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Abstract	11	

Studies	on	spatial	navigation	demonstrate	a	significant	role	of	the	retrosplenial	12	

complex	(RSC)	 in	 the	 transformation	of	egocentric	and	allocentric	 information	13	

into	 complementary	 spatial	 reference	 frames	 (SRFs).	 The	 tight	 anatomical	14	

connections	of	 the	RSC	with	a	wide	 range	of	other	 cortical	 regions	processing	15	

spatial	information	support	its	vital	role	within	the	human	navigation	network.	16	

To	better	understand	how	different	areas	of	the	navigational	network	interact,	17	

we	 investigated	 the	 dynamic	 causal	 interactions	 of	 brain	 regions	 involved	 in	18	

solving	a	virtual	navigation	task.	EEG	signals	were	decomposed	by	independent	19	

component	 analysis	 (ICA)	 and	 subsequently	 examined	 for	 information	 flow	20	

between	 clusters	 of	 independent	 components	 (ICs)	 using	 direct	 short-time	21	

directed	 transfer	 function	 (sdDTF).	 The	 results	 revealed	 information	 flow	22	

between	the	anterior	cingulate	cortex	and	the	left	prefrontal	cortex	in	the	theta	23	

(4–7	 Hz)	 frequency	 band	 and	 between	 the	 prefrontal,	 motor,	 parietal,	 and	24	

occipital	cortices	as	well	as	the	RSC	in	the	alpha	(8–13	Hz)	frequency	band.	When	25	

https://doi.org/ 10.1016/j.brainres.2017.11.016
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participants	 preference	 to	 use	 distinct	 reference	 frames	 (egocentric	 vs.	26	

allocentric)	during	navigation	was	considered,	a	dominant	occipito-parieto–RSC	27	

network	was	identified	in	allocentric	navigators.	These	results	are	in	line	with	the	28	

assumption	 that	 the	 RSC,	 parietal,	 and	 occipital	 cortices	 are	 involved	 in	29	

transforming	egocentric	visual	spatial	information	into	an	allocentric	reference	30	

frame.	Moreover,	the	RSC	demonstrated	the	strongest	causal	flow	during	changes	31	

in	 orientation,	 suggesting	 that	 this	 structure	 directly	 provides	 information	 on	32	

heading	changes	in	humans.	33	

Keywords:	spatial	navigation,	allocentric,	egocentric,	retrosplenial	complex,	34	
brain	connectivity	35	

	36	

1.	Introduction	37	

	 Successful	 navigation	 in	well-known	 and	unknown	 environments	 requires	38	

simultaneous	 processing	 and	 integration	 of	 spatial	 information	 based	 on	39	

allocentric	 and	 egocentric	 spatial	 reference	 frames	 (SRFs)	 [Klatzky,	 1998].	40	

Reference	 frames	 are	 a	 means	 to	 represent	 spatial	 information	 based	 on	41	

egocentric	 or	 allocentric	 coordinate	 systems.	 An	 allocentric	 representational	42	

system	is	centered	on	aspects	of	the	environment	and	represents	the	location	of	43	

entities	in	space	with	respect	to	allothetic	information	like	cardinal	directions.	In	44	

contrast,	 an	 egocentric	 representational	 system	 is	 centered	 on	 aspects	 of	 the	45	

navigator’s	physical	structure	and	thus	varies	with	changes	in	orientation	of	the	46	

navigator.	 Importantly,	 successful	 navigation	 requires	 integration	 of	 spatial	47	
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information	from	both	egocentric	and	allocentric	representations	to	allow	goal-48	

directed	action	in	the	environment	(Gramann,	2013).	49	

The	 computation,	 integration,	 and	 exchange	 of	 spatial	 information	 based	50	

different	 SRFs	 involves	 a	 network	 of	 brain	 structures	 including	 the	 medial	51	

temporal	cortex,	the	cingulate	gyrus,	the	frontal,	parietal,	and	occipital	cortices,	as	52	

well	as	the	retrosplenial	complex	(RSC)	[Hartley	et	al.,	2003;	Maguire	et	al.,	1998;	53	

Whitlock	 et	 al.,	 2008].	 Imaging	 studies	 investigating	 the	 neural	 structures	54	

underlying	 egocentric	 and	allocentric	 spatial	 navigation	have	 revealed	 that	 the	55	

parietal	cortex	subserves	the	computation	of	egocentric	SRFs	by	integrating	self-56	

motion	 cues	 from	 the	 kinesthetic,	 vestibular,	 and	 visual	 systems	 [Zaehle	 et	 al.,	57	

2007;	Committeri	et	al.,	2004;	Cohen	and	Andersen,	2002].	In	contrast,	the	use	of	58	

an	allocentric	SRF	mainly	engages	medial	temporal	brain	structures	[Doeller	et	al.,	59	

2010;	Ekstrom	et	al.,	2003;	Howard	et	al.,	2014;	Jacobs	et	al.,	2013;	Maguire	et	al.,	60	

1998;	Wolbers	 and	 Büchel,	 2005].	 Moreover,	 the	 RSC	 has	 been	 found	 to	 play	61	

important	roles	in	computing	and	maintaining	allocentric	spatial	representations	62	

and	 in	 transforming	 spatial	 information	 between	 egocentric	 and	 allocentric	63	

reference	frames	[Byrne	et	al.,	2007;	Dhindsa	et	al.,	2014;	Vann	et	al.,	2009;	Zhang	64	

et	al.,	2012].	65	

Many	of	these	brain	areas	are	simultaneously	active	during	navigation	tasks,	66	

and	coupling	of	functionally	specialized	brain	regions	appears	to	be	necessary	for	67	

successful	 navigation	 [Ekstrom	et	 al.,	 2014].	Recent	EEG	 studies	 have	 reported	68	

high	coherence	of	 the	alpha	and	 theta	 frequency	bands	 in	a	 large-scale	cortical	69	

network	 recruited	 during	 spatial	 navigation	 [Li	 et	 al.,	 2009;	 Ramos-Loyo	 and	70	
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Sanchez-Loyo,	2011].	Connectivity	across	various	brain	areas	with	modulations	in	71	

the	theta	and	alpha	frequency	ranges	may	support	the	synchronization	of	large-72	

scale	cortical	interactions	[Palva	and	Palva,	2011;	Sauseng	et	al.,	2005]	and	is	one	73	

of	the	essential	neuronal	mechanisms	for	higher	cognitive	functions	[Siegel	et	al.,	74	

