The Quickest Multicommodity Flow Problem*

Lisa Fleischer! and Martin Skutella?

! Graduate School of Industrial Administration, Carnegie Mellon University
Pittsburgh, PA 15213, USA
lkf@andrew.cmu.edu
http://www.andrew.cmu.edu/user/1kf/

% Institut fiir Mathematik, MA 6-1, Technische Universitiit Berlin
Strafle des 17. Juni 136, 10623 Berlin, Germany
skutella@math.tu-berlin.de
http://www.math.tu-berlin.de/~skutella/

Abstract. Traditionally, flows over time are solved in time-expanded
networks which contain one copy of the original network for each dis-
crete time step. While this method makes available the whole algorith-
mic toolbox developed for static flows, its main and often fatal drawback
is the enormous size of the time-expanded network. In particular, this
approach usually does not lead to efficient algorithms with running time
polynomial in the input size since the size of the time-expanded network
is only pseudo-polynomial.

We present two different approaches for coping with this difficulty. First-
ly, inspired by the work of Ford and Fulkerson on maximal s-t-flows
over time (or ‘maximal dynamic s-t-flows’), we show that static, length-
bounded flows lead to provably good multicommodity flows over time.
These solutions not only feature a simple structure but can also be com-
puted very efficiently in polynomial time.

Secondly, we investigate ‘condensed’ time-expanded networks which rely
on a rougher discretization of time. Unfortunately, there is a natural
tradeoff between the roughness of the discretization and the quality of
the achievable solutions. However, we prove that a solution of arbitrary
precision can be computed in polynomial time through an appropriate
discretization leading to a condensed time expanded network of poly-
nomial size. In particular, this approach yields a fully polynomial time
approximation scheme for the quickest multicommodity flow problem
and also for more general problems.

1 Introduction

We consider flow problems in networks with fixed capacities and transit times on
the arcs. The transit time of an arc specifies the amount of time it takes for flow
to travel from the tail to the head of that arc. In contrast to the classical case
of static flows, a flow over time in such a network specifies a flow rate entering

* Extended abstract; information on the full version of the paper can be obtained via
the authors’ WWW-pages.

2 Lisa Fleischer and Martin Skutella

an arc for each point in time. In this setting, the capacity of an arc limits the
rate of flow into the arc at each point in time.

Flows over time may be applied to various areas of operations research and
have many real-world applications such as traffic control, evacuation plans, pro-
duction systems, communication networks, and financial flows. Examples and
further application can be found in the survey articles of Aronson [1] and Pow-
ell, Jaillet, and Odoni [18].

Flows over time have been introduced about forty years ago by Ford and
Fulkerson [5,6]. They consider the problem of sending the maximal possible
amount of flow from a source node s to a sink node ¢ within a given time T'. This
problem can efficiently be solved by essentially one min-cost flow computation
on the given network where transit times of arcs are interpreted as costs per
unit of flow. Ford and Fulkerson show that an optimal solution to this min-cost
flow problem can be turned into a maximal flow over time by first decomposing
it into flows on paths. The corresponding flow over time starts to send flow on
each path at time zero, and repeats each so long as there is enough time left in
the T time units for the flow along the path to arrive at the sink. A flow over
time featuring this structure is called temporally repeated.

A problem closely related to the problem of computing a maximal flow over
time is the quickest flow problem: Send a given amount of flow from the source to
the sink in the shortest possible time. This problem can be solved in polynomial
time by incorporating the algorithm of Ford and Fulkerson in a binary search
framework. Burkard, Dlaska, and Klinz [2] present a faster algorithm which even
solves the quickest flow problem in strongly polynomial time.

A natural generalization of the quickest flow problem and the maximal flow
problem considered by Ford and Fulkerson can be defined on networks with ad-
ditional costs on the arcs. Klinz and Woeginger [14] show that the search for a
quickest or a maximal flow over time with minimal cost cannot be restricted to
the class of temporally repeated flows. In fact, adding costs has also a consid-
erable impact on the complexity of these problems. Klinz and Woeginger prove
NP-hardness results even for the special case of series parallel graphs. Moreover,
they show that the problem of computing a maximal temporally repeated flow
with minimal cost is strongly NP-hard.

Another generalization is the quickest transshipment problem: Given a vector
of supplies and demands at the nodes, the task is to find a flow over time that
zeroes all supplies and demands within minimal time. Hoppe and Tardos [13]
show that this problem can still be solved in polynomial time. They introduce the
use of chain decomposable flows which generalize the class of temporally repeated
flows and can also be compactly encoded as a collection of paths. However, in
contrast to temporally repeated flows, these paths may also contain backward
arcs. Therefore, a careful analysis is necessary to show feasibility of the resulting
flows over time.

All results mentioned so far work with a discrete time model, that is, time
is discretized into steps of unit length. In each step, flow can be sent from a
node v through an arc (v, w) to the adjacent node w, where it arrives 7, ,,) time

The Quickest Multicommodity Flow Problem 3

steps later; here, 7(,,,,) denotes the given integral transit time of arc (v, w). In
particular, the time-dependent flow on an arc is represented by a time-indexed
vector in this model. In contrast to this, in the continuous time model the flow
on an arc e is a function f, : Rt — R*. Fleischer and Tardos [4] point out a
strong connection between the two models. They show that many results and
algorithms which have been developed for the discrete time model can be carried
over to the continuous time model.

