressions can
be characterized in terms of aggregation and completeness, which are both of particular
importance if a pointcut interferes with changes in the base program. We discuss both
attributes in the following, together with inter-pointcut interference, which requires a
precedence specification in case of multiple pointcuts share the same joinpoint.

2.4.3.1 Aggregation

Pointcut languages provide a means for aggregating individual expressions to a more
complex specifications. An aggregation can be defined either by direct nesting of ex-
pressions or through logic operations, such as and (&&) or or (||). The evaluation of
an aggregated expression will resolve any (nested) expression within the aggregation
before their results are used to resolve the aggregated expression. This dependency be-
tween pointcut expressions can directly reflect a dependency to anchor properties. If
any specification of an anchor property is specified by subexpressions of an aggregated
expression, then anchor dependencies are directly reflected by the structure of the point-
cut, even for recursively nested expressions. This reflections of anchor dependencies is of
particular importance if a refactoring affects an anchor expression which is used within
other expressions.

For example, consider the different syntactic definitions of the pointcut shown in Fig-
ure 2.7 Each pointcut specifies the same joinpoint properties, but aggregates pointcut
expressions in a different way. Figure [2.8| shows the evaluation dependencies between
the expressions of each pointcut. The call expressions are highlighted as every point-
cut selects executions of method calls as joinpoints. The calls are discriminated by a
containment-based scope. The containment property is the only identifier that charac-
terizes this particular set of joinpoints, hence, the anchor expressions defining the scope
give the pointcut its meaning.

The Figure [2.§ also illustrates the nesting level of each expression within the pointcuts.
An evaluation of expressions in level () depends on the evaluation of any connected ex-
pression in higher levels. Expressions of the highest level (e.g., level /) can be evaluated
independently, but, in turn, are the foundation for the evaluation of (all) other expres-
sions. If we consider the nesting level as indicator for an expression’s importance in
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Figure 2.8: Three different way of describing the joinpoint properties.

terms of the evaluation result, then expressions of higher levels should specify anchor
properties on which properties specified at lower levels depend on.

For example, the &&-expression of the AspectJ pointcut depends on all other expres-
sions (level 0), whereas the name-based expressions (method, call) can be evaluated
independently (level 3). It also indicates that any modification of method update() or
class B could entirely disguise the containment property for any call, while a removal
of a single call ”just” removes any execution of that call.

A comparison with the other pointcut definitions in Figure |2.8| shows that the XQuery-
based pointcut also reflects this anchor dependency, even in a less cluttered way. The
Alpha pointcut, however, indicates no dependency from the containment scope, in fact,
the pointcut’s structure leaves much room for ambiguous interpretation. For example, it
is not clear from the structure how the three parts of the within expression depend on
each other.

2.4.3.2 Completeness

Since pointcuts are specifications of properties they can describe a property more or less
completely. The incompleteness is mostly introduced by dependencies of signature pat-
terns.

Most pointcut languages provide a means for specifying the signature/name of types,
methods, constructors and fields. Such a pattern consists of several parts that specify a
particular information of a signature. For instance, a method signature pattern consists
of modifiers, return type name, declaring type name, method name, and a list of param-
eter type names. Every part in the pattern can be completely omitted, i.e., specified by
a wildcard "*" or partially specified through a string of characters, e.g., "setx*", "getx*"
or "test*". The list of parameter types can be partially specified by ".." (any), "..,
int" (last parameter is of type int), or "int, .." (first parameter type is int).

The combination of partially specified signature patterns with other pointcut expres-
sions obviously makes the composed expression less complete. For example, consider the
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following AspectJ pointcuts:

pointcut strictCmt (): call(x *(..)) && withincode(void CustomerTest.testInit ());
pointcut partialCmt (): call(x =*(..)) && withincode(* CustomerTest.testInit *(..));

pointcut strictCtrlFlow (): call(x x(..)) && cflow(call(void CustomerTest.testInit ()));
pointcut partialCtrlFlow (): call(x =*(..)) && cflow(call(x CustomerTest.testInit x(..)));

The first two pointcuts select all executions of any method call contained within a certain
method. The pointcut strictCmt () explicitly specifies the method through its complete
signature, while the partialCmt() pointcut only defines the characters of a method
name. Even if both result in the same selection, the pointcut strictCmt () is more spe-
cific and leaves no room for selecting similar methods as anchors in future versions of the
program.

The second pair of pointcuts shows that a partial signature pattern can affect the com-
pleteness of almost any other pointcut expression.

2.4.3.3 Precedence

In cases where multiple pieces of advice are bound to the same joinpoint, an aspect has
to provide a so-called advice precedence. A precedence clause defines in which order
different advice declarations are executed at a shared joinpoint. The execution order is
a partial definition that neither defines a subsequent execution nor an execution depen-
dency, i.e., a second advice can be executed, even if the first advice did not.

Since a refactoring can cause additional joinpoints to be matched, it also can introduce
an additional sharing of joinpoints. If no advice precedence is defined, the refactoring
tool can inform the developer of the newly shared joinpoints. A computation of a spe-
cific proposal, however, would be impossible, because a thorough understanding of the
associated aspect behavior is required. A pure detection of newly shared joinpoints can
nonetheless be useful to the developer. It is a crucial information that affects the devel-
oper’s decision making, even if ”cancel the refactoring” is the only concrete action that
can be proposed.

2.5 Preservation of Behavioral Composition

Refactoring tools for object-oriented programs seek to preserve the program behavior
through explicit checks that detect violations of syntactic and semantic properties of a
program. If a refactoring violates such a property, the tool either performs additional
changes to keep the property valid, e.g., for overriding methods, or informs the devel-
oper that the refactoring (if performed) cannot be prevented from altering the program
behavior [70, [75].

Refactoring tools for aspect-oriented programs additionally have to check the joinpoint
properties specified by pointcuts. Any change effect on a specified property have to be
detected and either the corresponding specification adjusted or the developer informed
on potential effects on the invocation of advice code.



2.5. Preservation of Behavioral Composition 37

P M_ invoke K
O O

Ee——F

AO|Refactoring

Pointcut Update + Base Refactoring

P.
(@ ——] v

K invoke' J

Figure 2.9: Aspect-oriented refactorings that preserve the invocations of advice code.

The general goal of the aspect-aware refactoring approach developed by this thesis is
depicted in Figure 2.9 Any base code refactoring that changes the base program BP
into BP’ is extended with an analysis to detect change effects on aspect oriented modules
in the program. Aspect-oriented refactorings are defined as extensions to base code
refactorings that control the change effects on the composed program P while producing
the refactored version P’. These refactorings infer adjusted pointcuts PC’ from changes
in the base program BP’, so advice ADV is bound to a semantically equivalent set of
joinpoints (invoke’). The joinpoints selected in the execution of BP’ are semantically
equivalent to joinpoints of BP in terms of the properties used for their identification, i.e.,
an adjusted pointcut specifies the same properties of the same program representations
as before the refactoring, but uses property values of the refactored program BFP’.

The differentiation between the attributes of joinpoint models and pointcut languages
described above, allows us to discriminate the following change effects on pointcuts and
to reveal the concrete challenges for adjusting the specifications of joinpoint properties.

2.5.1 Change Effects on Pointcuts

A pointcut specifies properties of program representations that represent the implemen-
tation or execution of the base program. Refactorings are program transformations, that
modify the base program and inherently affect these program representations, because
they are created from the program code. Program transformations change programs at
the level of program elements, they can modify (e.g., rename, move), add, or remove a
program element. In this section, we give an overview of the kinds of changes that can
affect pointcuts and discuss the effects that can be observed.

2.5.1.1 Affecting Changes

A program transformation can either be behavior-preserving, causing only a modified
structure of the program, or non-behavior preserving, causing an altered program be-
havior. In the context of pointcuts, the impact on the program representations that
are referenced by pointcuts can be additionally considered and the following changes be
distinguished.
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An wunrelated behavioral change can modify the behavior of the base program in
a way that no property specified by a pointcut is affected, but a pointcut still results
in a different set of joinpoints. Such a transformation would not affect any specified
property, but alter the number of selected joinpoints that occur at runtime and thus
affect the composed program behavior.

A change of a dynamic property can affect a specified dynamic property of a join-
point, i.e., a particular program behavior is affected, that is specified to recognize in-
dividual joinpoints. This behavioral change would result in joinpoints with a modified
(dynamic) property at runtime, which does not match the specified behavior. Thus, the
change would alter the set of captured joinpoints.

An unrelated structural change can modify a certain program element that is not
referenced by a pointcut. Since the program behavior is not affected, the same joinpoints
occur at runtime. The composed program has the same behavior as before the change.

A change of a static property can affect the program’s structure and modify a static
property of joinpoints that is specified by a pointcut. Such a change would lead to a
different selection of joinpoint shadows, and thus to an altered set of joinpoints.

A change of an anchor property can modify a static or dynamic property that
identifies a pointcut anchor, a so-called anchor property. This would alter the set of
selected anchors and thus affect the selection of joinpoints whose properties are specified
using it.

Every specification of a property that refers to the changed anchor was defined under
the assumption that the anchor exhibits the original property. The change of the anchor
alters not only the resulting set of joinpoints, but also the assumptions under which other
specifications were made. Such a change would therefore modify the semantics of these
property specifications, which is also known as the fragile pointcut problem [56].

2.5.1.2 Change Effects

Any of the changes described above can have different effects on the selection of join-
points. In general, we can discriminate the changes by the affected kind of element
selected by a pointcut, like joinpoint, shadow or anchor, or by the quantity of modi-
fied matches (partial or complete). The following four kinds of change effects can be
distinguished:

Even if no specified property is affected, a behavioral change can affect the number
of joinpoints that occurs during an execution. This would impact no element in the
program selected by the pointcut, but the number of executions of joinpoint shadows
that occur at runtime. The behavioral change of the base program caused different
invocations of advice, and hence an alteration of the composed program behavior.

A program transformation can cause additionally matching joinpoints for pointcuts that
have not selected any joinpoint before. Such transformations often change a program
element into a matching shadow or anchor. The transformation causes a complete
addition of shadows or anchors.
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Figure 2.10: Change effects on the meta-level interface.

Also the opposite case can happen particularly if a shadow or anchor is modified or
removed from the system. Such a transformation would cause a complete loss of
shadows or anchors and therefore a loss of all dependent joinpoints.

Especially for pointcuts with incompletely specified shadows or anchors, a transformation
can cause a partial addition or loss of shadows or anchors. For example, incom-
pletely specified name patterns match several elements in the program. A modification
of one matching element affects only a partial set of selected joinpoints, other joinpoints
still remain in the pointcut selection. Also joinpoints selected by dynamic properties,
such as cflow, can be split by a transformation. A specified control flow-based scope
can be reduced by behavioral changes affecting the specified control flow.

2.5.2 Challenges in Refactoring Aspect-oriented Programs

Changes in the program’s source code can cause various effects on existing pointcuts. If
we consider the different attributes of joinpoint models and pointcut languages described
above the following challenges for aspect-oriented refactoring can be identified.

2.5.2.1 Detection of affected Pointcuts

A refactoring can affect the program representations that exhibit properties of joinpoints.
Some pointcuts in the system can specify these properties and select therefore an altered
set of joinpoints in the execution of the refactored program. These pointcuts are called
affected pointcuts, because the refactoring interferes with their evaluation results.
The detection of affected pointcuts is influenced by the granularity of joinpoints and
the analyzability of specified properties. The more fine-grained the joinpoint model, the
more execution-related properties can be specified. Static properties of statements, such
as location and order, are directly related to a particular program behavior. In addition,
statement-level joinpoints can be directly associated with runtime values, which is not
possible for operation-level joinpoints at all.

This interacts with the analyzability of specified properties. Static properties can be
represented by program representations that reflect the structure of the program code,
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while dynamic properties are represented by program representations that reflect the
execution of a program. Refactoring tools employ static program analysis, therefore
all referenced dynamic program representations have to be approximated by a static
representation. Such a static representation of dynamic properties is a conservative
approximation, i.e., it can contain more joinpoints with a particular property as actually
occur at runtime. Depending on the particular dynamic property specified by a pointcut,
an approximated representation can be exceptional expensive to compute and also very
imprecise so that differently specified properties cannot be discriminated.

Another kind of interference is the introduction of joinpoint sharing between multiple
advice declarations. Even if a refactoring does not interfere with a specified property,
it could alter the set of selected joinpoints, and introduce shared joinpoints. Such cases
require an interaction analysis considering the approximated joinpoints of every pointcut
defined in the system.

2.5.2.2 Assessing the Change Impact

In case a refactoring tool detects affected pointcuts, the tool has ”just” recognized point-
cuts with (possibly) altered sets of joinpoints. Since pointcuts select points in the execu-
tion of a program, a refactoring tool cannot simply include missing or exclude additional
joinpoints. It rather has to rephrase the specifications of their properties to adjust a set
of selected joinpoints. Moreover, a pointcut can specify properties of joinpoints more or
less completely, which can intentionally or unintentionally capture an altered set of join-
points in future program versions. Some pointcuts may also intentionally match newly
added or changed elements. For these reasons the effects on pointcuts need to be further
analyzed, before a refactoring tool can infer an update decision.

The analysis can assess the tmpact on a pointcut in various ways. It can determine
which parts of the pointcut are affected, what kind of properties are used by these parts
and how complete the affected properties are specified and also how many joinpoints are
approximately affected.

Multiple of the attributes of pointcut languages discussed above influence such an impact
analysis. The analysis can determine which parts of the pointcut are affected. As stated
before, effects on joinpoints, shadows, and anchors can be distinguished. Effects on a
selected shadow or anchor are considered more crucial, because they can prevent any
recognition of specific joinpoints at all. In particular, unmodified pointcut anchors are a
fundamental prerequisite for the evaluation of joinpoints. They represent dependencies
in evaluating specified properties of the joinpoints. The degree of dependency should
be directly inferred from the aggregation level of affected pointcut expressions in some
pointcut languages. The more an expression is nested in the pointcut, the more the eval-
uation of the complete pointcut depends on its matching elements. As discussed above,
in some pointcut languages these dependencies between properties are not reflected by
their syntax.

Furthermore, the completeness of expressions that specify an affected property can be
taken into account. A completely specified signature, for example, indicates that the
pointcut refers to a single declaration element in the program, which, if modified, can
cause the loss of all captured joinpoints. Whereas, weakly specified properties can be
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an indicator for unimportant elements. The completeness a property specification can
be used by a refactoring tool to differentiate specifications that exactly select ”these”
elements from specifications that select ”some of those” elements.

In addition to the specification completeness, the meaning of a property can be an in-
dicator for the relevance of selected elements in the program. In Section we
differentiated several kinds of scopes. Each of them is to some extent connected to a
particular program behavior. The more a property of these scopes is connected to the
program behavior, the more meaningful is its specification in terms of behavioral seman-
tics. Changes that affect meaningful properties are more likely to alter the base program
behavior, rather than just its structure. Hence, it alters the behavior some advice is
attached to, and are therefore considered as more crucial than changes of meaningless
properties.

Also, the analyzability of affected properties definitely influences this impact assessment.
For dynamic properties that cannot be statically determined, the impact can hardly be
assessed. The symmetric joinpoint models that also allow aspects to adapt the execu-
tion of other aspects makes the assessment of the change impact even more difficult.
An aspect that adapts another aspect is indirectly invoked at a behavior that itself is
indirectly invoked at a third behavior. These dependency chain of indirect behavior
execution includes additional modules in this analysis, but generally requires the same
mechanisms. However, if an AOP approach would provide additional properties more
specific to the execution of advice code, the analysis is also required to consider these
additional properties.

2.5.2.3 Behavior Preservation in AO Refactoring

An advice is invoked at a set of joinpoints, i.e., at executions of elements. Pointcuts
can select all executions of a set of program elements, but also restrict the selection to
specific executions. Pointcuts that select a set of joinpoints only through static proper-
ties, restrict the selection to any execution of specific joinpoint shadows. A refactoring
tool can preserve the program behavior for such pointcuts, simply by ensuring that a
change does not alter the set of selected shadows. The tool can either propose to adapt
the specification of shadows or to cancel the refactoring. For pointcuts that additionally
specify dynamic properties, every referenced runtime representation has to be statically
approximated, in order to detect violations of dynamic properties.

Pointcuts can select joinpoints by specifying intrinsic properties which refer only to ele-
ments that exhibit the property. A change of these elements can only alter the resulting
selection, but not the means of their identification. Consequently, the semantics of point-
cuts that specify only intrinsic property cannot be changed by refactoring.
Specifications of extrinsic properties are anchored to other program elements that do not
exhibit the specified property, but represent the context in which an extrinsic property
can be recognized. A refactoring has to preserve the specifications of the anchor proper-
ties in order to retain the identifier of the selected joinpoints. Otherwise, the joinpoints
could not be recognized by the specified property, which would change the specification’s
semantics. Explicit checks that detect violations of anchor properties require a seizable
specification. Since pointcuts can select any program element (shadows and anchors)
with very few, unspecific and highly dynamic information, the determination whether a
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program element is considered essential for the pointcut can be exceptionally difficult.
Furthermore, the preservation of the pointcut semantics differs from the preservation of
joinpoints that exist at runtime. While the latter would preserve the program behavior,
the former may accept additional matches or lost matches, which can intentionally be
modified to lose a specified property. This introduces a new situation to refactoring, in
which a developer expects the tool to accept a modification even if it alters the composed
program behavior. In aspect-oriented programs, refactorings have to distinguish illegal
from intended behavioral changes.

2.5.2.4 Adjustment of Invalidated Pointcuts

In cases where a refactoring tool aims at adjusting an affected specification, it tries to
ascertain the replacement that restores the original pointcut semantics. Single extensions
of a pointcut, which simply exclude unintentionally added capture or include acciden-
tally lost captures, are an insufficient solution. Multiple updates of the same pointcut
would bloat its specification, making it unrecognizable and incomparable to its original
appearance. In addition, updates of incomplete property specifications may cause a selec-
tion of other unwanted joinpoints. Hence, the only applicable solution seems to directly
replace the smallest affected parts of the pointcut with an update that is sufficiently
complete to capture only joinpoints of the original selection. Such an replacement is par-
ticularly difficult to compute for imprecisely specified properties or references to highly
dynamic program representations that do not communicate the properties meaning to a
refactoring tool. The intention behind those pointcuts remains to a large extent in the
developer’s mind or in program’s runtime states. No tool would be able to distinguish
unintended from intended captures.

Furthermore, the kind of change, such as rename, remove or create, needs to be con-
sidered, when update proposals are computed, e.g., a lost set of joinpoints cannot be
restored if it is caused by removing a pointcut anchor.

2.6 Summary

In this chapter, we have investigated the reasons for evolution problems of AOP with
a particular focus on tool-supported refactoring and identified several characteristics of
existing pointcut languages as the reasons for this evolution problems.

Refactoring changes the program code which inherently affects the program representa-
tions used by pointcuts to select the joinpoints at which the aspect behavior is invoked
(cf. Section . Hence, refactoring tools for aspect-oriented programs have to detect
any interference between a refactoring and existing pointcuts, and ideally also support
the developer in adjusting affected pointcuts.

However, the ways in which pointcuts can be expressed by current pointcut languages
lead to several problems. In Section [2.4] we have described the attributes of joinpoint
models and pointcut languages that significantly influence reliable refactoring support
for AOP.
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Pointcuts can describe properties of program representations that represent runtime con-
ditions of a particular program execution. Since refactoring tools use static program
analysis some of these conditions cannot be statically represented and, thus, not be
checked by a refactoring tool. Furthermore, pointcuts can specify joinpoint properties
more or less precise, e.g., if similar behavior is added in the future, the corresponding
joinpoints should be intentionally adapted by aspects. Such pointcuts do not necessar-
ily state such an intention explicitly. In addition, specifications of particularly extrinsic
properties can depend on specifications of other properties. These dependencies cannot
always be recognized from the pointcut structure.

These attributes of pointcuts are the primary reasons for unpredictable effects on the
program behavior which often cannot be solved by existing program analysis approaches.
Even if an analysis detects interferences with a pointcut it could be impossible to deter-
mine whether a pointcut has to be adjusted, because of an imprecise or statically not
determinable specification.

Refactoring tools for AOP have to face a new challenge in preserving the behavioral
compositions defined in aspect-oriented programs (cf. Section . They deal with
specifications of meta-level properties and have to determine whether an alteration of
the program behavior is intended or has to be prevented. In addition, the adjustment
of invalidated pointcuts is not only about the replacement of simple values, it is about
rephrasing a specification of a particular program behavior.

These problems in the detection of change effects on pointcuts, determination of in-
validated pointcuts, and the generation of pointcut updates have been in the focus of
multiple research works, which are surveyed in the next chapter.
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Chapter 3

State of the Art

This chapter analyses the literature in a number of fields. We begin by surveying ex-
isting work in aspect-oriented refactoring , evolution-specific tool support and
aspect-aware mechanisms on programming language level ([3.3). In Section 3.4 we review
the state-of-the-art in these three fields and conclude that most existing refactoring ap-
proaches concentrate on the identification or automation of new refactorings for AOP,
but neglect the meta-programming nature of AOP in their attempts to preserve the be-
havior.

Furthermore, we present some recent work that recognizes the lack on proper treat-
ment of pointcuts in tool-supported refactoring. Part of the problem is that techniques
are needed to assess the impact on pointcuts and to narrow the intention behind such
specifications in an automated way.

3.1 Aspect-oriented Refactoring

Various approaches to aspect-oriented refactoring have been developed and presented
in recent publications [9, 40} [42] [46, 66, [78]. They comprise the identification of new,
AOP-specific refactorings, the development of tools supporting these new refactorings
and the investigation of behavior preservation issues specific to aspect-oriented language
mechanisms. In this section, we survey the most influencing work in systematic docu-
mentation of manual step-by-step guides for aspect-oriented refactorings, tool support
for the extraction of crosscutting concerns, and the introduction of aspect-awareness to
existing refactoring approaches.

3.1.1 Extension of existing Refactorings

Ramnivas Laddad developed several guidelines to ensure a safe manual execution of
refactorings for the extraction of crosscutting concerns into aspects [58, 59]. Along with
these guidelines he identified a collection of refactorings that widely vary in level of ab-
straction and scope of applicability.

Besides some refactorings that are specific for crosscutting concerns in J2EE applications,
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such as Eztract Concurrency Control, Fxtract Contract Enforcement, he also proposed
refactorings for transforming more general implementations into an AOP solution, in-
cluding Fxtract Interface Implementation, Fxtract Method Calls and Replace QOuverride
with Advice.

In addition, he identified bigger refactorings which belong to the category ”Refactoring
to Patterns” [51], such as Extract Worker Object Creation, Replace Argument Trickle by
Wormhole. Those refactorings are based on the design patterns for AspectJ presented
in the book ”AspectJ in Action” (cf. [60] p.247, p.256).

All his work is very practically grounded on concrete implementations problems and, in
general, focussed on aspect-oriented programs implemented in AspectJ.

Also Monteiro et al. developed a collection of aspect-oriented refactorings covering
both the improvement of an aspect module’s structure and the extraction of crosscutting
concerns. All refactorings are specific to the programming language AspectJ. They are
described in a pattern-like form, as common for "traditional” refactorings [29], and are
systematically documented within a catalogue [67].

In addition to manual step-by-step guides, the authors also tried to motivate every refac-
toring through code smells. They reviewed existing code smells for object-oriented pro-
grams, considering the aspect-oriented modularization concept and proposed new smells
indicating more AOP-specific weaknesses code smells [68], [66]. For example, Monteiro et
al. discovered that Divergent Change ([29], p.79) can be a sign of code tangling and that
Shotgun Surgery ([29], p.80) and Solution Sprawl ([51], p.43) often indicate code scatter-
ing. More AOP-specific code smells, such as Double Personality, Abstract Classes and
Aspect Laziness, are proposed for identifying crosscutting concerns in existing base code
as well as structural weaknesses within an aspect’s implementation itself. Whereas the
former motivate refactorings for extracting a crosscutting concerns into aspect-oriented
implementations, the latter indicate refactorings to improve the code within an aspect
module. The developed catalogue of refactorings depicts 27 aspect-oriented refactorings
[67], which target these code smells, i.e., guide the developer in manually improve the
design of aspect-oriented programs.

These extensions to existing refactorings mainly focus on improved modularizations
gained from AOP. They extend existing procedures for manual refactoring and devel-
oped new procedures for AOP-specific refactorings. Even if some guidelines have been
proposed for dealing with behavior preservation issues, no new concepts were developed,
which take the nature of AOP language constructs into account to cope with the AOP-
specific evolution issues, such as the fragile pointcut problem [56].

3.1.2 Tool-supported Extraction of Crosscutting Concerns

Refactoring crosscutting concerns into a well modularized aspect-oriented implementa-
tion is one of the most popular research goals in aspect-oriented refactoring. Various
approaches propose different workflows and tool support to automate the selection of a
crosscutting implementation, generate the basic aspect module structure and move the
selected program elements into the aspect. Recent publications have shown two major
potentials for automating such refactorings: (i) the identification of candidate aspects
in a given program (aspect mining) [14], 63, O3], O6], and (ii) the semantic-preserving
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transformation of object-oriented code into an aspectized implementation (automated
refactoring). In the following, we focus on approaches for tool support in the second
field, which is more related to this work.

Binkley et al. developed an AOPMigrator that automates the extraction of crosscut-
ting concerns into aspect-oriented implementations [9]. The authors propose a small
number of semi-automated refactorings which extract marked fragments of a given pro-
gram into aspects. The tool can automatically migrate all marked fragments to aspects
and produces a semantically equivalent aspect-oriented implementation of the program.
To this end, a specific refactoring workflow is proposed that encompasses the following
steps:

e Refactoring discovery: Determination of applicable refactorings for a marked code
fragment.

o Transformation: In case a selected fragment cannot be extracted through exist-
ing refactorings, behavior-preserving object-oriented transformations are suggested,
such as Extract Method, to make an extraction into aspects generally feasible.

e Refactoring selection: The selection of an appropriate refactoring is guided through
a hard-wired prioritization scheme refactoring.

e Refactoring execution: Fully automated generation of aspect stub code, move of
marked fragments, and creation of necessary pointcuts and advices.

The AOPMigrator supports the described process for the extraction of class members
and statements into aspects. For every extracted program element it generates a single
pointcut bound to a single advice which contains the extracted element.

The approach was evaluated using a medium size (40,000 LoC) case study, the JHotDraw
application framework [47]. In the case study the originally scattered UnDo functionality
was successfully migrated to an AspectJ implementation. The tool applied 151 refactor-
ings for extracting the UnDo concern and has shown that a large fraction of the code
could be automatically extracted [9].

Hannemann et al. developed a similar approach for extracting crosscutting concerns
into aspects |42, 41]. Their approach particularly focuses on an automated migration of
design patterns, implemented in Java, to an implementation in AspectJ. The proposed
workflow comprises the following steps:

e Refactoring selection: Let a developer choose a certain refactoring from a library
of so-called crosscutting concern (CCC) refactorings.

o Mapping definition: Tool-guided mapping of program elements to specific roles of
a design pattern implementation.

e Refactoring configuration: A program analysis identifies alternative decisions in
the refactoring process and provide the developer with tradeoff information, like
name clashes, newly introduced matches to existing pointcuts. The developer is
requested to decide how to resolve every case.
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e Refactoring execution: Automatic transformation of the program according to the
abstract introductions defined by the chosen refactoring (incorporating the devel-
oper’s decisions). The transformations create new program elements, move meth-
ods from classes to aspects and may remove obsolete interfaces.

The approach was developed focussing on the migration of design pattern implemen-
tations, but it can also be used for restructuring other, more general CCC. It basically
assumes some crosscutting structure that can be mapped to an abstract description of the
aspect-oriented target implementation. This mapping is the key activity of the approach
and the major focus of provided tool support.

Both approaches target a tool-supported workflow for configuring semi-automated refac-
torings. The major goal of this research is to investigate how a particular program
transformation can be defined for every marked program element and which information
is required to automate such transformations. The developed tools guide a developer
in the selection and configuration of program transformations, rather than in resolving
unexpected conflicts or evolution problems in general. A sophisticated analysis of the
impact of applied changes on existing program elements (classes and aspects) is not the
primary research goal, just as the generation of robust and maintainable pointcuts.

3.1.3 Behavior Preservation in Aspect-oriented Refactoring

In tool-supported refactoring, the behavior of a program is preserved by preventing a
refactoring from changing specific properties of a program, which are known to most
likely affect the program behavior. Such properties are related to fundamental concepts
of a programming language and were originally introduced for the refactoring of object-
oriented programs by William Opdyke [70].

Not much work can be found, which tries to identify such properties for aspect-oriented
programs and extend existing constraints for object-oriented refactorings to make them
aspect-aware.

Hanenberg et al. investigated the interference between refactoring and aspect-oriented
adaptation mechanisms, and observed that transforming aspect-oriented programs in-
evitably leads to a modification of joinpoints to which aspects might be bound [40]. As
result, well-known refactorings are no longer behavior-preserving and existing tools can-
not be used to restructure the base program, unless they become aspect-aware.

The authors identify that the interference between aspects and existing refactorings is
essentially influenced by the joinpoint model and the pointcut language of an AOP ap-
proach. They, therefore, see a thorough understanding of how joinpoints can be specified
as basic prerequisite to determine (and solve) the conflicts between traditional refactor-
ings and constructs of AOP languages. In the paper, the authors discuss the dependencies
between name patterns and rename refactorings by example and conclude the interfer-
ence can be resolved, though it is unlikely more difficult for pointcuts which depend on
much more information of a program.

For simplifying the interference analysis, Hanenberg et al. propose a categorization of
joinpoints, considering the information that a pointcut has specified to select a joinpoint.
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The authors distinguish three categories: lerical (name patterns), structural (code con-
tainment) and behavioral (dynamic values). Based on this categorization they observed
that joinpoints of a particular category are interfered by specific refactorings, e.g., Re-
name Method can affect lexical joinpoints and Fxtract Method can conflict with structural
joinpoints.

In order to introduce aspect awareness to existing refactorings, the authors extend the ap-
proach of Opdyke, who identified program properties of object-oriented programs which
represent fundamental concepts of the underlying programming language (cf. [70], p.
26). Existing refactoring tools prevent a refactoring from changing such properties, be-
cause this would very much likely alter the program behavior. Hanenberg et al. suggest
the following additional constraints for preserving adaptations defined by aspects:

e The quantity of joinpoints referenced by a particular pointcut must not change.

e All joinpoints which are referenced by a particular pointcut have an equivalent
position within the program’s control flow in comparison to the state before the
refactoring.

e The information available at a joinpoint are not decreased.

The additional constraints were evaluated by refactoring a small AspectJ application
with a Rename Method, an FExtract Method and a Move Method refactoring. For every
refactoring, they describe by example how it is made aspect-aware and how it deals with
the impact on bound joinpoints.

Initial ideas on how to treat pointcuts within a refactoring workflow are described using
the additional refactoring constraints. In doing that, every refactoring tries to reestablish
the previous program behavior by updating any affected pointcuts. Nonetheless, neither
a general workflow for refactoring aspect-oriented programs, nor a concrete extension for
the discussed refactorings is proposed.

Hanenberg et al. also developed a refactoring tool that seeks to support the proposed
approach for refactoring AspectJ programs. They state that only a tool is able to provide
a developer with the particular reasons for violations of a property specified by a pointcut.
Moreover, the authors see a developer-centric workflow as essential, which supports the
visiting of all violated information specified by a pointcut, proposed an update and
requests for the developer’s confirmation. All other parts, such as the creation of new
elements and the modification of existing code could be automated as long as the program
provides the same behavior. The refactoring tool developed by the authors, however,
never reached the maturity to meet these requirements.

Rura and Lerner present in [77, [7§] a framework for refactoring aspect-oriented pro-
grams, which advances the initial work of Hanenberg et al. They highlight the special
need for understanding what comprises behavior preservation in all aspect-oriented pro-
gramming languages, as basic foundation for introducing aspect awareness to known
refactorings. Furthermore, the authors identify pointcuts as the language construct with
the most fundamental impact on what changes are behavior-preserving.

The developed framework is basically an extension of the framework for refactoring
object-oriented programs developed by Opdyke [70]. Rura and Lerner adapted the fun-
damental program properties identified by Opdyke for aspect-oriented programs and



50 3. State of the Art

developed a set of AOP-specific constraints for atomic refactorings. They argue that
any refactoring constructed of these atomic refactorings is behavior-preserving, if the
following constraints are ensured:

1. Language requirements (name conflicts, sub-typing violations, method signature
conflicts, type safety violations);

2. Preserving sub-type relationships (type inheritance, method overriding, dynamic
binding, method dispatch);

3. Preserving semantic equivalence of references and operations;
4. Pointcut pattern equivalence.

Opdyke originally considered a subset of the programming language C++, so Rura and
Lerner translated his constraints to the specific language constructs of Java, before they
could extend them for AspectJ.