2012].	However,	 investigations	describing	 the	 flow	of	 information	within	 these	75	

cortical	networks	with	high	temporal	resolution	are	scarce,	and	the	architecture	76	

of	the	spatial	navigation	network	is	not	well	understood.	 	77	

To	further	our	understanding	of	connectivity	in	the	navigation	network,	we	78	

used	high-density	EEG	and	Granger	causality	analysis	to	investigate	which	brain	79	

regions	 are	 causally	 connected	 while	 participants	 updated	 their	 position	 and	80	

orientation	during	navigation.	Previous	studies	using	path	integration	paradigms	81	

showed	that	the	individual	preference	to	use	either	an	egocentric	or	an	allocentric	82	

reference	frame	is	stable	for	individuals	[Gramann	et	al.,	2005],	is	based	on	higher	83	

cognitive	functions	[Gramann	et	al.,	2009],	depends	on	core	areas	of	the	navigation	84	

network	[Gramann	et	al.,	2006;	Gramann	et	al.,	2010;	Seubert	et	al.,	2008],	and	can	85	

be	reliably	observed	in	different	populations	[Gramann	et	al.,	2012;	Goeke	et	al.,	86	

2013;	2015].	Previous	studies	also	demonstrated	navigation-related	modulations	87	

of	distinct	frequency	bands	that	were	dependent	on	the	reference	frame	proclivity	88	

of	participants	[Chiu	et	al.,	2012;	Gramann	et	al.,	2010;	Lin	et	al.,	2015;	Plank	et	al.,	89	

2010].	 To	 further	 investigate	 the	 information	 flow	 in	 the	 human	 navigation	90	

network	and	to	understand	how	information	flow	differs	between	egocentric	and	91	

allocentric	navigators,	we	analyzed	granger	causal	information	flow	in	EEG	data	92	

recorded	during	a	virtual	path	integration	task.	93	
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	94	

2.	Results	95	

	 	 	 	 For	 allocentric	 and	 egocentric	 participants,	 the	 behavioral	 performance	96	

including	homing	angle	and	homing	position	were	reported.	The	analysis	of	direct	97	

information	transfer	between	clusters	of	ICs	revealed	event	related	causality	(ERC)	98	

in	the	time–frequency	distribution	between	several	cortical	regions.	Widespread	99	

brain	regions	were	involved	in	path	integration,	revealing	directed	ERC	between	100	

the	 anterior	 cingulate	 cortex	 (ACC),	 the	 RSC,	 and	 the	 lateral	 prefrontal,	motor,	101	

parietal,	and	occipital	cortices	for	all	participants.	The	causal	 information	flows	102	

were	significantly	increased	in	distinct	frequency	band	including	delta	(below	3.5	103	

Hz),	theta	(4–7	Hz),	alpha	(8–13	Hz),	and	beta	(14–30	Hz).	 	104	

	105	

2.1	Behavioral	performance	106	

	 	 	 	 The	mean	homing	responses	are	displayed	in	Figure	1	for	both	allocentric	and	107	

egocentric	 indicated	 as	 dotted	 and	 straight	 line,	 respectively.	 In	 Figure	 1A,	 the	108	

result	 of	 homing	 response	 indicating	 that	 using	 an	 egocentric	 SRF	 indicated	109	

opposite	homing	directions	as	compared	to	homing	responses	of	allocentric,	using	110	

an	allocentric	SRF	(p	<	0.01).	The	homing	responses	for	allocentric	and	egocentric	111	

consistently	 differed	 in	 each	 path	 configuration	 supported	 the	 hypothesis	 that	112	

both	strategy	groups	used	a	distinct	reference	frame	for	their	homing	responses	113	

for	 path	 integration	 in	 the	 virtual	 navigation	 environment.	 The	 homing	114	

performance	also	shows	the	significant	differences	in	homing	error	for	allocentric	115	

and	egocentric	participants	in	Figure	1B	(p	<	0.01).	In	Figure	1B,	egocentric	reveals	116	
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higher	accuracy	for	low	eccentric	end	positions	(18.4°,	26.5°,	and	33.6),	in	contract,	117	

the	allocentric	were	more	accurate	for	higher	eccentricities	(above	45°).	118	

	119	

	 **********	insert	Figure	1	here	**********	120	

	121	

2.2	Time–frequency	distribution	of	causal	information	inflow	122	

Figure	2	displays	the	average	dynamic	causal	relationships	between	selected	123	

anterior	 brain	 regions	 during	 path	 integration	 as	 compared	 to	 the	 baseline	124	

condition	for	egocentric	and	allocentric	participants	(please	see	supplementary	125	

Figure	 1	 for	 connectivity	 pattern	 between	 all	 clusters).	 As	 shown	 in	 Figure.	 2,	126	

significant	 ERC	 increases	 were	 observed	 between	 a	 cluster	 with	 its	 centroid	127	

located	in	or	near	the	ACC	and	clusters	with	their	centroids	located	in	or	near	the	128	

left	and	right	prefrontal	areas	(bootstrapping,	false	discovery	rate	(FDR)-adjusted	129	

p	<	0.05).	The	ERC	flow	between	these	areas	was	significant	for	the	theta,	the	alpha,	130	

and	 the	 beta	 frequency	 band	 (bootstrapping,	 FDR-adjusted	 p	 <	 0.05).	 The	131	

sustained	bidirectional	ERC	increase	in	the	theta	and	alpha	band	between	ACC	and	132	

left	 prefrontal	 cortex	 (ACC<->LPF)	 was	 observed	 for	 both	 egocentric	 and	133	

allocentric	participants	while	only	egocentric	navigators	showed	ERC	increases	in	134	

the	 beta	 band	 around	 20	 Hz	 (ACC->LPF	 &	 ACC->RPF).	 The	 prefrontal	 cortex	135	

further	revealed	sustained	ERC	decreases	from	the	left	motor	to	the	left	prefrontal	136	

cortex	 (LM->LPF)	 for	 allocentric	 navigators	 only.	 Additional	 sustained	 ERC	137	

increases	between	the	prefrontal	cortex	and	posterior	cortex	was	observed	(see	138	

supplementary	Figure	1),	from	the	left	parietal	to	the	left	prefrontal	cortex	(LP-139	
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>LPF).	 	140	

	141	

	 **********	insert	Figure	2	here	**********	142	

	143	

The	time	course	of	ERC	demonstrated	more	pronounced	information	flow	in	144	

the	theta	band	between	ACC	and	the	left	motor	cortex	(ACC<->LM)	for	egocentric	145	

participants	during	the	stimulus	turn	(see	Figure	2).	Reciprocal	ERC	in	the	alpha	146	

band	between	right	prefrontal	and	the	right	motor	cortex	(RPF<->RM)	increased	147	

during	 the	 stimulus	 turn	 and	 the	 following	 straight	 segments.	 For	 allocentric	148	

navigators,	in	contrast,	alpha	ERC	from	the	left	prefrontal	cortex	to	the	left	motor	149	

cortex	 (LPF->LM)	 was	 strongest	 during	 stimulus	 turns	 and	 part	 of	 straight	150	

segments	before	and	after	 the	 turn	 (see	Figure	2).	Allocentric	participants	also	151	

showed	reciprocal	 alpha	ERC	between	 the	 right	prefrontal	 cortex	and	 the	 right	152	

motor	cortex	(RPF<->RM)	mainly	during	straight	segments	(see	Figure	2).	 	153	

Stronger	 ERC	 increases	 were	 revealed	 in	 more	 posterior	 brain	 regions	154	

including	the	motor,	the	parietal,	and	the	occipital	cortex	as	well	as	the	RSC	(see	155	