In the discrete time model, flows over time can be described and computed
in time-expanded networks which were introduced by Ford and Fulkerson [5, 6].
A time expanded network contains a copy of the node set of the underlying
‘static’ network for each discrete time step. Moreover, for every arc e in the
static network with integral transit time 7., there is a copy between all pairs of
time layers with distance 7, in the time-expanded network. Unfortunately, due
to the time expansion, the size of the resulting network is in general exponential
in the input size of the problem. This difficulty has already been pointed out by
Ford and Fulkerson®. On the other hand, the advantage of this approach is that
it turns the problem of determining an optimal flow over time into a classical
‘static’ network flow problem on the time-expanded network. This problem can
then be solved by well-known network flow algorithms. A main contribution of
this paper is to provide a possibility to overcome the difficulties caused by the
size of time-expanded networks while still maintaining the latter advantage.

A straightforward idea is to reduce the size of time-expanded networks by
replacing the time steps of unit length by larger steps. In other words, applying
a sufficiently rough discretization of time leads to a condensed time-expanded
network of polynomial size. However, there is a tradeoff between the necessity to
reduce the size of the time-expanded network and the desire to limit the loss of
precision of the resulting flow model since the latter results in a loss of quality
of achievable solutions.

We show that there is a satisfactory solution to this tradeoff problem. An
appropriate choice of the step length leads to a condensed time-expanded net-
work of polynomial size which still allows a (1 + £)-approximate precision in
time, for any € > 0. This observation has potential applications for many prob-
lems involving flows over time. In particular, it yields a fully polynomial time
approximation scheme (FPTAS) for the quickest multicommodity flow problem.

To the best of our knowledge, this is the first approximation result for the
general time-dependent multicommodity flow problem. Moreover, the complex-
ity of the quickest multicommodity flow problem is still open. It has neither been
proved to be NP-hard nor is it known to be solvable in polynomial time. Apart
from this, we believe that our result is also of interest for flow problems, like the
quickest transshipment problem, which are known to be solvable in polynomial
time. While the algorithm of Hoppe and Tardos [13] for the quickest transship-
ment problem relies on submodular function minimization, the use of condensed

3 They use the time-expanded network only in the analysis of their algorithm. The
optimality of the computed flow over time is proven by a cut in the time-expanded
network whose capacity equals the value of the flow.

4 Lisa Fleischer and Martin Skutella

time-expanded networks leads to an FPTAS which simply consists of a series of
max-flow computations.

Moreover, our approach also works in the setting with costs and we can give
a bicriteria FPTAS* for the min-cost quickest multicommodity flow problem.
Notice that already the single-commodity version of this problem is known to
be NP-hard [14].

We next introduce a geometrically-condensed time-expanded network satis-
fying the following property: For any point in time 8, every unit of flow which ar-
rives at its destination in a given flow at time 6, arrives there before time (1+¢)8
in a corresponding solution for this network. We use this to give the first FPTAS
for the earliest arrival flow problem when there are multiple sources and a single
sink. In contrast to Hoppe and Tardos’ FPTAS for the single-source, single-sink
problem where the amount of flow is approximately optimal at every moment of
time [12], we obtain optimal flows in approximately optimal time.

While our analysis shows that condensed time-expanded networks lead to
theoretically efficient (polynomial time) algorithms with provably good worst
case performance, these algorithms can certainly not compete with methods,
like the algorithm of Ford and Fulkerson, which solely work on the underlying
static network. On the other hand, such methods are only known for restricted
problems with one single commodity. For more general problems, like multicom-
modity flows over time, it is not even clear how to encode optimal solutions
efficiently. Complex time dependency seems to be an inherent ‘defect’ of optimal
solutions to these problems. Against this background, it is interesting to ask for
provably good solutions featuring a reasonably simple structure.

Inspired by the work of Ford and Fulkerson on maximal s-t-flows over time,
we show that static, length-bounded flows in the underlying static network lead to
provably good multicommodity flows over time which, in addition, can be com-
puted very efficiently. A length-bounded flow has a path decomposition where
the length of each flow-carrying path is bounded. Based on such a path decom-
position, we can construct a temporally repeated flow over time. Moreover, if we
start with a maximal length-bounded flow, the resulting flow over time needs at
most twice as long as a quickest flow over time. If one allows a (1+¢)-violation of
the length bound, a maximal length-bounded flow can be computed efficiently in
polynomial time. Therefore, this approach yields a (2 + €)-approximation algo-
rithm for the quickest multicommodity flow problem with costs. In this context
it is interesting to remember that the problem of computing a quickest tempo-
rally repeated flow with bounded cost is strongly NP-hard [14] and therefore
does not allow an FPTAS, unless P=NP. We also present pathological instances
which imply a lower bound on the worst case performance of our algorithm and
show that the given analysis is tight.

The paper is organized as follows. In Sect. 2 we give a precise description
of the problem under consideration and state basic properties of static (length-
bounded) flows and flows over time. In Sect. 3 we present a (2+¢)-approximation

4 A family of approximation algorithms with simultaneous performance ratio 1+ ¢ for
time and cost, for any ¢ > 0.

The Quickest Multicommodity Flow Problem 5

algorithm based on length-bounded flows. In Sect. 4 we introduce time-expanded
networks and discuss the interconnection between flows over time and (static)
flows in time-expanded networks. Our main result on condensed time expanded
networks is presented in Sect. 5. Finally, in Sect. 6 and 7 we discuss extensions
of this result to the corresponding min-cost flow problems and to earliest arrival
flows. In this extended abstract, we omit all details in the last two sections due
to space restrictions.

