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Foreword/Presentation

Ladies and Gentlemen,
Dear Colleagues and Friends !

On behalf of the German Association of Electroacoustic Music (DEGEM), I would like to welcome you to the 5th SMC
2008 in Berlin. Berlin as one of the major cultural sites of Europe has always been and still is today a center of musical
experimentation and intercultural encounters. Therefore, we are particularly delighted to be here. We are also very happy
about the cooperation with the Audio Communication Group of the TU Berlin, who has the largest permanently installed
wave field synthesis system worldwide, an installation unique for exploring newly and enhanced sound spaces.

With our focus on the space of music as well as on musical spaces, which was the inspiration to our title “Space in Sound
— Sound in Space", we have chosen an exigent subject theoretically and aesthetically very much up-to-date. Moreover,
we are lucky enough to experience and explore the potential of a unique constellation of sound spaces including the
Acousmonium (GRM Paris), the Sound Dome (a la ZKM, Karlsruhe), and the Wave Field Synthesis (TU Berlin) from a
historical perspective, as well as with an eye to the future.

Every era develops its specific, culturally defined awareness of space as well as forms of its aesthetic reification. In music,
we can trace a development from an architectural place of sound to the symbolical space of formal and structural projections
and finally to the imaginitiv, musically immanent space of compositional fantasy.

From thereon the actual space can be functionalised musically as one possibility. It can, however, also be opened to and
expanded by technical spaces. These, from digital simulations to virtualities, enable both universal manipulation and
boundless scaling. Thus, the conception of an "acoustic cyberspace" (Harenberg, 2003) which is technically primarily
conveyed by time modes becomes constitutive for new aesthetical conceptions of form as well as for the generation and
manipultion of sound.

The historical circle is opening nowadays, as the early form and thus structure giving functions of space of the Renaissance
as technical and structural augmentations of compositional and formal principles are finding a new "language of sound
and form" through the acoustic "Pearly Gates of Cyberspace" (Wertheim, 2000), which technological fundamentals, back-
grounds, fantasies and current applications the SMC 08 in Berlin wants to fathom and investigate.

I would like to thank the Audio Communication Group of the TU Berlin, and especially Stefan Weinzierl, for the organization
of this year's SMC as a partner of the DEGEM. The DEGEM is a small association and would not have been able to
organise an international event like this on its own. Therefore we depend on the organisational and conceptional support
of such a competent and potent partner.

I also want to thank Folkmar Hein, without whose commitment the tight cooperation with the festival "INVENTIONEN"
would not have been possible. A unique concert and exhibition program resulted from the affinity of both events in terms
of content as well as organisation, and builds a more than interesting framework for this year's SMC.

Last but not least I would like to sincerly thank all of those who - from the juries, the technical installations, to the live
broadcast of SMC 08 in the DEGEM WebRadio@ZKM - made this SMC in Berlin possible. They have all contributed

also to the further successful development of the SMC.

And so, [ wish all of us wonderful and demanding days here in Berlin, plenty of interesting music, a lot of exiting lectures,
discussions and encounters.

Michael Harenberg

DEGEM
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SMC Concerts

Friday, 1.8. - TU Berlin WFS-hall 0104
7 pm SMCO08 — Presentation I (call for music)

Erik Nystrom Multiverse 2008 11°07 Acousmonium

Volker Hennes The Maelstrom Method Klangdom (inner quadro) 7°07
Sam Salem They Sing for Themselves Klangdom + WEFS 6’54
Douglas Henderson The 103rd Thing and the 104th Thing (of 10.000)
2003-06 WFS + Klangdom + Acousmonium 11°35

Georg Dennis Electric Sheep 2008 Klangdom 5’04

Jef Chippewa DUO 1997-98 Acousmonium 2’41

Javier Alejandro Garavaglia Pathétique 2006/2007 Klangdom 15°30
Martin Bedard Excavations 2008 Acousmonium 10’

10.30 pm SMCO08- Presentation II (call for music)

Thanos Chrysakis /NSCAPES 11-10 2005 Klangdom 10°20

John Ritz In the Very Eye of Night Acousmonium

Yutaka Makino Ephemera 2008 WES + Klangdom + Acousmonium 10’10

Daniel Blinkhorn Jeu fabriqgué Acousmonium

Ka Ho Cheung FishyBahn 2008 Klangdom 9’48

Pei Yu Shi Fall aus der Zeit ... 2006 WES 10’

Manuella Blackburn Origami 2007 Acousmonium Stereo 5’10

Ioannis Kalantzis Parastaseis A B C D 2003-2006 any system 7’

Annette Vande Gorne Yawar Fiesta (opera), 2. part Acousmonium + Klangdom 10’

Location:

TU Berlin

Main building

Room H 0104

Stralle des 17. Juni 135
Charlottenburg

U2 - Ernst-Reuter-Platz
S - Tiergarten



Erik Nystrom Multiverse 2008

Discontinuous connections and connected discontinuities lie at the heart of this piece. These aspects are reflected both
in the choice of sound material and the way the piece is structured. Percussive singularities are presented and approached
on several parallel strata, from "big" obvious gestural events, across rhythmic pulsations, towards more abstract textures
and drones. The boundaries are blurred as a synthesis takes place within the network of connections that constitute the
composition, weaving an irregular fabric of space and time — full of knots and holes — where music emerges in a gravitational
flux.

The term multiverse is used in cosmological science and describes a constellation of universes, where phase transitions
such as chaotic inflations and big bangs spawn new regions in space and time.

The piece was premiered at the ElectriCity festival in London in April 2008 and was shortlisted for the Residence prize
in the 35th Bourges International Competition in 2008.

Volker Hennes The Maelstrom Method 2007/08

The Maelstrom Method is a quadrophonic acousmatic piece, composed in 2007/08.

Inspired by a short-story by E. A. Poe, the composition follows an almost anecdotic approach to conceive an epic pro-
gression. The piece acoustically spotlights spacial elaboration as an imaginary dimension — formed by the use of trajectories
and motions — to build immersive structure as undirected radiation.

"The mountain trembled to its very base, and the rock rocked. I threw myself upon my face, and clung to the scant herbage
in an excess of nervous agitation.(...) As I felt the sickening sweep of the descent, I had instinctively tightened my hold
upon the barrel, and closed my eyes. For some seconds I dared not open them while I expected instant destruction, and
wondered that I was not already in my death-struggles with the water." Excerpt from "A Descent Into the Maelstrom" by
Edgar Allan Poe.

First performance took place at the Oscar Peterson Concert Hall on the 08. February 2008 within the "EuCuE Concerts"
—arranged by the Concordia University Montreal/ Canada, curated by Kevin Austin.

Sam Salem They Sing for Themselves 2008

I wanted to explore the themes of surveillance, paranoia and the ubiquitious sinister technologies with which we co-exist.
Instead, and rather fortunately, I found loveliness and charm. They Sing for Themselves is an abstraction of our soundscapes,
an imaginary landscape for the ear: how we choose to navigate it is up to us. They are always there, singing and sputtering.
This piece is part of a larger work that spans media and contexts.

Douglas Henderson The 103rd Thing and the 104th Thing (of 10.000) 2003-2006

Begun in the summer of 2001 and still ongoing, The Cycle of the 10,000 Things explores the sculptural potential of multi-
channel audio as a primary focus for composition. The nature of the “music” in each piece develops from the dictates
of sonic holography; the temporal progression follows a physical model similar to the construction of a house. I often
use multiplications of simple acts to reveal their underlying and otherworldly qualities. The 103rd Thing, a sensual
cataclysm of shattering glass with a slow-motion portrait of the movement of the shards, includes some 700 glass cuts,
and the sounds of thousands of microscopic glass particles settling onto a pane. The 104th Thing dissects recordings of
200 cups of coffee made in a dying espresso machine. Originally 6 channel works, these have been re-orchestrated to
take advantage of the special properties of the WFS and Klangdom systems.

Georg Dennis Electric Sheep 2008

The forefather of modern computer science, Alan Turing, once theorised that were a computer ever to effectively simulate
the human mind, it must also inherit its mistakes and failings, its tendency towards error.

Functioning correctly, the modern computer seems almost incapable of such faults; it is a model of unthinking perfection.
Perhaps then, any audible 'errors' that computers make and have made throughout their history could be extraneous by-
products of their operation: the screech of the metal housing containing the early machines that Turing worked with; the
clicks and whirrs of tape players once used as storage media; the modern-day hums and buzzes of the computers that we
are all familiar with.



This piece makes use of these sounds. However, an attempt has been made to imbue these inanimate sonic objects with
the spark of life whilst still retaining something of a machine-like quality, to give them a sense of intelligence whilst
ultimately remaining artificial.

Electric Sheep is dedicated to the memories of Alan Turing and Philip K. Dick, the latter’s novel/treatise on ‘Al providing
the title of this work.

Jef Chippewa DUO 1997-98

was composed in the concordia ea studios during the 1997-8 year. the compositional and perceptual experience of DUO
offers the potential for comprehension of musical interactions and appreciation of the correspondence of timbre and
articulation types between two radically different worlds of sound production (that of the [alto] saxophone and of the
analog synthesizer), instead of a lethargic experience of linear continuity, and establishment of familiarity on a superficial
level. thanks to yves charuest for his openness and flexibility as a performer and as a musician.

Javier Alejandro Garavaglia Pathétique 2006/2007

The piece works with mainly materials extracted from the first three main chords of the Introduction (Grave) to the 1st
Movement of Beethoven’s Sonata Op. 13 in C minor, “Pathétique”. The chords are: C Minor, its Subdominant (diminished
7th chord) and the VII7 of C Minor (another diminished 7th chord).

The positions used by Beethoven for these chords make the sound of the piano very rich in harmonics. Therefore the piece
explores the richness of their spectrum and transforms it accordingly. It can be viewed as an exploration form the side of
the listener “into” the sound. This journey has a double aspect, as it refers not only to the new spectral results overall,
but also to the distribution of sound in space (Spatialization in 5.1 or 8.0).

The DSP processes are very varied, using different tools like C-Sound, Lisp programming, Audiosculpt, GRM tools,
SoundHack, Peak, etc. and involving mainly Time stretching and Pitch shifting, Granulation, Filtering, Phase shifting,
Envelope shaping, etc.

Martin Bedard Excavations 2008

Commissioned for the Québec City 400th anniversary (1608-2008) celebrations. Excavations is a homage to the history
and unique character of Québec City. In the piece, I explore the cohabitation of electroacoustic media and sound culture,
which I identify as being the unique sound heritage of a community or area. The composition uses referential sounds,
which are recognizable and anchored in reality. These have then been reworked in the studio to transform their anecdotal
nature into material that can be presented in musical form. The sounds have been used as symbols, metaphors and indices,
here suggesting a narrative approach to the design of the sound phenomenon. Non-referential sounds, created using montage
and treatment techniques, have been added to form part of the cohabitation. They punctuate the écriture of the sound into
phrasings, take on the role of signals, or have a function that is purely abstract. The title Excavations alludes to the
archaeological campaigns in the city.

Thanos Chrysakis INSCAPES 11-10 2005

Inscapes is a series of sound based compositions in which my primary concern lies on the timbral affinities and contrasts
of the sounds. They have been inspired by Gerard Manley Hopkins’ idea of the inscape as «species or individually-
distinctive beauty», and in consequence, the exploration of the inherent qualities of different sound matter, for generating
specific aural structures, and what I define in my work as aural morphogenese. In addition -after sometime working on
them-, the finding of the words : «enter into oneself, that is to discover subversion» by Edmond Jabés, suggested me a
very interesting connection between the interiority of the sound, and the interiority of the composer, which both intersect
in the act of listening.

John Ritz In the Very Eye of Night
The laws of macro- and microcosm are alike. Travel in the interior is as a voyage in outer space: we must in each case
burst past the circumference of our surface — enter worlds where the relationship of parts is the sole gravity.



Yutaka Makino Ephemera

Daniel Blinkhorn Jeu fabriqué

Recollections of industry, fabrication and the mechanical arts provided the foundation for jeu fabriqué...

As a child, the seemingly endless mechanised space of my father’s workshop, and all the sonic activity contained within,
became augmented through my imagination.

Each time I would visit the workshop, an expansive spectral palate seemed to unfold, where work tools, the shapes and
sounds of these tools and the spaces surrounding them provided vehicles of discovery... Tools became toys, articulating
the imagined.

The workshop was a place of motion, industry and invention...Positioned within dense foliage (and home to much birdlife),
I was not surprised to find that my recollections of the workshop were entwined with images of its surrounds.

Throughout the work, intersecting patterns, gestures and spaces are presented to the listener, modulating between the
abstract and the concrete...Images are plotted, and sights and sounds unravel as recollection and chimera become fused.

The material heard in the piece was generated from recordings of toy tools, real tools, imagined spaces and real spaces,
all of which attempt to typify some of the sonorities and imagery found within an environment of fabrication, invention
and imagination.

Ka Ho Cheung FishyBahn 2008

Fishy Bahn is originally written for eight loudspeakers. Sound materials are mainly based on urban rails in Berlin (S-Bahn
and U-Bahn), with the aid of ICST ambisonics tools in spatialization. As shown in picture below, I imagine the trains are
like fishes. They swim and reach every corner of the city — the rich and the poor, the communist and the capitalist
monuments. [ see their red tails swinging, their motions are smooth and speedy. Pitches from the engines shifting up-and-
down, I feel tension-and-release. Freshly wild during the rush hours, they scream along the silver rails. Sleepy during the
night, they swipe their dreamy lights through the dark...

Pei Yu Shi Fall, aus der Zeit ...2006

A friend of mine wanted to realise a dance project about Ingeborg Bachmann and she sent me one of her poems and texts
to be set to music. My aim was to get an insight into the inner world of the poet. I was asking for her moods when she
wrote the poems. Then I began to try to set a poem by Ingeborg Bachmann musically and to hint at a mental and emotional
change on different levels through the process of scenic narrative.

Poem:
Fall ab, Herz Denn wenig gilt dem Landmann ein Halm in der Diirre,
Fall ab, Herz vom Baum der Zeit, wenig ein Sommer vor unserem grofsen Geschlecht.
fallt, ihr Blitter, aus den erkalteten Asten,
die einst die Sonne umarmt’, Und was bezeugt schon dein Herz?
fallt, wie Trdnen fallen aus dem geweiteten Aug! Zwischen gestern und morgen schwingt es,
lautlos und fremd,
Fliegt noch die Locke taglang im Wind und was es schldgt,
um des Landgotts gebrdunte Stirn, ist schon sein Fall aus der Zeit.

unter dem Hemd preft die Faust
schon die klaffende Wunde.

Drum sei hart, wenn der zarte Riicken der Wolken
sich dir einmal noch beugt,

nimm es fiir nichts, wenn der Hymettos die Waben
noch einmal dir fiillt.



Manuella Blackburn

The Fortune Teller, The Crane aus Origami 2007

These two miniatures are taken from a larger work entitled Origami focusing on the Japanese paper-folding art form.
This is my second work to make use of a compositional tool developed from Denis Smalley’s spectromorphological
language, this time specifically focusing on different types of motions. Experimentation with this vocabulary informed
the creation of directional, reciprocal and cyclic motions that the origami structural shapes initially inspired.

Origami is the art of economy — a few simple folds can suggests an animal or shape and with slight modifications an
entirely different creation can appear.

1. The Fortune Teller (otherwise known as paper-foldy-thing) is a representation of regularity. Its final symmetrical form
is flexible — stretching outward and collapsing inwards, while its function, as a method of concealing and revealing hidden
fortunes, is presented as a game of chance.

2. The Crane is a representation of good fortune. It is an agile bird with a fleeting presence and swift movements.
Toannis Kalantzis Parastaseis A B C D 2003-2006

Four electroacoustic miniatures.

This work is based on the realisation of sound organisms, which lead across their movements and their unusual logic to
a particular type of energy. The sound material is based in recordings that I made from strings, clarinet, bassoon and guitar.
The elaboration of the material includes digital sound processing techniques as filtering, cross synthesis, transposition
and sound synthesis. I also used a combination of panning and amplitude changes in order to give to the sound a rather
energetic movement. The principal transformation of the sound is made by Audio Sculpt, Metasynth and MaxMSP.

Annette Vande Gorne Yawar Fiesta (opera), 2. part

Opera on a booklet from Werner Lambersy

Women' Chorus, Act II : Combattimento 10:00 2007

Soprano: Francoise Vanhecke

Contraltos: Fadila figuidi, Annette Vande Gorne

Space format: 7.1

Can space, written and performed live, lead to expression and dramatization? Music? Opera? Even if the project does
not disclose any singer on stage, which will be human and silent, a great deal of the sound material relates to human voice.
It is not an electroacoustic work (with its abstract materials and writings reseaches), but the dramatization of a text by
notably placing objects and spatial shapes.

The booklet, written on an incantatory and ritual mode of antic tragedies, reflects dual fights we are facing, civilisations
fights symbolised by those of eagles and bulls in Andean village. Those for instance of appealling desire and rough strength.
In the bourgeoisy ladies chorus of Act II, dramatic singing and lyrism came step by step to the surface, with an unstoppable
clearness. Result therefrom an hybrid writing, that combines spaces, energies, morphologes and harmonic colors.

Produced at Studio Métamorphoses d’Orphée, Musiques & Recherches, Ohain (Belgique).
Creation of Chorus II: Bruxelles, théatre Le Marni, festival « L’Espace du Son », 17 octobre 2007



Chceur II

Taureau, nous quitterons pour toi

I'habit de lumiére,

car la génisse de I'aube, nous I'avons entendu gémir

sous les coups de ta croupe,

et le lait de tes reins,

nous I'avons vu fumer dans les vallées brumeuses du matin ;
ton piétinement de sabot,

nous en avons nourri nos ames ;

nous révons aux verges nocturnes du mystere ;

voici que nous brosserons, du gant de crin de nos cris, ton courage.
Cela, pour que luise 1'obscur

et soit peigné et présentable le poéme

a la robe revéche et rude de ta vitalité.
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Abstract — In this paper we introduce Interactive Musical
Environments (iMe), an interactive intelligent music system
based on software agents that is capable of learning how to
generate music autonomously and in real-time. iMe belongs
to a new paradigm of interactive musical systems that we
call “ontomemetical musical systems” for which a series of
conditions are proposed.