The language requirements are very low-level and prevent a refactoring to introduce basic
problems, such as name conflicts, sub-typing violations, method signature conflicts and
type safety violations. These requirements were extended to meet the specific require-
ments of the AspectJ programming language features, such as inter-type declaration,
pointcut (definition), and advice. For example, locally introduced members or declared
super types through an inter-type declaration are checked when changing names or in-
heritance relationships.

The preservation of sub-type relationships restrict the transformations to those that pre-
serve inheritance relationships at class and method level. This guarantees that dynamic
binding resolves to the same types before and after a refactoring, limiting the effects
of a change upon sub-types. Such constraints are extended to preserve sub-typing and
method overriding relationships that are introduced by inter-type declarations. Refac-
torings that modify non-private class members are additionally constrained to change
super-types introduced by aspects in order to ensure that sub-typing relationships are
preserved.

The constraints that preserve the semantic equivalence allow for, e.g., simplification of
expressions, removal of dead (unreachable) code within a method or unreferenced vari-
ables, change of a variable’s type, and replacement of references to a field or a method.
The same refactorings for class code are also possible in AspectJ-like aspects, thus the
code in aspects must be analyzed for references to classes, methods, and variables. In
addition, code in advice is examined for semantic equivalence, since it can also be a
target of AO refactoring.

The extensions so far target the constructs of the AspectJ programming language itself,
for the preservation of the specified joinpoint properties Rura and Lerner introduce a
separated so-called "pointcut pattern equivalence” constraint. This new constraint re-
duces the idea of ”every advice must apply at semantically equivalent joinpoints” after
a refactoring to a more simple determinable but stronger requirement ”signature pat-
terns used in a pointcut must match semantically equivalent program elements”. In
particular, the authors point out that there are several ways to argue that a refactoring
is behavior-preserving with respect to advice elements: (i) by showing that the advice
is bound to semantically equivalent joinpoints (advice binding preservation, similar to
method lookup), (ii) by preserving the meanings of pointcuts, or (iii) by ensuring that the



3.2. Tool Support for Software Evolution 51

signature patterns used in a pointcut match semantically equivalent program elements.
The authors further state that it seems intuitive that a refactoring should ensure each
pointcut is left with either the same joinpoints or semantically equivalent joinpoints to
those it referenced before the refactoring, however, some pointcuts cannot generally be
determined statically, including cflow, if, this, target, and args.

As result, Rura and Lerner propose the most restrictive constraint, ensuring that every
single signature pattern selects an equivalent set of program elements. This is a stronger
requirement, as to require a pointcut to select an equivalent set of joinpoints, because
individual patterns may match many more elements than their combination in the re-
sulting pointcut. As major advantages, the authors mention the possibility to statically
determine matches of patterns and that it is intuitive to treat name patterns in a sim-
ilar way are references to program elements. Moreover, they highlight that updating a
pattern is not always necessary to preserve the program behavior (e.g., for empty selec-
tions), but it preserves the intentions of the programmer (who may not be certain if the
method is called or not), i.e., a preservation of the selected set of joinpoints requires only
to change the pattern if the method is actually called.

In cases, where signature patterns do not match the same elements as before the refac-
toring, it is proposed to broaden/narrow the pattern in a way that lost /new matches are
prevented. The inclusion/exclusion of matches is proposed in any case where the set of
matching elements is altered. This makes, on the one hand, pointcuts unrecognizable and
worse readable, and, on the other hand, it does not consider the programmer’s intention
behind a pointcut.

3.2 Tool Support for Software Evolution

Besides pure refactoring tools there are other but closely related kinds of tools that are
built to support the evolution of software in general. Some specific program analysis
approaches aim an automated change impact classification to distinguish different kinds
of change effects. Moreover, tools that support the verification of existing pointcuts by
comparing pointcut matches against an automatically generated verification turn out to
be successful in determining accidentally matching joinpoints. Also, the generation of
pointcuts from a given set of joinpoint shadows is an issue that a refactoring tool must
deal with, if invalidated pointcuts should be adjusted.

3.2.1 Change Impact Analysis

In addition to refactoring tools that detect the effects of predefined transformations
on specific program properties, also program analysis approaches that focus on arbitrary
program edits can be used to detect alterations of the program behavior. Such approaches
often qualitatively analyze the impact of changes, either by comparing different program
versions, or by analyzing the applied changes and their dependencies. Two different kinds
of analyses are of particular interest, the analysis of effects on pointcuts in aspect-oriented
programs and the analysis of change effects on the program behavior of object-oriented
programs.
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A few analysis approaches for aspect-oriented programs have been developed to cope with
fragile pointcuts. In general, they provide tool support for detecting the change effects
on pointcuts by comparing two program versions |1, [85].

Storzer et al. present an approach for detecting differently bound advices in two
program versions in [50, 85]. They coined the term fragile pointcut problem, as silent
change of a pointcut’s meaning and illustrate how renaming, move, addition or deletion
of classes, fields, and methods affect pointcuts. Furthermore, the authors point out a
general distinction between refactoring and evolution. Refactoring could detect effects
on pointcuts and avoid breaking them in some cases, whereas the evolution of aspect-
oriented programs is more problematic in general, e.g., addition of new methods, class,
or packages due to new functionality.

For that reason, Storzer et al. propose a pointcut delta analysis that approximates the
bound joinpoints for every pointcut by so-called pointcut matches. The analysis calcu-
lates the pointcut matches for two versions of a program, compares the resulting sets
and creates a so-called pointcut delta. The delta is further analyzed to discover new, lost
and modified (in terms of match quality) matches. The approach is generally feasible
for any AspectJ-like pointcut language, where the set of matching pointcuts is (at least
partly) statically computable. For uncomputable cases the matching is conservatively
approximated and the resulting matches are accordingly marked with a quality label.
The authors developed a tool that implements the proposed analysis, called PCDiff. The
tool requires the developer to make a snapshot of the code base in prior to the analysis.
This snapshot simply stores all pointcut matches for the current program version. Af-
terwards, the tool can compute the pointcut matches for the changed program version
and produce the pointcut delta between both program versions. The presented delta
information is represented as tree which directly shows affected aspects, advices, point-
cuts, and matches. This makes it easy to identify changes with no effects on any aspect
(empty delta), but also trace differences back to the affected aspects. Also unexpected
matches can be identified more easily and although it is no trivial task to find expected
but not experienced matches, the developer only needs to search through a small delta,
not through the entire program.

The identification of causes for deltas is possible but not directly supported by the tool.
Nonetheless, the analysis approach considers all kinds of changes with effects on point-
cuts: modifications at a pointcut itself, modifications at the aspect (removed or added
advices), and base code edits. Since the analysis directly targets the actually occurred
advice bindings (joinpoints) all these kinds of changes are generally covered and it is
possible to infer what kind of change is responsible for a specific delta.

Some analysis approaches for object-oriented programs seeking for a qualitative assess-
ment of change effects by analyzing the applied changes and their dependencies. Ryder
et al. present in recent publications [73, [79, 84] a change impact analysis to find test
cases that are potentially affected by a source code edit (set of changes). The goal of
this research is to develop change classifiers for changes that are highly likely, highly
unlikely, or somewhere in between to be failure-inducing.

The analysis approach divides a program edit into its constituent atomic changes, then
identifies tests affected by the edit through correlating (dynamic) call graphs for the tests
with the atomic changes, before it determines affecting (atomic) changes for each of these
tests.
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The proposed atomic change model captures program edits at a semantic level, i.e., only
edits with a potential effect on the program behavior are represented, which makes edits
more amenable to program analysis. The model captures program edits like add a class
(AC), delete a class (DC), add a method (AM), delete a method (DM), change body
of a method (CM), change virtual method lookup (LM), add a field (AF), and delete a
field (DF). The analysis also computes syntactic dependencies between atomic changes,
indicating that one change is a prerequisite for another one. These dependencies can be
used to construct syntactically valid intermediate versions of the program that contains
some, but not all atomic changes.

For the determination of affected tests a call graph that is constructed either using static
analysis, or by observing the actual execution of the tests. The graph’s edges correspond-
ing to dynamic dispatch are labeled with a pair of the receiver object’s runtime type and
the method referenced at the call site. A test is determined to be affected if its call graph
(in the original program) contains either a node that corresponds to a changed method
(CM), or a deleted method (DM), or an edge that corresponds to a lookup change (LM).
The set of changes affecting a given test can be computed by constructing a call graph for
that test in the edited program. All atomic changes (including transitively prerequisite
changes) for added (AM) and changed (CM) methods that correspond to a node in the
call graph (in the edited program) and lookup changes (LC) that correspond to an edge
in that call graph, affect the given test.

However, the absence of a syntactic dependence between two changes (A1, A2) does not
imply the absence of a semantic dependence, if both changes affect a given test, i.e., pro-
gram behaviors resulting from applying A1l alone, A2 alone, or A1 and A2 together may
all be different. To this end, Ryder et al. developed different change classifications that
indicate the likelihood of a change to be failure-inducing. Any classification categorizes
affecting changes as test improving, test degrading, or test independent. For example,
the most Intuitive Change Classification labels changes as follows:

e Green = a change that affects only improving tests;
e Red = a change that affects only worsening tests;
e Yellow = a change that affects both improving and worsening tests.

Other classifiers, such as the Simple Change Classification relies only on test results in
the edited program and labels effects failing or crashing tests (Red), affected passing
tests (Green), and all other (Yellow). More complex classifications try to combine this
information to achieve a better classification of intermediate cases.

The work of Ryder et al. demonstrates that the introduction of atomic changes makes
program edits more amenable to program analysis, simplifying the assessment of a
change’s impact. Moreover, their approach shows that change classification can effec-
tively identify changes with a specific impact on the program behavior and be an enabler
for assessing semantic dependencies between different changes. Empirical case studies
provide quantitative measurement of the effectiveness of several classifiers on different
kinds of programs.
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3.2.2 Verification and Testing of Pointcuts

Tool support that automates the examination of existing pointcuts using an either au-
tomatically generated or manually defined model of pointcuts is another approach for
detecting unintended pointcut matches. Very few work has been published for verifying
or testing pointcuts in aspect-oriented programs. In the following, two approaches are
presented with initial ideas on tool-supporting the comparison of selected joinpoints with
the developer’s intention.

Zhang et al. propose an Aspect Refactoring Verification Tool (ARV) as support for
the automated extraction of crosscutting concerns into aspects [L04]. The authors par-
ticularly focus on the extraction of method calls from a class into an advice. The ARV
supports a developer to restore the original call flow by capturing the calling context of
that call, i.e., its caller information or its control flow. The tool provides two verifica-
tion views: the specification view and the difference view within a specific verification
workflow:

e The developer selects a project and specifies the program elements to represent the
functionality to be extracted into the aspect, using the ”declare warning” construct
of AspectJ (cf. [103], Appendix B, Static crosscutting).

e This specification represents the expected set of method calls, which alternatively
can be gathered using an aspect mining tool.

e The developer manually refactors the program, extracting individual program ele-
ments in to newly created aspects and defines the pointcuts to bind the extracted
functionality to its original callers.

e The ARV analyzes the program, collects elements matching the pointcuts and com-
pares elements matching the ”"declare warning” constructs with elements advised
by the aspect.

e The verification compares the original and the refactored program functionally,
which involves a comparison of the advised elements and the logic contained in the
advice.

e The results of this comparison are displayed in the difference view.

The comparison can produce three possible results: (i) equivalence, original and refac-
tored programs are considered as equal, (ii) under-refactoring, some originally matching
elements are not covered by the aspect’s pointcuts, and (iii) over-refactoring, refactored
aspects extend original functionalities at more elements as before the refactoring.

The ARV supports the identification of inequalities between original and refactored code.
An reliable verification, however, needs to be performed through unit and integration
tests. Over- and under-refactoring are compared by filtering out identical call sites cap-
tured by pointcuts from both sides of comparison. The equality between two call sites is
evaluated, by determining whether they affect the same method, the exact locations of
the call sites cannot be used by this approach.
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Anbalagan and Xie built and Automated Pointcut Testing Framework (APTE) [5] for
validating the correctness of pointcut expressions. The APTE identifies program ele-
ments that satisfy a pointcut expression and a set of nearly matching elements, which
almost satisfy a pointcut expression. A predefined threshold value is used to define the
maximum distance which other program elements can differ from an original pointcut
but are still considered as near misses. The author’s goal is to provide a developer with
tool support that identifies unintentionally matching joinpoints, i.e., both including po-
tentially missing and accidentally matching joinpoints.

To this end, APTE receives a threshold value, the program’s source and the a set of target
classes as input. The tool computes matching program elements for existing pointcuts in
the target classes, including nearly matching boundary elements. In addition, the tool
computes the distances for every nearly matching element. A developer can inspect these
matching and nearly matching elements for correctness of the pointcuts.

The distance between matches and near matches is calculated using, a so-called Leven-
shtein algorithm, which is used to measure how many characters of on signature pattern
have to be edited to correspond to another signature pattern. The result of this algo-
rithm is an integer value that signifies the number of transformations (i.e., insertions,
deletions) that should be performed on a nearly matching pointcut to transform it into
a matching pointcut. Then the APTE tool identifies boundary matches by comparing
the distance of nearly matching pointcut to the user-defined threshold value.

Both approaches demonstrate that a determination of whether a joinpoint unintentionally
matches a pointcut can at least to some extent be automated. The developer, however,
needs to express is expectations in a way that a tool can verify it.

3.2.3 Generation of Pointcuts

Pointcuts in aspect-oriented programs can refer to properties of various program repre-
sentations. Their specification requires a developer to have detailed knowledge of many
program parts, to be able to select the properties which are most suited to identify de-
sired joinpoints. This difficult task can be supported by tools, e.g., using techniques for
inductive logic programming (ILP) to derive a pointcut definition from joinpoint exam-
ples. Some approaches are already known in the field of pointcut generation in general
[11, 12] and within aspect-oriented refactoring [39, [95].

Braem et al. have developed an approach for generating pointcuts from any structural
property available in a static joinpoint model [I1), 12]. They propose the use of induc-
tive logic programming for automatically generating pattern-based pointcuts. Since the
model is restricted to properties of static program representations, dynamic properties,
such as runtime values or cflow, are generally not supported.

Logic induction is a technique that returns a logic query that, by using conditions drawn
from background information on a set of examples, satisfies all positive examples while
not including any negative examples. The authors use ILP to generate a pattern-based
pointcut as follows:

Positive ezamples: A number of positive examples is taken as input, i.e., for pointcuts
a set of joinpoint shadows whose executions should be captured by the pointcut. This
set can either be selected manually or automatically using for example an aspect mining
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technique.

Negative examples: All other joinpoints are defined as negative examples for the ILP
algorithm, which are used to ensure that the derived rules never cover these shadows.
Negative examples effectively force the algorithm to use other information of the back-
ground in the induced rules.

Background information: Another input to ILP is background information on the ex-
ample shadows, such as information associated with the joinpoints, i.e., predicates in
the pointcut that have to evaluate to true for the expected joinpoints. In fact, a tool
constructs a logic database consisting of the information that is available from static
program representations, such as the abstract syntax tree or static type inheritance.
Logic induction: The logic rules are based on the positive examples and constructed in
an iterative process. Starting from an empty rule, in each step of the process, the rule
is extended with a condition drawn from the background information which decreases
the number of negative examples covered by the rule. This is repeated until the rule de-
scribes all positive but no negative examples. The added conditions are generalizations
of facts in the background information, by adding logic variables.

The algorithm will induce a pointcut that captures exactly the joinpoints currently in
the program that should be captured (the positive examples), and none of the others
(the negative examples). The authors claim that it is reasonable to expect, though not
guaranteed that the induced pointcuts are non-fragile, because the induction process
generalizes the conditions before adding it to the rules.

Tourwe, Kellens and Gybels have presented in earlier publications the use of a very
similar approach for generating pointcuts within an aspect-oriented refactoring process
[39, @5]. The authors show how pointcut definitions and refactoring interfere with each
other in a negative way and argue that this is due to the fact that pointcuts are very
tightly coupled to an application’s structure. To overcome these problems they propose
the notion of inductively generated pointcuts.

The authors use ILP to transform extensional definitions of pointcuts, enumerating all
program elements whose executions are selected as joinpoints, into intensional pointcuts.
They state that such pointcuts allow a developer to work with pointcuts at high-level
of abstractions, and argue that it is more easy to assess the impact of particular source
code changes and update affected pointcuts automatically, since the resulting pointcuts
are automatically generated from abstract properties. Moreover, ILP techniques uncover
common properties of program elements that should be adapted by an aspect. Hence, the
specifications of these properties are generalized and complete. The background knowl-
edge base essentially required for such the ILP techniques can be automatically produced,
and consists of predicates, such as classImplements, superclass0f, subclass0f, and
sender(Of.

The authors claim that an inductive pointcut model enables a refactoring tool to:
e Generate pointcuts automatically and manage them during evolution;

e Consider alternative pointcuts and to generate the most precise pointcut that in-
cludes the provided examples and no other element of the program;

e Detect an impact on existing pointcuts and the recompute appropriate adjustments;
and
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e Treat references to properties of program elements in a way as ”symbolic” refer-
ences.

Both approaches have shown that inductive logic programming can be an enabler for
generating pointcuts from a given set of joinpoint shadows. They demonstrated that
specifications of common properties can be generalized, which makes multiple updates
of a pointcut within a refactoring process much less intrusive.

3.3 Aspect-aware Declarations

Several approaches try to tackle the evolution problems of aspect-oriented program at
language level. Some approaches propose the use of annotations instead of enumeration-
based pointcuts, particularly for heterogeneous aspects. Other approaches demonstrate
that a conceptual model as middleman between pointcuts and the targeted program
code simplifies evolution or introduce a complete aspect-aware interface, which expresses
a verifiable specification along with each pointcut.

3.3.1 Meta-level Annotations

Annotations of program elements such as introduced by Java and C# allow to augment
an element with metadata, i.e., properties that do not belong to the program, but can
be used by tools, such as debuggers or runtime environments. Some AOP languages,
like AspectJ, are able to access such annotations, also for binding an advice to program
elements with a certain annotation. Some work can be found in the literature that
investigates the integration of meta-level annotations into existing pointcut languages.

Eaddy and Aho present an approach for combining statement-level annotations and
pointcuts to support the advising of instances and statements [2I]. They propose an
extension to AspectJ’s pointcut language and argue that annotation-based pointcuts are
more robust and reusable, especially for heterogeneous concerns, such as logging and
exception handling. The use of statement-level annotations for augmenting individual
statements with ”semantic” properties is particularly beneficial, claim the authors, if
these statements have not many structural properties in common. They further argue
that pattern-based pointcuts are tightly coupled to the implementation details of the
base program and are incomprehensible and fragile, in particular for such heterogeneous
concerns.

Annotations, as proposed by Eaddy and Aho, require intrusive changes to the base
program and do not completely encapsulate a crosscutting concern, but allow a developer
to "name” any statement in a method body in a declarative fashion. They can be used
to expose "hidden” joinpoints or to perform fine-grained (instance- and statement-level)
advising. The authors further argue that annotation-based pointcuts are more robust
because they only depend on meaningful annotations, rather than on the underlying
structure of the code. That’s why annotation-based pointcuts are more robust than
enumeration-based pointcuts, which are likely to break if the underlying code changes.
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Kiczales and Mezini also compared annotations and pointcuts in a recent paper [55].
They investigated how well meta-level annotations, pointcuts and advice can be used for
separating concerns in source code. To this end, they define a characterization in which
each is seen as making a different kind of binding:

e Annotations bind attributes to program points;

e Pointcuts create bindings between sets of points and descriptions of those sets;
e Named pointcuts bind attributes to sets of points; and

e Advice bind the implementation of an operation to sets of points.

In this characterization, they use the term attribute to denote a property which is iden-
tified by a certain name and the term point to designate either program elements or its
executions.

From comparing examples implementing the same concern using each technique the au-
thors inferred guidelines for how to choose among the mechanisms. These guidelines
clearly suggest only to use annotations to mark elements when it is difficult to write a
stable property-based pointcut to capture all elements, when the name of the annota-
tion is unlikely to change, and when the meaning of the annotation is inherent to the
elements rather than context-dependent. In other cases, Kiczales and Mezini, suggest to
use enumeration-based pointcuts (when a stable property-based pointcut is difficult and
element set is relatively small), or a property- or pattern-based pointcut (when a stable
property /pattern is shared, or element set is relatively large).

In general, the authors distinguish between bindings that make a specific property explicit
and local (named pointcut) and bindings that make it explicit and non-local (annota-
tions). This observation leads to several more concrete evolution issues with annotation-
based pointcuts:

Named pattern-based pointcuts capture the decision which operation is executed, as well
as a specification of program elements that are considered to trigger this operation. Thus,
any renaming, moving or removing of this operation, as well as of the program elements
targeted by the specification affect pattern-based pointcuts.

Annotations are generally not affected by renaming or moving of attached elements, that
is why they are often considered as more robust. However, disabling a functionality, that
is triggered by annotations requires editing all the methods to remove the particular
annotation and also an addition of a related class or method requires to edit all new
elements that could correspond to an annotated-property. Which requires a high effort
for managing the consistency between annotations and program elements, even in simple
evolution scenarios.

3.3.2 Model-based Pointcuts

An approach which directly tackles the fragile pointcut problem through an abstract
structural model as middleman between base code representations and pointcuts is pro-
posed by Kellens et al. [50,49]. They identify the tight coupling of pointcuts with the
base program’s structure as primary cause for the fragility of pointcuts and propose so-
called model-based pointcuts to decouple pointcuts by referring to conceptual properties
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of the program. Model-based pointcuts are defined in terms of a conceptual model of
the base program, rather than referring directly to the implementation structure of it.
The model classifies program elements and imposes high-level conceptual constraints on
those elements, which render the conceptual model more robust towards evolutions of
the base program. As result, model-based pointcuts capture joinpoints based on concep-
tual properties instead of structural properties of the base program elements. Potential
evolution conflicts can be detected at model level, and are solved by changing either
the model or its mapping to the program’s source. Existing model-based pointcuts can
remain untouched.

The authors argue, that this decoupling of pointcuts from implementation details makes
pointcuts significantly less fragile to evolution of the base program, because the classi-
fications of the conceptual model are more evolution robust. They claim that as long
as the conceptual model classifies all accessor methods correctly, the pointcuts remain
correct. All evolution issues are treated by a mechanism of the model that automatically
verifies the correctness of the classifications in the conceptual model. To this end, the
model defines design constraints that need to be respected by all source-code elements.
The mechanisms checks these constraints and detect two different situations:

e Unintended capturing of elements for a conceptual property, which do not satisfy
all constraints of that property, such as misclassified elements.

o Accidental misses, i.e., elements that do not belong to a conceptual property but
satisfy at least one of its constraints. Such elements could belong to the set of
elements with the conceptual property.

Such situations can be caused through misclassified elements that should be removed
from the set of elements holding the property, a constraint that no longer applies and
thus needs to be modified or removed, or elements that accidently satisfy a constraint
and should be adapted.

Kellens et al. admit that not all issues of the fragile pointcut problem can be detected or
resolved by this approach. They point out that the constraints imposed by the conceptual
model are the most crucial part in detecting missing or unintentional captured elements.
The more constraints are defined, the lesser is the chance that some inconsistencies keep
unnoticed. They propose further research on methodological guidelines to design the
conceptual model such that it provides sufficient coverage to detect violations of the
design rules.

If a developer wants to adopt the model-based pointcut approach she needs to describe
a conceptual model of the program and its mapping to the program code. The authors
argues that this should be seen as an explicit and verifiable design documentation of the
implementation, which is valuable for the evolution of the software system in general.
Such a manual definition of explicitly expressed and verifiable design rules is required for
any adoption of the approach.

Kellens et al. have shown that model-based pointcuts can simplify the evolution of
pointcuts along with base code change significantly. However, a solid description of the
verifiable design rules is not easy to produce and its soundness difficult to assess.
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3.3.3 Aspect-aware Interfaces

A recent approach for supporting the modular reasoning in aspect-oriented programs
and also the evolution problems is the introduction of aspect-aware interfaces [16, 136,
54]. Such an interface between aspects and targeted program tackles the obliviousness
problem in AOP and defines a clear, sometimes even verifiable, expectations from an
aspect’s point of view.

Griswold et al. propose an approach for defining aspect-aware interfaces called XPI
[36]. An XPI is an interface between an aspect and the base program. The authors
claim, that XPIs help to separate the aspect code from the details of advised code, and
make the overall conceptual design clearer. In fact, it exposes joinpoints consistently
using pointcuts to define contract like design rules as abstract interface constructs.

An XPI has four elements: a name, a scope over view the XPI abstracts joinpoints, one
or more sets of abstract joinpoints (verifiable pointcuts), and a partial implementation.
Each set of abstract joinpoints is expressed as a pointcut definition declaring a name and
exposed parameters. Furthermore, it comprises a semantic specification stating precon-
ditions that must be satisfied at each point where an advice can run (provided clause)
and postconditions that must be satisfied after an advice runs (requires clause).

A partial implementation of an XPI contains (for each set of abstract joinpoints) a
pointcut matching the corresponding concrete joinpoints, a before, after, or an around
designator, and a corresponding set of constraints (design rules). The constraints pre-
scribe how code must be written to ensure that all and only the desired points in the
program execution match the given pointcut. The rest of an XPI implementation is in
the code’s conformance to the stated design rules.

”An XPI, like an API, abstracts changeable and complex design decisions and operates
as a decoupling contract between providers and users. Unlike an API, an XPI abstracts a
crosscutting behavior rather than a localized procedure implementation” [36]. Griswold
et al. state that XPIs modularize crosscutting design decisions that are complex or likely
to change. An XPI is not implemented by providing a procedure implementation, but
by writing pointcuts and shaping code to expose specified behavior through joinpoints
matching the given patterns.

Developers need not to know about specific aspects, argue the authors, but they must
decide which abstractions have to be to exposed as XPIs to facilitate aspect development
and evolution. A developer can specify ’how the code has to look like’ which is associated
with a specific behavior, like 'transition A has occurred in state B of Class Foo’. The XPI
then provides a named pointcut by which aspects can advise all such transitions without
depending on the underlying source code. In addition, an XPI constraints the developer
to implement all abstract state changes in a way that matches the pointcut patterns. A
developer defining an XPI provides a pointcut including a verification indicating whether
actually matching joinpoints are expected to match. In this way, an XPI guides the
implementer in choosing names for methods and in making other decisions that can
influence the matching of pointcuts.

The approach has been evaluated in an experiment using common AOP methods to
improve the design of a medium-sized Java application (300 classes, 50,000LOC) called
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HyperCast. It has shown that effects of apparently innocuous changes or extensions to
the code base are indicated as violations to the defined constraints.

3.4 Critical Analysis

Most of the research on refactoring and AOP is driven by the idea of having a ” Refactor”-
button which automatically extracts a crosscutting concern into an aspect. The work
of Binkley et al. is one step in this direction showing that only a few new automated
refactorings are required which can be composed of behavior-preserving program trans-
formations [9]. Their work and the work of Hannemann et al., however, also demonstrates
effectively that powerful tool support is essential for configuring such refactorings, sim-
ilar powerful as for big (object-oriented) refactorings of the category ”Refactorings to
Patterns” [51]. In fact, they rely on a specific technique, called aspect mining, which
helps to automate the selection of the program elements that belong to a crosscutting
concern. Moreover, even if all elements comprising a certain crosscutting concern are
selected, it seems still a complicated task to configure such refactorings. For every ele-
ment a particular transformation has to be chosen, and the tool has to ensure that such
transformations have no undesired impact on other elements in the system.

Especially the tool support for solving such conflicts, including inter-aspect interference
and the impact on existing pointcuts, seems hard to achieve for present AOP approaches.
Binkley et al. claim to preserve the original behavior, while modularizing the code of the
crosscutting functionality, but even if the supported refactoring process can be used in
an iterative way, they seem not to consider effects on pointcuts that may already exist
in the system. Their approach may be able to deal with changes that impact pointcuts
generated by the tool, but a more thorough analysis for other kinds of pointcuts, such as
proposed by Storzer et al., is not provided. In fact, even if integrated with this analysis
approach, the tool would still not be able to assess the impact sufficiently concrete that
reasonable pointcut updates could be proposed. Also Hannemann et al. mentioned
in their approach an impact with basic mechanisms for detecting name clashes and
newly matching elements for existing pointcuts, but more complete support for adjusting
affected pointcuts or the planned changes seems not to be provided. In particular, both
approaches neglect non-obvious effects on existing aspects, such as a changed semantics of
existing pointcuts, treatment of under-specified joinpoints, and adjustment of responsible
program transformations at all.

Most of the presented refactoring approaches ensure that the planned changes have no
undesired effect on the program behavior, but almost all of them neglect that AOP is
meta-programming. Hence, the definition of behavior preservation, as used for object-
oriented programs, cannot be used for AOP. Just as standard refactorings for OOP
are not valid in the presence of Java-like reflection mechanisms or C-like macros. A new
notion for behavior preservation in aspect-oriented refactoring needs to be defined, which
considers meta-level properties specified by pointcuts in a similar way as it is done, e.g.,
for C-like macros [32, B3]. Only Rura and Lerner tried to address this issue to some
extend with their "pointcut pattern equivalence” constraint.

Finally, a refactoring tool must be able to adjust pointcuts in a proper way. Most
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refactoring tools for aspect-oriented programs, however, just generate enumerations of
program elements whose executions are considered as joinpoints. A generation of more
generalized property-based pointcuts, such as proposed by Braem et al., could lead to
pointcuts with an actual meaning, even if the computation of reasonable names seems
not possible for pointcuts at all. Of a similar importance is the generation of pointcut
adjustments, i.e., a refactoring tool must be able to adjust a pointcut multiple times
without making it completely unrecognizable to its original developer. The preservation
of the pointcut’s meaning during such updates is completely ignored by all presented
refactoring approaches.

In summary, existing refactoring approaches may automate an initial extraction of a
crosscutting concern into aspects to some extent, but they fail to provide a proper notion
for behavior preservation in AOP as foundation for an automated but controlled refac-
toring process. In the following sections, we discuss more concrete open issues specific to
the approaches surveyed above, regarding the evolution of aspect-oriented programs.

3.4.1 Expressing the Pointcut’s Intention

Joinpoints are points in the execution of the program, or more technically they are
executions of program elements. They neither have a unique name nor can somehow
be directly selected. A developer defines a pointcut to specify some of their (static
or dynamic) properties, in a somehow complete way. The fact that this specification
can be incomplete and some of its information cannot be statically determined leaves
much room for interpreting the original intention behind a pointcut. This room makes
it exceptionally difficult to detect accidentally new and lost pointcut matches in an
automated fashion.

Also more abstracts pointcuts as proposed by Kellens et al. seem just to defer this
problem to another level, even if their design rules can be adjusted more simply than
pattern-based pointcuts. An authoritative verification of pointcut matches using unit
and integration tests [104] is an insufficient and incomplete solution. Testing only shows
the presence of bugs and can never prove their absence. Moreover, test failures do not
explain the failure reason and have to be further analyzed to actually track down the
bug. Finding the failure inducing code modifications is especially hard for pointcuts,
since every changed part of the system can be responsible.

A more promising alternative is an explicitly expressed expectation that can be automat-
ically verified [36]. Griswold et al. propose an aspect-aware interface to expose joinpoints
through verifiable pointcuts. It facilitates the detection of unintentionally matching join-
points caused by addition or removal of program elements, but it still can negatively be
affected by simple rename or move refactorings, particularly since the developer’s expec-
tation is expressed using joinpoint properties as well.

Such a verifiable specification of the developer’s intension could be even more interesting
for aspect-oriented refactoring if it is combined with a distance measure as proposed by
Anbalagan and Xie [5]. Their approach for computing boundary joinpoints, which are
almost intended, is of particular help if a refactoring causes a loss of still almost match-
ing elements. Such nearly matching elements are especially hard to find [85]. Anbalagan
and Xie however consider only signature patterns in their distance measure. Pointcuts,
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specifying other properties of joinpoints, are not handled by this approach. Nonetheless,
a generalized distance measure for all joinpoint properties could be used to automate the
finding of potentially intended joinpoints.

3.4.2 Analyzability of Pointcuts

The pointcut delta analysis approach by Storzer et al. has effectively shown that it
is particularly difficult to detect change effects on all kinds of properties specifiable by
AspectJ-like pointcuts. Their analysis employs a specific model for representing join-
points as pointcut matches to discover new, lost, and changed matches. The matches of
different program versions can be compared, but it seems not possible to automate the
inference of change reasons.

Moreover, this research demonstrates how dynamic properties, can be statically approx-
imated to detect change effects through static program analysis. An approximation of
certain dynamic properties, like runtime values, can lead to very poor analysis results.
A threshold indicating the quality of an approximation could be an important indicator
for the analyzability of dynamic properties. Such a threshold could be used as concrete
boundary indicating for which kind of dynamic properties a static approximation still
makes sense.

