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Abstract: In this article, we investigate the inverse problem of identification of a discontinuous parameter
and a discontinuous boundary datum to an elliptic inclusion problem involving a double phase differential
operator, a multivalued convection term (a multivalued reaction term depending on the gradient), a multi-
valued boundary condition and an obstacle constraint. First, we apply a surjectivity theorem for multi-
valued mappings, which is formulated by the sum of a maximal monotone multivalued operator and a
multivalued pseudomonotone mapping to examine the existence of a nontrivial solution to the double
phase obstacle problem, which exactly relies on the first eigenvalue of the Steklov eigenvalue problem for
the p-Laplacian. Then, a nonlinear inverse problem driven by the double phase obstacle equation is
considered. Finally, by introducing the parameter-to-solution-map, we establish a continuous result of
Kuratowski type and prove the solvability of the inverse problem.
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1 Introduction

The aim of this article is to study an inverse problem to an elliptic differential inclusion problem involving a
double phase differential operator, a multivalued convection term (dependence on the gradient of the
solution), a multivalued boundary condition and an obstacle constraint. To this end, let Ω be a bounded
domain in �N ( ≥N 2) with Lipschitz boundary ≔ ∂Γ Ω such that Γ is divided into three mutually disjoint
parts Γ1, Γ2 and Γ3 with Γ1 having positive Lebesgue measure. We study the problem
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where < <p N1 , <p q, [ )→ ∞μ : Ω 0, is a bounded function,
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with ν being the outward unit normal vector on Γ, � � �
× × →f : Ω 2N and � �

× →U : Γ 23 are two given
multivalued functions, �→Φ : Ω is an obstacle function and ( )→ +∞a : Ω 0, , �→h : Γ2 are two pos-
sibly discontinuous parameters.

The main contribution of this article is twofold. The first intention of the article is to establish the
nonemptiness, boundedness and closedness of the solution set to problem (1.1) (in the weak sense), in
which our main methods are based on a surjectivity theorem for multivalued mappings, which is formu-
lated by the sum of a maximal monotone multivalued operator and a multivalued pseudomonotone map-
ping, the theory of nonsmooth analysis and the properties of the Steklov eigenvalue problem for the
p-Laplacian. The second contribution of the article is to develop a general framework for studying the
inverse problem under consideration and to establish the solvability for such inverse problems. To the best
of our knowledge, this is the first work studying the identification of discontinuous parameters for such
general nonlinear elliptic equations. The problem under consideration combines several interesting phe-
nomena such as double phase operators, multivalued right-hand sides, mixed boundary conditions and
obstacle constraints.

First we point out that, motivated by several applications, the inverse problem of parameter identifica-
tion in partial differential equations is an important field in mathematics and even though such problems in
form of equations and inequalities have been studied a lot, there are still several open problems to be
solved. Our work is motivated by the article of Migórski et al. [39], who studied the inverse problem of mixed
quasi-variational inequalities of the form

( ) ( ) ( ) ( )⟨ − ⟩ + − ≥ ⟨ − ⟩ ∈T a u v u φ v φ u m v u v K u, , , for all ,

where →K C: 2C is a set-valued map, × →
∗T B V V: is a nonlinear map, � { }→ ∪ +∞φ V: is a func-

tional and ∈
∗m V , whileV is a real reflexive Banach space, B is another Banach space andC is a nonempty,

closed, convex subset of V . Their abstract result applies to p-Laplacian inequalities, see also [38] for
hemivariational inequalities. We also mention the works of Clason et al. [10] for noncoercive variational
problems, Gwinner [27] for variational inequalities of second kind, Gwinner et al. [28] for an optimization
setting andMigórski and Ochal [40] for nonlinear parabolic problems, see also references therein. In addition,
we refer to the recent work of Papageorgiou and Vetro [45] about existence and relaxation theorems for
different types of problems which can be applied to variational inequalities and control systems.

A second interesting phenomenon is the occurrence of the weighted double phase operator, namely,

�( ( )∣ ∣ ( )∣ ∣ ) ( )∇ ∇ + ∇ ∇ ∈
− −a x u u μ x u u u Wdiv for Ω .p q2 2 1, (1.2)

For ≡a 1, this operator corresponds to the energy functional given by

(∣ ∣ ( )∣ ∣ )∫ ∇ + ∇u μ x u xd .p q

Ω
(1.3)

Functionals of the form (1.3) have been initially introduced by Zhikov [56] in 1986 in order to describe
models for strongly anisotropic materials and it also turned out its relevance in the study of duality theory
as well as in the context of the Lavrentiev phenomenon, see Zhikov [57]. Observe that the energy density in
(1.3) changes its ellipticity and growth properties according to the point in the domain. In general, double
phase differential operators and corresponding energy functionals interpret various comprehensive natural
phenomena and model several problems in Mechanics, Physics and Engineering Sciences. For example, in
the elasticity theory, the modulating coefficient ( )⋅μ dictates the geometry of composites made of two
different materials with distinct power hardening exponents p and q, see Zhikov [58]. Functionals given
in (1.3) have been intensively studied in the last few years concerning regularity of local minimizers. We
mention the famous works of Baroni et al. [2,3], Byun and Oh [7], Colombo and Mingione [12,13], Marcellini
[36,37] and Ragusa and Tachikawa [49].
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A third interesting phenomenon is not only the multivalued right-hand side, which is motivated by
several physical applications (see, e.g., Panagiotopoulos [42,43], Carl and Le [8] and references therein) but
also its dependence on the gradient of the solutions often called convection term. The main difficulty in the
study of gradient dependent right-hand sides is their nonvariational character, that is, the standard varia-
tional tools to the corresponding energy functionals are not applicable. In the past few years, several
interesting works have been published with convection terms, we refer to the papers of El Manouni et al.
[16], Faraci et al. [17], Faraci and Puglisi [18], Figueiredo and Madeira [20], Gasiński and Papageorgiou [23],
Liu et al. [32], Liu and Papageorgiou [33], Marano and Winkert [35], Papageorgiou et al. [44] and Zeng and
Papageorgiou [55].

Finally, we mention some existence results on the recent topic of double phase operators published
within the last few years. We refer to Bahrouni et al. [1], Benslimane et al. [4], Biagi et al. [5], Colasuonno
and Squassina [11], Fiscella [21], Farkas and Winkert [19], Gasiński and Papageorgiou [22], Gasiński and
Winkert [24–26], Liu and Dai [31], Liu and Winkert [34], Papageorgiou et al. [46], Perera and Squassina
[48], Stegliński [51] and Zeng et al. [52–54].

This article is organized as follows. Section 2 recalls preliminary material including Musielak-Orlicz
Lebesgue and Musielak-Orlicz Sobolev spaces, the p-Laplacian eigenvalue problem with Steklov boundary
condition, pseudomonotone operators and a surjectivity theorem for multivalued mappings. Under very
general assumptions on the data, Section 3 proves the nonemptiness and compactness of the solution set to
problem (1.1). In Section 4, we present a new existence result to the inverse problem of (1.1).

2 Preliminaries

This section is devoted to recall some basic definitions and preliminaries, which will be used in the next
sections to derive the main results of the article. To this end, let �⊂Ω N be a bounded domain with Lipschitz
boundary ≔ ∂Γ Ω such that Γ is decomposed into three mutually disjoint parts Γ1, Γ2 and Γ3 with Γ1 having
positive Lebesgue measure. In what follows, we denote by ( )M Ω the space of all measurable functions

�→u : Ω . As usual, we identify two functions which differ on a Lebesgue-null set. Let [ )∈ ∞r 1, and D be
a nonempty subset of Ω. We denote the usual Lebesgue spaces by �( ) ( )≔L D L D;r r and �( )L D;r N equipped
with the standard r-norm ‖⋅‖r D, and ( )L Γr stands for the boundary Lebesgue spaces with norm ‖⋅‖r,Γ.

Let ( ) { ( ) ( ) }≔ ∈ ≥ ∈+L D u L D u x x: 0 for a.a. Ωr r . By ( )W Ωr1, we define the corresponding Sobolev
space endowed with the norm ‖⋅‖ r1, ,Ω given by
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Let us comment on the r-Laplacian eigenvalue problem with Steklov boundary condition given by
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for < < ∞r1 . From Lê [30] we know that (2.2) has a smallest eigenvalue >λ 0r
S
1, , which is isolated and

simple. Besides, we know that >λ 0r
S
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The following assumptions are supposed in the entire article:

( ) ( )< < < < ≤ ⋅ ∈
∗ ∞p N p q p μ L1 , and 0 Ω . (2.4)

Now we define the nonlinear function � [ ) [ )× ∞ → ∞: Ω 0, 0, given by

�( ) ( ) ( ) [ )= + ∈ × ∞x t t μ x t x t, for all , Ω 0, .p q

Then, the Musielak-Orlicz Lebesgue space � ( )L Ω driven by the function � is given by
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We know that � ( )L Ω is uniformly convex and so a reflexive Banach space. Moreover, we introduce the
seminormed space ( )L Ωμ
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The Musielak-Orlicz Sobolev space � ( )W Ω1, is given by

� � �( ) { ( ) ∣ ∣ ( )}= ∈ ∇ ∈W u L u LΩ Ω : Ω1,

equipped with the norm

� � �‖ ‖ = ‖∇ ‖ + ‖ ‖u u u ,1,

where � �∣ ∣‖∇ ‖ = ‖ ∇ ‖u u . As before, it is known that � ( )W Ω1, is a reflexive Banach space.
Next, we introduce a closed subspace V of � ( )W Ω1, given by

�{ ( ) }≔ ∈ =V u W uΩ : 0 on Γ1,
1

endowed with the norm �‖ ‖ = ‖ ‖u uV 1, for all ∈u V . Of course, V is also a reflexive Banach space. In the
following, we denote the norm of the dual space ∗V of V by ‖⋅‖ ∗V .

