
Arithmetical Foundations

Recursion. Evaluation. Consistency

Excerpt

Michael Pfender and Students

TU Berlin

β version, December 2013
last revised December 9, 2013

Preface

Recursive maps, nowadays called primitive recursive maps, PR maps,

have been introduced by Gödel in his 1931 article for the arithmeti-

sation, gödelisation, of metamathematics.

For construction of his undecidable formula he introduces a non-

constructive, non-recursive predicate beweisbar, provable.

Staying within the area of categorical free-variables theory PR

of primitive recursion or appropriate extensions opens the chance to

avoid the two (original) Gödel’s incompleteness theorems: these are

stated for Principia Mathematica und verwandte Systeme, “related

1

systems” such as in particular Zermelo-Fraenkel set theory ZF and v.

Neumann Gödel Bernays set theory NGB.

On the basis of primitive recursion we consider µ-recursive maps

as partial p. r. maps. Special terminating general recursive maps con-

sidered are complexity controlled iterations. Map code evaluation is

then given in terms of such an iteration.

We discuss iterative p. r. map code evaluation versus termination

conditioned soundness and based on this decidability of primitive re-

cursive predicates. This leads to consistency provability and soundness

for classical, quantified arithmetical and set theories as well as for the

PR descent theory πR, with unexpected consequences:

We show inconsistency provability for the quantified theories as

well as consistency provability and logical soundness for the theory

πR of primitive recursion, strengthened by an axiom scheme of non-

infinite descent of complexity controlled iterations like (iterative) map-

code evaluation.

Berlin, December 2013 M. Pfender.

The Student coworkers of present version are

Alistair Cloete, Julian Fagir, Christian Fischer, Joseph Helfer, Chi-

Than C. Nguyen, Anke Stüber, and Vanessa Vallet.

P. S. I am obviously not an English native speaker. As Joseph Helfer

puts it, my mathematical thinking and speach is somewhat special, it

is Germish.

2

Contents

1 Primitive Recursion 8

1.1 The fundamental theory PR of primitive recursion . . 8

1.2 The full scheme of primitive recursion 20

1.3 Uniqueness of the NNO N 25

1.4 A monoidal presentation of theory PR 25

1.5 Introduction of free variables 25

1.6 Goodstein FV arithmetic 28

1.7 Sum objects and definition by distinction of cases . . . 53

1.8 Substitutivity and Peano induction 56

1.9 Integer division and related 61

2 Predicate Abstraction 64

2.1 Extension by predicate abstraction 65

2.2 Predicate calculus . 73

3 Partial Maps 77

3.1 Theory of partial maps 77

3.2 Structure theorem for PR̂a : 82

3.3 Equality definability for partials 83

3.4 Partial-map extension as closure 83

3.5 µ-recursion without quantifiers 84

3.6 Content driven loops 85

4 Universal Sets and Universe Theories 88

4.1 Strings as polynomials 88

4.2 Universal object X of numerals and nested pairs 89

4.3 Universe monoid PRX 93

3

4.4 Typed universe theory PRXa 97

5 Evaluation of p. r. map codes 99

5.1 Complexity controlled iteration 99

5.2 PR code set . 102

5.3 Iterative evaluation . 103

5.4 Evaluation characterisation 107

6 PR Decidability by Set Theory 112

6.1 PR soundness framed by set theory 113

6.2 PR-predicate decision by set theory 119

6.3 Gödel’s incompleteness theorems 122

7 Consistency Decision within πR 125

7.1 Termination conditioned evaluation soundness 125

7.2 Framed consistency . 136

7.3 πR decision . 140

8 Discussion (tentative) 154

Introduction

We fix constructive foundations for arithmetic on a map theoreti-

cal, algorithmical level. In contrast to elementhood and quantification

based traditional foundations such as Principia Mathematica PM or

Zermelo-Fraenkel set theory ZF, our fundamental primitive recursive

theory PR has as its “undefined” terms just terms for objects and

4

maps. On that language level it is variable free, and it is free from

formal quantification on individuals like numbers or number pairs.

This theory PR is a formal, combinatorial category with cartesian

i. e. universal product and a natural numbers object (NNO) N, a PR

cartesian category, cf. Romàn 1989.

The NNO N admits iteration of endo maps and the full scheme

of primitive recursion. Such NNO has been introduced in categorical

terms by Freyd 1972, on the basis of the NNO of Lawvere 1964,

and named later (e.g. by Maietti 2010) parametrised NNO.

We will remain on the purely syntactical level of this categorical

theory, and later extensions: no formal semantics necessary into an

outside, non-combinatorial world. Cf. Hilbert’s formalistic program.

We then introduce into our variable-free setting free variables,

which are introduced by interpretation of these variables as names

for projections. As a consequence, we have in the present context

‘free variable’ as a defined notion. We have object and map constants

such as terminal object, NNO, zero etc. and use free metavariables for

objects and for maps.

Fundamental arithmetic is further developed along Goodstein’s

1971 free variables Arithmetic whose uniqueness rules are derived as

theorems of categorical theory PR, with its “eliminable” notion of a

free variable. This gives the expected structure theorem for the alge-

bra and order on NNO N. “On the way”, via Goodstein’s truncated

subtraction, and “his” commutativity of maximum function, we ob-

tain the Equality Definability theorem: If predicative equality of two

p. r. maps is derivably true, then map equality between these maps is

derivable. It follows a section on the derivation of the Peano axioms

5

as theorems.

The subsequent chapter brings into the game an embedding theory

extension of PR by abstraction of predicates into “virtual” new objects.

This enrichment makes emerging basic theory PRa = PR + (abstr)

more comfortable, in direction to set theories, with their sets and

subsets.

Chapter 3 introduces the general concept of partial maps, proves

a structure theorem on the theory PR̂a of these maps and shows that

µ-recursive maps and while-loop programs are just partial p. r. maps;

in particular our evaluations will be such (formally) partial maps.

Categories of partial maps are introduced in the literature via idem-

potent monos taken as domains, see Robinson&Rosolini 1988, and

Cockett& Lack 2002.

Partial maps are introduced here as map pairs consisting of a

domain-of-definition enumeration (in general not mono) and of a rule

to throw an enumeration index of a defined argument into the value of

that argument. Equality of partial maps is by availability of extension

maps between the enumeration domains of the two partial maps under

consideration, in both directions.

These partial maps form a primitive recursive diagonal-monoidal

half-cartesian theory PR̂a (cf. Budach& Hoehncke 1975) which con-

tains theory PRa embedded as theory of this type, composition being

defined via composition of pullbacks: Structure theorem for partials.

theory extension by partiality is a Closure operator: partial partial

maps are just partial maps.

Chapter 4 then exhibits within theory PRa a universal object, X,

of all numerals and nested pairs of numerals, and constructs by means

6

of that object universe theories PRX and PRXa : theory PRX is

good for a one-object map-code evaluation, PRXa contains PRa as

a cartesian PR embedded theory with predicate extensions.

Chapter 5 on evaluation strengthens p. r. theory PRXa into de-

scent theory πR, by an axiom of non-infinite iterative descent with

order values in polynomial semiring N[ω] ordered lexicographically.

This theory is shown to derive the—free variable PR—consistency

formula for p. r. theories PRXa (and PR). The proof relies on con-

structive, complexity controlled code evaluation, which is extended to

evaluation of argumented deduction trees:

theorem on p. r. soundness within set theory as frame (chapter

6), and termination conditioned soundness of PRa ⊂ PRXa within

theory πR taken as frame (chapter 7).

The consequence is decidability of p. r. predicates within both theo-

ries. Since consistency formulae Con of both theories can be expressed

as (free variable) p. r. predicates, this leads to

1. Inconsistency provability of set theory by Gödel’s second in-

completeness theorem, and to

2. Consistency provability and soundness of descent theory πR,

under assumption of µ-consistency.

[The latter is a (set theoretically) equivalent variant of ω-consistency,

expressible in PR̂a, πR̂.]

Notes to the literature are inserted which are based mainly on

Remarks of the Referee to Pfender 2012.

7

1 Primitive Recursion

1.1 The fundamental theory PR of primitive re-

cursion

We fix here terms and axioms for the fundamental categorical (for-

mally variable-free) cartesian theory PR of primitive recursion.

The fundamental objects of the theory PR are the natural numbers

object (‘NNO’) N and the terminal object 1.

Composed objects of PR come in as “cartesian” products (A×B)

of objects already enumerated. Formally:

A,B objects

(ObjCart)

(A × B) object

[Here outmost brackets may be dropped]

Maps: Basic maps (“map constants”) of the theory PR are

the zero map 0 : 1→ N, and

the successor map s : N → N

Structure of PR as a category:

• generation—enumeration—of identity maps

A an object

(id generation)

idA : A → A map

8

• Composition:

f : A → B, g : B → C maps

(◦)

(g ◦ f) : A → C map, diagram:

A
f //

g◦f

77B
g // C

Here are the axioms making PR into a category:

• Associativity of composition:

f : A → B, g : B → C, h : C → D maps

(◦ass)

h ◦ (g ◦ f) = (h ◦ g) ◦ f : A → D

• Neutrality of identities

f : A → B map

(neutrid)

(f ◦ idA) = f : A → A → B and

(idB ◦ f) = f : A → B → B.

map equality f = g : A → B satisfies the axioms of reflexivity,

symmetry, and transitivity:

9

f : A → B map

(refl)

f = f : A → B

f = g : A → B map

(sym)

g = f : A → B

f = g, g = h : A → B maps

(trans)

f = h : A → B

Composition is compatible with equality:

f = f ′ : A → B, g = g′ : B → C

(◦=)

(g ◦ f) = (g′ ◦ f ′) : A → B → C

Because of technical simplicity in later code evaluation, we split

this axiom into the following two ones:

f = f ′ : A → B, g : B → C

(◦= 1st)

(g ◦ f) = (g ◦ f ′) : A → B → C

10

f : A → B, g = g′ : B → C

(◦= 2nd)

(g ◦ f) = (g′ ◦ f) : A → B → C

Cartesian map structure:

• enumeration of terminal maps

A object

Π = ΠA : A → 1 map

[In Eilenberg&Elgot’s notation. Lawvere designates this

projection ! : A → 1.]

• uniqueness axiom for terminal map family:

A object, f : A → 1 map

(Π)

f = ΠA : A → 1

Π-naturality Lemma: Π = [Π : A → 1]A is natural, i. e.

A
f //

ΠA

²²

=

B

ΠB

²²
1

id
1

11

• generation of left and right projections:

A, B objects

(proj)

ℓ = ℓA,B : A × B → A left projection,

r = rA,B : A × B → B right projection

• generation of induced maps into products:

f : C → A, g : C → B maps

(ind)

(f, g) : C → A × B map,

the map induced by f and g

• compatibility of induced map formation with equality:

f = f ′ : C → A, g = g′ : C → B maps

(ind=)

(f, g) = (f ′, g′) : C → A × B

• characteristic (Godement) equations

f : C → A, g : C → B

(GODEℓ)

ℓ ◦ (f, g) = f : C → A

12

as well as

f : C → A, g : C → B

(GODEr)

r ◦ (f, g) = g : C → B

in commutative diagram form:

A

C

f
11

=
(f,g)//

=

g --

A × B

ℓ

OO

r

²²
B

• uniqueness of induced map (Godement):

f : C → A, g : C → B, h : C → A × B maps,

ℓ ◦ h = f : C → A and r ◦ h = g : C → B

(ind!)

h = (f, g) : C → A × B

SP Lemma: In presence of the other axioms, this uniqueness of

the induced map is equivalent to the following equational axiom of

Surjective Pairing, see Lambek-Scott 1986:

h : C → A × B

(SP)

(ℓ ◦ h , r ◦ h) = h : C → A × B

13

Proof as an exercise: Use compatibility of forming the induced

map with equality.

We will formally rely on this equation as an axiom. It replaces

uniqueness of forming the induced map.

We eventually replace equivalently, given the other axioms, infer-

ential axiom (ind=) by distributivity equation

h : D → C, f : C → A, g : C → B

(distr◦)

(f, g) ◦ h = (f ◦ h, g ◦ h) : D → A × B

taken from Lambek-Scott. Equivalence proof as an exercise,

proof of uniqueness of the induced in op. cit. Draw the diagram.

Definition: we define, for a map g : B → B′, cylindrification

A × g =def idA × g =def (idA ◦ ℓ, g ◦ r) : A × B → A × B′.

Diagram:

A
id //

=

A

A × B

ℓ

OO

A×g //

r

²²
=

A × B′

ℓ

OO

r

²²
B

g // B′

This ends the list of axioms for the cartesian structure of the

theory PR.

Axioms for the iteration of endo maps:

14

f : A → A (endo) map

(§)

f § : A × N → A iterated of f, satisfies

f § ◦ (idA, 0) = idA : A → A [0 : = 0 Π] (anchor),

f § ◦ (A × s) = f ◦ f § : A × N → A → A (step).

“Pentagonal” diagram:

A × N
A×s //

f§

²²

=

A × N

f§

²²

A

(id,0)
<<yyyyyyyyy

id
""FF

FF
FF

FF
FF

= (it)

A
f // A

basic iteration diagram
As a first example for an iterated endo map take addition

+ : N × N → N, having properties

A × N
A×s //

+ s§

²²

=

A × N

+ s§

²²

A

(id,0)
<<yyyyyyyyy

id
""FF

FF
FF

FF
FF

= (+)

A
s // A

15

i. e. satisfying the free-variables equations

a + 0 = a : N → N × N → N,

a + s n = s(a + n) = (a + n) + 1 : N × N → N
s
−→ N,

where 1 =def s ◦ 0 : 1→ N → N.

[A formal introduction of free variables as projections see below.]

uniqueness axiom for the iterated:

f : A → A (endo map)

h : A × N → A,

h ◦ (idA, 0) = idA and

h ◦ (A × s) = f ◦ h “as well”

(§!)

h = f § : A × N → A

By this uniqueness axiom, the iterated map is characterised by

the commutative pentagonal diagram above.

Theorem (compatibility of iteration with equality): unique-

ness axiom (§!) infers

f = g : A → A

(§=)

f § = g§ : A × N → A

16

Proof: Consider the diagram

A × N
A×s //

f§

··

g§

­­

?