In addition, there is no concrete notion for program edits that are responsible for a
particular pointcut delta. An atomic change model, as presented by Ryder et al. [84]
could make program edits more amenable to program analysis. This could enable a tool
to distinguish potential effects of different kinds of changes, e.g., rename versus remove,
and infer different actions for a refactoring. A proper classification of change effects
would allow for automating the decision making, whether caused effects on pointcut can
be made undone or have to be accepted.

3.4.3 Behavior Preservation in AOP

AOP is meta-programming. FExisting approaches to preserving the behavior in tool-
supported refactoring cannot ”simply” be extended for AOP. However, almost none of
the presented refactoring approaches tries to preserve meta-level properties specified in
pointcuts, rather than seeking for possibilities to restore the program’s behavior before
the refactoring.

Ramnivas Laddad proposed along with his best practices in refactoring aspect-oriented
programs, the use of AspectJ’s declare error mechanism for verifying whether two differ-
ent pointcuts capture exactly the same set of joinpoints [58, [59]. Such a ”workaround”
is of some help, if no tool support for finding new or lost matches of existing pointcuts is
available. However, it offers no support for deciding whether such a match is intended,
and can end up in long debugging sessions.

Hanenberg et al. propose new constraints introducing aspect awareness to refactoring,
but they do not consider in their approach that a pointcut may intentionally select ad-
ditional joinpoints after a refactoring. They even neglect that joinpoints are points in
the program execution which must be statically approximated to enable an analysis of
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change effects. As much as their constraint ”the quantity of joinpoints referenced by a
particular pointcut must not change” [40] may seem obvious on first sight, its verifica-
tion is barely possible. Since the number of joinpoints occurred during the execution
depend on the program parts that were executed, it is impossible to statically determine
all joinpoints.

Rura and Lerner introduce a pointcut pattern equivalence constraint, which ensures the
same set of program elements matching all signature patterns within a pointcut. This
is a more restrictive requirement, than ensuring the same set of joinpoints captured by
the pointcut, and it is statically determinable. It ensures that every single signature
pattern matches the same set of elements, even if the resulting combination of signa-
ture patterns in the pointcut does not select a single joinpoint. If a matching program
element is changed, Rura and Lerner always propose to update the pointcut. Such a
more restrictive approach can be achieved with existing refactoring tools and seems more
reliable than preserving a selected set of joinpoints. But in fact it has a number of dis-
advantages. First, it does not distinguish signature patterns that select specific program
elements from those that select elements of a certain kind. For example, consider the
following AspectJ pointcut:

pointcut allMethods (): execution(x *.x(..))

It would select all methods in a program, including methods that will be added in the
future. Every addition of a new method would cause an exclusion of this method, fol-
lowing the approach of Rura and Lerner. This is obviously not intended by the pointcut.
Second, the effects of different kinds of changes are not distinguished. An inline refac-
toring completely removes a program element from the system entirely. Whereas for
move or rename refactorings one could say, it removes an element with certain properties
(location, name) from the system, but adds the same element with changed properties
to the system at the same time. Hence, some effects of pointcuts can be made undone,
and others have to be prevented at all. Third, the approach considers only change effects
on signature patterns, however, a pointcut’s selection can also be affected by changes to
other parts of the program. For example, consider the following (AspectJ) pointcut for
the code piece presented in Figure [3.1}

pointcut set(x int Foo.num)
&& withincode (public void Foo.bar())

The figure illustrates the change effects of an Encapsulate Field Refactoring. The refac-
toring is performed on the field num in class Foo. The right side of the figure shows the
source code after the refactoring. The refactoring moves the assignment of field num in
method bar(int) to the newly created method setNumber (int), which has no effect
of the signature pattern ”* int Foo.num”, but causes a loss of all matching joinpoints.
Changes to statements or expressions, like method calls or field accesses, are not covered
by this approach. Fourth, the introduced patterns for extending/narrowing pointcuts in
a way that new and lost captures are prevented, represent a straight extension of an ex-
isting pointcut. The pointcut is extend by enumerations of new or lost pointcut matches,
which, on the one hand, makes pointcuts unrecognizable and worse readable, and on the
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1 class Foo {
2 private int num = 0;
3 public void bar(int count) {
4 setNumber (count) ;
5
6 public void setNumber (int num) {
1 class Foo { 7 this .num = num;
2 public int num = 0; 8 }
3 public void bar(int count) { 9 public int getNumber () {
4 num = count; 10 return this.num;
5 ) 11
6} 12 }

Figure 3.1: Example program before and after the Encapsulate Field Refactoring

other hand, it does not consider the developer’s intention behind the pointcut. Fifth,
the approach is not supported by a tool.

3.4.4 Generation of Pointcuts

The generation of a pointcut from a given set of example elements (joinpoint shadows),
as described in Section [3.2.3] is an important part within an aspect-oriented refactoring
process. Since almost every change caused by a refactoring can affect existing point-
cuts, it is obvious that aspect-aware refactorings will have to adjust pointcuts frequently.
Multiple updates of the same pointcut, however, can lead to so-called pointcut bloating.
The "pointcut pattern equivalence” constraint, as introduced by Rura and Lerner, would
add an extension to an affected pointcut, which includes lost matches and excludes new
matches simply by enumerating them [78].

Inductive logic programming techniques for generating pointcuts as presented by Braem
et al. have demonstrated its usefulness in generating specifications that define all com-
mon properties of examples shadows. This technique can be used to abstract from the
enumerated elements and infer a property-based pointcut that specifies more structural
properties than just names. This can prevent pointcut bloating, but can also make the
pointcut unrecognizable.

Since the properties specified by the original pointcut are not considered by this ap-
proach, it is possible that the resulting pointcut is not bloated but uses a different set
properties to identify the joinpoints. Also, a developer could under-specify a set of join-
points, in order to accept newly added elements. Such specification would be completed
by the proposed approaches, neglecting the original intention behind the pointcut.

It seems as particularly important that a refactoring tool adjusts only affected parts
of a pointcut with the same level of completeness and abstraction when a pointcut is
updated. In doing so, a refactoring minimizes the changes to a pointcut, which makes
it recognizable and preserves most of the original intention behind the pointcut without
a need for its analysis. All existing approaches to the generation of pointcuts do not
address the preservation of the developer’s intention behind a pointcut in that way.
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3.5 Summary

In this chapter, we have surveyed the work in a number of fields and discussed various
approaches for solving evolution problems of aspect-oriented programs.

Refactoring tools are responsible for detecting behavior-affecting changes and for ad-
justing program elements that reference the modified program parts. In the presence
of aspects both tasks are significantly more complicated and require a completely new
approach for refactoring. Existing refactoring tools check a predefined set of syntacti-
cal and semantical program properties [70] to prevent a refactoring from altering the
program behavior.

Pointcuts in aspect-oriented programs can specify properties of static and dynamic pro-
gram representations imprecisely and incompletely, hence, a stronger verification is re-
quired that is independent of this specification quality. Refactoring tools deal with
distinct and known changes, they can simply be made aware of the original and the
refactored program version.

A comparison of the program elements that are referenced by pointcuts in both program
versions will reveal any change effect on specified properties, regardless the quality of
their specification. This can be done in a similar way as the approach by Storzer et al.
[85].

Some properties of joinpoints, however, depend on a context, i.e., other pointcut anchors,
like the declaring type or enclosing package. These so-called extrinsic properties cannot
be recognized if the context in which they are identified is changed. Therefore, we need
to extend the model of Storzer et al. to represent effects on all program elements that
are referenced by a pointcut.

A comparison of statically approximated references to these elements would reveal any
effect on existing pointcuts. However, even if alterations can be detected it is still difficult
to decide whether they are intended or just accidental. The work of Kellens et al. [50]
and Storzer et al. effectively demonstrates this problem, and also Anbalagan and Xie
address issues arisen by almost matching elements [5]. As one result of their work, we
know that the question whether differently matching elements are intended or accidental
needs a qualitative answer.

Qualitative heuristics can classify the specification of any affected property in terms of
the change impact. Only if the refactoring tool is aware of the affected elements and the
quality of matching specifications, it would be able to propose reasonable adjustments.

Furthermore, a refactoring tool has to consider the kind of changes that affects the
elements that are referenced by pointcuts. A proper classification of change effects would
allow for automating the decision, whether caused effects can be made undone or have
to be accepted. The work of Ryder et al. [84] has demonstrated that a concrete notion
for program edits can enable a tool to differentiate effects of different kinds of changes.

The generation of proper adjustments for affected pointcuts causes various problems in
the context of refactoring. All existing approaches to the generation of pointcuts do not
address the preservation of the developer’s intention behind a pointcut. Basically, they
can generate a pointcut from given examples but the appearance of resulting pointcuts
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cannot always be predicted. A refactoring tool must be able to adjust a pointcut multiple
times without making it completely unrecognizable. Hence, we propose an approach
for replacing the smallest affected pointcut expression, which provides the possibility
to preserve both the pointcut’s appearance and its specification quality (precision and
completeness).

To summarize, an aspect-aware refactoring tool has to detect all change effects on point-
cuts and bound advice. This can be done by statically approximating references to
program elements, so-called property matches, and comparing these matches for the pro-
gram before and after the refactoring. Such a comparison reveals every new and lost
match of specified properties, and allows for an separated assessment of the change im-
pact on affected pointcut expressions. A heuristic-based approach can provide a qualified
answer whether altered matches of incompletely and/or imprecisely specified properties
should be accepted. With a predefined range of ”acceptable” values for these heuristics
a refactoring tool can be enabled to automate the inference of update decisions. Finally,
a classification of changes that can be caused by refactorings enable a differentiation
between repairable and broken pointcuts. Based on this information a refactoring tool
can compute valid pointcut updates.
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Chapter 4

An Aspect-aware Refactoring Process

Aspect-aware refactoring additionally has to consider change effects on structural and
behavioral composition mechanisms. While structural composition mechanisms can be
treated in the same way as object-oriented mechanisms, constructs for behavioral compo-
sition need a conceptually new approach. Our refactoring approach integrates a change
impact analysis for pointcuts into a tool-supported refactoring workflow and provides
two additional refactoring steps: (i) to assess effects on advice code, and (ii) to update
invalidated pointcuts.

In this chapter, we present our aspect-aware refactoring process and describe the ad-
ditional process steps in detail . For each refactoring step, we illustrate what the
developer can expect from the tool. In Section [4.2] we describe the additional change
information that is computed for each refactoring in order to make the effects on program
representations (used by pointcuts) more explicit.

This chapter can be seen as the description of the process framework for the following
two chapters, which present the two most important process steps, the pointcut impact
analysis, and the pointcut update computation, in more detail.

4.1 Extending Tool-supported Refactoring

Refactoring tools are an integral part of current IDEs, like the Eclipse JDT [22] or IntelliJ
IDEA [45]. They assist the developer in refactoring a program, rather than perform
a refactoring automatically. Such a refactoring capability offers a user-controlled and
highly interactive workflow. In this section, we describe the most commonly provided
refactoring workflow and present our extension for the refactoring of aspect-oriented
programs.

4.1.1 Standard Workflow for Tool-supported Refactoring

Most modern IDEs provide two kinds of automated refactorings: wizard-based and
dialog-based refactorings. Simple refactorings, like rename refactorings, are usually real-
ized as dialog-based refactorings. They usually require just a single user input, and do
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not need nor provide many configuration possibilities, thus the complete user interaction
can be performed in a single step.

More complex refactorings, on the other hand, are often provided as wizard-based refac-
torings. For example, the Pull Up Method refactoring as provided by the Eclipse JDT
can pull up multiple collaborating methods. For this purpose, it offers additional options
for resolving conflicts. The effects of particular decisions can be reviewed and adjusted in
different configuration steps. Such a step-wise configuration allows for immediate feed-
back on each configuration step before the refactoring is executed.

In general, a tool-supported refactoring workflow consists of three major steps: input
gathering, change preview and problem review, before the code is transformed:

Refactoring input — The developer is requested to input information for one or more

parameters of the refactoring, that is, the information required to execute the
refactoring. For example, the Pull Up Method refactoring in Eclipse provides one
step to gather the methods and fields to be pulled up, and another one to define
which methods and fields in subclasses are obsolete and thus can be deleted.
The user can navigate between these steps using the Nexzt or Back buttons. After
any required information has been provided, the Finish button carries out the
refactoring without previewing the results, while the Next button leads to a preview
of the changes.

Change preview — If the developer selects the preview an additional dialog shows the
expected changes of the refactoring. In Eclipse, a compare view is provided, which
shows the original and the refactored source code side by side to simplify the
comparison of the refactoring’s changes. Back, Next and Finish buttons allow for
navigating between the input gathering step(s) and the refactoring execution.

Problem review — If an error is detected during the precondition checks, a separate
problem review step presents the problems of the refactoring. A dialog indicates if
there are suspected, potential, or definite problems with the refactoring. Problem-
atic changes are directly shown in the program’s source code. From this problem
review step the developer can press Finish if there are not any fatal problems to
perform the refactoring, Next to preview the refactoring results, or Back to modify
the refactoring’s configuration.

4.1.2 Additional AOP-specific Computations

Existing refactoring tools analyze the program source code to determine whether the
selected refactoring can be safely performed for its target(s) and the given parameter
input. They (most often) use static program analysis to for this evaluation. After the
input data was checked the tool evaluates the preconditions of the selected refactoring
to determine whether it would affect the behavior of the program. This second analysis
step is targeted by our extension for integrating aspect-awareness into standard object-
oriented refactorings.

Our aspect-aware extension aims to detect change effects on pointcuts, and to reveal ad-
ditional and lost matches of any affected pointcut. In addition, it targets the assessment
of the change impact on pointcuts in order to support the update decision making, and
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the proposition of pointcut updates. To this end, we add three additional analysis steps
which support the developer in recognizing effects on the aspect behavior and to create
valid pointcut updates:

Detection of affected pointcuts — An aspect-aware refactoring tool can be enabled to

statically compute all program elements that are selected by a pointcut. Such a
pointcut selection is a conservative approximation, i.e., it possibly contains more
program elements than are actually selected by the pointcut at runtime. Refac-
toring tools have access to the original program and can virtually produce the
refactored program, e.g., for previewing planned changes. We take advantage of
this functionality and compute the pointcut selection for both program versions.
A further comparison of the pointcut selections reveals all new and lost matches of
any specified joinpoint property. This so-called pointcut selection delta contains all
altered matches of any specified joinpoint property, and, thus, the complete effects
on every pointcut and bound advicdj_-].
In Chapter [5| we describe the complete analysis approach for assessing the change
impact on pointcuts in detail. The particular analysis for detecting affected point-
cuts is described in Section [5.5] together with an example illustrating the computed
models.

Change impact assessment — A change impact assessment determines whether every
new or lost match should be accepted or has to be prevented. Pointcuts can im-
precisely and even incompletely specify joinpoint properties, therefore we employ
a heuristic-based approach for this assessment. The set of heuristics is used to
measure how precise every altered match is specified by the corresponding point-
cut expression, and how important is the match to the evaluation result of the
complete pointcut.

In addition, we classify the changes that can be caused by refactoring into changes
that modify a particular property, remove program elements, or add newly created
elements. This classification enables the tool to differentiate between repairable
and entirely broken pointcuts.

The change impact assessment is presented in Section where each impact mea-
sure is defined and described in detail.

Proposition of pointcut updates — A predefined range of acceptable values for the
heuristics is used to automate the inference of update decisions. Basically, new
matches of sufficiently specified expressions are accepted, unless the expression is
too relevant for the pointcut, i.e., too many other expressions depend on its eval-
uation result. Lost matches are only accepted if the corresponding expressions are
not relevant for the pointcut and incompletely specified. In any other case, our
set of heuristics proposes to adjust the pointcut or to cancel the refactoring (if it
completely removes elements).

The final analysis step computes a pointcut update based on this information. In
this computation we locate the smallest affected pointcut expression, and try to
replace it. Such a replacement would preserve the pointcut’s appearance even after

LA pointcut selection is likely to contain false positives (i.e., elements that are not selected at runtime),
because it is a static approximation of the set of elements selected at runtime
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Figure 4.1: Extended workflow for automated refactoring aspect-oriented programs.

multiple updates. If it is not possible to replace the affected expression, the point-
cut is extended with explicit exclusions for unintended matches as well as explicit
inclusions for accidentally lost matches.

In Chapter [6], we describe the analyses for computing update decisions and gener-
ating pointcut updates in detail. The heuristics for the update decision making are
completely defined in Section [6.2] together with the ranges of their values which
lead to a particular decision. In Section [6.3] we explain how pointcut updates are
constructed in general, and present our algorithms for generating the least intrusive
pointcut update.

4.1.3 A Workflow for Refactoring Aspect-oriented Programs

The additional analyses for handling of pointcuts can be integrated into any standard
refactoring workflow. Based on the results of our pointcut analyses we extend the existing
change preview and add two additional refactoring steps that support the developer in
dealing with change effects on pointcuts. Figure shows our extension of a standard
refactoring workflow.

In the aspect-aware refactoring workflow, we perform our pointcut impact analysis after
every refactoring input parameter has been entered. At this point, we enforce the preview
mode to ensure that the refactoring computes the virtual refactored program version.
After both program versions are available, we perform our pointcut analyses. They
compute the pointcut selection delta, assess the change impact, compute an update
decision and generate pointcut updates for invalidated pointcuts.

Following our pointcut analyses, an extended change preview additionally shows the
change effects on advice declarations of existing aspects. For each aspect it presents the
effects on its advice declarations, showing every planned change together with affected
program elements that are referenced by pointcuts. This additional change information
states what will happen with the referenced elements if the refactoring is carried out.
The extended preview allows the developer to estimate what effects on the program
behavior are to be expected. For instance, in cases of unimportant behavior, such as a
logging aspect, the developer could just perform the refactoring immediately and leave
the remaining decisions to the refactoring tool (cf. Figure .

Two additional refactoring steps support the developer in cases where more crucial as-
pect behavior is affected by the refactoring. The pointcut impact preview shows the
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concrete results of our pointcut impact analysis. It previews the change impact on exist-
ing pointcuts, highlights invalidated pointcuts, and presents proposed update decisions.
The developer can review proposed updates (if any) and modify update decisions.

The pointcut update dialog provides the possibility to customize proposed pointcut up-
dates or even to completely rephrase any affected pointcut.

4.2 Extending Refactorings with Change Information

Refactorings are program transformations that can modify a program in various ways.
The modifications can range from a renaming limited to the local scope, to the introduc-
tion of a design pattern. Bigger refactorings are generally composed of several smaller
refactorings. A refactoring tool utilizes this fact and realizes the automation of any refac-
toring by performing a composition of program transformations. Every possible change
that can be caused by a refactoring is achieved through a particular sequence of trans-
formations. Also, the preservation of the program behavior is argued in terms of these
program transformations.

In this section, we illustrate very briefly how automated refactorings are composed of
low-level transformations and how resulting changes can be made more amenable to
program analysis.

4.2.1 Composition of Refactorings

William Opdyke defined in his Ph.D. thesis [70] a framework for automating the refactor-
ing of object-oriented programs. He identified several big refactorings for restructuring
object-oriented frameworks and defined them as compositions of smaller refactorings.
For each of these low-level refactorings, he specified preconditions that guarantee the
preservation of the program behavior. The low-level refactorings capture creation, dele-
tion, change and move of program elements. Each of these categories contain refactorings
for different program elements, like classes, variables and methods (cf. [70], Chapter 5).
For example, consider the Rename Method refactoring. It basically consists of three
different parts:

RenameMethod(m,n) := RenameM ethodDeclaration(m,n)
+ RenameMethodCalls(m,n)
+ RenameQuverriding M ethods(m, n)

The RenameMethodDeclaration(m,n) ensures that the method gets a new unique
name. RenameM ethodCalls(m,n) ensures that every existing method call to this method
uses this new name. RenameQuerridingMethods(m,n) finally performs the same re-
naming for every method declaration that overrides this method in subtypes of the declar-
ing typef]

Refactorings tools realize these individual parts of a refactoring by separating program
transformations (cf. Eclipse Java IDE [22]). Any change effect of a refactoring can be

2Potentially overridden methods in supertypes are not considered by refactoring tools, because they
perform the refactoring always for the topmost method within a type hierarchy.
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represented by its constituent program transformations. The automated version of the
Push Down Method refactoring (cf. [29], p.328) from the example of Section can be
represented by three low-level transformations:

PushDownMethod(m,t) := CreateMethodDeclaration(m,t)
+ MoveStatement List(l, m)
+ RemoveM ethodDeclaration(m)

The CreateMethodDeclaration(m,t) creates an empty method declaration with the
name of method m in class ¢t while also making sure that the name is not already used.
The transformation MoveStatementList(l,m) moves all statements [ from within the
body of method m to the newly created method, and RemoveM ethodDeclaration(m)
then removes the method declaration m.

4.2.2 A Model of Atomic Changes

The changes caused by different refactorings vary in extent and complexity, and can range
from a local text edit with no further effect, to huge adaptations that affect multiple
implementation modules. Similar to Ryder et al. in [73], [79], we have developed an
abstract change model that represents program edits through atomic changes.

An atomic change abstracts from program edits and represents the change through
program elements of an AST, covering any element from package down to expression.
Since our impact analysis compares the original and refactored program version, we are
only interested in changes that affect the existence of elements in the AST. We consider
only changes that cause the creation or deletion of elements, such as added type (AT),
deleted type (DT), added method (AM), deleted method (DM ), added expression (AE)
and deleted expression (DFE). Other changes, like rename or move, can be represented
by these atomic changes because the analysis is aware of the transformation that causes
an atomic change, e.g., the renaming of a method is represented through an AM (the
method with the new name) and a DM (the method with the old name). The resulting
representation of changes is tailored to the analysis of change effects on pointcuts and
reduces the effort for analyzing change effects significantly.

All changes caused by a refactoring are represented within the so-called atomic change
model. The atomic change model AC'M can associate any affected program element
of P with the affecting atomic change AC' and relate it to the responsible program
transformation 7". Hence, changes caused by any refactoring can be represented by tuples
of affected elements, atomic changes and responsible transformations {P x AC' x T'}.

Since the atomic change model already consists of concrete change effects, we can fur-
ther simplify the representation of change effects and introduce a classification of program
transformations, so-called change reasons. A change reason abstracts from the con-
crete transformation and describes its effect in terms of the program representations used
to specify properties of joinpoints (like program’s name space, code containment, inher-
itance relationships and stack trace). Elements of these representations can generally be
created, removed, moved, and declaration elements can also be renamed. These kinds of
program transformations represent the particular change reasons for added or removed
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program elements. For each kind we introduce a specific change reason: CREATFE,
REMOVE, RENAME, MOV Ef}

Using these abstract reasons, the change effects of every refactoring can be represented
in terms of the program representations that are referenced by pointcuts:

Definition 4.1: The atomic change model ACM : {P x AC' x R} represents
all change effects on a program P as a triple, associating affected elements P
with affecting atomic changes AC' and their change reasons R (i.e., the kind
of program transformation).

Any kind of transformation of {CREATE, REMOVE, RENAME, MOVE} is a
possible change reason R. With this more precise definition of change effects, we can
rephrase our definition for program transformations:

Definition 4.2: A program transformation T(P,in) — {P’" x AC x R}
changes a program P for a given input in and results in a set of modified
program elements P’ associated with affecting atomic changes AC and the
responsible change reasons R.

4.3 Summary

In this chapter we have introduced our approach for refactoring aspect-oriented programs.
We have illustrated how the standard refactoring workflow can be extended and which
program analyses can be used for providing a proper handling of pointcuts. In addition,
we have shown that existing refactoring tools implement refactorings as compositions
of lower-level program transformations and how the analysis of change effects can be
simplified by computing additional information for every refactoring.

The standard tool-supported refactoring workflow consists of three refactoring steps:
user input gathering, change preview, and problem review. Our aspect-aware refactor-
ing workflow extends the change preview step, also showing change effects on aspects,
and provides two additional refactoring steps, a pointcut impact review, and the point-
cut update customization. The former allows the developer to review proposed update
decisions. The latter provides the possibility to customize proposed pointcut updates.

Such an additional refactoring support requires a powerful program analysis which de-
tects all alterations of matching program elements and provides enough information
about the affected pointcut expressions so that the developer is able to validate the au-
tomated update decisions.

Since these pointcut analyses in particular evaluate properties of static and dynamic
program representations, we propose a change classification that simplifies the analy-
sis of change effects on pointcuts. This classification differentiates between four kinds
of program transformations: rename, move, create, and remove. For every performed
refactoring the kinds of its constituent transformations are determined and associated
with a simplified change representation, so-called atomic changes. The resulting atomic

3 A move transformation changes the physical location in the program code and can also alter the
position inside a type hierarchy.
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change model contains for any lost or newly matching element the particular transfor-
mation kind as the change reason. Based on this model of change effects, we can give
a definition for the program transformation that is more suitable for describing change
effects on pointcuts.



Chapter 5

A Change Impact Analysis for
Pointcuts

Refactoring tools use static program analysis for detecting behavior-affecting changes.
They check a set of preconditions that preserve specific program properties to reveal
effects on the program behavior. For aspect-oriented programs additional preconditions
have to be checked to detect change effects on the behavior defined by aspects.

In this chapter, we describe our program analysis approach for detecting change effects on
pointcuts. In Section [5.1] we give an overview of our impact analysis approach, describing
every analysis step of the overall analysis process. In Section [5.3|we illustrate the program
representations that are used to statically represent dynamic properties of joinpoints.
In addition, we describe the algorithms for constructing these representations and for
evaluating the dynamic properties. Furthermore, we present each analysis step in detail,
depict our static representation of joinpoint sets by examples, and define their semantics.
At the end of the chapter (Section , we present our impact measures for classifying
the change impact and discuss the results expected from their application.

5.1 Analysis Approach at a Glance

Our analysis approach uses several advanced program representations and different al-
gorithms to compute them. This section gives an overview of the whole analysis process,
states its goals and presents known limitations. The remaining sections of this chapter
present the here outlined analysis steps in more detail, including mentioned program
representations, algorithms, and expected results.

5.1.1 Concrete Goals

Pointcuts refer to program representations that can be affected by several refactorings.
A refactoring tool should be able to detect these effects and to adjust pointcuts if they
reference changed program representations, in a similar way as it is done for symbolic
references. The primary goal of the analysis approach is to assess and classify change
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Figure 5.1: Overview of the impact analysis process.

effects on pointcuts in aspect-oriented programs, as well as to compute adjustments for
affected pointcuts, making these effects undone. From this general goal more concrete
objectives can be derived:

e Detection of differently bound advice code. The analysis can compute the joinpoints

that are supposed to be selected by a pointcut and identify additional or lost
joinpoints when the program is refactored. It exposes the affected pointcuts as
well as the altered invocations of advice code.

Identification of the impact reason. The tool can automatically reveal the particular
program transformation that is responsible for the change effects on a pointcut.

Assessment of the change impact. The analysis enables the refactoring tool to
determine whether a specific change impact has to be undone and also if it can be
undone. Further recommendations to the developer, such as Cancel Refactoring or
Update Pointcut, will be computed from distinguishing these cases.

Inference of updates for invalidated pointcuts. The analysis can propose adjust-
ments for invalidated pointcuts to restore their original semantics. These adjust-
ments should be as less intrusive as possible, so that pointcuts can be updated
several times and are still comparable to its original appearance.

5.1.2 Analysis Process

The impact analysis comprises stz analysis steps, which are sequentially processed. The
Figure [5.1| gives an overview of the process and illustrates the information gained from
every analysis step.

5.1.2.1 Decomposition of Pointcuts (I)

One major objective of the analysis approach is the recognition of change effects on
specified joinpoint properties as well as the assessment of effects on their specifications.
The analysis would benefit from a pointcut representation that makes the specification
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of every single property explicit, i.e., the pointcut directly states which part of the spec-
ification addresses which property of the joinpoint. Since present AOP environments
do not provide such a representation, we construct a so-called pointcut model which
provides a distinct specification for each addressed property.

A pointcut fractionizer decomposes existing pointcuts into elementary pointcut expres-
sions. A pointcut expression refers to a single joinpoint property, or to be more
precise, to a property of an element of a program representation that is used to repre-
sent the joinpoint’s property. For every property of a program representation, a specific
pointcut expression is provided, such as for signature patterns (method(), field()), code
containment (within(), contains()), static type hierarchy (supertypes(), subtypes()) and
the program execution (cflow(), args()). Furthermore, the fractionizer determines all
evaluation dependencies between the expressions of a pointcut, and computes every par-
tial aggregation of expressions. The resulting pointcut model represents a pointcut as
tree of pointcut expressions, using nodes to represent expressions (a leaf node indicates
an independent expression) and directed edges to represent evaluation dependencies. A

more detailed description of the pointcut model and illustrating examples can be found
in Section 5.4

5.1.2.2 Computation of Atomic Changes (Il)

The impact analysis considers program transformations that change a program by mod-
ifying elements of an abstract syntax tree. We can therefore introduce a specific gran-
ularity of change, a so-called atomic change, that is particularly suited to represent
effects on matching program elements. Atomic changes are a simplified representation
of possible changes, such as added type (AT, deleted type (DT), added method (AM),
deleted method (DM), added expression (AFE) and deleted expression (DE). All other
changes are either represented by these atomic changes or omitted, e.g., the renaming
of a method can be represented through an AM (the method with the new name) and
a DM (the method with the old name). Such a simplified representation of changes is
tailored to an analysis of change effects on pointcuts and significantly reduces the effort
for analyzing a change.

Our analysis computes the atomic change model for every performed refactoring after
the refactoring tool has performed the refactoring’s transformations virtually to produce
the refactored program version. The atomic change model was already defined in Section
[4.2] of the previous chapter. An example that illustrates the model is presented in Section
5.2

5.1.2.3 Creation of Advanced Program Representations (I11)

Joinpoints are points in the execution of a program, i.e., they have no direct repre-
sentation in the program’s source. A refactoring tool needs, particularly for dynamic
properties of joinpoints, a statically available representation. The analysis computes an
abstract syntax graph (ASGs), representing containment, inheritance and usage rela-
tionships, and partial call graphs (CGs), representing call dependencies, of the program.
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Which program representations are actually computed depends on the joinpoint prop-
erties specified in existing pointcuts, i.e., the types of pointcut expressions contained
by the pointcut model. In section [5.3] the advanced program representations and their
computation is described in more detail.

5.1.2.4 Approximation of Joinpoints (IV)

Our impact analysis uses the advanced program representations to evaluate the point-
cut expressions. This process is called pointcut matching and evaluates every partial
aggregation of expressions following the evaluation dependencies defined by the point-
cut model. A pointcut resolver computes the program elements that correspond to the
properties specified by the expressions, or to be more precise, the nodes of the employed
program representation which represent the program elements. Every program element
that matches an expression is called property match. Program elements that match
the root expression of a pointcut model are called pointcut matches. A pointcut
match corresponds to all properties specified by a pointcut, and is therefore the static
approximation of a joinpoint.

The pointcut resolver produces for every pointcut (model) a so-called pointcut selec-
tion, which is a static program representation that represents all program elements that
are referenced by a pointcut. A pointcut selection contains all (property and pointcut)
matches of a pointcut model within a given program. Every node of a pointcut selection
represents a (property or pointcut) match, and is connected to other matches through
a dependency relationship. This relationship reflects the evaluation dependencies in the
pointcut model and denotes a directed dependency between matches of associated point-
cut expressions.

The impact analysis computes such a pointcut selection for every pointcut in the pro-
gram, the so-called pointcut selection model. This model represents any (property
and pointcut) match for every pointcut in the program and is used to detect inter-
pointcut interferences. See Section for examples and more details on the pointcut
selection model.

5.1.2.5 Determination of the Pointcut Selection Delta (V)

This analysis step aims to compare two pointcut selection models for different program
versions. To this end, the impact analysis computes such a model for the original and
the refactored program version, and compares both selection models to produce the so-
called pointcut selection delta. This delta contains all new and lost matches for the
refactored program version, and thus represents the direct impact of a refactoring on
pointcuts in the program.

This delta, however, may still contain spurious effects (in both program versions) of the
same program transformation. The actual delta is determined by locating every program
transformation that causes new or lost matches of a pointcut expressions. For every lost
match in the refactored program the analysis tries to locate a corresponding added match
in the same version (caused by the same program transformation). Those corresponding
matches are removed from the pointcut selection delta. As result, only really new and
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lost matches remain in the impact representation for every pointcut.

In addition, the responsible program transformation is assigned to every pointcut ex-
pression with new and lost matches. The resulting change impact representation
contains every pointcut expression that is affected by the refactoring and associates it
with the change reason for the delta entry. Hence, it describes the impact on every
specified joinpoint property that is modified by the refactoring in terms of change effects
(new and lost matches), its specification (affected pointcut expression) and the change
reason (responsible transformation).

Dynamic properties require a delta that reflects the nature of the corresponding pro-
gram representation. For example, selections of a cflow property are represented by a
matching call path described as a tuple of start-trigger, end-trigger and path quality. A
refactoring can cause new or lost match paths, or just an alteration of a path’s quality.
The pointcut selection delta for c¢flow properties is defined as the set of new, lost and
changed (in terms of path quality) property matches. This representation of the change
effects enables a static program analysis to assess the change impact on the dynamic
property cflow.