2 Preliminaries

We consider routing problems on a network A" = (V, A). Each arc e € A has an
associated transit time or length 7. and a capacity u.. An arc e from node v to
node w is sometimes also denoted (v,w); in this case, we write head(e) = w
and tail(e) = v. There is a set of commodities K = {1,...,k} that must
be routed through network A. Each commodity is defined by a source-sink
pair (s;,t;) € V xV, i € K, and it is required to send a specified amount
of flow d; from s; to t;, called the demand. In the setting with costs, each arc e
has associated cost coefficients c. ;, € K, which determine the per unit cost for
sending flow of commodity ¢ through the arc.

2.1 Static Flows

A static (multicommodity) flow on N assigns every arc-commodity pair (e, 1)
a non-negative flow value z.; such that flow conservation constraints

Z Tei — Z Te; = 0 for all v € V' \ {s,t;},

e€d—(v) e€dt(v)

are obeyed for any commodity ¢ € K. Here, 6" (v) and 6 (v) denote the set of
arcs e leaving node v (tail(e) = v) and entering node v (head(e) = v), respec-
tively. The static flow z satisfies the multicommodity demands if

Do Tei = D, Teq = di,
e€d(t;) e€dt(t;)

for any commodity ¢ € K. Moreover, z is called feasible if it obeys the capacity
constraints . < ue, for all e € A, where z, := EieK Z,; is the total flow on
arc e. In the setting with costs, the cost of a static flow z is defined as

c(z) = che,iwe,z’ . (1)

e€cAi€EK

2.2 Flows Over Time

In many applications of flow problems, static routing of flow as discussed in
Sect. 2.1 does not satisfactorily capture the real structure of the problem since

6 Lisa Fleischer and Martin Skutella

not only the amount of flow to be transmitted but also the time needed for the
transmission plays an essential role.

A (multicommodity) flow over time f on A/ with time horizon T is given by
a collection of Lebesgue-measurable functions fe; : [0,7) — R* where f.;(6)
determines the rate of flow (per time unit) of commodity ¢ entering arc e at
time 6. Transit times are fixed throughout, so that flow on arc e progresses at
a uniform rate. In particular, the flow f.;(6) of commodity i entering arc e
at time 6 arrives at head(e) at time 6 + 7. Thus, in order to obey the time
horizon T', we require that f,;(0) =0for 6 € [T — 7., T).

In our model, we allow intermediate storage of flow at nodes. This corre-
sponds to holding inventory at a node before sending it onward. Thus, the flow
conservation constraints are integrated over time to prohibit deficit at any node:

Z/fe, —TedQ—Z/fe, o > 0, 2)

e€d— (v) e€dt(v)

for all £ € [0,T), v € V' \ {si}, and ¢ € K. Moreover, we require that equality
holds in (2) for £ =T and v € V'\ {s;,t;}, meaning that no flow should remain
in the network after time 7'.

The flow over time f satisfies the multicommodity demands if

Z/f“— dé’—Z/fe, & > d; 3)

e€d—(t;) e€ot(t;)

for any commodity ¢. Moreover, f is called feasible if it obeys the capacity
constraints. Here, capacity u. is interpreted as an upper bound on the rate of
flow entering arc e, i. e., a capacity per unit time. Thus, the capacity constraints
are fe(f) < ue, for all € [0,T) and e € A, where fe(0) := 3, fe,i(0) is the
total flow into arc e at time 6.

For flows over time, a natural objective is to minimize the makespan: the
time T necessary to satisfy all demands. In the quickest (multicommodity) flow
problem, we are looking for a feasible flow over time with minimal time horizon T
that satisfies the multicommodity demands.

In the setting with costs, the cost of a flow over time f is defined as

zzce,/ foal®) 6 . (4)

e€AieEK

The quickest (multicommodity) flow problem with costs is to find a feasible flow
over time f with minimal time horizon T that satisfies the multicommodity
demands and whose cost is bounded from above by a given budget B. A natural
variant of this problem is to bound the cost for every single commodity ¢ by a
budget B;, that is, >, 4 Ce,i fOT fe,i(8) df < By, for all i € K. All of our results
on the quickest multicommodity flow problem with costs work in this setting
also.

The Quickest Multicommodity Flow Problem 7

2.3 Length-Bounded Static Flows

While static flows are not defined with reference to transit times, we are inter-
ested in static flows that suggest reasonable routes with respect to transit times.
To account for this, we consider decompositions of static flows into paths.

It is well known that in a static flow z the flow (2. ;)eca of any commod-
ity ¢ € K can be decomposed into the sum of flows on a set of s;-t;-paths and
flows on cycles. We denote the set of all s;-t;-paths by P; and the flow value of
commodity ¢ on path P € P; is denoted by zp;. Then, for each arc e € A4,

Tei = E Tp; -

PeP;:
ecP
We assume without loss of generality that there are no cycles in the flow decom-
position; otherwise, the solution z can be modified by decreasing flow on those
cycles.

The static flow x is called T-length-bounded if the flow of every commod-
ity ¢ € K can be decomposed into the sum of flows on s;-t;-paths such that the
length 7(P) := }_ . p 7. of any path P € P; with zp; > 0 is at most T

While the problem of computing a feasible static flow that satisfies the mul-
ticommodity demands can be solved efficiently, it is NP-hard to find such a
flow which is in addition T-length-bounded, even for the special case of a single
commodity. This follows by a straightforward reduction from the NP-complete
problem PARTITION. On the other hand, the length-bounded flow problem can
be approximated within arbitrary precision in polynomial time. More precisely,
if there exists a feasible T-length-bounded static flow 2 which satisfies the mul-
ticommodity demands, then, for any £ > 0, we can compute a feasible (1+¢)T-
length-bounded static flow 2’ of cost ¢(z') < ¢(x) satisfying all demands with
running time polynomial in the input size and 1/e.