LINTRODUCTION

Tools and techniques associated with Artificial Life (A-
Life), a discipline that studies natural living systems by
simulating their biological occurrence on computers, are
an interesting paradigm that deals with extremely complex
phenomena. Actually, the attempt to mimic biological
events on computers is proving to be a viable route for a
better theoretical understanding of living organisms [1].

We have adopted an A-Life approach to intelligent
systems design in order to develop a system called iMe
(Interactive Music Environment) whereby autonomous
software agents perceive and are influenced by the music
they hear and produce. Whereas most A-Life approaches
to implementing computer music systems are chiefly
based on algorithms inspired by biological development
and evolution (for example, Genetic Algorithms [2]), iMe
is based on cultural development (for example, Imitation
Games [3, 4]).

Central to iMe are the notions of musical style and
musical worldview. Style, according to a famous
definition proposed by Meyer, is “a replication of
patterning, whether in human behaviour or in the artefacts
produced by human behaviour, that results from a series
of choices made within some set of constraints” [5].
Patterning implies the sensitive perception of the world
and its categorisation into forms and classes of forms
through cognitive activity, “the mental action or process
of acquiring knowledge and understanding through
thought, experience and the senses” (Oxford Dictionary).

Worldview, according to Park [6], is “the collective
interpretation of and response to the natural and cultural
environments in which a group of people lives. Their
assumptions about those environments and the values
derived from those assumptions.” Through their
worldview people are connected to the world, absorbing
and exercising influence, communicating and interacting
with it. Hence, a musical worldview is a two-way route
that connects individuals with their musical environment.

In our research we want to tackle the issue of how
different musical influences can lead to particular musical
worldviews. We therefore developed a computer system
that simulates environments where software agents
interact among themselves as well as with external agents,

such as other systems and humans. iMe's general
characteristics were inspired in the real world: agents
perform musical tasks for which they possess perceptive
and cognitive abilities. Generally speaking, agents
perceive and are influenced by music. This influence is
transmitted to other agents as long as they generate new
music that is then perceived by other agents, and so forth.

iMe enables the design and/or observation of chains of
musical influence similarly to what happens with human
musical apprenticeship. The system addresses the
perceptive and cognitive issues involved in musical
influence. It is precisely the description of a certain
number of musical elements and the balance between
them (differences of relative importance) that define a
musical style or, as we prefer to call it, a musical
worldview: the musical aesthetics of an individual or of a
group of like-minded individuals (both, artificial and
natural).

iMe is referred to as an ontomemetic computer music
system. In Philosophy of Science, ontogenesis refers to
the sequence of events involved in the development of an
individual organism from its birth to its death. However,
our research is concerned with the development of cultural
organisms rather than biological organisms. We therefore
coined the term “ontomemetic” by replacing the affix
“genetic” by the term “memetic”. The notion of “meme”
was suggested by Dawkins [7] as the cultural equivalent
of gene in Biology. Musical ontomemesis therefore refers
to the sequence of events involved in the development of
the musicality of an individual.

An ontomemetic musical system should foster
interaction between entities and, at the same time, allow
for the observation of how different paths of development
can lead to different musical worldviews. Modelling
perception and cognition abilities plays an important role
in our system, as we believe that the way in which music
is perceived and organized in our memory has direct
connections with the music we make and appreciate. The
more we get exposed to certain types of elements, the
more these elements get meaningful representations in our
memory. The result of this exposure and interaction is that
our memory is constantly changing, with new elements
being added and old elements being forgotten.

Despite the existence of excellent systems that can learn
to simulate musical styles [8] or interact with human
performers in real-time ([9-11]), none of them address the
problem from the ontomemetic point of view, i.e.:

* to model perceptive and cognitive abilities in artificial
entities based on their human correlatives

* to foster interaction between these entities as to
nurture the emergence of new musical worldviews



* to model interactivity as ways through which
reciprocal actions or influences are established

* to provide mechanisms to objectively compare
different paths and worldviews in order to assess their
impact in the evolution of a musical style.

An ontomemetic musical system should be able to
develop its own style. This means that we should not rely
on a fixed set of rules that restrain the musical experience
to particular styles. Rather, we should create mechanisms
through which musical style could eventually emerge
from scratch.

In iMe, software entities (or agents) are programmed
with identical abilities. Nevertheless, different modes of
interactions give rise to different worldviews. The
developmental path, that is the order in which the events
involved in the development of a worldview takes place,
plays a crucial role here. Paths are preserved in order to be
reviewed and compared with other developmental paths
and worldviews. A fundamental requisite of an
ontomemetic system is to provide mechanisms to
objectively compare different paths and worldviews in
order to assess the impact that different developmental
paths might have had in the evolution of a style. This is
not trivial to implement.

A. Improvisation

Before we introduce the details of iMe, a short
discussion about musical improvisation will help to better
contextualise our system. Not surprisingly, improvised
music seems to be a preferred field when it comes to the
application of interactivity, and many systems have been
implemented focusing on controllers and sound synthesis
systems designed to be operated during performance. The
interest in exploring this area, under the point of view of
an ontomemetic musical system relies on the fact that,
because of the intrinsic characteristics of improvisation, it
is intimately connected with the ways human learning
operates. However, not many systems produced for music
improvisation to date are able to learn.

According to a traditional definition, musical
improvisation is the spontaneous creative process of
making music while it is being performed. It is like
speaking or having a conversation as opposed to reciting a
written text.

As it encompasses musical performance, it is natural to
observe that improvisation has a direct connection with
performance related issues such as instrument design and
technique. Considering the universe of musical elements
played by improvisers, it is known that certain musical
ideas are more adapted to be played with polyphonic (e.g.,
piano, guitar) as opposed to monophonic instruments (e.g.,
saxophone, flute) or with keyboards as opposed to wind
instruments, and so forth.

Since instrument design and technique affect the
easiness or difficulty of performing certain musical ideas,
we deduce that different musical elements must affect the
cognition of different players in different ways.

The technical or “performance part” of a musical
improvisation is, at the same time, passionate and
extremely complex but, although we acknowledge the
importance of its role in defining one's musical
worldview, our research (and this paper) is focused
primarily on how: (i) music is perceived by the sensory
organs, (ii) represented in memory and (iii) the resulting
cognitive processes relevant to musical creation in general

(and more specifically, to improvisation) conveys the
emergence and development of musical worldviews.

Regarding specifically the creative issue, it is important
to remember that improvisation, at least in its most
generalised form, follows a protocol that consists of
developing musical ideas “on top” of pre-existing
schemes. In general, these include a musical theme that
comprises, among other elements, melody and harmonic
structure. Therefore, in this particular case, which happens
to be the most common, one does not need to create
specific strategies for each individual improvisational
session but rather follow the generally accepted protocol.

Despite of the fact that this may give the impression to
be limiting the system, preventing the use of more
complex compositional strategies, one of the major
interests of research into music improvisation relies on the
fact that once a musical idea has been played, one cannot
erase it. Therefore, each individual idea is an “imposition”
in itself that requires completion that leads to other ideas,
which themselves require completion, and so on. Newly
played elements complete and re-signify previous ones in
such ways that the improviser's musical worldview is
revealed. In this continuous process two concurrent and
different plans play inter-dependent roles: a pathway (the
“lead sheet”) to which the generated ideas have to adapt
and the “flow of musical ideas” that is particular to each
individual at each given moment and that imply (once
more) their musical worldview.

The general concepts introduced so far are all an
integral part of iMe and will be further clarified as we
introduce the system.

II.THE IME SYSTEM

iMe was conceived to be a platform in which software
agents perform music related tasks that convey musical
influence and emerge their particular styles. Tasks such as
read, listen, perform, compose and improvise have already
been implemented; a number of others are planned for the
future. In a multi-agent environment one can design
different developmental paths by controlling how and
when different agents interact; a hypothetical example is
shown in Fig. 1.

Agent ‘A"
Listen Ix Listen 8x Compose 2x Practice 5x Compose 2x
Y. ] | Voo o
Timeline
QD epecscesy [eesanaas  pamasasany pmman anann

Listen 4x Practice 4x Listen 10x Listen 5x  Compase 5x

Fig. 1. The developmental paths of two agents.

In the previous figure we see the representation of a
hypothetical timeline during which two agents (Agent 'A’
and Agent 'B') perform a number of tasks. Initially, Agent
'A" would listen to one piece of music previously present
in the environment. After that, Agent 'B' would listen to 4
pieces of music and so forth until one of them, Agent 'A’
would start to compose its own pieces. From this moment
Agent 'B' would listen to the pieces composed by Agent
'A" until Agent 'B' itself would start to compose and then
Agent 'A" would interact with Agent 'B's music as well.

In general, software agents should normally act
autonomously and decide if and when to interact.
Nevertheless, in the current implementation of iMe we
decided to constrain their skills in order to have a better
control over the development of their musical styles:



agents can choose which music they interact with but not
how many times or when they interact.

When agents perform composition or improvisation
tasks, new pieces are delivered to the environment and can
be used for further interactions. On the other hand, by
performing tasks such as read or listen to music, agents
only receive influence.

Interaction can be established not only amongst the
agents themselves, but also between agents and human
musicians. The main outcome of these interactions is the
emergence and development of the agents' musical styles
as well as the musical style of the environment as a whole.

The current implementation of iMe's perceptive
algorithms was specially designed to take into account a
genre of music texture (homophonic) in which one voice
(the melody) is distinguishable from the accompanying
harmony. In the case of the piano for instance, the player
would be using the left hand to play a series of chords
while the right hand would be playing the melodic line.
iMe addresses this genre of music but also accepts music
that could be considered a subset of it; e.g., a series of
chords, a single melody or any combination of the two.
Any music that fits into these categories should generate
an optimal response by the system. However, we are also
experimenting with other types of polyphonic music with
a view on widening the scope of the system.

In a very basic scenario, simulations can be designed by
simply specifying:

* A number of agents

* A number of tasks for each agent

» Some initial music material for the interactions

iMe generates a series of consecutive numbers that
correspond to an abstract time control (cycle). Once the
system is started, each cycle number is sent to the agents,
which then execute the tasks that were scheduled to that
particular cycle.

As a general rule, when an agent chooses a piece of
music to read (in the form of a MIDI file) or is connected
to another agent to listen to its music, it receives a data
stream which is initially decomposed into several feature
streams, and then segmented as described in the next
section.

A. System's Perception and Memory

iMe's perception and memory mechanisms are greatly
inspired by the work of Snyder [12] on musical memories.
According to Snyder, “the organisation of memory and
the limits of our ability to remember have a profound
effect on how we perceive patterns of events and
boundaries in time. Memory influences how we decide
when groups of events end and other groups of events
begin, and how these events are related. It also allows us
to comprehend time sequences of events in their totality,
and to have expectations about what will happen next.
Thus, in music that has communication as its goal, the
structure of the music must take into consideration the
structure of memory - even if we want to work against that
structure”.

iMe's agents initially “hear” music and subsequently
use a number of filters to extract independent but
interconnected streams of data, such as melodic direction,
melodic inter-onset intervals, and so on. This results in a
feature data stream that is used for the purposes of
segmentation, storage (memory) and style definition (Fig.
2).

_Fealure extraction
Continuous stream
feature 1

memotype 1

Musical
Data
Stream

1

Fig. 2. Feature extraction and segmentation.

To date we have implemented ten filters, which extract
information from melodic (direction, leap, inter-onset
interval, duration and intensity) and non-melodic notes
(vertical number of notes, note intervals from the melody,
inter-onset interval, duration and intensity). As it might be
expected, the higher the number of filters, the more
accurate is the representation of the music. In order to help
clarify these concepts, in Fig. 3 we present a simple
example and give the corresponding feature data streams
that would have been extracted by an agent, using the ten
filters:

) V .V . v —_—

% ~ ‘l 'l - — — .l 7 S e — . —a—— " —" 1
1 2 3 4 5 6 7 8 9 10 11

a) 0 1 1 1 1 -1 -1 -1 1 1 1
b) 0 2 2 1 2 2 1 2 2 1 2
c) 120 120 120 120 120 120 120 120 120 120 120
d) 120 120 120 120 120 120 120 120 120 120 120
e) 6 6 6 6 6 6 6 6 6 6 6
f 2 o O O O O O O 2 0 O

g 57 2 2 2 2 2 2 2 79 2 2

h) 120 2 -2 -2 -2 -2 -2 -2 120 -2 -2

iy %60 -2 -2 -2 -2 -2 -2 -2 90 -2 -2

jy 6 2 2 2 2 2 2 2 6 -2 -2 .
Fig. 3. Feature streams, where a) melody direction, b) melody leap, c)
melody interonset interval, d) melody duration, e) melody intensity, f)

non melody number of notes, g) non melody note intervals from
melody, h) non melody interonset interval, i) non melody duration, j)
non melody intensity.

Number -2 represents the absence of data in a particular
stream. Melody direction can value -1, 0 and 1, meaning
descending, lack of and ascending movement,
respectively. Melody leaps and intervals are shown in half
steps. In streams that hold time information (interonset
intervals and duration) the value 240 (time resolution) is
assigned to quarter notes. Intensity is represented by the
MIDI range (0 to 127); in Fig. 3 this was simplified by
dividing this value by ten.

After the extraction of the feature data stream, the next
step is the segmentation of the music. A fair amount of
research has been conducted on this subject by a number
of scholars. In general, the issue of music segmentation
remains unsolved to a great extent due to its complexity.
One of the paradigms that substantiate segmentation
systems has been settled by Gestalt psychologists who
argued that perception is driven from the whole to the
parts by the application of concepts that involve simplicity
and uniformity in organising perceptual information [13].



Proximity, closure, similarity and good continuation are
some of these concepts.

Fig. 4 shows a possible segment from piece by J. S.
Bach (First Invention for Two Voices) according to
Gestalt theory. In this case the same time length separates
all except for the first and the last notes, which are
disconnected from the previous and the following notes by
rests. This implies the application of similarity and
proximity rules.

Musical Flow

Fig. 4. An example of a music segment.

In the example discussed below we decided to build the
segmentation algorithm on top of only one of the
principles that guide group organization: the occurrence of
surprise. As the agents perceive the continuous musical
stream by the various expert sensors (filters), wherever
there is a break in the continuity of the behaviour of one
(or a combination of some) of the feature streams, this is
an indication of positions for a possible segmentation. The
whole musical stream is segmented at these positions. If
discontinuities happen in more than one feature at the
same time, this indicates the existence of different levels
of structural organization within the musical piece; this
conflict must be resolved (this will be clarified later).

In the example of Fig. 3, we shall only consider the
melody direction stream ('a' of Fig. 3). Hence, every time
the direction of the melody is about to change, a new
grouping starts. These places are indicated on the musical
score shown in Fig. 3 with the symbol 'v'.

To designate these segmented musical structures we
adopted the expression “musical meme” or simply
“meme”, a term that has been introduced by Dawkins [7]
to describe basic units of cultural transmission in the same
way that genes, in biology, are units of genetic
information. “Examples of memes are tunes, catch-
phrases, clothes fashions, ways of making pots or of
building arches. Just as genes propagate themselves in the
gene pool by leaping from body to body via sperm and
eggs, so memes propagate in the meme pool by leaping
from brain to brain via a process which, in a broad sense,
can be called imitation.” [7].

The idea of employing this concept is attractive because
it covers both the concept of structural elements and
processes of cultural development, which fits well with
the purpose of our research.

A meme is generally defined as a short musical
structure, but it is difficult to ascertain what is the minimal
acceptable size for a meme. In iMe, memes are generally
small structures in the time dimension and they can have
any number of simultaneous notes. Fig. 5 shows a meme
(from the same piece of the segment shown in Fig. 4) and
its memotype representation following the application of
three filters: melodic direction, leap and duration:

S R

Mel. direction: [O| 1 | 1 | 1 [-1] 1 [-1] 1 | -1
Mel. leap: Ol212]1[3]2[4]7]12
Mel. duration: | 0| 60| 60|60 |60|60|60|120]| 120

Fig. 5. Meme and corresponding memotype representation.

Since the memes were previously separated into
streams of data, they can be represented as a group of
memotypes, each corresponding to a particular musical
feature. A meme is therefore represented by m'
memotypes, in which n' is the number of streams of data
representing musical features. In any meme the number of
elements of all the memotypes is the same and
corresponds to the number of vertical structures. By
“vertical structure” we mean all music elements that
happen at the same time.

B. Memory

The execution of any of the musical tasks requires the
perception and segmentation of the musical flow and the
adaptation of the memory. As a result, the agents need to
store this information in their memory by comparing it
with the elements that were previously perceived. This is a
continuous process that constantly changes the state of the
memory of the agents.

In iMe, the memory of the agents comprises a Short
Term Memory (STM) and a Long Term Memory (LTM).
The STM consists of the last x memes (x is defined “a
priori” by the user) that were most recently brought to the
agent's attention, representing the focus of their
“awareness”.

A much more complex structure, the LTM is a series of
specialized “Feature Tables” (FTs), a place designed to
store all the memotypes according to their categories. FTs
are formed by “Feature Lines” (FLs) that keep a record of
the memotypes, the dates of when the interactions took
place (date of first contact - dfc, date of last contact - dlc),
the number of contacts (noc), weight (w) and “connection
pointers” (cp). In Fig. 6 we present the excerpt of a
hypothetical FT (for melody leaps) in which there are 11
FLs. The information between brackets in this Fig.
corresponds to the memotype and the numbers after the
colon correspond to the connection pointers. This
representation will be clarified by the examples given
later.

Feature n. 2 (melody leaps):
Line 0: [[00]:0000000000
Linel: [[220101250]:1
Line2: [[1003220]:2201010
Line3: [[10001224]:3
Line4: [[20204130]:4
Line5: [[03270204]:5810
Line6: [[3020324]:653
Line7: [[1012203]:73
Line8: [[2020200]:8318
Line9: |[20]:47499499
Line 10: [ [508212]: 10

Fig. 6. A Feature Table excerpt.

1) Adaptation

Adaptation is generally accepted as one of the
cornerstones of evolutionary theories, Biology and indeed
A-Life systems. With respect to cultural evolution,
however, the notion of adaptation still seem to generate
heated debates amongst memetic theory scholars. Cox
[14] asserts that the “memetic hypothesis™ is based on the
concept that the understanding that someone has on
sounds comes from the comparison with the sounds
already produced by this person. The process of
comparison would involve tacit imitation, or memetic
participation that is based on the previous personal
experience on the production of the sound.