Figure	3).	ERC	increases	in	the	alpha	band	were	found	between	motor	and	parietal	156	

areas	 during	 the	 complete	 path	 most	 pronounced	 for	 egocentric	 participants.	157	

Significant	reciprocal	alpha	ERCs	between	the	left	and	right	motor	cortices	(LM<-158	

>RM)	was	only	found	for	egocentric	participants	while	alpha	ERCs	between	the	159	

left	 and	 right	parietal	 cortices	 (LP<->RP)	were	more	pronounced	 in	 allocentric	160	

participants	 (bootstrapping,	 FDR-adjusted	 p	 <	 0.05).	 Both	 strategy	 groups	161	

demonstrated	stronger	intrahemispheric	ERC,	for	example,	reciprocal	alpha	ERC	162	
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between	the	parietal	and	motor	cortices	within	the	right	and	left	hemisphere	were	163	

more	pronounced	than	between	the	hemispheres.	The	left	parietal	cortex	showed	164	

more	 pronounced	ERC	with	 anterior	 regions	 such	 as	 the	 prefrontal	 and	motor	165	

cortices,	whereas	 the	 right	parietal	 cortex	showed	stronger	ERC	with	posterior	166	

regions	such	as	the	RSC	and	occipital	cortex	(see	supplementary	Figure	1).	This	167	

difference	 in	the	ERC	pattern	was	more	pronounced	for	allocentric	participants	168	

(bootstrapping,	FDR-adjusted	p	<	0.05).	169	

	170	

**********	insert	Figure	3	here	**********	171	

	172	

In	or	near	the	RSC,	ERC	flows	from	and	to	the	parietal	and	occipital	cortices	173	

comprised	 a	 wider	 frequency	 range,	 including	 the	 delta	 and	 alpha	 bands.	174	

Bidirectional	ERC	between	the	RSC	and	parietal	cortex	(RSC<->RP)	in	the	alpha	175	

and	 delta	 frequency	 bands	 was	 found	 for	 both	 allocentric	 and	 egocentric	176	

participants,	although	more	pronounced	in	allocentric	navigators	(bootstrapping,	177	

FDR-adjusted	p	<	0.05).	In	the	allocentric	group,	the	RSC	revealed	alpha	ERC	with	178	

the	 right	 parietal	 cortex	 (RSC->RP)	 before	 and	 during	 stimulus	 turns.	 The	RSC	179	

received	 weaker	 alpha	 flow	 from	 the	 right	 parietal	 cortex	 (PR->RSC).	 It	 is	180	

important	 to	 note	 that	 information	 flow	 between	 the	 RSC	 and	 parietal	 cortex	181	

increased	in	the	higher	alpha	band	(from	10	Hz	to	12	Hz)	before	stimulus	turns,	182	

whereas	it	increased	in	the	low	alpha	band	during	stimulus	turns	(see	Figure	3).	 	183	

Reciprocal	ERC	between	the	RSC	and	the	occipital	cortex	(RSC<->Occ)	in	the	184	

alpha	and	delta	 frequency	bands	was	 found	 for	both	allocentric	and	egocentric	185	
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navigators.	 Egocentric	 participants	 demonstrated	 reciprocal	 delta	 ERC	 during	186	

straight	segments,	before	and	after	stimulus	turns,	and	alpha	ERC	during	stimulus	187	

turns.	Allocentric	participants	demonstrated	sustained,	reciprocal	delta	and	alpha	188	

ERC	throughout	the	task.	In	addition,	strategy-specific	bidirectional	alpha	transfer	189	

between	 the	 RSC	 and	 the	 right	 motor	 cortex	 (RSC<->RM)	 was	 found	 only	 for	190	

egocentric	navigators	(see	Figure	3).	 	191	

	192	

2.3	Reference	frame-specific	differences	in	ERC	193	

	 Significant	ERC	differences	between	allocentric	and	egocentric	navigators	in	194	

distinct	frequency	bands	and	time	periods	of	the	navigation	task	are	illustrated	in	195	

Figure	4	and	Figure	5	for	the	anterior	and	the	posterior	network,	respectively.	 	196	

	197	

**********	insert	Figure	4	here	**********	198	

	199	

	 	 	 	 As	shown	in	Figure	4,	sustained	ERC	differences	in	the	alpha	band	were	found	200	

from	the	left	motor	to	the	left	prefrontal	cortex	(LM->LPF)	and	the	left	prefrontal	201	

cortex	 to	 the	 left	motor	cortex	 (LPF->LM).	Sustained	ERC	differences	were	also	202	

observed	in	the	delta	band	from	left	prefrontal	cortex	to	right	prefrontal	cortex	203	

(LPF->RPF)	and	around	25	Hz	from	the	left	and	the	right	prefrontal	cortex	to	the	204	

ACC	(LPF->ACC	&	RPF->ACC).	 	205	

	 Task-related	 ERC	 differences	 were	 observed	 during	 stimulus	 turns,	 with	206	

egocentric	navigators	demonstrating	significantly	increased	ERC	as	compared	to	207	

allocentric	navigators	between	ACC	and	the	left	motor	cortex	(ACC<->LM),	from	208	
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ACC	to	 the	right	prefrontal	cortex	(ACC->RPF)	 in	 theta	band	and	between	right	209	

prefrontal	 cortex	 and	 right	 motor	 cortex	 (RPF<->RM)	 in	 the	 alpha	 band.	210	

Egocentric	groups	also	showed	significantly	increased	ERC	in	alpha	band	from	the	211	

left	 motor	 cortex	 to	 the	 right	motor	 cortex	 (LM->RM)	 in	 the	 straight	 segment	212	

before	stimulus	turn	(bootstrapping,	FDR-adjusted	p	<	0.05).	213	

	 	 	 	 ERC	 differences	 in	 the	 delta	 and	 alpha	 band	 were	 found	 in	 the	 posterior	214	

network	as	showed	in	Figure	5	(bootstrapping,	FDR-adjusted	p	<	0.05).	Sustained	215	

significant	 ERC	 difference	 in	 alpha	 band	 between	 strategy	 groups	 were	 found	216	

between	the	left	parietal	cortex	and	left	motor	cortex	(LP<->LM)	and	the	left	and	217	

right	 parietal	 cortex	 (LP<->RP)	 (bootstrapping,	 FDR-adjusted	 p	 <	 0.05).	218	

Allocentric	participants	further	demonstrated	significantly	stronger	ERC	in	delta	219	

band	from	the	left	motor	cortex	to	left	parietal	cortex	(LM->LP)	over	all	navigation	220	

segments	(bootstrapping,	FDR-adjusted	p	<	0.05).	The	RSC	and	the	occipital	cortex,	221	

crucial	 regions	 for	 spatial	 navigation,	 revealed	 significant	 strategy	 dependent	222	