Let us recall some embedding results for the spaces � ( )L Ω and � ( )W Ω1, , see Gasiński and Winkert [26]
or Crespo-Blanco et al. [14].

Proposition 2.1. Let (2.4) be satisfied and denoted by ∗p , ∗p the critical exponents to p as given in (2.1)
for =s p.
(i) � ( ) ( )↪L LΩ Ωr and � ( ) ( )↪W WΩ Ωr1, 1, are continuous for all [ ]∈r p1, ;

(ii) � ( ) ( )↪W LΩ Ωr1, is continuous for all [ ]∈
∗r p1, and compact for all [ )∈

∗r p1, ;

(iii) � ( ) ( )↪W LΩ Γr1, is continuous for all [ ]∈ ∗r p1, and compact for all [ )∈ ∗r p1, ;

(iv) � ( ) ( )↪L LΩ Ωμ
q is continuous;

(v) �( ) ( )↪L LΓ Ωq is continuous.
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We point out that if we replace the space � ( )W Ω1, byV in Proposition 2.1, then the embeddings (ii) and
(iii) remain valid.

The following proposition is due to Liu and Dai [31, Proposition 2.1].

Proposition 2.2. Let (2.4) be satisfied and let � ( )∈y L Ω . Then the following hold:

(i) if ≠y 0, then �‖ ‖ =y λ if and only if
� ( ) =ρ 1y

λ ;

(ii) �‖ ‖ <y 1 (resp. >1 and =1) if and only if
�

( ) <ρ y 1 (resp. >1 and =1);
(iii) if �‖ ‖ <y 1, then

� � �
( )‖ ‖ ≤ ≤ ‖ ‖y ρ y yq p ;

(iv) if �‖ ‖ >y 1, then
� � �

( )‖ ‖ ≤ ≤ ‖ ‖y ρ y yp q ;

(v) �‖ ‖ →y 0 if and only if
�

( ) →ρ y 0;
(vi) �‖ ‖ → +∞y if and only if

�
( ) → +∞ρ y .

We suppose that

( ) ( )∈ >
∞

∈

a L a xΩ such that inf 0.
x Ω (2.5)

Next, we introduce the nonlinear operator →
∗F V V: given by
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− − − −F u v a x u u μ x u u v x u u μ x u u v x, d d ,p q p q

Ω

2 2

Ω

2 2 (2.6)

for ∈u v V, with ⟨⋅ ⋅⟩, being the duality pairing betweenV and its dual space ∗V . The following proposition
states the main properties of →

∗F V V: . We refer to Liu and Dai [31, Proposition 3.1] or Crespo-Blanco et al.
[14, Proposition 3.4] for its proof.

Proposition 2.3. Let hypotheses (2.4) and (2.5) be satisfied. Then, the operator F defined by (2.6) is bounded,
continuous, monotone (hence maximal monotone) and of type ( )+S , that is,

⟶ ⟨ − ⟩ ≤

→∞

u u in V and Fu u ulimsup , 0,n
w

n
n n

imply →u un in V .

We now recall some notions and results concerning nonsmooth analysis and multivalued analysis.

Throughout the article the symbols “ ⟶
w

” and “→” stand for the weak and the strong convergence,
respectively, in various spaces. Moreover, let us recall the notions of pseudomonotonicity and generalized
pseudomonotonicity in the sense of Brézis for multivalued operators (see, e.g., Migórski et al. [41, Definition
3.57]), which will be useful in the sequel.

Definition 2.4. Let X be a reflexive real Banach space. The operator →
∗A X: 2X is called

(a) pseudomonotone (in the sense of Brézis) if the following conditions hold:
(i) the set ( )A u is nonempty, bounded, closed and convex for all ∈u X;
(ii) A is upper semicontinuous from each finite-dimensional subspace of X to the weak topology

on ∗X ;

(iii) if { } ⊂u Xn with ⟶u un
w

in X and ( )∈
∗u A un n are such that

⟨ − ⟩ ≤

→∞

∗

×
∗u u ulimsup , 0,

n
n n X X

then to each element ∈v X, there exists ( ) ( )∈
∗u v A u with

( )⟨ − ⟩ ≤ ⟨ − ⟩
∗

×

→∞

∗

×
∗ ∗u v u v u u v, liminf , ;X X

n
n n X X
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(b) generalized pseudomonotone (in the sense of Brézis) if the following holds: Let { } ⊂u Xn and { } ⊂
∗ ∗u Xn

with ( )∈
∗u A un n . If ⟶u un

w
in X and ⟶

∗ ∗u un
w

in ∗X and

⟨ − ⟩ ≤

→∞

∗

×
∗u u ulimsup , 0,

n
n n X X

then the element ∗u lies in ( )A u and

⟨ ⟩ → ⟨ ⟩
∗

×
∗

×
∗ ∗u u u u, , .n n X X X X

It is not difficult to see that every pseudomonotone operator is generalized pseudomonotone, see, e.g.,
Carl et al. [9, Proposition 2.122]. Also, under an additional assumption of boundedness, we obtain the
converse statement, see, e.g., Carl et al. [9, Proposition 2.123].

Proposition 2.5. Let X be a reflexive real Banach space and assume that →
∗A X: 2X satisfies the following

conditions:
(i) for each ∈u X we have that ( )A u is a nonempty, closed and convex subset of ∗X .

(ii) →
∗A X: 2X is bounded.

(iii) A is generalized pseudomonotone, i.e., if ⟶u un
w

in X and ⟶
∗ ∗u un

w
in ∗X with ( )∈

∗u A un n and

⟨ − ⟩ ≤

→∞

∗

×
∗u u ulimsup , 0,

n
n n X X

then ( )∈
∗u A u and

⟨ ⟩ → ⟨ ⟩
∗

×
∗

×
∗ ∗u u u u, , .n n X X X X

Then the operator →
∗A X: 2X is pseudomonotone.

Let us now recall the definition of Kuratowski limits, see, e.g., Papageorgiou and Winkert [47, Defini-
tion 6.7.4].

Definition 2.6. Let ( )X τ, be a Hausdorff topological space and let �{ } ⊂∈A 2n n
X be a sequence of sets. We

define the τ-Kuratowski lower limit of the sets An by

⎧
⎨⎩

⎫
⎬⎭

- ≔ ∈ = - ∈ ≥
→∞ →∞

τ A x X x τ x x A nliminf : lim , for all 1 ,
n

n
n

n n n

and the τ-Kuratowski upper limit of the sets An

⎧
⎨⎩

⎫
⎬⎭

- ≔ ∈ = - ∈ < < …< < …

→∞ →∞

τ A x X x τ x x A n n nlimsup : lim , , .
n

n
k

n n n k1 2k k k

If

= - = -
→∞ →∞

A τ A τ Aliminf limsup ,
n

n
n

n

then A is called τ-Kuratowski limit of the sets An.

Finally, we recall the following surjectivity theorem for multivalued mappings, which is formulated by
the sum of a maximal monotone multivalued operator and a bounded multivalued pseudomonotone map-
ping, see Le [29, Theorem 2.2].

Theorem 2.7. Let X be a real reflexive Banach space, let � �( ) ⊂ →
∗D X: 2X be a maximal monotone

operator, let � �( ) = →
∗D X: 2X be a bounded multivalued pseudomonotone operator, let � ∈

∗X and let
( ) { }≔ ∈ ‖ ‖ <B u X u R0 :R X . Assume that there exist ∈u X0 and ≥ ‖ ‖R u X0 such that �( ) ( )∩ ≠ ∅D B 0R and

�⟨ + − − ⟩ >×
∗ξ η u u, 0X X0 (2.7)
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for all �( )∈u D with ‖ ‖ =u RX , for all �( )∈ξ u and for all �( )∈η u . Then the inclusion

� � �( ) ( )+ ∋u u

has a solution in �( )D .

Obviously, if

�( )

⟨ + − ⟩

‖ ‖

= +∞
‖ ‖ →+∞

∈

×
∗ξ η u u

u
lim ,

u
u D

X X

X

0

X (2.8)

is satisfied, then the estimate in (2.7) holds automatically for some R large enough.

3 Double phase elliptic obstacle inclusion problem

In this section, we are interested in the study of the existence of a solution to the double phase elliptic
obstacle inclusion problem (1.1) and in deriving some relevant properties of the solution set to problem (1.1).
More precisely, we are going to apply a surjectivity theorem for multivalued mappings, which is formulated
by the sum of a maximal monotone multivalued operator and a multivalued pseudomonotone operator, to
examine the solvability of problem (1.1).