According to Jan [15] “the evolution of music occurs
because of the differential selection and replication of



mutant memes within idioms and dialects. Slowly and
incrementally, these mutations alter the memetic
configuration of the dialect they constitute. Whilst
gradualistic, this process eventually leads to fundamental
changes in the profile of the dialect and, ultimately, to
seismic shifts in the overarching principles of musical
organization, the rules, propagated within several
dialects.”

iMe defines that every time agents interact with a piece
of music their musical knowledge changes according to
the similarities and/or differences that exist between this
piece and their own musical “knowledge”. At any given
time, each memotype for each one of the FTs in an agent's
memory is assigned with a weight that represents their
relative importance in comparison with the corresponding
memotypes in the other memes.

The adaptation mechanism is fairly simple: the weight
is increased when a memotype is perceived by an agent.
The more an agent listens to a memotype, the more its
weight is increased. Conversely, if a memotype is not
listened to for some time, its weight is decreased; in other
words, the agent begins to forget it.

The forgetting mechanism - an innovation if compared
to other systems, such as the ones cited earlier - is central
to the idea of an ontomemetic musical system and is
responsible for much of the ever-changing dynamics of
the weights of memotypes. In addition to this mechanism,
we have implemented a “coefficient of permeability”
(values between 0 and 1) that modulates the calculation of
the memotype weights. This coefficient is defined by a
group of other variables (attentiveness, character and
emotiveness), the motivation being that some tasks entail
more or less transformation to the agent's memory
depending on the required level of attentiveness (e.g., a
reading task requires less attention than an improvisation
task). On the other hand, attributes such as character and
emotiveness can also influence the level of “permeability”
of the memory.

When a new meme is received by the memory, if the
memotype is not present in the corresponding FT, a new
FL is created and added to the corresponding FT. The
same applies to all the FTs in the LTM. The other
information in the FLs (dates, weight and pointers) is then
(re)calculated. This process is exemplified below.

Let us start a hypothetical run in which the memory of
an agent is completely empty. As the agent starts
perceiving the musical flow (Fig. 3), the agent's “sensory
organs” (feature filters) generate a parallel stream of
musical features, according to the mechanism described
earlier. The first meme (Fig. 7) then arrives at the agent's
memory and, as a result, the memory is adapted (Fig. 8).
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Feature stream:

mdi: 0, 1, 1, 1

mle: 0,2,2, 1

mii: 120, 120, 120, 120
mdu: 120, 120, 120, 120

Fig. 7. Meme 1, where mdi is melody direction, mle is melody leap, mii
is melody interonset interval and mdu is melody duration.

In order to keep the example simple, we are only
showing the representation of four selected features:
melody direction (FT1), leap (FT2), interonset interval
(FT3) and duration (FT4). Fig. 8 shows the memotypes in
each of the Feature Tables. Notice that the connection

pointers (cp) of FT's 2 to 4 actually point to the index (i) of
the memotype of FT1. The initial weight (w) was set to
1.0 for all of the memotypes and the information date (dfc,
dlc) refers to the cycle in which this task is performed
during the simulation; in this case, the first task.

[i] Memotype [ dfc

[dic] noc | w [cp]

Melody direction:

1 0,1,1,1 1 1110

Melody leap:
1 0,2,2,1 1 1110 1
Melody interonset interval:

1 120,120,120,120 1 1 1 1.0 1
Melody duration:

1 120,120,120,120 1 1 1 1.0 1

Fig. 8. Agent's memory after adaptation to meme 1.

Then comes the next meme (Fig. 9), as follows:

Feature stream:
mdi: 1, -1, -1

mle: 2,2, 1

mii: 120, 120, 120
mdu: 120, 120, 120

| H

Fig. 9. Meme 2.

And the memory is adapted accordingly (Fig. 10):

[i [ Memotype | Dfc [dic [noc| w [cp]
Melody direction:
10,1,1,1 1 1 110 2
2 1,-1,-1 1 1 110
Melody leap:
10,221 1 1 110 1
2 2,2,1 1 1 110 2

» L

Melody interonset interval:
120, 120,120,120 1 1 1 1.0 1

—_

2 120, 120, 120 1 1 110 2
Melody duration:

1 120,120,120,120 1 1 1 1.0 1

2 120, 120, 120 1 1 110 2

Fig. 10. Agent's memory after adaptation to meme 2.

Here all the new memotypes are different from the
previous ones and stored in separate FLs in the
corresponding FTs. Now the memotype of index 1 in FT1
points (cp) to the index 2. Differently from the other FTs,
this information represents the fact that memotype of
index 2 comes after the memotype of index 1. This shows
how iMe keeps track of the sequence of memes to which
the agents are exposed. The cp of the other FTs still point
to the index in FT1 that connect the elements of the meme
to which the memory is being adapted. The weights of the
new memes are set to 1.0 as previously.

The same process is repeated with the arrival of meme
3 (Figs. 11 and 12) and meme 4 (Figs. 13 and 14).
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Fig. 11. Meme 3.

Feature stream:

mdi: -1,1,1, 1,1, 1
mle:2,2,1,2,2,2

mii: 120, 120, 120, 120, 120, 120
mdu: 120, 120, 120, 120, 120, 120

hiiii]

[i [ Memotype [ dfc [dic [Noc| W [Cp]
Melody direction:
10,1,1,1 1 1 110 2
2 1,-1,-1 11 1 10 3
3 -1,1,1,1,1,1 1 1 110
Melody leap:
10,221 11 1 10 1



2 2,2,1 11 110 2
32,2,1,2,2,2 11 1 10 3
Melody interonset interval:

1 120, 120, 120, 120 11 1 10 1

2 120, 120, 120 1 1 1 1.0

3 120, 120, 120, 120, 120,120 1 1 1 10 3
Melody duration:

1 120, 120, 120, 120 1 1 1 1.0 1

2 120, 120, 120 1 1 1 1.0 2

3 120, 120, 120, 120, 120,120 1 1 1 10 3
Fig. 12. Agent's memory after adaptation to Meme 3.
% Feature stream:
mdi: 1, -1, -1
mle: 1, 1,2
mii: 120, 120, 120
mdu: 120, 120, 120

Fig. 13. Meme 4.

The novelty here is that the memotypes for melody
direction, interonset interval and duration had already
been stored in the memory. Only the melody leap has new
information and, as a result a new FL was added to FT2
and not to the other FTs. The weights of the repeated
memotypes were increased by '0.1', which means that the
relative weight of this information increased if compared
to the other memotypes. We can say thereafter that the
weights ultimately represent the relative importance of all
the memotypes in relation to each other. The memotype
weight is increased by a constant factor (e,g, f = 0.1) every
time it is received and decreases by another factor if, at the
end of the cycle, it is not “perceived”. The later case will
not happen in this example because we are considering
that the run is being executed entirely in one single cycle.

[i] Memotype [dfc]dic[noc[ W [ Cp |
Melody direction:
101,11 1 1 1 1.0 2
2 1,-1,-1 1 1 2 11 3
3 -1,b1L,1L,1,1,1 1 1 1 10 2
Melody leap:
10,221 1 1 1 10 1
2 2,21 1 1 1 10 2
32,2,1,2,2,2 1 1 1 10 3
4 1,1,2 1 1 1 10 2
Melody interonset interval:
1 120, 120, 120, 120 1 1 1 10 1
2 120, 120, 120 1 1 2 11 22
3 120, 120, 120, 120,120,120 1 1 1 1.0 3
Melody duration:
1 120, 120, 120, 120 1 1 1 10 1
2 120, 120, 120 1 1 2 11 22
3 120, 120, 120, 120,120,120 1 1 1 1.0 3

Fig. 14. Agent's memory after adaptation to meme 4.

Finally, the memory receives the last meme (Fig. 15)
and is adapted accordingly (Figs. 15 and16).

;jjl I -} ! ’i Feature stream:
mdi: -1, 1, -1, -1, -1
mle: 2,2,2,2,1
mii: 120, 120, 120, 120, 120
: mdu: 120, 120, 120, 120, 480

Fig. 15. Meme 5.

[i [ memotype [dfc[dic[noc] w | cp |

Melody direction:
10,1,1,1 1 1 110 2
2 1,-1,-1 1 1 211 3,4
3 -1,b1,1,1,1,1 1 1 1 1.0 2
4 -1,1,-1,-1,-1 1 1 1 1.0

Melody leap:

10,221 11 1 1.0 1
2 2,2, 1 11 110 2
32,2,1,2,2,2 1 1 110 3
4 1,1,2 11 110 2
52,2,2,2,1 11 1 10 4
Melody interonset interval:
1 120, 120, 120, 120 11 1 1.0 1
2 120, 120, 120 1 1 21122
3 120, 120, 120, 120,120,120 1 1 110 3
4 120, 120, 120, 120, 120 11 1 10 4
Melody duration:
1 120, 120, 120, 120 1 1 1 1.0 1
2 120, 120, 120 I 1 21122
3 120, 120, 120, 120,120,120 1 1 110 3
4 120, 120, 120, 120, 480 1 1 1 10 4

Fig. 16. Agent's memory after adaptation to meme 5.

C. Generative Processes

Gabora [16] explains that, in the same way that
information patterns evolve through biological processes,
mental representation - or memes - evolves through the
adaptive  exploration and transformation of an
informational space through variation, selection and
transmission. Our minds perform tasks on its replication
through an aptitude landscape that reflects internal
movements and a worldview that is continuously being
updated through the renovation of memes.

In iMe agents are also able to compose through
processes of re-synthesis of the different memes from
their worldview. Obviously, the selection of the memes
that will be used in a new composition implies that the
musical worldview of this agent is also re-adapted by
reinforcing the weights of the memes that are chosen.

In addition to compositions (non real-time), agents also
execute two types of real-time generative tasks: solo and
collective improvisations. The algorithm is described
below.

1) Solo improvisations
During solo improvisations, only one agent play at a
time, following the steps below

a) Step 1: Generate a new meme according to the
current “meme generation mode”

The very first memotype of a new piece of music is
chosen from the first Feature Table (FT1), which guides
de generation of the whole sequence of memes, in a
Markov-like chain. Let us assume that the user configured
FT1 to represent melody direction. Hence, this memotype
could be, hypothetically [0, 1, 1, -1], where O represents
“repeat the previous note”, 1 represents upward motion
and -1 represents downward motion. Once the memotype
from FT1 is chosen (based on the distribution of
probability of the weights of the memotypes in that table),
the algorithm looks at the other memotypes at the other
FTs to which the memotype at FT1 points at and chooses
a memotype for each FT of the LTM according to the
distribution of probability of the weights at each FT. At
this point we would end up with a new meme (a series of
n memotypes, where n = number of FT's in the LTM).

The algorithm of the previous paragraph describes one
of the generation modes that we have implemented: the
“LTM generation mode”. There are other modes. For
instance, there is the “STM generation mode”, where
agents choose from the memes stored in their Short Term
Memory. Every time a new meme is generated, the agent
checks the Compositional and Performance Map



(explanation below) to see which generation mode is
applicable at any given time.

b) Step 2: Adapt the memory with the newly generated
meme

Once the new meme is generated, the memory is
immediately adapted to reflect this choice, according to
the criteria explained in the previous section.

c) Step 3: Adapt the meme to the Compositional and
Performance Map (CPM)

The new meme is then adapted according to criteria
foreseen at the CPM. The CPM (Fig. 17), iMe's equivalent
to a “lead sheet”, possesses instructions regarding a
number of parameters that address both aspects of the
improvisation: the generation of new musical ideas and
the performance of these ideas. Examples of the former
are: the meme generation mode, transformations to the
meme, local scales and chords, note ranges for right and
left hand. Examples of the latter are: ratio of loudness
between melodic and non-melodic notes, shifts for note
onset, loudness and duration both for melodic and non-
melodic notes. Instructions regarding the performance
only affect the sound that is generated by the audio output
of the system and is not stored with the composition.

800 CoMap
len mam cRo Ty cBa | sRo sTy nMR
1.00 Itm 0 major 0 0  major 30
1.00 Itm 0 major 0 0 major 30
1.00 Itm 0 major 0 0 major 30
1.00 Itm 0 maor 0 0  major 30
1.00 Itm 0 major 0 0 major 30
LO0  Ium 0 majur 0 0 majur 30
L00  Itm 0 major 0 0 major 30
L00  Itm 0 major 0 0  major 30
L00  Itm 0 major 0 0 major 30
L00  Itm 0 major 0 0 major 30
LOD  Itm 0 major 0 0 major 20
100 Itm 0 maor 0 0 maior 3n

Fig. 17. A CPM excerpt.

The instructions (or “constraints”) contained in the
CPM are distributed on a timeline. The agent checks the
constraints that are applicable at the ‘“compositional
pointer”, a variable that controls the position of the
composition on the timeline, and acts accordingly.

d) Step 4: Generate notes and play the meme (if in
real time mode)

Until this moment, the memes are not real notes but
only meta-representations described by the memotypes
(melody direction, melody leap, etc.). Given the
previously generated notes and the CPM, the ‘“actual
notes” of the meme must be calculated and sent to a
playing buffer.

e) Step 5: Store the meme in the composition

An array with the information of the sequence of the
memes is kept with the composition for future reference
and tracking of the origin of each meme. There is another
generation mode, the ‘“MemeArray generation mode”,
where an agent can retrieve any previously generated
meme and choose it again during the composition.

f) Step 6: Repeat previous steps until the end of the
cPM
The agent continuously plays the notes of the playing

buffer. When the number of notes in this buffer is equal to
or less than 'x' (parameter configured by the user), the

algorithm goes back to step 1 above and a new meme is
generated until the whole CPM is completed.

2) Collective improvisations

The steps for collective improvisations are very similar
to the steps for solo improvisations, except for the fact that
the agents play along with a human being. We have
implemented this task as two separate sub-tasks (a
listening sub-task and a solo improvisation sub-task)
running in separate threads. Memes are generated as in a
solo improvisation and the agents' memory is equally
affected by the memes they choose as well as by the
memes that they listen from the musical data originated by
the external improviser. Both agent and external
improviser follow the same CPM.

At the end of the improvisation (solo or interactive), the
composition is stored in the system in order to be used in
further runs of the system.

III.CONCLUSIONS AND FURTHER WORK

In this paper we introduced Interactive Musical
Environments (iMe) for the investigation of the
emergence and evolution of musical styles in
environments inhabited by artificial agents, under the
perspective of human perception and cognition. This
system belongs to a new paradigm of interactive musical
systems that we refer to as “ontomemetical musical
systems” for which we propose a series of prerequisites
and applications.

As seen from some of the experiments that we have
presented, we understand that iMe has the potential to be
extremely helpful in areas such as the musicological
investigation of musical styles and influences. Besides the
study of the development of musical styles in artificial
worlds, we are also conducting experiments with human
subjects in order to assess iMe's effectiveness to evaluate
musical influences in inter-human interaction. The study
of creativity and interactive music in artificial and real
worlds could also benefit with a number of iMe's features,
which we are currently evaluating as well.

The memory of an agent is complex and dynamic,
comprising of all memotypes, their weights and
connection pointers. The execution of musical tasks
affects the memory state in proportion to the appearance
of different memes and memotypes. A particular musical
ontomemesis can thereafter be objectively associated with
the development of any agent's “musicality”.

Bearing in mind that iMe can be regarded as a tool for
the investigation of musical ontomemesis as much as a
tool for different sorts of musicological analyses, a series
of different simulation designs could be described.

Future improvements to the system will include the
introduction of algorithms that would allow iMe to
become a self-sustained artificial musical environment
such as criteria to control the birth and demise of agents
and the automatic definition of their general
characteristics such as attentiveness, character,
emotiveness, etc. Agents should also possess the ability to
decide when and what tasks to perform, besides being able
to develop their own Compositional and Performance
Maps.
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Abstract — We are interested in developing intelligent
systems for music composition. In this paper we focus on
our research into generative rhythms. We have adopted an
Artificial Life (A-Life) approach to intelligent systems
design in order to develop generative algorithms inspired by
the notion of music as social phenomena that emerge from
the overall behaviour of interacting autonomous software
agents. Whereas most A-Life approaches to implementing
computer music systems are chiefly based on algorithms
inspired by biological evolution (for example, Genetic
Algorithms [2]), this work is based on cultural development
(for example, Imitation Games [12, 13]). We are developing
a number of such “cultural” algorithms, one of which is
introduced in this paper: the popularity algorithm. We also
are developing a number of analysis methods to study the
behaviour of the agents. In our experiments with the
popularity algorithm we observed the emergence of
coherent repertoires of rhythms across the agents in the
society.

[.INTRODUCTION

The A-Life approach to music is a promising new
development for composers. It provides an innovative
and natural means for generating musical ideas from a
specifiable set of primitive components and processes
reflecting the compositional process of generating a
variety of ideas by brainstorming followed by selecting
the most promising ones for further iterated refinement
[8]. We are interested in implementing systems for
composition using A-Life-based models of cultural
transmission; for example, models of the development
and maintenance of musical styles within particular
cultural contexts, and their reorganization and adaptation
in response to cultural exchange.

Existing  A-Life-based  systems for  musical
composition normally employ a Genetic Algorithm (GA)
to produce musical melodies, rhythms, and so on. In these
systems, music parameters are represented as
“genotypes” and GA operators are applied on these
representations to produce music according to given
fitness criteria. Because of the highly symbolic nature of
Western music notation, music parameters are suitable
for GA-based processing and a number of musicians have
used such systems to compose music.

Although we acknowledge that there have been a few
rather successful stories [2], we believe that additional A-
Life-based methods need to be developed [11, 12]. The
work presented in this paper contributes to these
developments by looking into the design of algorithms
that consider music as a cultural phenomenon whereby
social pressure plays an important role in the

development of music. A plausible method to embed
social dynamics in such algorithms is to design them
within the framework of interacting autonomous software
agents.