ERCs	with	other	brain	areas	(bootstrapping,	FDR-adjusted	p	<	0.05).	Allocentric	223	

navigators	showed	stronger	ERC	in	the	alpha	band	between	the	RSC	and	the	right	224	

parietal	cortex	as	well	as	the	occipital	cortex,	and	the	right	parietal	cortex	(RSC<-225	

>RP	&	Occ<->RP)	especially	during	stimulus	turns.	ERC	differences	between	the	226	

RSC	and	occipital	cortex	(RSC<->Occ)	were	revealed	in	the	delta	band	for	straight	227	

segments	before	and	after	the	turn	and	in	the	alpha	band	during	stimulus	turns.	228	

Moreover,	 ERC	 between	 the	 RSC	 and	 the	 right	 motor	 cortex	 (RSC<->RM)	 was	229	

significantly	stronger	for	egocentric	participants	(bootstrapping,	FDR-adjusted	p	230	

<	0.05).	231	
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	232	

**********	insert	Figure	5	here	**********	233	

	234	

3.	Discussion	235	

	 	 	 	 In	this	study,	we	found	ERC	flow	in	the	delta	(1–3.5	Hz),	theta	(4–7	Hz),	alpha	236	

(8–13	Hz),	and	beta	(14–30	Hz)	frequency	bands	in	the	human	navigation	network	237	

during	 virtual	 path	 integration.	 The	 dominant	 frequency	 characteristics	 of	 this	238	

network	 were	 in	 line	 with	 previous	 EEG	 studies	 demonstrating	 theta	 power	239	

increases	in	the	frontal	cortex	to	co-vary	with	alpha	power	changes	in	the	motor,	240	

parietal,	and	occipital	cortices	as	well	as	the	RSC	[Lin	et	al.,	2015;	Chiu	et	al.,	2012;	241	

Plank	et	al.,	2010;	Gramann	et	al.,	2010].	Other	studies	using	coherence	analysis	242	

also	revealed	increased	coherence	of	the	theta	and	alpha	frequency	bands	during	243	

navigation	 tasks	 [Li	 et	 al.,	 2009].	 Using	 sdDTF	we	 found	 direct	 Granger	 causal	244	

relationships	 between	 different	 brain	 regions	 that	 demonstrated	 task-related	245	

modulations	 and	 significant	differences	dependent	 on	 the	 reference	 frame	 that	246	

was	used	for	spatial	updating.	 	247	

The	results	allow	for	a	broad	classification	of	 two	functionally	distinct,	but	248	

overlapping	 cortical	 networks.	 One	 network,	 the	 anterior	 navigation	 network,	249	

demonstrated	significant	ERC	flows	between	anterior	areas	including	the	ACC	and	250	

bilateral	 prefrontal	 cortices,	 extending	 to	 the	 motor	 and	 parietal	 cortices	 (see	251	

Figure	4).	A	second	network,	the	posterior	navigation	network,	included	the	motor	252	

cortex	as	well	as	 the	parietal	and	occipital	cortices,	and	the	RSC	(see	Figure	5).	253	

These	results	are	in	line	with	anatomical	findings	[Brodmann,	2006;	Fuster,	2003;	254	
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Maguire,	2001;	Morris	et	al.,	2000;	Vann	et	al.,	2009]	and	underscore	the	central	255	

role	of	these	regions	within	the	navigation	network.	 	256	

	257	

3.1	Anterior	navigation	network	258	

	 	 	 	 The	frontal	cortex	is	crucial	for	working	memory	functions	and	plays	a	central	259	

role	in	various	tasks	including,	but	not	limited	to,	spatial	orientation	[Courtney	et	260	

al.,	1998;	Curtis,	2006;	Zanto	et	al.,	2011].	Imaging	studies	have	revealed	that	the	261	

demand	of	visuospatial	working	memory	is	reflected	by	increased	activity	within	262	

the	prefrontal	and	the	dorsolateral	prefrontal	cortices	[Barbey	et	al.,	2013].	In	this	263	

study,	we	have	shown	theta	connectivity	between	clusters	of	ICs	with	the	cluster	264	

centroids	located	in	or	near	the	ACC	and	the	right	and	left	dorsolateral	prefrontal	265	

cortices	for	both	strategy	groups	(see	Figure.	4).	The	positive	correlation	between	266	

the	 increased	 frontal	 theta	 power	 and	 the	 demanding	 navigation	 has	 been	267	

reported	in	the	previous	studies	[Caplan	et	al.,	2003;	Kahana	et	al.,	1999]	and	are	268	

in	line	with	recent	results	indicating	increased	prefrontal	cortex	activity	with	more	269	

complex	 navigation	 decisions	 [Javadi	 et	 al.,	 2017].	 Thus,	 the	 observed	 theta	270	

connectivity	 between	 the	 ACC	 and	 the	 right	 and	 left	 dorsolateral	 prefrontal	271	

cortices	points	to	varying	working	memory	demands	during	the	spatial	navigation	272	

task.	 	273	

The	dorsolateral	 prefrontal	 region	 further	demonstrated	 connectivity	with	274	

the	 motor	 cortex	 for	 both	 strategy	 groups.	 This	 finding	 is	 in	 line	 with	 the	275	

assumption	 that	 the	 dorsolateral	 prefrontal	 cortex	 is	 involved	 in	 various	 tasks	276	

requiring	higher	order	motor	planning	and	control	[Cieslik	et	al.,	2013;	Rowe	et	al.,	277	
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2005].	 Other	 studies	 have	 shown	 that	 first-person	 perspective	 navigation	 also	278	

activates	 the	 premotor	 cortex	 and	 parietal	 cortex,	 besides	 the	 dorsolateral	279	

prefrontal	 cortex	 [Baumgartner	 et	 al.,	 2008;	 Jäncke	 et	 al.,	 2009].	 Our	 results	280	

support	 the	 assumption	 that	 information	 exchange	 between	 the	 dorsolateral	281	

frontal	and	ipsilateral	motor	cortices	is	independent	of	the	reference	frame	used	282	

and	that	it	may	reflect	the	direction	of	attention	to	the	visual	motion	stimuli	[Curtis	283	

and	D’Esposito,	2003].	284	

Different	 aspects	 of	 the	 path	 integration	 task	 required	 working	 memory	285	

resources	to	maintain	and	update	orientation	changes	with	respect	to	the	starting	286	

position.	The	neural	basis	for	this	aspect	of	spatial	updating	was	provided	through	287	

a	network	involving	information	flow	between	the	ACC	and	dorsolateral	prefrontal	288	

cortex	in	the	theta	and	beta	frequency	bands.	Imagined	movement	and	integration	289	

of	 task-related	movement	 information	 involved	alpha	 connectivity	between	 the	290	

prefrontal,	motor,	and	parietal	cortices.	 	291	

	292	

3.2	Posterior	navigation	(RSC-related)	network	 	293	

	 	 	 	 In	 addition	 to	 the	 anterior	 navigation	 network,	 a	 posterior	 navigation	294	

network	revealed	the	RSC	to	be	causally	connected	with	the	motor	cortex	and	the	295	