In order to prove this, we first formulate the problem of finding a feasible T-
length-bounded static flow as a linear program in path-variables. Let

Pl == {PePi|7(P)<T}

be the set of all s;-t;-paths whose lengths are bounded from above by T'. The
cost of path P € P; is defined as ¢;(P) :=), . p Ce,i- The length bounded flow
problem can then be written as:

min Z Z Ci(P):CP’i

icK pepl

s. t. Z xp; > d; foralli e K,
pepf
Z Z rxp; < U for alle € A,
€K pepl:

e€EP

zp; > 0 for alli € K, P € P

8 Lisa Fleischer and Martin Skutella

Unfortunately, the number of paths in P} and thus the number of variables
in this linear program are in general exponential in the size of the underlying
network . If we dualize the program we get:

max Zdizi — Zueye

i€EK ecA

st Y (Yetcei) > z for all i € K, P € PT,
eeP
ZiyYe > 0 foralli € K, e € A.

The corresponding separation problem can be formulated as a length-bounded
shortest path problem: Find a shortest s;-t;-path P with respect to the arc
weights y. + c.,; whose length 7(P) is at most 7T, that is, P € P}. While this
problem is NP-hard [10], it can be solved approximately in the following sense:
For any € > 0, one can find in time polynomial in the size of the network A
and 1/e an s;-t;-path P with 7(P) < (1 4+ ¢)T whose length with respect to the
arc weights y. + c.,; is bounded from above by the length of a shortest path
in PI [11,15,17). Using the equivalence of optimization and separation [9], this
means for our problem that we can find in polynomial time an optimal solution
to a modified dual program which contains additional constraints corresponding
to paths of length at most (1 + &)T. From this dual solution we get a primal
solution which uses additional variables corresponding to those paths of length
at most (1+¢)T.

Notice that the method described above relies on the ellipsoid method and
is therefore of rather restricted relevance for solving length-bounded flow prob-
lems in practice. However, the FPTASes developed in [8, 3] for multicommodity
flow problems can be generalized to the case of length-bounded flows: Those
algorithms iteratively send flow on shortest paths with respect to some length
function. In order to get a length-bounded solution, these shortest paths must
be replaced by (up to a factor of (1 + ¢€)) length-bounded shortest paths.

3 A Simple (2 + €)-Approximation Algorithm

In this section we generalize the basic approach of Ford and Fulkerson [5, 6] to the
case of multiple commodities and costs. However, in contrast to the algorithm
of Ford and Fulkerson which is based on a (static) min-cost flow computation,
the method we propose employs length-bounded static flows.

Any feasible flow over time f with time horizon T and cost at most B natu-
rally induces a feasible static flow x on the underlying network A by averaging
the flow on every arc over time, that is,

1 T
Teqg = T/O fe,i(H) dé

for all e € A and i € K. By construction, the static flow x is feasible and it
satisfies the following three properties:

The Quickest Multicommodity Flow Problem 9

S1 2 S92 0 t1 0 tz 2
r——o—0—>0—>9
S3 t3

Fig.1. An instance of the quickest multicommodity flow problem containing three
commodities; commodities 1 and 3 have demand value 1, commodity 2 has demand
value 2. The numbers at the arcs indicate the transit times; all arcs have unit capacity.
A quickest flow with waiting at intermediate nodes allowed takes 3 time units and
stores one unit of commodity 2 at the intermediate node ¢; = s3 for two time units.
However, if flow cannot be stored at intermediate nodes, an optimal solution takes
time 4.

(i) it is T-length-bounded;
(i) it satisfies a fraction of % of the demands covered by the flow over time f;

(it}) c(@) = c(f)/T.

Due to the fixed time horizon T', flow can only travel on paths of length at
most T in f such that property (i) is fulfilled. Property (ii) follows from (3).
Finally, property (iii) is a consequence of (1) and (4).

On the other hand, given an arbitrary feasible static flow x meeting require-
ments (i),(ii), and (iii), it can easily be turned into a feasible flow over time g
meeting the same demands at the same cost as f within time horizon 27": Pump
flow into every s;-t;-path P given by the length-bounded path decomposition
of z at the corresponding flow rate zp; for T time units; then wait for at most T’
additional time units until all low has arrived at its destination. In particular,
no flow is stored at intermediate nodes in this solution.

Lemma 1. Allowing the storage of flow at intermediate nodes in N saves at
most a factor of 2 in the optimal makespan. On the other hand, there are in-
stances where the optimal makespan without intermediate storage is 4/3 times
the optimal makespan with intermediate storage.

Proof. The bound of 2 follows from the discussion above. In Fig. 1 we give an
instance with a gap of 4/3 between the optimal makespan without storing and
the optimal makespan with storing at intermediate nodes. O

Notice that the gap of 4/3 is not an artifact of the small numbers in the
instance depicted in Fig. 1. It holds for more general demands and transit times
as well: For instance, scale all transit times and capacities of arcs by a factor
of ¢ and multiply all pairwise demands by a factor of ¢2. The ratio of optimal
makespans for the problems without to with storage is still 4/3.