We are developing a multi-agent system for
composition of rhythms where the user will be able to
extract information about the behaviour of the agents and
the evolving rhythms in many different ways, providing
composers the means to explore the outcomes
systematically. An in-depth discussion on the architecture
of the whole system and how it will be used artistically to
compose pieces of music falls beyond the scope of this
paper. Rather, this paper will focus on one of the A-Life
algorithms that we have developed for the system - the
popularity algorithm - and the information that one can
extract about its behaviour, and the analyses of the
behaviours.

By way of related research, we cite the work by de
Boer [3] on modelling the emergence of vowel systems
by means of imitations games and Kirby’s work on
evolution of language [9]. Also, Miranda [13] has
developed a model of the emergence of intonation
systems using imitation games. Basically an imitation
game consists of one agent picking a random sound from
its repertoire and the other agent trying to imitate it.
Then, a feedback is given about the success of the
imitation. On the basis of this feedback, the agents update
their memories.

IL.THE AGENTS

The agents are identical to each other and the number of
agents in a group may vary. The agents move in a virtual
2D space and they normally interact in pairs. Essentially,
the agents interact by playing rhythmic sequences to each
other, with the objective of developing repertoires of
rhythms collectively. At each round, each of the agents in
a pair plays one of two different roles: the player and the
listener. The agents may perform operations on the
rhythms that they play to each other, depending on the
iteration algorithm at hand and on the status of the
emerging repertoire. The agents are provided with a
memory to store the emerging rhythms and other
associated information.

The fundamental characteristic of human beings is that
we are able to perceive, and more importantly, to produce
an isochronous pulse [6]. Moreover, humans show a
preference for rhythms composed of integer ratios of the
basic isochronous pulse [5]. Therefore, we represent
rhythms as interonset intervals in terms of small integer
ratios of an isochronous pulse (Fig. 1).



Music Notation H 2 5 D

Representation 172121 2 1/41/41 1722 4

1212112122 2 11

Fig. 1. Standard music notation of a thythmic sequence and its
corresponding interonset representation.

A. Transformations of Rhythms

At the core of the mechanism by which the agents
develop rhythmic sequences is a set of basic
transformation operations. These operations enable the
agents to generate new rhythmic sequences and change
the rhythmic sequences that they learn as the result of the
interactions with other agents. The transformation
operations are as follows:

* Divide a rhythmic figure by two (Fig. 2a)

* Merge two rhythmic figures (Fig. 3b)

* Add one element to the sequence (Fig. 2¢)

* Remove one element from the sequence (Fig. 2d)

a) | 1 | 1/2| 1/2I 1 I:ﬂ 1 | 1/4| 1/4| 1/2| 1 |
b) | 1 |1/2I1/2| 1 H* 1 I 1 | 1 |
c) | 1 |1/2|1/2| 1 ':ﬂ 1 |1/2|1/2| 1 | 1 |

d) | 1 Iw/zlw/zl 1 I:ﬂmlwzl 1 |

Fig. 2. Examples of rhythmic transformations.

The definition of these transformations were inspired
by the dynamical systems approach to study human
bimanual coordination [7] and is based on the notion that
two coupled oscillators will converge to stability points at
frequencies related by integer ratios [1]. We have defined
other transformations that divide a figure into three, five,
and other prime numbers, but the impact of these
additional transformations on the system is beyond the
scope of this paper. Addition and removal
transformations were introduced to increase diversity in
the pool of rhythms and to produce rhythms of different
lengths.

B. Measuring Similarity of Rhythms

The agents are programmed with the ability to
measure the degree of similarity of two rhythmic
sequences. This measurement is used when they need to
assess the similarity of the rhythms they play to each
other. Also, this algorithm is used to measure the
similarity between repertoires of rhythms from different
agents.

In a previous paper [10] we introduced a method to
measure the degree of similarity between two sequences
of symbols by comparing various subsequences at
various levels. The result is a vector, referred to as the
Similarity Coefficients Vector (SCV), which contains the
interim results of the comparisons between subsequences.
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For the present work, we devised a version of the SCV
method to deal with rhythmic sequences.

Let us define the block distance between two
sequences containing the same number of elements as
follows:

n
d(v,w) = Z |v; — w;|

i=1

where v and w are the two sequences (vectors) that are
being compared, and v; and w; are the individual
components of these vectors. After obtaining the resulting
evaluation of the block distances on a given level (length
of a subsequence), we can write a matrix for the k-level,
corresponding to the comparison of all the subsequences
with length k between the two main sequences:

) (k) _ (k)
d(vy7 . wy) d(vy ‘W(rrz—/\'+l))
(k) (k) (k) (k)
500 d(vy’,wy) d(vy” Wi hiny)
(k) (k) (k) (k)
A(Vin_g1) Wi ) AV (k1) Wim—k+1))

where d are the distances d(v, w) between all the
subsequences v\ of v and all the subsequences w* of w.
Next, let us define the k-level Similarity Coefficient as
follows:

(k) r) = Z(/'J
(v, w) n=-k+D(m-k+1)

where z(k) is the number of zeros in the matrix D®.

Roughly speaking, the similarity coefficient measures the
sparsity of the matrix D®. The higher the coefficient c(k),
the higher is the similarity between the subsequences of
level k. Next, we can collect all the k-levels coefficients
in a vector referred to as Similarity Coefficient Vector
(SCV). This is defined as follows:

(,(min(m.n))

Fig. 3 shows an example of building a 3-level Distance
Matrix and its respective SCV is SCV = [0.4167 0.1333
0.1250 0]. From SCV we can obtain a scalar value in
order to establish a comparative analysis between larger
sets of rhythms, such as the repertoires of two agents. We
can take the rightmost nonzero value from the SCV,
which corresponds to the higher level where two
matching sequences can be found. We can either take a
weighted sum of the SCV values or the average of all
values, as follows:

man(m,n)

> SCV(k)

k=1

SOV = ————
man(m,n)
where SCV (k) are the coefficients of similarity for each
of the k levels. The next step is to compare the repertoire
of the agents in order to observe the development of



relationships amongst the agents in a group of agents; for
instance, to observe if the agents form distinct sub-
groupings. The similarity of the repertoire of rhythms
amongst the agents in a group is computed by creating a
matrix of SCV,, values of the repertoires of all pairs of
agents. Matrices with the columns and rows
corresponding to the number of rhythms in the memory
of each agent reveal the similarity between their
repertoires (Fig. 4).

I ||
2 08 2 B E o
oD 042 04
< <
6 02 6 W o2
1.2 3 4 5 2 4 6 8

Agent2 Agent3

Fig. 4. Examples of similarity matrices between the repertoires of 3
agents: agent 1 vs. agent 2 and agent 1 vs. agent 3. The darker the
colour the more similar the rhythms are.

By collapsing both the rows and the columns of the
matrices, and taking the maximum values for each of
them and an averaged sum, we obtain the scalar of
similarity between repertoires, as follows:

SimRepy; =

nR Ak nRa

Y maw(SCVay)rows + _, maz(SCVuy)cots

i=1 j=1

1
nRax +nRa;

where the first term corresponds to the sum of the
maximum values of the SCV,,, for every row, and the
second term is the correspondent for every column; nR 4
and nRy are the number of rhythms in the repertoire of
the compared agents.

Finally, the development of repertoires of rhythms of a
group of agents as a whole can be observed by
conducting a hierarchical cluster analysis of all distance
measures between the agents (DistRep). This cluster
analysis produces a dendrogram using a linkage method
based on an unweighted average distance, also known as
group average in which the distance between two clusters
A and B, Dp, is given by the following equation:

1
Nj.Np Z &

i

Dap =

1"

where N, and Np are the number of elements in 4 and B,
and d; are pairwise distances between the elements of
clusters 4 and B. The hierarchical cluster analysis
produces a dendrogram of the type shown in Fig. 8. Such
dendrogram is drawn through an iterative process until all
the individuals or clusters are linked.

C. Measuring the Complexity of Rhythms

The complexity of a rhythmic sequence is measured as
follows:

nF

nkF + Zn,-

i=1
nF

>

i=1

Complexity =

where nF is the number of rhythmic figures contained in
the sequence, #n; is value of the numerator of a rhythmic
figure, and 7; is the relative length of a rhythmic figure,
considering that each rhythmic figure is a fraction of the
pulse. This is a computationally cost effective method to
measure the complexity of a rhythmic sequence.

It is important to bear in mind that our
implementation ensures that there are no reducible
fractions included in the sequence, meaning that there is
always a single numerical representation for a given
rhythm. Fig. 5 shows an example of a graph plotting the
complexity of a sequence of relative interonset intervals
[1, 1] as it is transformed thirty times recurrently, using
the transformation operations mentioned earlier.
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complexity
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Fig. 5. Example where complexity increases with the number of
transformations.

III.THE POPULARITY ALGORITHM AND EXPERIMENTS

Popularity is a numerical parameter that each agent
attributes to a rhythm in its repertoire. This parameter is
modified both by the (agent-)listener and by the (agent-
)player during the interactions. If the listener recognises a
rhythm (that is, if it holds the “perceived” rhythm in its
repertoire), then it will increase the popularity index of
this rhythm and will give a positive feedback to the
player. A positive feedback is an acknowledgment signal,
which will prompt the player to increase the popularity
index of the rhythm in question in its repertoire.
Conversely, if the listener does not recognize the rhythm,
then it will add it to its repertoire and will give a negative
feedback to the player. This negative feedback will cause
the player to decrease the popularity index of this rhythm.



Furthermore, there is a memory loss mechanism whereby
after each interaction all the rhythms have their
popularity index decreased by 0.05. This accounts for a
natural drop in the popularity index due to ageing. The
core of the popularity algorithm works as follows:

Agent Player:
P1. Plays a rhythm and increase the counter for the

number of times that this rhythm has been used.

Agent Listener:
L1. Search for the heard rhythm in its repertoire
L2. If the rhythm is found, then give a positive feedback to
the agent player and increase the counter for the
popularity of the rhythm in its repertoire
L3. If the rhythm is not found, then add this rhythm to the
repertoire and give as negative feedback to the agent
player

Agent Player:
P2. Receive the feedback from agent listener
P3. If feedback is positive, then increase the counter for
the popularity of the rhythm in its repertoire
P4. If feedback is negative, then decrease the counter for
the popularity algorithm in its repertoire
P5. If the minimum popularity threshold for this rhythm
has been reached, then remove this rhythm from its
repertoire
P6. If the transformation threshold for this rhythm has
been reached, then transform this rhythm

As for the analyses, firstly we analyse the
development of the size and the complexity of the
repertoire of individual agents. Then, we analyse the
values of the corresponding individual measures from the
agents, as well as similarity between agents and how they
are clustered in terms of the rhythms they share. Finally,
we measure the lifetime of the rhythms, the amount of
rhythmic sequences that the society develops and the
degree to which the agents share similar rhythms. We
trace the lifetime of a rhythm by counting the number of
agents that hold the sequence in their memories during
the interactions. Fig. 6 shows 3 examples of analyses.

Nuber of rhythms per agent

Average total complexity
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Fig. 6. Examples of amalyses: development of the size of the repertoire
for different agents (top left), complexity of the rhythms of the society
(top right) and number of agents sharing a particular rhythm (bottom).

The experiments were run for 5000 iterations each for a
number of times, with the objective of observing the
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behaviour of the agents, the society and the evolving
rhythms, under different conditions. We have run
experiments with societies of 3, 10 and 50 agents. For
some of the experiments we have limited the lifetime of
the agents to 1000 iterations; when an agent dies, another
is born. Sometimes the algorithms take into account the
movement of the agents in the 2D space, which may or
may not influence the nature of the iterations. Fig. 7
shows the results after 5000 iterations of the popularity
algorithm with 10 agents (without population renewal).
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Fig. 7. Results from a typical run of the popularity algorithm with 10
agents.

Fig. 7a displays the development of the repertoire of
individual agents and Fig. 7b displays the corresponding
average across all agents. Here the repertoires of the
agents grow steadily up to approximately 1000 iterations
and subsequently oscillates around a stable point. Fig. 7¢c
displays the development of the repertoire of the whole
society being a direct consequence of the lifetime of each
rhythm. The average number agents sharing a rhythm
(Fig. 7d) is calculated by summing the instant number of
agents sharing a rhythm for all rhythms, and dividing the
result by the number of rhythms currently present in the
society (Fig. 7¢). This graph (Fig. 7d) provides the means
to assess the global behaviour of the society; for instance,
if it develops coherently in terms of popularity of existing



rhythms. Fig. 7e represents the development of
complexity of the individual agents and Fig. 7f gives the
corresponding average. Initially, the size and complexity
of the repertoire of individual agents are very close to the
average, but this trend is replaced quickly by repertoires
of different sizes amongst the agents.

The last three graphs show the degree of similarity
between the repertoires of the agents according to the
similarity measure defined earlier. Fig. 7g displays
information about the identity of the agent with whom
each agent relates most; i.e., has the highest similarity
value. The graph in Fig. 7h shows the agents that are
regarded by others as being most similar to them. In this
case, it shows that agent 3 has three agents with similar
repertoires, and agent 10 is the one that concentrates the
highest number of keen agents, having six agents
considering its repertoire to be more similar to theirs.

Hierarchical cluster analysis is conducted in order to
observe groupings of agents according to the similarity of
their repertoires. Fig. 8 shows the dendrogram containing
elements of three societies of 10 agents each: Society 1
comprises agents 1 to 10, Society 2 comprises agents 11
to 20 and Society 3 the remaining 21 to 30. By comparing
the three societies we can observe 3 clearly independent
clusters, which were developed separately in three
separate runs with the same set of parameters. In addition
to the previous observations, this suggests that the
repertoires that emerged from the popularity algorithm
display diversity, are stable in terms of size, and are
coherent within their respective societies. We can also
observe differences in the clusters within a given society.

Fig. 8. Dendrogram resulting from the hierarchical cluster analysis
conducted in the context of the popularity algorithm containing three
independent societies with 10 agents each.
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Fig. 9. World visualisation of two steps of the iterative process.
Clustering takes place (figure on the left) followed by scattering at a
later stage (figure on the right). A cluster is indicated by a darker colour.
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By letting the agents move in their environment, we also
investigated whether the interaction rules could influence
the movement of the agents and whether this process
would influence the development of their repertoires. In
this case, if a listening agent “recognises” the rhythm
played by the other agent, then it will follow the player
agent in the space in the next iteration. Fig. 9 shows
periodic clustering of one or more groups of agents that
move together and keep interacting until the cluster is
scattered due to an unsuccessful interaction.

a) Number of thythms per agent b) Average number of thythms per agent
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Fig. 10. Results from a typical run of the popularity algorithm taking
into account the movement of the agents as an influencing factor in the
evolution of the repertoire.

In Fig. 10, we can observe two behaviours that are typical
of the popularity algorithm with movement taken into
account. The first being that there are many more
rhythms affecting the interactions than in the case without
movement; this is due to the fact that every time a
positive feedback occurs, two or more agents will form a
group. This increases the number of interactions and
consequently the number of rhythms in their repertoires.
The second being that there is an initial overshoot of the
size of the repertoire before reaching a level of stability.
This is possibly caused by the initial clustering of agents
when individual repertoires grow consistently among
very closely related agents.



IV.CONCLUDING DISCUSSSION

We are developing novel A-Life-based generative
music algorithms with a view on producing an intelligent
system for the composition of rhythms. Most current
approaches to using A-Life in software for generating
music entail the application of a GA. We propose that a
strictly GA-based approach to generate music is
questionable because they were not designed to address
musical problems in the first place, but to solve
engineering and searching problems. The act of
composing music seldom involves an automated selective
procedure towards an ideal outcome based on a set of
definite fitness criteria.

As a way forward, we suggest that A-Life-based
systems for generating music should employ algorithms
that consider music as a cultural phenomenon whereby
social pressure plays an important role in the
development of musical conventions. To this end, we are
developing a number of algorithms, one of which was
introduced in this paper: the popularity algorithm. In
addition, we developed a number of methods to monitor
the behaviour of the algorithms.

In all runs of the popularity algorithm we observed
the emergence of coherent repertoires across the agents in
the society. Clustering of agents according to their
repertoires could also be observed on various occasions.

Whereas the size of the repertoire is controlled by a
popularity parameter in the algorithm, it tends to grow
constantly in the other algorithms that we have
implemented. We also observed that a small subset of
agents tend to concentrate the preference of most of the
population. This trend tended to appear in many runs with
different settings.
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Abstract—We present preliminary work on automatic
human-readable melody characterization. In order to ob-
tain such a characterization, we (1) extract a set of statisti-
cal descriptors from the tracks in a dataset of MIDI files, (2)
apply a rule induction algorithm to obtain a set of (crisp)
classification rules for melody track identification, and (3)
automatically transform the crisp rules into fuzzy rules by
applying a genetic algorithm to generate the membership
functions for the rule attributes. Some results are presented
and discussed.

I. INTRODUCTION

Melody is a somewhat elusive musical term that
often refers to a central part of a music piece that
catches most of the listener’s attention, and which the
rest of music parts are subordinated to. This is one of
many definitions that can be found in many places,
particularly music theory manuals. However, these are
all formal but subjective definitions given by humans.
The goal in this work is to automatically obtain an
objective and human friendly characterization of what
it is considered to be a melody.

The identification of a melody track is relevant for a
number of applications like melody matching [1], motif
extraction from score databases, or extracting melodic
ringtones from MIDI files. In this work we approach
the problem of automatically building a model that
characterizes melody tracks. Such a model is tested
in experiments on finding a melody track in a MIDI
file. The melody model is a set of human-readable
fuzzy rules automatically induced from a corpora of
MIDI files by using statistical properties of the musical
content.

To our best knowledge, the automatic description of
a melody has not been tackled as a main objective
in the literature. The most similar problem to the
automatic melody definition is that of finding a melody
line from a polyphonic source. This problem has been
approached mainly for three different objectives and
with different understandings of what a melody is. The
first objective is the extraction of the melody from a
polyphonic audio source. For this task it is important
to describe the melody in order to leave out those notes
that are not candidates to belong to the melody line[2].
In the second objective, a melody line (mainly mono-
phonic) must be extracted from a symbolic polyphonic
source where no notion of track is used [3]. The last
objective is to select one track containing the melody
from a list of input tracks of symbolic polyphonic
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music (e.g. MIDI). Ghias et al. [1] built a system to
process MIDI files extracting a sort of melodic line
using simple heuristics. Tang et al. [4] presented a work
where the aim was to propose candidate melody tracks,
given a MIDI file. They take decisions based on single
features derived from informal assumptions about what
a melody track may be. Madsen and Widmer [5] try to
solve the problem by the use of several combination of
the entropies of different melody properties like pitch
classes, intervals, and IOI.