parietal	and	occipital	cortices	(see	Figure	5).	In	our	previous	study,	we	found	co-296	

varying	power	changes	in	the	alpha	frequency	band	in	the	parietal	and	occipital	297	

cortices	 and	 the	 RSC,	 reflecting	 the	 involvement	 of	 these	 regions	 in	 spatial	298	

information	processing	 [Lin	 et	 al.,	 2015].	 The	present	 study	demonstrated	 this	299	

alpha	rhythm	to	provide	a	causal	connection	between	these	areas.	This	posterior	300	
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navigation	 network,	 with	 the	 RSC	 as	 a	 hub	 connecting	 functionally	 different	301	

regions,	 plays	 a	 vital	 role	 in	 allocentric	 and	 egocentric	 spatial	 information	302	

processing.	 	303	

The	RSC	has	been	implied	as	central	to	the	navigation	network	[Byrne	et	al.,	304	

2007;	Ino	et	al.,	2007;	Maguire,	2001;	Rosenbaum	et	al.,	2004;	Vann	et	al.,	2009],	305	

particularly	 with	 respect	 to	 the	 transformation	 of	 egocentric	 and	 allocentric	306	

information.	Several	authors	suggest	the	RSC	to	be	responsible	for	transforming	307	

idiothetic	spatial	information,	such	as	visual	flow	and	other	self-motion	cues,	into	308	

an	allocentric	representation	[Byrne	et	al.,	2007;	Dhindsa	et	al.,	2014;	Vann	et	al.,	309	

2009;	Zhang	et	al.,	2012].	 In	 this	 study,	we	observed	 that	 the	RSC	was	causally	310	

connected	with	the	parietal	and	occipital	cortices	during	path	integration,	mainly	311	

through	modulations	in	the	alpha	frequency	range.	In	addition,	we	observed	that	312	

alpha	 connectivity	 between	 the	 RSC	 and	 the	 occipital	 cortex	 was	 sustained	313	

throughout	the	navigation	period	and	more	pronounced	for	allocentric	navigators.	314	

Successful	 navigation	 required	 the	 participants	 to	 continuously	 maintain	 their	315	

position	changes	with	respect	to	the	origin	of	the	passage.	Sustained	ERC	flows	316	

between	the	RSC	and	occipital	cortex	during	straight	segments	arguably	reflect	the	317	

engagement	of	continuous	 integration	of	visual	 information	 from	a	 first-person	318	

perspective	into	an	allocentric	representation.	 	319	

In	contrast	to	straight	segments	that	provided	information	on	translational	320	

changes	without	changes	in	heading,	stimulus	turns	provided	information	only	on	321	

heading	changes	but	not	on	changes	in	position.	During	rotations	on	the	spot,	the	322	

RSC	 revealed	 the	 strongest	 causal	 connectivity	 with	 the	 parietal	 cortex	 for	323	
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allocentric	participants	(see	Figure	5).	Baumann	and	Mattingley	[2010]	found	that	324	

the	 medial	 parietal	 cortex	 was	 engaged	 in	 the	 computation	 of	 allocentric	325	

directions.	Recently,	Marchette	et	al.	[2014]	demonstrated	BOLD	activations	in	the	326	

RSC	 during	 encoding	 of	 allocentric	 heading	 directions.	 Taking	 these	 findings	327	

together,	 ERC	 flow	 in	 the	 alpha	 band	 between	 the	 RSC	 and	 parietal	 cortex	 is	328	

proposed	 to	 reflect	 the	 integration	 of	 changes	 in	 heading	 with	 respect	 to	 an	329	

allocentric	 heading	 direction.	 These	 findings	 support	 the	 idea	 that	 the	 RSC	 is	330	

crucial	for	allocentric	information	processing	and	that	the	connectivity	between	331	

the	RSC,	occipital,	and	parietal	cortices	reflects	network	activity	subserving	 the	332	

transformation	of	egocentric	information	into	an	allocentric	representation	based	333	

on	heading	information	provided	by	the	RSC	itself.	334	

In	rats,	the	RSC	was	found	to	transmit	spatial	information	to	anterior	brain	335	

regions,	 including	 the	 motor	 cortex,	 through	 direct	 anatomical	 connections	336	

[Shibata	et	 al.,	 2004;	White	et	 al.,	 2011].	The	human	RSC	 is	 located	within	and	337	

adjacent	to	the	dorsal	posterior	cingulate	cortex,	which	shows	extensive	efferent	338	

and	afferent	connections	with	cortical	areas	that	process	visuospatial	information	339	

and	 information	 on	 the	 orientation	 of	 the	 body	 in	 space	 via	 interaction	 with	340	

numerous	premotor	areas,	including	the	cingulate	motor	area	[Vogt	et	al.,	2006].	341	

Besides	strategy-related	connectivity	patterns,	delta	flows	between	the	RSC	and	342	

the	 occipital	 cortex	were	 found	during	 the	 complete	 navigation	phase	 for	 both	343	

strategy	groups.	The	delta	RSC–occipital	cortex	causal	 flow	possibly	reflects	the	344	

processing	of	first-person	perspective	movement	information	that	is	fed	from	the	345	

occipital	cortex	into	the	RSC	[Jacobs	et	al.,	2010].	Thus,	the	present	study	further	346	
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supports	the	emerging	idea	that	the	RSC	is	not	only	specialized	for	transforming	347	

egocentric	 and	 allocentric	 information	 into	 different	 reference	 frames	 but	 also	348	

serves	a	more	general	function	in	spatial	behavior	requiring	further	investigation.	349	

	350	

4.	Limitation	and	Conclusion	351	

Our	 work	 discovered	 a	 large-scale	 navigation	 network	 subserving	 spatial	352	

orientation	on	the	basis	of	egocentric	and	allocentric	SRFs.	A	number	of	caveats	353	

need	to	be	noted	regarding	the	current	research.	The	first	 limitation	is	the	data	354	

analysis.	Since	the	signal-to-noise	ratio	is	poor	in	EEG	data,	the	relative	processing	355	

methods	are	needed	 to	extract	 the	useful	 information	 from	EEG.	The	analysing	356	

methods	including	pre-processing,	noise	removal,	source	separation	and	location	357	

were	 also	 required	 to	 estimate	 the	 functional	 causalities	 by	 SIFT.	 The	 second	358	

limitation	is	the	subject	size.	This	navigation	network	shown	in	this	manuscript	359	

was	gained	through	two	sets	of	participants	who	finalized	the	designed	tasks	in	360	

the	well-control	laboratory.	361	

The	 network	 can	 be	 differentiated	 into	 two	 functionally	 distinct	 but	362	

overlapping	cortical	networks:	1)	an	anterior	navigation	network,	 including	the	363	