A × N

f§

··

g§

­­

?A

(id,0)
<<xxxxxxxxxx

id
""FFFFFFFFFFF

= =

A

f

))

g

55= A

Since f § is the unique commutative fill-in into this pentagonal diagram

over endomorphism f, it is sufficient to show that g§ : A × N → A

equally is such a commutative fill in.

For the triangle (anchor) this is trivial: g§(id, 0) = id : A → A by

definition of the null-fold iterated.

For the square (step) we have

g§ ◦ (A × s) = g ◦ g§ (definition of g§)

= f ◦ g§ : A × N → A,

by assumption f = g and by compatibility of ◦ with = in first com-

position factor, axiom (◦=1st).

So g§ turns out to be another iterated of endo f, whence in fact

g§ = f § by uniqueness of the iterated q.e.d.

These axioms give all objects and maps of theory PR.

Freyd’s uniqueness scheme which completes the axioms consti-

tuting theory PR, reads

17

f : A → B, g : B → B, h : A × N → B,

h ◦ (idA, 0 ◦ ΠA) = f : A → B, (init)

h ◦ (A × s) = g ◦ h : A × N → B, (step)

(FR!)

h = g§ ◦ (f × N) : A × N → B × N → B,

in form of Freyd’s pentagonal diagram:

A × N
A×s //

f×N

²²
=

h

££

A × N

f×N

²²
h

££

A

(id,0)

<<yyyyyyyyyyyy

f

""EE
EE

EE
EE

EE
EE

E
= B × N

g§

²²

B × N

g§

²²
B

g // B

Freyd’s uniqueness diagram (FR!)

Remark: This uniqueness of the initialised iterated obviously spe-

cialises to axiom (§!) of uniqueness of “simple” iterated f § : A×N →

A and so makes that uniqueness axiom redundant.

Problem: Is, conversely, stronger Freyd’s uniqueness axiom al-

ready covered by uniqueness (§!) of “simply” iterated f § : A×N → A ?

My guess is “no”.

Freyd’s existence and uniqueness of the initialised iterated is dis-

played as the following commutative diagram:

18

A × N
A×s //

f×N

²²

f×s

##GGGGGGGGGGGGGGGGGGG

h

§§

A × N

f×N

²²

h

§§

A

(id,0)

;;xxxxxxxxxxxxxxxxxxx
=

f ÂÂ?
??

??
??

? B × N

=

=

A×s //

g§

²²

=

B × N

g§

²²

B

(id,0)
;;wwwwwwwww

id ##GGGGGGGGG
=

B
g // B

Freyd’s uniqueness diagram (FR!)

Existence of g§ and commutativity of lower triangle and square

follow directly from axiom (§). Upper right commutativity is splitting

a cartesian product f × s in the two ways into compositions of right

and left cylindrified maps.

Remaining equation

(idB, 0 ◦ ΠB) ◦ f = (f × N) ◦ (idA, 0 ◦ ΠA) : A → B × N

is given by uniqueness of the induced map into the cartesian product

B × N, in detail:

ℓ ◦ (idB, 0) ◦ f = idB ◦ f = f and

ℓ ◦ (f × N) ◦ (idA, 0) = f ◦ ℓ ◦ (idA, 0) = f ◦ idA = f,

r ◦ (idB, 0) ◦ f = 0 ◦ f = 0 ◦ ΠA and

r ◦ (f × N) ◦ (idA, 0 ◦ ΠA) = r ◦ (idA, 0) = 0 ◦ ΠA.

Together this shows constructive availability of wanted initialised it-

erated h : A × N → B.

19

uniqueness of h, namely

f : A → B, g : B → B, h : A × N → B

h ◦ (idA, 0) = f

h ◦ (A × s) = g ◦ h

(FR!)

h = g§ ◦ (f × N).

is just required as an axiom, final axiom of theory PR.

From (FR!) we get trivially, with data

A
idA−−→ A

f
−→ A specializing data A

f
−→ B

g
−→ B

uniqueness (§!) of iterated map f § : A × N → A.

1.2 The full scheme of primitive recursion

Already for definition and characterisation of multiplication and more-

over for proof of “the” laws of arithmetic, the following full scheme

(pr) of primitive recursion is needed:1

Theorem (Full scheme of PR): PR admits scheme

1 in pure categorical form see Freyd 1972, and (then) Pfender, Kröplin,

and Pape 1994, not to forget its uniqueness clause

20

g : A → B (init map)

h : (A × N) × B → B (step map)

(pr)

pr[g, h] : = f : A × N → B

is given such that

f(idA, 0) = g : A → B (init), and

f (idA × s) = h (idA×N, f) :

(A × N) → (A × N) × B → B, (step)

as well as

(pr!) : f is unique with these properties.

Proof: construction of the map f = pr [g, h] : A × N → B out of

data g : A → B (initialisation) and h : (A × N) × B → B (iteration

step):

Wanted f : A × N → B is to satisfy (init) und (step) given as the

two commuting diagrams

21

A × N

f

²²

A

(id,0)
;;xxxxxxxxx

g
##GGGGGGGGG

=

B

(init)

(a, n) Â //
_

²²

(a, s n)
_

²²

A × N
A×s //

(id,f)

²²

=

A × N

f

²²
(A × N) × B

h // B f(a, s n)

((a, n), f(a, n)) Â // h((a, n), f(a, n))

mmmmmmmmmmmm

mmmmmmmmmmmm

(step)

With ĝ := ((idA, 0), g) and ĥ := ((A × s) ◦ l, h) we get by (FR!) a

uniquely determined map

k = (kℓ, kr) : A × N → (A × N) × B

satisfying

22

A × N
A×s //

k (kℓ,kr)

²²

=

A × N

k (kℓ,kr)

²²

A

(id,0)
88qqqqqqqqqqq

ĝ %%LLLLLLLLLLL =

(A × N) × B ĥ

((A×s)◦ℓ,h)
// (A × N) × B

i. e.

k ◦ (idA, 0) = ĝ and

k ◦ (A × s) = ĥ ◦ k.

[It will turn out that k = (idA×N, f) for wanted map f : A×N → B.]

For our unique k, consider first its left component kℓ = ℓ ◦ k :

A × N → A × N, unique—by (FR!)—in

A × N
A×s //

k

²²

=

kℓ id

¥¥

A × N

k

²²
kℓ id

¥¥

A

(id,0)
88qqqqqqqqqqq

ĝ %%LLLLLLLLLLL =

(id,0)

%%

(A × N) × B ĥ

((A×s)◦ℓ,h)
//

ℓ

²²

=

(A × N) × B

ℓ

²²
A × N

A×s // A × N

We have

ℓ ◦ k ◦ (idA, 0) = ℓ ◦ ĝ = (idA, 0) and

ℓ ◦ k ◦ (A × s) = l ◦ ĥ ◦ k = (A × s) ◦ ℓ ◦ k

23

Since these two equations hold likewise for idA×N instead of ℓ ◦ k, it

follows by uniqueness (FR!) of such a map ℓ ◦ k = idA×N.

Taking now f : = r◦k : A×N → B, we have the following diagram

for this (unique) right component of k : A × N → (A × N) × B :

A × N
A×s //

k

²²

=

f

¥¥

A × N

k

²²
f

¥¥

A

(id,0)
88qqqqqqqqqqq

((id,0),g)

ĝ

%%LLLLLLLLLLL =

g

&&

(A × N) × B ĥ

((A×s)◦ℓ,h)
//

r

²²

=

h
**UUUUUUUUUUUUUUUUUUU

(A × N) × B

r

²²
B

=

B
obtain

k = (ℓ ◦ k, r ◦ k) = (idA×N, f),

f ◦ (idA, 0) = r ◦ k ◦ (idA, 0) = r ◦ ĝ = g and

f ◦ (A × s) = r ◦ k ◦ (A × s) = r ◦ ĥ ◦ k

= h ◦ k = h ◦ (idA×N, f)

So this map f : A× N → B is available, to fullfill the requirements of

pr [g, h] : A × N → B.

uniqueness proof for such map f : Let f ′ be a map assumed

likewise to satisfy equations (init) and (step).

24

Then take k′ := (idA×N, f ′) : A×N → (A×N) → B and calculate:

k′ ◦ (idA, 0) = (idA×N, f ′) ◦ (idA, 0)

= ((idA, 0), f ′ ◦ (idA, 0))

= ((idA, 0), g) = ĝ as well as

k′ ◦ (A × s) = (idA×N, f ′) ◦ (A × s)

= ((A × s), f ′ ◦ (A × s))

= ((A × s), h) = ĥ ◦ k′.

Since by (FR!), k above is the unique map to satisfy the equations

above, we have necessarily k′ = k and hence f ′ = r ◦ k′ = r ◦ k = f :

A × N → B. q.e.d.

CLOETEENDE

1.3 Uniqueness of the NNO N

Strictly speaking, this subsection is not needed for the sequel.

1.4 A monoidal presentation of theory PR

straightforward categorically, not needed strictly.

1.5 Introduction of free variables

We start with a (“generic”) example of Elimination of free variables

by their Interpretation into (possibly nested) projections:

25

a distributive law a·(b+c) = a·b+a·c gets the map interpretation

a · (b + c) = (a · b) + (a · c) :

R3 = by def R2 × R =by def (R × R) × R → R,

with systematic interpretation of variables:

a : = ℓ ℓ , b : = r ℓ , c : = r : R3 = (R × R) × R → R ,

and infix writing of operations op : R × R → R prefix interpreted as

· ◦(a , + ◦ (b, c)) = + ◦ (· ◦ (a, b) , · ◦ (a, c)) : R3 → R.

In form of a commuting diagram:

(R × R) × R
(a,(b,c))

(ℓℓ,(rℓ,r))

~~

((a,b),(a,c))

((ℓℓ,rℓ),(ℓℓ,r))

""

(a,b+c)

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

(a·b,a·c)

!!DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

R × (R × R)

R×+

²²

(R × R) × (R × R)

·× ·

²²
R × R

·

''PPPPPPPPPPPPPPPPPPP
R × R

+

vvllllllllllllllllllllll

R

An iterated f § : A × N may be written in free-variables notation as

f § = f §(a, n) = fn(a) : A × N → A

with a : = ℓ : A × N → A, and n : = r : A × N → N.

Systematic map Interpretation of free-variables Equations:

26

1. extract the common codomain (domain of values), say B, of both

sides of the equation (this codomain may be implicit);

2. “expand” operator priority into additional bracket pairs;

3. transform infix into prefix notation, on both sides of the equation;

4. order the (finitely many) variables appearing in the equation, e.g.lexically;

5. if these variables a1, a2, . . . , am range over the objects A1, A2, . . . , Am,

then fix as common domain object (source of commuting diagram),

the object

A = A1 × A2 × . . . × Am =def (. . . ((A1 × A2) × . . .) × Am);

6. interpret the variables as identities (possibly nested) projections,

will say: replace, within the equation, all the occurences of a

resp. variable, by the corresponding—in general binary nested—

projection;

7. replace each symbol “ 0 ” by “ 0 ΠD ” where “D ” is the (common)

domain of (both sides) of the equation;

8. insert composition symbol ◦ between terms which are not bound

together by an induced map operator as in (f1, f2);

9. By the above, we have the following two-maps-cartesian-Product

rule, forth and back: For

27

a : = ℓA,B : (A×B) → A, b : = rA,B : (A×B) → B, and f : A → A′

as well as g : B → B′, the following identity holds:

(f × g)(a, b) = (f × g) ◦ (ℓA,B, rA,B)

= (f × g) ◦ id(A×B) = (f × g)

= (f ◦ ℓA,B, g ◦ rA,B)

= (f ◦ a, g ◦ b) = (f(a), g(b)) : A × B → A′ × B′;

10. for free variables a ∈ A, n ∈ N interpret the term fn(a) as the map

f §(a, n) : A × N → A.

These 10 interpretation steps transform a (PR) free-variables equation

into a variable-free, categorical equation of theory PR :

Elimination of (free) variables by Interpretation as projections,

and vice versa: Introduction of free variables as names for pro-

jections. We allow for mixed notation too, all this, for the time being,

only in the context of a cartesian (!) theory T.

All of our theories are free from classical, (axiomatic) formal quan-

tification. free variables equations are understood naively as univer-

sally quantified. But a free variable (a ∈ A) occurring only in the

premise of an implication takes (in suitable context, see below), the

meaning

for any given a ∈ A : premise (a, . . .) =⇒ conclusion, i. e.

if exists a ∈ A s. t. premise (a, . . .), then conclusion.

1.6 Goodstein FV arithmetic

In “Development of Mathematical Logic” (Logos Press 1971) R. L.

Goodstein gives four basic uniqueness-rules for free-variable Arith-

28

metics. We show here these rules for theory PR, and that these four

rules are sufficient for proving the commutative and associative laws

for multiplication and the distributive law, for addition as well as for

truncated subtraction a .− n.

For our evaluation and consistency considerations below we

need from present section equality predicate [a
.
= b] : N×N → 2, and

that this predicate defines map equality, see equality definability

scheme in the middle of section. This scheme is a consequence of

commutativity max(a, b) =def a + (b .− a) = b + (a .− b) =by def

max(b, a) which is difficult to show and which you may take on faith.

Basic GA operations are addition ‘ + ’, predecessor ‘ pre ’, trun-

cated subtraction ‘ .− ’, [in Goodstein predecessor written pre : =

() .− 1], as well as multiplication ‘ · ’.

We include2 into Goodstein’s uniqueness rules a “passive parame-

ter” a. These extended rules are derivable by use of Freyd’s unique-

ness theorem (pr!), part of full scheme (pr) of primitive recursion

which he deduces from his uniqueness (FR!) of the initialised iterated.

Freyd 1972 deduces the latter from availability of a natural num-

bers object N in Lawvere’s sense, axiomatic availability of higher

order internal hom objects with, again axiomatic, evaluation map

family for these objects, of form ǫA,B : BA × A → B within the cate-

gory considered.

Goodstein’s rules with passive parameter:

Let f, g : A × N → N be maps, s : N → N the successor map

2Sandra Andrasek and the author

29

n 7→ n + 1 and pre : N → N the predecessor map, usually written as

n 7→ n .− 1.