A. What's a melody?

Before focusing on the machine learning methodol-
ogy to extract automatically the characterization of a
melody, the musical concept of melody needs to be
reviewed.

Melody is a concept that has been given many
definitions, all of them complementary. The variability
of the descriptions can give an idea on the difficulty of
the task to extract a description automatically.

From the music theory point of view, Ernst Toch [6]
defines it as “a succession of different pitch sounds
brighten up by the rhythm”. He also writes “a melody
is a sound sequence with different pitches, in opposi-
tion to its simultaneous audition that constitutes what
is named as chord”. He distinguishes also the term
"melody” from the term "theme".

A music dictionary [7] defines melody as: “a combi-
nation of a pitch series and a rhythm having a clearly
defined shape”.

An informal survey was carried out where the sub-
jects were asked to answer the question What is a
melody?. Both musicians and non-musicians took part
in the survey. The following list is a compendium of
shared melody traits found in answers gathered on that
survey:

« (finite) succession of notes

« cantabile pitch range

« monophonic

. lead part

- identifies/characterices the piece, song
« unity

. diversity

. contains repeating patterns

. often linked to text

. done by humans

- understandable, memorizable by humans



The music theory literature lacks the same amount
of works about melody than can be found about
counterpoint, harmony, or "form" [8]. Besides, the
concept of melody is dependant on the genre or
the cultural convention. The most interesting studies
about melody have appeared in recent years, mainly
influenced by new emerging models like generative
grammars [9], artificial intelligence [10], and Gestalt
and cognitive psychology [11]. All these works place
effort on understand the melody in order to generate
it automatically.

The types of tracks and descriptions of melody versus
accompaniment is posed in [8]. The author distin-
guishes:

. compound melodies where there is only a melodic
line where some notes are principal, and others
tend to accompany, being this case the most
frequent in unaccompanied string music.

. self-accompanying melodies, where some pitches
pertain both to the thematic idea and to the
harmonic (or rhythmic) support

- submerged melodies consigned to inner voices

- roving melodies, in which the theme migrates from
part to part

. distributed melodies, in which the defining notes
are divided between parts and the prototype can-
not be isolated in a single part.

From the audio processing community, several defi-
nitions can be found about what a melody is. Maybe,
the most general definition is that of Kim et at. [12]:
“melody is an auditory object that emerges from a
series of transformations along the six dimensions:
pitch, tempo, timbre, loundness, spatial location, and
reverberan environment".

Gomez et al. [13] gave a list of mid and low-level
features to describe melodies:

« Melodic attributes derived from numerical analysis
of pitch information: number of notes, tessitura,
interval distribution, melodic profile, melodic den-
sity.

« Melodic attributes derived from musical analysis
of the pitch data: key information, scale type
information, cadence information.

. Melodic attributes derived from a structural analy-
sis: motive analysis, repetitions, patterns location,
phrase segmentation.

Another attempt to describe a melody can be found
in [14]. In that book, Temperley proposes a model of
melody perception based on three principles:

. Melodies tend to remain within a narrow pitch
range.

- Note-to-note intervals within a melody tend to be
small.

. Notes tend to conform to a key profile (a distribu-
tion) that depends on the key.

All these different properties a melody should have
can be a reference to compare the automatic results.
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The rest of the paper is organized as follows: first,
the methodology used in this work is presented. Sec-
ond, the experimentation framework is outlined. Next,
results on several datasets for both crisp and fuzzy
rule systems are discussed and compared to related
work results. Finally, conclusions and further work are
presented.

II. METHODOLOGY

The goal of this work is to obtain an human-
readable characterization of MIDI tracks containing
melody lines, against other kind of tracks. A fuzzy rule
system has been chosen as the technique to obtain
such a characterization. These fuzzy models should
achieve good performance in discriminating melody
tracks when compared to other non-fuzzy or non-rule
based crisp models.

The methodology applied to obtain such fuzzy mod-
els is sketched as follows: first, MIDI tracks are de-
scribed by a set of statistical features on several proper-
ties of the track content. This is presented in section II-
A. Next section briefly describes different rule extrac-
tion methods used to obtain crisp rule systems that
characterize melody tracks. Finally, these rule systems
are then converted to fuzzy rule systems applying
a fuzzyfication process to the input domain. This is
discussed in section II-C.

A. MIDI track content description

MIDI track content is described by a collection of
statistics on several properties of musical note streams,
such as pitch, pitch interval or note duration, as well as
track properties such as number of notes in the track,
track duration, polyphony rate or occupation rate. As
a result, MIDI tracks are represented by vectors v € R
of statistical values. This representation has been used
to characterize melody tracks in previous works [15],
[16].

This set of statistical descriptors is presented in
Table 1. The first column indicates the category being
analyzed, and the second one shows the kind of statis-
tics describing properties from that category. The third
column indicates the range of the descriptor’.

Four features were designed to describe the track as
a whole and fifteen to describe particular aspects of its
content. For the latter descriptors, both normalized and
non-normalized versions have been computed. Only
non-normalized ones are displayed in table I. Nor-
malized descriptors are defined in [0,1] and computed
using the formula

(v; —min)/(max—min)

where v; is the descriptor value to be normalized
corresponding to the i-th track, and min and max are,
respectively, the minimum and maximum values for
this descriptor for all the tracks of the target midifile.
This allows to represent these properties proportionally

l(x..y] denotes integer domains and [x, y] denotes real domains.



TABLE I
MIDI TRACK DESCRIPTORS

Category [ Descriptors [ Domain
Track info. Normalized duration [0,1]
Number of notes [0 ..+00[
Occupation rate [0,1]
Polyphony rate [0,1]
Pitch Highest [0..127]
Lowest [0 .. 127]
Mean [0,127]
Standard deviation [0, +oo[
Pitch intervals Number of distinct intv. | [0 .. 127]
Largest [0 .. 127]
Smallest [0 .. 127]
Mean [0,127]
Mode [0 .. 127]
Standard deviation [0, +oo
Note durations | Longest [0, +oo
Shortest [0, +oo]
Mean [0, 400l
Standard deviation [0, +oo]
Syncopation No. of syncopated notes | [0 ..+oo[
Class IsMelody {true, false}

to other tracks in the same file, using non-dimensional
values. This way, a total number of 4+15x2 = 34
descriptors were initially computed for each track.

The track information descriptors are normalized
duration (using the same scheme as above), number of
notes, occupation rate (proportion of the track length
occupied by notes), and the polyphony rate (the ratio
between the number of ticks in the track where two
or more notes are active simultaneously and the track
duration in ticks).

Pitch descriptors are measured using MIDI pitch
values. The maximum possible MIDI pitch is 127 (pitch
Gg) and the minimum is 0 (pitch C_»).

The interval descriptors summarize information
about the difference in pitch between consecutive
notes. Absolute pitch interval values are computed.

Finally, note duration descriptors are computed in
terms of beats, so they are independent from the MIDI
file resolution. Syncopations are notes that start at some
place between beats (usually in the middle) and extend
across them.

B. A rule system for melody characterization

In this work, a rule system obtained using the
RIPPER algorithm [17] is used as the basis to induce
a fuzzy rule system. Briefly, the RIPPER constructs a
rule set RS by considering each class, from the less
prevalent one to the more frequent one. It builds RS
until the description length (DL) of the rule set and
examples is 64 bits greater than the smallest DL met
so far, or there are no positive examples, or the error
rate >= 50%. Rules are constructed by greedily adding
antecedents to the rule until the rule is perfect (i.e.
100value of each attribute and selects the condition
with highest information gain (for details see [17]).
We applied the RIPPER algorithm and obtained a rule
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system from the SMALL dataset (see section III), so
it is called the RIPPER-SMALL rule system. Table II
shows the rules in this system. Note that only 13 out
of 34 initial statistical descriptors have been selected
by the algorithm to characterize melody tracks. Figures
about this rule system performance are presented in
section V.

TABLE 1T
RIPPER-SMALL (CRISP) RULES.

Rule

if (AvgPitch >= 65.0)

and (TrackOccupationRate >= 0.51)
and (AvgAbsInterval <= 3.64)

and (TrackNumNotes >= 253)

then IsMelody=true

if (AvgPitch >= 62.6)

and (TrackOccupationRate >= 0.42)
and (TrackPolyphonyRate <= 0.21)

and (NormalizedDistinctIntervals >= 1)
then IsMelody=true

if (AvgPitch >= 65.4)

and (TrackNumNotes >= 284)

and (ShortestNormalizedDuration <= 0.001)
and (ShortestDuration >= 0.02)

and (NormalizedDistinctIntervals >= 1)
then IsMelody=true

if (AvgAbsInterval <= 2.72)

and (TrackSyncopation >= 16)

and (AvgPitch >= 60.5)

and (TrackOccupationRate >= 0.42)
and (StdDeviationPitch <= 5.0)

then IsMelody=true

if (AvgAbsInterval <= 3.87)

and (TrackSyncopation >= 24)

and (LowestNormalizedPitch >= 0.14)
and (DistinctIntervals >= 25)

and (TrackNormalizedDuration >= 0.95)
then IsMelody=true

if (AvgAbsInterval <= 2.44)

and (TrackNumNotes >= 130)

and (AvgPitch >= 55.2)

and (TrackOccupationRate >= 0.31)
and (TrackPolyphonyRate <= 0.001)
then IsMelody=true

[ Name |
R1

R2

R3

R4

R5

R6

C. From crisp to fuzzy rule system

Although informative, this rule system is not easily
readable or even understandable at first sight, at least
for people as musicians or musicologists. Also, being
melody such a vague concept, the authors find that a
fuzzy description of melody would be more sensible in
the imprecise domain of music characterization.

In order to produce such a fuzzy description, a
fuzzyfication process is applied to a crisp rule system,
such the one presented in Table II.

Two basic steps must be carried out for the fuzzy-
fication of the crisp rule system. First, the data repre-
sentation must be fuzzified. That is, numerical input
and output values must be converted to fuzzy terms.
Second, the rules themselves must be translated into
fuzzy rules, substituting linguistic terms for numerical
boundaries.



D. Fuzzyfying attributes

As stated above, a MIDI track is described by a set
of statistical descriptors (called attributes from herein).
The very first step of the attribute fuzzyfication process
is to define the domain for every attribute. Most at-
tributes have a finite domain. For practical application
of the fuzzification method, infinite domains should
be converted to finite domains. Appropriate upper and
lower bounds are so defined for these domains.

In order to fuzzify crisp attributes (statistical descrip-
tors), linguistic terms (such as low, average, or high) for
every attribute domain are defined. Then the shape
of the fuzzy set associated with each linguistic term
is selected and, finally, the value of each fuzzy set
parameter within the attribute domain is set.

Fuzzyfication of numerical attributes usually involves
the participation of a human expert who provides do-
main knowledge for every attribute. The expert usually
takes into consideration the distribution of values for
an attribute in a reference data collection, as well as
any other information available.

Our approach in this paper is to replace the human
expert by a genetic algorithm (GA) which, given the
linguistic term definitions for each attribute, automati-
cally learns the fuzzy set parameters. Such combination
of a fuzzy system with a genetic algorithm is known as
a genetic fuzzy system [18].

In order to select the number of linguistic terms
per attribute, a number of different crisp rule systems
have been induced by different algorithms from the
SMALL dataset. The presence of each attribute in those
rule systems has been accounted for. Five terms have
been assigned to most frequently used attributes. Three
terms have been assigned to the rest of attributes.
Table III shows these linguistic terms for attributes used
in the RIPPER-SMALL crisp rule system.

TABLE III
FUZzzY LINGUISTIC TERMS

[ Attribute | Linguistic terms |
TrackNormalizedDuration | shortest, average, largest
TrackNumNotes low, average, high
TrackOccupationRate void, low, average, high, full
TrackPolyphonyRate none, low, average, high, all
LowestNormalizedPitch low, average, high
AvgPitch veryLow, low, average,

high, veryHigh
StdDeviationPitch low, average, high
DistinctIntervals few, average, alot
NormalizedDistinctIntv. lowest, average, highest
AvgAbsInterval unison, second, third, fourth, high
ShortestDuration low, average, high
ShortestNormalizedDur. shortest, average, longest
TrackSyncopation few, average, alot

Every linguistic term has a fuzzy set or membership
function associated to it. This is a probability function
from the attribute crisp input domain to the range [0, 1]
that, for every possible attribute crisp value, outputs
the probability for this value to be named with that
specific linguistic term. Figure 1 shows an example.
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Fig. 1. Fuzzy set example for attribute TrackNormalizedDuration

For efficiency reasons, the shape for a fuzzy set in
this work is restricted to be either trapezoidal or trian-
gular, being the latter a special case of the former. Each
fuzzy set is modeled by four points, corresponding to
the extreme points of the core (prototype) and support
of a fuzzy set, as depicted in Fig. 2. The support of a
fuzzy set defines the range of the input domain where
the fuzzy set membership probability is not zero. These
fuzzy set parameters would be inferred from data by
the GA.

The objective for the genetic fuzzy system presented
here is to optimize fuzzy set parameters for every
attribute in a fuzzy rule system. This optimization
process is guided by a fitness function that, given a
reference fuzzy rule system, tests potential solutions
against a reference dataset.

1) Fuzzy set representation scheme: An individual’s
chromosome encodes all attributes of the fuzzy rule
system. This means to encode fuzzy sets associated
with linguistic terms for every attribute. The fuzzy set
support is considered the most important part of a
fuzzy set, while its shape is considered a subjective
and application-dependent issue [19]. The fuzzy set
core is defined as a function of its support. So, the
only fuzzy set parameters we need to optimize are the
support points of each fuzzy set for every attribute.
Figure 3a shows how an attribute domain is partitioned
in overlapping fuzzy partitions, each corresponding to
a fuzzy set. Let X be such attribute domain, we define

<«— CORE PROTOTYPE

<«—— SUPPORT ______, ¢ SUPPORT

< _____ ATTRIBUTEDOMAIN =

Fig. 2. Fuzzy set parts



a fuzzy partition of X as

<

X'= x| XX, 1<i<m )
where xi and xé are the left and right support points
of fuzzy set i, respectively. m is the number of fuzzy
sets for the attribute. Partitions are defined so that
X =UX!', that is, every input value belong to at least
one partition. We also force the overlapping between
adjacent partitions i and i+1 to be not void:
Zii+l _ XzﬂXH—l _ [xf’l,x}’q] £ @
Given these definitions, the set of parameters to
optimize for a given attribute is
3)

1 .2 .1 m ,.m-1 _m
O = {xp, x],xp, -+, %[, X5 x5’}

In order to have an uniform GA representation for
every attribute, their domains are normalized to range
[0,1], so every parameter is a value in that range. For
the sake of simplicity, let express © as

G):{PO,PI,PZ»"‘»Pmel} (4)

From the partitioning scheme definition, it follows
that py = xi =0, so we can drop this first parameter.
In order to make O suitable to crossover and mutation
operations, a relative parameter representation scheme
is used in the GA. Such scheme is defined as follows

0={p1, 12,13, , Tam-1} (5)

where r; = p; — p;_1. Figure 4 depicts the representa-

tion scheme used in the GA. Note that
ZM =1y, 1<i<m
;
i is1
(@) X X
0
XLl XLHI XRl XRHI
<« 7ZHH
;
® &
0 : T
1 1
BL BR

Fig. 3.
set.

(a) Fuzzy set partitions overlapping. (b) Boundaries of a fuzzy

Once the support points are known, left and right
boundaries (figure 3b) are set. They are restricted to lie
inside the overlapping section of their corresponding
partition. For right boundaries,
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Fig. 4. Representation scheme of fuzzy sets.

0<Bh<Z'*l=ry, 1<i<m

and 0 < B <Tam-1.
For left boundaries

0<Bl<Z"™V=ry, l1<ism

and 0 < Bi < pi. This ensures that the core of a fuzzy
set is equal or greater than zero.

E. Fitness function

The fitness function for the GA consists of testing
each individual in a fuzzy inference system (FIS) using
the fuzzy rule system discussed in section II-F on
a reference dataset (see section III). The better the
performance of the rule system, given the fuzzy set def-
initions provided by the individual’s chromosome, the
better the individual’s score. This is possible because
rule fuzzification is a process independent from fuzzy
set definition. Several metrics can be used to measure
the performance of the FIS. In this work two different
metrics have been tested: 1) number of hits and 2)
F measure (geometric mean of precision and recall of
class IsMelody=true).

E Crisp rule system fuzzyfication

The goal of the rule system presented above is to
identify MIDI tracks as melody or non-melody tracks.
The objective of this work is to convert this crisp rule
system, which perform fairly well for the task at hand,
in a human-friendly description of melody tracks.

The final step in this method is to fuzzify the rule
system. Antecedents of the form (xS v) where S is
an inequality operator, are translated into one or more
antecedents of the form (x IS T), where T is a linguistic
term defined for attribute x. The value v partitions the
attribute domain in two subsets, and the direction of
the inequality guides the selection of the fuzzy terms
to be included in fuzzy antecedents.

In the present work, the crisp RIPPER-SMALL rule
system (section II-B) has been fuzziyfied in order to
present a proof of concept of the methodology applied.
A disjunctive fuzzy rule set is then obtained. Table IX
shows fuzzy rules corresponding to those shown in
section II-B.



III. EXPERIMENTS

A. Datasets

Table IV shows information about all the datasets
used to test the fuzzy rule system. They consist of MIDI
files, where melody tracks were tagged with a special
string in their track name. These tracks have been
manually or automatically tagged, depending on the
dataset. The automatic tagging process is based on a
dictionary of frequent melody track names. The manual
tagging was carried out by experts on the different
music genres present in the datasets.

The SMALL reference dataset has been used to ob-
tain the crisp rule system from which the fuzzy rule
system has been derived. It is also the dataset used
in the GA fitness function to test the performance of
potential solutions. The rest of datasets are used for
testing the system: RWC-G [20], RWC-P [21], LARGE
and AJP are all multi-genre datasets of academic, pop-
ular, rock and jazz music, among more than ten genres.