The impact representations for static and dynamic properties and the detailed impact
measures are described in Section [5.6l

5.1.2.6 Computation of Change Impact (VI)

The change impact representation contains all information necessary to assess the extent
of the impact. Four different kinds of information are used for this assessment: (i) the
change reason, (ii) the impact kind, (iii) the specification quality of pointcut expressions
and (iv) the impact’s extend.

The change reason is represented by the program transformation that is responsible
for a particular impact on the pointcut. It is obvious that a refactoring tool has to
propose different actions if the lost matches were caused by a remove and not by, e.g.,
a rename transformation. Lost matches cannot be recovered if the matching elements
were removed from the program.

The impact kind distinguishes between new and lost matches. The occurrence of lost
matches is considered to be more serious than occurrences of new matches. A refactoring
tool cannot allow a refactoring to remove elements that match precisely specified prop-
erties, whereas it could allow newly matching elements.

The specification quality of an affected pointcut expression indicates how complete a
property is specified. Such a completeness measure is required, because most joinpoint
properties can depend on partially specified signature patterns. A low quality denotes a
weakly specified signature, whereas a high quality is an indicator for a complete specifi-
cation. A low quality states that not much information is required to match a pointcut,
therefore it can be an indicator for ”bad” pointcuts. The opposite, however, is not always
true, i.e., a "good” pointcut takes more as completely specified properties.

We uses two impact measures as indicators for the extend of an impact. The number
of altered matches, indicates how many matches for a specific pointcut expression are
affected by a change. It is used to provide the developer with a quantified assessment of
the effect in terms of the selected joinpoints. The nesting level of the affected expression,
indicates how many properties specified by the pointcut are affected by the change. It
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quantifies the effects in terms of the specification.
The refactoring tool uses these four kinds of information as input for computing update
proposals for affected pointcuts.

5.2 A Running Example

In this section, we introduce a small example program to illustrate the purpose of the
program representations described in the following sections. The program is implemented
in AspectJ. Listing shows its source code, which is refactored performing the Push
Down Method refactoring (see [29], p. 328).

Listing 5.1: Source code of the example program.

1 package pl;

2 public aspect A {

3 pointcut posChanged(): set(int =x);
4 before () : posChanged() {

5 System.out.println (” Changing_position”);
6 }

7}

8

9 package pl;

10 public class B {

11 int pos;

12 static void main(String [] args) {
13 C ¢ = new C();

14 c.setPos(1);

15 c.update () ;

16

17 void setPos(int pos) {

18 this.pos = pos;

19

20 // will be moved during the refactoring
21 void update() {

22 pos = pos + 10;

23 }

24 }

25

26 package pl;

27 class C extends B {

28 }

5.2.1 Behavior of the Example Program

The program consists of two classes B, C and one aspect A. The class C extends class
B, but with no further implementation. The class B implements an update mechanism
for a field named pos. The main method in class B creates a new instance of class
C, sets the value of field pos to 1 by invoking C.setPos(int) and calls the method
C.update() to increase the field pos by 10.

The aspect A defines a pointcut that selects every field assignment to any field of type
int. In this program the pointcut intercepts executions of any assignment to field pos.
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The bound advice prints some status information to the console before the field pos is
modified.

5.2.2 Push Down Method Refactoring

The program is modified using our aspect-aware version of the standard Java Push Down
Method refactoring (cf. [29], p. 328). It is applied to method B.update() in order to
move it to the subclass C. By moving the update () method also the contained joinpoint
shadows are transfered to a new place.

Using our atomic change model the change effects of the refactoring can be represented
as an added method (AM) in the target class, a deleted method (DM) in the original
class (associated with the same reason), and an added/deleted expression (AE/DE) for
every contained expression that is moved along with the method:

PushDownMethod(P,{m,t}) —
U{{m!, AM, MOV E}, {m, DM, MOV E},
{el', AE, MOVE}, {el, DE, MOV E}, {¢2', AE, MOVEY}, ...}

The association of any atomic change with its responsible reason allows us to distinguish
added/deleted elements from the appearance/disappearance of changed elements, e.g.,
caused through rename or move. The refactoring tool creates the atomic change model
during the refactoring process and attaches the computed changes to every changed el-
ement and its enclosing parents. Furthermore, it associates affected elements with the
change reason. For the example, the change model in Figure [5.2) shows the removal of
method update() in class B and the addition of the method in class C. The associ-
ated reason indicates that both changes are caused by moving of the same method from
class B to class C.

In combination with the property matches from the pointcut selection model, the ef-
fective change impact on existing pointcuts for every changed program element can be
determined.

The standard Java refactoring is neither aware of the pointcut nor of the effects on the
composed program behavior. In the following sections, we present how the standard
Java refactoring influences the pointcut of aspect A, how this can be determined by a
our program analysis approach, and how our refactoring tool can calculate whether the
pointcut needs to be updated.

5.3 Static Approximation of Dynamic Properties

The developed impact analysis determines pointcut matches via static program analysis,
i.e., a joinpoint is represented through elements of the program representations that are
used for specifying its properties. This approximation of joinpoints is particularly diffi-
cult if properties of dynamic program representations are used to select a specific set of
joinpoints.
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Figure 5.2: Atomic change tree for Example of Section

In this section, we present multiple background information on dynamic program rep-
resentations and their properties that are used by several AOP approaches for selecting
joinpoints. We also describe selected properties and how these properties can be ap-
proximated through equivalent static program representations. Furthermore, we present
several examples, discuss important attributes of approximated representations and point
out the limits of static program analysis for the evaluation of dynamic joinpoint proper-
ties, in general.

5.3.1 Dynamic Program Representations

Pointcut languages of existing AOP approaches allow a developer to specify several run-
time properties. Two dynamic program representations, the object graph and the exe-
cution history, are used by the most powerful pointcut languages found in the literature.
Both representations are described in more detail, since we are using them later to con-
struct a model for detecting a change impact on dynamic properties.

5.3.1.1 The Object Graph

An object graph is a program representation that represents objects (instances of classes)
and their dependencies in the execution of a program. The graph represents objects as
nodes and their references as edges. An object graph is a directed graph, i.e., a reference
between two objects indicating that one object references the other, but it does not show
the inverse relationship.

An object graph can contain different objects and references at every point in the exe-
cution of the program. The nodes it consists of and also its structure can change during
runtime. The number of nodes in the graph is altered through instantiations of new
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objects or by removing the last reference to an object. The graph’s structure can be
changed through several operations, such as assignments of new objects to fields. After
such an assignment the field refers to a new object, which causes an additional or changed
edge in the graph.

At every point in the execution of the program a certain part of the object graph is
directly accessible. The so-called execution context defines which objects can be directly
accessed. An execution context is, e.g., the method body in which the execution currently
invokes statements. It provides variables, such as the actual parameters of the method,
field members of the enclosing object at which the method was invoked, or locally defined
variables. The currently available execution context defines the entry points into a call
graph, i.e., the initial objects from which the graph can be explored.

An illustrating example that depicts the general structure of object graphs and their
changes during the execution can be found in Appendix [A.1]

5.3.1.2 The Execution History

The execution history, often also called execution trace, represents a sequence of events
that occur during runtime until a considered point in execution. Various levels of ab-
straction can be considered when representing events during the execution of a program.
The most concrete level would consider every single instruction in the byte-code level for
a Java virtual machine or in machine-level code level. A suitable abstraction level for
representing joinpoints would obviously consider any execution of a program element.
Since executions of program elements are no single point in the execution history, it
would represent every occurrence of an entry and exit to the execution of a program
element as joinpoint. At this abstraction level every joinpoint occurs as single event
within a sequence of runtime events. The execution history can represent any sequence
of joinpoints happened during runtime in its precise order of occurrence. The Figure
[5.3] shows such a sequence of joinpoints for one possible execution of a small example
program.

5.3.2 Properties of Dynamic Program Representations

Within these program representations several dynamic properties can be specified by
selecting specific executions of program elements as joinpoints. We describe some prop-
erties in more detail to give a better understanding of their individual nature, which we
consider as essential to comprehend the impact of affecting changes.

In general, two kinds of dynamic joinpoint properties are distinguished: single trigger
and multi trigger properties. A node of a dynamic program representation that contains
a specified property is called trigger, and the program element represented by the node,
accordingly trigger shadow. A single trigger property is an independent property of a
single node in the representation, whereas a multi trigger property comprises proper-
ties of several nodes. For example, a property denoting an ”occurrence of joinpoint jpl
before a joinpoint jp2” is considered as multi trigger property, because it is not intrinsic
to the nature of joinpoint jp2. A multi trigger property depends on a context, and is
therefore an extrinsic property (see Chapter [2)). The context of a multi trigger property,
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1 public class Main {
2 private int field;
3
4 public static void main(String [] args)
{

5 boolean runtimeValue = args =— null
6 7 true meth ctor ctor ctor ctor
7 : (args.length % 2) — 0: exec call exec exec Hp-( call
8 ’ mai Mai Mai ain ain)
9 Main obj = new Main() ;
10 if (?untlmevalue) { ﬁ meth field field
11 obj.ml(); call exec get get
12 } else { m1 m1 f f)
13 obj.m2();
14 } A .
15 } meth meth field field

. . call exec | set set
16 private void ml() { m2 m2 f f
17 int var = field; )
18 m2() ;
19 } G ‘meth eth ‘meth ‘meth
20 private void m2() { exec Hp-{ cal Hp-( exec Hp-( cal B exec

. m2 m2 m1 m1 ain
21 field = 5;
22
23 } [ joinpoint entry

<:| joinpoint exit

(a) (b)

Figure 5.3: Example program (a) and its execution flow (b) for illustrating the execution
history.

however, is dynamic and may differ for every individual execution. Hence, we consider
multi trigger properties as a specific kind of extrinsic properties.

Any occurrence of a specified property in a dynamic program representation is called
trigger, regardless if it is an occurrence of the complete property or just a part of it. For
multi trigger properties we further distinguish, partial matches of the property, called
start-triggers, and complete matches, called end-triggers.

In this section, we only describe properties of the execution history in more detail and
illustrate it by examples. Examples for typical properties of object graphs are presented

in Appendix [B.1}

5.3.2.1 Execution History Properties

The execution history is a program representation that represents a (partial or complete)
chain of events that occurred during runtime until a considered point in execution. This
representation can be used by pointcuts to identify joinpoints which are either located
in a particular control flow, or occur after a specific execution sequence.

Control Flow Containment (Cflow). The so-called c¢flow property denotes that a
joinpoint (end-trigger) is located within the control flow of another joinpoint (start-
trigger). It uses the stack trace of a program execution, which can be seen as a simplified
representation of an execution history. A stack trace represents joinpoints directly as
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executions of program elements (triggers). The start-trigger defines the control flow in
which any occurrence of an end-trigger is considered as selected joinpoint. The start-
and end-triggers can be selected through other properties. For example, consider the
program in Figure (a) and the following AspectJ pointcut:

pointcut exampleCflow () :
cflow (execution (void Example.m3())) && execution(void Example.m9())

The control flows of the methods are depicted in Figure (b), showing which control
flow contains which method invocation. The pointcut selects every execution of a method
with the signature void Example.m9() that occurs in the control flow of a method with
the signature void Example.m3(). Several executions of method m9() lead to joinpoints
with different cflow properties, as illustrated by Figure (c). The first execution of the
method m9 () is contained in the control flow of method m3(), and thus selected by the
pointcut. In the remaining execution of the program, other invocations of method m9 ()
occur, but outside the control flow of method m3(), and, hence, are not selected by the
pointcut. Similar to the specification of a particular containment, it is also possible to
exclude specific control flows. A negated cflow property denotes that any execution of a
certain method is selected by the pointcut, except those that occur within the specified
control flow.

Execution Sequence. More advanced approaches introduce specifications of specific
execution sequences for selecting joinpoints. As an example, we present here an extension
to AspectJ by Allan et al. called tracematches [4] and an extension to the language JAsCo
of De Fraine et al. called Stateful Aspects [99]. Both approaches employ a formal model
for representing execution sequences by Douence et al. [20]. This model represents
joinpoints within the execution history as entries and exists of executions of program
elements, e.g., every occurrence of a method entry in the history is a joinpoint. In the
execution history, joinpoints are not the program elements represented by the nodes, they
are events that occur during the execution of a program element. This difference in the
representation of joinpoints allows a more precise specification of runtime events; much
closer to the actual execution of programs. An illustrating example for an execution
sequence property is presented in Appendix [A.2]

Both properties denote a particular program behavior at runtime, but differ significantly
in their meaning. The cflow property denotes the containment of a partial execution
history. It spans the control flow of a particular joinpoint jpl and considers any joinpoint
Jp2 as selected, regardless where, when, and how often it occurs in this very control
flow. The execution sequence property denotes a particular sequence of events that can
occur anytime during the program execution and can even be incompletely specified.
It represents a temporal relationship denoting joinpoint jp2 occurs after joinpoint jpl.
These temporal relationships are not restricted to a certain part of the program.
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@ O method declaration
. Q© start-trigger shadow
public class Example { @ end-trigger shadow
PUblfC Sta.tlc void {\ covered control flow
main(String [] args) {ml();} @ —» potential meth. call
public static void ml() {
m2() ;
m3() ;
® @l
}
public static void m2() {m5();}
public static void m3() {m6();} @
public static void m4() {m7();}
public static void m5() {} (b)
public static void m6() {
m3() ;
m9 () ;
}
public static void m7() {m9();} @_*@ @ @
public static void m8() {}
public static void m9() {} @ -ovice binding method
} declaration
@ advice declaration

(a) (c)

Figure 5.4: Example program (a), visualized control flows (b) and caused advice bindings

()
5.3.3 Static Representation of Dynamic Properties

Static properties of joinpoints are directly represented by the program representations
that can directly be obtained from program code. Source code changes affect these static
representations directly, thus effects on static properties of joinpoints can be simply
inferred. For dynamic properties, however, a model of all possible program executions
needs to be constructed, to be able to recognize the executions in which a dynamic
property occurs. Such a model of the program execution approximates various runtime
representations and allows for an identification of change effects on dynamic properties.

5.3.3.1 A Static Model for Cflow Properties

In Section we described the cflow property as execution dependency between two
joinpoints. An end-trigger of the property binds the advice to a joinpoint, if it occurs
in the control flow of the property’s start-trigger. A concrete joinpoint is located within
the control flow, e.g., of a method, if it occurs after the execution entered the method
and before it returns from the method.

A static model for representing a cflow property, needs to consider all possible program
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executions, for identifying any potential occurrence of this property. For such a static
model we use a call graph for representing an approximation of all possible control flows
in the execution of the program. A call graph is the standard representation for the
approximation of execution dependencies. We consider every potential start-trigger of
any specified cflow property as entry points for its computation, i.e., we compute a call
graph for every joinpoint shadow that is a potential start-trigger.

Principal Algorithm. The call graph is basically computed as combination of all pos-
sible control flows considering the execution dependencies of method declarations and
method calls. If the start-trigger shadow is a method declaration, then all possible con-
trol flows of its body represent the first level of the graph. For method calls, the first
level is computed from the bodies of their corresponding declarations. Any further level
is computed in the same way and attached to already existing control flows. We proceed
with the computation as long as there are additional method calls in a method body.
In case, the start-trigger is a call then we directly add the call to the computed control
flow. In this way, we compute the control flows for every level, which constructs a static
representation of any possible control flow for every shadow of a start-trigger.

In this static representation, we can locate every shadow of an end-trigger specified by
the cflow property. If such a shadow is located within a corresponding control flow of
the computed static model, then we can consider this particular execution of the shadow
as a joinpoint of the associated cflow property. Such a static model contains various
details which are not particularly needed for representing cflow properties. Since cflow
properties just denote the containment within a control flow, the temporal order within
a control flow can be omitted.

Basic Call Graph Representations. A call graph is a directed and possibly cyclic
graph that represents execution dependencies as directed edges. A node in the graph
represents a method declaration, whereas edges indicate a potential method call, i.e., the
graph contains a directed edge from m1() to m2() if there is a possibility during runtime
that method m1() calls m2(). The reason for possible cyclic paths in a call graph is
language support for defining directly or indirectly recursive invocations.

Such a basic call graph, however, has a number of limitations which make it insufficient
for representing cflow properties. It only considers method declarations, so executions
of other elements, such as individual method calls or field accesses, are not represented.
Most pointcut languages allow developers to select also other elements as start- or end-
trigger for a cflow property, which could not be evaluated using such a call graph.
Moreover, the particularly use of control flow statements has to be considered in order to
detect change effects on the execution likeliness. For example, an addition of a control
flow statement could alter a definite execution dependency to a conditional dependency,
or an added loop statement could introduce a multiple execution of call graph nodes.
Basic call graphs also do not contain parallel edges, i.e., multiple invocations of the same
methods are represented by a single edge.

Multiple invocations, however, have to be considered when evaluating cflow properties,
because every occurrence of an end-trigger within the start-triggers control flow invokes
bound advice code. In addition, a special treatment of cyclic paths is required when
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analyzing the graph. Cycles in graphs can lead to an unlimited number of different
paths, which would make a deterministic path analysis impossible.

A Call Graph Representation for Cflow. A basic call graph has to be improved in
several ways to be a more suitable representation for evaluating properties of joinpoints.
For representing expression-level execution dependencies additional nodes are inserted
into the call graph, e.g., method declarations that are not considered as an end-trigger
shadow, but contain shadows of end-triggers. Multiple invocations of the same methods
are represented through parallel edges, i.e., several edges can connect the same pair of
nodes. Figure illustrates the improved call graph with an example.

A specific annotation of edges is introduced to qualify the likeliness of an execution.
Such an annotation denotes how likely and how often an occurrence of an end-trigger
can lead to a joinpoint of the specified cflow property. Two nodes with a direct execution
dependency, are connected through edges annotated as “definite”. Edges that represent
a conditional execution, e.g., introduced through dynamic binding or if-else constructs,
are labeled as “conditional”, and annotated with the condition that guards the execution.
These annotations add, e.g., the number of possible branches to a condition and the
individual condition to a branch. In this way, different alternatively executed nodes can
be distinguished in the static representation. Multiple executions, e.g., nodes that are
contained in loops, are connected with multi-edges. A multi-edge is annotated with a
label "multiple”, that indicates the possibility of multiple executions.

Since a program can contain directly or indirectly defined recursive invocations, the
resulting call graph can contain cyclic paths. These cycles can be treated as other
statements for multiple execution, such as loop statements. Does a path between the
shadows of a start-trigger and an end-trigger contain a cycle, then it can be considered
as a several times executed path, just as loops. End-trigger shadows within a cycle
are considered as the same situation, however if start-trigger shadows in cycles have a
different meaning. A multiple execution of a start-trigger shadow cannot lead to multiple
cflow joinpoints. A cflow property selects a joinpoint only if the end-trigger occurs.

All cycles in the graph are represented as single node with outgoing edges that are labeled
as multi-edge.

Approximation of Cflow Properties. A computation of an enhanced call graph allows
reasonably approximated representations of cflow properties. The enhanced call graph
is computed for every start-trigger shadow and results in a set of all possible call path
for any combination of start- and end-trigger shadows. The annotation process labels
every edge in a call paths and allows for a distinction between definite, conditional, and
multiple paths. The qualification of a path depends on the edges it comprises and is
computed as follows:

o A definite path, is a path that exclusively contains definite edges and indicates a
certain occurrence of the cflow property.

o A conditional path, is a path that contains at least one conditional edge, but no
multi-edge. It denotes a potential occurrence of the cflow property.
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o A multi-path, is a path that contains at least one multi-edge and it is an indicator
for multiple occurrences of the clow property. The actual number of occurrences
depends on the concrete execution of the program, and can therefore not be com-
puted.

In addition, a special treatment of conditional paths ensures that the number of definite
and conditional paths is not counterfeited. Conditional executions can mutually exclude
each other, e.g., if an if-then-else construct calls in its if- and else-branch the same
method. Such a path is actually a definite path, even if it contains conditional edges,
since the same method is located in mutually excluded branches.

As result, for every program a number of definite, conditional, and multiple paths is com-
puted for every specified ¢ flow property (in combination with shadow pairs of start- and
end-triggers). The Figure shows the source code and a visualization of a conditional
multi-path. For this example the cflow property was specified, using method st() as
shadow for the start-trigger and method et () end-trigger shadow.

public void st () {
ml () ;

public void ml() {
if (condition) {
m2() ;

© 00 O Ui WN -
—

}
}
public void m2() {
10 while (condition) {
11 et ();

14 public void et () {} — @ multi-edge

— — —P conditional edge

0-0:6-6-0

Figure 5.5: Source code and visualization of a conditional multi-path.

The extended call graph allows a static program analysis to evaluate a specified cflow
property within all possible executions of a program. Segments that correspond to the
cflow property are represented by call paths, which does not contain any variable values
yet. A representation that considers the values of conditional paths, would be a more
precise approximation of the actual execution. Such a representation, however, cannot
entirely be computed. Even very small programs can have a huge space of possible
program states and transitions. Also infinite state spaces can simply be produced. The
evaluation of the program state, however, is necessary for determining variable values,
which makes the use of variable values in pointcuts to a property the cannot reasonably
be approximated.

5.3.3.2 A Static Model for Execution Sequence Properties

Similar to the cflow property the execution sequence is a multi-trigger property. Its
triggers, however, are points before and after a joinpoint, such as entries and exists of a
method. In Section [5.3.2.1| we already gave examples for concrete execution sequences.
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A particular sequence is specified by a regular expression. If an executed sequence of
triggers matches the specified sequence, the current trigger is the end-trigger, which leads
to a selected joinpoint.

A static evaluation of execution sequences requires a representation for all possible ex-
ecutions of a program, similar as for the cflow property. Such a representation of an
execution sequence, however, is much more complex. A cflow property addresses very
small segments of a control flow and in these segments also just a few specific informa-
tion. A specified execution sequence is a much more precise requirement to a particular
control flow, which needs more detailed control flow information of almost the complete
program. A cflow property selects a specific set of start- and end-triggers which only
requires a static representation of all possible control flows between the shadows of these
triggers. An execution sequence is specified using regular expressions, which makes it
much more difficult to determine all pairs of start- and end-trigger shadows.

A suitable program representation for a static model of execution sequences is the con-
trol flow graph. A control flow graph represents all possible executions of a program,
and comprises any information needed to identify start- and end-trigger of a specified
execution sequence. In addition, it represents temporal dependencies which allows for a
distinction between concrete execution sequences.

Control Flow Graphs. Several approaches to program analysis use a control flow graph
as static representation of the program execution. It is often used for analyses within
compilers to optimize the compiled code (cf. Section 9.4 or Chapter 1 in [3]). A control
flow graph describes all possible executions of a program, i.e., all different execution
paths including all possible sequences of statements.

The fundamental element is a so-called basic block, a kind of atomic segment of state-
ments which are executed all at once. An execution of the block’s first statement is
always followed by an execution of all other statements of this block. Moreover, a jump
to a basic block addresses always the block’s first statement, all other statements cannot
be reached from outside.

A control flow graph represents basic blocks as nodes, which are connected by edges,
denoting in which order the blocks can be executed. In contrast to a call graph, an edge
does not represent call dependencies, but denotes which basic block can be executed after
another basic block (loops can also cause edges to the same block).

The graph is recursively constructed following all possible executions until a basic block
does not call others blocks and the program execution would stop. For programming lan-
guages with function calls, procedure calls or method calls as direct language constructs,
at first a partial control flow graph is computed for every body of their declarations.
These partial graphs are then composed with the control flow graph of the program us-
ing a pushdown automaton. The pushdown automaton is used to determine the correct
basic block for every jump to method calls and in particular from method returns.

Limitations of Control Flow Graphs. There are two general disadvantages when con-
trol flow graphs are used to represent the property execution sequence as used in AOP
[4,99]. On the one hand, the graph can only represent the property partially, and on the
other hand, the recognition of specified properties within a control flow graph tend to
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be exhaustive. Often the complete graph has to be analyzed for detecting a specific ex-
ecution sequence. If the identity between objects at different points in execution should
also be evaluated, the graph additionally has to contain instantiations of objects and the
variable values that store these objects. A standard control flow graph does not contain
such information. Other but similar control flow analyses for the optimization compiled
code (cf. [3], Section 10.3) use data flow analyses to compute such information. An
analysis of the data flow could probably solve these issues, but is considered as out of
the scope of this thesis.

Static Evaluation Issues. In general, an execution sequence could be represented in
a similar way as the cflow property, except of using a control flow graph to represent
corresponding paths. The paths could be annotated in the same way for indicating the
likeliness of an execution, distinguishing definite, conditional, and multiple edges. A
specified cflow property is detected in a call path, if two or more subsequently occurred
triggers can be found. A specified execution sequence can be detected in a control flow,
by matching the specified regular expression. The use of regular expressions, however,
allows for unlimited possible sequences of trigger shadows. Even if the possibilities within
a specific control flow are limited, the set of possibilities can be very huge.

A static evaluation of execution sequences is much more complex, but it is not impos-
sible, even if regular expressions are used for specifying a particular sequence. Model
checking approaches, for example, have provided solutions for such evaluation problems
in other programming languages, e.g., the language C' [I5]. This tool was developed to
detect safety-critical program states in C' programs, which are described through regular
expressions. An exact definition of the safety-critical segments in a control flow graph,
however, is in this work not presented. Hence, we cannot claim that an execution se-
quence can be statically evaluated, and also if such a solution would sufficiently perform
in daily work with refactoring tools. Nevertheless, we have found several indicators that
make it really hard to think of such a solution. Especially, if the most computation effort
needs to be spend during that refactoring process.

5.3.4 Static Evaluation of Cflow Properties

As foundation for the evaluation of cflow properties we use the enhanced call graph
as described in Section [5.3.3.1] The evaluation computes for every call path between
start- and end-trigger shadows a possible matches of a given cflow property. A single
cflow match is again a path, a so-called match path. The computation of match paths
determines dynamic dependencies under which an end-trigger can occur in a call path,
which would lead to an advice invocation. The resulting match paths are the starting
point for the following detection of change effects on the cflow property.

The evaluation process comprises three major phases. In the first phase, all start- and
end-trigger shadows are determined. In the second phase, all irrelevant shadows are
filtered, i.e., all start- and end-trigger shadows with no potential call dependency are
ignored for the further analysis. This filtering of irrelevant shadow pairs is the major
reason for computing the call graph. Finally, the third phase computes the qualified
match paths, i.e., every match path is annotated with its execution likeliness: definite,
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conditional or multiple. The last two phases of this evaluation process are described in
more detail.

5.3.4.1 Filtering Start- and End-trigger Shadows

All possible call graphs are constructed between any shadow of a start- and an end-
trigger. These graphs are computed using the so-called Class Hierarchy Algorithm, or
CHA algorithm [19]. Using the CHA algorithm the shadows of irrelevant start- and
end-triggers can be filtered directly during the graph construction. The computation
starts from every shadow of a potential start-trigger and results in a set of graphs, whose
roots are represented by start-trigger shadows. In a next step, every graph is searched
for cycles, which are marked and combined to a single node. Since any cycle is removed,
all partial graphs can be decomposed into separated call paths. In the final step of this
phase, the set of call paths is filtered to remove all any that cannot that does not connect
a shadow of a start- and an end-trigger. The resulting set of call paths represent the set
of unqualified match paths for the specified cflow property.

Partial graph construction. All partial graphs are constructed with the CHA algo-
rithm, using a Depth-First Search, or DFS (cf. [18], Section 22.3). The primary advan-
tage of this algorithm is that the detection of cycles can be prepared during the graph’s
construction. Every graph is completely constructed, i.e., every edge is created until the
last single leave. If we construct for every edge its inverse edge at the same time, the
graph is already prepared for the detection of cycles.

Cycle detection. In each graph, cycles are detected and combined to a single node.
This transforms a directed cyclic call graph into a directed acyclic call graph; an essential
requirement before separated call paths can be extracted. The cycles are identified
through detecting strongly connected components (SCC) within a graph. A strongly
connected component is a partial graph in which every node of the graph can be reached
from any other node. The employed detection algorithm, originally developed by Tarjan
[90], is able to detect SCCs in linear time. It is based on the numbering of nodes during
their exploration, produced by the DFS algorithm, and it requires the inverse edges (cf.
[18], Section 22.5). Every discovered SCC is combined to a single node.

Filtering of irrelevant paths segments. The directed and acyclic graphs still contain
several segments that cannot be part of a path between the shadows of start- and end-
triggers. We remove these segments by using the algorithm described in Figure [5.6
Starting from a start-trigger shadow the graph is traversed using the DFS algorithm
(lines [3] and . Every edge that leads to a node which is neither a shadow of an end-
trigger nor has subsequent nodes, i.e., it is a leave node, is removed from the graph (lines
, @ and . In this way, all successors of the start-trigger shadow are removed, which
cannot lead to a valid end-trigger shadow. After their removal, the graph either still
contains some successors or it is no successor left. The former case indicates that the
current shadow is part of a valid match path between the start-trigger shadow and one
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shadow of an end-trigger. In the latter case, the node will be removed if it is no shadow
of an end-trigger.

PRUNE(v)

1 v mark visited
2 for each successor s from v
3 do if s is not visited
then PRUNE(s)
if s is not an end-trigger-shadow or has no successors
then remove v as predecessor from s
remove s as successor from v

~N O Ot >

Figure 5.6: The algorithm for removing irrelevant call paths.

An illustrating example. The example depicted in Figure will help to illustrate
the first phase of the computation of match paths. Figure (Step (A)) shows a call
graph directly after its creation. It contains all call paths for a start-trigger, named (ST).
The nodes, labeled (ETx), represent shadows of end-triggers or their enclosing method
declaration. The SCCs in the graph are indicated through underlying gray areas, which
indicate the cycles in the graph.

Figure (Step (B)) shows the graph after the SCCs were detected and combined to
single nodes. In this step, parallel edges are added to the graph, which are labeled with
the number of two parallel edges.

The final step, illustrated in Figure (Step (C)), represents the result of the pruning
algorithm. The graph now contains only edges, which belong to a valid match path,
between shadows of a start- and an end-trigger.

@Ef S - 8@9

Step (A Step (B) Step (C)
Figure 5.7: The individual steps of Phase 1 in the creation of match paths.
We already explained in Section [5.3.3.1] that a basic call graph cannot sufficiently repre-

sent cflow properties. The representation of match paths created in this phase possesses
some of the required information (e.g., resolved cycles), but it is still to rough in terms
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of execution likeliness. Mutual exclusions of different paths as well as the likeliness of a
path execution cannot be obtained from this representation.

5.3.4.2 Calculation of Qualified Match Paths

In Phase 2 of the evaluation process the computed match paths are extended with infor-
mation indicating the likeliness of their occurrence. We focus here on control flow state-
ments (branches and loops) that enclose method calls and consider whether a method
call can be dynamically bound. This information is particularly necessary for detecting
change effects on cflow properties which alter the likeliness of their occurrence during
runtime.

To this end, we annotate the edges of a match path with additional attributes. Every
node of a match path is revisited, and enclosing control flow statements as well as possi-
bilities for dynamically bound methods are identified. This step only considers method
calls that are represented as edges by the graph. Every edge in the graph is annotated
with this information, from which the execution likeliness of the complete match path
can be inferred.

Branches. For every control flow statement in a match path a unique identifier is cre-
ated, the statement’s type is determined and the number existing branches is ascertained.
Moreover, the maximum number of blocks that can possibly be executed for different
evaluations of the conditions is computed. For any of these blocks a unique identifier
is created, so different blocks at every branch can be distinguished. Also method calls,
whose method can be dynamically bound to different implementations, get a unique
identifier. The number of method bodies that can possibly be bound to the method call
is determined, and any of these methods gets a unique identifier.

With this information every execution possibility and the likeliness of its occurrence can
represented in the call graph. Moreover, for every edge in the graph an attribute is com-
puted from this information. The attribute consists of an identifier, number of possible
branches and the identifier of the block or method which contains a (specific variant of
a) method call.

The programming language Java provides three different control flow statements (cf.
[34], Chapter 14). In this work, we discuss the treatment of if-else and switch state-
ments in more detail. The try-catch, or try-catch-finally, construct and the related
throw statement is ignored within this thesis. Also directly defined jumps to labels are
not considered in this work. The developed prototype shows the feasibility of the analysis
approach, an additional treatment of these control flow constructs would make it more
complete, but is not necessarily required for a prove-of-concept prototype.

e The if statement introduces a conditionally executed block, i.e., one additional
block, but two possible cases during execution. The if-else statemen‘ﬂ even
allows for mutually excluded blocks, i.e., it contains two blocks, which represent a
separate execution behavior each. Moreover, return statements within these blocks

IThe ”? :” construct is another representation of the if-else control flow statement. It is treated
in the same way.
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require a special treatment. The source code that follows a return statement is
considered as an else-block, since it is only executed if the control flow does not
follow the return statement.

e In switch control flow statements, the individual blocks (case, default) are se-
lected by a specific value. The number of execution possibilities is defined by the
number of contained blocks. Similar to if statements, these blocks need a special
treatment regarding break, return and continue statements. The number of ex-
ecution possibilities and mutual excluded paths are determined in the same way as
for if statements.