Then Goodstein’s rules read:

f(a, sn) = f(a, n) : A × N → B

U1

f(a, n) = f(a, 0) : A × N → B

no change by application of successor

infers equality with value at zero for f

f(a, s n) = s f(a, n) : A × N → N
U2

f(a, n) = f(a, 0) + n : A × N → N

accumulation of successors into +n

f(a, sn) = pre f(a, n) : A × N → N
U3

f(a, n) = f(a, 0) .− n : A × N → N

accumulation of predecessors into .− n

30

f(a, 0) = g(a, 0) : A → N

f(a, sn) = g(a, sn) : A × N → N
U4

f(a, n) = g(a, n) : A × N → N

uniqueness of map definition by case-distinction

Rule U4 is nothing else than uniqueness of the induced map out of

the sum A × N ∼= (A × 1) + (A × N), this sum canonically realised

via injections ι = (idA, 0) : A → A × N as well as—right injection—

κ = idA × s : A × N → A × N.

Proof of these four rules is straight forward for theory PR, us-

ing Freyd’s uniqueness (FR!) and uniqueness clause (pr!) of the full

scheme of primitive recursion respectively, as follows:

For scheme U1 consider, with free variable a : = ℓ : A × N → A,

A × N
A×s //

f f(a,0)

²²

A × N

f f(a,0)

²²

A × N

(a,0)
99sssssssss

f(a,0)
%%KKKKKKKKKKK

N
id // N

(FR!)

f(a, n) = f = f(a, 0).

Proof of U2 of “summing up successors”:

31

A × N

GF ED
f(a,0) + s n

BC
oo

A×s //

f f(a,0)+n

²²

A × N

f f(a,0)+n

²²

A × N

(a,0)
99sssssssss

f(a,0)
%%KKKKKKKKKKK

N
s // N

pentagon commutative for both f, f(a, 0) + n

(FR!)

f(a, n) = f(a, 0) + n

Proof of U3 is exactly analogous to the above. Replace in state-

ment of U2 and its proof stepwise augmentation f(a, sn) = s f(a, n)

by stepwise descent

f(a, s n) = f(a, n) .− 1 =by def pre f(a, n).

On right hand side replace successor s : N → N by predecessor pre :

N → N which in turn is defined by the full scheme (pr) of primitive

recursion. In postcedent replace iterated successor a+n : N×N → N

by iterated predecessor a .− n : N × N → N.

[In Goodstein’s original, pre(n) = n .− 1 : N → N is a basic,

“undefined” map constant]

We give a Direct Proof of U4 :

We tailor first this scheme for convenient use of “full” uniqueness

32

scheme (pr!), as follows:

f = f(a, n), f ′ = f ′(a, n) : A × N → B,

f(a, 0) = f ′(a, 0) : A → B,

f(a, s n) = f ′(a, s n) : A × N → A × N → B

U4

f = f ′ : A × N → B.

Choose the anchor map

g = g(a) : = f(a, 0) = f ′(a, 0) :

A → A × N → B

and the step map

h = h((a, n), b) : = f(a, s n) = f ′(a, s n) :

(A × N) × B
ℓ

−→ A × N → B.

We obtain, via the full scheme (pr!) of PR:

f(a, 0) = g(a) = f ′(a, 0), (anchor hypothesis)

f(a, s n) = h((a, n), f(a, n)) = f ′(a, s n) (step hypothesis)

(pr!)

f = pr[g, h] = f ′ : A × N → B q.e.d.

Together with reflexivity, symmetry, and transitivity of equality

f = g : A → B : between maps as well as with the defining equa-

tions for the fundamental operations and U1, . . . , U4 above, we de-

fine categorical Goodstein’s free-variables Arithmetic which we

name Goodstein Arithmetic, GA.

33

We now quote, with passive parameters made visible, Goodstein’s

arithmetical equations together with his proofs.

The first equation is (Goodstein’s statement numbers)

Lemma:

(a .− n) .− 1 =GA (a .− 1) .− n : N × N → N, (1.)

a ∈ N free, “passive”, a : = ℓ : A × N → A,

n ∈ N free, recursive, n : = r : A × N → N.

Proof:

(a .− s n) .− 1 =by def ((a .− n) .− 1) .− 1

U3

(a .− n) .− 1 = ((a .− 0) .− 1) .− n

= by def (a .− 1) .− n : N2 → N q.e.d.

Next equation is

stepwise simplification rule for truncated subtraction:

s a .− s b = a .− b : N × N → N, (1.1)

Proof:

s a .− s s b =by def (s a .− s b) .− 1

U3

s a .− s b = (s a .− s 0) .− b

= by def a .− b : N2 → N,

the latter by definition of the predecessor “ .− 1” q.e.d.

34

Lemma: a .− a = 0 : N → N. (1.2)

Proof:

s a .− s a = a .− a

(by stepwise simplification 1.1 above)

U1

a .− a = 0 .− 0 =by def 0 q.e.d.

Lemma: 0 .− a = 0 : N → N. (1.3)

Proof:

0 .− s a =by def (0 .− a) .− 1

= (0 .− 1) .− a (by (1.) above)

= 0 .− a : N → N
U1

0 .− a = 0 .− 0 = 0 : N → N q.e.d.

Proposition:

a .− (b + c) = (a .− b) .− c : (N × N) × N → N. (1.31)

Proof:

35

a : = ℓN,N ◦ ℓN×N,N : (N × N) × N
ℓ

−→ N × N
ℓ

−→ N,

b : = r ◦ ℓ : (N × N) × N
ℓ

−→ N × N
r

−→ N,

(a, b) = ℓN×N,N : A × N = N2 × N
ℓ

−→ A = N2,

c : = r : A × N = N2 × N
r

−→ N.

a .− (b + s c) =by def a .− s (b + c) (definition of +),

= by def (a .− (b + c)) .− 1 (definition of .−)

(U3)

a .− (b + c) = (a .− (b + 0)) .− c =by def (a .− b) .− c. q.e.d.

Full Simplification:

(a + n) .− (b + n) = a .− b : N2 × N → N. (1.4)

Proof:

(a + s n) .− (b + s n)

= by def s (a + n) .− s (b + n) = (a + n) .− (b + n),

by substitution—realised essentially as composition

—of (a + n) into a, and (a + n) into b within

stepwise simplification equation 1.1 above

(U1)

(a + n) .− (b + n) = (a + 0) .− (b + 0) =by def a .− b.

36

Lemma: 0 + n = n [= by def n + 0] : N → N, (2)

Proof:

idN s a = s a

U2

idN(a) = idN(0) + a,

and hence

a = idN(a) = idN(0) + a = 0 + a : N → N q.e.d.

Lemma: a + s b = s a + b : N × N → B. (2.1)

Proof by U2 as follows, with free variable b : = r : N2 → N as

recursion variable:

For f = f(a, b) =def a + s b : N × N → N :

f(a, s b) =by def a + s s b = s(a + s b) = s f(a, b) : N2 → N
U2

f(a, b) = a + s b = f(a, 0) + b

= by def (a + s 0) + b = by def s a + b q.e.d.

Theorem:

a + b = b + a : N × N → N, (2.2),

a : = ℓ : N2 → N,

b : = r : N2 → N.

37

Proof:

a + 0 =by def a = 0 + a by (2) above,

a + s b = s a + b by (2.1) above (and symmetry of equality)

U4

a + b = by def f(a, b) = g(a, b)

= by def s a + b : N2 → N q.e.d.

This gives also sort of

permutability for truncated subtraction:

(a .− b) .− c = (a .− c) .− b : (N × N) × N → N.

Proof:

(a .− b) .− c = a .− (b + c) by (1.31) above

= a .− (c + b) by commutativity of addition above

= (a .− c) .− b again by (1.31) q.e.d.

Lemma:

(a + n) .− n = (a + n) .− (0 + n) = a : N × N → N q.e.d. (2.3)

Associativity of Addition

(a + b) + c = a + (b + c) : (N × N) × N → N,

with free variables

a : = ℓ ◦ ℓ : (N × N) × N → N × N → N,

b : = r ◦ ℓ : (N × N) × N → N × N → N,

c : = r : (N × N) × N.

38

Proof: for f((a, b), c) =def a + (b + c) : N2 × N :

f((a, b), s c) = a + (b + s c) = a + s(b + c)

= s(a + (b + c)) = s f((a, b), c)

U2

a + (b + c) = f((a, b), c) = f((a, b), 0) + c

= by def (a + (b + 0)) + c = (a + b) + c : N2 × N → N q.e.d.

Recall p. r. Definition of Multiplication:

a · 0 = 0 : N → N,

a · (n + 1) = (a · n) + a.

For this operation, we have not only annihilation by zero from the

right, but also

Left zero-Annihilation 0 · n = 0 : N → N.

Proof:

0 · s n = (0 · n) + 0 = 0 · n

U1

0 · n = 0 · 0 = 0 q.e.d.

For proving the other equational laws making the natural num-

bers object N into a unitary commutative semiring with in addi-

tion truncated subtraction introduced above, Goodstein’s derived

scheme V4 below is helpfull.

For proof of that scheme, we rely on

39

Commutativity of maximum operation:3

max(a, b) =def a+(b .− a) = b+(a .− b) =by def max(b, a) : N×N → N

Proof: As a first step, we show

Diagonal Reduction Lemma for maximum:

max(a, b) = max(a .− 1, b .− 1) + sign(a + b)

= by def max(a .− 1, b .− 1) + (1 .− (1 .− (a + b))) :

N × N → N,

max(a, s b) = max(a .− 1, s b .− 1) + sign(a + s b), (1)

(where sign(0) = 0, sign(s n) = 1), as follows:

max(0, s b) = s b = max(0, b) + 1 : N → N, (2)

max(s a, s b) = s max(a, b) = max(a, b) + 1

= max(s a .− 1, s b .− 1) + sign(s a + s b) (3)

From (2) and (3) follows (1) by uniqueness U4.

Furthermore

max(a, 0) = a = (a .− 1) + sign(a)

= max(a .− 1, 0 .− 1) + sign(a + 0). (4)

Together with (1) above, this gives, again by U4, the Diagonal Re-

duction Lemma.

From this we get immediately by substitution

3in Goodstein 1957 this is taken as an axiom

40

Opposite Diagonal Reduction Lemma for maximum:

max(b, a) = max(b .− 1, a .− 1) + sign(b + a)

= max(b .− 1, a .− 1) + sign(a + b) q.e.d.

Now let

φ = φ(n, (a, b)) : N × (N × N) → N by

φ(0, (a, b)) = 0 : N × N → N and

φ(s n, (a, b)) = φ(n, (a, b)) + sign((a .− n) + (b .− n)) :

N × (N × N) → N

We show for this increment map φ

max(a .− n, b .− n) + φ(n, (a, b))

= max(a .− s n, b .− s n) + φ(s n, (a, b)) (5)

as well as

max(b .− n, a .− n) + φ(n, (a, b))

= max(a .− s n, b .− s n) + φ(s n, (a, b)) (6)

(same increment).

First we show equation (5): Substitution of (a .− n) for a and (b .− n)

for b within Reduction Lemma above gives

max(a .− n, b .− n)

= max((a .− n) .− 1, (b .− n) .− 1) + sign((a .− n) + (b .− n))

41

Adding φ(n, (a, b)) to both sides of this equation gives

max(a .− n, b .− n) + φ(n, (a + b))

= max((a .− n) .− 1, (b .− n) .− 1)

+ sign((a .− n) + (b .− n)) + φ(n, (a + b))

= by def max(a .− s n, b .− s n) + φ(s n, (a, b)),

i. e. equation (5).

We show equation (6): By substitution of (b .− n) for b and (a .− n)

for a in Opposite Reduction Lemma and addition of φ(n, (a, b))

on both sides, we get

max(b .− n, a .− n) + φ(n, (a, b))

= max((b .− n) .− 1, (a .− n) .− 1)

+ sign((b .− n) + (a .− n)) + φ(n, (a, b))

= max((b .− n) .− 1, (a .− n) .− 1)

+ sign((a .− n) + (b .− n)) + φ(n, (a, b))

= by def max((b .− n) .− 1, (a .− n) .− 1) + φ(s n, (a, b))

= max(b .− s n, a .− s n) + φ(s n, (a, b)),

i. e. equation (6).

From the two Lemmata, we get by uniqueness U1

max(a .− n, b .− n) + φ(n, (a, b))

= max(a .− 0, b .− 0) + φ(0, (a, b)) = max(a, b) + 0 = max(a, b)

as well as

max(b .− n, a .− n) + φ(n, (a, b))

= max(b .− 0, a .− 0) + φ(0, (a, b)) = max(b, a) + 0 = max(b, a)

42

and hence

max(a, b) = max(a .− n, b .− n) + φ(n, (a, b)) as well as

max(b, a) = max(b .− n, a .− n) + φ(n, (a, b)),

and so, by substitution of b into n :

max(a, b) = max(a .− b, b .− b) + φ(b, a, b)

= (a .− b) + φ(b, (a, b))

= max(b .− b, a .− b) + φ(b, (a, b))

= max(b, a) : N × N → N

q.e.d.

This given, we can now show, for GA (and hence for PR), scheme

f, g, h : A × N → N

f(a, 0) = g(a, 0) : A → N

f(a, sn) = f(a, n) + h(a, n) : A × N → N

g(a, sn) = g(a, n) + h(a, n) : A × N → N
V4

f(a, n) = g(a, n).

Rule V4 can be derived, by applying rule U1 to the distance map

d(a, n) = |f(a, n), g(a, n)| = |f(a, n) − g(a, n)|

= by def (f(a, n) .− g(a, n)) + (g(a, n) .− f(a, n)) :

A × N → N2 +
−→ N :

43

d(a, 0) = (f(a, 0) .− g(a, 0)) + (g(a, 0) .− f(a, 0)) = 0

d(a, sn) = (f(a, sn) .− g(a, sn)) + (g(a, sn) .− f(a, sn))

= (f(a, n) + h(a, n)) .− (g(a, n) + h(a, n))

+ (g(a, n) + h(a, n)) .− (f(a, n) + h(a, n))

= (f(a, n) .− g(a, n)) + (g(a, n) .− f(a, n))

= d(a, n) : A × N → N,

whence, by U1:

d(a, n) = d(a, 0) = 0, i. e.