First, we formulate the hypotheses on the data of problem (1.1).
H(f): The multivalued convection mapping � � �

× × →f : Ω 2N has nonempty, bounded, closed and
convex values and
(i) the multivalued mapping ( )↦x f x s ξ, , is measurable in Ω for all � �( ) ∈ ×s ξ, N ;
(ii) the multivalued mapping ( ) ( )↦s ξ f x s ξ, , , is upper semicontinuous for a.a. ∈x Ω;

(iii) there exist ( )∈ +
−α L Ωf
r

r 1 and ≥a b, 0f f such that

∣ ∣ ∣ ∣ ∣ ∣ ( )
( )

≤ + +
−

−

η a ξ b s α x ,f f
r

f
1p r

r
1

for all ( )∈η f x s ξ, , , for all �∈s , for all �∈ξ N and for a.a. ∈x Ω, where < <
∗r p1 with the

critical exponent ∗p in the domain Ω given in (2.1) for =s p;
(iv) there exist ( )∈ +β L Ωf

1 and constants cf , ≥d 0f such that

∣ ∣ ∣ ∣ ( )≤ + +ηs c ξ d s β x ,f
p

f
p

f

for all ( )∈η f x s ξ, , , for all �∈s , for all �∈ξ N and for a.a. ∈x Ω.

H(g): The function � �× →g : Ω is such that
(i) for all �∈s , the function ( )↦x g x s, is measurable;
(ii) for a.a. ∈x Ω, the function ( )↦s g x s, is continuous;
(iii) there exist >a 0g and ( )∈b L Ωg

1 such that

( ) ∣ ∣ ( )≥ −g x s s a s b x, ,g
ς

g

for all �∈s and for a.a. ∈x Ω, where < <
∗p ς p ;

(iv) for any ( )∈
∗u v L, Ωp , the function ( ( )) ( )↦x g x u x v x, belongs to ( )L Ω1 .

H(Φ): The function [ )→ ∞Φ : Ω 0, is measurable, that is, ( )∈ MΦ Ω .

H(U): � �
× →U : Γ 23 satisfies the following conditions:

(i) ( )U x s, is a nonempty, bounded, closed and convex set in � for a.a. ∈x Γ3 and for all �∈s ;
(ii) ( )↦x U x s, is measurable on Γ3 for all �∈s ;
(iii) ( )↦s U x s, is u.s.c.;
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(iv) there exist ( )∈
′

+α L ΓU
δ

3 and ≥a 0U such that

∣ ( )∣ ( ) ∣ ∣≤ +
−U x s α x a s, U U

δ 1

for a.a. ∈x Γ3 and for all �∈s , where < < ∗δ p1 with the critical exponent ∗p on the boundary Γ
given in (2.1);

(v) there exist ( )∈ +β L ΓU
1

3 and ≥b 0U such that

∣ ∣ ( )≤ +ξs b s β xU
p

U

for all ( )∈ξ U x s, , for all �∈s and for a.a. ∈x Γ3.

H(0): ( )∈
∞a L Ω is such that ( ) ≥ >∈ a x cinf 0x Ω Λ and ( )∈

′h L Γp
2 .

H(1): The inequality holds

( )− − >
−c c b λ 0,f U p

S
Λ 1,

1

where λ p
S
1, is the first eigenvalue of the p-Laplacian with Steklov boundary condition, see (2.2)

and (2.3).

Remark 3.1. It should be mentioned that if hypotheses H( f )(iv) and H(U )(v) are replaced by the following
conditions:
H(f)(iv)’: there exist ( )∈ +β L Ωf

1 and constants cf , ≥d 0f such that

∣ ∣ ∣ ∣ ( )≤ + +ηs c ξ d s β xf f
p

f
ϱ1

for all ( )∈η f x s ξ, , , for all �∈s , for all �∈ξ N and for a.a. ∈x Ω, where < < p1 ϱ1 ;
H(U)(v)’: there exist ( )∈ +β L ΓU

1
3 and ≥b 0U such that

∣ ∣ ( )≤ +ξs b s β xU U
ϱ2

for all ( )∈ξ U x s, , for all �∈s and for a.a. ∈x Γ3, where < < p1 ϱ2 ,

then hypothesis H(1) can be removed. Indeed, it follows from Young’s inequality with >ε 0 that

∣ ∣ ∣ ∣ ( ) ∣ ∣ ( ) ∣ ∣ ( )

∣ ∣ ( ) ∣ ∣ ( ) ( )

≤ + + ≤ + + +

≤ + ≤ + +

ηs c ξ d s β y ε ξ c ε d s β y
ξs b s β x ε s c ε β x

f f
p

f
p

f
p

f

U U
p

U

ϱ
1

ϱ
2

1

2

for all ( )∈η f y s ξ, , , for all ( )∈ξ U x s, , for all �∈s , for all �∈ξ N , for a.a. ∈y Ω and for a.a. ∈x Γ3 with
some ( ) ( ) >c ε c ε, 01 2 . If we choose ⎛

⎝
⎞
⎠( )

∈
+

−
ε 0, c

λ1 p
S

Λ

1,
1 , then the inequality in H(1) holds automatically.

Let K be a subset of V given by

{ }≔ ∈ ≤K v V v: Φ in Ω . (3.1)

Under H(Φ) we see that the set K is a nonempty, closed and convex subset of V . In fact, from H(Φ) (i.e.,
( ) ≥xΦ 0 for a.a. ∈x Ω), we know that ∈ K0 , i.e., ≠ ∅K . Furthermore, it is clear that K is convex. For the

closedness, let �{ } ⊂∈u Kn n be a sequence such that →u un in V for some ∈u V . The continuity of V into
( )L Ωp implies that →u un in ( )L Ωp . Passing to a subsequence if necessary, we may suppose that
( ) ( )→u x u xn for a.a. ∈x Ω. Therefore,

( ) ( ) ( )≥ = ∈
→∞

x u x u x xΦ lim for a.a. Ω.
n

n

Hence, ∈u K and so K is closed.
Next, we state the definition of a weak solution to problem (1.1).
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Definition 3.2. A function ∈u K is said to be a weak solution of problem (1.1), if there exist functions

( )∈
′η L Ωr and ( )∈

′ξ L Γδ
3 with ( ) ( ( ) ( ))∈ ∇η x f x u x u x, , for a.a. ∈x Ω, ( ) ( ( ))∈ξ x U x u x, for a.a. ∈x Γ3 and the

equality

( ( )∣ ∣ ( )∣ ∣ ) ( ) ( )( ) ( )∣ ∣ ( )

( )( ) ( )( ) ( )( )

∫ ∫ ∫

∫ ∫ ∫

∇ ∇ + ∇ ∇ ⋅∇ − + − + −

≥ − + − + −

− − −a x u u μ x u u v u x g x u v u x μ x u u v u x

η x v u x h x v u ξ x v u

d , d d

d dΓ dΓ

p q q

Ω

2 2

Ω Ω

2

Ω Γ Γ2 3

is satisfied for all ∈v K , where the set K is defined by (3.1).

The following theorem which is the main result in this section shows that for each pair ( ) ∈a h,
( ) ( )×

∞
+

′L LΩ Γp
2 satisfying H(0), the solution set to problem (1.1), denoted by �( )a h, , is nonempty,

bounded and weakly closed.

Theorem 3.3. Let hypotheses (2.4), H( f ), H(g), H(Φ), H(U ), H(0) and H(1) be satisfied. Then, the solution set
of problem (1.1) is nonempty, bounded and weakly closed (hence, weakly compact).

Proof. We divide the proof into three parts.
I Existence:

First, we consider the following nonlinear functions →
∗F V V: , ( ) ( )⊂ →

′G V L L: Ω Ως ς and

( ) ( )→
′L L L: Ω Ωp p defined by

( ( )∣ ∣ ( )∣ ∣ ) (∣ ∣ ( )∣ ∣ )

( )

∣ ∣

( ) ( )

( ) ( )

∫ ∫

∫

∫

⟨ ⟩ ≔ ∇ ∇ + ∇ ∇ ⋅∇ + +

⟨ ⟩ ≔

⟨ ⟩ ≔

− − − −

×

×

−

′

′

Fu v a x u u μ x u u v x u u μ x u u v x

Gu w g x u w x

Ly z y yz x

, d d ,

, , d

, d

p q p q

L L

L L
p

Ω

2 2

Ω

2 2

Ω Ω

Ω

Ω Ω

Ω

2

ς ς

p p

for all ∈u v V, , for all ( )∈w L Ως and for all ( )∈y z L, Ωp .
Let ∈u V be fixed. By the Yankov-von Neumann-Aumann selection theorem (see e.g., Papageorgiou

and Winkert [47, Theorem 2.7.25]) and assumptions H( f )(i) and (ii), we know that the multivalued func-
tion ( ( ) ( ))↦ ∇x f x u x u x, , admits a measurable selection. Let �→η : Ω be a measurable selection of

( ( ) ( ))↦ ∇x f x u x u x, , , that is, ( ) ( ( ) ( ))∈ ∇η x f x u x u x, , for a.a. ∈x Ω. From H( f )(iii) and the inequality

�(∣ ∣ ∣ ∣) (∣ ∣ ∣ ∣ )+ ≤ + ∈ ≥
−r r r r r r s2 for all , with 1,s s s s

1 2
1

1 2 1 2

it follows that there exist constants >M M, 01 2 satisfying

∣ ( )∣ ⎛
⎝

∣ ∣ ∣ ∣ ( )⎞
⎠

(∣ ∣ ∣ ∣ ( ) )