In contrast to Ford and Fulkerson’s temporally repeated flows, the flows
over time resulting from length-bounded static flows described above, do not
necessarily use flow-carrying paths as long as possible. However, we can easily
enforce this property by scaling the flow rate zp; on any path P by a fac-
tor T/(2T — 7(P)) < 1 and sending flow into the path at this modified rate
during the time interval [0,2T — 7(P)).

We can now state the main result of this section.

10 Lisa Fleischer and Martin Skutella

Fig. 2. An instance with k£ commodities showing that the analysis in the proof of
Theorem 1 is tight. All arcs have unit capacity and transit times as depicted above.
The demand value of every commodity is 1. A quickest flow needs T* = k time units.
However, any static flow can satisfy at most a fraction of 1/k of the demands. In
particular, the makespan of the resulting flow over time is at least 2k — 1.

Theorem 1. For the quickest multicommodity flow problem with costs, there
ezists a polynomial time algorithm that, for any € > 0, finds a solution of the
same cost as optimal with makespan at most 2 + ¢ times the optimal makespan.

Proof. Using binary search, we can guess the optimal makespan with preci-
sion 14+¢/4, that is, we get T with T* < T < (1+¢/4)T™*. If we relax property (i)
to allow flow on paths of length at most (1 +¢/4)T < (1 + 3e/4)T*, a feasible
static flow meeting properties (i) to (iii) can be computed in polynomial time;
see Sect. 2.3. This static flow can then be turned into a flow over time with
makespan (1 + 3e/4)T* + (1 +&/4)T* = (24 &)T* as described above. m|

In Fig. 2 we present an instance which shows that the analysis in the proof
of Theorem 1 is tight, that is, the performance guarantee of the discussed ap-
proximation algorithm is not better than 2.

4 Flows Over Time and Time-Expanded Networks

Traditionally, flows over time are solved in a time-expanded network. Given a
network N' = (V, A) with integral transit times on the arcs and an integral
time horizon T, the T'-time-expanded network of N, denoted N1 is obtained by
creating T copies of V, labeled V; through V_;, with the 8®" copy of node v
denoted vy, § =0,... ,T — 1. For every arce = (v,w) in Aand 0< 0 < T — 7,
there is an arc eg from vy to wy,,, with the same capacity and cost as arc e. In
addition, there is a holdover arc from vy to vg41, forallv € Vand0 <8 < T -1,
which models the possibility to hold flow at node v.

Any flow in this time-expanded network may be taken by a flow over time
of equal cost: interpret the flow on arc ey as the flow through arc e = (v,w)
that starts at node v in the time interval [#, § 4+ 1). Similarly, any flow over time

The Quickest Multicommodity Flow Problem 11

completing by time T corresponds to a flow in N7 of the same value and cost
obtained by mapping the total flow starting on e in time interval [§,6+1) to flow
on arc eg. More details can be found below in Lemma 2 (set A := 1). Thus, we
may solve any flow-over-time problem by solving the corresponding static flow
problem in the time-expanded graph.

One problem with this approach is that the size of AT depends linearly
on T, so that if T' is not bounded by a polynomial in the input size, this is not
a polynomial-time method of obtaining the required flow over time. However,
if all arc lengths are a multiple of A > 0 such that [T/A] is bounded by a
polynomial in the input size, then instead of using the T-time-expanded graph,
we may rescale time and use a condensed time-expanded network that contains
only [T/A] copies of V. Since in this setting every arc corresponds to a time
interval of length A, capacities are multiplied by A. We denote this condensed
time-expanded network by N7 /A, and the copies of V in this network by V,
for p=0,...,[T/A]-1.

Lemma 2. Suppose that all arc lengths are multiples of A and T/A is an inte-
ger. Then, any flow over time that completes by time T corresponds to a static
flow of equal cost in NT /A, and any flow in NT /A corresponds to a flow over
time of equal cost that completes by time T'.

Proof. Given an arbitrary flow over time, a modified flow over time of equal value
and cost can be obtained by averaging the flow value on any arc in each time
interval [pA, (p+1)A), p=0,...,T/A—1. This modified flow over time defines
a static flow in N'7'/A in a canonical way. Notice that the capacity constraints
are obeyed since the total flow starting on arc e in interval [pA, (p + 1)A) is
bounded by Au,. The flow values on the holdover arcs are defined in such a way
that flow conservation is obeyed in every node of N7 /A.

On the other hand, a static flow on N7 /A can easily be turned into a flow
over time. The static flow on an arc with tail in V, 4 is divided by A and sent
for A time units starting at time pA. If the head of the arc is in V4 for o > p,
then the length of the arc is (o —p) A, and the last flow (sent before time (p+1)A)
arrives before time (o + 1) A. Note that if costs are assigned to arcs of N1 /A in
the natural way, then the cost of the flow over time is the same as the cost of
the corresponding flow in the time-expanded graph. O

If we drop the condition that T'/A is integral, we get the following slightly
weaker result.

Corollary 1. Suppose that all arc lengths are multiples of A. Then, any flow
over time that completes by time T corresponds to a static flow of equal value
and cost in NT /A, and any flow in NT /A corresponds to a flow over time of
equal value that completes by time T + A.

5 An FPTAS for Multicommodity Flow Over Time

Our FPTAS for flow over time will use a graph N7 /A for an appropriately
defined A. We show below that, even when all arc lengths are not multiples

12 Lisa Fleischer and Martin Skutella

of A, for an appropriate choice of A that depends on £ we may round the
lengths up to the nearest multiple of A, and suffer only a 1+ ¢ factor increase in
the makespan of our flow. Thus, our algorithm is simply to first round the arc
lengths, construct the corresponding condensed time-expanded network N71'/A,
solve the flow problem in this time-expanded graph, and then translate this
solution into a flow over time. We show below that this natural algorithm yields
an FPTAS for minimizing the makespan of flow over time problems.