Loops and Recursion. The representation for loops and recursion abstracts from the
actual number of executions, as described in Section [5.3.3.1 All edges that belong to
a loop statement or a recursive block are marked as multiple edge. In the programming
language Java, three different loop statements are provided while, do-while and for
(cf. [34], Chapter 14). It is obvious, that blocks of these loop statements can be treated
in the same way. Every corresponding edge is marked as multiple edge, and annotated
with the loop’s identifier.

In the previous Phase 1, SCCs were already detected and specific nodes created that
mark recursive parts in the graph. Every outgoing edge of these SCC nodes is marked as
multiple edge and annotated with the SCC’s identifier. Such identifiers enable a distinc-
tion between different multi-paths in the presence of mutual exclusive match paths.

Partitioning of Partial Graphs into in discrete Match Paths. After all edges in the
partial graphs were annotated, the graphs still contain overlapping paths, i.e., every
graph has a single start-trigger shadow as root but several end-trigger shadows as leaves.
In order to spilt each graph into a set of separated match paths, we traverse the inverse
graph starting from the end-trigger shadows. For every end-trigger shadow a separate
path is constructed.

The concrete algorithm for partitioning the graphs consists of two functions, SPLIT(F)
and GETPATHSET(v). Both are described in Figure using a pseudo code notation.
The first function SPLIT(E) gets as input the set of all end-trigger shadows E for one
partial graph. Starting from the shadow of the first end-trigger the graph is partitioned
for every shadow e in F into separate match paths using the function GETPATHSET(v).

The function GETPATHSET(v) recursively creates the path for every node. If it is per-
formed with a node that has no predecessor, it creates a new path and adds it to the
resulting set of match paths. Since every partial graph is traversed using the DFS algo-
rithm, this happens only if the start-trigger shadow is reached. It is the only node in
the graph without a predecessor (see lines |3 and . Is there a predecessor node, then
every path that was constructed for the predecessors is extended with the current node
and the paths of the predecessors are combined to a set of paths for the current node
and returned (see lines from [6] to [10)).

The algorithm visits all possible paths and adds every time it arrives the start-trigger
shadow a new match path to the resulting set. This set of match paths corresponds
the ¢flow representation, as described in Section [5.3.3.1] For every path the execution
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SPLIT(E)

1 F<10 > Partial graphs with end-trigger shadow as root.
2 for each end-trigger-shadow e from F

3 do F — F U {GETPATHSET(e)}

4 return F

GETPATHSET(v)
1 R0 > Set of resulting paths.
2 if v has no predecessors
3 then P — {v} >> Create new path from v.
4 R — RU{P}
5 else > Add v to paths of predecessors.
6 for each predecessor p from v
7 do PS «— GETPATHSET(p)
8 for each P from PS
9 do P — PU{v}
10 R— RU{P}

11 return R

Figure 5.8: The algorithm for splitting all partial graphs into a set of separate match
paths.

likeliness can directly be determined. Only for paths with conditional edges, it can be
necessary to compare the edges’ attributes in all paths possessing these edges, in order
to determine if the path is a conditional or a definite path.

5.4 The Pointcut Model

Our analysis approach uses a specific model for evaluating the properties specified by
pointcuts for a particular program. This so-called pointcut model is built for every point-
cut defined in the program. It abstracts from the concrete syntax of the employed point-
cut language and represents every single specification of a property through a separate
pointcut expression. A pointcut expression (PCE) refers to a single joinpoint property,
or to be more precise, to a property of an element of a program representation that is
used to represent the joinpoint’s property.

Such a representation of property specifications leads to two major advantages: (i) every
expression refers to a single program representation and (ii) every expression holds the
specification of a single property. This significantly simplifies the detection of program
elements that correspond to a single property and allows for a distinct assessment of
change effects on single part of a pointcut.
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The pointcut model is created by parsing the concrete syntax elements of a pointcut lan-
guage and a subsequent decomposition of every partial specification into a tree of point-
cut expressions. The model represents pointcut expressions as nodes and the evaluation
dependencies between different expressions as directed edges. In general, the pointcut
model provides a separate set of pointcut expressions for program representations that
are most commonly used in AOP, such as the program’s name space, code containment,
static type hierarchy and the program’s call graph. Pointcuts of every pointcut language,
that specifies properties of joinpoints in a declarative way, can generally be translated in
such a pointcut model. The model was evaluated for the pointcut language of AspectJ.

5.4.1 Notation Remarks

In the following sections, we use a simple textual representation of the model to illustrate
what properties are specified by pointcuts, how the specification is represented and which
parts of the specification are affected by a change. The textual representation comprises
the following syntactical elements:

e Property — A single term with a capitalized first letter denotes a type of a joinpoint
property.

e VARIABLE — A completely capitalized term denotes a free variable parameter
for an arbitrary string.

e < Property > — Terms within brackets denote a list of nodes. The list is ordered
and every contained node is of the specified type.

o cxpression(Property) — Property — Pointcut expressions are specification that
may get parameters (or list of parameters) and denote a single property of a pro-
gram representation.

5.4.2 Static Properties

The pointcut model provides separated set of expressions to specify properties relating to
element names, code containment, usage and inheritance relationships. The underlying
static program representations are directly obtained from the program code.

5.4.2.1 Name-based Properties

The program’s name space contains all named elements of a program, i.e., all declaring
elements. Such elements are e.g., packages, types, constructors, methods, and fields. The
pointcut model provides expressions that take an element’s signature as input and return
a name-based property that can be matched with elements of a program representation:
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method(< Modifier >, TypeProperty, NAME, < TypeProperty >) —
MethodProperty

field(< Modifier >, TypeProperty, NAME) — FieldProperty

type(< Modifier >, NAME) — TypeProperty

package(< Modifier>, NAME) — PackageProperty

The free variable parameter N AM E denotes the element’s simple name and also allows
wildcards for specifying partial names. All name-based expressions refer to the program’s
name space, which makes them fragile against every change with effects on declaring
elements.

5.4.2.2 Usage-based Properties

Usages of a declared program element, or references, cannot be selected by a name,
because they do not possess a unique name. Among these elements are obviously method
calls, field accesses, constructor invocations, but also other elements such as the block
of methods, constructors and initializers are accessed by usage-based expressions. In
general, all usages of any declaring element can be selected from the program’s AST,
using, e.g., the following expressions:

call(Method Property) — Property

get(FieldProperty) — Property

set(FieldProperty|) — Property

staticinitializer(Type Property) — Initializer Property

These pointcut expressions take a set of declaring elements as input and return a set of
program elements.

5.4.2.3 Containment- and Inheritance-based Properties

The access to other static program representations such as code containment and the
static type hierarchy is provided by expressions like:

within(Property, Property) — Property
contains(Property, Property) — Property
subtypes(TypeProperty) — Property
supertypes(TypeProperty) — Property

The within expression gets two sets of program elements and returns any elements of
the second set that is contained by an element of the first set. The contains expressions
indicates the opposite containment relationship. The type inheritance related expressions
return either all sub types or all super types for every type in the input set.
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5.4.3 Dynamic Properties

The pointcut model also provides pointcut expressions for specifying dynamic properties,
such as relating to dynamic typing and an execution’s stack trace. These specifications
do not actually select a node within the dynamic program representation, we use ap-
proximations of these representations instead. Every selected node is a conservatively
approximated representation of an element with the specified runtime properties, i.e., we
select more elements for a specified property as actually occur during runtime.

5.4.3.1 Dynamic Type-based Properties

The dynamic type of a program element is approximated using static type inheritance
relationships. We provide expressions to specify the type of the element currently under
execution (this), of the element targeted by the flow of control (target) and the param-
eters (args). Every expression returns a set of possible type, rather than the actual
dynamic type:

this(TypeProperty) — Property
target(TypeProperty) — Property
args(<TypeProperty>) — Property

These expressions receive a single type (or a list of types) and return an approximation
of all statically possible types.

5.4.3.2 Cflow Property

The cflow property specifies a required containment of a specific stack trace. We use a
specific call graph as approximation of any possible stack trace (cf. Section|5.3.3.1)). The
cflow property can be specified as follows:

cflow(Property, Property) — Property

A cflow expression receives two sets of expressions and returns true if there exists at
least one possible match path (cf. Section [5.3.4)) in the call graph from an expression of
the first set (start-triggers) to an expression of the second set (end-triggers).

5.4.3.3 Conditionals

Conditionals in pointcuts express execution conditions by utilizing application runtime
values. Since our pointcut model is based on static program representations, we conser-
vatively approximate every conditional expression with true:

if(xExpression) — Property

Every specified conditional within a pointcut is represented by an 7 f-expression, which
always evaluates to true.
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5.4.4 Logic Combinations

In addition, pointcut expressions can be composed through logical combinations of or
(I, and (&&), not (!) to specify more complex properties. The and and not expressions
can be used to filter elements from a given element set:

or(< Property >) — Property
and(< Property >) — Property
not(Property) — Property

The or expression combines any set of the given list of elements sets to a set union,
whereas the and expression filters elements and return only elements that are contained
in every set (intersection). The not expression denotes a specific set of elements that is
excluded, particularly used in combination with and properties.

With these compositors, almost every pointcut can be decomposed into a representation
of elementary expressions.

5.4.5 Examples

The developed pointcut model is an intermediate representation for pointcuts which can
generally be used for any declarative pointcut language. In this section, we give a few
more examples to illustrate how pointcuts can be decomposed into this representation.
For example pointcut, we state the informal meaning, the specification within a concrete
pointcut language and our intermediate representation. The pointcut model (PM) for
each example pointcut is described in a corresponding textual representation.

The pointcut from the running example of Section "selects all executions of any
field assignment to a field of type int”. It can be represented by the pointcut model as
follows:

AspectJ: set(int x)
PM: set(field(<..>, type("int”),” 7))

The pointcut is fairly simple, but the pointcut model effectively demonstrates the depen-
dencies of specified properties. The expression type() is the most nested expression, thus,
any effect on its selection could affect the evaluation results of any other expression in
the pointcut. In addition, the model indicates that the pointcut refers to expression-level
and declaration elements using only the program’s name space.

Pointcut: 7Select all executions of method calls contained in method setLastName-
(String) of class Customer or its subclasses.”
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AspectJ: call(x *(..)) && withincode(* Customer+.setLastName(String))
PM:

within(
within(
subtypes(type(” Customer™)),
method(<..>, type(” x7),” set Last Name” , < type(String)>)),
call(method(<..> type(” x7),” x 7, <..>)))

The decomposition, again, makes all referenced program representations explicit, i.e.,
program’s name space, containment and inheritance relationships. In addition, any spec-
ified property and its direct dependencies are made explicit. A tool can easily determine
that the pointcut above selects the class Customer only by specifying its name, whereas
the method setLastName (String) is specified by its name, parameter type list, location
in the source and its containment.

Furthermore, the model for this pointcut effectively demonstrates the employed scope for
specified name patterns. The specified method name ”setLastName” is scoped through
an inheritance relationship and therefore depends on (the deeper nested) type name
”Customer”.

Pointcut: ”Select all method calls of foo(int, String) of any type with Test*, that
are within MyClass.bar () ”:

AspectJ: call(public * Test+.foo(int, String)) && withincode(x * MyClass.bar())
PM:

and(
call(
within(
type("Testx"),
method(< public>, type(”*"),” foo”, <type("int”), type(” String”) >))),
within(
type(” MyClass”),
method(<..>,type(” *7),”bar” , <type(VOID)>)))

This pointcut uses a name pattern ”Test*” to specify a partial part of a type name.
The pointcut model makes any other expression that depends on this partially specified
property explicit. A refactoring tool can calculate matching elements and consider the
completeness of an expression if one of these matching elements is changed.

Pointcut: “Select any execution of all method calls located within method B.update ()"

XQuery: $db:all /bat:class[@name="B"]/bat:method[@name="update"|/bat:invoke
PM: within(
type(" B”),
within(
method(<..>,type(” *7), " update” , <..>),
call(
method(<..>,type(” x7),” %7, <..>))))
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The pointcut specifies an containment path using the XQuery syntax. Our pointcut
model directly maps the path to within expressions and just completes the representation
with unspecified information. Both the XQuery pointcut and the pointcut model directly
represent the dependencies between specified joinpoint properties.

Limitations. One major limitation of the current realization of our pointcut model is
a lack of support for unification. Unification allows for even more complex combinations
and would require the introduction of identifiers for expressions. The current pointcut
model could be extended as shown by the following pointcut:

LMP: ?jp matching reception(?jp, 7selector, <7arg, ?arg>)
PM: and(
execution(<..> type(” x7),” * 7, <vl,v2>),
same(vl,v2))

The (LMP) pointcut specifies the identity of two successive arguments of an arbitrary
method invocation of arbitrary objects. The identity is specified using a specific through
unification. The pointcut model could provide an additional expression that indicates the
identity of expression results (same). Generated variables would serve as identifiers, so
the same evaluation results could be specified at several parts in the model. Unification
in logic meta programming can additionally be used in nested expressions, which can
make it in general difficult to represent evaluation dependencies. Since our pointcut
model aims to represent dependent properties directly, we believe that more research is
required to reveal concrete influences of unification on evaluation dependencies.

5.5 The Pointcut Selection Model

The pointcut selection model is the result of the pointcut resolution that evaluates all
pointcuts for a particular program. It stores every program element that exhibits a
specified property, i.e., elements that exhibit all specified properties (pointcut matches)
as well as partially corresponding elements (e.g., pointcut anchors).

5.5.1 A Pointcut’s Selection

A pointcut can specify several properties of joinpoints to select them for an interaction
with an aspect. In fact, a pointcut specifies a single property that is composed from other
properties, either through composition (the property uses others as parameter input) or
by combination with logic operators. In the latter case, obviously the used logic operator
represents the topmost property. The pointcut model is created for a specific pointcut
and contains a so-called root expression that represents the specification of all addressed
properties. All other expressions specify a partial set of properties and can again contain
further expressions. A program element which corresponds to a partial property, i.e., a
subset of the pointcut expressions, is called property match. Whereas a program element
that corresponds to the root expression, i.e., all specified properties, is called pointcut
match.
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Pointcut expressions generally specify properties of nodes in program representations.
Such nodes can either represent program elements whose executions are considered as
joinpoints or other elements that are used to express a certain property. The former
elements are called joinpoint shadows and represent a static projection of a joinpoint
into the program code. The latter are called pointcut anchors, because they are used to
specify a context in which a property can be identified. In the example, the pointcut
set(field(type(int), *)) refers to the fully qualified name of type int, any field
declaration of type int, even if the actual joinpoint is located somewhere else. Every
pointcut expression of the decomposed pointcut explicitly refers to the program repre-
sentations that are used to describe the a joinpoint property.

Based on the distinction between property and property match we use the term point-
cut selection as follows. A pointcut selection contains every element of a program that
matches a (partial or complete) property specified by a pointcut. For every property
match it maps the specification of the property (pointcut expression) to the matching
program elements. In other words, a pointcut selection holds every program element,
including pointcut matches, joinpoint shadows, and pointcut anchors, referenced by a
pointcut via any program representation used to specify a certain property.

5.5.2 Computation of the Pointcut Selection Model

The pointcut selection is computed by a so-called pointcut resolver. The resolver receives
a pointcut model that represents the dependencies between the pointcut expressions. It
traverses the pointcut model and computes a stack of pointcut expressions representing
the inverse order of dependencies. Every stack level contains a list of expressions that
can either be independently evaluated or refer to results of already evaluated expressions
(of a previous stack level).

Before the pointcut resolver processes every stack level, it computes an abstract syntax
graph (ASG) for the program that represents the program’s name space, code contain-
ment, usage, and static inheritance relationships. The resolver processes the first stack
level, evaluating all specified static properties. In the last step, the resolver computes the
call graphs for specified cflow properties and computes its match paths. Such a pointcut
selection is computed for every pointcut defined in the program. The resulting pointcut
selection model contains the pointcut selection for every pointcut in the program.

5.5.3 Static Properties

Static properties relate to a name, a containment, or an inheritance relationship. Such
properties are completely comprised by a single program element, hence matches of the
corresponding pointcut expression can be attached to the single element. For every
matching program element a separate property match is created. The resulting pointcut
selection model (PSM) contains one pointcut selection for every existing pointcut and
is defined as follows:
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Definition 5.1: The pointcut selection model (PSM) is defined as the tuple
PCM x PCE x PM of the set of matching pointcuts (PSM ), the correspond-
ing pointcut expressions (PC'E), and the actual property matches (PM).

The pointcut selection model associates for every matching pointcut the matching point-
cut expression (PCFE) with the property matches (PM), the program elements that
corresponds to the pointcut expression.

5.5.4 Dynamic Properties

A property match for dynamic PCEs differs from static matches as it has its selection
in a runtime representation which cannot be directly mapped to the program code. In
Section we already stated which issues arise with the approximation of runtime rep-
resentations. According to that, a statically approximated match of a dynamic property
indicates only the possibility for an execution in which this selection exists.

A cflow property, for example, requires that a call, specified in the PCE as the start-
trigger, must be on the stack trace before a potential joinpoint shadow (specified as
end-trigger) really produces the joinpoint when executed. This means, that every pro-
gram element that fulfills the static properties specified in the c¢flow’s end-trigger PCE
is a potential cflow property match. A selection that only covers cflow end-trigger’s
would be the most conservative approximation. Such a representation would serve the
purpose of detecting a change effects on cflow properties only in a very limited way. Only
changes regarding the end-trigger PCE would be detectable. Handling the start-trigger
PCE accordingly, would not improve the situation much. Changes to the stack trace
containment, the meaning of a cflow property, are not reflected.

The aforementioned call graph can be used as a static approximation to obtain more
precise results. The call graph is used as a basis for representing stack trace based
containment, i.e., the existence of a path in this graph between a start-trigger and an
end-trigger element indicates such a containment. Subgraphs for each combination of
start- and end-trigger PCE matches are used to represent every possible path between
the two elements. Any change to the program that can possibly affect the stack trace
containment between two elements will be detectable in the subgraph containing an
altered set of paths between start- and end-trigger elements.

Not only the number of paths, but also the quality of a path can be affected by a change.
The fact that an end-trigger PCE match is located in the path of a start-trigger in
both (original and refactored) program versions, does not always mean that the c¢flow
property is unaffected. It is possible that a definite path for at least one execution in
the original version is modified to a probably executed path in the refactored version.
This could happen, if for example a call between the start- and the end-trigger is moved
into an if control statement. Taking that into account, we define the property match
for cflow properties as follows:

Definition 5.2: The cflow match PM_ 0, can be defined as a tuple PMf;0, :
PMart—trigger X PMeng—trigger X @, representing every permutation of start-
and end-triggers including the quality (@) that states whether an execution of
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Figure 5.9: Pointcut selection for the unchanged program

a start-trigger will definitely (DEFINITE) or potentially (POTENTIAL)
leads to an execution of an end-trigger.

The pointcut selection contains the cflow matches with the respective subgraph (possibly
empty) for each pair of start- and end-triggers. Using the pointcut selection model we
can define the resolution of all pointcuts as a function that receives all program elements
(P) of a concrete implementation and the pointcut model (PCM) that comprises all
defined pointcuts:

Definition 5.3: The pointcut resolution is defined as function resolve :
P x PCM — PCM x PCE x PM that evaluates all pointcuts in PCM
for program P and in a pointcut selection model.

5.5.5 Example

Figure shows the pointcut selection for set (int *) of our example program. It holds
all program elements that are directly referenced by the pointcut, including their parent
nodes, before the refactoring is applied.

5.6 Change Impact Classification

The change impact analysis computes an explicit representation of the impact, stating
which kind of transformation causes new or lost matches for which expression of the
pointcut. This representation contains any information about affected pointcut expres-
sions and the changes that cause the effects. It can be used to assess the effects on the
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program behavior that is selected by a pointcut. Since this behavior is selected by a
specification, we can distinguish changes that:

e alter the program behavior that corresponds to the specification

e modify properties of program representations that are used to recognize this be-
havior

Both kinds of changes cause a different set of selected joinpoints and, thus, affect the
composed program behavior. The former alters the behavior of the base program (rarely
achieved through refactoring), which changes how often a specified behavior occurs at
runtime. The latter changes properties that are specified by pointcuts in order to rec-
ognize a specific behavior. The same behavior cannot be identified by the pointcuts,
because they expect joinpoints with the original, unchanged, properties. This kind of
changes alter the meaning of pointcuts for a given program, and, hence, affect the point-
cut semantics. Such changes affect always properties of pointcut anchors (including
joinpoint shadows), i.e., the assumptions under which the pointcut was defined.

In the presentation of our analysis approach, we do not consider the first kind of changes,
because all pointcuts still select the joinpoints in the execution of the base program that
are associated with the same properties, even if they occur more or less often at runtime.
For the second kind of changes we developed an impact classification, that categorizes
the impact on affected properties in terms of their specification.

A refactoring affects elements of program representations that are selected by properties.
If it modifies a property of such a pointcut anchor, the refactoring tool has to determine
whether affected pointcut expressions clearly state that the modified element is supposed
to be selected. The most difficult part is to assess how much information needs to be
specified that a pointcut expression clearly references an individual element.

Another important issue is the approximation of dynamic properties by static repre-
sentations. The analyzability of properties, however, cannot be directly measured. We
only distinguish three kinds of dynamic properties: runtime value-based, dynamic type-
based and call graph based properties. Runtime values are considered as not analyzable,
whereas dynamic types can be properly approximated by the corresponding static type
hierarchy. Cflow properties are approximated with call graphs as described above. Any
other property treated by our analysis approach is properly represented within our static
representation.

In order to determine if an anchor selecting pointcut expression should be preserved or
adjusted, we define the following indicators.

5.6.1 Specification Completeness

A pointcut can specify properties of a static or dynamic program representation more
or less complete. Incomplete specifications were introduced to pointcut languages by
signature patterns, which may only specify some parts of a signature and can also contain
partial name patterns. We consider a joinpoint property as completely specified if all
parts of every employed signature pattern are defined and no partial naming is used.

The specification completeness indicates how complete a matching property is specified
by its corresponding pointcut expression. It measures the completeness of any signature
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Figure 5.10: The scoping path for different kinds of program elements.

pattern that is used to specify the property. The specification completeness correlates
the number of unspecified and partially specified parts to the number of expected parts
of a signature pattern. We define the specification completeness SC' of a pointcut PC'E
as the average completeness of all contained sub-expressions:

|PCE|

SC(PCE) = FCE] > SC(e;) : Ve; € PCE
=0

A property is completely specified (100%) if any part of employed signature patterns
is fully defined. Incomplete parts, such as partial names or partial parameter lists, are
counted with 50%, while undefined parts are considered with 0%.

For example, the expression method(< .. >, type(” 7)), "set x 7, < type(” *”) >), would
match the method signature of method setLastName (String) in class Customer. The
specification completeness of the method expression would be 33%, because two of the
three specification parts are partially deﬁnedﬂ. We consider a particular match as more
important for a set of selected joinpoints as more complete the corresponding expression
is specified.

5.6.2 Match Scope

Another indicator for the importance of a matching element is the match scope. It
indicates whether an affected pointcut expression is used to select a single or multiple
elements. The match scope roughly approximates the path of (defined) scopes that
leads to a selected program element. This path is illustrated in Figure [5.10} It can be
compared with a fully qualified name, even if it may be incompletely specified and can
lead to several elements. The figure depicts a path with kinds of program elements,
like package (P), types (T), features (F) and joinpoint shadows (JPS). Shadows are any
program element that can be contained by a feature (e.g., constructors, methods, fields),
such as calls, field accesses, or method blocks.

The match scope measures the how many of these elements along the scoping path
are specified by a pointcut. For example, consider a method call that is selected by a
pointcut. The match scope indicates whether the pointcut restricts the location of the
call (feature), its enclosing feature, the feature defining type and the type’s package is

2The list of modifiers is ignored for the specification completeness as too unspecific information.
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Classifier Kind of scope |Focus Measure
behavioral scope control flow statement 100
inheritance method
containment operation
lexical scope type 25

package 5
unscoped no no 0

Table 5.1: Definition of the execution semantics measure.

specified. We define the match scope as the relation of the number of specified path
elements to the path length:

M S(match) |PATH]| tch € PATH
matcnh) = ————————: matcn €

len(PATH)
The match scope considers for static scoping expressions that define containment-based
or inheritance-based scopes. However, inheritance-based scopes are ignored for the mea-
sure, because our representation does not distinguishes between different types of a type
hierarchy. For the dynamic scope only cflow-based scopes are additionally considered
between different joinpoint shadows.
The more a matching element is scoped by expressions of a pointcut, the more important
is this very element for the pointcut.

5.6.3 Execution Semantics

A pointcut can specify properties with a different degree of behavioral meaning. There
are properties with no behavioral meaning, like unscoped names, and properties with a
particular meaning during the execution of the program, such as the cflow property. A
more detailed differentiation and illustrating examples are presented in Section [2.4.2]

It is obviously not possible to measure the degree of a property’s meaning by a single
number. But we can at least distinguish properties that are connected with a certain
behavior and properties that have no behavioral meaning at all. To this end, we introduce
a distance measure that indicates how close the selected elements are related to a specific
program behavior. The Table shows the particular metric values. Selected names or
elements that are restricted by a behavioral scope are counted as 100% and unscoped
selections as 0% of behavioral meaning. The two values in between are low indicators to
distinguish scoped elements from completely unscoped ones.

5.6.4 Degree of Dependency

The anchors of a pointcut represent the context in which an extrinsic joinpoint property
can be identified. Pointcut anchors are also selected by a property, which again can be
specified using other anchors. Every additional dependency level raises the need for that
very anchor, because more properties depend on its existence. We use the evaluation
dependencies between pointcut expressions in decomposed pointcuts as indicator for the
anchor dependencies.
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Nesting Level 0 1 2 >2
Measure 33 66 100 100

Table 5.2: Definition of the dependency measure.

The nesting level of a pointcut expression indicates the degree of evaluation depen-
dencies. The deeper an expression is nested the more other expressions depend on its
evaluation results. A comparison of the nesting in pointcuts of multiple AOP projects
has given a strong indication, even without hard evidence, that expressions with a deeper
nesting than level 2 can hardly be differentiated in their importance for the pointcut’s
evaluation result. We therefore distinguish the first three nesting levels in their impor-
tance, as shown in Table[5.2] Expressions at nesting level 0 specify the joinpoint shadows
whose executions represent selected joinpoints. Any further nested expression specifies
an anchor property. Expressions at level 2 (or deeper) tend to cause a complete loss of
selected joinpoints, while expressions at level 1 have not always such significant effects
on the set of selected joinpoints. The Table shows the measurement that results from
these observations.

Any aggregated expression is treated in this way, except of OR expressions. An OR ex-
pression denotes separated sets of joinpoints, thus any contained expression is considered
as a separated specification of an individual joinpoint selection. Nested OR aggregations
require an additional treatment, a so-called normalization. Any pointcut with nested OR
aggregations is normalized into a disjunctive normal form (DNF), expressing commonly
specified joinpoint properties within a logical formula combined by ”||” operators. In this
way, the OR expression are pulled up to the first nesting level, i.e., level 0. The impact
analysis teats any constituent expression separately.

5.6.5 Match Impact

A refactoring can cause multiple added or lost joinpoints. Our analysis approximates
joinpoints as pointcut matches within static program representations. The match impact
indicates the effects on the pointcut matches (PM) in the program representations for
the refactored program. It measures how many matches of the pointcut’s root expression
are affected by a certain refactoring, i.e., how many added and lost matches are caused.
The match impact M1 on a pointcut PC'E is defined by the number of altered matches
divided through the number of matches in both program versions:

|((PM07‘9UPM7‘6f) B (PMOT’ngMref))|

MI(POE) = [(PAyyy U Py )]

The match impact computes the relationship between altered and total matches in both
program versions. The more matches are altered by a refactoring, the bigger is the effect
on the program behavior. A change of multiple pointcut matches can only be intended
if the affected pointcut expression is completely specified.
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5.7 Summary

In this chapter, we have presented our change impact analysis for pointcuts. We have
given an overview of the complete analysis process in Section [5.1], describing each analysis
step and its role in the process. Furthermore, we have presented an example program in
Section and illustrated the analysis model computed in every analysis step by this
example.

A major part of this chapter (Section investigates possibilities for approximating
dynamic joinpoint properties. The characteristics of commonly used dynamic program
representations, i.e., object graph and execution history, are compared and the properties
that can be specified by existing pointcut languages are described. We have developed a
model for statically representing properties of the execution history and discussed limi-
tations of this model in particular for cflow and execution sequence properties.

We have highlighted especially the differences in computation effort and accuracy for
static representations of these properties. While cflow properties can be statically rep-
resented by partial call graphs, execution sequence properties require a complete control
flow graph that covers every possible program execution. In addition, we have pointed
out that control flow graphs are more fine-grained. They consider all possible execution
sequences of basic blocks as atomic segment of statements and not only call dependencies
of program elements like call graphs. Control flow graphs are therefore not only inher-
ently more expensive, an execution sequence property additionally requires the complete
graph for any possible execution of the program. We have concluded that static approx-
imations of execution sequence properties are too expensive (in terms of computation
time) to evaluate during a refactoring, their static evaluation is too imprecise (in terms
of false positives) particularly if they are specified by regular expression and invalidated
specifications cannot be updated by a tool. For this reasons, we believe that effective
refactoring support cannot be provided for execution sequence properties. Also potential
alternatives for our static analysis approach, like model checking, are discussed in Section
5.3.3]

For cflow properties an extended call graph as static representation is presented in Sec-
tion [5.3.3] and an algorithm for evaluating cflow properties on this graph. The algorithm
not only detects cycles, but also computes cflow matches as qualified match paths. These
paths indicate the execution likeliness of every cflow match (definite, conditional, or mul-
tiple) at runtime. This way, a refactoring is enabled to detected changes of the execution
likeliness in addition to alterations of complete paths.

In Section we have presented our intermediate representation for pointcuts. The
representation is textually described and used for any following presentation of change
effects. Our refactoring tool uses the intermediate representation of pointcut for the
detection of change effects and computation of updates. We have described the model
and highlighted two major advantages of this model: every joinpoint property is specified
by a single pointcut expression and evaluation dependencies between properties are made
explicit. Several examples are presented to how pointcuts can be decomposed into our
intermediate representation.

The static evaluation of joinpoint properties determines all program elements that are
referenced by a pointcut and results in our pointcut selection model. In Section we
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have shown that the direct association of matching program elements and corresponding
pointcut expression lead to several advantages. Since we detect change effects on point-
cuts by comparing the matching elements for the original and the refactored program
version, any associated expression represents the affected part of the pointcut. This as-
sociation between code changes and affected pointcut parts is the key information that
enables the assessment of the impact on the pointcut.

For the impact assessment, we have proposed five impact measures which classify the
change effects in terms of the affected pointcut. The specification completeness indicates
how complete an affected expression is defined. The match scope measures how precise
an affected expression specifies an altered match. The execution semantics denotes how
close a specified property is related to a particular program behavior and the degree of
dependency indicates how many other pointcut expressions depend on an affected ex-
pression. Finally, the match impact is used to measure the number of altered matches.

The presented analyses, advanced program representations, and impact measures are
used in the following chapter to infer update decisions and compute suitable adjustments
for invalidated pointcuts.



114 5. A Change Impact Analysis for Pointcuts




Chapter 6

Computation and Generation of
Pointcut Updates

The change impact analysis computes an explicit representation of the change effects,
stating which transformation of the refactoring causes a new or lost match of which
expression of the pointcut. Our impact indicators measure the change extent in terms of
the pointcut and the set of selected joinpoints. However, they still need to be interpreted
in oder to derive an update decision.

In this chapter, we define constraints for specific program transformations based on the
impact measures and show how a tool can support the developer in deciding whether
new or lost matches should be accepted or refused.

In Section we give an overview of the update determination process describing how
our refactoring tool SOOTHSAYER computes an update decision and how it generates the
updated pointcut. In addition, we present the detailed decision criteria in Section
and explain how the impact measures are used to determine a particular decision. In
Section we present the algorithm for computing the least intrusive pointcut update
and give illustrating examples.

6.1 Update Determination Process

Our refactoring tool determines pointcut updates in two phases. First, for each affected
pointcut the tool determines whether the pointcut has to be updated. Second, the
actual adjustment for the pointcut is computed. In this section we explain how affected
pointcuts are distinguished from invalidated pointcuts and give an overview of the update
determination process.

6.1.1 Invalidated vs. affected pointcuts

The joinpoints that are selected by a pointcut represent a particular program behavior.
This target behavior is selected by a specification, i.e., every program behavior that cor-
responds to this specification is selected. Our program analysis approach approximates

115
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the target behavior through pointcut matches. Changes to the program behavior (even
if rarely achieved through refactoring) do not affect the specification, they only alter
how often it occurs at runtime. We consider a pointcut that matches a different set of
joinpoints after a refactoring as affected, and define it as follows:

Definition 6.1: A pointcut is affected by a refactoring if it matches differ-
ently in the original and refactored program version.