( )

( )

∫ ∫

∫

≤ ∇ + +

≤ ∇ + +

= ‖∇ ‖ + ‖ ‖ + ‖ ‖

≤ ‖ ‖ + ‖ ‖ + ‖ ‖

′
′

−

′

′

′

′

′

′

η x x a u b u α x x

M u u α x x

M u u α

M u u α

d d

d

,

r
f

p
r f

r
f

r

p r
f

r

p
p

r
r

f r
r

V
p

V
r

f r
r

Ω Ω

1

1

Ω

1 ,Ω ,Ω ,Ω

2 ,Ω

(3.2)

where we have used the fact that the embeddings of V into ( )W Ωp1, and of V into ( )L Ωr are continuous.
Hence, ( )∈

′η L Ωr . This permits us to consider the Nemytskij operator ( ) ( )
⊂ →

′

N V L: Ω 2f
r L Ωr

associated
with the multivalued mapping f defined by
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( ) { ( ) ( ) ( ( ) ( )) }≔ ∈ ∈ ∇ ∈
′N u η L η x f x u x u x xΩ : , , for a.a. Ωf

r

for all ∈u V . Similarly, because of hypotheses H( )U (i), (ii) and (iii), for each ( )∈u L Γδ
3 fixed, we are able to

find a measurable function �→ξ : Γ3 satisfying ( ) ( ( ))∈ξ x U x u x, for a.a. ∈x Γ3 and

∣ ( )∣

( ( ) ∣ ∣ )

( ( ) ∣ ∣ )

( )

∫

∫

∫

‖ ‖ =

≤ +

≤ +

= ‖ ‖ + ‖ ‖

′

′ ′

− ′

′

′

′

ξ ξ x

α x a u

M α x u

M α u

dΓ

dΓ

dΓ

δ
δ δ

U U
δ δ

U
δ δ

U δ
δ

δ
δ

,Γ

Γ

Γ

1

3

Γ

3 ,Γ ,Γ

3

3

3

3

3 3

(3.3)

for some >M 03 . Therefore, in what follows, we denote by ( ) ( )
→

′

N L: Γ 2U
δ L

3
Γδ

3 the Nemytskij operator
corresponding to the multivalued mapping U defined by

( ) { ( ) ( ) ( ( )) }≔ ∈ ∈ ∈
′N u η L η x U x u x xΓ : , for a.a. ΓU

δ
3 3

for all ( )∈u L Γδ
3 .

Let ( )→ι V L: Ωr , ( )→ω V L: Ως and ( )→β V L: Ωp be the embedding operators of V to ( )L Ωr , V to

( )L Ως and V to ( )L Ωp , respectively, with its adjoint operators ( ) →
∗ ′ ∗ι L V: Ωr , ( ) →

∗ ′ ∗ω L V: Ως and

( ) →
∗ ′ ∗β L V: Ωp , respectively. Also, we denote by ( )→γ V L: Γδ

3 the trace operator of V into ( )L Γδ
3 with

its adjoint operator ( ) →
∗ ′ ∗γ L V: Γδ

3 . Consider the indicator function of the set K formulated as

( ) ⎧
⎨⎩

≔
∈

+∞ ∉
I u u K

u K
0 if ,

if .K

Under the aforementioned definitions, we could use a standard procedure for variation calculus to obtain
that ∈u K is a weak solution of problem (1.1) if and only if it solves the following nonlinear inclusion
problem:

( ) ( ) ( )+ − − − + ∂ ∋
∗ ∗ ∗ ∗ ∗Fu ω Gu β Lu ι N u γ N u I u h Vin ,f U c K

where ∂ Ic K is the convex subdifferential operator of IK .
Observe that the functions F ,G and L are bounded. The latter combined with (3.2), (3.3) and hypotheses

( )H f and ( )H U implies that for each ∈u V the set

( ) ( ) ( )≔ + − − −
∗ ∗ ∗ ∗H u Fu ω Gu β Lu ι N u γ N uf U

is nonempty, bounded, closed and convex. We show that H is a pseudomonotone operator. Let �{ } ⊂∈u Vn n ,

�{ } ⊂∈
∗ζ Vn n be sequences and let ( ) ∈ ×

∗u ζ V V, be such that

�( )∈ ∈ ⟶ ⟨ − ⟩ ≤

→∞

ζ H u n ζ ζ ζ u ufor each , and limsup , 0.n n n
w

n
n n (3.4)

Then, for every �∈n , there are ( )∈η N un f n and ( )∈ξ N un U n such that

�= + − − − ∈
∗ ∗ ∗ ∗ζ Fu ω Gu β Lu ι η γ ξ nfor all .n n n n n n

Taking (3.2) and (3.3) into account, we can see that the sequences �{ } ( )⊂∈

′η L Ωn n
r and �{ } ( )⊂∈

′ξ L Γn n
δ

3 are
both bounded. Without any loss of generality, we may assume that there exist functions ( ) ( ) ( )∈ ×

′ ′η ξ L L, Ω Γr δ
3

such that

( ) ( )⟶ ⟶
′ ′η η L ξ ξ Lin Ω and in Γ .n

w r
n

w δ
3

Recall that V is embedded compactly into ( )L Ως , ( )L Ωr and ( )L Ωp , respectively, and ( )→γ V L: Γδ
3 is

compact. Using this we have
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( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

⟨ − ⟩ = ⟨ − ⟩ =

⟨ − ⟩ = ⟨ − ⟩ =

⟨ − ⟩ = ⟨ − ⟩ =

⟨ − ⟩ = ⟨ − ⟩ =

→∞

∗

→∞
×

→∞

∗

→∞
×

→∞

∗

→∞
×

→∞

∗

→∞
×

′

′

′

′

ω Gu u u Gu ω u u

β Lu u u Lu β u u

ι η u u η ι u u

γ ξ u u ξ γ u u

lim , lim , 0,

lim , lim , 0,

lim , lim , 0,

lim , lim , 0.

n
n n

n
n n L L

n
n n

n
n n L L

n n n
n n n L L

n n n
n n n L L

Ω Ω

Ω Ω

Ω Ω

Γ Γ

ς ς

p p

r r

δ δ
3 3

(3.5)

Inserting (3.5) into the inequality in (3.4) yields

≥ ⟨ − ⟩

≥ ⟨ − ⟩ + ⟨ − ⟩ − ⟨ − ⟩ + ⟨ − ⟩

+ ⟨ − ⟩

≥ ⟨ − ⟩

→∞

→∞ →∞

∗

→∞

∗

→∞

∗

→∞

∗

→∞

ζ u u

Fu u u ω Gu u u β Lu u u ι η u u

γ ξ u u

Fu u u

0 limsup ,

limsup , liminf , limsup , liminf ,

liminf ,

limsup , .

n
n n

n
n n

n
n n

n
n n

n n n

n n n

n
n n

From Proposition 2.3 we know that F is of type ( )+S . Therefore,

→u u Vin .n

Passing to a subsequence if necessary, we may assume that

( ) ( ) ( ) ( )→ ∇ → ∇ ∈u x u x u x u x xand for a.a. Ω.n n (3.6)

Applying Mazur’s theorem there exists a sequence �{ } ∈χn n of convex combinations to �{ } ∈ηn n satisfying

( )→
′χ η Lin Ω .n

r

Therefore, we can suppose that ( ) ( )→χ x η xn for a.a. ∈x Ω. Due to the convexity of f we see that

( ) ( ( ) ( ))∈ ∇ ∈χ x f x u x u x x, , for a.a. Ω.n n n

Recall that f is u.s.c. and has nonempty, bounded, closed and convex values (see hypothesesH(f )(i) and
(ii)). So, we can use Proposition 4.1.9 of Denkowski et al. [15] to infer that the graph of ( ) ( )↦s ξ f x s ξ, , , is
closed for a.a. ∈x Ω. Taking the convergence properties in (3.6) and ( ) ( )→χ x η xn for a.a. ∈x Ω into account,
we obtain

( ) ( ( ) ( ))∈ ∇ ∈η x f x u x u x x, , for a.a. Ω.

This shows that ( )∈η N uf . Applying the same arguments as we did before, we conclude that ( )∈ξ N uU .
Recall that F , G and L are continuous. So we can use the convergence (3.4) in order to obtain

= + − − − ⟶ + − − − =
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ζ Fu ω Gu β Lu ι η γ ξ Fu ω Gu β Lu ι η γ ξ ζ Vin .n n n n n n

w

This implies that ( )∈ζ H u . Hence, we have

( ) ( ) ( ) ( )

⟨ ⟩ = ⟨ + − − − ⟩

= ⟨ + − ⟩ − ⟨ ⟩ − ⟨ ⟩

= ⟨ + − − − ⟩ = ⟨ ⟩

→∞ →∞

∗ ∗ ∗ ∗

→∞

∗ ∗

→∞
×

→∞
×

∗ ∗ ∗ ∗

′ ′

ζ u Fu ω Gu β Lu ι η γ ξ u

Fu ω Gu β Lu u η ιu ξ γu

Fu ω Gu β Lu ι η γ ξ u ζ u

lim , lim ,

lim , lim , lim ,

, , .

n n n
n

n n n n n n

n
n n n n

n n n L L n n n L LΩ Ω Γ Γr r δ δ
3 3

This shows that H is a generalized pseudomonotone operator. Employing Proposition 2.5, we conclude that
H is pseudomonotone.