In the last step of the sketched algorithm, we make use of the following
straightforward observation which will also be employed at several points during
the analysis of the algorithm.

Observation 1. Any flow over time with time horizon T in a network with
elongated arc lengths induces a flow over time satisfying the same demands within
the same time horizon in the original network.

5.1 Increasing the Transit Times

Our analysis starts with an optimal flow that completes by time T, and then
shows how to modify this flow so that it completes by time (1+¢)T™ in a network
with elongated arc lengths. Throughout the proof we often use the following
freezing technique for modifying a given flow over time in a fixed network A: At
some point in time 6, we ‘freeze’ the flow in progress and ‘unfreeze’ it later at
time 6+ §, thereby increasing the completion time of the flow by at most §. More
formally, freezing a flow in progress during a time interval [, 0 + &) means that
no new flow is sent onto any arc during this interval; instead, at time 6, every
unit of flow which is currently traveling on some arc continues on its path at its
regular pace until it reaches the next node and then rests there for § time units
before it continues its journey. The motivation for introducing such a freezing
period is that it provides free capacity which can be used to send additional flow
on an arc during the time interval [6,6 + 4).

Let f* be an optimal flow over time for network A with m arcs, n nodes,
and with commodities 1 < i < k associated with source-sink node pairs (s;, ;)
and flow demands d;. Let T™* be the completion time of this flow. The following
theorem contains the key result for the construction of our FPTAS.

Theorem 2. Lete >0 and A < ﬁT*. Increasing the transit time of every
arc by an additive factor of at most A increases the minimum time required to

satisfy the multicommodity demands by at most eT™*.

The rough idea of the proof is that, for each elongated arc e, its original
transit time can be emulated by holding ready additional units of flow in a
buffer at the head of the arc. Since the required amount of flow in this buffer
depends on the total flow that is traveling on the arc at any moment of time,
we first show that we can bound the maximal rate of flow into an arc, without
too much increase in the makespan.

For an arbitrary flow over time f, consider the flow on arc e of commodity 3.
This flow travels from s; to ¢; on a set of paths P, ;(f), all containing arc e. For

The Quickest Multicommodity Flow Problem 13

fe,i(0) fe,i(0)

Ue N

VN ,
S 2

Fig. 3. Modification of the flow over time f: The flow of commodity ¢ on arc e is
truncated at @e,;. In the modified solution, the extra D flow units (shaded area on the
left hand side) are sent onto arc e while the flow in the remaining network is frozen
(shaded area on the right hand side).

any path P, let u(P) denote the minimum capacity of an arc ¢’ € P and |P| the
number of arcs on P. Define u, ;(f) := maxpep, ;(s) u(P)-

Lemma 3. For any ¢ > 0, there is a flow over time f in the network N that
fulfills the following properties:

(i) It satisfies all demands by time (1 4+ /2)T*.
(ii) For any arc e and any commodity i, the rate of flow onto arc e of commod-
ity i is bounded by

2
ae,z’(f) = 2k:1 ue,i(f)

at any time.

Proof. The optimal flow over time f* obviously satisfies property (i). We start
with the flow f := f* and carefully modify it until it also satisfies (ii). During this
modification we only delay but never reroute flow such that u. ;(f) and . ;(f)
stay fixed and are therefore denoted by u.; and . ;, respectively.

An illustration of the following modification is given in Fig. 3. In any time
interval® I when f sends more than i, ; units of flow of commodity 4 onto arc e,
we truncate the flow at 4. ;. In order to compensate for the resulting loss of

D= [(hil®) i) at

I
flow units, we freeze the flow in N for D/, ; time units at the beginning of
time interval T and push D units of flow onto arc e (see the shaded area on the

5 It follows from the discussion in Sect. 4 (see Lemma 2) that there are only finitely
many such intervals since we can assume without loss of generality that f. ; is a step
function.

14 Lisa Fleischer and Martin Skutella

right hand side of Fig. 3). Afterwards, the flow is unfrozen again. Due to this
freeze-unfreeze process, the D flow units arrive early (compared to the remaining
flow) at the head of arc e and are stored there until it is time to send them onto
another arc.

We repeat this freeze-unfreeze step for every commodity-arc pair. By con-
struction, the resulting flow f fulfills property (ii) and satisfies all demands. It
thus remains to show that f completes before time (1 +¢/2)T*. Notice that the
increase in the completion time of f compared to f* is exactly the additional
time added to the total flow schedule when the flow gets frozen due to some
arc e and some commodity ¢. In the following we show that the total freezing
time caused by arc e and commodity i is at most 5=-T, for any e and .

Whenever the flow is frozen due to arc e and commodity 4, the flow rate
of commodity ¢ onto arc e is exactly 4. ;; see Fig. 3. It therefore suffices to
show that a total of at most @e ;571" = mue;T* flow of commodity 7 is sent
through arc e in the optimal solution f* and thus also in f. Consider all flow of
commodity ¢ on paths in P, ;. If we choose for each path P € P, ; an arc with
capacity u(P) < u.;, the total flow through the chosen arcs bounds the total
flow of commodity ¢ through arc e. Since we can choose at most m arcs and the
makespan of f* is T, this gives the desired bound of mu, ;T on the total flow
of commodity 7 sent through arc e. This completes the proof. O

With the aid of Lemma 3 we can now prove Theorem 2.