(f(a, n) .− g(a, n)) + (g(a, n) .− f(a, n)) = 0, whence

f(a, n) .− g(a, n) = 0 = g(a, n) .− f(a, n) : A × N → N,

and hence

f(a, n) = f(a, n) + (g(a, n) .− f(a, n))

= max(f(a, n), g(a, n))

= max(g(a, n), f(a, n))

= g(a, n) + (f(a, n) .− g(a, n))

= g(a, n) q.e.d.

individual equality, equality predicate

[m
.
= n] : N2 → 2

44

is defined via weak order as follows:

[m ≤ n] =def ¬ [m .− n] : N2 → N → N, where

¬n =def 1 .− n, directly p. r. defined by

¬ 0 =def 1 ≡ true : 1→ N,

¬ s n =def 0 ≡ false : 1→ N.

This order on N is reflexive and transitive.

Individual equality—first on N—then is easily defined by

[m
.
= n] =def [m ≤ n ∧ n ≤ m] : N2 → N.

Almost by definition, the triple {≤,
.
=, ≥} : N2 → N fullfills the

law of trichotomy, and max(a, b) : N2 → N above is characterised

as the maximum map with respect to the order [a ≤ b] : N2 → N just

introduced, a posteriori.

We now have at our disposition all ingredients for the

Equality definability theorem:

f = f(a) : A → B, g = g(a) : A → B in PR,

PR ⊢ trueA = [f(a)
.
=B g(a)] :

A
∆
−→ A × A

f×g
−−→ B × B

.
=B−−→ 2

(EqDef)

PR ⊢ f = g : A → B, i. e. f =PR g : A → B.

Proof:

45

We begin with the special case B = N : Let f, g : A → N PR-maps

satisfying the antecedent of (EqDef). Then

PR ⊢ f(a) = f(a) + 0 = f(a) + (g(a) .− f(a))

= max(f(a), g(a))

= max(g(a), f(a))

= g(a) : A → B.

The general case for codomain object B follows, since individual equal-

ity on (binary) cartesian Products is canonically defined componen-

twise, and B is a cartesian product of N’s q.e.d.

These fundamentals given, we can continue with properties of the

algebraic structure on N.

Algebra, Order and Logic on N :

• N admits the structure

1
0 //

s 0
// N

sign>0

²²

¬

$$

N × N

.
−

xx +oo
·

oo

≤

||zz
zz

zz
zz

zz
zz

zz

.
=

||zz
zz

zz
zz

zz
zz

zz

N

of a unary, commutative semiring with zero—properties

of .−, sign : N → N (“positiveness”), order, and equality
.
= see

below.

• N admits a foundational important additional algebraic struc-

ture, namely truncated subtraction m .− n : N2 → N, with

46

its simplification properties, such that multiplication distributes

over this kind of subtraction.

This distributivity will further entail that of multiplication over

“full”, not truncated subtraction within

Z =def (N × N)/
.
=Z,

with defining equality predicate

[(p, q)
.
=Z (p′, q′)] =def [p + q′

.
= q + p′] :

N2 × N2 → N × N
.
=

−→ N.

• N admits linear order [m ≤ n] : N × N → N ⊂ N as a weak

reflexive and transitive predicate—this order is p. r. decidable.

• As basic logical structures, N admits negation

¬ = ¬n : N → N, as well as

sign = sign n = ¬¬n : N → N,

sign(n) is directly p. r. defined by

sign 0 =def 0 ≡ false, sign s n =def 1 ≡ s 0 :

sign n = [n > 0] : N → N PR decides on positiveness.

Furthermore, we have a fundamental equality predicate

[m
.
= n] = by def [m ≤ n] ∧ [m ≥ n] : N × N → N,

[a ∧ b =def sign(a · b) logical ‘and’],

47

which is an equivalence predicate, and which makes up a tri-

chotomy with strict order

[m < n] =def sign(n .− m)

= [m ≤ n] ∧ ¬ [m
.
= n] : N2 → N,

Proof of the latter equation is left as an Exercise.

• object N admits definition of (Boolean) “logical functions” by

truth tables, as does set 2 classically—and below in theory

PRa = PR + (abstr) of primitive recursion with predicate ab-

straction: draw the commuting diagrams.

• Algebra Combined with Order: As expected, addition is

strongly monotonic in both arguments, multiplication is strongly

monotonic for both arguments strictly greater than zero, and

truncated subtraction is weakly monotonic in its first argument

and weakly antitonic in its second.

Theorem: In free–variables arithmetics the commutative law

for multiplication: n · m = m · n, holds.

Proof: We need the following

Lemma:

(i) 0 · n = 0

(ii) sa · n = a · n + n

Proof:

48

(i) 0 · 0 = 0 and

0 · sn = 0 · (n + 1) = 0 · n + 0 = 0 · n = 0 · 0 = 0.

(ii) We show f(a, n) := sa · n = g(a, n) := a · n + n using V4:

f(a, 0) = g(a, 0) because for n = 0 we get (sa) · 0 = 0 as well as

a · 0 + 0 = a · 0 = 0.

f(a, sn) = (sa) · (sn) = (a + 1) · (n + 1)

= (a + 1) · n + (a + 1) = (sa) · n + sa

= f(a, n) + h(a, n), with h(a, n) := sa

g(a, sn) = a · (sn) + sn = a · (n + 1) + (n + 1)

= a · n + a + n + 1 = a · n + n + a + 1

= a · n + n + sa

= g(a, n) + h(a, n).

So V4 gives f(a, n) = g(a, n) i.e. sa · n = a · n + n.

q.e.d.

We continue with the proof of a · n = n · a:

From a · 0 = 0 = 0 · a and a · sn = a ·n+n = sn · a by the Lemma,

we conclude a · n = n · a by V4.
4

q.e.d.

4 corrected by S. Lee may 21, 2013

49

Theorem In free–variable arithmetics multiplication distributes

over addition: a · (m + n) = a · m + a · n.

Proof:

Case n = 0 is trivial by definition of + and · .

From the hypothesis a ·(m+n) = a ·m+a ·n we infer the next step

a · (m+ sn) = a ·m+a · sn by rule V4 above—with passive parameter

(a,m)—as follows:

with f((a,m), n) : = a · (m + n),

g((a,m), n) : = a · m + a · n and

h((a,m), n) : = a

we have

f((a,m), sn) = a · (m + sn) = a · (m + (n + 1))

= a · ((m + n) + 1) = a · (m + n) + a

= f((a,m), n) + h((a,m), n)

g((a,m), sn) = a · m + a · sn = a · m + a · (n + 1)

= a · m + a · n + a

= g((a,m), n) + h((a,m), n).

So by V4 we get f((a,m), n) = g((a,m), n), i. e. a·(m+n) = a·m+a·n.

q.e.d.

Theorem: In free–variable arithmetics the associative law holds,

i. e. a · (m · n) = (a · m) · n.

50

Proof: We prove the law applying rule V4 with “active” parameter

n and passive parameter (a,m) to

f((a,m), n) : = a · (m · n),

g((a,m), n) : = (a · m) · n and

h((a,m), n) : = a · m.

For n = 0 we have: a · (m · n) = a · 0 = 0, and on the other hand:

(a · m) · 0 = 0.

For V4–step we have:

f((a,m), sn) = a · (m · sn) = a · (m · (n + 1))

= a · (m · n + m) = a · (m · n) + a · m

= f((a,m), n) + h((a,m), n)

g((a,m), sn) = (a · m) · (n + 1) = (a · m) · n + a · m

= g((a,m), n) + h((a,m), n).

By V4 we get f((a,m), n) = g((a,m), n), i. e. a · (m · n) = (a · m) · n.

q.e.d.

Distributivity theorem: In free–variable arithmetics multiplica-

tion distributes over truncated subtraction:

a · (m .− n) = a · m .− a · n.

Proof by equality definability, namely

[f = g iff [f
.
= g] = true],

51

it is sufficient to show

f((a,m), n) : = a · (m .− n)
.
= a · m .− a · n =: g((a,m), n)] = true.

Proof of this law becomes comparitively easy with diagonal induction

out of Pfender, Kröplin, Pape 1994:

Anchoring (m = 0 resp. n = 0):

a · (0 .− n) = a · 0 = 0 = 0 .− a · n = a · 0 .− a · n, as well as

a · (m .− 0) = a · m = a · m .− 0 = a · m .− a · 0.

Diagonal induction step:

f(a,m, n) : = a · (m .− n)
.
= a · m .− a · n = : g(a,m, n)

=⇒ f(a, sm, sn) = a · (sm .− sn)
.
= a · sm .− a · sn = g(a, sm, sn),

since

f(a, sm, sn) = a · (sm .− sn) = a · (m .− n)

= f(a,m, n),

g(a, sm, sn) = a · sm .− a · sn = a · (m + 1) .− a · (n + 1)

= (a · m + a) .− (a · n + a)

= a · m .− a · n by absorption law for .−

= a · (m .− n)

= g(a,m, n).

q.e.d.

52

Proposition: Addition and multiplication in free-variable arith-

metics are weakly monotonous, i. e.

m ≤ n =⇒ m .− n = 0

=⇒ (a + m) .− (a + n)
.
= 0 by absorption law for .−

=⇒ a + m ≤ a + n

m ≤ n =⇒ m .− n = 0

=⇒ (a · m) .− (a · n)
.
= a · (m .− n)

.
= 0

=⇒ a · m ≤ a · n

q.e.d.

Boolean Structure on N

In present framework GA of Goodstein Arithmetic we introduce

on NNO N the following proto Boolean structure:

1
false≡ 0 //
true≡ 1

// N

¬

ÃÃ

sign>0

²²

N × N
∨≡+oo
∧≡ ·

oo

⇒ ≡≤

uu
⇔≡

.
=

uuN

[Successors are all viewed logically to represent truth value true.]

1.7 Sum objects and definition by distinction of

cases

“Hilbert’s infinite hotel” N ∼= 1+ N :

53

Consider the sum diagram

A × 1 oo
∼= //

a×0

##HHHHHHHHHHHHHHH A

(a,0)

²²

f

ÃÃ
A × N

(f |g) // B

A × N

a×s

OO

g

>>

where

(f |g) =def pr[f : A → B, g ◦ ℓ : (A × N) × B → A × N → B]

is the unique commutative fill-in into this sum diagram: full scheme

(pr) of primitive recursion. Symbolically:

A × N = A + (A × N) ∼= (A × 1) + (A × N).

An important consequence is the following scheme of map defini-

54

tion by case distinction:

χ = sign ◦ χ : A → N p. r. predicate,

g, h : A → B p. r. maps

(IF)

f = if[χ, (g|h)] “if χ then g else h ”

=def (h|g ◦ ℓ) ◦ (idA, χ) :

A → A × N → B,

χ(a) =⇒ if[χ, (g|h)]
.
= g(a),

¬χ(a) =⇒ if[χ, (g|h)]
.
= h(a).

Proof: Commuting diagram:

A
h

""

(id,0)

²²
A

(id,χ) //

f

44A × N
(h|g◦ℓ) // B

A × N

A×s

OO

ℓ
// A

g

EE

with (h|g ℓ) : A × N = A + (A × N) → B the induced map out of the

sum (“coproduct”), coproduct injections (id, 0), A × s.

55

free-variable notation:

f = f(a) = if[χ, (g|h)](a)

=





g(a) if χ(a)

h(a) if ¬χ(a) (otherwise).

This terminates presentation (and discussion) of terms and equa-

tional axioms presenting fundamental categorical free variables theory

PR of primitive recursion.

Note:

In Pfender, Kröplin, Pape 1994 section 4, D. Pape has adapted

the classical concept of primitive recursion out of Yashuhara 1971

to the (free-variables) categorical setting, and shown equivalence with

fundamental theory PR above.

1.8 Substitutivity and Peano induction

Leibniz substitutivity theorem for predicative equality:

f : A → B PR-map

a
.
= a′ =⇒ f(a)

.
= f(a′) :

A × A → N.

Proof by structural induction on f :

• f = 0 : 1→ N : clear since 0
.
= 0 : 1→ N × N

.
=
−→ N.

56

• f = s : N → N : Use [s m .− s n] = [m .− n] and

[a
.
= b] = [a ≤ b] ∧ [b ≤ a] = ¬[a .− b] ∧ ¬[b .− a].

• f = Π : A → 1 : trivial since
.
=1= true1×1.

• f = ℓ : A × B → A :

(a, b)
.
= (a′, b′) ⇐⇒ [a

.
= a′] ∧ [b

.
= b′]

=⇒ [a
.
= a′] ⇐⇒ [ℓ(a, b)

.
= ℓ(a′, b′)] :

(A × B) × (A × B) → N.

• f = r : A × B → B : analogous.

Further recursively:

• for a composition g ◦ f : A → B → C :

a
.
= a′ =⇒ f a

.
= f a′ (hypothesis)

=⇒ g(f a)
.
= g(f a′) (hypothesis)

⇐⇒ (g ◦ f)(a)
.
= (g ◦ f)(a′) : A × A → N.

• for an induced (f, g) : C → A × B:

c
.
= c′ =⇒ f(c)

.
= f(c′) ∧ g(c)

.
= g(c′) (hypothesis)

⇐⇒ (f(c), g(c))
.
= (f(c′), g(c′))

⇐⇒ (f, g)(c)
.
= (f, g)(c′) : C × C → N.

• for an iterated map f § : A × N → A to show:

(a, n)
.
= (a′, n′) =⇒ f §(a, n)

.
= f §(a′, n) : (A × N)2 → A.

57

Diagonal induction on (n, n′) ∈ N × N :

(a, 0)
.
= (a′, 0) =⇒ f §(a, 0)

.
= a

.
= a′ .