Next, we show the coercivity of H . To this end, we introduce a subspace W of ( )W Ωp1, defined by

{ ( ) }≔ ∈ =W u W uΩ : 0 on Γ .p1,
1 (3.7)

Because Γ1 has positive measure, it is not difficult to prove that W endowed with the norm

‖ ‖ ≔ ‖∇ ‖ ∈u u u Wfor allW p,Ω
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is a reflexive and separable Banach space. Moreover, since the embedding ofV intoW is continuous, there
exists a constant >C 0VW such that

‖ ‖ ≤ ‖ ‖ ∈u C u u Vfor all .W VW V

Let ∈u V and ( )∈ζ H u be arbitrary. Then, we can find functions ( )∈η N uf and ( )∈ξ N uU such that
= + − − −

∗ ∗ ∗ ∗ζ Fu ω Gu β Lu ι η γ ξ and

∣ ∣ ∣ ∣ ( )

∣ ∣ ( ) ∣ ∣ ( )

( )

( ) ( ) ( ) ( )

∫

∫ ∫

⟨ ⟩ = ⟨ ⟩ + ⟨ − ⟩ − ⟨ ⟩ − ⟨ ⟩

≥ ‖∇ ‖ + ‖∇ ‖ + ‖ ‖ − ∇ + +

− + + −

≥ − ‖∇ ‖ + ‖∇ ‖ + ‖ ‖ + ‖ ‖ − ‖ ‖ − ‖ ‖ − ‖ ‖ − ‖ ‖

− ‖ ‖

∗ ∗

× ×
′ ′ζ u Fu u ω Gu β Lu u η u ξ u

c u u u c u d u β x x

b u β x a u b x x

c c u u a u u b d u β b u

β

, , , , ,

d

dΓ d

.

L L L L

p
p

q μ
q

q μ
q

f
p

f
p

f

U
p

U g
ς

g

f p
p

q μ
q

g ς
ς

q μ
q

g f p
p

f U p
p

U

Ω Ω Γ Γ

Λ ,Ω , ,

Ω

Γ Ω

Λ ,Ω , ,Ω , 1,Ω ,Ω 1,Ω ,Γ

1,Γ

r r δ δ
3 3

3

3

3

(3.8)

We set

(( ) )
=

+ +
−

ε
a

λ b d2 1
.g

p
S

U f1,
1

Keeping in mind that >ς p, it follows from Young’s inequality and the eigenvalue problem of the
p-Laplacian with Steklov boundary condition (see (2.2) and (2.3)) that the following inequalities hold

( ) ( )‖ ‖ ≤ ‖∇ ‖ + ‖ ‖
−b u b λ u uU p

p
U p

S
p
p

p
p

,Γ 1,
1

,Ω ,Ω3
(3.9)

and

∣ ∣ ∣ ∣ ( ) ( )∫ ∫‖ ‖ = ≤ + = ‖ ‖ +u u x ε u x c ε ε u c εd dp
p p ς

ς
ς

,Ω

Ω Ω

,Ω (3.10)

with some ( ) >c ε 0. Using (3.9) and (3.10) in (3.8), we obtain

�

( ( ) )

( )

( ) ( )

( ) ( )

{ } ( )

⟨ ⟩ ≥ − − ‖∇ ‖ + ‖∇ ‖ + ‖ ‖ + ‖ ‖ + ‖ ‖ − ‖ ‖ − ‖ ‖

− ‖ ‖ −

≥ ‖∇ ‖ + ‖∇ ‖ + ‖ ‖ + ‖ ‖ + ‖ ‖ − ‖ ‖ − ‖ ‖ − ‖ ‖ −

= + ‖ ‖ − ‖ ‖ − ‖ ‖ − ‖ ‖ −

≥ ‖ ‖ ‖ ‖ + ‖ ‖ − ‖ ‖ − ‖ ‖ − ‖ ‖ −

−ζ u c c b λ u u
a

u u u b β

β c ε

M u u u u
a

u b β β c ε

M u
a

u b β β c ε

M u u
a

u b β β c ε

,
2

ˆ
2

ˆ ϱ
2

ˆ min ,
2

,

f U p
S

p
p

q μ
q g

ς
ς

p
p

q μ
q

g f

U

p
p

q μ
q

p
p

q μ
q g

ς
ς

g f U

g
ς
ς

g f U

V
p

V
q g

ς
ς

g f U

Λ 1,
1

,Ω , ,Ω ,Ω , 1,Ω 1,Ω

1,Γ

0 ,Ω , ,Ω , ,Ω 1,Ω 1,Ω 1,Γ

0 ,Ω 1,Ω 1,Ω 1,Γ

0 ,Ω 1,Ω 1,Ω 1,Γ

3

3

3

3

(3.11)

where >M̂ 00 is defined by

{ ( ) }≔ − −
−M c c b λˆ min , 1 .f U p

S
0 Λ 1,

1

Since ( )− − >
−c c b λ 0f U p

S
Λ 1,

1 , we deduce that H is coercive.
It is well-known that IK is a proper, convex and l.s.c. function. Note that (see, e.g., Proposition 1.10 of

Brézis [6])

( ) ≥ ‖ ‖ ∈ <I u α u u V αfor all with some 0.K K V K

So, we have

( ) ( ) ( )⟨ ⟩ ≥ − ≥ ‖ ‖ ∈ ∂ ∈κ u I u I α u κ I u u K, 0 for all and for all ,K K K V c K

where we have used the fact that ∈ K0 . Combining the inequality above and (3.11) gives
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{ } ( ) ∣ ∣⟨ + − ⟩ ≥ ‖ ‖ ‖ ‖ + ‖ ‖ − ‖ ‖ − ‖ ‖ − ‖ ‖ − − ‖ ‖

− ‖ ‖ ‖ ‖′

ζ κ h u M u u
a

u b β β c ε α u

M h u

, ˆ min ,
2V

p
V
q g

ς
ς

g f U K V

p V

0 ,Ω 1,Ω 1,Ω 1,Γ

4 ,Γ

3

2

for all ( )∈ζ H u and for all ( )∈ ∂κ I uc K with some >M 04 . Therefore, we infer that (2.8) is satisfied with
=u 00 , � = ∂ Ic K and � = H . Thus, all conditions of Theorem 2.7 are verified. Using this theorem, we

conclude that problem (1.1) has at least one weak solution ∈u K . Recalling that ( ) { }≠f x, 0, 0 0 , u turns
out to be a nontrivial weak solution of problem (1.1).
II Boundedness:

Suppose that the solution set �( )a h, is unbounded. Then, without loss of generality, there exists a
sequence � �{ } ( )⊂∈u a h,n n such that

‖ ‖ → +∞ → ∞u nas .n V

Employing the same arguments as in the proof of the first part, we obtain the estimate

( )≥ ‖ ‖ ‖ ‖ + ‖ ‖ − ‖ ‖ − ‖ ‖ − ‖ ‖ − ‖ ‖ ‖ ‖ −′M u u
a

u b β β M h u M0 ˆ min ,
2n V

p
n V

q g
n ς

ς
g f U p n V0 ,Ω 1,Ω 1,Ω 1,Γ 5 ,Γ 53 2 (3.12)

for all �∈n and for some >M 05 . Letting → ∞n in the inequality above, we obtain a contradiction.
Therefore, the solution set �( )a h, is bounded in V .
III Closedness:

Let � �{ } ( )⊂∈u a h,n n be a sequence such that

⟶u u Vinn
w

for some ∈u K . Then, there exist functions ( )∈η N un f n and ( )∈ξ N un U n such that

( ) ( )( ) ( )∫ ∫ ∫⟨ + − − ⟩ ≥ − + − + −
∗ ∗Fu ω Gu β Lu v u η v u x h x v u ξ v u, d dΓ dΓn n n n n n n n n

Ω Γ Γ2 3

(3.13)

for all ∈v K . Due to the boundedness of the operators Nf and NU we may suppose that there are functions
( )∈

′η L Ωr and ( )∈
′ξ L Γδ

3 satisfying

( ) ( )⟶ ⟶
′ ′η η L ξ ξ Lin Ω and in Γ .n

w r
n

w δ
3

Taking =v u in (3.13) and passing to the upper limit as → ∞n in the resulting inequality, we obtain

( ∣ ∣ ( ))( ) ( )( )

( )

∫ ∫

∫

⟨ − ⟩ ≤ + + − + −

+ − ≤

→∞ →∞

−

→∞

→∞

Fu u u η u u g x u u u x h x u u

ξ u u

limsup , lim , d lim dΓ

lim dΓ 0.

n
n n

n n n
p

n n n
n

n

n n n

Ω

2

Γ

Γ

2

3

Applying Proposition 2.3 we obtain that →u un in V . Using the upper semicontinuity of f and U , one has
( )∈η N uf and ( )∈ξ N uU . Passing to the upper limit as → ∞n in equality (3.13), we derive that �( )∈u a h,

and so, �( )a h, is weakly closed. This completes the proof. □

4 An inverse problem for double phase elliptic obstacle inclusion
systems

This section is concerned with the study of an inverse problem to identify a discontinuous parameter in the
domain and a discontinuous boundary datum for the double phase elliptic obstacle problem given in (1.1).