TABLE IV

DATASETS.
Dataset | Tracks | Songs | Melody tracks
SMALL 2775 600 554
LARGE 15168 2513 2337
RWC-P 801 75 74
RWC-G 311 48 44

AJP 3732 762 760

B. FIS Optimization Experiment setup

Our genetic fuzzy system has six free parameters that
let configure different experiment setups. Table V shows
these parameters and the values chosen to build a set
of experiments. Parameter values have been restricted
to at most three different values. This allows the use of
an orthogonal array [22] to explore the free parameter
space. Briefly, an orthogonal array of level L, strength n
and M runs ensures that, given any n parameters with
L values each, all their respective values will appear in
combination in an equal number of experiments. This
avoids testing all possible combinations, while remain-
ing confident that every combination of n parameters
appears at least once in some experiment. In this work,
an orthogonal array of strength 2 and 18 runs has been
used to setup experiments.

TABLE V
FIS OPTIMIZATION SETUP PARAMETERS

Experiment parameter Values ]

100,500, 1000

100,500,1000

none, 0.05, 0.1

Best one, Best 10%, Best 20%
Hit count, F-measure
0.5,0.6,0.7

GA population size

GA no. of generations

GA mutation ratio

GA selection strategy?

GA fitness metric
Defuzzyfication threshold®
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IV. FuzzYy INFERENCE SYSTEM OPTIMIZATION RESULTS

Table VI shows the performance of evolved FIS
versus the RIPPER-SMALL crisp rule system perfor-
mance. Average results from the eighteen experi-
ments performed are shown. Figures in parenthe-
sis are standard deviations. Precision, recall and F-
measure are computed for the class 'IsMelody’. Also,
the performance of the best evolved FIS are pre-
sented. Note that the best evolved FIS performance
is very close to that from the crisp rule system. The
definition of fuzzy sets for the best evolved FIS, as
well as other information and examples on this work
can be found on the web at the following address:
http:/igrfia.dlsi.ua.es/cm/worklines/smcO08.

TABLE VI
BEST AND AVERAGE PERFORMANCE OF EVOLVED FIS V. CRISP
RIPPER-SMALL RULE SYSTEM PERFORMANCE.

Rule sys. | Precision Recall F | Error rate
crisp 0.89 0.87 0.88 0.05
Best FIS 0.81 0.83 0.82 0.06
Avg. FIS 0.80 (.03) | 0.77 (.09) | 0.78 (.05) 0.08 (.01)

V. RESULTS ON TEST DATASETS.

Table VII presents results from applying both the
crisp rule system and the best evolved FIS to test
datasets. In these test experiments, a track is classified
as a melody track if it fires at least one rule with
probability greater than 0.5. Otherwise, the track is
classified as non-melody.

TABLE VII
MELODY TRACK CLASSIFICATION RESULTS.
Dataset Precision | Recall F | Error rate
LARGE (crisp) 0.79 0.80 | 0.80 0.06
LARGE (fuzzy) 0.70 0.74 | 0.72 0.09
RWC-P (crisp) 0.95 0.80 | 0.87 0.02
RWC-P (fuzzy) 0.51 0.64 | 0.57 0.09
RWC-G (crisp) 0.54 0.77 | 0.64 0.13
RWC-G (fuzzy) 0.43 | 043 | 043 0.16
AJP (crisp) 0.88 0.89 | 0.88 0.05
AJP (fuzzy) 0.88 0.83 | 0.86 0.06

As the results show, the fuzzyfied rule system pre-
cision is consistenty lower than the precision of the
original crisp rule system. The bigest differences in
precision between the fuzzy and crisp rule systems is
observed in the smallest data sets, i.e. RWC-P AND
RWC-G, with a limited set of examples (e.g. RWC-G
contains only 44 melody examples). However, in the
LARGE and AJP data sets the difference in precisions
of the two rule systems is less considerable. The recall
is consistently better for the fuzzy classifier. It follows
that most errors are false positives, that is, some non-
melody tracks are classified as melody tracks. Also note
that the goal of the fuzzyfication process is not to
improve classification accuracy, but to obtain a human-
readable comprehensible characterization of melodies
within MIDI tracks.



VI. COMPARISON OF CRISP AND FUZZY SYSTEMS ON
SOME EXAMPLES

This section discuss several example characterization
of melody and non-melody tracks. The example ex-
cerpts are shown in Table VIII in the appendix. The
words 'Crisp’ and 'Fuzzy’ under the music systems
indicate which rules from the crisp and fuzzy systems
were fired, respectively. The fuzzy rule system used with
these examples was the best evolved FIS using the rules
in Table IX.

The first three tracks are melody tracks that were
correctly identified by the fuzzy rule system. Crisp rules
failed at characterizing the first one. This first track
almost fulfills rule R2, except that it has not the largest
pitch interval variety (its NormalizedDistinctIntervals
value is .85), as the last condition of the rule imposes.
The next three tracks in Table VIII are non-melody
tracks correctly identified by both rule systems (neither
track fire any rule). The last two examples are tracks
were both rule systems disagree. The melody track from
Satin Doll is unusual in the senese that is supposed to
be played by a vibraphone (a polyphonic instrument),
has one chorus of improvisation and the melody reprise
(which is the part shown in the example) is played
in a polyphonic closed chord style. The last example
is a piano accompaniment part, played in arpeggiato
style, which the fuzzy rules incorrectly identified as a
melody track. This track almost fired crisp rule R6,
except for the last condition of the rule, because its
TrackPolyphonyRate value is .097. This is a clear exam-
ple of why a fuzzy version of a crisp rule fires while
the crisp rule don't. The value is accepted by the fuzzy
rule as linguistic term none for the TrackPolyphonyRate
attribute. This is because it lies into the support of the
fuzzy set corresponding to that term. See figure 5 for
some fuzzy set examples from the best evolved FIS.

VII. CONCLUSIONS AND FURTHER WORK

We presented an approach to automatic human-
readable melody characterization using fuzzy rules. We
considered MIDI files, and extracted a set of statis-
tical descriptors from MIDI files datasets. We then
applied a rule induction algorithm to obtain a set of
(crisp) classification rules for melody track identifica-
tion. Finally, we automatically transformed the crisp
rules into fuzzy rules by applying a genetic algorithm
to generate the membership functions for the rule
attributes. The classification accuracy of the resulting
fuzzy rule system is lower than the original crisp rule
system, but comprehensibility of the rues is improved.
We plan to improve the performance of the fuzzy
rule system by modifying (i.e. rising) the probability
threshold for firing a fuzzy rule. Also, enforcing more
than one fuzzy rule to be fired could help improve the
results. We plan to explore alternative approaches for
the rule fuzzyfication, e.g. by using information theory
measures.
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APPENDIX

TABLE VIII
TRACK CLASSIFICATION EXAMPLES.

True positive examples

Air In E Watermusic, Handel (Baroque)
Melody
h 1

Crisp: -
Fuzzy: FR6

There Is No Greater Love, 1. Jones (pre-Bop Jazz)
Melody

Crisp: R2, R5
Fuzzy: FR4, FR6

True negative examples

Air In E Watermusic
Bass
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False negative example

Satin Doll, D. Ellington (pre-Bop Jazz)
Melody

Crisp: R2
Fuzzy: —

False positive example

Sonata no. 3 K545, 2nd Mov., W.A. Mozart (Classicism)
Piano (accompaniment)
0 )

Crisp: -
Fuzzy: FR6
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TABLE IX
FUZzY RULES EQUIVALENT TO THOSE SHOWN IN TABLE II

[ Name [ Rule [[ Name | Rule |
FR1 IF (AvgPitch IS high OR AvgPitch IS veryHigh) FR2 IF (AvgPitch IS high OR AvgPitch IS veryHigh)
AND (TrackOccupationRate IS NOT void) AND (TrackOccupationRate IS NOT void)
AND (TrackOccupationRate IS NOT low) AND (TrackOccupationRate IS NOT low)
AND (AvgAbsInterval IS NOT fourth) AND (TrackPolyphonyRate IS NOT average)
AND (AvgAbsinterval IS NOT high) AND (TrackPolyphonyRate IS NOT high)
AND (TrackNumNotes IS high) AND (TrackPolyphonyRate IS NOT all)
THEN IsMelody IS true AND (NormalizedDistinctIntervals IS highest)
THEN IsMelody IS true
FR3 IF (AvgPitch IS high OR AvgPitch IS veryHigh) FR4 IF (AvgPitch IS high OR AvgPitch IS veryHigh)
AND (TrackNumNotes IS high) AND (TrackOccupationRate IS NOT void)
AND (LowestNormalizedDuration IS shortest) AND (TrackOccupationRate IS NOT low)
AND (ShortestDuration IS NOT low) AND (AvgAbsInterval IS NOT third)
AND (NormalizedDistinctIntervals IS highest) AND (AvgAbsInterval IS NOT fourth)
THEN IsMelody IS true AND (AvgAbsInterval IS NOT high)
AND (TrackSyncopation IS NOT few)
AND (StdDeviationPitch IS NOT high)
THEN IsMelody IS true
FR5 IF (AvgAbsInterval IS NOT fourth) FR6 IF (AvgPitch IS NOT veryLow)
AND (AvgAbsInterval IS NOT high) AND (AvgPitch IS NOT low)
AND (TrackSyncopation IS alot) AND (TrackOccupationRate IS NOT void)
AND (LowestNormalizedPitch IS NOT low) AND (TrackOccupationRate IS NOT low)
AND (DistinctIntervals IS alot) AND (AvgAbsInterval IS NOT third)
AND (TrackNormalizedDuration IS largest) AND (AvgAbsInterval IS NOT fourth)
THEN IsMelody IS true AND (AvgAbsinterval IS NOT high)
AND (TrackPolyphonyRate IS none)
AND (TrackNumNotes IS NOT low)
THEN IsMelody IS true
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Abstract—This paper presents preliminary results on
expressive performance in the human tenor voice. This
work investigates how professional opera singers manipulate
sound properties such as timing, amplitude, and pitch in
order to produce expressive performances. We also consider
the contribution of features of prosody in the artistic delivery
of an operatic aria. Our approach is based on applying
machine learning to extract patterns of expressive singing
from performances by Josep Carreras. This is a step towards
recognizing performers by their singing style, capturing
some of the aspects which make two performances of the
same piece sound different, and understanding whether
there exists a correlation between the occurrences correctly
covered by a pattern and specific emotional attributes.

I. INTRODUCTION

One of the most interesting and elusive questions in
music is what makes two expressive interpretations of
the same musical piece sound like two different songs
even when performed by the same singer. Given a set of
expressive performances of the same piece which have
different interpretation styles — and possibly different
emotional attributes' — are the patterns learned from each
performance similar or very different? How distinguish-
able is a singer based on the patterns extracted from his
interpretations? What do the patterns that are similar for
multiple singers capture? Which patterns are a matter of
timber, which are based in specific expressive techniques
that a singer employs, and which are a combination of
the two — by choice or because the pattern is more
readily realizable given the characteristics of a specific
voice? Is there a correlation between the occurrences
correctly covered by a pattern and specific emotional
attributes associated with those music pieces? How do
singers resolve possible conflicts between the music and
the prosody of the lyrics?

This work investigates how professional opera singers
manipulate sound properties such as timing, amplitude,
and pitch in order to produce expressive performances of
music fragments. In the initial phase we are interested
in note-level manipulations; we therefore define a set of
note-level descriptors of interest and we focus on the
differences between their measured values in the actual
performance and the written score, given the context of
the surrounding notes. Previous approaches exists that are
looking at expressive instrumental performances. There

'Emotional attributes are similar to what other researchers refer to
as moods or affective labels and can simultaneously take one value for
each aspect that they reflect.
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are a couple of important differences between instrumen-
tal music and voice in operatic music. First, one guitar
may subtly differ from another one, but the timbre of
the instrument is relatively fixed. Human voice displays
a great variety in timbre; it is partly because of timbre
that a voice is well-suited to a type of song but not to
another, and it may be because of our preference in timbre
that we prefer a singer over another. Distinguishing which
features of expressiveness are the singer’s interpretation
choice and which ones are typical of his timbre is an issue
that doesn’t come up in instrumental music.

Secondly, instrumental music does not have lyrics.
Lyrics convey a more specific meaning to a song than
it would otherwise have. Therefore they can both add
to and detract from the expressivity of a performance.
Several aspects are at work here: how appropriate in
meaning is the performance given the lyrics, and how to
reconciliate possibly contradicting prosodic, metric, and
score cues. For instance, adopting the wrong intonation
or grouping the lyrics into the wrong prosodic units can
ruin an otherwise good interpretation. In this work we
are looking at a couple of preliminary descriptors for the
lyrics which are syllable-specific: stress and syllable type.

Our approach is based on applying various machine
learning (ML) techniques to extract patterns of expressive
singing from different performances of the same, or
different arias, sung by several world-class tenors. As a
first step, we start with a test suite consisting of twelve
interpretations of six different aria fragments performed
by Josep Carreras. Using sound analysis techniques based
on spectral models we extract high-level descriptors repre-
senting properties of each note, as well as of its context. A
note is characterized by its pitch and duration. The context
information for a given note consists of the relative pitch
and duration of the neighbouring notes, as well as the
Narmour structures to which the note belongs. In this
work, our goal is to learn under which conditions a
performer shortens or lengthens a note relative to what the
score indicates, and when he sings a note louder or softer
than what would be expected given the average energy
level of the music fragment. Some of the most interesting
rules that the ML algorithm learns are presented in the
result section.

The rest of the paper is organized as follows. Section II
describes related work in expressive performance. Sec-
tion III describes our test suite, introduces the note-level
descriptors, and explains how we extract the data that



is used as the input to the ML algorithms. Section IV
presents the learning algorithms; Section V discusses
some of the most interesting results. We conclude in
Section VI.

II. RELATED WORK

Understanding and formalizing expressive music per-
formance is an extremely challenging problem which in
the past has been studied from different perspectives,
e.g. [16], [6], [3]. The main approaches to empirically
studying expressive performance have been based on sta-
tistical analysis (e.g. [15]), mathematical modeling (e.g.
[19]), and analysis-by-synthesis (e.g. [5]). In all these
approaches, it is a person who is responsible for devising
a theory or mathematical model which captures different
aspects of musical expressive performance. The theory or
model is later tested on real performance data in order
to determine its accuracy. This paper describes a machine
learning approach to investigate how opera singers ex-
press and communicate their view of the musical and
emotional content of musical pieces.

Previous research addressing expressive music perfor-
mance using machine learning techniques has included a
number of approaches. Widmer [20] reported on the task
of discovering general rules of expressive classical piano
performance from real performance data via inductive
machine learning. The performance data used for the
study are MIDI recordings of 13 piano sonatas by W.A.
Mozart performed by a skilled pianist. In addition to
these data, the music score was also coded. The result-
ing substantial data consists of information about the
nominal note onsets, duration, metrical information and
annotations. When trained on the data an inductive rule
learning algorithm discovered a small set of quite simple
classification rules that predict a large number of the note-
level choices of the pianist.

Tobudic et al. [18] describe a relational instance-based
approach to the problem of learning to apply expressive
tempo and dynamics variations to a piece of classical
music, at different levels of the phrase hierarchy. The
different phrases of a piece and the relations among
them are represented in first-order logic. The descrip-
tion of the musical scores through predicates (e.g. con-
tains(phl,ph2)) provides the background knowledge. The
training examples are encoded by another predicate whose
arguments encode information about the way the phrase
was played by the musician. Their learning algorithm
recognizes similar phrases from the training set and
applies their expressive patterns to a new piece.

Ramirez et al. [13], [14] explore and compare different
machine learning techniques for inducing both, an inter-
pretable expressive performance model (characterized by
a set of rules) and a generative expressive performance
model. Based on this, they describe a performance system
capable of generating expressive monophonic Jazz per-
formances and providing ’explanations’ of the expressive
transformations it performs. The work described in this
chapter has similar objectives but by using a genetic
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algorithm it incorporates some desirable properties: (1)
the induced model may be explored and analyzed while
it is ’evolving’, (2) it is possible to guide the evolution
of the model in a natural way, and (3) by repeatedly
executing the algorithm different models are obtained. In
the context of expressive music performance modeling,
these properties are very relevant.

Lopez de Mantaras et al. [8] report on SaxEx, a
performance system capable of generating expressive solo
performances in jazz. Their system is based on case-based
reasoning, a type of analogical reasoning where problems
are solved by reusing the solutions of similar, previously
solved problems. In order to generate expressive solo
performances, the case-based reasoning system retrieves,
from a memory containing expressive interpretations,
those notes that are similar to the input inexpressive notes.
The case memory contains information about metrical
strength, note duration, and so on, and uses this infor-
mation to retrieve the appropriate notes. However, their
system does not allow one to examine or understand the
way it makes predictions.

Other inductive machine learning approaches to rule
learning in music and musical analysis include [4], [1],
[9] and [7]. In [4], Dovey analyzes piano performances of
Rachmaninoff pieces using inductive logic programming
and extracts rules underlying them. In [1], Van Baelen
extended Dovey’s work and attempted to discover regu-
larities that could be used to generate MIDI information
derived from the musical analysis of the piece. In [9],
Morales reports research on learning counterpoint rules.
The goal of the reported system is to obtain standard
counterpoint rules from examples of counterpoint music
pieces and basic musical knowledge from traditional
music. In [7], Igarashi et al. describe the analysis of
respiration during musical performance by inductive logic
programming. Using a respiration sensor, respiration dur-
ing cello performance was measured and rules were ex-
tracted from the data together with musical/performance
knowledge such as harmonic progression and bowing
direction.

III. EXPRESSIVE SINGING IN THE TENOR VOICE

Our choice of studying the human singing voice in the
operatic context is not arbitrary; in fact, we believe that
operatic music is an ideal environment to start getting
some answers to our questions. First, there is a con-
strained environment in which the music is performed and
which is given by the written score and the meaning of the
lyrics. Keeping such variables fixed makes the results and
comparisons between different singers more meaningful.
It also makes it easier for a listener to characterize
different performances from the point of view of their
emotional attributes. Secondly, good operatic singers tend
to have both better voice and better technique than singers
in most other genre, and can employ them more efficiently
for expressive interpretations. In this context, we choose
to focus on the most sought-after role in operas, the
human tenor voice, arguably the role for which the most
famous arias have even been written.