The change impact analysis computes the pointcut selection delta. If this delta contains
additional or lost pointcut matches, then the tool regards a pointcut as affected. The
delta can have entries because of a variety of reasons, which we have already discussed in
Section [2.5] As a result, we distinguish changes that alter the set of selected joinpoints
from changes that alter pointcut anchors. While the former results in affected pointcuts,
the latter cause not necessarily a different set of selected joinpoints. Rather, it alters the
assumptions under which the developer originally defined the pointcut, which may also
lead to an effect on the pointcut’s resolution result. We consider such a modification of
pointcut anchors to be an alteration of the pointcut semantics which invalidates specifi-
cations of (extrinsic) joinpoint properties. We call such a pointcut invalidated and define
it as follows:

Definition 6.2: A pointcut is invalidated if it selects different anchors in the
original and refactored program version.

Since joinpoint shadows are also anchors of the pointcut, we consider any pointcut with a
changed program element in its selection to be an invalidated pointcut. A pointcut with
an empty pointcut selection delta, i.e., with no altered match and no changed anchor, is
considered as unaffected.

Pointcut anchors are also selected through specifications of their properties, which makes
it difficult to determine whether a changed pointcut semantics is intended. The overall
process for updating invalidated pointcuts is described in the following.

6.1.2 Process Overview

Figure depicts the overall update computation process. For every pointcut in the
change impact representation an update is computed, which proposes to keep the (origi-
nal) pointcut, replace invalidated pointcut expressions, or extend the complete pointcut.
As shown by Figure [6.1| the process consists of two phases. In the first phase the refac-
toring tool computes the update decision and in the second phase the actual pointcut
adjustment.

Phase I: Update decision making. The update decision retrieves the change impact as
computed by the impact analysis. If it contains any pointcut, the update determination
process is invoked. It interprets the impact measures of invalidated expressions for new
and lost anchor matches, and determines whether a modified anchor is supposed to be
selected. This update decision making process is described in more detail in Section
6.2]
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Result Change Phase | Phase Il Legend:
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Figure 6.1: Overview of update determination process.

Phase II: Update computation. The update computation is performed for every point-
cut that is marked as "to be updated”, and results in an update proposal. In this phase,
an algorithm tries to locate the affected pointcut expressions and also to compute a
direct replacement. If such a partial replacement can be computed, the updated point-
cut is evaluated again in order to ensure that this update causes no undesired pointcut
matches. The resulting pointcut with the partial replacement is similar enough to the
original pointcut that it is recognizable to its developer.

If no partial replacement can be computed or the evaluation of the updated pointcut fails,
a verbose pointcut extension is computed. This extension explicitly includes lost or ex-
cludes additional anchor matches through a direct enumeration. The complete algorithm
for computing adjusted pointcuts is described in Section 6.3

6.2 Update Decision Making

Based on our impact measures we define two simple heuristics that provide different
indicators for whether altered matches invalidate a pointcut. Both heuristics are used
within a pointcut update decision table to automate the decision making.

6.2.1 Update Decision Criteria

Any invalidated pointcut causes additional and/or lost matches in the pointcut selection
delta. Our analysis tries to determine for any of these matches if it should exist after the
refactoring. To this end, we define two heuristics, the specification quality and expression
relevance, which are used in the automation of the decision making.

Specification Quality. A program element can be explicitly selected by a pointcut or be
just one of numerous matching elements. We use our specification completeness measure
(cf. Section to assess how complete the properties of a matching element are speci-
fied by a pointcut. In addition, we use the match scope measure to determine how much
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the selection of the corresponding expression is restricted to the matching element(s).
Our impact representation associates any matching element with all corresponding ex-
pressions of a pointcut. The expression that specifies the most properties of a matching
element is called ex,,q., and its smallest sub-expression that is directly affected by the
refactoring is called ex,s¢r. We define the specification quality as follows:

SC(exqff) - %(100 + MS(eTmaz))

100

SQ(pm) =
with exqff, €Tmen € PCE; pm € PSM

The heuristic is defined as a relation of specification completeness and match scope. The
specification completeness is considered to be twice as important as the match scope,
i.e., in the worst case a completely unscoped expression can reduce the value of the spec-
ification completeness by 50% .

The specification quality is computed for the directly affected expression (associated
with the responsible transformation) using the match scope for the largest matching
expression. The intention behind the heuristic is that fully scoped and completely spec-
ified matches are more desired by the developer than less precisely specified matching
elements.

Expression Relevance. An affected pointcut expression can be more or less relevant
for the evaluation of the complete pointcut. We define a heuristic as an indicator for this
relevance using the degree of dependency and execution semantics. Both are defined in
Section [5.6l

The degree of dependency uses the nesting level of an expression as the indicator for
its relevance for the pointcut. The execution semantics indicates how close a specified
property is related to a specific program behavior. Based on both measures we define
the expression relevance as the zero-bounded difference:

ER(ex) =

{DD(%) — ES(ex) if DD(ex) — ES(ex) > 0 with ex € PCE

if DD(ex) — ES(ex) <0

The relevance of a pointcut expression ex is defined by the degree of dependence of this
expression minus its degree of execution semantics. Is the difference smaller than zero,
then we just count it as zero. The intention behind this heuristic is that changes of
behavioral properties are more likely to accept than changes of structural characteristics
(like naming). However, the deeper an expression is nested in the pointcut the more
unlikely can (amplified) effects on the resulting pointcut selection be intended.

6.2.2 Update Decision Procedure

With these heuristics we can automate the update decision making. Our decision making
approach follows two general assumptions: (i) elements that match precisely defined
expressions (high SQ) are wanted by the developer, and (ii) selections of deeply nested
expressions must be preserved. For both heuristics we have defined an initial range that
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states how precise or relevant affected expressions have to be, so that they are considered
as invalidated. We start with a quite conservative range, considering SQ 100% for precise,
SQ 0% for unspecified and ER 60% for relevant.

Using these initial benchmarks we decide whether a pointcut PC'E needs to be updated
as follows:

SQ(m) =0% — {NOUPDATE(GZE) in any case
NOUPDATE(ex) if ER(ex) < 60%
UPDATE(ex) if ER(ex) >= 60%
NOUPDATE(ex) if added match

UPDATE(ex) if lost match
with m € PSM, ex € PCE

0 < SQ(m) < 100% —

SQ(m) = 100% —

Using this table, our refactoring tool recommends to accept additional matches of unspec-
ified or precisely specified expressions and to accept lost matches of (almost) unspecified
expressions. Moreover, altered matches of expressions with an average precision are only
accepted if the expression has a relevance of less than 60%.

6.3 Generation of Pointcuts

Pointcuts are specifications of properties, and thus, if these properties are changed, a new
specification has to be generated. In contrast to general approaches to pointcut genera-
tion [I1],05], we can use for the generation of adjusted pointcuts the original pointcut and
the change impact information. In this section we illustrate how pointcuts are updated
and describe our algorithm for generating the least invasive pointcut update.

6.3.1 Pointcut Update Patterns

If the analysis has proposed to update an affected pointcut expression, the most straight-
forward approach would be to exclude unwanted or include lost matches. Our refactoring
tool could extend the affected pointcut expression with an additional expression that
specifies the exclusion or inclusion. Such a direct exclusion or inclusion of individual
matches is proposed by other refactoring approaches for AOP [40, [78]. Following these
approaches we can update an affected pointcut as follows:

pee(ap) = pee(ap) || pee(ip) : ap € PCEyfyected, ip € PCEine
pC€(CLp) = pCG((Zp) && 'pC€(.Z'p) -ap € POEaffecteda xrp € PCEexcl

This explicit extension of pointcut expressions, however, leads to several disadvantages
such as bloated pointcuts, which are already unrecognizable to the developer after only
a few updates. A more sophisticated approach would check whether an affected pointcut
expression can be replaced with a new expression. Such a replacement is possible in cases
where all matches of the affected expression are altered (MI 100%) and the replaced ex-
pression captures comparable matches. This direct replacement of a pointcut expression
can be defined as:
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pee(ap) = pee(rp) = ap € PCEffected, ™D € PCEyep

6.3.2 Update Computation Algorithm

In this section we describe the algorithm for determining whether an affected pointcut
can be adjusted or if the refactoring needs to be canceled. Our algorithm tries to compute
a replacement for the smallest affected pointcut expression. If this is not successful it
creates an explicit extension of the pointcut. Figure presents the algorithm in a
semi-formal notation.

Update. Our update algorithm is performed with the computed impact representation,
which contains the filtered pointcut selection delta of any affected pointcut. The inval-
idated expressions of these pointcuts have altered (property) matches and are labeled
as "to be updated”. The algorithm processes these pointcuts to produce valid pointcut
updates.

It starts with an empty clone ez, (cf. Figure[6.2] line[l)) and checks every expression ex
in the original pointcut for whether it is invalidated. If so, then it is updated, whereas un-
affected expressions are simply cloned. For invalidated expressions, the algorithm locates
the smallest affected sub-expression, using the function FIND-SMALLEST- AFFECTED(exX,
T).

This function recursively visits any sub-expression of ex and checks if it is associated
with T. For the resulting ez g,q, the algorithm determines the match impact (MT). If
all matches of the expression are affected by the refactoring, the algorithm tries to re-
place the expression directly (line [6)), using the function REPLACE. If not all matches
are affected the algorithm cancels the computation of replacements and continues in line
[12] Computed clones or replacements are inserted into the resulting pointcut ex’,,,.

If invalidated expressions could be replaced, the algorithm compares the pointcut selec-
tions of the updated and the original pointcuts. If both selections contain the same set
of unaffected and accepted altered matches (regarding the update decisions), the result
of the algorithm is the updated pointcut. Otherwise, the original pointcut is extended
with explicit exclusions and/or inclusions, using the function EXTEND.

Replace. The function REPLACE clones any expression of the given partial pointcut.
Within this clone it locates the given invalidated expression and computes the affected
part p of the this expression. If p is a simple parameter, p is replaced with the new value
of T'. Otherwise it is a nested expression and a more complex replacement is computed.
The function CREATE-REPLACEMENT computes a new expression that completely spec-
ifies that signature of the matching element and is combined with a containment-based
scope.

Extend. The function EXTEND clones all expressions of the given pointcut and locates
any invalidated expression in the clones. For each invalidated expression, it finds the
smallest affected sub-expression ex,,q.;. For each of these, an explicit extension is com-
puted using the function CREATE-REPLACEMENT.
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This function uses the pointcut update patterns described in Section to create an
explicit exclusion for any additional match, and an explicit inclusion for any lost match.

6.3.3 Algorithm Issues

The algorithm benefits from the decomposed pointcuts (cf. Section . It can traverse
every expression of our pointcut model and compute a replacement for any affected
expression. Mutual interferences between different expressions can cause unexpected
adjustments, e.g., if two directly nested expressions specify the opposite properties in
the same program representation. For example, the expressions within and contains
denote opposite relationships of the containment representation. The partial pointcut
contains(within(

type(T), execution(method(ANY))), call(method(ml))) matches any method within
type T that contains a call to method m1. If a matching method is moved to another
type, the algorithm just replaces the within expression as the method still contains the
specified calls.

Aggregated expressions (partial pointcut) can also be adjusted in this way if the directly
affected expression can be ascertained. E.g., in the example above a move of the only
matching method in type T to T2 would result in contains(within(type(T2), execution(
method(ANY))), call(method(m1l))).

Such a replacement can only be achieved if all matches of the affected expression are
altered (MI = 100%). If only a partial set of matching elements is affected, the expression
cannot be replaced because these matches would possibly be removed by the replacement.
Thus, when the match impact differs from 100%, we always explicitly include or exclude
altered matches.

If the algorithm proposes a direct replacement, we check the evaluation result of the
updated pointcut before it is proposed. The expressions of a pointcut can be arbitrarily
aggregated, or incompletely specified. They can also denote a dynamic property that is
imprecisely approximated, hence the actual combination with replaced expressions can
cause unintended pointcut matches. These matches are prevented by comparing the
pointcut selection of the adjusted pointcut with the selection of the original pointcut.

The algorithm not only considers affected pointcuts. Every invalidated pointcut, i.e.,
"abstract” pointcuts which do not select a single joinpoint in the current program version,
are also properly treated by our approach. As long as a refactoring causes an altered
match of single pointcut expression, our approach can propose an update decision and
(if proposed) compute a valid adjustment.

The actually implemented algorithm is slightly more complex than the algorithm pre-
sented in Figure [6.2l The presented algorithm illustrates the general idea of how we
compute pointcut updates. It does not consider remove transformations, which can
additionally require to cancel the refactoring if no adjustment can be computed. We
have omitted the handling of remove transformations because it does not add anything
relevant to the algorithm.
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6.4 Summary

In this chapter we have described how a refactoring tool can be enabled to decide whether
a given pointcut has to be updated, and how the least intrusive update can be computed.
In particular, we have outlined the overall update determination process (Section
and presented its constituent phases. The first phase computes two heuristics to produce
a qualitative update decision, the second phase determines the smallest affected pointcut
expressions and tries to replace them.

In Section we have defined both heuristics and described the update decision pro-
cedure. The first heuristic, specification quality, indicates how completely the pointcut
expression defines the changed property and how much the expression restricts its selec-
tion to a specific scope. The second heuristic, expression relevance, indicates how much
the specified property is execution related and how much the pointcut depends on the
expression. Both heuristics use the impact measures that we have defined in the previous
chapter and assess whether altered matches are accidental or intended. For this decision
a predefined range is defined that suggests to accept new and lost matches of expressions
that do not specify a property (SQ = 0%), and reject lost matches of highly specified
properties. For specifications of an average quality it proposes to accept matches of less
relevant expressions (ER < 60%), and reject them for more relevant expressions. This
update decision is computed for each altered match and results in a set of invalidated
pointcut expressions that are labeled "to be updated”.

The computation of the actual pointcut updates is described in Section In this
section we have presented our algorithm for computing the least intrusive replacement,
which is able to replace any invalidated expression whose matches are completely lost
or new. The replacement specifies the same properties with the same completeness. If
such a replacement is not possible, or only some matches are altered, then the algorithm
instead proposes a explicit exclusion or inclusion of these matches. Any update restores
the originally matching elements which were selected before the refactoring. If original
matches cannot be recovered, e.g., because they were removed from the program, the
algorithm proposes to cancel the refactoring.

We have also discussed limitations of the current version and highlighted a computation
for incremental updates that narrow or broaden the scope of an update as the most
crucial improvement for our algorithm.

Basically, our update decision algorithm proposes to accept effects on expressions that
specify behavioral properties or expressions which are either precisely (new matches) or
loosely (lost matches) enough specified. In any other case it tries to compute replacements
for the smallest affected expressions, which restores the original pointcut matches and
thus the original program behavior.
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UPDATE(eZoot, T, P, P’)

ex;"oot — @
for each sub-expression ex of ez,
do if ex is invalidated
then ez, <— FIND-SMALLEST-AFFECTED(ex, T')
if MI(exsmqu) = 100
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9 replace p with ex;.qp

/
10 return exp,,;
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3 do if ex is invalidated
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6 extend ez, wWith ezey

7 return ex’
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Figure 6.2: The algorithm for updating invalidated pointcuts.
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Chapter 7

Soothsayer: An Aspect-aware
Refactoring Tool

Our refactoring approach is supported by an Eclipse-based refactoring tool called SOOTH-
SAYER. The tool implements the proposed impact analysis, computation of update pro-
posals and the generation of updated pointcuts. It extends the refactoring capability
of the Eclipse JDT with the additional analyses and Ul elements showing the analysis
results and our impact visualization.

This chapter gives an overview of SOOTHSAYER’s architecture and describes its con-
stituent components implementing the impact analysis, static approximations, the point-
cut adjustment and the impact visualization. In addition, we present important design
decisions and describe how the developer is supported.

7.1 Architectural Overview

The presented refactoring approach has been implemented as extension to Eclipse. The
developed tool, called SOOTHSAYER, consists of four different Eclipse-plugins and ex-
tends multiple Java refactorings of the Eclipse Java Development Tools (JDT) [23]. It
provides an optimized structural representation of the source code and a call graph for
approximating cflow properties. SOOTHSAYER implements the static resolution of point-
cuts as presented in Section , the computation of the atomic change model (Section
, and the proposed change impact analysis (Section . It also extends the JDT
refactorings to detect affected pointcuts, to propose a pointcut update decision, and to
compute an adjustment for invalidated pointcuts (cf. Chapter @

The Eclipse JDT is a well established IDE for the development of Java programs. It
provides a plug-in concept that allows for almost arbitrary extensions of the JDT’s data
model, controls, and graphical user interface. Multiple development teams have used
this plug-in concept to built different programming languages as extensions to Java.

One example is the tool support for the aspect-oriented programming language AspectJ.
Aspect] extends Java with aspect-oriented development concepts and language mecha-
nisms. Its developers are supported by the AspectJ Development Tools (ADJT) [1]. The
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AJDT extends the JDT with core programming support for AspectJ and some advanced
development tools. It provides an integrated compiler and build environment for com-
piling and deploying AspectJ programs. It supports the developer with a specific editor
that highlights the AspectJ syntax elements and with an outline and cross references
view that display the structure of aspect modules. In addition, advanced tools like the
crosscutting view, markers, image decorators, and the aspect visualizer can inform the
developer which parts of the program are adapted by an aspect and if a modification of an
adapted part may influence the adaptation. Besides this general support for visualizing
potential change effects on aspects, the AJDT provides no refactoring support.

The refactoring capability of the Eclipse JDT supports multiple refactorings for the
programming language Java. They perform rename, move, extract, and inline transfor-
mations in a safe and automated way. The JDT provides a parser for Java source code
that computes an AST as abstract representation. The refactoring support and also
JDT extensions can access and manipulate Java source code by rewriting this abstract
representation. A refactoring is carried out by performing program transformations that
manipulate the program elements of the AST. Every transformation provides its change
information, which can be used to predict what changes will be performed if a refactoring
is carried out.

SOOTHSAYER extends the AJDT to make Java refactorings aware of their effects on
aspects implemented in AspectJ. It uses an intermediate representation of pointcuts and
bound advice declarations, so the prototype is not heavily interwoven with the AJDT
and can be also used with tools for other AOP languages.

The implementation of the pointcut analyses depends on the Test and Performance Tools
Platform (TPTP) [24]. The TPTP mainly offers support for dynamic program analyses,
like runtime data collection, profiling, and testing, but it also provides support for static
program analyses. In particular, the configuration, execution and result presentation
of static analyses are well integrated in the Eclipse platform. The analysis process of
SOOTHSAYER and the individual analysis steps are implemented using this part of the
TPTP. Every step is realized as a so-called AnalysisProvider and is controlled by the
an instance of the class AnalysisProviderManager. The TPTP executes every provider
in a loosely coupled sequence, i.e., the analysis steps can be easily extended by adding
new providers.

SOOTHSAYER consists of four different Eclipse plug-ins: REFACTOR, ANALYZE, Dy-
NAMIC, and VISUAL. Figure gives an overview of the general architecture of SOOTH-
SAYER and depicts the relationships of every plug-in. The plug-ins on the bottom side
are used by SOOTHSAYER and adjoin plug-ins exchange data with each other.

SOOTHSAYER::ANALYZE implements the basic infrastructure for all analyses. It creates
static program representations, implements the static pointcut matches, and the change
impact analysis.

Specific program representations, such as an ASG and a static type hierarchy are created
for the evaluation of pointcut expressions. The pointcut matching evaluates each point-
cut expression in its corresponding program representation and produces a set of ASG
nodes that holds the specified property in this representation. For instance, inheritance-
based properties are evaluated using the static type hierarchy for a certain class. If a
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Figure 7.1: The components of SOOTHSAYER and their relationships (adjoin components
exchange data with each other).

pointcut specifies such a property, SOOTHSAYER constructs the static type hierarchy for
selected types and evaluates the expression.

The pointcut matching evaluates independent and aggregated pointcut expressions. To
this end, all pointcuts are decomposed into our intermediate representation and all par-
tial pointcuts are evaluated using the corresponding program representations. A pointcut
matcher ascertains all elements of the ASG that corresponds to a specified property and
associates each element with the pointcut expression. The resulting pointcut selection
contains all matching program elements for every expression of a pointcut.

The change impact analysis uses the atomic change model (created by REFACTOR) and
the pointcut selection to compute a pointcut selection delta by comparing the selections
of the original and refactored program. Each delta entry (new or lost match) is assigned
with the responsible program transformation.

SOOTHSAYER::REFACTOR creates the atomic change model to store every atomic change
and change reason for each program transformation that is performed by a refactoring.
The resulting atomic change model associates atomic changes with affected program el-
ements and the responsible transformation. The REFACTOR plug-in uses the results of
the change impact analysis to compute a pointcut update decision and (if proposed) an
update for every affected pointcut. In addition, it extends the refactoring workflow and
UI elements for supporting the additional refactoring steps.

SOOTHSAYER::DYNAMIC implements the approximation of dynamic program represen-
tations and the evaluation of their properties. It creates statically approximated rep-
resentations in which dynamic properties, such as the cflow property, can be evaluated
with static program analysis.

To this end, it extends the pointcut matching of the ANALYZE plug-in. The current
implementation computes a specific call graph with qualified edges as described in Sec-
tion 5.3l This call graph does not only represent additional and lost call paths it also
shows modified execution conditions within a call path. The qualified edges indicate if
a change affects the statically approximated execution likeliness of a call path. Every
specified cflow property is evaluated to a set of matching call paths which are stored in
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Figure 7.2: Integration of the SOOTHSAYER refactoring wizard.

an extended version of the pointcut selection.

SOOTHSAYER:: VISUAL presents affected advice declarations, the individual effects on
pointcut expressions and altered pointcut matches within the refactoring wizard. It pro-
vides a specific visualization of the change impact measures and the computed heuristics
for the update decision making. VISUAL supports the developer in accepting, modify-
ing or deferring the proposed updated decisions. Also the customization of computed
pointcut adjustments is supported by the VISUAL plug-in. It allows for comparing the
selection of the adjusted update with the original pointcut selection. In the current im-
plementation we propose a tree-map [48] or seesoft [20] visualization for properties of
static program representations and a graph-based visualization for cflow properties.

7.2 Extended Refactoring Workflow

The standard refactoring workflow of the Eclipse JDT was extended to support our
aspect-aware refactoring process. The Eclipse JDT provides two kinds of refactor-
ings: processor-based, e.g., Rename Method, and non-processor-based refactorings, e.g.,
Inline Local Variable. Both kinds are executed through user interactions in the UL
For non-processor-based refactorings the class RefactoringExecutionStarter is re-
sponsible for starting the corresponding refactoring wizard, which we have extended
to start the adapted refactoring support. For processor-based refactorings the class
UserInterfaceManager creates specific starter for each refactoring wizard.

Figure illustrates which classes are extended for integrating our refactoring support.
Since the refactoring wizards of Eclipse cannot be extended with additional wizard pages
we need to integrate a new dialog AnalysisWizardDialog that is opened after the last
parameter page of a refactoring wizard is closed. We insert a new superclass to all
refactoring wizards ExtendedRefactoringWizard that shows our analysis wizard pages
as additional refactoring stepsE]. The AnalysisWizard provides an extended preview

1Such an extension requires to copy the original refactoring plugin and to replace it with the modified
version. Unfortunately, the UI implementation of the JDT refactoring support is so well encapsulated
that no other extension was possible.
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Figure 7.3: The extended Refactoring Preview illustrates which advice is affected by what
change of the refactoring.

page, the pointcut impact page, and access to the pointcut edit dialog.

Our Refactoring Preview page additionally shows the change effects on advice dec-
larations of existing aspects. For each aspect the effects on its advice declarations is
presented, as illustrated by Figure [7.3] The tree view of planned changes also lists the
affected program elements whose executions are selected by a pointcut. These additional
entries state what will happen with the referenced elements if the refactoring is carried
out. The tree gathers the entries and associates them to the affected advice code.

The advice code is displayed in the code view in the lower part. The presentation of
affected advice code together with the program code it is assigned to, allows the devel-
oper to estimate whether the expected effects on the program behavior are crucial. In
cases where only unimportant behavior is affected, e.g., some logging aspect, she could
press the Finish button immediately and leave the remaining decisions to the refactoring
tool.

The Pointcut Impact Page presents invalidated pointcuts and proposed update deci-
sions. As shown in Figure[7.4] the page is divided into two parts. The upper part presents
invalidated pointcuts, update decision, and describes the impact situation, whereas the
lower part illustrates the impact for each selected pointcut. The left tree view depicts any
pointcut expression and (if selected) shows the affecting changes. On the right side the
impact is illustrated with different visualizations. The current implementation provides
seesoft and tree-map visualizations for static properties and a graph-based visualization
for cflow properties. The figure shows a partial call graph (with qualified edges) because
the cflow expression is selected in the tree view on the left side. As one can see the Inline
Variable Refactoring causes four new and one lost edge in the call graph.

The developer is asked to review all proposed updates. She can accept, decline, defer,
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Figure 7.4: An additional Pointcut Impact Dialog shows invalidated pointcuts and the
concrete change effects.

or edit a pointcut update using the buttons below the table in the upper part. Also
the corresponding aspect can be displayed using the Show Aspect... button. The Fin-
ish button is disabled as long as some pointcuts are undecided. A click on this button
would perform the refactoring and update all pointcuts as decided in this wizard page.
The developer can also go back to the preview page using the Back button or defer all
decisions (Defer Decisions). The Cancel button will rollback the complete refactoring.

The Edit... button displays the dialog shown in Figure [7.5] It allows for a customized
update of a pointcut. If the developer edits the pointcut manually (check box Man-
ual Update), she has to define the pointcut in our intermediate representation. In a
future version, we will also allow developers to edit the pointcut in the syntax of the ac-
tual pointcut language. Every click on the button Evaluate re-evaluates the customized
pointcut and compares its selection either with the selection of the original or refactored
program. Also the selection delta can be displayed by the visualization in the lower part.
The Ok button applies the customization and the Cancel button makes the edit undone.
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Figure 7.5: An additional Pointcut Update Dialog allows for customized pointcut update
that can separately be evaluated.

7.3 Implementation of the Refactoring and Analysis
Steps

In Figure [7.6| we illustrate the information flow in the implementation of our refactoring
tool. It shows the program representations that are used and produced in every analysis
step. In this section we describe each refactoring and analysis step in detail and present
important classes that implement the particular steps.

7.3.1 Aspect-aware Refactoring

Our refactoring tool gets the original source code and the refactoring input to perform
the selected refactoring. The refactoring is virtually performed, i.e., the tool executes
each constituent program transformation on the code, but produces a working copy of
modified program elements. The virtual modification is already implemented by Eclipse
to preview what will happen when the refactoring is carried out. The program repre-
sentations of Eclipse for the original and refactored program are used to compute our
abstract syntax graph (ASG) in the next step.

In addition, the extended refactoring wizard invokes the impact analysis before our
AnalysisWizard is opened to show the analysis results. The integration of our aspect-
aware refactoring workflow into the JDT refactoring support is already described in

Section [7.2]
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Figure 7.6: Overview of the individual refactoring and analysis steps.

7.3.2 Abstract Syntax Graph Creation

Our analysis uses a specific representation of the program, a so called abstract syntax
graph (ASG). Such a graph represents containment and usage relationships of program
elements. It is created for the original and the refactored program in order to reveal
pointcut expressions that match different elements in both program versions. The ASG
is implemented in package org.soothsayer.asg.nodes and consists of program elements
ranging from project to statement, like Package, Type, Method, and MethodCall.

Figure shows the classes that are involved in the ASG creation. The ASG is created
by the class ASGBuilder, which uses the Java Model and the public AST of the Eclipse
JDT. The Java Model is an AST that represents every declared program element, but no
statement-level elements. It is used in the IDE for displaying syntactic elements in the
UI, for user interactions with individual elements (e.g., selection) and target selection
for code manipulations. The public AST is more complete. It additionally represents
statement-level code and is used in the IDE for code manipulation and code generation.
However, it is only created for a single compilation unit, i.e., it does not represent the
structural dependencies of several collaborating classes that are implemented in different
files. We use therefore the Java Model and the public AST for the creation of our
representation.

Our ASG is more complete in two dimensions, even if it represents only some parts of the
program. It contains all types and their enclosed elements that are possibly referenced
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Figure 7.7: Implementation of the ASG creation.

by a pointcut, down to every statement that can be referenced by existing pointcut
languages. Other statements and expression, such as local assignments, type casts, and
literals, are ignored.

7.3.3 Pointcut Model Creation

The creation of a pointcut model is realized in two different subclasses of IAnalysisPro-
vider. Figure shows all classes and their relationships that are involved in this
creation process.

The PointcutModelProvider triggers the pointcut parsing to create a PointcutModel
(PCM). An implementation of an IAspectParser reads the pointcuts from the original
program and builds the PointcutModel. The current implementation of this provider
uses an XML parser that parses an XML representation of pointcuts. The PointcutModelProvider
can be used with other parsers for supporting other pointcut languages. The class
PointcutFractionizationProvider expands every pointcut that is represented by the
PCM and defines in which sequence the individual pointcut expressions are evaluated.
Both providers are implemented in package org.soothsayer.internal.match.analy-
sis. The resulting PCM contains the decomposed pointcuts in which every expression
is a subclass of PointcutExpression (PCE).

A PCE can have subexpressions (children) and a parent expression. A pointcut definition
is represented by the class Pointcut.

7.3.4 Pointcut Resolving

Every decomposed pointcut is evaluated two times, in the original and the refactored
program. The classes that implement the pointcut resolving are shown in Figure [7.9]
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Figure 7.8: Overview of the pointcut model implementation and classes that are used to
create it.

For each independent pointcut expression and partial aggregation of expressions (result
of the PointcutFractionizationProvider) the IProgramElement objects are ascer-
tained that match the specified properties. The class PointcutExpressionResolver
has three subclasses that implement the evaluation of properties of a concrete pro-
gram representation, i.e., ASGPropertyResolver, TypeHierarchyPropertyResolver,
and DynamicPropertyResolver.

The pointcut resolving is triggered by an instance of MatchAnalysisProvider and results
in a PointcutSelection object for each pointcut. Every pointcut selection contains the
matching elements for each pointcut expression and the selection of a single pointcut
expression is represented by objects of class PropertySelection. Since multiple pointcut
expressions can refer to the same program element the individual matches need to be
distinguished. A single reference to a program element is represented by an instance of
class PropertyMatch. A property match connects a matching element with the pointcut
expression and allows for an individual assessment of each match.

This relationship is presented in Figure [7.I0] An instance of a PointcutExpression
represents the specification of a joinpoint property. The PropertySelection objects
represent the bunch of references to program elements for each expression. Objects of
class PropertyMatch represent a single reference to an element which can be individually
assessed.
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Figure 7.11: Classes that implement the atomic change model and their relationships.

7.3.5 Atomic Change Model Creation

Our impact analysis requires additional change information from a refactoring. For each
extended refactoring the individual transformations are detected and represented in sub-
classes of AbstractChangeAction. These representations of elementary transformations
are implemented in package org.soothsayer.refactor.acm.actions, such as extract,
inline, move, and rename. The representation of a refactoring by these actions makes
the reasons for detected change effects explicit. The relationship represent the interface
between the refactoring tool and our impact analysis.

The atomic change model basically associates instances of three classes: Refactoring,
Transformation, and AtomicChange. Figure illustrates the relationships between
these classes. The class AtomicChangeModel encapsulates a particular change model for
a specific refactoring and target program. It is created by a ChangeModelProvider. The
provider class uses an IAnalysisInput to receive the ASGs of the original and refactored
program, and it gets the list of IChangeAction objects from the refactoring.

An instance of the AtomicChangeModel is created to associate any modification of a pro-
gram element with the responsible Transformation of the Refactoring. The changes
that are computed by the existing JDT refactorings cannot be assigned to program ele-
ments of our ASG. These changes are designed to be directly executed on the program
code but not to represent reasons for change effects. We solve this problem by extend-
ing the refactorings to provide the performed program transformations as instances of
IChangeAction. The ChangeModelProvider receives these change actions and assigns
it as change reasons with affected elements of the ASG.
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Figure 7.12: Classes that implement the change impact model and their relationships.

7.3.6 Change Impact Analysis

This analysis step computes a PointcutSelectionDelta object that contains instances
of IProgramElement with altered matches. The analysis result is represented by the class
ChangeImpactModel which contains only program elements with new or lost matches.
Figure presents the class diagram of the change impact model and collaborating
classes that are used to represent the change impact.

The class ChangeImpactModel represents the complete impact for all existing pointcuts in
the program. It associates every affected IPointcutExpression with a PropertyImpact.
For each pointcut (root expression) the PropertyImpact object stores the new and lost
matches. An instance of class IPointcutIndicator stores the values for the defined
impact indicators.