= f §(a′, 0);

left axis: (a, 0) 6= (a, s pre(n′)), premise fails;

right axis: (0, a′) 6= (s pre(n), a′), premise fails;

diagonal induction step:

(a, s n)
.
= (a′, s n′) =⇒ a

.
= a′ ∧ s n

.
= s n′

=⇒ a
.
= a′ ∧ n

.
= n′ (injectivity of s)

=⇒ (a, n)
.
= (a′, n′) =⇒ f §(a, n)

.
= f §(a′, n′)

(induction hypothesis)

=⇒ f §(a, s n)
.
= f(f §(a, n))

.
= f(f §(a′, n′))

.
= f §(a′, s n′)

(structural recursion hypothesis on f)

q.e.d.

Peano’s axioms read in categorical free-variables form:5

Peano theorem:

• P1: zero is a natural number:

0 : 1→ N is a map constant of N, a natural number as such.

[Other natural numbers are free variables on N]

• P2: to any natural number (free variable) n is assigned a suc-

cessor:

This assignment is realised categorically by successor map

5 see Reiter 1982 as well as Pfender, Kröplin&Pape

58

s = s(n) : N → N.

Such successor s(n) is unique:

This is given categorically by Leibniz’s substitutivity for the

successor map:

PR ⊢ m
.
= n =⇒ s(m)

.
= s(n) : N × N → N.

• P3: 0 is not a successor:

This follows from sn > 0, whence sn 6= 0, by definition of m
.
= n

via m < n via m .− n.

• P4: equality s(m)
.
= s(n) implies m

.
= n :

This is derived injectivity of successor map s : N → N which

reads in free variables:

s m ≡ s(m)
.
= s(n) ≡ s n

=⇒ m
.
= pre s m

.
= pre s n

.
= n :

N × N → N.

• P5: Peano-induction, derived from uniqueness part (pr!) of

full scheme (pr) of primitive recursion (Freyd):

ϕ = ϕ(a, n) : A × N → N predicate

ϕ(a, 0) = trueA(a) (anchor)

[ϕ(a, n) =⇒ ϕ(a, s n)] = trueA×N (induction step)

(P5)

ϕ(a, n) = trueA×N (conclusio).

59

Proof of Peano induction principle (P5) from full scheme (pr) of

primitive recursion:6

For scheme (pr!) choose as anchor map

g = g(a) = ϕ(a, 0) = true(a) : A → N, and as step map

h = h((a, n), b) = b ∨ ϕ(a, s n) : (A × N) × N → N

By (pr) we get a unique f = f(a, n) : A × N → N which satifies

f(a, 0) = ϕ(a, 0) = true(a) and

f(a, s n) = h((a, n), f(a, n)) = f(a, n) ∨ ϕ(a, s n).

This works for f = true : A × N → N as well as for f = ϕ, the latter

since

ϕ(a, n) ∨ ϕ(a, s n)

= (ϕ(a, n) ∨ ϕ(a, s n)) ∧ (ϕ(a, n) ⇒ ϕ(a, s n))

by 2nd hypothesis

= ϕ(a, s n) by boolean tautology

(α ∨ β) ∧ (α ⇒ β) = β :

test with β = 0 ≡ false and β = 1 ≡ true.

q.e.d.

By replacing predicate ϕ with

ψ(a, n) : = ∧
i≤n

ϕ(a, i) : A × N → N

in this proof we get

6 Reiter 1982 and Pfender, Kröplin, Pape 1994

60

Course of values induction principle:

ϕ = ϕ(a, n) : A × N → N predicate

ϕ(a, 0) = trueA(a) (anchor)

[∧
i≤n

ϕ(a, i) =⇒ ϕ(a, s n)] = trueA×N (induction step)

(P5)

ϕ(a, n) = trueA×N (conclusio).

Here predicate ∧
i≤n

ϕ(a, i) : A × N → N is p. r. defined by

∧
i≤0

ϕ(a, i) = ϕ(a, 0) : A → N,

∧
i≤s n

ϕ(a, i) = ∧
i≤n

ϕ(a, i) ∧ ϕ(a, s n) : A × N → N.

1.9 Integer division and related

Integer division with remainder (Euclide)

(a ÷ b, a rem b) : N × N> → N × N

is characterised by

a ÷ b = max{c ≤ a | b · c ≤ a} : N × N> → N,

a rem b = a .− (a ÷ b) · b : N × N> → N.

[for N> = {n ∈ N|n > 0} and objects defined by p. r. predicate ab-

straction in general see next chapter.]

Explicitely, we define

÷ = a ÷ b : N × N> → N

61

via initialised iteration h = h((a, b), n) of

g = g((a, b), c) =





((a, b), c) if a < b,

((a .− b, b), c + 1) if a ≥ b

in

(N × N>) × N
(N×N>)×s //

h

²²

(N × N>) × N

h

²²

N × N>

(id,0)
77nnnnnnnnnnn

(id,0) ''PPPPPPPPPPP
= =

(N × N>) × N
g // (N × N>) × N

a ÷ b =def r h((a, b), a) : N × N> → (N × N>)N → N,

a rem b =def ℓℓ h((a, b), a) = a .− b · (a ÷ b) : N × N> → N.

The predicate a|b : N> × N → N, a is a divisor of b, a divides b is

defined by

a|b = [b rem a
.
= 0].

Exercise: Construct the Gaussian algorithm for determination of

the gcd of a, b ∈ N> defined as

gcd(a, b) = max{c ≤ min(a, b) | c|a ∧ c|b} : N> × N> → N>

by iteration of mutual rem.

62

Primes

Define the predicate is a prime by

P(p) =
p

∧
m=1

[m|p ⇒ m
.
= 1 ∨ m

.
= p] : N → 2 :

Only 1 and p divide p.

Write P for {n ∈ N|P(n)} ⊂ N too.

The (euclidean) count pn : N ֌ N of all primes is given by

p0 = 2,

pn+1 = min{p ∈ N|P(p), pn < p ≤
∏

q

[q ≤ pn ∧ P(q)]} + 1

= min{p ∈ N|P(p), p < 2pn} :

P ֌ P,

iterated binary product and iterated binary minimum.

The latter presentation is given by Bertrand’s theorem.

Notes

(a) An NNO, within a cartesian Closed category of sets, was first

studied by Lawvere 1964.

(b) Eilenberg-Elgot 1970 iteration, here special case of one-successor

iteration theory PR, is, because of Freyd’s uniqueness scheme

(FR!), a priori stronger than classical free-variables primitive re-

cursive arithmetic PRA in the sense of Smorynski 1977. If

viewed as a subsystem of PM,ZF or NGB, that PRA is stronger

than our PR.

63

(c) Within Topoi (with their cartesian closed structure), Freyd 1970

characterised Lawvere’s NNO by unique initialised iteration. Such

Freyd’s NNO has been called later, e.g. in Maietti 2010??, para-

metrised NNO

(d) Lambek-Scott 1986 consider in parallel a weak NNO: uniqueness

of Lawvere’s sequnces a : N → A not required. We need here

uniqueness (of the initialised iterated) for proof of Goodstein’s

1971 uniqueness rules basic for his development of p. r. arith-

metic. Without the latter uniqueness requirement, the definition

of parametrised (weak) NNO is equational.

(e) For uniqueness of the set of natural numbers (out of the Peano-

axioms), classical set theory needs higher order. This corresponds

in category theory to the use of free meta-variables on maps.

In first order classical, elementhood based Peano-arithmetic there

are other models of the natural numbers, even uncountable ones.

Others than the “standard” (e.g. von Neumann) model.7

2 Predicate Abstraction

We extend the fundamental theory PR of primitive recursion defini-

tionally by predicate abstraction objects {A |χ} = {a ∈ A |χ(a)}. We

get an (embedding) extension PR ⊏ PRa having all of the expected

properties.

7 This was brought to my attention 2013 in a seminar talk of J. Busse and A.

Schlote who quote Barwise ed. 1977 as well as Ebbinghaus et al. 1996 and 2008.

64

2.1 Extension by predicate abstraction

We discuss a p. r. abstraction scheme as a definitional enrichment

of PR, into theory PRa of PR decidable objects and PR maps in

between, decidable subobjects of the objects of PR. The objects of

PR are, up to isomorphism,

1, N1 =def N, Nm+1 =def (Nm × N).

[m is a free metavariable, over the NNO constants 0, 1 = s 0, 2 =

s s 0, . . . ∈ N.]

The extension PRa is given by adding schemes (ExtObj), (ExtMap),

and (Ext=) below. Together they correspond to the scheme of ab-

straction in set theory, and they are referred below as schemes of PR

abstraction.

Our first predicate-into-object abstraction scheme is

χ : A → N a PR-predicate:

sign ◦ χ = χ : A → N → N,

Au
χ //

χ

__N
sign // N

=

(ExtObj)

{A |χ} object (of emerging theory PRa)

Subobject {A |χ} ⊆ A ∼= Nn may be written alternatively, with

bound variable a, as

{A |χ} = {a ∈ A |χ(a)}.

65

{A |χ} is just another name for the (external) code χ ∈ PR ⊂ N, a

NNO constant out of N, the external set of natural number constants

0, 1 ≡ s 0, 2 ≡ s s 0 etc. n ≡ s . . . s 0 ≡ num(n) ∈ N etc.

The maps of PRa = PR + (abstr) come in by

{A |χ}, {B |ϕ} PRa-objects,

f : A → B a PR-map,

PR ⊢ χ(a) =⇒ ϕf (a), i. e.

[χ =⇒ ϕ ◦ f] =PR trueA : A
Π
−→ 1

1
−→ N

(ExtMap)

f is a PRa-map f : {A |χ} → {B |ϕ}

In particular, if for predicates χ′, χ′′ : A → N

PR ⊢ χ′(a) =⇒ χ′′(a) : A → N × N → N,

then idA : {A |χ′} → {A |χ′′} in PRa is called an inclusion,

and written ⊆ : A′ = {A |χ′} → A′′ = {A |χ′′} or A′ ⊆ A′′.

Nota bene: For predicate (terms!) χ, ϕ : A → N such that PR ⊢

χ = ϕ : A → N (logically: such that PR ⊢ [χ ⇐⇒ ϕ]) we have

{A |χ} ⊆ {A |ϕ} and {A |ϕ} ⊆ {A |χ},

but—in general—not equality of objects. We only get in this case

idA : {A |χ}
∼=
−→ {A |ϕ}

66

as an PRa isomorphism.

A posteriori, we introduce as Reiter does, the formal truth Alge-

bra 2 as

2 =def {n ∈ N |χ(n)}, where χ(n) = [n ≤ 1] : N → N,

with proto Boolean operations on N restricting—in codomain and

domain—to boolean operations on 2 resp.

2× 2 =def {(m,n) ∈ N × N |m,n ≤ s 0},

by definition below of cartesian Product of objects within PRa.

PRa-maps with common PRa domain and codomain are consid-

ered equal, if their values are equal on their defining domain predicate.

This is expressed by the scheme

f, g : {A |χ} → {B |ϕ} PRa-maps,

PR ⊢ χ(a) =⇒ f(a)
.
=B g(a)

(Ext=)

f = g : {A |χ} → {B |ϕ},

explicitly:

f =PRa g : {A |χ} → {B |ϕ}, also noted

PRa ⊢ f = g : {A |χ} → {B |ϕ}.

Structure Theorem for the theory PRa of primitive recursion

with Predicate Abstraction: 8

8 cf. Reiter 1980

67

PRa is a cartesian p. r. theory. The theory PR is cartesian p. r.

embedded. The theory PRa has universal extensions of all of its

predicates and a boolean truth object as codomain of these predicates,

as well as map definition by case distinction. In detail:

(i) PRa inherits associative map composition and identities from

PR.

(ii) PRa has PR fully embedded by

〈f : A → B〉 7→ 〈f : {A | trueA} → {B | trueB}〉

(iii) PRa has cartesian product

{A |χ} × {B |ϕ} =def {A×B |χ ∧ ϕ : A×B → N×N
∧
−→ N},

with projections and universal property inherited from PR.

We abbreviate {A|trueA} by A.

(iv) object 2 comes as a sum 1
false

0
// 2 ∼= 1+ 1 1

true

1
oo over which

cartesian product A × distributes.

This allows in fact for the usual truth-table definitions of all

boolean operations on object 2 and for PR map definition by

case distinction.

(v) The embedding ⊏ : PR −→ PRa is a cartesian functor : it

preserves Products and their cartesian universal property with

respect to the projections inherited from PR.

68

(vi) PRa has extensions of its predicates, namely

Ext [ϕ : {A |χ} → 2] =def {A |χ ∧ ϕ} ⊆ {A |χ},

characterised as (PRa)-equalisers

Equ (χ ∧ ϕ, trueA) : {A |χ} → 2

[mutatis mutandis: within theory PRa, we identify predicates

χ = sign ◦ χ : A → N → N with maps χ : A → 2.]

(vii) PRa has all equalisers, namely equalisers

Equ[f, g] =def {a ∈ A |χ(a) ∧ f(a)
.
=B g(a)}

= Ext[
.
=B ◦ (f, g) : A′ → B′ × B′

.
=
−→ 2],

of arbitrary PRa map pairs f, g : A′ = {A |χ} → B′ = {B |ϕ},

and hence all finite projective limits, in particular pullbacks,

which we will rely on later.

A pullback, of a map f : A → C along a map g : B → C, also of

g along f, is a square in

D k

ÁÁ

h

!!

(h,k)

ÃÃ
P

g′
//

f ′

²²

=

A

f

²²
B g

// C

69

[I prefer this “set theoretical” way to construct extension sets out

of the cartesian category structure of fundamental theory PR,

and then I construct equalisers and the other finite limits on

this basis. Another possibility—Romàn(?)—is to add equalisers

as undefined notion and to construct directly from these and

cartesian product. The relation between (vi) and (vii) is best

understood set theoretically: use free variable argument chase,

and recall set theoretical definition of an equaliser.]

The embedding preserves such limits as far as available already

in PR. Equality predicate extends to cartesian Products compo-

nentwise as

[(a, b)
.
=A×B (a′, b′)] =def [a

.
=A a′] ∧ [b

.
=B b′] : (A×B)2 → 2,

and to (predicative) subobjects {A |χ} by restriction.