A. Training data

We have chosen six fragments of arias from Rigoletto,
Un Ballo in Maschera, and La Traviata. For four of the
fragments we have selected two different interpretations;
one of the remaining two fragments has three different
interpretations, while the remaining one has a single
interpretation. In total the twelve fragments consist of 415
notes in which the tenor and the orchestra do not overlap.
The choice of interpretations is not random; we have tried
to incorporate very different, yet expressive, performances
of the same piece. One of the questions we are interested
in answering is whether the expressivity patterns we learn
from interpretations of the same aria by the same singer
are similar despite the different feel of each performance
we choose.

One of the reasons we chose to focus on Josep Carreras
as a test case is our subjective observation that his inter-
pretations are highly expressive, yet at the same time they
can exhibit a wide variation in emotional attributes even
over different performances of the same aria. Another
reason why he is the ideal candidate for us is that both the
timbre of his voice and his delivery have changed con-
siderably over time. In general, we make the assumption
that timber does not vary significantly over short periods
of time, but it may change dramatically over long periods.
By studying recordings that are close in time we can
compare expressivity patterns while controlling over the
timbre. Studying recordings that are chronologically far
but exhibit the same emotional attributes can on the other
hand help understanding which of the patterns we learn
are greatly affected by changes in timbre and which are
not. We therefore keep track of the recording date of the
interpretations that we are processing.

A secondary reason to record this information has to
do with what we call appropriateness of an interpretation
— the capacity of a singer to inhabit a musical piece.
Defining this measure is an interesting topic in itself,
and touches on many aspects including the question of
meaning in music. Our assumption is that recordings
closer in time of arias sung in a language familiar to
the tenor will minimize appropriateness variations. Future
experiments aim to selectively control over the effect of
such factors.

B. Musical analysis

We use sound analysis techniques based on spectral
models [17] for extracting high-level symbolic features
from the recordings. We characterize each performed note
by a set of features representing both properties of the
note itself and aspects of the musical context in which
the note appears. Information about the note includes
note pitch and note duration, while information about its
melodic context includes the relative pitch and duration of
the neighboring notes (i.e. previous and following notes)
as well as the Narmour structures to which the note
belongs.

In order to provide an abstract structure to our per-
formance data, we decided to use Narmours theory [10]
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Fig. 1. Prototypical Narmour structures
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Fig. 2. Narmour analysis of a musical fragment

to analyze the performances. The Implication/Realization
model proposed by Narmour is a theory of perception and
cognition of melodies. The theory states that a melodic
musical line continuously causes listeners to generate
expectations of how the melody should continue. Accord-
ing to Narmour, any two consecutively perceived notes
constitute a melodic interval, and if this interval is not
conceived as complete, it is an implicative interval, i.e.
an interval that implies a subsequent interval with certain
characteristics. That is to say, some notes are more likely
than others to follow the implicative interval. Based on
this, melodic patterns or groups can be identified that
either satisfy or violate the implication as predicted by the
intervals. Figure 1 shows prototypical Narmour structures.
We parse each melody in the training data in order to
automatically generate an implication/realization analysis
of the pieces. Figure 2 shows the analysis for a fragment
of All of me.

We additionally annotate the lyrics with syllable-
specific information. In our fragments it is overwhelm-
ingly the case that a syllable corresponds to a note in
the score. The exceptions are few; in one instance two
syllables of a word correspond to a single note. The rest
of the ten cases are instances in which the last syllable of a
word ends in a vowel and the first syllable of the following
one starts with a vowel and they together correspond to
a single note in the score. For the beginning we simply
specify which syllables are stressed or unstressed, and
whether they are open or closed. The librettos for all the
fragments in the test suite are written in Italian. If any of
the syllables which correspond to a note is stressed then
the note will be stressed. In Italian a syllable is open if
it ends in a vowel and closed otherwise.

Lastly, we want to see how prosody interacts with the
score and the meter of the lyrics. We consider that prosody
can give important clues about the emotional content that
the singer wants to communicate as it reflects aspects
that are not inherent in the lyrics: intonation, rhythm, and
“prosodic’ stress. For instance, many have observed that
stress may be a matter of the prosodic unit rather than
the actual stress of the words. A prosodic unit is a unit
of meaning which can be as short as a word and as long
as a statement; it is a chunk of speech that may in fact



reflect how the brain processes speech. Acoustically, a
prosodic unit is characterized by a few phonetic cues: (1)
a typical pitch contour which gradually declines towards
the end of the unit and resets itself at the beginning of
the next unit, (2) perceptual discontinuities between units,
(3) long final unit words. We are interested in where
the actual stress falls in a performance, which syllables
are over-articulated, what the pitch contour can tell us
about the emotional state that the singer transmits, and
how are potential conflicts solved between the stress in a
prosodic unit and the meter of the lyrics. To make such
observations we need to (1) establish the meter of the
lyrics and (2) split the lyrics into prosodic units.

C. Learning task

For each expressive transformation, we approach the
problem both as a regression and a classification problem.
As a regression problem we learn a model for predicting
the lengthening ratio of the performed note wrt the score
note. This is, a predicted ratio greater than 1 corresponds
to a performed note longer than as specified in the
score, while a predicted ration smaller than 1 coresponds
to a shortened performed note (e.g. a 1.15 prediction
corresponds to a 15% performed note lengthening wrt
the score). As a classification problem, the performance
classes of interest are lengthen, shorten and same for
duration transformation, and soft, loud and same for
energy variation. A note is considered to belong to class
lengthen, if its performed duration is 20% longer (or
more) that its nominal duration, e.g. its duration according
to the score. Class shorten is defined analogously. A
note is considered to be in class loud if it is played
louder than its predecessor and louder than the average
level of the piece. Class soft is defined analogously. We
decided to set these boundaries after experimenting with
different ratios. The main idea was to guarantee that a
note classified, for instance, as lengthen was purposely
lengthened by the performer and not the result of a
performance inexactitude.

IV. LEARNING ALGORITHM

We used Tilde’s top-down decision tree induction al-
gorithm [2]. Tilde can be considered as a first order logic
extension of the C4.5 decision tree algorithm: instead of
testing attribute values at the nodes of the tree, Tilde
tests logical predicates. This provides the advantages
of both propositional decision trees (i.e. efficiency and
pruning techniques) and the use of first order logic (i.e.
increased expressiveness). The increased expressiveness
of first order logic not only provides a more elegant and
efficient specification of the musical context of a note, but
it provides a more accurate predictive model [12].

We apply the learning algorithm with target predicates:
duration/3 and energy/3. (where /n at the end of
the predicate name refers to the predicate arity, i.e. the
number of arguments the predicate takes). Each target
predicate corresponds to a particular type of transforma-
tion: duration/3 refers to duration transformation and
energy/3 to energy transformation.
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For each target predicate we use as example set the
complete training data specialized for the particular type
of transformation, e.g. for duration/3 we used the
complete data set information on duration transformation
(i.e. the performed duration transformation for each note
in the data set). The arguments are the musical piece, the
note in the piece and performed transformation.

We use (background) predicates to specify both note
musical context and background information. The pred-
icates we consider include context/8, narmour/2,
succ/2 and member/3. Predicate context/8 spec-
ifies the local context of a note. i.e. its arguments are
(Note, Pitch, Dur, MetrStr, PrevPitch, PrevDur, NextPitch,
NextDur). Predicate narmour/2 specifies the Narmour
groups to which the note belongs. Its arguments are the
note identifier and a list of Narmour groups. Predicate
succ (X, Y) means Y is the successor of X, and Predicate
member (X, L) means X is a member of list L. Note
that succ (X,Y) also means that X is the predecessor
of Y. The succ (X, Y) predicate allows the specification
of arbitrary-size note-context by chaining a number of
successive notes:

suce(Xy, Xa), suce(Xa, X3),. .., suce(Xn—1,Xn)

where X; (1 <1 < n) is the note of interest.

V. RESULTS

The induced classification rules are of different types.
Both, rules referring to the local context of a note, i.e.
rules classifying a note solely in terms of the timing, pitch
and metrical strength of the note and its neighbors, as well
as compound rules that refer to both the local context and
the Narmour structure were discovered. We discovered a
few interesting duration rules:

IF Metrical_Strength = veryweak AND
Note_Duration € (-inf, 0.425] AND
Next_Interval € (-1.5, 0.6] AND
Syllable_Stress = stressed

THEN Stretch_Factor = 2.515625

The note duration is measured as the fraction of a beat,
where a beat is a quarter note. The interval is measured in
number of semitones. The metrical strength is verystrong
for the first beat, strong for the third beat, medium for
the second and fourth beats, weak for the offbeat, and
veryweak for any other position of the note. The rule
above says that the notes that are in a very weak metrical
position, are shorter or equal then 0.425 of a beat (roughly
an eight of a note or less), are followed by a note that
is lower by at most 1.5 semitones or higher by at most
0.6 semitones, and correspond to a syllable which is
stressed, are performed as a 2.5 times longer note than
the duration of the note in the score. What is interesting
is that a rule with precisely the same Metrical_Strength,
Note_Duration, and Next_Interval is performed only 1.3
longer if the corresponding syllable is not stressed.

The next interesting rule has the following form:

IF Metrical_Strength = medium AND



Note_Duration € (0.425, 0.6] AND
Next_Interval € (2.7, 4.8] AND
Syllable_Stress = unstressed AND
narmour(VR, gr_2)

THEN Stretch_Factor = 2.5

narmour(VR, gr_2) says that the note is in the last
(third) position of the registral reversal Narmour structure
(VR). Informally this rule says that a note that signals
a change of register direction between two intervals of
moderate to large size is performed 2.5 longer than the
duration of the note in the score if it corresponds to a
syllable that is not stressed and it is in the second or fourth
beat position. The algorithm also learns two interesting
rules about note duration shortening:

IF Metrical_Strength = weak AND
Note_Duration € (0.425, 0.6] AND
Next_Interval € (-1.5, 0.6] AND
Syllable_Stress = stressed AND
narmour(R, gr_2)

THEN Stretch_Factor = 0.328125

IF Metrical_Strength = weak AND
Note_Duration € (0.425, 0.6] AND
Next_Interval € (-1.5, 0.6] AND
Syllable_Stress = unstressed AND
narmour(P, gr_2)

THEN Stretch_Factor = 0.40625

These rule indicate that a note corresponding to a
stressed syllable immediately following a higher note,
and which will be followed by a note close in frequency
will be reduced in length to 0.3 of its duration in the
score. This technique would accentuate the final note of
the largest local ascending interval. Similarly, a small
ascending interval that comes after another small interval
in the same direction and which corresponds to an un-
stressed syllable will be shortened to 0.4 of its duration
in the score. According to the Narmour principles, a small
interval will be followed by another small interval in the
same direction; therefore if the note corresponds to a
syllable which is not stressed then its importance will be
diminished by shortening its duration. On the other hand,
if the unstressed note is at the end of a short descending
interval followed by a larger descending interval then the
note’s duration will be lengthened to 1.9 of its duration
in the score, in preparation for the downward ’plunge’:

IF Metrical_Strength = weak AND
Note_Duration € (0.425, 0.6] AND
Next_Interval € (-3.6, -1.5] AND
Syllable_Stress = unstressed AND
narmour(IP, gr_2)

THEN Stretch_Factor = 1.90625

An example of energy classification rule is:

IF succ(C, D) AND

narmour(A, D, [nargroup(d, 1)| E]) AND
narmour(A, C, [nargroup(d, 1)| E]) .
THEN energy(A, C, loud) :-
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This is, “perform a note loudly if it belongs to an
D Narmour group in first position and if its successor
belongs to a D Narmour group in first position”.

while examples of energy regresion rules are:

IF Note_Duration € (0.425, 0.6] AND
Prev_Interval € (-4.8, -2.7] AND
narmour(IP, gr_1I)

THEN Energy = 109.3799415

That is, “perform a note loudly if it belongs to an IP
Narmour group in the second position and if its prede-
cessor interval is a large ascending interval”. A similar
interpretation has the following rule for a R Narmour
group:

IF Note_Duration € (0.425, 0.6] AND
Prev_Interval € (-inf, -6.9] AND
narmour(R, gr_1I)

THEN Energy = 103.715628

Intuitively these two rules say that there is usually a
low note that prepares a high, loud note.

A. Prosody vs. Meter

Let us consider one of the three interpretations of the
aria Forse la soglia attinse from Un Ballo in Maschera
by Giuseppe Verdi, specifically the recording from 1975
at La Scala. Let us analyze the fragment consisting of
Ah l’ho segnato SILENCE Ah I’ho segnato SILENCE il
sacrifizio mio. There are three prosodic units (PU) here,
separated by the silences. The rhythm is iambic. The
stress will therefore fall on I’ho, gna, sa, fi, and mi; these
positions are said to be strong and the rest are weak. In
the actual interpretation the second “Ah” is stressed, and
according to the iambic meter it raises a conflict between
the stress of the meter and the prosody. Accentuating
a syllable which is in a weak position creates forward
motion towards the next stressed syllable in a strong
position, namely gna (in what is called a stress valley
[21]). The strong stress on gna gives a sense of positive
closure. On the other hand the frequency at which the
second prosodic unit ends is high (above 300Hz). This
is not a typical terminal shape for a prosodic unit as the
high pitch suggests something more to come, an arousing
rather than settling interest. This is the qualification of the
action in PU2 and arrives in form of PU3 — il sacrifizio
mio.

The pitch shape of PU2 is different from the shape of
PUI in several respects. PU1 has a terminal shape and the
notes are sung relatively flat (i.e. with not much vibrato).
The syllable Ah is not greatly accentuated nor particularly
loud, and it is short. In fact, it is five times shorter than
the Ah note in PU2, even though in the score the ratio is
a quarter note to a half note. The emotional state that it
transmits points towards decisiveness. On the other hand,
the pitch contour of PU2 goes up, involves a lot of vibrato,
over-articulates Ah and ends at a very high frequency. In
fact PU2 ends at considerably higher pitch then it begins
at; something not apparent from the score. These features



all imply some form of forward movement, continuation,
and doubt.

VI. CONCLUSIONS

This paper presents an approach for detecting ex-
pressive patterns of the human tenor voice. We employ
machine learning methods to investigate how professional
opera singers manipulate sound properties such as tim-
ing, amplitude, and pitch in order to produce expressive
performances of particular music fragments. We present
preliminary results for performances of twelve arias by
Josep Carreras. Our approach also takes into consideration
features of the lyrics associated with the arias in our test
suite. Currently we are considering syllable stress and
type, and we are starting to look at the interplay between
prosody, meter, and score, in creating lyric-dependent
expressive patterns.
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Modeling Moodsin Violin Performances

Alfonso Perez, Rafael Ramirez, Stefan Kersten
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Abstract—In this paper we present a method to model Il. DATA ACQUISITION AND ANALYSIS
and compare expressivity for different Moods in violin
performances. Models are based on analysis of audio and  The training data used in our experimental investiga-

bowing control gestures of real performances and they tions consist of short melodies performed by a profes-
predict expressive scores from non expressive ones. sional violinist in four Moods: Sadness, Happiness, Fear

Audio and control data is captured by means of a violin dA Pi | d twi ith and without
pickup and a 3D motion tracking system and aligned with an nger. Fieces were played twice with and withou

the performed score. metronome.

We make use of machine learning techniques in order A set of audio and control features is extracted from
to extract expressivity rules from score-performance devia-  the recordings and stored in a structured format. The
tions. The induced rules conform a generative model that performances are then compared to their corresponding

can transform an inexpressive score into an expressive one. cores in order to automatically compute the performed
The paper is structured as follows: First, the procedure of S S u Ically pu p

performance data acquisition is introduced, followed by the ~ transformations.
automatic performance-score alignment method. Then the The main characteristic of our data acquisition system

process of model induction is described, and we conclude s that of providing also motion information. This infor-

‘évggeﬁnci‘:‘?:fé'%?i \E’é"ssiitﬁgsl'iier”'”g test by using a sample  4i0n s used for learning the model as well as for the
' alignment and segmentation of the performances with the

. INTRODUCTION Scores.

Diﬁgrent approqches are found in the Iiteratu_re fora. scores

modeling expressive performances: Fryden[4] tries an . )

analysis-by-synthesis approach, consisting of a set of Scor_es are_represented as a series of notes wlth onset,

proposed expressive rules that are validated by synthesRitch (in semitones) and duration. No extra indications

In [3] mathematical formulae is proposed to model certairre given to the performer except for the Mood. They are

expressive ornaments. Bresin[2] and Widmer[9] makeised to calculate performance deviations from nominal

use of machine learning in order to extract expressivéitributes of the melody.

patterns from musical performances. In [7] they use Case

Based Reasoning, that is, a database of performanc& Audio acquisition

that conform the knowledge of the system. In this work Audio is captured by means of a violin bridge pickup.

we follow the work done by [8], also using machine This way we obtain a signal not influenced by the

learning techniques and more specifically inductive logic . .
. resonances of the violin acoustic box and the room,
programming (ILP from now on), that has the advantage . . ; . )
which makes segmentation much easier than if using a

of automatically finding expressive patterns without themicrophone. From the captured audio stream we extract

F:seedarSL ?: ge:r?eerr;til\?e Tnuost;(é?sl ei)r(‘pEg]S S;VILyémF:)i?gtriglr?a he audio perceptual fea_ture_s: frame-by-fr_am_e_energy,_fun-
S S . damental frequency estimation and aperiodicity function.
model of expression in music performance is proposed. . d inout for learning the model
In general this techniques try to model perceptuaIEnergy 15 used as inpd g '
features such as timing deviations, dynamics or pitch. In _ .
addition, we also inform the model with control gestures,C- G€sture acquisition and parameter calculation
more specifically bow direction and finger position. Bowing motion data is acquired by means of two 3d-
Apart from calculating prediction errors, models aremotion tracker sensors, one mounted on the violin and
also evaluated by listening with the help of a sampledhe other on the bow as we already described in [6]. We
based concatenative synthesizer under development. are able to estimate with great precision and accuracy the
Four moods are analyzed: Sadness, Happiness, Fear anokition of the strings, the bridge and the bow. With the
Anger. Expressive features analyzed are: tempo and a sebllected data we compute, among others, the following
note level descriptors: onset, note duration, energy, bowowing performance parameters: bow distance to the
direction and string being played. bridge, bow transversal position, velocity and accelera-
In the following sections we introduce the data acqui-tion, bow force and string being played. Bow direction
sition procedure, we detail how the model is induced anadthange and playing string are used for the segmentation

how is it performing. and as input for learning the model.
30



contextual predicates prediction predicates ]

context_narmour

petelld I stretch

; note id

list of narg;t;L:fr)n T note duration / score note duration I
———— note position in group

bowdirchange

context_ngte note identifier

note id bow direction change {change, noChange}

note duration in beats

previous note duration — current note duration trinaPlaved

next note duration — current note duration S rm?\o:eyi(iientifier

previous note pitch — current note pitch A

next note pitch — current note pitch string id {F, 4, D, G}

metrical strength O (low) ... 4 (high)

score tempo in beats per second . . L .