ACC	and	bilateral	prefrontal	cortices,	extending	to	the	motor	and	parietal	cortices	364	

and	2)	a	posterior	navigation	network,	with	the	RSC	as	the	central	hub	connected	365	

with	the	motor,	parietal,	and	occipital	cortices.	Spatial	orienting	recruited	both	the	366	

anterior	network	for	spatial	information	retention	and	motion	imagery/execution	367	

and	 the	 posterior	 network	 for	 processing	 and	 integration	 of	 visuospatial	368	

information.	The	RSC	demonstrated	strong	alpha	connectivity	with	the	occipital	369	
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and	parietal	cortices	most	pronounced	for	allocentric	participants,	supporting	the	370	

assumption	 that	 first-person	 sensory	 information	 is	 transformed	 into	 an	371	

allocentric	 spatial	 representation	 and	 vice	 versa	 through	 the	 RSC.	 This	 result	372	

strongly	supports	the	assumption	that	egocentric	and	allocentric	reference	frames	373	

are	active	in	parallel,	rather	than	the	assumption	that	only	one	reference	frame	is	374	

used	to	solve	the	task.	The	preferred	use	of	one	or	the	other	SRF	only	modulates	375	

the	strength	of	activation	and	connectivity	with	other	brain	areas.	376	

	377	

5.	Materials	and	Methods	378	

5.1	Homing	Task	379	

	 	 	 	 We	 used	 a	 VR	 path	 integration	 task	 with	 passive	 transportation	 during	380	

environments	with	clear	geometric	structure	and	rich	visual	flow	information	(for	381	

a	detailed	description	of	the	task	please	see	Lin	et	al.,	2015).	Participants	always	382	

started	from	the	same	position	(marked	by	star	in	Figure	6A)	in	the	VR	scenario	383	

and	were	passively	guided	along	different	trajectories	(as	shown	in	Figure	6).	All	384	

trajectories	were	composed	of	varying	numbers	of	straight	segments	of	the	same	385	

length	before	and	after	a	stimulus	turn.	All	stimulus	turns	were	90°	rotations	on	386	

the	spot,	 to	 the	 left	or	 the	 right.	The	participants	were	asked	 to	maintain	 their	387	

orientation	during	 the	navigation	phase	and	 to	point	back	 to	 the	 start	position	388	

(marked	by	star	in	Figure	6A)	at	the	end	of	a	passage.	The	National	Chiao	Tung	389	

University	(NCTU)	ethics	committee	approved	this	study.	390	

	391	

**********	insert	Figure	6	here	**********	392	
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	393	

Each	experimental	block	started	with	a	baseline	trial	 in	which	participants	394	

experienced	a	random	walk	through	the	maze	environment.	First,	for	2	s,	they	saw	395	

a	picture	of	an	arrow	pointing	 in	any	direction	between	−180°	and	180°.	Then,	396	

they	moved	through	the	maze	in	a	random	manner,	experiencing	translations	and	397	

rotations	for	1	min.	The	participants	required	to	focus	on	the	visual	flow	without	398	

actively	orienting.	After	the	random	walk	period,	a	response	arrow	was	displayed	399	

one	the	screen	and	the	participants	were	asked	to	adjust	 the	angle	of	arrow	to	400	

match	 the	 pointing	 direction	 of	 the	 initially	 presented	 arrow.	 The	 participants	401	

perceived	comparable	visual	flow	during	experimental	and	baseline	trials	without	402	

the	need	for	active	spatial	updating	during	the	baseline	condition	[Wolbers	et	al.,	403	

2007].	404	

	405	

5.2	EEG	Recording	and	Analysis	406	

	 	 Twenty-one	right-handed	male	participants	performed	the	task.	Participants	407	

were	categorized	as	allocentric	or	egocentric	navigators	based	on	their	responses	408	

after	 each	 trial	 resulting	 in	 9	 allocentric	 and	 12	 egocentric	 navigators	 (mean	409	

strategy-consistent	adjustments	=	98.4%,	sd	=	2.1%).	EEG	signals	were	recorded	410	

using	 64	 electrodes	 placed	 in	 an	 elastic	 cap	 according	 to	 the	 extended	 10-20	411	

system.	 EEG	 data	 were	 acquired	 by	 the	 Scan	 NuAmps	 Express	 system	412	

(Compumedics	Ltd.,	VIC,	Australia)	referenced	to	Cz	and	digitized	at	1	KHz	and	32-413	

bit	precision.	All	channels	had	impedances	below	5	kΩ.	 	414	
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	 	 The	recorded	signals	were	analyzed	with	EEGLAB	[Delorme	and	Makeig,	2004],	415	

first	down-sampled	to	250	Hz	and	then	filtered	to	remove	frequencies	below	0.5	416	

Hz	and	above	50	Hz.	The	acquired	signals	were	re-referenced	by	the	averaging	417	

values	 from	 the	 all	 channels.	 The	 filtered	 data	 were	 visually	 inspected	 and	418	

manually	cleaned	 in	 the	 time	and	 the	channel	domain.	Short	 time	periods	with	419	

bursts	of	higher	frequencies	resembling	muscle	artifacts	were	manually	marked	420	

and	subsequently	removed	from	the	continuous	data.	Eye	movements	were	not	421	

removed	 to	 allow	 independent	 component	 analysis	 (ICA)	 to	 decompose	 eye	422	

movement	related	activity.	The	channel	data	without	any	activity	over	longer	time	423	

periods	and	 the	channel	data	with	strong	deviation	 from	neighboring	channels	424	

were	 indicated	 as	 “dead	 channels”	 and	 “noisy	 channels”,	 respectively.	 This	425	

criterion	led	to	the	removal	of	4.4	channels	(3.2	sd)	per	participant.	426	

After	removing	artifacts,	adaptive	mixture	independent	component	analysis	427	

(AMICA)	[Palmer	et	al.,	2008]	was	applied	to	decompose	EEG	data	into	statistically	428	

maximally	 independent	 time	 source	 series	 (independent	 components,	 ICs),	429	

allowing	further	estimation	of	information	flow	between	ICs.	To	approximate	the	430	

spatial	origin	of	IC	activations,	an	equivalent	current	dipole	model	was	computed	431	

for	 each	 IC	 in	 a	 four-shell	 spherical	 head	 model	 using	 DIPFIT2	 routines	432	

[Oostenveld	and	Oostendorp,	2002].	Subsequently,	individual	ICs	were	clustered	433	

across	participants	based	on	the	time	course	of	event-related	potentials	(ERPs),	434	

mean	 IC	 log	 spectra,	 equivalent	 dipole	 locations,	 event-related	 spectral	435	

perturbation	(ERSP),	and	intertrial	coherence	(ITC),	replicating	the	setting	of	K-436	
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means	clustering	used	in	previous	studies	[Gramann	et	al.,	2010;	Chiu	et	al.,	2012;	437	