For any ( )∈g L Ω1 fixed, in what follows, we denote by ( )gTV the total variation of the function g
given by
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�

( )
⎧

⎨
⎩

( ) ( ) ∣ ( )∣
⎫

⎬
⎭

( )
∫≔ ≤ ∈

∈

g g x φ x x φ x xTV sup div d : 1 for all Ω .
φ C Ω;

Ω
N1

By ( )BV Ω , we denote the function space of all integrable functions with bounded variation, namely,

( ) { ( ) ( ) }≔ ∈ < +∞g L gBV Ω Ω : TV .1

It is well-known that ( )BV Ω endowed with the norm

( ) ( )( )‖ ‖ ≔ ‖ ‖ + ∈g g g gTV for all BV ΩBV Ω 1,Ω

is a Banach space.

In the sequel, let H be a nonempty, closed and convex subset of ( )′L Γp
3 . Given positive constants cΛ and

dΛ, we denote by Λ the set of all admissible parameters for the double phase differential operator given in
(1.2) defined by

{ ( ) ( ) }≔ ∈ < ≤ ≤ ∈a c a x d xΛ BV Ω : 0 for a.a. Ω .Λ Λ

Obviously, we see that the admissible set Λ is a closed and convex subset of both ( )BV Ω and ( )∞L Ω .
Given two regularization parameters >κ 0 and >τ 0 and the known observed or measured datum

�( )∈z L Ω;p N , we consider the inverse problem formulated in the following regularized optimal control
framework:

Problem 4.1. Find ∈
∗a Λ and ∈

∗h H such that

( ) ( )=
∈ ∈

∗ ∗C a h C a hinf , , ,
a h HΛ and (4.1)

where the cost functional �× →C H: Λ is given by

�
�

( ) ( )
( )

( )≔ ‖∇ − ‖ + + ‖ ‖
∈

′C a h u z κ a τ h, min TV ,
u a h

L p
,

Ω; ,Γp N 2 (4.2)

and �( )a h, stands for the solution set of the double phase elliptic obstacle problem (1.1) with respect to
( )∈

∞a L Ω and ( )∈
′h L Γp

2 .

The main result in this section is the following existence result for the regularized optimal control
problem given in Problem 4.1.

Theorem 4.2. Assume that all conditions of Theorem 3.3 are satisfied. Then the solution set of Problem 4.1
is nonempty and weakly compact.

Proof. The proof of this theorem is divided into four steps.
Step 1: The functional C defined in (4.2) is well-defined.

We only need to verify that for ( ) ∈ ×a h H, Λ fixed, the optimal problem

�
�( )

( )‖∇ − ‖
∈

u zmin
u a h

L
,

Ω;p N

is solvable. Suppose that � �{ } ( )⊂∈u a h,n n is a minimizing sequence of the problem ��( ) ( )‖∇ − ‖∈ u zinfu a h L, Ω;p N ,
that is,

� �
�( )

( ) ( )‖∇ − ‖ = ‖∇ − ‖
∈ →∞

u z u zinf lim .
u a h

L
n

n L
,

Ω; Ω;p N p N

From Theorem 3.3, we know that �{ } ∈un n is bounded inV . Passing to a subsequence if necessary, we can

assume that ⟶
∗u un

w
inV for some ∈

∗u V . This fact along with the weak closedness of �( )a h, ensures that
�( )∈

∗u a h, . On the other hand, the weak lower semicontinuity of the norm �( )‖⋅‖L Ω;p N implies that

� � � �
� �( )

( ) ( ) ( )
( )

( )‖∇ − ‖ = ‖∇ − ‖ ≥ ‖∇ − ‖ ≥ ‖∇ − ‖
∈ →∞

∗

∈

u z u z u z u zinf liminf inf .
u a h

L
n

n L L
u a h

L
,

Ω; Ω; Ω;
,

Ω;p N p N p N p N
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This means that for each ( ) ∈ ×a h H, Λ there exists �( )∈
∗u a h, such that

� �
�( )

( ) ( )‖∇ − ‖ = ‖∇ − ‖
∈

∗u z u zinf .
u a h

L L
,

Ω; Ω;p N p N

Hence, C is well-defined.
For any ( ) ∈ ×a h H, Λ and �( )∈u a h, fixed, it follows from (3.12) that

{ }≥ ‖ ‖ ‖ ‖ + ‖ ‖ − ‖ ‖ − ‖ ‖ − ‖ ‖ − ‖ ‖ ‖ ‖ −′M u u
a

u b β β M h u M0 ˆ min ,
2V

p
V
q g

ς
ς

g f U p V0 ,Ω 1,Ω 1,Ω 1,Γ 6 ,Γ 63 2

for some >M 06 . Therefore, we conclude that � maps bounded sets of ( ) ( )× ⊂ ×
′H LΛ BV Ω Γp

2 into
bounded sets of K .
Step 2: If �{( )} ⊂ ×∈a h H, Λn n n is a sequence such that �{ } ∈an n is bounded in ( )BV Ω , →a an in ( )L Ω1 and

⟶h hn
w

in H for some ( ) ( )∈ ×a h L H, Ω1 , then ∈a Λ and one has

� �( ) ( )∅ ≠ - ⊂

→∞

w a h a hlimsup , , .
n

n n (4.3)

Let �{( )} ⊂ ×∈a h H, Λn n n be a sequence such that →a an in ( )L Ω1 and ⟶h hn
w

in H for some
( ) ( )∈ ×a h L H, Ω1 . By the properties of Λ (i.e., Λ is nonempty, closed and convex in ( )BV Ω and ( )L Ω1 ),
one has ( ) ∈ ×a h H, Λ . Moreover, the boundedness of �{ } ( ) ( )⊂ ∩∈

∞a LBV Ω Ωn n and the map � implies that
�( )∪ ≥ a h,n n n1 is bounded in K . Also, the reflexivity of V guarantees that the set �( )- →∞w a hlimsup ,n n n is

nonempty.
For any �( )∈ - →∞u w a hlimsup ,n n n , passing to a subsequence if necessary, there exists a sequence

�{ } ⊂∈u Kn n such that

�( )∈ ⟶u a h u u V, and in .n n n n
w

Hence, for every �∈n , we are able to find functions ( )∈η N un f n and ( )∈ξ N un U n such that

( ( )∣ ∣ ( )∣ ∣ ) ( )

( )∣ ∣ ( ) ( )( )

( )( ) ( )( ) ( )( )

∫

∫ ∫

∫ ∫ ∫

∇ ∇ + ∇ ∇ ⋅∇ −

+ − + −

≥ − + − + −

− −

−

a x u u μ x u u v u x

μ x u u v u x g x u v u x

η x v u x h x v u ξ x v u

d

d , d

d dΓ dΓ

n n
p

n n
q

n n

n
q

n n n n

n n n n n n

Ω

2 2

Ω

2

Ω

Ω Γ Γ2 3

(4.4)

for all ∈v K . Taking =v u in (4.4) gives

( ( )∣ ∣ ( )∣ ∣ ) ( ) ( )∣ ∣ ( )

( )( )

( )( ) ( )( ) ( )( )

∫ ∫

∫

∫ ∫ ∫

∇ ∇ + ∇ ∇ ⋅∇ − + −

+ −

≥ − + − + −

− − −a x u u μ x u u u u x μ x u u u u x

g x u u u x

η x u u x h x u u ξ x u u

d d

, d

d dΓ dΓ.

n n
p

n n
q

n n n
q

n n

n n

n n n n n n

Ω

2 2

Ω

2

Ω

Ω Γ Γ2 3

(4.5)

Hypotheses ( )H f (iii) and ( )H U (iv) imply that the sequences �{ } ∈ηn n and �{ } ∈ξn n are bounded in ( )′L Ωr and
( )′L Γδ

3 , respectively. Since the embeddings of V to ( )L Ως and ( )L Ωr are compact, we obtain
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( )∣ ∣ ( )

( )( )

( )( )

( )( )

( )( )

∫

∫

∫

∫

∫

− =

− =

− =

− =

− =

→∞

−

→∞

→∞

→∞

→∞

μ x u u u u x

g x u u u x

η x u u x

h x u u

ξ x u u

lim d 0,

lim , d 0,

lim d 0,

lim dΓ 0,

lim dΓ 0,

n
n

q
n n

n
n n

n n n

n
n n

n n n

Ω

2

Ω

Ω

Γ

Γ

2

3

(4.6)

where we have also used the compactness of ( )↪V L Γp
2 and ( )↪V L Γδ

3 .
From Simon [50, formula (2.2)] we have the well-known inequalities

∣ ∣ (∣ ∣ ∣ ∣ ) ( )− ≤ − ⋅ − ≥
− −M ξ η ξ ξ η η ξ η s, if 2,s

s s s2 2 (4.7)

� ∣ ∣ (∣ ∣ ∣ ∣ ) ( )(∣ ∣ ∣ ∣ )− ≤ − ⋅ − + ≤ ≤
− −

−ξ η ξ ξ η η ξ η ξ η s, if 1 2,s
s s s s2 2 2 s

s
2 (4.8)

for all ξ , �∈η N with some constants Ms, � > 0s independent of ξ , �∈η N .
Next, we consider the following cases: < <p1 2 and ≥p 2. If ≥p 2, then we use (4.7) in order to obtain