(viii) arithmetical structure extends from PR to PRa, i. e. PRa ad-

mits the iteration scheme as well as Freyd’s uniqueness scheme:

the iterated

f § : {A |χ} × {N | trueN} → {A |χ}

is just the restricted PR-map f § : A × N → A, the unique-

ness schemes follow from definition of =PRa via PRa’s scheme

(Ext=) above.

(ix) In particular, our equality predicate
.
=A : A2 → N, restricted to

subobjects A′ = {A |χ} ⊆ A, inherits all of the properties of

equality on N and the other fundamental objects.

70

(x) Countability: Each fundamental object A i. e. A a finite

power of N ≡ {N | trueN}, admits, by Cantor’s isomorphism

ct = ctN×N(n) : N
∼=

−→ N × N,

a retractive count ctA(n) : N → A.

Problem: For which predicates χ : A → 2 (A fundamental) does

theory PRa admit a retractive count

ct = ct{A |χ}(n) : N → {A |χ}?

The difficulty is seen already in case ∅A = by def {A | falseA}. A suffi-

cient condition is {A |χ} to come with a point, a0 : 1→ {A |χ}. But

there may be non-empty objects without points in suitable theories.

Remarks:

• a PRa-map f : {A |χ} → {B |ϕ} can be viewed as a defined

partial PR map from A to B with values in ϕ : the object of

defined arguments, namely {a ∈ A |χ(a)} is p. r. decidable. By

definition of PRa’s equality, PR-map f : A → B “doesn’t

care” about arguments a in the complement {a ∈ A | ¬χ(a)}.

So wouldn’t it be easier to realise this view to defined partial

maps just by throwing the undefined arguments into a waste

basket {⊥}?

But where to place this waste basket, this for each codomain

object B? The fundamental objects have a zero-vector as a can-

didate. For example we could interprete truncated subtraction

as a defined partial map

a .− b : {(m,n) ∈ N × N |m ≥ n} → N,

71

and throw the complement {(m,n) ∈ N×N |m < n} into waste

basket {0} ⊂ N. But this is not a good interpretation of trun-

cated (!) subtraction: Value 0 is not waste, it has an important

meaning as zero.

“The” waste basket {⊥} should be an entity with a natural extra

representation, and we should have only one such entity in a later

theory of defined partial p. r. maps to come. This theory, to be

called PRXa, will be constructed with the help of a universal

object X which is to contain all numerals (codes of numbers) and

all nested pairs of numerals. It then has place for LATEXcodes

of all symbols, in particular for the code ⊥ of undefined value

symbol ⊥ , in a “Hilbert’s hotel”.

• a PR-map f : A → B such that f is a PRa-map

f : {A |χ ∨ χ′ : A → 2} → {B |ϕ}

also works as a PRa-map

f : {A |χ} → {B |ϕ}, and a PRa-map

g : {A |χ} → {B |ϕ ∧ ϕ′}

also works as a PRa-map

g : {A |χ} → {B |ϕ}.

Since map-properties of injectivity, epi-property of PR-maps

viewed as PRa-maps depend on choice of hosting PRa objects—

examples above—specification of a PRa map f : {A |χ} →

{B |ϕ} must contain, besides PR-map f : A → B, domain and

codomain objects χ : A → 2 and ϕ : B → 2 as well.

72

This way the members of map set family PRa(A,B) : A,B

PRa-objects, become mutually disjoint. Inclusions i : A′ ⊆
−→ A′′

are realised in PRa as restricted PR-identities

idA : {A |χ′}
⊆
−→ {A |χ′′}, χ′ =⇒ χ′′.

2.2 Predicate calculus

Free Variables Predicate Calculus

In the framework GA ⊆ PR ⊏ PRa of Goodstein Arithmetic we

have introduced on NNO N the following proto Boolean structure:

1
false≡ 0 //
true≡ 1

// N

¬

ÃÃ

sign>0

²²

N × N
∨≡+oo
∧≡ ·

oo

⇒ ≡≤

uu
⇔≡

.
=

uuN

This structure is turned, within PRa, into a two-valued Boolean al-

gebra on object

2 = by def {0, 1}

=def {n ∈ N |n
.
= 0 ∨ n

.
= 1}

= by def {n ∈ N |n ≤ 1} :

73

1
false≡ 0 //
true≡ 1

// 2

¬

ºº

id

²²

2× 2
∨oo
∧

oo

⇒ ≡≤

uu
⇔≡

.
=

uu2

A PR predicate on an object A of PR has been a PR map χ :

A → N with

sign ◦ χ = χ,

A
χ //

χ

@@N
sign // N

=

A PRa predicate on an object {A|χ} is a PRa map ϕ = ϕ(a) :

{A|χ} → 2 = {0, 1}.

Using the Boolean operations on 2 above, a free-Variables boolean

predicate calculus is easily defined, making the set of PR predicates

on (any) object A of PRa into a boolean algebra:

• overall negation:

¬ϕ(a) = ¬ ◦ ϕ : A → 2→ 2,

• conjunction:

χ(a) ∧ ϕ(a) = ∧ ◦ (χ, ϕ) : A → 22 → 2,

• disjunction:

χ(a) ∨ ϕ(a) = ∨ ◦ (χ, ϕ) : A → 22 → 2,

• implication:

[χ(a) ⇒ ϕ(a)] = ⇒ ◦ (χ, ϕ) : A → 22 → 2,

74

• equivalence:

[χ(a) ⇔ ϕ(a)] =
.
=2 ◦ (χ, ϕ) : A → 22 → 2,

Verification of the logical properties of such free-variables predi-

cates and their interrelationships by the truth table method inherited

from the Boolean algebra 2.

Axiomatic Images and Quantification

As a step aside, we discuss here classical quantification, introduced

axiomatically via image predicates. These correspond to topos theo-

retic characteristic functions of non-necessarily monic (injective) maps.

quantification + cartesian PR allows for the original version of Gödel’s

theorems. It seems to be necessary for that original theorems and

proof, since existential quantification plays a prominent rôle in state-

ment and proof. Nevertheless, Incompleteness can be shown in a differ-

ent way for weaker theories, cf. Goodstein 1957. We do not exclude

that PR,PRa turn out to be incomplete in Goodstein’s sense.

Definition: A (total) predicate χ : B → 2 is a (the) image predi-

cate of a map f = f(a) : A → B, if

• χ ◦ f = trueA : A → B → 2 and

• χ : B → 2 minimal in this regard i. e.

ϕ ◦ f = trueA : A → B → 2

[χ(b) ⇒ ϕ(b)] = trueB

75

If available, such χ, noted im[f] = im[f](b) : B → 2, is unique,

this by minimality and Equality Definability.

In case of f : A → B monic, such χ is just the characteristic map

of f in the sense of Elementary Topos theory ETT, with respect to

2 = {0, 1} ⊂ N taken as its subobject classifier, truth object.

If available, image

im[{A × B|ϕ}
⊆
−→ A × B

ℓ
−→ A] : A → 2

works as right existential quantification

(∃b ∈ B)ϕ(a, b) = (∃rϕ)(a) : A → 2,

with the categorical properties of this quantification known from (ETT

and categorical) set theory.

If available, define right universal quantification

(∀b ∈ B)ϕ(a, b) =def ¬ (∃b ∈ B)¬ϕ(a, b) : A → 2.

Our (weak, categorical) set theories T will here always be Exten-

sions of quantified p. r. theory PRa∃ = PRa + (∃), defined to be

theory PRa closed under formation of images and hence closed under

(two-valued) quantification ∃,∀.

Comment: These semi-classical theories will be taken as back-

ground for Consistency questions: we will show differences in internal

consistency between these classical set theories T, in particular be-

tween Osius’ categorical pendants of the different stages of Zermelo-

Fraenkel set theory ZF on one hand, and the categorical theories

76

here: PR,PRa above, and PRX,PRXa, πR to come. For fixing

ideas, you may always read set theory T as T : = PRa∃ : Gödel’s

Incompleteness theorems apply to PRa∃, not to descent p. r. theory

πR to come.

Notes

(a) we have equalisers, products distributing over sums, sums cer-

tainly stable under pullbacks, quotients by equivalence predicates

(not yet quotients by equivalence relations).

(b) in comparison with doctrines: Kock-Reyes 1977, and in compar-

ison with pretopoi: Maietti 2010??, (axiomatic) quantification

is lacking for “our” strengthenings S of PRa.

3 Partial Maps

We introduce general recursive maps as partial p. r. maps, coming

as a p. r. enumeration of defined arguments together with a p. r. rule

mapping the enumeration index of a defined argument into the value

of that argument. This covers µ-recursive maps and content driven

loops as in particular while-loops. Code evaluation will be definable

as such a while-loop.

3.1 Theory of partial maps

Definition: A partial map f : A ⇀ B is a pair

f = 〈df : Df → A, f̂ : Df → B〉 : A ⇀ B,

77

Df

df

²²

bf

ÃÃ@
@@

@@
@@

@@
@@

@@

A
f

/ B

The pair f = 〈df , f̂〉 is to fullfill the right-uniqueness condi-

tion

df (â)
.
=A df (â

′) =⇒ f̂(â)
.
=B f̂(â′) :

We now define the theory Ŝ of partial S-maps f : A ⇀ B.

Objects of Ŝ are those of S, i. e. of PRa. The morphisms of Ŝ are

the partial S-maps f : A ⇀ B.

Definition: Given f ′, f : A ⇀ B in Ŝ, we say that f extends f ′

or that f ′ is a restriction of f, written f ′ ⊆̂ f, if there is given a map

i : Df ′ → Df in S such that

(f ′⊆̂f)

Df ′

df ′

²²

i

²² bf ′

²²

=S =SDf

df

~~}}
}}

}}
}}

}}
}

bf

ÃÃA
AA

AA
AA

AA
AA

A
f ′

f
/ B

The partial maps f and f ′ are equal in Ŝ, if f extends f ′ and f ′

78

extends f :

f ′ ⊆̂ f, f ⊆̂ f ′ : A ⇀ B

(=̂ S)

f ′ =̂ f : A ⇀ B.

Notation: From now on, f = g : A → B will always denote

equality between maps within theory S choosen as basic, cartesian p. r.

theory. Equality between partial S-maps, Ŝ-morphisms f, g : A ⇀ B

is denoted f =̂ g : A ⇀ B, see the above. Pointed equality
.
= : N2 → 2

resp.
.
=A : A2 → 2 is reserved for equality predicates (special maps),

on N resp. on objects A of S.

Definition: Composition h = g ◦̂ f : A ⇀ B ⇀ C of Ŝ maps

f = 〈(df , f̂) : Df → A × B〉 : A ⇀ B and

g = 〈(dg, ĝ) : Dg → B × C〉 : B ⇀ C

is defined by the diagram

Dh

dh =

¿¿

πℓ

²²

πr

ÃÃA
AA

AA
AA

AA
AA

bh

´´

Df

df

²²

bf

ÃÃB
BB

BB
BB

BB
BB

p.b. Dg

dg

²²

bg

ÃÃ@
@@

@@
@@

@@
@@

=

A
f /

h = g b◦f

b=

;B
g / C

Composition diagram for Ŝ

79

[The idea is from Brinkmann-Puppe 1969: They construct com-

position of relations this way via pullback]

Remark: The standard form of the pullback Dh is

Dh = {(â, b̂) ∈ Df × Dg | f̂(â)
.
=B dg(b̂)},

with pullback-projections

ℓ = πℓ = ℓ ◦ ⊆ : Dh → Df × Dg → Df and

r = πr = r ◦ ⊆ : Dh → Df × Dg → Dg.

[We may abbreviate such restricted projections—pullback “projections”—

πℓ and πr respectively, by ℓ, r—as suggested above]

In a sense, the pullback Dh represents the inverse image Dh =
−1

f [Dg], more precisely: [Dh
ℓ

−→ Df] =
−1

f̂ [Dg

dg
−→ B]. But the

definability domains df , dg, dh need not be monic (injective).

Composition h = g ◦̂ f : A ⇀ B ⇀ C gives a well-defined partial

map h, since for (â, b̂), (â′, b̂′) ∈ Dh free:

dh(â, b̂)
.
=A dh(â

′, b̂′) ⇐⇒ df (â)
.
=A df (â

′)

=⇒ f̂(â)
.
=B f̂(â′) (f well-defined),

⇐⇒ f̂ ℓ(â, b̂)
.
= f̂ ℓ(â′, b̂′)

=⇒ dg(r(â, b̂))
.
=B dg(r(â

′, b̂′))

((â, b̂), (â′, b̂′) ∈ Dh, p.b. commutes)

⇐⇒ dg(b̂)
.
=B dg(b̂

′) =⇒ ĝ(b̂)
.
=C ĝ(b̂′)

=⇒ ĥ(â, b̂) = ĝ(b̂)
.
=C ĝ(b̂′) = ĥ(â′, b̂′) : Dh × Dh → 2.

80

Obviously, Ŝ-map id
bS
A =def 〈(idA, idA) : A → A2〉 : A ⇀ A works as

identity for object A with respect to composition ◦̂ for Ŝ.

If one of two Ŝ maps to be composed, is an S map, Ŝ composition

becomes simpler:

Mixed Composition Lemma:

(i) For f : A ⇀ B in Ŝ, and g : B → C in S :

g ◦̂ f = 〈(df , g ◦ f̂) : Df → A × C〉 : A ⇀ C,

in diagram form:

Df

df

²²
bf

ÃÃ@
@@

@@
@@

@@
@@

@@

g ◦ bf

$$
A

g b◦ f

5
f / B

g // C

(ii) For f : A → B in S, g : B ⇀ C in Ŝ :

g ◦̂ f = 〈(
−1

f [dg], ĝ ◦ f̄) :
−1

f [Dg] → A × C〉 : A ⇀ C,

as diagram:

−1

f [Dg]
f̄ //

−1

f [dg]

²²

p.b.

Dg

bg

ÁÁ>
>>

>>
>>

>>
>>

>>

dg

²²
A

g b◦ f

4
f // B

g / C

Proof: Left as an exercise.

81

3.2 Structure theorem for PR̂a :

(i) Ŝ carries a canonical structure of a diagonal symmetric monoidal

category, with composition ◦̂ and identities introduced above,

monoidal product × extending × of S, association ass : (A ×

B) × C
∼=

−→ A × (B × C), symmetry Θ : A × B
∼=

−→ B × A, and

diagonal ∆ : A → A × A inherited from S.