Proof (of Theorem 2). Let f be a flow over time in network A (with original
transit times). We start by modifying f as described in the proof of Lemma 3 so
that it fulfills properties (i) and (ii). Let A4 be N modified so that the transit
time of every arc is rounded up to an integral multiple of A. We show how the
flow over time f can be modified to satisfy all demands in N by time (1+¢)7T*.
Although some flow units will be rerouted during this modification, the set of
paths P ; := P.;(f) remains unchanged, for any arc e and any commodity i.
In particular, u. ;(f) and 4. ;(f) stay fixed and are therefore denoted by w, ;
and @, ;, respectively.

The modification is done in m steps such that in each step the transit time
of only one arc e is increased at the cost of increasing the makespan by at
most 5—T*. Thus, the total increase of the makespan of f after m steps is at
most §7. Together with the prior modifications discussed in Lemma 3, this
implies that the resulting flow completes by time (1 + &)T™*.

Each step has two phases. In the first phase, the transit time of arc e remains
unchanged but the demand satisfied by f is increased to d; + Ad,;, for all
commodities ¢. Then, in the second phase, the extra A, ; units of flow from
the first phase are used to emulate the original transit time 7, on the elongated
arc e of length 7. + A. (It follows from Observation 1 that it suffices to consider
the extreme case of increasing the transit time by exactly A).

Phase 1: For each commodity ¢, let P,; € P.; be an s;-t;-path with ca-
pacity u. ;. The additional Ad, ; units of flow are routed through path P, ;: At

time 0, we freeze the current flow throughout the network for A% time units

The Quickest Multicommodity Flow Problem 15

2km>

and pump an extra A Ue,; = Alle,; units of flow of commodity ¢ into the
first arc on this path. When this flow arrives at the next arc on path P, ;, we
again freeze the current flow for A@ time units and send this flow onto the
next arc, and so on.

Notice that the extra flow does not violate the capacity constraints since the
capacity of any arc on path P, ; is at least u. ;. Moreover, the extra units of flow
arrive at their destination ¢; before time

2 2
2km < T*+A2km

T(Pe,i) + A

We add this flow to f. The makespan of f is increased by

2 3
|P“-|A2km < Aka < € T
’ € € 2km

Repeating this for all commodities 4 increases the makespan by at most 5—7.
Phase 2: Now, we increase the length of arc e to 7. + A and modify the cur-
rent flow over time f as follows. The point on arc e that is distance 7, from tail(e)
is called apex(e). For any commodity i, the first Ad, ; units of flow of commod-
ity 4 traveling across arc e are stored in a special buffer as soon as they arrive
at head(e). The flow stored in the buffer at head(e) can then be used to emulate
the original transit time on arc e for any further unit of flow of commodity 4.

An illustration of the following argument is given in Fig. 4. Any further
unit of flow of commodity ¢ arriving at apex(e) is instantly ‘replaced’ by a unit
of flow from the buffer. Then, after A time units, when the flow has traveled
from apex(e) to head(e), the buffer is refilled again. In other words, the flow in
the buffer is treated as newly arriving flow at head(e), and the flow reaching the
head enters the buffer. Thus, due to property (ii) from Lemma 3, the choice of
buffer size A, ; ensures that the buffer is never empty.

Notice that this modification of f does not increase its makespan. The result
of the modification is that exactly d; units of flow of commodity i arrive at
destination ¢; and Ad, ; units of flow remain in the buffer at the head of arc e
in the end. Since the latter effect is undesired, we revoke it as follows: The A, ;
units of flow in the buffer are exactly those that arrive last at head(e). We can
simply delete them from the entire solution, that is, we never send them from s;
into the network. O

5.2 The FPTAS

As a consequence of Theorem 2 we can now give an FPTAS for the problem of
computing a quickest multicommodity flow over time:

Input: A directed network N with non-negative integral transit times and
capacities on the arcs, and commodities 1 < 7 < k associated with
source-sink node pairs (s;,#;) and flow demands d;; a number £ > 0.

Output: A multicommodity flow over time satisfying all demands.

16 Lisa Fleischer and Martin Skutella

tail(e) apex(e) head(e)

04 ------ =@

Fig. 4. In Phase 2, the flow in the buffer at the head of the elongated arc e is used to
emulate its original length 7.

0

Step 1. Compute a good lower bound L on the optimal makespan T* such
that L is at legst a constant fraction of T™.

Step 2. Set A := ;555 L and round the transit times up to the nearest
multiple of A.

Step 3. Find the minimal T = A, £ € N, such that there exists a feasi-
ble flow satisfying all demands in the condensed time-expanded net-
work N'T/A.

Step 4. Output the flow over time that corresponds to the flow in N7 /A from
Step 3 (see Lemma 2 and Observation 1).

It follows from Theorem 2 and Corollary 1 that the above algorithm computes
a solution with makespan T' < (14 €)T™* + A < (1 + 2¢)T*. Moreover, it can be
implemented to run in time polynomial in n, m, and 1/e: Step 1 can be done in
polynomial time using the constant factor approximation algorithm from Sect. 3
(see Theorem 1). Step 2 is trivial and Step 3 can be done in polynomial time
by binary search since £ € O(k?>m*/e%) by Theorem 2 and choice of A. Here, A
is chosen so that the size of the condensed time-expanded network N1 /A is
polynomial. Thus, Step 4 can also be done in polynomial time.

Theorem 3. There is an FPTAS for the problem of computing a quickest mul-
ticommodity flow over time.