Lin	et	al.,	2015].	 	438	

From	an	 initial	 set	of	1,209	 ICs	of	 all	participants,	897	 ICs	with	a	 residual	439	

variance	of	the	equivalent	dipole	model	of	less	than	15%	were	clustered.	Finally,	440	

nine	clusters	with	a	total	of	171	ICs	were	identified	as	brain	sources	based	on	their	441	

locations	 in	 or	 near	 the	 grey	matter	 of	 the	 head	model.	 The	 reconstruction	 of	442	

sources	 based	 on	 EEG	 data	 provides	 only	 an	 approximation	 of	 the	 unknown	443	

source	locations	and	any	description	of	cortical	structures	is	based	on	an	estimate	444	

of	 the	 real	 source	 location.	 The	 centroids	 of	 these	 clusters	 were	 located	445	

throughout	the	brain	including	brain	regions	as	shown	in	Table	I.	 	446	

	447	

**********	insert	Table	I	here	**********	448	

	449	

5.3	Causality	Analysis	450	

	 	 	 	 IC	 time	 series	 were	 analyzed	 using	 the	 Source	 Information	 Flow	 Toolbox	451	

(SIFT)	[Delorme	et	al.,	2011;	Mullen	et	al.,	2010],	an	open	source	toolbox	for	brain	452	

connectivity	analysis.	Based	on	the	concept	of	causal	influence	as	put	forward	by	453	

Granger	 [1969],	 direct	 directed	 transfer	 function	 (dDTF)	 [Korzeniewska	 et	 al.,	454	

2003],	a	measurement	based	on	vector	autoregressive	(VAR)	models	was	used	to	455	

estimate	the	directionality	as	well	as	the	intensity	of	causal	interactions	in	brain	456	

dynamics	[Babiloni	et	al.,	2005;	Deshpande	et	al.,	2009;	Ginter	et	al.,	2005;	Kus	and	457	

Blinowska,	 2008].	 This	 approach	 determines	 the	 frequency	 band	 in	which	 the	458	

causal	 influence	 occurs	 and	 the	 short-time	 version	 of	 the	 algorithm	 [sdDTF;	 	459	
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Korzeniewska	et	al.,	2008],	and	related	methods	[Ding	et	al.,	2000]	are	capable	of	460	

capturing	the	temporal	evolution	of	direct	causal	influences	between	brain	regions	461	

and	 have	 been	 successfully	 applied	 to	 evaluate	 causal	 influences	 in	462	

electrophysiological	signals	such	as	EEG	[Iversen	et	al.,	2014;	Markman	et	al.,	2013]	463	

and	ECoG	[Korzeniewska	et	al.,	2003;	Mullen	et	al.,	2011].	464	

The	IC	signals	were	first	down-sampled	to	128	Hz	and	then	normalized	in	a	465	

2-step	 procedure.	 In	 the	 first	 step,	 data	were	 normalized	 across	 time	 for	 each	466	

epoch	by	subtracting	the	mean	and	dividing	by	the	standard	deviation	of	the	epoch	467	

data.	The	second	step	was	the	ensemble	normalization	of	data	across	epochs;	here,	468	

the	 ensemble	 average	 was	 subtracted	 from	 the	 data	 and	 then	 the	 result	 was	469	

divided	 by	 the	 ensemble	 standard	 deviation.	 Subsequently,	 a	 parametric	 linear	470	

vector	autoregressive	(VAR)	model	was	fitted	to	the	IC	signals	on	the	basis	of	a	471	

multivariate	least-squares	approach.	The	VAR	model	assumes	that	the	value	of	the	472	

multi-channel	time	series	at	a	given	time	point	depends	on	the	values	of	a	certain	473	

number	of	previous	 time	points.	The	number	of	previous	points	was	optimally	474	

selected	as	the	model	order	using	the	Akaike	Information	Criterion	[Akaike,	1974].	475	

The	“ARfit”	routine	in	SIFT	was	applied	to	the	IC	data	to	estimate	the	VAR	model	of	476	

order	15	with	a	sliding	window	of	500	ms	and	a	step	size	of	50	ms.	Subsequently,	477	

the	model	was	validated	by	tests	of	residual	whiteness	and	stability	[Lütkepohl,	478	

2005].	 Based	 on	 the	model	 coefficients,	 the	 short-time	 dDTF	was	 estimated	 to	479	

measure	the	causal	information	transferred	between	ICs	in	the	frequency	band	of	480	

1–50	 Hz	 for	 each	 overlapping	 sliding	 window,	 reflecting	 the	 dynamic	 time–481	

frequency	information	flow	between	the	brain	sources.	482	
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5.4	Statistical	Analysis	483	

	 	 	 	 The	two-way	ANOVA	statistical	test	and	post	hoc	Wilcoxon	signed-rank	test	484	

were	introduced	to	test	the	behavioural	information	(‘strategy’	x	‘end	Position’).	A	485	

mix-model	ANOVA	statistic	showed	that	the	turning	direction	had	no	impact	on	486	

homing	 angles,	 thus	 left	 and	 right	 turning	 trials	 were	 merged	 to	 investigate	487	

homing	performance	(homing	angles)	for	both	strategy	groups.	488	

	 	 	 	 Following	the	estimation	of	causality,	phase	randomization,	a	non-parametric	489	

surrogate	statistical	test	was	applied	with	FDR	correction	on	each	time-frequency	490	

point	of	the	sdDTF	matrix	to	find	significant	(p<0.05)	non-zero	causality	between	491	

signals.	The	phase	randomization	method	generated	a	null	surrogate	distribution	492	

containing	 zero-information-flow	 by	 randomizing	 the	 phases	 of	 IC	 signals	 but	493	

preserving	their	amplitudes	and	then	tested	the	measured	causality	against	this	494	

surrogate	 distribution	 for	 each	 time-frequency	 point	 [Theiler	 et	 al.,	 1992].	 To	495	

further	measure	 significant	 causal	 flow	 as	 compared	 to	 the	 baseline	 condition,	496	

bootstrapping	 tests	 with	 FDR	 correction	 were	 applied	 to	 each	 time-frequency	497	

point	of	sdDTF	matrix.	To	this	end	the	causality	values	of	the	baseline	condition	498	

were	subtracted	from	causality	values	of	navigation	segments	and	the	difference	499	

was	averaged	across	subjects	resulting	in	an	event-related	causality	(ERC)	matrix.	500	

Non-significant	 ERC-values	 were	 masked	 (using	 green	 color)	 and	 only	501	

significantly	deviations	from	the	baseline	condition	after	FDR	correction	(p<0.05)	502	

were	color-coded	(with	blue	colors	for	negative	values	and	red	colors	for	positive	503	

values).	 For	 the	analysis	of	differences	between	 strategy	groups	 (egocentric	 vs.	504	

allocentric	 navigators),	 bootstrapping	 test	 and	 FDR	 correction	were	 applied	 to	505	
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each	 time-frequency	 point	 of	 ERC	 of	 allocentric	 and	 egocentric	 navigators	 and	506	

significant	ERC-differences	were	color-coded	as	described	for	the	individual	ERCs.	507	

	508	
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Figure	Legend	761	

Figure	1:	(A)	Circular	mean	homing	responses	for	Allocentric	and	Egocentric	at	762	

the	 end	 position	 of	 a-i	 and	 a-i.	 Dotted	 gray	 line:	 Allocentric,	 solid	 gray	 line:	 	763	