( )(∣ ∣ ∣ ∣ ) ( )∫ ∇ ∇ − ∇ ∇ ⋅∇ − ≥ ‖ − ‖
− −a x u u u u u u x c M u ud ,n n

p
n

p
n p n W

p

Ω

2 2
Λ

where the function space W is given in (3.7). Consider the sets

{ } { }

{ }

= ∈ ∇ ≠ ∪ ∈ ∇ ≠

= ∈ ∇ = ∇ =

x u x u
x u u

Ω Ω : 0 Ω : 0 ,
Σ Ω : 0 .

n n

n n

We observe that = ∪Ω Ω Σn n and ∩ = ∅Ω Σn n .
By the absolute continuity of the Lebesgue integral, one has

( )(∣ ∣ ∣ ∣ ) ( )∫ ∇ ∇ − ∇ ∇ ⋅∇ − =
− −a x u u u u u u xd 0.n n

p
n

p
n

Σ

2 2

n

Hence, we have

( )(∣ ∣ ∣ ∣ ) ( )

( )(∣ ∣ ∣ ∣ ) ( ) ( )(∣ ∣ ∣ ∣ ) ( )

( )(∣ ∣ ∣ ∣ ) ( )

∫

∫ ∫

∫

∇ ∇ − ∇ ∇ ⋅∇ −

= ∇ ∇ − ∇ ∇ ⋅∇ − + ∇ ∇ − ∇ ∇ ⋅∇ −

= ∇ ∇ − ∇ ∇ ⋅∇ −

− −

− − − −

− −

a x u u u u u u x

a x u u u u u u x a x u u u u u u x

a x u u u u u u x

d

d d

d .

n n
p

n
p

n

n n
p

n
p

n n n
p

n
p

n

n n
p

n
p

n

Ω

2 2

Ω

2 2

Σ

2 2

Ω

2 2

n n

n

When < <p1 2, we can apply (4.8) and obtain

�

�

( )(∣ ∣ ∣ ∣ ) ( )

( )(∣ ∣ ∣ ∣ ) ( )
(∣ ∣ ∣ ∣ )

(∣ ∣ ∣ ∣ )

( )∣ ∣ (∣ ∣ ∣ ∣ )

∣ ∣ (∣ ∣ ∣ ∣ )

∫

∫

∫

∫

∇ ∇ − ∇ ∇ ⋅∇ −

= ∇ ∇ − ∇ ∇ ⋅∇ −
∇ + ∇

∇ + ∇

≥ ∇ − ∇ ∇ + ∇

≥ ∇ − ∇ ∇ + ∇

− −

− −

−

−

−

−

a x u u u u u u x

a x u u u u u u u u
u u

x

a x u u u u x

c u u u u x

d

d

d

d .

n n
p

n
p

n

n n
p

n
p

n
n

p
n

p

n
p

n
p

p n n n
p

n
p

p n n
p

n
p

Ω

2 2

Ω

2 2

Ω

2

Λ

Ω

2

n

p
p

p
p

n

p
p

n

p
p

2

2

2

2

(4.9)

Due to < <p1 2, one has > 1p
2 . Using this and Hölder’s inequality yields
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∣ ∣ ∣ ∣

⎛
⎝

∣ ∣ (∣ ∣ ∣ ∣ ) ⎞
⎠

(∣ ∣ ∣ ∣ )

⎛

⎝

⎜⎜
∣ ∣ (∣ ∣ ∣ ∣ )

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜
(∣ ∣ ∣ ∣ )

⎞

⎠

⎟⎟

∫ ∫

∫

∫ ∫

∇ − ∇ = ∇ − ∇

= ∇ − ∇ ∇ + ∇ ∇ + ∇

≤ ∇ − ∇ ∇ + ∇ × ∇ + ∇

⋅

−

−

−

−

u u x u u x

u u u u u u x

u u u u x u u x

d d

d

d d .

n
p

n

n n
p p

p
p n

p p

n n
p p

p
p n

p p

Ω Ω

2

Ω

2
2

Ω

2
2

Ω

p

p
p

p p

2

2 2
2

2
2

2

This means that

∣ ∣ (∣ ∣ ∣ ∣ )
⎛

⎝

⎜⎜
∣ ∣

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜
(∣ ∣ ∣ ∣ )

⎞

⎠

⎟⎟
∫ ∫ ∫∇ − ∇ ∇ + ∇ ≥ ∇ − ∇ ∇ + ∇

−

−

−

u u u u x u u x u u xd d d .n n
p

n
p

n
p

n
p

n
p

Ω

2

Ω Ω

p
p

p
p

p
2

2 2

Combining the inequality above and (4.9), we obtain

�

�

( )(∣ ∣ ∣ ∣ ) ( )

⎛

⎝

⎜⎜
∣ ∣

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜
(∣ ∣ ∣ ∣ )

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜
∣ ∣

⎞

⎠

⎟⎟

∫

∫ ∫

∫

∇ ∇ − ∇ ∇ ⋅∇ −

≥ ∇ − ∇ ∇ + ∇

≥ ∇ − ∇

− −

−
−

a x u u u u u u x

c u u x u u x

M c u u x

d

d d

d ,

n n
p

n
p

n

p n
p

n
p p

p n
p

Ω

2 2

Λ

Ω Ω

7 Λ

Ω

p
p

p

p

2 2

2

(4.10)

where >M 07 is such that ( )‖ ‖ + ‖ ‖ ≥
−

−

u u Mn W
p

W
p

7
p

p
2

owing to the boundedness of �{ } ∈un n in V and the
continuity of embedding from V to W .

Next, we apply Hölder’s inequality to obtain

(( ( ) ( ))∣ ∣ ) ( )

∣ ( ) ( )∣∣ ∣ ∣ ( )∣

∣ ( ) ( )∣ ∣ ∣ ∣ ( ) ( )∣ ∣ ( )∣

⎛

⎝

⎜⎜
∣ ( ) ( )∣∣ ∣

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜
∣ ( ) ( )∣∣ ( )∣

⎞

⎠

⎟⎟

( )
⎛

⎝

⎜⎜
∣ ( ) ( )∣∣ ∣

⎞

⎠

⎟⎟

∫

∫

∫

∫ ∫

∫

− ∇ ∇ ⋅∇ −

≥ − − ∇ ∇ −

= − − ∇ − ∇ −

≥ − − ∇ − ∇ −

≥ − ‖ − ‖ − ∇

−

−

−
−

−

−

a x a x u u u u x

a x a x u u u x

a x a x u a x a x u u x

a x a x u x a x a x u u x

c u u a x a x u x

d

d

d

d d

2 d .

n
p

n

n
p

n

n
p

n n

n
p

n n
p

n W n
p

Ω

2

Ω

1

Ω

1

Ω Ω

Λ

Ω

p
p p

p
p p

p

p
p

1 1

1 1

1

1

Since →a an in ( )L Ω1 , without loss of generality, we may assume that ( ) ( )→a x a xn for a.a. ∈x Ω. Passing to
the limit as → ∞n in the last estimate and using Lebesgue’s dominated convergence theorem as well as the
boundedness of �{ } ∈un n in W yields

(( ( ) ( ))∣ ∣ ) ( )

⎡

⎣

⎢
⎢
⎢

⎛

⎝

⎜⎜
∣ ( ) ( )∣∣ ∣

⎞

⎠

⎟⎟

⎤

⎦

⎥
⎥
⎥

∫ ∫− ∇ ∇ ⋅∇ − ≥ − ‖ − ‖ − ∇ =
→∞

−

→∞

−

a x a x u u u u x c u u a x a x u xlim d lim 2 d 0.
n

n
p

n
n

n W n
p

Ω

2
Λ

Ω

p
p

1

(4.11)
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Therefore, we have

( ( )∣ ∣ ( )∣ ∣ ) ( )

( )(∣ ∣ ∣ ∣ ) ( ) (( ( ) ( ))∣ ∣ ) ( )

( ( )∣ ∣ ) ( ) ( ( )∣ ∣ ) ( )

∫

∫ ∫

∫ ∫

∇ ∇ + ∇ ∇ ⋅∇ −

= ∇ ∇ − ∇ ∇ ⋅∇ − + − ∇ ∇ ⋅∇ −

+ ∇ ∇ ⋅∇ − + ∇ ∇ ⋅∇ −

− −

− − −

− −

a x u u μ x u u u u x

a x u u u u u u x a x a x u u u u x

a x u u u u x μ x u u u u x

d

d d

d d .

n n
p

n n
q

n n

n n
p

n
p

n n
p

n

p
n n

q
n n

Ω

2 2

Ω

2 2

Ω

2

Ω

2

Ω

2

Passing to the upper limit as → ∞n in (4.5) and using (4.6), (4.10), (4.11) as well as

( ( )∣ ∣ ( )∣ ∣ ) ( )

( ( )(∣ ∣ ∣ ∣ )) ( )

∫

∫

∇ ∇ + ∇ ∇ ⋅∇ − =

∇ ∇ − ∇ ∇ ⋅∇ − ≥

→∞

− −

− −

a x u u μ x u u u u x

μ x u u u u u u x

lim d 0,

d 0,

n
p q

n

n
q

n
q

n

Ω

2 2

Ω

2 2

we obtain for ≥p 2

‖ − ‖ ≤

→∞

c M u ulimsup 0
n

p n W
p

Λ

and for < <p1 2

� ‖ − ‖ ≤

→∞

u ulimsup 0.
n

p n W
2

We conclude that →u un in W .