Fig. 2. Inductionand Prediction predicates.

Fig. 1. Contetual predicates.

and dynamicsspecifies the mean energy of a given note.
These 4 predicates are also used for model prediction.
The use of first order logic for specifying the musical
Performances are represented with the same symbolsontext of each note is much more convenient than using
description as the score so that they can be aligned and deaditional attribute-value (propositional) representations.
viations from the score obtained. An automatic alignmenEncoding both the notion of successor notes and Narmour
is carried out following P]. It uses score information, group membership would be cumbersome using a propo-
bowing controls, and audio descriptors: A bow-directionsitional representation. In order to mine the structured data
change or a playing-string change indicates a note onseie used Tilde's top-down decision tree induction algo-
In legato, notes segmentation is based on pitch and energjthm ([1]). Tilde can be considered as a first order logic
Offsets are calculated by using energy levels. Automati@xtension of the C4.5 decision tree algorithm: instead of

D. Score-Performance Alignment

segmentation is finally manually corrected. testing attribute values at the nodes of the tree, Tilde
tests logical predicates. This provides the advantages
Ill. EXPRESSIVE PERFORMANCE MODEL of both propositional decision trees (i.e. efficiency and

In this section we describe our inductive approach foPruning techniques) and the use of first order logic (i.e.
learning the model by applying ILP techniques and wdncreased expressiveness). The increased expressiveness

describe the evaluation results. of first order logic not only provides a more elegant and
efficient specification of the musical context of a note, but
A. Data Description it provides a more accurate predictive model.

After the alignment and segmentation, scores and ex8. Model Evaluation
pressive deviations of the performance are defined in \ye gptained correlation coefficients of 0.80 and 0.83

a structured way using first order logic predicates. Th§q the duration transformation and note onset prediction
musical context of each note is defined with the following;5ys respectively and we obtained a correctly classified
predicates (Figure 1)conteanote speuﬂesmformauon_ instances percentage of 82% and 86% for the bow di-
both aboutthe note itself and the local context in which (oction and string played prediction. These numbers were

it appears. Information about intrinsic properties of thegpiained by performing 10-fold cross-validation on the
note includes note duration and note’s metrical pOSitiontraining data.

while information about its context includes the duration Additionally to the model performance error coeffi-
of previous and following notes, extension and directionciems, listening tests are also carried as a perceptual
of the intervals between the note and both the previoug,gjuation of the models. For this we make use of a
and the subsequent note, and tempo of the piece in whicly
the note appeargontext narmour specifiesthe Narmour
groupsto which a particular note belongs, along with its IV. CONCLUSIONS

position within a particular group. The temporal aspect of e presented a model for expressive performances

music is encoded via the predicatesed and succ. For  pased not only on perceptual features but also informed

instance succ(A,B,C,D)ndicates that note in position D with bowing. We introduced the procedure to acquire the

in the excerpt indexed by the tuple (A,B) follows note C. data, learn the model and synthesize its predictions. The
Expressive deviations in the performances are encodea@sults seem to capture the expressive features performed.

using 4 predicates (Figure Ztretchspecifies the stretch We obtained high prediction correlation coefficients and

factor of a given note with regard to its duration in the realistic synthesis of predicted performances.

score; bowdirchangeidentifies points of change in bow

direction; stringPlayed specifies in which string a note V. ACKNOWLEDGMENTS
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RetroSpat: a Perception-Based System for
SemitAutomatic Diffusion of Acousmatic Music
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Abstract—We present the RetroSpat system for the semi-
automatic diffusion of acousmatic music. This system is
intended to be a spatializer with perceptive feedback. More
precisely, RetroSpat can guess the positions of physical
sound sources €.g.loudspeakers) from binaural inputs, and
can then output multichannel signals to the loudspeak-
ers while controlling the spatial location of virtual sound
sources. Together with a realistic binaural spatialization
technique taking into account both the azimuth and the
distance, we propose a precise localization method which
estimates the azimuth from the interaural cues and the
distance from the brightness. This localization can be used
by the system to adapt to the room acoustics and to the
loudspeaker configuration. We propose a simplified sinu-
soidal model for the interaural cues, the model parameters
being derived from the CIPIC HRTF database. We extend
the binaural spatialization to a multi-source and multi-
loudspeaker spatialization system based on a static adap-
tation matrix. The methods are currently implemented in a
real-time free software. Musical experiments are conducted
at the SCRIME, Bordeaux.

|. INTRODUCTION

Composers of acousmatic music conduct differen%
stages through the composition process, from soun
recording (generally stereophonic) to diffusion (multi-
phonic). During live interpretation, they interfere deci
sively on spatialization and coloration of pre-recorde

This paper is organized as follows. In Section II, we
present some generalities in acousmatic music and we
highlight some practical weaknesses to be improved. After
an extensive presentation of the model in Section lll,
we describe the associated spatialization and localization
methods in Sections IV and V, respectively. Section VI is
dedicated to the presentation of the RetroSpat software.

Il. ACOUSMATIC MUSIC
A. History

Over centuries, the music has continuously undergone
various innovations. In1948, Schaeffer and Henry at
the “Radio Télévision Francaise” were interested in the
expressive power of sounds. They used microphones to
capture sounds, discs as supports, and transformation
tools. Themusique con@&tewas born.

In 1949, Eimer gave birth toelectronic musidn the
studios of the German radio “Nordwestdeutscher Rund-
funk” in Cologne. This music was produced by frequency
generators. Koenig and Stockhausen were among the first
0 use it.

The merge ofmusique coneéte and electronic music
aave rise toelectro-acoustic musior acousmatic mu-
sic. Today, many musical pieces are created worldwide.

(ﬁcousmatic has become a discipline that is taught in

niversities and conservatories.

sonorities. For this purpose, the musicians generally usée
a(n un)mixing console. With two hands, this becomesB. Actual Practices

hardly tractable with many sources or speakers.

Composers of acousmatic music use both electronic and

~ The RetroSpat system supports artistically interpretanatyral sounds recorded close to a microphone, such as
tion and technically room calibration. It includes a multi- \ying noise, voices, wrinkling paper, etc. The sounds are

source and multi-loudspeaker spatializer, that adapts ihen processed by a computer and organized by editing
different loudspeaker configurations by “listening to thegng mixing. The result is ausical composition

room”. This involves source localization and spatialization However, the creation gets its full value when it is

single source with speakers in the horizontal plane.

loudspeakers. The acousmonium consists of a highly vari-

First, we enhance the binaural model proposed bwble number of loudspeakers with different characteristics.

Viste [1]. We propose to simplify the spatial cues model,The interpreter of the piece controls the acousmonium

resulting in a new sinusoidal model with better mathe<rom a special (un)mixing console.

matical properties and comparable errors using the CIPIC The originality of such a device is to map the two stereo

database [2]. Second, we also consider the distance of th@annels at the entrance to 8, 16, or even hundreds of

source, with a localization based on the brightness.  channels of projection. Each channel is controlled indi-
Last but not least, we extend the binaural spatializavidually by knobs and equalization systems. The chan-

tion to a multi-loudspeaker spatialization system. In thenel is assigned to one or more loudspeakers positioned

classic VBAP [3] approach, the control of the interaural-according to the acoustical environment and the artistic

level difference (ILD) is done in a frequency-independenistrategy.

and pair-wise way that was previously used for source

panning. But this method is suitable only for frequenciesC: Expected Improvements

up to600Hz. The RetroSpat system also operates on loud- Behind his/her console, the interpreter of acousmatic

speakers in a pair-wise manner. But the computation ofnusic acts in real time on various sound parameters such

the coefficients for each channel is based on an adaptati@s spatial location, sound intensity, spectral color. He/She

matrix of head-related transfer functions (HRTFs), leadingoroadcasts a unique version of the music fixed on a

to complex and frequency-dependent coefficients. medium. The acousmatic diffusion requires some skills.
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RetroSpat intends to facilitate the work of the interpretel
by improving the following embarrassing practices:

« two wheels needed to spatialize one source;

« stereo sources as inputs;

« no individual source path, only one global mix path;
« the distance spatialization requires some expertise.

r a0 o
T

)

ILD model error [dB]

i

o

I11. BINAURAL MODEL

We consider a punctual and omni-directional sounc 4
source in the horizontal plane, located by (s 6) co- -éeo
ordinates, where is the distance of the source to the g =
head center and is the azimuth angle. Indeed, as a 3 “|
first approximation in most musical situations, both the g or
listeners and instrumentalists are standing on the (sam'€
ground, with no relative elevation. Z ‘ ‘ ‘ ‘ ‘

The sources will reach the left ) and right ) ° BFrequlgncy [kllflz] soroEe®
ears through different acoustic paths, characterizable with
a pair of filters, which spectral versions are calledgggﬁ(fm) o@fﬁ}@:({:ﬁcmdﬁglb:sr?r (top) and inter-subject variance
Head-Related Transfer Functions (HRTFs). HRTFs ar '
frequency- and subject-dependent. The CIPIC database
[2] samples different listeners and directions of arrival. ) )

A sound source positioned to the left will reach the Moreover, given the short-time spectra of the left.(
left ear sooner than the right one, in the same mannédnd right (Xz) channels, we can measure the ILD for
the right level should be lower due to wave propagatiorfach time-frequency bin with:
and head shadowing. Thus, the difference in amplitude or
Interaural Level Difference (ILD, expressed in decibels — ILD (¢, f) = 20logy
dB) [4] and difference in arrival time or Interaural Time
Difference (ITD, expressed in seconds) [5] are the mair'3
spatial cues for the human auditory system [6]. '

)

Interaural Time Differences

Because of the head shadowing, Viste uses for the
ITDs a model based onin(f) + 6, after Woodworth
[7]. However, from the theory of the diffraction of an
harmonic plane wave by a sphere (the head), the ITDs
should be proportional tein(4). Contrary to the model by
Kuhn [8], our model takes into account the inter-subject
variation and the full-frequency band. The ITD model is
then expressed as:

ITD(O, f) = B(f)rsin(0)/c 3)

IS
S

@
S
T

level scaling factor o
. N
o o
:

o

<4y 7 where 5 is the average scaling factor that best suits our
g, r\K\ , model, in the least-square sense, for each listener of the
_“é , | CIPIC database (see Figure t)denotes the head radius,
E andc is the sound celerity. The overall error of this model
é 1 8 over the CIPIC database (s052ms (thus comparable to
= ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ the 0.045ms error of the model by Viste). The average

C ot Pequeneylk ' *  model error and inter-subject variance are depicted in

Figure 3.

Fig. 1. Frequency-dependent scaling factors:(top) and3 (bottom). Practically, our model is easily invertible, which is
suitable for sound localization, contrary to tkie(6) + ¢
model by Viste which introduced mathematical errors at

A. Interaural Level Differences the extreme azimuths (see [9]).

After Viste [1], the ILDs can be expressed as functions Given the short-time spectra of the lefX'() and right
of sin(), thus leading to a sinusoidal mode!: (Xr) channels, we can measure the ITD for each time-
frequency bin with:
ILD (0, f) = a(f) sin(0) 1)
. . - ITD,(t,f) = . < Xelt,]) + 27rp) (4)
wherea( f) is the average scaling factor that best suits our p\bs 27 f \"Xg(t f) :

model, in the least-square sense, for each listener of the
CIPIC database (see Figure 1). The overall error of thi§he coefficientp outlooks that the phase is determined
model over the CIPIC database for all subjects, azimuthgyp to a modul@~ factor. In fact, the phase becomes am-
and frequencies is 0f.29dB. The average model error biguous above 500Hz, where the wavelength is shorter
and inter-subject variance are depicted in Figure 2. than the diameter of the head.
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Fig. 3.
(bottom) over the CIPIC database.

C. Distance Cues

Average ITD model error (top) and inter-subject variance

decibels:

D(f,p) = p-alf). (®)

wherea( f) is the frequency-dependent attenuation, which
will have an impact on the brightness of the sound (higher
frequencies being more attenuated than lower ones).
More precisely, the total absorption in decibels per
metera(f) is given by a rather complicated formula:

@ ~ 868 F2{1.84-1071 (Tl) P+ (%)

5
-2

(0.01275 - 22937 /[F, o + (F2/ F,.0)]
+0.1068 - e =339/ /[F, v + (FQ/FT.,N)]} } ®6)

where F' = f/Pr F’I',O = fr,O/Pv F’I',N = f?',N/P are
frequencies scaled by the atmospheric presdtreand

Py is the reference atmospheric pressureatm), f is
the frequency in Hz7" is the atmospheric temperature in
Kelvin (K), Ty is the reference atmospheric temperature
(293.15K), fr.o is the relaxation frequency of molecular
oxygen, andf, y is the relaxation frequency of molecular
nitrogen. See [13] for details.

The distance estimation or simulation is a complex task ] o
due to dependencies on source characteristics and tie Binaural Spatialization
acoustical environment. Four principal cues are predomi- In binaural listening conditions using headphones, the
nant in different situations: intensity, direct-to-reverberansound from each earphone speaker is heard only by one
(D/R) energy ratio [10], spectrum, and binaural differ- ear. Thus the encoded spatial cues are not affected by any

ences (noticeable for distances less tham see [11]).

cross-talk signals between earphone speakers.

Their combination is still an open research subject. Here, To spatialize a sound source to an expected azirtiuth

we focus effectively on the intensity and spectral cues. for each short-term spectrudi, we compute the pair of
In ideal conditions, the intensity of a source is halvedleft (Xr) and right (Xr) spectra from the spatial cues

(decreases by-6dB) when the distance is doubled, corresponding t@, using Equations (1) and (3), and:

according to the well-known Inverse Square Law [12].

Applying only this frequency-independent rule to a signal

has no effect on the sound timbre. But when a source
moves far from the listener, the high frequencies ar
more attenuated than the low frequencies. Thus the sou
spectrum changes with the distance. More precisely, th¥
spectral centroid moves towards the low frequencies as
the distance increases. In [13], the authors show that
the frequency-dependent attenuation due to atmospheric
attenuation is roughly proportional t¢?, similarly to

X(t, f) - 10T2a(N/2e+iB6(N/2 - (7)
X(t, f)-1072aN/2=iR:(N)/2 (g)

XL(t7 f) =
XR(tvf) =

g ecause of the symmetry among the left and right ears),

ereA, andA, are given by:

Ad(f) = ILD(8, f)/20, 9)
Ay(f) ITD(0, f) - 2 f. (10)
The control of both amplitude and phase should provide

the ISO 9613-1 norm [14]. Here, we manipulate thebetter audio quality [15] than amplitude-only spatializa-
magnitude spectrum to simulate the distance between thion! (see below).

source and the listener (see Section V). Conversely, we Indeed, we reach a remarkable spatialization realism
measure the spectral centroid (related to brightness) tthrough informal listening tests with AKG K240 Studio
estimate the source’s distance to listener (see Section Vileadphones. The main problem which remains is the

IV. SPATIALIZATION
A. Relative Distance Effect

classic front / back confusion [16].

C. Multi-Loudspeaker Spatialization
In a stereophonic display, the sound from each loud-

In a concert room, the distance is often simulated byspeaker is heard by both ears. Thus, the stereo sound is
placing the speaker near / away from the auditoriuMgjrered by a matrix of four transfer functions’(;(f, 6))
which is sometimes physically restricted in sma_lll roomSpenveen loudspeakers and ears (see Figure 4). Here, we
In fact, the architecture of the room plays an importaniyenerate the paths artificially using the binaural model.
role and can lead to severe modifications in the interpréthe pest panning coefficients under CIPIC conditions for

tation of the piece.

the pair of speakers to match the binaural signals at the

Here, simulating the distance is a matter of changinggg (see Equations (7) and (8)) are then given by:

the magnitude of each short-term spectrutn More
precisely, the ISO 9613-1 norm [14] gives the frequency-
dependent attenuation factor in dB for given air temper-
ature, humidity, and pressure conditions. At distapce

the magnitudes oK (f) should be attenuated by(f, p)

C - (CrrHr — CrLrHR),
C-(=CreHp + CrLHR)

(11)
(12)

KL(taf) -
Kgr(t, f) =

Isee URL:http://dept-info.labri.fr'sm/SMC08/



Azimuth -15°

with the determinant computed as: u

C=1/(CrCrr — CriCLR) . (13)

Amplitude

In extreme cases wher€| = 0 (or close to zero)
at any frequency, the matrix is ill-conditioned, and the CoF |
solution becomes unstable. To avoid unstable cases, atte M ‘ ‘ ‘
tion should be paid during the loudspeakers configuratiol °
stage, before live diffusion.

During diffusion, the left and right signal¥’f, Yz) to
feed left and right speakers are obtained by multiplying °4r ]

the short-term spectrd with K; and K, respectively: éo.saf 1
E' 0.3
Yi(t.f) = Ki(t.f) X(tf), (L4) 2 eeneeeeee™ ,
Yr(t,f) = Kg(t f) X f) (15) ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 100 200 300 400 500 600 700 800
. . . Frequency [Hz]
In a setup with many speakers we use the classic pair-

wise paradigm [17], consisting in choosing for a givenrig. 5. Amplitude of the panning coefficients from VBAP (plain) and
source only the two speakers closest to it (in azimuth)@hur approach (O!Ogted), for t_herieft (top) and right (bottom) channels of
one at the left of the source, the other at its right. the panning pair for—15°, in the [0, 800]Hz band.

X Azimuth -15°
‘ 0.05 