Egocentric,	dotted	black	line:	mean	homing	response	across	Allocetric,	solid	black	764	

line:	mean	homing	response	across	Egocentric,	black	ticks:	correct	homing	angles	765	

for	Allocentric	and	Egocentric.	(B)	Mean	homing	angles	and	errors	in	different	end	766	

position.	Blue	line:	Egocentric,	red	line:	Allocentric,	black	line:	expected	homing	767	

response.	768	

	769	

Figure	2:	Time–frequency	distribution	of	significant	event-related	causality	(ERC)	770	

flow	 from	 each	 cluster	 (columns)	 to	 other	 clusters	 (rows)	 for	 the	 anterior	771	

navigation	network.	Because	ERC	flow	was	baseline-corrected,	values	range	from	772	

-1	to	1	instead	of	0	(no	granger	causal	flow)	to	1	(maximum	granger	causal	flow).	773	

The	scale	for	x	and	y	axes	is	labeled	in	the	bottom	right	of	the	figure.	The	bottom	774	

row	 shows	 the	 sequential	 passage	 steps	 for	 both	 strategy	 groups:	 (straight)	775	

passively	 moving	 forward	 by	 following	 the	 guiding	 arrow,	 (decelerate)	776	

approaching	the	turning	point	and	slowing	down	for	turning,	(turn)	turning	on	the	777	

spot,	(straight)	following	the	guiding	arrow	and	moving	forward	again,	and	(end)	778	

approaching	the	end	and	slowing	down	to	stop.	ACC,	anterior	cingulate	cortex;	LPF,	779	

left	prefrontal	cortex;	RPF,	right	prefrontal	cortex;	LM,	left	motor	cortex;	RM,	right	780	

motor	cortex.	781	

	782	

Figure	3:	Time–frequency	distribution	of	significant	event-related	causality	(ERC)	783	
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flow	 from	 each	 cluster	 (columns)	 to	 other	 clusters	 (rows)	 for	 the	 posterior	784	

navigaiton	network.	The	bottom	row	shows	the	sequential	passage	steps	for	both	785	

strategy	 groups:	 (straight)	 passively	 moving	 forward	 by	 following	 the	 guiding	786	

arrow,	(decelerate)	approaching	the	turning	point	and	slowing	down	for	turning,	787	

(turn)	 turning	 on	 the	 spot,	 (straight)	 following	 the	 guiding	 arrow	 and	moving	788	

forward	again,	and	(end)	approaching	the	end	and	slowing	down	to	stop.	LM,	left	789	

motor	 cortex;	RM,	 right	motor	 cortex;	 LP,	 left	 parietal	 cortex;	RP,	 right	 parietal	790	

cortex;	RSC,	retrosplenial	complex;	Occ,	occipital	cortex.	791	

	792	

Figure	4:	Time–frequency	distribution	of	significant	differences	in	event-related	793	

causality	(ERC)	flow	for	the	anterior	navigation	network	computed	by	subtracting	794	

ERC	 of	 egocentric	 participants	 from	ERC	 of	 allocentric	 participants.	 The	 figure	795	

layout	is	same	as	Figure	3.	ACC,	anterior	cingulate	cortex;	LPF,	left	prefrontal	cortex;	796	

RPF,	right	prefrontal	cortex;	LM,	left	motor	cortex;	RM,	right	motor	cortex.	797	

	798	

Figure	5:	Time–frequency	distribution	of	significant	differences	in	event-related	799	

causality	 (ERC)	 flow	 for	 the	 posterior	 navigation	 network	 computed	 by	800	

subtracting	ERC	of	egocentric	participants	 from	ERC	of	allocentric	participants.	801	

The	figure	layout	is	same	as	Figure	3.	LM,	left	motor	cortex;	RM,	right	motor	cortex;	802	

LP,	left	parietal	cortex;	RP,	right	parietal	cortex;	RSC,	retrosplenial	complex;	Occ,	803	

occipital	cortex.	804	

	805	

Figure	6:	An	illustration	of	the	experimental	design.	(A)	The	virtual	maze	was	a	806	
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grid-like	 navigation	 environment	 with	 irregular	 stonewalls	 and	 roads.	 The	807	

participants	were	guided	along	different	possible	paths	(one	example	indicated	by	808	

the	gray	dotted	line)	from	the	starting	location	(star)	to	an	end	position	(circle).	809	

(B)	 Illustration	 of	 homing	 responses	 of	 the	 allocentric	 (dark	 gray	 head)	 and	810	

egocentric	 (light	 gray	 head)	 participants	 for	 a	 rightward	 turn.	 The	 homing	811	

directions	for	such	a	rightward	path	differed	between	the	strategy	groups,	with	812	

the	 egocentric	 participants	 pointing	back	 and	 to	 their	 right	 and	 the	 allocentric	813	

participants	pointing	back	and	to	their	 left.	(C)	Screenshots	of	the	homing	task.	814	

The	homing	task	required	the	participants	to	maintain	their	orientation	during	the	815	

navigation	phase	for	6–14	s	depending	on	the	path	length	until	the	end	position	816	

was	reached.	After	the	navigation	phase,	a	3D	homing	arrow	was	displayed	and	817	

the	 participants	were	 required	 to	 point	 the	 homing	 direction	 by	 adjusting	 the	818	

arrow.	819	

	820	

Supplementary	Figure	1:	Time–frequency	distribution	of	 significant	ERC	 flow	821	

from	 each	 cluster	 (columns)	 to	 other	 clusters	 (rows)	 for	 all	 selected	 clusters.	822	

Figure	 layout	 is	 the	 same	 as	 Figure.	 2.	 ACC,	 anterior	 cingulate	 cortex;	 LF,	 left	823	

prefrontal	 cortex;	 RF,	 right	 prefrontal	 cortex;	 LM,	 left	 motor	 cortex;	 RM,	 right	824	

motor	cortex;	LP,	left	parietal	cortex;	RP,	right	parietal	cortex;	RSC,	retrosplenial	825	

complex;	Occ,	occipital	cortex.	826	

	827	

	828	

	829	
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Figures	831	
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Tables	841	

Table	I	Centroids	of	IC	clusters	and	the	brain	region	842	

	 X	 Y	 Z	 Brain	Region	

Cls	1	 -1	 37	 33	 anterior	cingulate	cortex	(ACC)	
Cls	2	 -22	 9	 40	 left	prefrontal	cortex	(LPF)	
Cls	3	 26	 15	 42	 right	prefrontal	cortex	(RPF)	
Cls	4	 -41	 -16	 44	 left	motor	cortex	(LM)	
Cls	5	 40	 -19	 44	 right	motor	cortex	(RM)	
Cls	6	 -17	 -37	 42	 left	parietal	cortex	(LP)	
Cls	7	 12	 -41	 39	 right	parietal	cortex	(RP)	
Cls	8	 12	 -57	 6	 retrosplenial	complex	(RSC)	
Cls	9	 7	 -87	 24	 occipital	cortex	(Occ)	

	843	