(ii) The defining diagram for a Ŝ-map—namely

Df
bf

ÀÀ

df

²²
A

f / B

Partial Map diagram

is a commuting Ŝ diagram.

Conversely the minimised opposite Ŝ map d−
f : A ⇀ Df to S

map df : Df → A fullfills

Df
bf

ÀÀ

b=

A

d−
f

O

f / B

Put together:

82

Df
bf

ÀÀ

df

²²

b=

A

d−
f

O

f / B

basic partial map diagram

(iii) “section lemma:” The first factor f : A ⇀ B in an Ŝ compo-

sition

h = g ◦̂ f : A ⇀ B ⇀ C,

when giving an (embedded) S map h : A → C, is itself an (em-

bedded) S map:

a first composition factor of a total map is total.

So each section (“coretraction”) of theory Ŝ is an S map, in

particular an Ŝ section of an S map belongs to S.

[We will rely on this lemma below.]

3.3 Equality definability for partials

Not needed for the Gödel discussion.

3.4 Partial-map extension as closure

Not neeeded for the discussion of the Gödel theorems.

83

3.5 µ-recursion without quantifiers

We define µ-recursion within the free-variables framework of partial

p. r. maps as follows:

Given a PR predicate ϕ = ϕ(a, n) : A × N → 2, the Ŝ morphism

µϕ = 〈(dµϕ, µ̂ϕ) : Dµϕ → A × N〉 : A ⇀ N

is to have (S) components

Dµϕ =def {A × N |ϕ} ⊆ A × N,

dµϕ = dµϕ(a, n) =def a = ℓ ◦ ⊆ :

{A × N |ϕ}
⊆

−→ A × N
ℓ

−→ A, and

µ̂ϕ = µ̂ϕ(a, n) =def min{m ≤ n |ϕ(a,m)} :

{A × N |ϕ} ⊆ A × N → N.

Comment: This definition of µϕ : A ⇀ N is a static one, by

enumeration (ℓ, µ̂ϕ) : {A× N |ϕ} → A× N of its graph, as is the case

in general here for partial p. r. maps: We start with given pairs in

enumeration domain {A×N |ϕ}, and get defined arguments a “only”

as dµϕ-enumerated “elements” (dependent variable) a = dµϕ((̂a, n)) =

dµϕ(a, n), (̂a, n) = (a, n) “already known” to lie in Dµϕ = {A×N |ϕ} :

No need—and in general no “direct” possibility—to decide, for a given

a ∈ A, if a is of form a = dµϕ(a, n) with (a, n) ∈ Dµϕ, i. e. if Exists

n ∈ N such that ϕ(a, n). In particular, if Dµϕ = {A × N |ϕ} = ∅A×N,

then dµϕ as well as µ̂ϕ are empty maps.

µ-Lemma: Ŝ admits the following (free-variables) scheme (µ)

combined with (µ!)—uniqueness—as a characterisation of the µ-

operator 〈ϕ : A × N → 2〉 7→ 〈µϕ : A ⇀ N〉 above:

84

ϕ = ϕ(a, n) : A × N → 2 S − map (“predicate”),

(µ)

µϕ = 〈(dµϕ , µ̂ϕ) : Dµϕ → A × N〉 : A ⇀ N

is an Ŝ-map such that

S ⊢ ϕ(dµϕ(â), µ̂ϕ(â)) = trueDµϕ
: Dµϕ → 2,

+ “argumentwise” minimality:

S ⊢ [ϕ(dµϕ(â), n) =⇒ µ̂ϕ(â) ≤ n] : Dµϕ × N → 2

as well as uniqueness—by maximal extension:

f = f(a) : A ⇀ N in Ŝ such that

S ⊢ ϕ(df (â), f̂(â)) = trueDf
: Df → 2,

S ⊢ ϕ(df (â), n) =⇒ f̂(â) ≤ n : Df × N → 2

(µ!)

S ⊢ f ⊆̂ µϕ : A ⇀ N (inclusion of graphs)

[Requiring this maximality of µϕ is necessary, since—for example—

(µ) alone is fulfilled already by the empty partial function ∅ : A ⇀ N]

3.6 Content driven loops

By a content driven loop we mean an iteration of a given step endo

map, whose number of performed steps is not known at entry time

into the loop—as is the case for a PR iteration f §(a, n) : A × N → A

85

with iteration number n ∈ N—, but whose (re) entry into a “new”

endo step f : A → A depends on content a ∈ A reached so far:

This (re) entry or exit from the loop is now controlled by a (control)

predicate χ = χ(a) : A → 2.

First example: a while loop wh [χ | f] : A ⇀ A, for given p. r.

control predicate χ = χ(a) : A → 2, and (looping) step endo f :

A → A, both in S, both S-maps for the time being, S as always in

our present context an extension of PRa, admitting the scheme of

(predicate) abstraction. Examples for the moment: PRa = PR +

(abstr) itself, Universe theory PRXa as well as PA ↾ PR, restriction

of PA to its p. r. terms, with inheritance of all PA-equations for this

term-restriction.

Classically, with variables, such wh = wh [χ | f] would be “defined”—

in pseudocode—by

wh(a) : = [a′ : = a;

while χ(a′) do a′ : = f(a′) od;

wh(a) : = a′].

The formal version of this—within a classical, element based setting—,

is the following partial-(Peano)-map characterisation:

wh(a) = wh [χ | f] (a) =





a if ¬χ(a)

wh(f(a)) if χ(a)
: A ⇀ A.

But can this dynamical, bottom up “definition” be converted into a

p. r. enumeration of a suitable graph “of all argument-value pairs” in

terms of an Ŝ-morphism

wh = wh [χ | f] = 〈(dwh, ŵh) : Dwh → A × A〉 : A ⇀ A?

86

In fact, we can give such suitable, static Definition of wh = wh [χ | f] :

A ⇀ A—within Ŝ ⊐ S—as follows:

wh =def f § ◦̂ (idA, µ ϕ [χ |f])

= by def f § ◦̂ (A × µϕ [χ | f]) ◦̂∆A :

A → A × A ⇀ A × N → A, where

ϕ = ϕ [χ | f](a, n) =def ¬χ f §(a, n) : A × N → A → 2→ 2.

Within a quantified arithmetical theory like PA, this Ŝ-Definition

of wh [χ | f] : A ⇀ A fullfills the classical characterisation quoted

above, as is readily shown by Peano-Induction “on” n : = µϕ [χ | f] (a) :

A ⇀ N, at least within PA and its extensions.

[Classically, partial definedness of this—dependent—induction pa-

rameter n causes no problem: use a case distinction on definedness of

µϕχ,f (a)“∈”N. Even in our quantifier-free context such dependent in-

duction on a partial dependent induction parameter will be available,

see below]

In this generalised sense, we have—within theories Ŝ ⊐ S—all

while loops, for the time being at least those with control χ : A → 2

and step endo f : A → A within S.

It is obvious that such wh [χ | f] : A × A is in general “only”

partial—as is trivially exemplified by integer division by divisor 0,

which would be endlessly subtracted from the dividend, although in

this case control and step are both PR.

87

4 Universal Sets and Universe Theories

4.1 Strings as polynomials

Strings a0 a1 . . . an of natural numbers (in set N+ = N∗ r {¤} of

non-empty strings) are coded as prime power products

2a0 · 3a1 · . . . · pan
n ∈ N>0 ⊂ N, pj the j th prime number.

Formally: euclidean prime power factorisation gives rise to a p. r. pro-

jection family

π = πj(a) : N × N> → N, a = p
π0(a)
0 · p

π1(a)
1 · . . . · pπa(a)

a ,

unique πj(a), πj(a) = 0 for j > n, n = n(a) : N> → N suitable p. r.

Strings a0 a1 . . . an ≡ pa0

0 ·. . .·pan
n are identified with (the coefficient

lists of) “their” polynomials

p(X) = a0 + a1X
1 + . . . + anX

n as well as

p(ω) = a0 + a1ω
1 + . . . + anω

n,

in indeterminate X resp. ω.

Componentwise addition (and truncated subtraction), as well as

p(ω) · ω =
n∑

j=0

ajω
j+1 ≡

n∏

j=0

p
aj

j+1,

special case of Cauchy product of polynomials.

Lexicographical Order of NNO strings and polynomials has—

intuitively, and formally within sets—only finite descending chains.

This applies in particular to descending complexities of CCI’s:

Complexity Controlled Iterations below, with complexity values in

N[ω]; p. r. map code evaluation will be resolved into such a CCI.

88

4.2 Universal object X of numerals and nested

pairs

We begin the construction of Universal object by internal numeralisa-

tion of all objective natural numbers, of objective numerals

num(0) ≡ 0 : 1→ N,

num(1) ≡ 1 =def (s(0)) : 1→ N → N,

num(2) ≡ 2 =def (s(s(0)) : 1→ N

num(n + 1) ≡ n + 1 =def (s(n)) : 1→ N,

n ∈ N meta-variable.

Internal numerals, numeralisation

ν = ν(n) : N → N+ ≡ N∗ r {0} ≡ N> ⊂ N :

ν(0) =def p0q : 1→ N code (goedel number) of 0,

ν(1) =def 〈 psq ⊙ ν(0)〉 = by def 〈 psq p ◦ q p0q 〉 : 1→ N,

abbreviation for (string) goedelisation, here in particular for LATEXsource

code

p(q psq p◦q ν(0) p)q = p(q psq p◦q p0q p)q

≡ p
ASCII[(]
0 p

ASCII[s]
1 p

ASCII[\circ]
2 p

ASCII[0]
3 p

ASCII[)]
4

≡ 240 3115 5ASCII[\circ] 748 1141 : 1→ N,

an element of N, a constant of N,

ν(2) =def 〈 psq ⊙ ν(1)〉 = 〈 psq ⊙ 〈 psq ⊙ ν(0)〉〉 etc. PR:

ν(n + 1) =def 〈 psq ⊙ ν(n)〉 ∈ N.

ν(n) has n closing brackets (at end).

89

This internal numeralisation distributes the “elements”, numbers of

the NNO N, with suitable gaps over N : the gaps then will receive in

particular codes of any other symbols of object Languages PR and

PRa as well as of Universe Languages PRX and PRXa to come.

ν-Predicate lemma: Enumeration ν : N → N defines a charac-

teristic predicate im[ν] = χν : N → 2, and by this object

νN = {N|χν} ⊂ N+

of internal numerals νN ∼= N.

Proof: Use finite ∃—iterative ‘∨’—for definition of im[ν], as fol-

lows:

χν(c) =def ∨n≤c[c
.
= ν(n)]

= [c
.
= ν(0) ∨ c

.
= ν(1) ∨ . . . ∨ c

.
= ν(c)] : N → 2 q.e.d.

ν : N → N+ ⊂ N has codomain restriction

ν : N → νN =def {N|χν}

and is then an iso with p. r. inverse

ν−1 = ν−1(c) =def min
n≤c

[ν(n)
.
= c] : νN

∼=
−→ N.

For a PR-map f : N → N define its numeral twin

ḟ =def ν ◦ f ◦ ν−1 : νN
ν−1

−−→ N
f
−→ N

ν
−→ νN,

giving trivially (local) naturality

N
f //

∼= ν

²²

=

N

∼= ν

²²
νN

ν−1

AA

ḟ // νN

90

Extension of numeral sets and numeralisation to all objects of

PR (and of PRa :)

• ν1 = {ν0} = { p0q } ⊂ νN ⊂ N,

ν1(0) = ν(0) : 1
∼=
−→ ν1

⊂
−→ νN.

• recursive extension to products:

A,B in PR

ν(A × B) = 〈νA×̇νB〉

=def {〈νA(a); νB(b)〉 | a ∈ A, b ∈ B}

predicatively

= {〈c; d〉 ∈ N |χνA(c) ∧ χνB(d)}.

• Extension to (predicative) subsets:

χ = χ(a) : A → N predicate

ν{A|χ} =def {ν(a) | a ∈ {A|χ}} ⊆ νA

• remark: X, νX ⊂ N, νX ∼= X, but νX (X, parallel to

νN (N.

• ν isomorphy (and naturality) extend to A,B in PR and in PRa.

91

Universal objects X, X⊥ of numerals and (nested) pairs of

numerals:

As code for waste symbol we take

⊥ =def p⊥q ≡ p\botq : 1→ N.

Define sets

X,X⊥ = {N |X,X⊥ : N → 2} ⊂ N

of all (codes of)

• undefined value ⊥ ,

• numerals ν(n) ∈ νN, and

• (possibly nested) pairs

〈x; y〉 = by def p(q x p,q y p)q of numerals

as follows:

• νN ⊂ X ⊂ N, numerals proper; further recursively enumerated:

• 〈X ×̇X〉 =def {〈x; y〉 |x, y ∈ X} ⊂ X,

set of (nested) pairs of numerals, general numerals, in particular

〈X ×̇ νN〉 = {〈x; νn〉 |x ∈ X, n ∈ N} ⊂ X;

• X⊥ =def X ∪ {⊥} ⊂ N+.

X-Predicative Lemma: X has predicative form

X = {N|χX}, and X⊥ = {N |χX ∨ { p⊥q }}.

92

Proof as (technically advanced) Exercise.

This terminates recursive definition of (“minimal”) predicative

Universal objects X and X⊥ , of nested pairs of numerals, both

X, X⊥ ⊂ N+ ≡ N> = by def N>0 ⊂ N ≡ N∗.

Remark: A superUniversal object U ⊃ X, U ⊂ N of lists (brack-

eted strings) of numerals can be defined p. r. by

• νN ⊆ U,

• x ∈ U, y ∈ U =⇒ x; y ∈ U,

• x ∈ U =⇒ 〈x〉 ∈ U.

(Predicative) set U ⊂ N can be interpreted as set of (numeralised) co-

efficient lists N[X1, X2, . . . , Xm, . . .] of polynomials in several indeter-

minates X1, X2, . . . with (numeralised) coefficients out of νN, written

in form ∪m N[X1][X2] . . . [Xm].