A ChangeImpactModel is created by the class ChangeImpactAnalysisProvider (CIAP).
The provider requires the PointcutSelection objects of the original and refactored
program, and an IAtomicChangeModel. The CIAP triggers first the computation of the
selection delta entries for every expression of a pointcut. To this end, it compares the
PropertyMatch objects in both pointcut selections.

If the original selection contains a property match but the refactored selection does not,
then the match is labeled as lost and added to the PointcutSelectionDelta. Newly
matching elements are treated in the same way, except that matches are labeled as new
matches. The AtomicChangeModel is used to differentiate moved and renamed elements
that still match the pointcut but with a different ID from matches that are really lost or
added.

Not every affected IPointcutExpression with altered matches is directly associated
with an TAtomicChange object. For example, indirectly affected expressions that use
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Figure 7.13: Implementation of the pointcut update decision making and update com-
putation.

a directly affected expression. For such indirectly affected expressions the change rea-
sons are ascertained separately. The algorithm for creating a pointcut update described
in Section [6.3] uses a function that computes the smallest directly affected expression.
The algorithm is implemented by the method detectImpact (IPointcutExpression) in
CIAP. The function for finding the affecting changes for indirectly affected expressions is
implemented in method calculateAffectingChange (PCUpdateIndicators). It invokes
an individual search specific to the expression kind. For instance, a WithinExpression
is either directly affected or indirectly through an change that modifies an element that
encloses a matching element. Every parent node in the ASG is visited to find the affecting
atomic change.

7.3.7 Pointcut Update Computation

In the final step, the impact indicators are calculated for every affected IPointcutEx-
pression. The calculation of each measure is triggered by the class IndicatorCalcu-
lationProvider. The class provides a method for each measure, like calculateMatch-
Impact (), calculateSpecQuality(), as shown in Figure[7.13]

The values of the specification quality and the expression relevance are used for deter-
mining an update decision. For every affected PropertyMatch an update decision is
computed such as described in Section 6.2 The actual update decision making is imple-
mented in the UpdateDecisionProvider. It separately computes an update decision for
new and lost matches and additionally distinguishes change and add from remove trans-
formations. For every kind of decision a separate method is provided. The individual
decisions are stored in an instance of the IUpdateDecisionModel. The class associates
each altered PropertyMatch with an update decision.

If the algorithm decides to update a pointcut expression with altered matches, then the
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PointcutUpdateCalculationProvider tries to compute the least intrusive replacement.
If the provider successfully computes a replacement the adjusted PointcutModel is eval-
uated using the refactored ASG. If the comparison with the property matches of the
original ASG results not in a similar pointcut selection (or no replacement could be com-
puted), then the original PCM is extended with an explicit exclusion or inclusion. The
updated PointcutModel is a cloned representation of the original pointcut. In this way,
the original pointcut can anytime be recovered. This pointcut rewriting is implemented
in the class PointcutUpdateCalculationProvider which returns an updated pointcut
model that contains only updated pointcuts.

7.4 Summary

In this chapter, we have presented important implementation details of our refactoring
tool SOOTHSAYER. We have introduced its constituent components ANALYZE, REFAC-
TOR, DYNAMIC, and VISUAL in Section [7.1] Each of these components is an Eclipse
plug-in, and DYNAMIC and VISUAL can be used optionally. ANALYZE implements the
fundamental analyses and the creation of program representations. REFACTOR imple-
ments the actual refactoring extensions and additional Ul elements. DYNAMIC realizes
the approximation of cflow properties and VISUAL provides the visualizations to illustrate
the change impact and resulting pointcut adjustments.

In Section we have presented how existing JDT refactorings are extended and how
our aspect-aware refactoring tool supports the developer. In particular, individual Ul
elements are presented and the displayed information discussed.

In the main part of this chapter, Section [7.3] we have described how the overall analy-
sis process is implemented and which implementation details and design decisions were
important for each analysis step. We have also depicted important classes and their
relationships with UML diagrams and described how the functionalities of these classes
can be used.
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Chapter 8

Evaluation

The refactoring approach developed in this work was evaluated using our refactoring tool
SOOTHSAYER. In this chapter we describe the employed evaluation methodology, eluci-
date expected results, and present three case studies in which independently developed
aspect-oriented programs are refactored using our approach. For each experiment, we
describe the program, the refactoring scenarios and the source code changes. Further-
more, we present the detected effects on pointcuts, proposed update decisions as well as
the adjusted pointcuts. In the end, we discuss the evaluation results, expose the kinds
of pointcuts that cannot be properly handled by our refactoring tool and elucidate the
particular reasons.

8.1 Methodology

Our prototype refactoring tool SOOTHSAYER supports our approach for refactoring As-
pectJ programs. The tool was used in three different applications in order to evaluate
our approach. The applications were selected according to the characteristics of their
pointcuts, primarily because the major goal of this evaluation was to apply our approach
to very different pointcuts. The application size may affect the scalability of our analysis
approach, and the proportions between aspects and classes may result in more unsolvable
inter-aspect conflicts, but neither have been the focus of this evaluation. The applications
where chosen for whether a refactoring can affect:

e pointcuts that specify various properties of all possible program representations;
e pointcuts that specify these properties with a different level of completeness;
e pointcut expressions at different nesting levels of a pointcut.

For each of the chosen programs we have identified a set of refactorings that affect the
program representations that are referenced by the pointcuts in a certain way. Each
program was tested by a suite of unit tests, that reveal altered executions of existing
advice more easily. This way, unexpected side effects of a refactoring can be made
visible. The test suite is run before and after a refactoring. The comparison of test
failures demonstrates whether all expected effects are detected by our analysis and if the
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proposed pointcut updates achieve the expected results.

The particular update decision is validated during a refactoring. Our impact analysis
shows the effects on any pointcut and we have decided what is the most likely expected
update decision. When our analysis proposed an adjustment the updated pointcut was
used in the refactored program. In cases where no update was proposed we have run the
test suite against the original pointcut in the (refactored) program.

8.2 Experiment 1: Telecom Application

For the first experiment we have chosen a small example program from the Aspect]
distribution. The Telecom example, available from AspectJ’s website [6], is a simple
simulation of telephone connections to which timing and billing features are added using
aspects. We augmented the program with unit tests to expose the effects on the adapted
base code functionality. The tests are used to ensure advice invocation is altered unno-
ticeably.

The application has three core functionalities: a basic functionality that simulates cus-
tomers, calls and connections, a timing feature and a billing feature. The timing and
billing features are implemented by aspects. The timing aspect manages the total time
per customer and is added as a timer to each connection. The billing aspect calculates
a charge per connection and builds upon the timing aspect.

8.2.1 Involved Aspects

The application defines three aspects Timing, TimerLog, and Billing. The TimerLog
aspect was not considered in the experiment, because it is a too simple aspect with
pointcuts similar to those defined by the other aspects.

Timing. The Timing aspect records the duration of each connection and associates
the total connection time with each customer. It extends the structure of the classes
Customer and Connection and defines two pointcuts:

(Connection c): target(c) && call(void Connection.complete())
PM: call(within(

type(” Connection”),

method(< .. >, type("void”), "complete”, <>)))

endTiming(Connection c): target(c)&& call(void Connection.drop())
PM: call(within(

type("Connection”),

method(< .. >, type("void”), “drop”, <>)))

The pointcuts intercept all executions of any call to the two methods Connection.com-
plete() and Connection.drop(). Both pointcuts are quite simple, using signature
patterns and containment-based scopes. They can be transformed directly into our inter-
mediate representation. The dynamic types specified by target expressions would then be
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approximated by a static inheritance-based scope within(subtypes(type("T”)), ...). The
specified containment-based scoped however is more restrictive, and so, the dynamic
types are ignored in our pointcut representation.

TimerLog. The TimerLog aspect is used in the program to log when the timer is started
or stopped. Any time the timer is started or stopped it prints some log information to
standard output. The aspect contains two pointcuts:

(Timer t): target(t) && call(x Timer.start())
PM: call(within(type(” Timer”), method(<..>, type(” "), "start”, <>)))

(Timer t): target(t) && call(x Timer.stop())
PM: call(within(type(” Timer”), method(<..>, type(”*”), "stop”, <>)))

Both pointcuts are quite similar to the pointcuts of aspect Timing regarding the refer-
enced program representations and the way in which the joinpoint properties are speci-
fied.

Billing. The Billing aspect implements the billing functionality on top of the Timing
aspect. It declares additional features in the classes Connection and Customer for stor-
ing the customer who pays for the call, and for charging local and long distance calls
differently. In addition, the aspect defines the following pointcut:

(Customer cust): args(cust, ..) && call(Connection+.new(..))
PM: call(within(
subtypes(type(” Connection”)),
constructor(<..>, <subtypes(type(” Customer”)), ..>)))

The pointcut is used to receive the caller who pays for the call. It intercepts any invo-
cation of a constructor in Connection (or its subclasses) and receives the constructor’s
first argument in a parameter. The pointcut refers to more program representations
than the pointcuts of previous aspects. It uses signature patterns, an inheritance-based
scope, and dynamic typing information. The pointcut can be directly transformed into
our pointcut model, which represents the dynamic type of the args expression as a static
subtypes relationship.

8.2.2 Refactoring Scenarios

In this experiment, three different refactorings were performed within the class Con-
nection: Rename Method, Rename Type and Inline method. The measured indicators
and proposed updated decisions are shown in Table [8.1]

In the table as well as in the descriptions we use the following abbreviations:

e Specification Completeness (SC),
e Match Scope (MS),
e Specification Quality (SQ),
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Execution Semantics (ES),

Degree of Dependency (DD),

e Expression Relevance (ER), and

Match Impact (MI).

(S1) Rename Method: ” Connection.complete()”. The Rename Method refactoring
changes the name of method complete() to completeConnectionCall(). It obviously
affects any pointcut that matches the method’s name.

Our impact analysis computes the pointcut selection for the original and the refactored
program. The comparison of both selections indicates the loss of all selected joinpoints
for the first Timing pointcut:

(Connection c¢): target(c) && call(void Connection.complete())

The tool analyzes its pointcut selection and reveals a lost match of expression within(type
("Connection”), method(< .. >, type("void”), "complete”, <>)) as the cause for the ef-
fects on the pointcut. For this expression a Match Scope (MS) of 100% is computed,
which indicates that the pointcut selects the lost match explicitly.

The further analysis recognizes the pointcut expression method(< .. >, type("void”), "com-
plete”, <>) as the smallest expression that is directly affected by the refactoring’s
RENAME transformation. This expression is completely defined (SC 100%), which,
in combination with MS 100%, results in a specification quality (SQ) of 100%. A com-
plete specification quality is an indicator that the pointcut has explicitly selected the lost
match in the original program. Two additional indicators are used to ascertain the rele-
vance of the affected expression for the pointcut. The expression specifies no execution
related properties (ES 0%) and is located on nesting level 2 (DD 100%) of our pointcut
representation. The SQ 100% in combination with a high relevance (ER) of 100% of the
effect for the pointcut leads the decision: "update the pointcut”.

The update computation algorithm is executed with a Match Impact (MI) 100% for the
affected expression and results in a REPLACE proposal. The evaluation of the updated
pointcut:

call(within(type("Connection”),
method(<..>, type(”void”), ” completeConnectionCall”, <>)))

in the refactored program shows that all lost pointcut matches are recovered.

(S2) Rename Type: "Connection”. Rename Type refactoring changes the name of
class Connection to TelConnection. This obviously affects any pointcut that matches
the original class name. The tool compares the pointcut selections in the original and
the refactored program and reveals three affected pointcuts of the aspects Timing and
Billing:
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(Customer cust): args(cust, ..) && call(Connection+.new(..))
2 (Connection c): target(c) && call(void Connection.complete())
endTiming (Connection c¢): target(c) && call(void Connection.drop())

The refactoring’s RENAME transformation has caused the loss of all matches for these
pointcuts. Each affected pointcut refers to the complete name of class Connection. The
impact analysis reveals the lost matches of the expression type("Connection”) in each
pointcut as the cause of this effect. The type name is scoped (MS 100% through import
statements) and completely defined (SC 100%). The affected pointcut expressions specify
a type as the location for the behavior, which we rate with ES 5%, and they are located
on the second or third nesting level (DD 100%). As result, a precisely defined match is
lost (SQ 100%), which is specified by a highly relevant expression (ER 95%), thus our
tool proposes to "update the pointcut”.

The update computation starts with a Match Impact (MI) of 100% for the expression
type("Connection”™) and is able to replace the expression directly in each pointcut:

call(within(

subtypes(type(”TelConnection”)),

constructor(<..>, <subtypes(type("Customer”)), ..>)))
call(within(

type(”TelConnection”),

method(< ..>, type("void”), "complete”, <>)))
call(within(

type(”TelConnection”),

method(< .. >, type("void”), “drop”, <>)))

(S3) Inline Method: " Connection.complete()”. Inline Method targets the method
complete (), replacing any call to this method with its body, and removing the original
method declaration. Our impact analysis detects lost matches of pointcut:

(Connection c¢): target(c) && call(void Connection.complete())

The analysis detects the lost match of expression within(type(” Connection”), method(<
. > type("void”), "complete”, <>)) (MS 100%) and reveals the expression method(<
. >, type("void”), "complete”, <>) as directly affected by the refactoring’s REMOVE
transformation. Since the affected expression is precisely specified (SQ 100%) and highly
relevant for the evaluation of the pointcut (ER 100%) the tool proposes to "update the
pointcut”.

The update computation tries to determine the property value in the refactored program
version, but deals with a REMOVE transformation. Since matches of removed elements
cannot be recovered, it proposes to CANCEL the refactoring.
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8.2.3 Discussion

All pointcuts in the Telecom application are fairly simple. They specify only a few
properties, each with 100% specification quality. Due to the high specification quality
the refactorings cause only lost matches of precisely specified elements. Our tool has
detected all lost matches and was able to propose the correct update decision in all
tested cases.

In this experiment our analysis approach identified the lost matches correctly and asso-
ciated them with the responsible program transformations. Also the update decisions
based on this association and on our (quite primitive) heuristics lead to the expected
results. For the Inline Method refactoring, which tries to remove a precisely specified
element, the cancel decision was the only possibility for the tool to preserve the affected
pointcut. In the other cases, a suitable pointcut update was proposed that resulted in
replacements of the smallest affected anchor expressions. These updates preserved the
pointcut’s appearance; even multiple of these updates would keep it recognizable to the
developer who originally defined the pointcut.

In addition, the proposed updates did not only preserve the pointcut they also restored
the original program behavior. This was possible because of completely specified static
properties. In this experiment the prototype worked well for simple but commonly used
pointcuts.

8.3 Experiment 2: Spacewar Application

In the second experiment, we use an AspectJ implementation of the video game ” Space-
war”. The program is slightly bigger than the Telecom application and uses significantly
more aspects for various functionalities in the application. It is also available from the
AspectJ’s website [6].

The basic functionality for synchronizing and coordinating different threads upon enter-
ing and exiting methods is implemented by the Coordination aspect. Also the game syn-
chronization is an aspect that ensures synchronized access to methods of the game in the
presence of several threads. In addition, the Registry and RegistrySynchronization
for managing any space object that is floating around are implemented as aspects.
Most of these aspects use very simple pointcuts similar to the pointcuts in the Tele-
com application. In this experiment we have focussed on the pointcuts of the aspects
Debug, DisplayAspect and Ship, which leaded to new situations when refactoring the
program.

8.3.1 Involved Aspects

We consider the pointcuts of the following three aspects as interesting targets for an
evaluation of our approach. They either match incompletely specified elements or use
irregular nesting of pointcut expressions.
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Debug. The Debug aspect specifies debugging information that is displayed in the in-
formation window. It basically allows to set the amount of tracing information that is
to be displayed, at runtime. Optionally, the aspect can be included in a build to provide
additional debugging information. It defines a more complex pointcut:

allMethodsCut(): execution(* (spacewar.x && !(Debug+ || InfoWin+)).x(..))
PM: and(
execution(within(
package("spacewar”),
method(<..>, type(”*7), 7% <..>))),
not(execution(within(
subtypes(type("Debug”)),
method(<..>, type(” ), "%, <..>)))),
not(execution(within(
subtypes(type("InfoWin”)),
method(<..>, type(”«7), "*", <..>)))))

The pointcut selects all executions of any method in the package spacewar with the ex-
ception of methods that are defined in classes Debug or InfoWin. In the AspectJ pointcut
these scopes are enumerated in a nested expression. Our pointcut model expands this
pointcut to three distinct specifications in order to compute their matching elements
separately.

DisplayAspect. The class Display defines the look and feel of the application, and
is sub-classed by concrete display implementations. A game can have multiple displays
which all accept keyboard input. The aspect DisplayAspect within class Display defines
two particularly interesting pointcuts:

(Display display): call(void setSize (..) ) && target(display)
PM: call(within(

subtypes(type("Display”)),

method(< ..>, type("void”), "setSize”, <..>)))

(): call(Display+.new(..))

PM: call(within(
subtypes(type(”Display”)),
constructor(<..>, <..>)))

The first pointcut selects all executions of setSize () method calls with an incompletely
specified signature pattern within classes of class Display. Our pointcut model ap-
proximates the dynamic type with an inheritance-based scope. The second pointcut
intercepts all executions of any constructor call of class Display (or its subclasses). It
specifies an incomplete signature pattern for the constructors and restricts its selection
with an inheritance-based scope.

Ship. A ship is the vehicle that is moved through space by the user (direction, acceler-
ation etc.). Other relevant properties are: amount of fuel and sustained damage. A ship
is implemented as an aspect with the following pointcut:
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1 helmCommandsCut ( Ship ship): target(ship)
2 && (call(void rotate(int))

3 || call(void thrust (boolean))

4 || call(void fire()))

PM: or(

call(within(

subtypes(type("Ship”)),

method(< .. >, type("void”), "rotate”, <type("int”)>))),
call(within(

subtypes(type("Ship”)),

method(< .. >, type("void”), "thrust”, <type("boolean™)>))),
call(within(

subtypes(type("Ship”)),

method(<..>, type("void”), "fire”, <>))))

The pointcut enumerates three different methods for intercepting their invocations. It
restricts the scope in which methods with the specified signatures are selected through
a dynamic type. Our pointcut model approximates the dynamic type with the corre-
sponding static type hierarchy and represents the pointcut in its disjunctive normal form
(DNF). This normalization of pointcuts is important for locating the least affected part
of the pointcut.

8.3.2 Refactoring Scenarios

In this experiment four different refactorings were performed. The measured indicators
and proposed updated decisions are shown in Table 8.2l In the table as well as in the
descriptions we use the same abbreviations as for the previous experiment.

(S4) Extract Method from ”Game.run()”. The Extract Method refactoring is per-
formed within method Game.run() to extract lines 84-90 into a new method (cf. [83)]).
It creates a new method named createRobots(), moves the selected statements into
this method and creates at their original location a method call that invokes the newly
created method. The creation of the new method affects the following pointcut of aspect
Debug:

allMethodsCut () :
*

execution (x (spacewar.* && !(Debug+ || InfoWin+)).x(..))

The refactoring’s CREATE transformation causes additional pointcut matches which
are detected by our change impact analysis. The analysis reveals additional matches of

ML

within(package(” spacewar”), method(<..>, type(”*"), "*”, <..>)) which are not fully
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scoped (MS: 50%). In combination with the specification completeness (SC 0%) of the
directly affected expression method(<..>, type(”«”),”*”, <..>) our analysis computes
a precision SQ 0%. Even with a relevance of ER 100% the affected expression selects
no explicit element. Our tool proposes not to update the pointcut, i.e., it proposes to
accept the new pointcut match.

(S5) Extract Method from ” Display.initializeOfflmage()”. The Extract Method refac-
toring is performed within method Display.initializeOffImage() to extract the im-
age size setup (lines 73-76) into a new method. It creates a new method setSize (double,
double), moves the selected statements into this method and creates at their original
location a method call that invokes the newly created method. The creation of the new
method affects the following pointcut of aspect DisplayAspect:

(Display display): call(void setSize (..)) && target(display)

This pointcut specifies its anchors more precisely than the pointcut of the preview refac-
toring scenario. The newly created call causes an additional match of the unscoped ex-
pression call(within(subtypes(type(” Display”)), method(<..>, type("void”), ”setSize”
, <..>))) (MS 0%). The same expression is directly affected by the refactoring’s CRE-
ATE transformation (SC 68%) which results in a measured precision (SQ) of 34%. The
additional match is not scoped by its corresponding expression, but its anchors are re-
stricted with an inheritance-based scope (ES 100%). The affected expression is located
on nesting level 0 (DD 33%) which indicates that the effect on the pointcut is of low
relevance (ER 0%).

The update decision computation proposes not to update the pointcut. This decision is
comprehensible if we consider the impact measures, but it may be unexpected for the
developer. The newly matching method call belongs to a method that neither overrides
a "setSize” method from a superclass, nor implements it the same behavior. Even if this
call corresponds to all specified properties, it simply represents a different behavior as
represented by the other methods.

(S6) Move Type " Display”. The refactoring moves the type Display from package
spacewar to package spacewar.core. This change indirectly affects the following two
pointcuts for aspect DisplayAspect:

(): call(Display+.new(..))
(Display display): call(void setSize (..)) && target(display)

Both pointcuts refer to the fully qualified type name of class Display. However, package
declarations are not part of pointcuts. They are defined in the import statements of the
aspect. Import statements are generally adjusted by the standard Java refactorings. Our
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impact analysis does not recognize any change effect, because it is performed after the
standard refactoring was executed.

(S7) PullUp Method " Ship.rotate(int)”. The Pull Up Method refactoring moves the
method rotate(int) from class Ship to its superclass SpaceObject. The following
pointcut is affected:

pointcut helmCommandsCut ( Ship ship):
target (ship) && ( call(void rotate(int))
|| call(void thrust(boolean))
|| call(void fire()) )

The pointcut selects (among others) all methods named rotate(int) within class Ship
and its subclasses. The refactoring’s MOVE transformation affects the expression within(
subtypes(type(” Ship”)), method(< .. > type("void”), "rotate”, < type(”int”) >)) but
does not cause any altered anchor match. Since the method is moved to a super class
it is still available in the class Ship. Our static impact analysis does not recognize the
change and thus does not propose an update for the pointcut.

8.3.3 Discussion

This experiment mainly deals with change effects on incomplete specifications. The first
two refactoring scenarios cause additional matches of incomplete specified properties
which represent a special challenge for refactoring tools. The third refactoring was done
to see what happens if we modify program elements on which pointcuts depend on but
which are not explicitly treated by our approach. The last refactoring was expected to
affect a fully specified property, but surprisingly did not cause any impact.

In the first scenario, the refactoring caused a new match of an unspecified but partially
scoped expression. It shows that our approach can deal with intentionally under-specified
properties, and accepts corresponding matches. Our impact measures indicate that the
effect on the pointcut is relevant for its evaluation, but also that the pointcut does not
specify any particular expectation. Hence, our heuristics seem to work well for these
imprecise specifications.

The second refactoring creates a newly matching method call to a method that almost
overrides a method from the superclass. The nearly correct match can only be distin-
guished from correct matches by locating the overridden methods, which do not exists
for this match. It fulfills all other specified properties. These situations are among of the
most challenging for aspect-oriented refactoring tools, because the recognized similarities
are completely unintended.

The last refactoring moves a feature to a super class, i.e., out of a specified hierarchy-
based scope. However, a pull up method refactoring cannot remove a feature from a
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subtype hierarchy, because any subtype inherits it from any possible refactoring target
class. Thus, it is not surprising that this refactoring did not affect the pointcut.

8.4 Experiment 3: Simple Insurance Application

The third experiment underlines the usability of our tool for projects that have proper-
ties more comparable to real projects in size, proportion between aspects and classes and
the usage of libraried!] We refactor the extended version of the Simple Insurance Appli-
cation that we have described in Chapter 2] (cf. Section [2.3). The program is a scaled
down version of an insurance application that keeps track of customers and policies of a
fictitious insurance company.

The extended version additionally implements a treatment of statistical data for con-
tracted life policies. It defines a new aspect LifePolicyStatistics that uses an cflow
pointcut and adapts the class CustomerEditor.AddPolicyListener. In addition, we
have changed the pointcut findPolicies of aspect TrackFinders to have another point-
cut that differs in its characteristics from the other pointcutP} Again unit tests are used
to reveal altered invocations of the aspects.

8.4.1 Involved Aspects

The application defines three aspects TrackFinders, PolicyChangeNotification and
LifePolicyStatistics. In this experiment every performed refactoring affects one of
these aspects.

TrackFinders. The TrackFinders aspect tracks the executions of queries for policies.
It intercepts any ”findPolicy” method and captures how many results they return. It
defines the following pointcut:

1 findPolicies (String criteria):

2 (execution(Set Simplelnsurance.findPoliciesByld (String)
)
3 || execution(Set Simplelnsurance.
findPoliciesByCustomerId (String))
4 || execution(Set SimpleInsurance.
findPoliciesByCustomerLastName (String)))
5 && args(criteria)

!The project contains 3752 lines of code, defines 59 types and 3 aspects, and makes use of several
libraries.
2For a more detailed description of the application see [80]
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PM: or(
execution(within(
type("SimpleInsurance”),
method(<..>, type("Set”), ”findPoliciesByld”,
<type("String”)>))),
execution(within(
type("SimpleInsurance”),
method(<..>, type("Set”), ”findPolicies ByCustomerld”,
<type("String”)>))),
execution(within(
type("SimpleInsurance”),
method(<..>, type("Set”), ”findPolicies ByCustomer LastName”,
<type("String”)>))))

The pointcut enumerates the three methods (pointcut anchors) explicitly by specifying
their complete signatures and their enclosing type. It is a typical enumeration-based
pointcut with a low abstraction level. It explicitly states which program elements imple-
ment the selected behavior (joinpoints), rather than specifying the behavior itself. The
pointcut can be translated directly into our pointcut representation.

PolicyChangeNotification. The PolicyChangeNotification aspect implements a no-
tification mechanism to observe updates of policies. It defines the following pointcut to
select all executions of setter methods of type PolicyImpl:

policyStateUpdate(Policylmpl policy): execution(x setx*(..)) && this(policy)
PM: execution(within(

subtypes(type("PolicyImpl”)),

method(<..> type(”*"), "set x7, <..>)))

The pointcut identifies setter methods by the first three characters "set” of their names.
This is a typical example for an incomplete pointcut that uses a signature pattern, even
if it would additionally restrict its selection to a specific containment-based scope, it
belongs to the most challenging pointcuts. The intention what should be selected by the
pointcut is not completely expressed it, but remains to a large extent in the developer’s
mind.

LifePolicyStatistics. The last aspect LifePolicyStatistics implements a treatment
of statistical data for contracted life policies. It defines a c¢flow pointcut to intercept any
creation of a LifePolicyImpl object "after” the Add-Button was pressed in the user
interface:

5 policyContracted () :

6 cflow (execution (public void x.widgetSelected (
SelectionEvent)))

7 && execution (LifePolicylmpl.new(Customer)) ;
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PM: cflow(
execution(
method(<"public” >, type("void”), "widgetSelected”,
<type("SelectionEvent”) >)),
execution(within(
type("LifePolicyImpl”),
constructor(<..> <type("Customer”)>))))

The point in time "after pressing the Add-Button” is specified as ”"being in the control
flow of a method” that is invoked when the Add-Button is pressed. Thus, the pointcut
only selects executions of the LifePolicylmpl constructor that are inside the control flow
of the method widgetSelected(SelectionEvent). Both anchors are selected by com-
pletely specified signature patterns. Such a pointcut describes a particular behavior, even
if it refers to elements of the program source. Our pointcut model directly represents
such pointcuts and makes any referenced program representation explicit.

8.4.2 Refactoring Scenarios

In this experiment we performed two Rename Method refactorings and one Inline Local
Variable refactoring in different classes. Every refactoring has caused different effects on
the pointcuts which are shown in Table [8.3] In the table as well as in the descriptions
we use the same abbreviations as in the previous experiments.

(S8) Rename Method: ” Simplelnsurance.findPoliciesByCustomerLastName(String)”.
The Rename Method changes the name of findPoliciesByCustomerLastName (String)
in class SimpleInsurance to findPoliciesByCustomerName. It affects the pointcut
findPolicies(String) in TrackFinders:

pointcut findPolicies (String criteria):
( execution(Set Simplelnsurance.findPoliciesBylId (String))
|| execution(Set Simplelnsurance.findPoliciesByCustomerld (
String))
|| execution(Set Simplelnsurance.
findPoliciesByCustomerLastName (String)))
&& args(criteria)

The pointcut specifies three orthogonal sets of joinpoints. Only the third specification is
affected by the refactoring. The lost anchor match is exactly specified (SQ 100%), and
completely relevant for the evaluation of the pointcut (ER 100%). Our impact analysis
proposes to update the pointcut.

Since the affected expression loses all matches (MI 100%), the tool proposes to replace
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the affected expression and generates the following pointcut:
or(
execution(within(
type(” SimpleInsurance”),
method(<..>, type(”Set”), ” findPoliciesByld”, <type(” String”)>))),
execution(within(
type(” SimpleInsurance”),
method(< ..>, type(”Set”), ” findPolicies ByCustomerld”,
<type(”String”)>))),
execution(within(
type(” SimpleInsurance”),
method(<..>, type(”Set”), ”findPoliciesByCustomerName”,

<type(”String”)>))))

(S9) Rename Method: " Policylmpl.createPolicylD()” The Rename Method changes
the name of method createPolicyID() in class PolicyImpl to setupPolicyID. The re-
naming causes a newly matching pointcut anchor in pointcut policyStateUpdate (Policy-
Impl) of aspect PolicyChangeNotification:

1 pointcut policyStateUpdate (Policylmpl policy):
2 execution (x setx(..)) && this(policy)

The additional match of the expression within(subtypes(type(” PolicyImpl”)), method(
<..o> type("x7), Vset x”, < ..>)) is completely scoped (MS 100%), but the directly
affected expression method(< .. >, type(”«”), "set*”, <..>)is only partially defined (SC
17%). Since the precision of the specification of the additional match is not sufficiently
precise (SQ 17%), and the affected expression is quite relevant for the pointcut (ER
75%), the tool proposes to update the pointcut.

The update computation is performed with a Match Impact of 7%, i.e., it tries to exclude
the additional match explicitly. The proposed update extends the original pointcut with
the most precise exclusion of the unwanted match:
and(
execution(within(
subtypes(type(” PolicyImpl”)),
method(<..>, type(”*”), "setx”, <..>))),
not(execution(method(<private>, type(”void”), ”setupPolicyID”, <>)))

(S10) Inline Local Variable "lp”. The Inline Local Variable refactoring is performed on
the variable 1p in method widgetSelected of class CustomerEditor.AddPolicyListener.
This refactoring replaces all variable usages with its initialization and affects the pointcut
policyContracted of aspect LifePolicyStatistics:

1 pointcut policyContracted():
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cflow (execution (public void *.widgetSelected (SelectionEvent)))
&& execution (LifePolicylmpl.new(Customer))

The pointcut captures any instantiation of type LifePolicyImpl that occurs in the con-
trol flow of any method widgetSelected(SelectionEvent). The cflow property is used
to filter instantiations that occur in other contexts. The refactoring duplicates the vari-
able initialization and causes (unintentionally) an alteration of the base program behav-
ior. Our impact analysis detects a new match path in the call graph between an already
existing pair of start- and end-triggers. The additional match path is a new pointcut
match with MS 60%. The directly affected expression execution(within(type(” Life-
PolicyImpl”), constructor(< .. >, < type(”Customer”) >))) is completely specified
which leads to SQ 80%. Our analysis proposes no update, because the definition of
the expression is sufficiently precise and contains an inhertance-based scope (ES 100%).
Nonetheless, an altered behavioral property, like cflow, always indicates a changed be-
havior of the base program, thus, the developer should cancel the refactoring if this
alteration is not explicitly intended.

8.4.3 Discussion

The affected pointcuts in this experiment differ from each other in multiple character-
istics. The first refactoring affects a pointcut that specifies three orthogonal sets of
joinpoints. It enumerates three method declarations that are specified similar to a sym-
bolic reference. Unexpected matches of the expressions are merely possible. Our analysis
detects a lost match of one of these expressions and proposes to replace it with an up-
dated signature pattern. The proposed update not only restores the pointcut, but also
the (composed) program behavior.

The second refactoring affects an incompletely specified signature pattern that addition-
ally contains a partial name pattern. The matching anchors are captured based on the
7 Java Beans Naming Standards” for properties, where names of setter methods start
with set. However, it is impossible to decide whether an additionally matching method
is a "setter” method simply by looking at its name. Our tool recognizes the additional
match and decides that a partial method (even if scoped) is not sufficient to accept ad-
ditional matches. Improved versions of this pointcut would, e.g., additionally specify the
return type void and a single but arbitrary parameter type which would describe the
intention ”setter” method more precisely. Such pointcuts would select the same set of
joinpoints in the program and their additional matches could be accepted.