The Quickest Multicommodity Flow Problem 17

6 Problems with Costs

Unfortunately, Theorem 3 cannot directly be generalized to the quickest multi-
commodity flow problem with costs. The reason is that in our analysis we have to
reroute flow in order to show that there exists a reasonably good solution in the
condensed time-expanded network N7 /A (see proof of Theorem 2). Since the
thick paths P, ;, which are used to route additional units of flow, might be rel-
atively expensive, the modified flow in the network with increased transit times
can possibly violate the given budget B. However, we can prove the following
bicriteria result. We omit the proof in this extended abstract.

Theorem 4. Given an instance of the quickest multicommodity flow problem
with costs and € > 0, one can compute in time polynomial in the input size
and 1/e a flow over time of cost at most (1 + €)B whose makespan is within a
factor of 1 + € of the optimal makespan.

7 Earliest Arrival Flows

For a single commodity problem, an earliest arrival flow is a flow that simul-
taneously maximizes the amount of flow arriving at the sink before time 6, for
all § =0,...,T. The existence of such a flow was first observed by Gale [7] for
the case of a single source. Both Wilkinson [19] and Minieka [16] give equivalent
pseudo-polynomial time algorithms for this case, and Hoppe and Tardos [12] de-
scribe an FPTAS for the problem. For multiple sources, an earliest arrival flow
over time can be computed in the discrete time model by using lexicograph-
ically maximal flows in the time-expanded network [16]. However, due to the
exponential size of the time-expanded network, this does not lead to an efficient
algorithm for the problem.

Unfortunately, lexicographically maximal flows in condensed time-expanded
networks do not necessarily yield approximate earliest arrival flows. One problem
is that, in our analysis, the first units of flow on an arc are always used to fill
the buffer at the head of the arc and are therefore ‘lost’. As a consequence, the
first units of flow that actually arrive at the sink might be pretty late.

Another problem arises due to the discretization of time itself. Although we
can interpret a static flow in a time-expanded network as a continuous flow
over time, in doing so, we only get solutions where the rate of flow arriving at
the sink is constant (i.e., averaged) within each discrete time interval. While
this effect is negligible for late intervals in time, it might well cause problems
within the first time intervals. In the full version of this paper, we introduce a
geometrically-condensed time-expanded network to surmount this difficulty and
obtain the following result.

Theorem 5. For any € > 0, a (1 + £)-approzimate earliest arrival flow in a
network with multiple sources and a single sink can be computed in time polyno-
mial in the input size and 1/ by computing a lezicographically mazimal flow in
an appropriate geometrically condensed time-expanded network.

18

Lisa Fleischer and Martin Skutella

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

J. E. Aronson. A survey of dynamic network flows. Annals of Operations Research,
20:1-66, 1989.

R. E. Burkard, K. Dlaska, and B. Klinz. The quickest flow problem. ZOR —
Methods and Models of Operations Research, 37:31-58, 1993.

L. K. Fleischer. Approximating fractional multicommodity flows independent of
the number of commodities. STAM Journal on Discrete Mathematics, 13:505-520,
2000.

L. K. Fleischer and E Tardos. Efficient continuous-time dynamic network flow
algorithms. Operations Research Letters, 23:71-80, 1998.

L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows from static
flows. Operations Research, 6:419-433, 1958.

L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, NJ, 1962.

D. Gale. Transient flows in networks. Michigan Mathematical Journal, 6:59-63,
1959.

N. Garg and J. Konemann. Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. In Proceedings of the 39th Annual IEEE
Symposium on Foundations of Computer Science, pages 300-309, Palo Alto, CA,
1998.

M. Grotschel, L. Lovész, and A. Schrijver. Geometric Algorithms and Combina-
torial Optimization, volume 2 of Algorithms and Combinatorics. Springer, Berlin,
1988.

G. Handler and I. Zang. A dual algorithm for the constrained shortest path prob-
lem. Networks, 10:293-310, 1980.

R. Hassin. Approximation schemes for the restricted shortest path problem. Math-
ematics of Operations Research, 17:36-42, 1992.

B. Hoppe and E Tardos. Polynomial time algorithms for some evacuation problems.
In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 433441, Arlington, VA, 1994.

B. Hoppe and E Tardos. The quickest transshipment problem. Mathematics of
Operations Research, 25:36—62, 2000.

B. Klinz and G. J. Woeginger. Minimum cost dynamic flows: The series-parallel
case. In E. Balas and J. Clausen, editors, Integer Programming and Combinatorial
Optimization, volume 920 of Lecture Notes in Computer Science, pages 329-343.
Springer, Berlin, 1995.

D. H. Lorenz and D. Raz. A simple efficient approximation scheme for the restricted
shortest path problem. Operations Research Letters, 28:213-219, 2001.

E. Minieka. Maximal, lexicographic, and dynamic network flows. Operations Re-
search, 21:517-527, 1973.

C. A. Phillips. The network inhibition problem. In Proceedings of the 25th Annual
ACM Symposium on the Theory of Computing, pages 776-785, San Diego, CA,
1993.

W. B. Powell, P. Jaillet, and A. Odoni. Stochastic and dynamic networks and rout-
ing. In M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, editors,
Network Routing, volume 8 of Handbooks in Operations Research and Management
Science, chapter 3, pages 141-295. North-Holland, Amsterdam, The Netherlands,
1995.

W. L. Wilkinson. An algorithm for universal maximal dynamic flows in a network.
Operations Research, 19:1602-1612, 1971.