Moreover, the boundedness of �{ } ∈ηn n and �{ } ∈ξn n , as well as the reflexivity of ( )′L Ωr and ( )′L Γδ
3 permit us

to find functions ( )∈
′η L Ωr and ( )∈

′ξ L Γδ
3 such that, by passing to a subsequence if necessary,

( ) ( )⟶ ⟶
′ ′η η L ξ ξ Lin Ω and in Γ .n

w r
n

w δ
3

Arguing as in the proof of Theorem 3.3, we obtain ( )∈η N uf and ( )∈ξ N uU . Without loss of generality,
we may assume that ( ) ( )∇ → ∇u x u xn for a.a. ∈x Ω. Applying Lebesgue’s dominated convergence theorem,
we have

( ( )∣ ∣ ( )∣ ∣ ) ( )

( ( )∣ ∣ ( )∣ ∣ ) ( )

( ( )∣ ∣ ( )∣ ∣ ) ( )

∫

∫

∫

∇ ∇ + ∇ ∇ ⋅∇ −

= ∇ ∇ + ∇ ∇ ⋅∇ −

= ∇ ∇ + ∇ ∇ ⋅∇ −

→∞

− −

→∞

− −

− −

a x u u μ x u u v u x

a x u u μ x u u v u x

a x u u μ x u u v u x

lim d

lim d

d .

n
n n

p
n n

q
n n

n
n n

p
n n

q
n n

p q

Ω

2 2

Ω

2 2

Ω

2 2

Letting → ∞n in equality (4.4) and using the aforementioned convergence properties we obtain

( ( )∣ ∣ ( )∣ ∣ ) ( ) ( )∣ ∣ ( ) ( )( )

( )( ) ( )( ) ( )( )

∫ ∫ ∫

∫ ∫ ∫

∇ ∇ + ∇ ∇ ⋅∇ − + − + −

≥ − + − + −

− − −a x u u μ x u u v u x μ x u u v u x g x u v u x

η x v u x h x v u ξ x v u

d d , d

d dΓ dΓ

p q q

Ω

2 2

Ω

2

Ω

Ω Γ Γ2 3

for all ∈v K . Therefore, we can observe that ∈u K is a solution of problem (1.1) corresponding to
( ) ∈ ×a h H, Λ , that is, �( )∈u a h, . Hence, � �( ) ( )- ⊂→∞w a h a hlimsup , ,n n n and so we have proved (4.3).
Step 3: If �{( )} ⊂ ×∈a h H, Λn n n is such that �{ } ∈an n is bounded in ( )BV Ω , →a an in ( )L Ω1 and ⟶h hn

w
in

( )′L Γp
2 for some ( ) ( )∈ ×a h L H, Ω1 , then the inequality
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( ) ( )≤
→∞

C a h C a h, liminf ,
n

n n (4.12)

holds.

Let �{( )} ⊂ ×∈a h H, Λn n n be such that →a an in ( )L Ω1 and ⟶h hn
w

in ( )′L Γp
2 for some

( ) ( )∈ ×a h L H, Ω1 . From Step 2 one has ∈a Λ. Let �{ } ⊂∈u Kn n be a sequence such that

� ��
�

( )
( )

( ) ( )∈ ‖∇ − ‖ = ‖∇ − ‖
∈

u a h u z u z, and infn n n
u a h

L n L
,

Ω; Ω;
n n

p N p N (4.13)

for each �∈n .

Recalling that �( )∪ ≥ a h,n n n1 is bounded, passing to a subsequence if necessary, we have ⟶
∗u un

w
inV

for some ∈
∗u K , that is, �( )∈ -

∗
→∞u w a hlimsup ,n n n . Applying again Step 2, we conclude that �( )∈

∗u a h, .
Therefore, from the lower semicontinuity of the function �( ) ( )∋ ↦ ∈L a aΩ TV1 and the weak lower semi-
continuity of ��( )∋ ↦ ‖∇ − ‖ ∈W u u z L Ω;p N and �( ) ∋ ↦ ‖ ‖ ∈

′

′L h hΓp
p2 ,Γ2 , it follows that

�

�

�

�
�

( ) [ ( ) ]

( )

( )

( )

( )

( )

( )

( )

( )
( )

= ‖∇ − ‖ + + ‖ ‖

≥ ‖∇ − ‖ + + ‖ ‖

≥ ‖∇ − ‖ + + ‖ ‖

≥ ‖∇ − ‖ + + ‖ ‖

=

→∞ →∞

′

→∞ →∞ →∞

′

∗
′

∈

′

C a h u z κ a τ h

u z κ a τ h

u z κ a τ h
u z κ a τ h

C a h

liminf , liminf TV

liminf liminf TV liminf

TV
inf TV

, .

n
n n

n
n L n n p

n
n L

n
n

n
n p

L p

u a h
L p

Ω; ,Γ

Ω; ,Γ

Ω; ,Γ

,
Ω; ,Γ

p N

p N

p N

p N

2

2

2

2

Hence (4.12) follows.
Step 4: The solution set of Problem 4.1 is nonempty and weakly compact.

By the definition of C, we see that C is bounded from below. Let �{( )} ⊂ ×∈a h H, Λn n n be a minimizing
sequence of 4.1, namely,

( ) ( )=
∈ ∈ →∞

C a h C a hinf , lim , .
a h H n

n n
Λ and (4.14)

This indicates that the sequences �{ } ⊂∈a Λn n and �{ } ( )⊂∈

′h L Γn n
p

2 are bounded in ( )BV Ω and ( )′L Γp
2 ,

respectively. Passing to a subsequence if necessary we have

( ) ( )→ ⟶
∗ ∗ ′a a L h h Lin Ω and in Γn n

w p1
2 (4.15)

for some ( ) ( )∈ ×
∗ ∗ ′a h L, Λ Γp

2 , where we have used the closedness of Λ in ( )L Ω1 and the compactness of the
embedding ( )BV Ω to ( )L Ω1 .

Let us consider a sequence �{ } ⊂∈u Kn n satisfying (4.13). Employing the convergence (4.15) and the
boundedness of �, it implies that �{ } ∈un n is bounded inV . So, we are able to select a subsequence of �{ } ∈un n ,

not relabeled, such that ⟶
∗u un

w
inV for some ∈

∗u K . From Step 2 it is clear that �( )∈
∗ ∗ ∗u a h, . Therefore,

we have

�

�

�

�
�

( ) [ ( ) ]

( )

( )

( )

( )

( )

( )

( )

( )

( )
( )

= ‖∇ − ‖ + + ‖ ‖

≥ ‖∇ − ‖ + + ‖ ‖

≥ ‖∇ − ‖ + + ‖ ‖

≥ ‖∇ − ‖ + + ‖ ‖

=

≥

→∞ →∞

′

→∞ →∞ →∞

′

∗ ∗ ∗
′

∈

∗ ∗
′

∗ ∗

∈ ∈

∗ ∗

C a h u z κ a τ h

u z κ a τ h

u z κ a τ h
u z κ a τ h

C a h
C a h

liminf , liminf TV

liminf liminf TV liminf

TV
inf TV

,
inf , .

n
n n

n
n L n n p

n
n L

n
n

n
n p

L p

u a h
L p

a h H

Ω; ,Γ

Ω; ,Γ

Ω; ,Γ

,
Ω; ,Γ

Λ and

p N

p N

p N

p N

2

2

2

2

(4.16)

The latter combined with (4.14) implies that ( ) ∈ ×
∗ ∗a h H, Λ is a solution of Problem 4.1.

Finally, we prove the weak compactness of the solution set to Problem 4.1. To this end, let �{( )} ∈a h,n n n
be a sequence of solutions to Problem 4.1. It is obvious that �{ } ⊂∈a Λn n is bounded in ( )BV Ω and �{ } ∈hn n

is bounded in ( )′L Γp
2 . Using the same arguments, we may assume that (4.15) holds with some

( ) ( )∈ ×
∗ ∗ ′a h L, Λ Γp

2 . Similarly, there exists a sequence �{ } ∈un n such that (4.13) is fulfilled and ⟶
∗u un

w
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in V for some ( )∈
∗ ∗ ∗u S a h, . As done before, we can prove the validity of (4.16). This means that

( ) ∈ ×
∗ ∗a h H, Λ is a solution of Problem 4.1. Therefore, the solution set of Problem 4.1 is weakly compact.

This completes the proof. □

Remark 4.3. The results of this section remain valid if the functional (4.2) is replaced by the following
regularized cost functional:

�
�

( ) ( )
( ) ( )

= ‖∇ − ‖ + + ‖ ‖
∈

′
C a h u z κ a τ h, min TV ,

u a h L
ω

p
, Ω; ,Γp N

ω
1

2

2

where < ≤ω p1 1 and < ≤ ′ω p1 2 . The latter for = =ω ω 21 2 is the most popular and commonly used the
output least-squares objective functional utilized in the numerical approaches.
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