The third refactoring affects the (base) program behavior in such a way that the dynamic
property cflow is affected. Our tool detects this effect, which is an indicator that the
(composed) program behavior is altered. Our approach works well from two points of
view. First, the tool notifies the developer that the refactoring is going to change the
behavior, which otherwise the developer might not have noticed because such side effects
are usually not checked by standard refactoring tools. Second, our tool recognized an
additional cflow match (path), which does not invalidate the specification. It is just
an indicator of potentially more occurrences of the specified behavior. Accordingly, our
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tools has proposed the correct decision (no update), even if the developer probably wants
to cancel the refactoring because of the base program behavior changes.

8.5 Summary

The primary goal of this evaluation was to show that our impact analysis approach can
represent the change effects on pointcuts sufficiently concrete so that a minimal-invasive
update proposal can be inferred automatically. More concretely, we wanted to show that
our analysis can ascertain the smallest pointcut expression for any refactoring, propose
the correct update decision, and generate a minimal replacement. In particular, we are
interested in understanding why a minimal-invasive update cannot be proposed for some
pointcuts.

To this end, we selected those three programs which differ most in their pointcuts from
the AspectJ programs that are known to us. Unfortunately, it was not easy to find proper
AspectJ example programs for our experiments. Most programs were toy programs with
suitable pointcuts but not much room for reasonable refactorings. We have selected the
refactorings and their targets in the source code, that would have at least some effect on
one of the pointcuts in the programs.

As the primary result, our prototype refactoring tool provided the correct update decision
(and adjustment if proposed) in 9 of 10 refactoring scenarios. In three scenarios, the
affected expressions could be directly replaced, whereas in one scenario the pointcut was
extended with an explicit exclusion. Also, in two situations new matches of intentionally
fuzzy specifications were correctly recognized. In Table we present an overview of
the experiment, enumerating every refactoring scenario in these experiments.
Regarding our two heuristics (specification quality, expression relevance) the refactoring
scenarios have dealt with four kinds of pointcuts:

Precise and relevant expressions — For these pointcuts, all lost matches were detected
and affected expressions were directly replaced (cf. S1, S2, S3, S8) Hence, as long
as a refactoring does not try to remove a matching element, those pointcuts are
the most suitable for a reliable refactoring. Since these expressions do not specify
dynamic anchors (i.e., ER = high) neither new nor lost matches can be accepted. In
particular because of their precise specification any adjustment keeps the pointcut
recognizable even after multiple updates. Due to the high match impact of precisely
specified elements, the updates of such pointcuts not only preserve the pointcut,
but also preserve the original program behavior.

Imprecise but relevant expressions — Imprecisely specified properties often cause new
matches which represent a special challenge for refactoring tools (cf. S4, S9). For
newly matching elements, the refactoring tool has to determine whether they are
specified sufficiently complete, or if they just match accidently. Our approach
measures the name-based completeness (SC) and the specified scope of any match
for this decision. The heuristics based on these measures have been shown to be able
to deal with intentionally under-specified matches. Since this kind of expressions is
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Table 8.4: Overview of all refactoring scenarios in the evaluation.
Scenario|] SC | MS | SQ | bD ES ER | Matches | Transform. Decision Update
S1| 100 | 100 | 100 | 100 0 100 lost rename update replace
S2| 100 | 100 | 100 | 100 5 95 lost rename update replace
S3| 100 | 100 | 100 | 100 0 100 lost remove update cancel
S4] O 50 0 100 0 100 new Create noupdate -
S5| 68 0 34 33 | 100 0 new create noupdate -
S6l - - = - - = - - = -
S7| 100 | 100 [ 100 | 67 | 100 0 - move = -
S8| 100 | 100 | 100 | 100 0 100 lost rename update replace
S9| 17 | 100 17 | 100 | 25 75 new rename update exclude
S10] 100 | 60 80 67 100 0 new create noupdate -

relevant for the evaluation of other parts of the pointcut, we only accept matches
of unspecified properties.

Imprecise and irrelevant expressions — Such expressions should only refer to elements
which are closely connected to the targeted behavior (i.e., a joinpoint), because any
change can cause new and lost matches, and no analysis of the pointcut can deter-
mine whether such matches are acceptable. And even if such an expression directly
addresses a joinpoint shadow, it can lead to ambiguous update decisions. For ex-
ample, in scenario S5, the refactoring created an element with similar properties
but the affected pointcut specified the properties incompletely. The result, a nearly
correct match, cannot be recognized as different match because its similarity to the
correct matches was not intended (and is without any effect in the base program).
Hence, such expressions are most challenging for aspect-oriented refactoring tools,
because the intention whether their matches are wanted remains in the developer’s
mind.

Precise but irrelevant expressions — Our refactoring tool was able to accept the most
impact of such expressions. The moved method in scenario S7 has even no effect
on the selected joinpoint set. The almost completely specified cflow property in
scenario S10 also belongs to this category. The only downside is that it is more
expensive to differentiate additional occurrences of already specified behavior from
alterations of the specified behavior introduced by the refactoring. Accordingly,
our tool has proposed the correct decisions, even though the developer probably
wants to cancel the refactoring because the base program behavior changes.

Aside from the result, that the pointcut updates have been successful in all experiments,
we also have learned several lessons from these experiments. Specifications of meta-level
properties for selecting program elements are much more difficult to maintain them as
symbolic references. There are two reasons for this: (i) a pointcut does not necessarily
state that a certain element is referenced, and (ii) any adjustment of a pointcut can
lead to a different selection of elements (which does not necessarily recover the originally
matching elements).

Moreover, incomplete specifications represent the biggest challenge in refactoring aspect-
oriented programs. More precisely, our approach had to deal with two kinds of in-
completeness: pointcuts with incompletely specified matches (i.e., matching program
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elements), and pointcuts with incompletely specified properties. The former kind speci-
fies too few properties for restricting its selection to a single element, similar as symbolic
references refer to a single element. A refactoring may split the set of matching elements
into different sets, which causes a explicit extension of the pointcut and is thus the main
reason for pointcut bloating. The latter specify a single property only partially, which
may thus already match multiple times. Such incomplete specifications complicate the
generation of a suitable adjustments of the specified parts the need to be updated. A
refactoring tool could incrementally propose new adjustments of such expressions, mak-
ing the specification more and more complete. Such incremental proposition of update
would require an evaluation of every proposal before it could be compared. In addition,
incomplete and nested expressions can interfere with the required update decision for
aggregated specifications, such as in scenario S5. Here an almost overridden method is
created, but the wrong match is caused by the creation of one of its calls.

Finally, the refactoring tool SOOTHSAYER worked as expected. All pointcuts could be
represented by our intermediate representation, and any altered match was detected by
our impact analysis. Also, the responsible program transformations and directly affected
expressions were ascertained in every scenario. This means that our proposed impact
analysis was able to detect all effects, and provided a suitable representation for the
impact classification.

Furthermore, the analysis for cflow pointcuts worked successfully in a nontrivial case,
where new occurrences of already matching behavior had to be distinguished from the
selection of altered behavior.

Our analysis approach worked well in determining which transformation causes what
kind of effect on which expression of a pointcut. Also, we have observed a significantly
higher computation effort for our impact analysis. However, none of the algorithms
were optimized, so much higher response times for larger programs are actually not
unexpected.
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Chapter 9

Concluding Remarks

This last chapter is dedicated to summarize the work presented in the proceeding chap-
ters. In particular, we summarize the contributions of this dissertation, give an overview
of the limitations of the approach and its implementation, present ”lessons learned” par-
ticularly with regards to refactoring compliant AOP, and outline directions for future
work.

9.1 Summary of Contributions

This research has explored how tool-supported refactoring for object-oriented programs
can be made aware of behavioral composition defined in aspect-oriented programs, and
which particular attributes of existing AOP approaches are suitable for refactoring tool
support. The principal artifact of this research is a change impact analysis framework,
that is integrated in a refactoring tool for aspect-oriented programs, called SOOTHSAYER.
In particular, the following contributions have been made:

SOOTHSAYER provides a specific change impact analysis framework for pointcuts.
This static program analysis detects alterations of matching program elements, and pro-
vides concrete information about affected pointcut expressions and responsible changes
so that pointcut updates can be proposed automatically. The analysis considers any
program element that is referenced by a pointcut, and reveals altered matches regardless
of the quality of their specifications.

In addition, the analysis provides a specific call graph that allows for a precise evalu-
ation of statically represented cflow properties. The call graph is optimized for
representing partial control flows statically, including the execution likeliness of poten-
tial call paths at runtime. Our static matching algorithm for evaluating cflow properties
of this graph not only detects cycles, but also computes clow matches as qualified call
paths (i.e., using the execution likeliness information). This static representation enables
SOOTHSAYER to detect changes of the execution likeliness in addition to alterations of
complete call paths.

A second contribution of this work is a change impact classification for pointcuts.
For this classification, we developed a model for the decomposition of pointcuts
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that represents every property specified by a pointcut in a single pointcut expression
and reflects the dependencies of (extrinsic) properties directly. This intermediate repre-
sentation of pointcuts allows for an explicit assessment of change effects on every single
pointcut expression. The resolving of this pointcut model associates every matching pro-
gram element with the corresponding expression (pointcut selection model). Because of
this direct association, the change impact on every matching element can be assessed in
terms of the corresponding pointcut expression.

We have developed a set of five change impact measures for the impact classification,
which classify the change effects in terms of the affected pointcut expression, i.e., how
complete an affected expression is defined, how precise an altered match is specified, how
much the affected property is related to a particular program behavior, and how many
other expressions depend on an affected pointcut expression.

The third contribution is the prototype refactoring tool. It extends object-oriented
refactorings with the detection of pointcut-affecting changes and an update computation
for invalidated pointcuts. The implementation is based on the Eclipse JDT and enhances
the JDT refactoring workflow as well as its individual refactorings. The enhanced work-
flow provides an extended change preview (showing also change effects on aspects) a
pointcut impact analysis review, and a pointcut update customization dialog. The en-
hanced refactorings additionally determine the kind of every performed transformation
(e.g., rename, move, create) and associate its atomic changes with any lost or new match
of program elements.

The refactoring tool runs on this explicit change information a set of qualitative heuristics
to decide whether affected pointcuts have to be adjusted.

The fourth contribution is the heuristic-based pointcut update computation. Two
qualitative heuristics were developed based on the change impact measures. They de-
termine whether altered matches are intended or accidental by assessing quality and
relevance of the affected pointcut expressions. Predefined ranges for both heuristics rec-
ommend to accept new matches of precisely specified and less relevant expressions, and
lost matches of almost unspecified and less relevant expressions. For all other values the
expressions are labeled as invalidated (i.e., to be updated).

Our update computation algorithm uses pointcut update patterns to propose the
least intrusive replacement, i.e., a complete replacement on invalidated expressions whose
matches are completely lost or new, or a direct exclusion or inclusion of altered matches.
Any update recovers the originally matching elements which were selected before the
refactoring, and hence restores the original program behavior. Complete replacements of
pointcut expressions preserve the pointcut’s appearance and keep the pointcut recogniz-
able even after multiple updates. If original matches should be recovered but the cannot,
e.g., because they were removed from the program, the algorithm proposes to cancel the
refactoring.

The fifth and last contribution is a taxonomy for the attributes of joinpoint mod-
els and pointcut languages used by existing AOP approaches. The influences of
each attribute on the predictability of change effects are presented in the context of
tool-supported refactoring. The analyzability of joinpoint properties, the completeness
of their specification, and their dependency of other properties were identified as the pri-
mary reasons for problems when refactoring programs of existing AOP approaches. From
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the resulting challenges criteria for refactoring compliant A OP were developed.

0.2 Lessons Learned

The ways in which pointcuts can be expressed by existing pointcut languages lead to
various challenges for tool-supporting the refactoring of aspect-oriented programs. Our
approach integrates a change impact analysis for pointcuts into a refactoring tool for
assessing the effects of source code changes in terms of existing pointcuts. Based on the
computed impact measures an update decisions is proposed and for invalidated pointcuts
an update is computed.

The evaluation of our work has shown that our approach can deal with a variety of
pointcuts. In terms of the thesis’ statement we have shown that an explicit representation
of the change impact on pointcuts, stating which part of a pointcut is affected by which
program transformation, allows for the computation of minimal-invasive adjustments.

The following more specific issues could be observed if we consider our taxonomy for
attributes of existing joinpoint models and pointcut languages. The following attributes
have been identified as unrelated attributes to aspect-aware refactoring:

Visibility — The visibility does not influence our approach, but (if restricted) it can lead
to additional refactoring constraints.

Granularity — As long as the pointcuts refer to elements of program representations
that are statically computed, the granularity does not influence the result of our
refactoring approach.

The issues for the following attributes could be solved by our approach and thus are
considered as unproblematic attributes:

Dependency — The specification of particularly extrinsic properties can depend on
specifications of anchor properties. These dependencies cannot always be recog-
nized from the pointcut’s structure, our intermediate representation of pointcuts
makes them explicit, and enables our impact analysis to detect changes of the
pointcut semantics.

Aggregation — A pointcut can specify a joinpoint property by aggregating several
(nested) expressions. The properties specified by the nested expressions can in-
terfere with the required adjustment of the aggregated expression. Adjustments
for specifications of such more complex properties can require to replace multiple
dependent pointcut expressions with a single expression, which has been shown by
our approach for computing pointcut updates.

Meaning — Pointcuts can restrict a selection of matching elements by properties that
are more or less related to a particular program behavior. Properties with a strong
behavioral meaning, like cflow properties, are rarely affected by refactorings and
their specifications cannot automatically be adjusted. Properties with a pure struc-
tural meaning are more easily affected by refactoring but their specifications can
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often directly replaced. Effects on both kinds can be handled by our approach
properly.

The issues for the following attributes could only partially be solved by our approach.
These attributes are the primary reasons for unpredictable effects on the program be-
havior which cannot be solved with existing program analysis approaches. Even if our
analysis is able to detect interferences with such pointcuts, it can be impossible to de-
termine the pointcut update, because of an imprecise or statically not determinable
specification. These attributes are considered as problematic attributes:

Analyzability — Pointcuts can specify properties of dynamic program representations
that cannot be sufficiently precise approximated (with reasonable effort). Dy-
namic properties that are not restricted to runtime information which occur only
in specific executions of the program (like, specific execution sequences, values of
unscoped variables), are particularly problematic. Those properties often require
a static representation of all possible program executions and an analysis of the
entire representation. Such dynamic information cannot be supported with reason-
able computation effort.

Since refactoring tools use static program analysis some of these conditions cannot
be statically represented and, thus, not checked by a refactoring tool.

Completeness — Pointcuts can under specify joinpoint properties, e.g., if a similar be-

havior is added in a future program version, a pointcut may intentionally bind
advice to it. However, such pointcuts do not necessarily state such an intention.
They specify a set of elements incompletely, i.e., a matching element is specified
with too vague properties or the matching property is just partially specified. In
both cases important information, for deciding whether a matching element is in-
tentional or accidental, is not expressed in the pointcut.
Imprecisely specified properties can be handled with our heuristics-based approach,
however adjustments of such expressions can require additional analysis steps.
Updates may need to be incrementally proposed, which require multiple evalu-
ation steps of gradually broadened or narrowed updates, so that the adjustment is
minimal-invasive and does not bloat the pointcut.

Symmetry — Joinpoint models that also provide access to joinpoints in the execution
of aspect code can merely be found in existing AOP approaches. Hence, properties
provided by such models were not investigated by the research of this dissertation.

To summarize, not only pointcut expressions that precisely specify an affected property
are properly handled by our approach. A heuristics-based refactoring approach can also
determine whether matches of imprecisely specified properties are sufficiently complete
specified, so that the pointcut has to be updated. For our approach, particularly path-
based specifications which reflect the dependencies in the program seem to simplify the
update computation.
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0.3 Limitations

SOOTHSAYER is the first implementation of an aspect-aware refactoring approach, and,
being a research prototype, it does not provide the final commercial-grade refactoring
support for AOP. One the one hand, there are limitations that result from features of
existing pointcut language approaches, which generally cannot be solved by program
analysis. On the other hand, there are some technical limitations of the current imple-
mentation of SOOTHSAYER.

During the work on SOOTHSAYER we have explored several possibilities for approximat-
ing dynamic joinpoint properties. We have developed a model for statically representing
properties of the execution history and discussed limitations of this model in particular
for clow and execution sequence properties. In particular, we have highlighted the dif-
ferences in computation effort and accuracy for static representations of these properties.
We concluded that static program analysis approaches are not suitable for an efficient
and precise approximation of the execution sequence property. Potential alter-
natives for such highly dynamic properties are, for example, model checking approaches,
which we have not investigated in this work.

The current implementation of the pointcut model does not support unification (as
introduced by LMP approaches, like [37]). We therefore could not investigate the effects
of unification on our impact analysis and the generation of updated pointcuts. Since
some very powerful pointcut language approaches support unification, we are planning
to investigate the influences of unification on the evolvability of pointcuts in future work.
In addition, abstract pointcuts are not supported by our pointcut model. Such point-
cuts are important for specifying some already known properties but defer more precise
definitions to other aspect modules. Abstract pointcuts can refer to other pointcuts and
state some arbitrary properties which cannot be resolved to a set of matching program
elements.

The implementation is also limited to AspectJ-like pointcut languages. Although our
pointcut model can be used as intermediate representation for other pointcut languages,
we have not evaluated if an implementation, e.g., of path-based or LMP-based pointcut
languages, causes new problems when generating pointcuts.

Various pointcut languages allow for nested OR expressions. Our implementation
of the pointcut resolver has to consider aggregations with OR expression as individual
pointcuts. We therefore normalize pointcuts with nested OR expressions, by pulling every
OR expression to the most top nesting level (i.e., its DNF form). This is crucial for the
current change impact classification approach. However, updates of such a normalized
pointcut can significantly differ in its appearance from the original pointcut. It is also
not clear if every normalized and updated version of a pointcut can be retranslated into
its original (but updated) form.

The current implementation of SOOTHSAYER cannot deal with pointcuts that use other
pointcuts. Such dependencies between pointcuts are used to refine a specification
of joinpoint properties in different aspect modules. Also pointcuts that share the same
joinpoint are not considered in the current implementation. A proper treatment of
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such dependencies between pointcuts would integrate our approach closer into AOP
languages.

Finally, most AOP languages provide mechanisms for composing the structure of
different implementation modules. The current version of SOOTHSAYER only focusses
on the preservation of the behavioral composition in aspect-oriented programs. Defined
structural compositions are not considered.

9.4 Future Work

A long-term goal of this research is the development of a practical refactoring extension
for aspect-oriented programs. To support this goal, several of the issues raised by the
current work deserve further attention.

Perhaps most importantly, a mechanisms that can incrementally compute gradually
narrowed or broadened scopes of a pointcut update. The current update deci-
sion algorithm can propose complete replacements of the smallest affected expression,
but if this is not possible it explicitly enumerates matches to exclude or include them.
In case such an extension is computed for a pointcut that was already extended, an in-
cremental update computation could try to combine both extensions to a more general
specification. Such a composition of explicit exclusions or inclusions would allow for
recognizable pointcuts even if affected expressions could not be replaced.

The current update computation allows for additionally matching elements if they are
sufficiently concrete specified. However, we do not consider yet almost matching elements
in our update computation algorithm. A presentation of almost matching elements could
be particularly helpful when a user decides to define a customized update.

To this end, we are planning to integrate a computation of boundary matches, as
proposed by Anabalagan and Xie [5]. Similar to this approach a predefined threshold
can be established, which is used to additionally present program elements that nearly
correspond to all specified properties. In contrast to Anabalagan and Xie, we are planning
to extend the distance measure to all properties that can be represented by our pointcut
model, rather than considering only signature patterns.

As one result of this dissertation, we have identified path-based pointcut languages,
like the XQuery approach of Eichberg et al. [25], as most suitable for our refactoring
support. We are planning an #ntegration of path-based pointcut specifications
with our pointcut model into a future version of SOOTHSAYER.

The impact measures on which both heuristics where defined are configured very conser-
vatively, i.e., they propose to recover the original pointcut selection in some cases where
an altered selection could be accepted. A further evaluation, with less conservative con-
figurations of both heuristics and systematically defined pointcut examples that lead to
extreme decision scenarios, can result in a configuration that allows for an automated
computation of valid updates in more cases.

The current implementation of our intermediate representation for pointcut does not
support unification (as introduced by LMP approaches, like [37]). We want to investigate
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whether unification can be integrated into our pointcut model in such a way that the
dependencies between joinpoint properties are still explicitly reflected.

Also, abstract pointcuts are not supported by the current pointcut model. Such
pointcuts are an important means for specifying some already known properties but
leave more precise definitions to pointcut definitions. Abstract pointcuts can refer to
other pointcuts or just state some arbitrary properties which cannot be evaluated to set
of matching program elements.

In future work, we want to investigate whether our update computation can deal with
such dependencies between different pointcuts and if the pointcut model can support
incomplete pointcut definitions like:

pointcut interestingPage():
within ( AspectJProjectPropertiesPage) ||
within (AJCompilerPreferencePage) ;

Finally, we are planning to complete the current implementation of SOOTHSAYER.
A closer integration into the IDE, for example, can provide specific error messages when
a refactored program with deferred updated decisions is going to be executed. We also
plan the integration with other language features of a particular AOP language, like
AspectJ, or OT/J.

Moreover, an optimized approximation of dynamic joinpoint properties could speed up
the refactoring process and allows for refactorings in larger programs. We plan to opti-
mize the algorithms for constructing the approximated program representations and for
evaluating the properties.
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Appendix A

Examples for Dynamic Program
Representations

A.1 An Object Graph Example

This example demonstrates the general structure and its changeability of an object graph
during the execution of a program. Any point in execution has a specific execution
context that defines the entry points for accessing an object graph. In this example, we
use the program shown in Figure and discuss three points during the execution of

this program depicted by Figure [A.3 and [A.4]

The current execution context at the considered point in execution is shown on the left
side of each figure. The current point in execution is indicated by the black arrow.
Starting from method main(String[]) in class ObjectGraphExample, several new ob-
jects are instantiated and connected to each other through corresponding method calls.
First, a list is instantiated in line 6, then objects a, b, and c are instantiated (till line
10).

In Figure[A.2] the object graph after these instantiations is illustrated. The figure shows
that the instantiation of type MyLinkedList has also caused an instantiation of type
Entry, as well as the creation of an edge connecting the both objects.

Figure shows the point in execution directly before the return from method add-
(Object) in method main(String[]). It illustrates that occurrences of new nodes in the
graph cause always changes to existing edges or at least an additional edge connecting
the new node. The current execution context is still the context of method add(0bject).
The assignments in add(Object) caused an addition of a new node for object elem?2 as
well as new and changed edges, making the object a part of the list.

After three additional invocations of method add(Object) the execution returns to
the method main(String[]) (line 13). In Figure is illustrated, which changes
lead to a disappearance of edges and nodes in the graph. The invocation of method
remove (Object) removes the object elems from the list, which causes a disappearance
of the edge connecting both objects. The object elemj can now only be accessed from
the execution context of method remove(Object). After the execution is returned to
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. . 1 public class MyLinkedList{
1 public class ObjectGraphExample 2 private Entry header =
2 { 3 new Entry(null, null, null);
3 public static void 4
4 main (String [] args) 5 public MyLinkedList (){
5 ) ) . 6 header.next = header;
6 MyLlnkedLl.st lls.t = 7 header.previous = header;
7 new MyLinkedList () ; 8 }
8 Object a = new Object () ; 9
9 ObJ:eCt b = new Object(); 10  public void add(Object o){
10 O.bJect ¢ = new Object () ; 11 Entry newEntry —
11 l}st.add(a); 12 new Entry (o,
12 l}st.add(b); 13 header ,
13 I}St -add(c); 14 header.previous);
14 list .remove(c); 15 newEntry. previous.next =
15 } 16 newEntry ;
16 } 17 newEntry . next. previous =
18 newEntry ;
19 }
(2) 0
21 public boolean remove(Object o){
22 for (Entry e = header.next;
1 public class Entry{ 23 e != header;
2 Object element; 24 e = e.next)
3 Entry next; 25 { )
4 Entry previous: 26 if (o.equals(e.element)){
5 27 remove(e);
6 Entry (Object element, 28 return true;
7 Entry next, 29 }
8 Entry previous) 30 ¥
9 { 31 return false;
10 this.element = element; 32 } X X
11 this.next — next; 33 private void remove(Entry e) {
12 this.previous = previous; 34 e.previous.next = e.next;
13 } 35 e.next.previous = e.previous;
14} 36
37 }
b
(b) ()
Figure A.1: Source code of object graph example.
args
: String[]
list
- Execution Context : MyLinkedList
main(String[})~ d pr- header

String[] args ~ -
MyLinkedList list —

Objecta ~ -
Objectb —— _
Objectc ——— — — _} S~

Figure A.2: Object graph after execution of all instantiations in main(String[])
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args
: String[]

» list
s : MyLinkedList

- s P ﬁ next
Execution Context > header
’ ’ - / m
mam(Strmg{/]f i / A
'

String[] args ~ » // [ elem1 j ( elem2 )
MyLinkedList list ~ / : Entry : Entry
Objecta ~ _ 4 W b
Objectb —— _ T~

Object ¢ S
—

- Execution Context ,
add(Object) /
MyLinkedList this A

Entry newEntry ~
Objecto — — — — —

= 3
B/ = previous

Figure A.3: Object graph before return from first call of method add (Object)

args
: String[]

7

v list
- # : MyLinkedList oxt
Execution Context - - 4 ” header m m
main(String{']f i 4 A
String[] args ~ P 1 ,/ ( elemi J ( j [ elem4 j
MyLinkedList list 4 : Entry : Entry
) 4 P
Objecta ~ - 4 W
Objectb —— _~~_
Obiject ¢ ‘--‘;r
- Execution Context element
remove(Obiect)/ __
MyLinkedListthis /— -~~~ _“=ak " T==upP T T-——_ -
Entye — c )
Objecto — — — — — : C.);bject

Figure A.4: Object graph before return from call of method remove (Object)

method main(String[]), the last reference to elem (the execution context of method
remove (Object)) is removed and the node elem/ disappears from the graph.

A.2 An Execution Sequence Example

The following example uses the tracematches approach to illustrate how execution se-
quences can be specified. It is based on the program presented in Figure (a) and
refers to Figure which depicts its execution. The specification of an execution se-
quence can require the occurrence of a specific pattern of joinpoint entries and exits. The
example pointcut requires an entry of method m5() (indirectly) followed by an entry of
method m3(), before an entry of method m9() is considered as selected joinpoint. The
corresponding pointcut in the tracematches syntax is shown in Listing [A.T]
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1 tracematch () {
2 sym entM5 before : call(void Example.m5());
3 sym entM3 before : call(void Example.m3());
4 sym entM9 before : call(void Example.m9());
5
6 entM5 entM3 entM9
7
8 { /* Advicebody A x/}
9}
Listing A.1: Tracematches Example

specification of an execution sequence using the
tracematches approach.

0 Db araly
ECIDiDNar Saratal
DB Navararan|

D method entry . pointcut match

G method exit D trigger

Figure A.5: A visualized execution of the program shown in Figure (a)

In Figure several occurrences of method m9 () entries are shown, but only occurrences
after the specified execution pattern are considered as selected joinpoints. The specified
sequence of the example is a strict specification, i.e., if the second occurrence of the entry
of method m9 () should be a selected joinpoint, the sequence could be specified as: entM5
entM3 entM9 entM9.

Following the tracematches approach, an execution sequence is specified in two different
parts (cf. Listing . A first part defines so-called symbols, and a second defines a
reqular expression using these symbols. This expression is then compared with actually
occurred events in the program execution. An selected joinpoint occurs, i.e., the bound
advice is invoked, if the last symbol of the regular expression occurs in the execution. The
symbols comprise a before or after construct and can be combined with other pointcut
designators. A specification of before or after for a symbol is necessary, otherwise a
symbol would not denote an atomic point in the executionﬂ

The example above shows a strict specification of an execution sequence. In addition,
more ”fuzzy” execution patterns can be defined, e.g., with optional symbols or symbol
repetitions. Such a specification could lead to a selected joinpoint for every execution of
method m9() in the example.

!The last symbol can also be augmented with an around, after returning, or after throwing.
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Additional Properties of Dynamic
Program Representation

B.1 Object Graph Properties

Several dynamic properties of a joinpoint can be provided using an object graph or the
execution context. Pointcut languages, such as Alpha [72], provide access to the complete
graph, others make use of the execution context only. Moreover, not all variables of the
execution context are accessible. Often access is provided to the current object (under
execution), arguments of called methods, the target object at which a method or field
is accessed, the return value of a method, and globally accessible fieldd'] Pointcuts
can specify these properties using the syntax defined by the pointcut language. In the
following four paragraphs, we give typical examples for such properties and illustrate
how they can be specified.

B.1.1 Dynamic Type

Many pointcut languages provide a means to specify the type of a node within an exe-
cution context. This allows a pointcut to consider only joinpoints whose dynamic type
is conform to a specific type. Mainly, this is allowed for directly accessible nodes from
the execution context, e.g., the current object under execution and actual parameters.
For example, consider the following AspectJ pointcut:

pointcut stringMethods(): execution(x #*.x(..)) && this(String);

The pointcut selects any execution of a method that is executed for objects of type
String (or its sub-types). The designator this refers to the object currently under
execution and specifies the required dynamic type.

In Java such field are defined by the modifiers public static.
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B.1.2 Identity of Objects

Another property, for which the object graph is used, is the identity of objects. It allows
a pointcut to specify the identity of two objects, even at different points in execution.
The object graph is constructed at the potential joinpoint and allows for a comparison of
different nodes. For example, the following pointcut specifies the identity of two method
arguments:

?7jp matching
reception (?jp, ?selector, <?arg, ?Targ>)

The example uses a logic programming syntax provided by a pointcut language proposed
by Gybels et al. [37]. The pointcut specifies the identity of two successive arguments
of an arbitrary method invocation of arbitrary objects. The identity is specified using
a specific mechanism, called wunification, i.e., for elements with the same identifier the
same value is required.

B.1.3 Reachability of Objects

Also the directed edges of a call graph between different nodes can be used for the
specification of properties. The pointcut language Alpha introduces the reachability
between two graph nodes as specifiable property. A joinpoint can be required to be
reachable from another joinpoint, i.e., a specific node in the object graph has to be
connected to another node through graph edges. For example, consider the following
pointcut in the Alpha syntax:

class Exmpl extends Object{
after set(P, F, _), reachable(Q, P), instanceof(Q, ’String’)

/* advicebody: do something x/

It selects any field assignment to a field whose type P is reachable from the type String
(or its subtypes) in the object graph. The property "reachable” is specified between
nodes in the object graph, representing a type of a field and a node of type String. The
pointcut language uses unification over the variables Q and P for specifying the reachable

property.

B.1.4 Dynamic Value-based Conditionals.

Some pointcut languages allow for the use of conditionals for specifying a particular
value of a variable. For example, the following pointcut illustrates how a value-based
conditional can be specified in AspectJ:
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aspect AnAspect {
before (Withdrawal amount) : if(amount.value > 1000.0)
&& execution(void *.withdraw(Withdrawal)) && args(amount)
/+ advicebody: since this is much money make a more intense check =/
}
}

The pointcut selects every execution of method withdraw(Withdrawal) if its argument
has a value bigger than 1000. It refers to the argument node in the object graph
and accesses a dynamic value of the underlying object. The specification combines an
execution-designator with an args-designator, i.e., the object graph node is required to
be a method and its argument has to be of type Withdrawal. The condition is specified
using the if-designator, i.e., the field value of the graph node amount is expected to
be bigger than 1000. Every invocation of a method withdraw with an withdrawal of a
higher value than 1000 is considered as desired joinpoint.

B.2 Combined Properties of Object Graph and
Execution History

1 tracematch (Subject s, Observer o) {
2
3 sym create_observer after returning(o):
4
5 call (Observer .new (..))
6
7 && args(s);
8
9 sym update_subject after:
10
11 call (¥ Subject.update(..))
12
13 && target(s);
14
15
16
17 create_observer update_subjectx*
18
19 {
20
21 o.update_view () ;
22
23 }
24
25 }
Listing B.1: Implementation of

the Observer Pattern’s update mechanism using
variable bindings in tracematches.
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In addition to a specific sequence of executions, the identity of objects at a particular
execution step (trigger) can be specified. The pointcut can access the object graphs at
different triggers and specify the identity of a certain node. At every point in execution
different object graphs are available, providing access to different execution contexts and
associated nodes. A pointcut that specifies a specific execution sequence can additionally
define a so-called wvariable binding. In Listing |B.1, an example implementation of the
observer pattern is shownf}

The listing shows a pointcut expressed in the tracematches syntax. It selects every
subject update, after the observer was created, if it is the same subject for which the
observer was created. To this end, the pointcut specifies the identity of Subject’s object
in the observer pattern and the object in the update process. For the specification of
the identity the tracematches approach uses unification, a language feature introduced
by logic programming approaches, but also Stateful Aspects and tracematches make use
of it.

2Example is taken from [4], the term observer pattern is defined in [30] p. 239
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