4.3 Universe monoid PRX

The endomorphism set PR(N, N) ⊂ PR is itself a monoid, a cate-

gorical theory with just one object.

Embedded “cartesian p. r. Monoid” PRX :

• the basic, “super” object of PRX is

X⊥ = X ∪̇ {⊥ } = X ∪̇ { p⊥q } ⊂ N,

X : N → N in PR(N, N) predicate/set of (internal) numerals

and nested pairs of numerals.

93

• the rôle of the NNO will be taken by the above predicative subset

νN = {c ∈ N |χν(c)} ⊂ X ⊂ X⊥ ⊂ N

of the internal numerals.

• the basic “universe” map constants of PRX,

ba ∈ bas set of those maps, are

– “identity” ı̊d = idX : N ⊃ X⊥ ⊃ X→ X ⊂ X⊥ ,

X ∋ x 7→ x ∈ X,

N rX ∋ z 7→ ⊥ (trash),

PR map code set “from” N “to” N, same for all codes

below.

– “zero” (redefined for PRX) 0̊ : X→ X⊥ ,

X ∋ ν0 7→ ν0 ∈ νN ⊂ X,

N r {ν0} ∋ z 7→ ⊥ ,

– “successor” s̊ : X⊥ → X⊥ :

νn 7→ ν(s n) = by def 〈 psq ⊙ ν(n)〉,

N r νN ∋ z 7→ ⊥ .

– “terminal map”: Π̊ : X→ ν1 ⊂ X,

X ∋ x 7→ ν0 ∈ ν1 = {ν0} ⊂ X,

N rX ∋ z 7→ ⊥ .

– “left projection”:

ℓ̊ : N ⊃ X ⊃ 〈X ×̇X〉 → X⊥ ,

〈x; y〉 7→ x ∈ X, νN ∋ νn 7→ ⊥ , ⊥ 7→ ⊥ .

94

– “right projection” r̊ ∈ bas analogous.

• close Monoid PRX under composition of theory PR :

f, g in PRX ⊂ PR(N, N)

(◦)

(g ◦ f) in PRX,

trash propagation clear.

• “induced map”:

f, g in PRX

(ind)

〈f . g〉 in PRX, defined by

X ∋ x 7→ 〈f x; g x〉 ∈ X.

• “product map”:

f, g in PRX

(×̇)

〈f×̇g〉 in PRX, defined by

X ∋ 〈x; y〉 7→ 〈f x; g y〉 ∈ X,

N r 〈X×̇X〉 ∋ z 7→ ⊥ .

95

• “iterated” (formally interesting, see last lines):

f : X→ X PRX map, in particular ⊥ 7→ ⊥

(it)

f §̇ : X ⊃ 〈X×̇νN〉 → X in PRX,

〈x; ṅ〉 7→ fn(x) ∈ X,

n = ν−1(ṅ), ṅ ∈ Ṅ = νN = by def {N|χν} free,

N ∋ z 7→ ⊥ for z not of form 〈x; ṅ〉.

[Predicates νN and 〈X×̇νN〉 : N → N work as auxiliary objects,

subobjects of X : N → N.]

• Notion of map equality for theory PRX is inherited(!) from

PR(N, N) i. e. from theory PR.

PRX Structure theorem: With emerging (predicative) objects

X, ν1, νN,

A,B objects

〈A×̇B〉 object,

constants, maps, composition above,

• ν1 = {ν0} taken as “terminal object”,

• Π̊ : X→ ν1 taken as “terminal map,”

96

• “Product” taken

〈ℓ̊ : 〈A×̇B〉 → A : 〈x; y〉 → x,

r̊ : 〈A×̇B〉 → B, 〈x; y〉 → y〉,

• 〈f . g〉 : C → 〈A×̇B〉, x 7→ 〈f x; g x〉,

taken as “induced map,”

• 〈f×̇g〉 : 〈A×̇B〉 → 〈A′×̇B′〉, 〈x; y〉 7→ 〈f x; g y〉,

taken as “map product,”

• 〈ν1
0̊
−→ νN

s̊
−→ νN〉 taken as NNO,

• and f §̇ : 〈X×̇νN〉 → X as iterated of

PRX endomap f : X→ X, 〈x; νn〉 7→ fn(x) = f §(x, n),

PRX becomes a cartesian p. r. category with universal object.

• Fundamental theory PR is naturally embedded into theory PRX,

by faithful functor I say.

4.4 Typed universe theory PRXa

Let emerge within universe monoid/universe cartesian p. r. theory all

PRa objects {A|χ} as additional objects ν{A|χ} and get this way a

p. r. cartesian theory PRXa with extensions of predicates, finite lim-

its, finite sums, coequalisers of equivalence predicates, as well as with

(formal, “including”) universal object X, of numerals and (nested)

pairs of numerals.

Universal embedding theorem:

97

(i) I : PR −→ PRX ⊂ PR(N, N) above is a faithful functor .

(ii) theory PRXa “inherits” from category PRa all of its (cate-

gorically described) structure: cartesian p. r. category structure,

equality predicates on all objects, scheme of predicate abstrac-

tion, equalisers, and—trivially—the whole algebraic, logic and

order structure on NNO νN and truth object ν2.

(iii) PR map embedding I “canonically” extends into a cartesian p. r.

functorial embedding (!)

I : PRa −→ PRXa ⊂ PR(N, N)

of theory PRa = PR + (abstr) into emerging universe theory

PRXa with predicate abstraction.

(iv) Embedding I defines a p. r. isomorphism of categories

I : PRa
∼=

−→ I[PRa] ⊏ PRXa.

(v) (internal) code set is

⌈X,X⌉ = by def ⌈X,X⌉PRXa = ⌈X,X⌉PRX = PRX.

Internal notion =̌ of equality is in both cases inherited from in-

ternal notion of equality of theories PR, PR(N, N), given as

enumeration of internally equal pairs

=̌ = =̌k : N → PRX× PRX ⊂ N × N,

as well as predicatively as

=̌ = u =̌k v : N × (PR × PR) → 2 :

kth internal equality instance equals pair (u, v) of internal maps.

98

(vi) put things together into the following diagram:

{A |χ}
f //

ν{A |χ} ∼=
²²

=

{B |ϕ}

∼= ν{B |ϕ}

²²
ν{A |χ} I {A |χ}

⊂

²²

I f // I {B |ϕ}
⊂ // I {B |ϕ} ∪̇ {⊥}

⊂

²²
X⊥

ḟ = by def IPR f
//

⊂

²²
=

X⊥

⊂

²²
N

ḟ // N

PRa embedding diagram for I f q.e.d.

5 Evaluation of p. r. map codes

5.1 Complexity controlled iteration

The data of such a CCI are an endomap p = p(a) : A → A (prede-

cessor), and a complexity map c = c(a) : A → N[ω] on p’s domain.

Complexity values are taken in lexicographically ordered polynomial

object N[ω] ≡ N+ ≡ N∗ r {¤} ≡ N>.

Definition: [c : A → N[ω], p : A → A] constitute the data of a

Complexity Controlled Iteration CCI = CCI[c, p], if

• (a ∈ A)[c(a) > 0 =⇒ c p(a) < c(a)] (descent)

as well as, for commodity,

• (a ∈ A)[c(a)
.
= 0 =⇒ p(a)

.
= a] (stationarity).

99

Such data define a while loop

wh[c > 0, p] : A ⇀ A, more explicetly written

while c(a) > 0 do a : = p(a) od.

We rely on scheme of non-infinite iterative descent

CCI[c = c(a) : A → N[ω], p = p(a) : A → A] :

c, p make up a complexity controlled iteration,

ψ = ψ(a) : A → 2 “negative” test predicate:

(a ∈ A)(n ∈ N)[ψ(a) =⇒ c pn(a) > 0]

(“all n ”, to be excluded)

(π)

ψ(a) = falseA(a) : A → 2.

A predicate ψ which implies a CCI to infinitely descend must be

(overall) false.

By contraposition this can be turned into

c, p define a CCI,

ϕ = ϕ(a) : A → 2 “positive” test predicate:

[c pn(a)
.
= 0 =⇒ ϕ(a)] : A × N → 2

(“exists n ”, to be asserted)

(π+)

ϕ(a) = trueA(a) : A → 2.

100

A predicate which holds under the premise of termination of a CCI

must be true by itself. This is to express that a CCI must terminate

anyway. It says that the defined arguments enumeration of a CCI

considered as a while loop is a p. r. epimorphism (not a retraction in

general.) Technically, we will rely on the (negative) form (π) of the

axiom.

• central example: general recursive, Ackermann type PR-code

evaluation ev to be resolved into such a CCI.

• scheme (π) is a theorem for set theory T with its quantifiers

∃ and ∀, and with its having N[ω] ≡ ωω as a (countable) ordinal:

existential guarantee of finiteness of descending chains within

ωω.

• without quantification, namely for theories like PRa,PRXa,

we are lead to this inference-of-equations scheme guaranteeing

(intuitively) termination of CCIs, in particular termination of

iterative p. r. code evaluation.

Comment: The point is that (π) expresses an axiom which “we

all” believe in (and which is a theorem in set theory): Nobody

has pointed to—will be able (?) to point to—any infinitly descending

chain in N[ω] = by def N+ ⊂ N∗ (provided with its lexicographical

order), a fortiori not to an iterative such, to an infinitly descending

CCI.

Definition: Call PR descent theory universe theory πR =def

PRXa+(π) strengthened by axiom scheme (π) above of non-infinite

descent.

101

5.2 PR code set

The map code set—set of gödel numbers—we want to evaluate is

PRX = ⌈X,X⌉ ⊂ N. It is p. r. defined as follows:

• pbaq ∈ PRX—formal categorically:

PRX ◦ pbaq = true—this for basic map constant

ba ∈ bas = {̊0, s̊,̊ ıd, Π̊, ∆̊, ℓ̊, r̊} : zero, successor, identity, termi-

nal map, diagonal, left and right projection. All of these inter-

preted into endo map Monoid PRX⊂PR(N, N) of fundamental

cartesian p. r. theory PR.

• for u, v in PRX in general add

– internally composed: 〈v ⊙ u〉 = p(q v p◦qu p)q :

PRX× PRX→ PRX, u, v ∈ PRX both free,

in particular p(g ◦ f)q = 〈 pgq ⊙ pfq 〉 ∈ PRX

for f, g : X→ X in PRX;

– internally induced: 〈u; v〉 = p(qu p,q v p)q ∈ PRX,

in particular p(f, g)q = 〈 pfq . pgq 〉 ∈ PRX;

– internal cartesian product: 〈u#v〉 ∈ PRX,

u, v ∈ PRX free, in particular

p(f×̇g)q = 〈 pfq # pgq 〉 ∈ PRX;

– internally iterated: u$ = u p§̇q ∈ PRX, u ∈ PRX,

in particular pf §̇q = pfq $ ∈ PRX.

102

5.3 Iterative evaluation

For Definition of evaluation ev we first introduce evaluation step of

form

e (u, x) = (emap(u, x), earg(u, x)) : PRX×X⊥ → PRX×X⊥ ,

by primitive recursion. This within “outer” theory PRXa which al-

ready has PR predicates X,X⊥ = by def X ∪ {⊥} = X ∪ { p⊥q },

and 〈X×̇νN〉 : N → N as objects.

Comment: earg(u, x) ∈ X⊥ means here one-step u-evaluated ar-

gument, and emap(u, x) denotes the remaining part of map code u still

to be evaluated after that evaluation step.

PR Definition of step e, p. r. on depth(u) ∈ N, now runs as follows:

• depth(u) = 0, i. e. u of form pbaq ,

ba ∈ bas =by def {̊ıd, 0̊, s̊, Π̊, ∆̊, ℓ̊, r̊}

one of the basic map constants of theory PRX ⊂ PR :

earg(pbaq , x) =def ba(x) ∈ X⊥ ,

emap(pbaq , x) =def pidq ∈ PRX.

• cases of internal composition:

e (〈v ⊙ pbaq 〉, x) =def (v, ba(x)) ∈ PRX×X⊥

and for u 6∈ { pbaq | ba ∈ bas} :

e (〈v ⊙ u〉, x) =def (〈v ⊙ emap(u, x)〉, earg(u, x)) :

103

step-evaluate first map code u, on argument x, and preserve

remainder of u followed by v as map code to be step-evaluated

on intermediate argument earg(u, x).

• cartesian cases:

e (〈 pidq # pidq 〉, 〈y; z〉) =def (pidq , 〈y; z〉) ∈ PRX×X,

a terminating case.

For 〈u#v〉 6= 〈 pidq # pidq 〉 :

e (〈u#v〉, 〈y; z〉)

=def (〈emap(u, y)#emap(v, z)〉, 〈earg(u, y); earg(v, z)〉),

evaluate u and v in parallel.

Here free variable x on X legitimatly runs only on 〈X ×̇X〉 ⊂ X,

takes there the pair form 〈y; z〉. x ∈ X r 〈X ×̇X〉 results in

present evaluation case into ⊥ .

• Cases of an induced (redundant via p∆q and ⊙):

e (〈 pidq ; pidq 〉, z) =def (pidq , 〈z; z〉),

a terminating case.

For 〈u; v〉 6= 〈 pidq ; pidq 〉 :

e (〈u; v〉, z)

=def (〈emap(u, z); emap(v, z)〉, 〈earg(u, z); earg(v, z)〉),

evaluate both components u and v.

104

• iteration case, with $:= p§q designating internal iteration:

e (u$, 〈y; νn〉) = (u[n], y) :

PRX×X ⊃ PRX× 〈X ×̇ νN〉 → PRX×X.

Here νn ∈ νN free, n : = ν−1(νn) ∈ N, and u[n] is given by code

expansion as

u[0] =def pidq , u[n+1] =def 〈u ⊙ u[n]〉.

• trash case e (u, x) = (pidq ,⊥) ∈ PRX ×X⊥ if (u, x) in none

of the above—regular—cases.

For to convince ourselves on termination of iteration of step e :

PRX ×X⊥ → PRX ×X⊥—on a pair of form (pidq , x)—we intro-

duce:

(Descending) complexity

cev(u, x) = c (u) : PRX×X
ℓ
−→ PRX→ N[ω]

defined p. r. as

c (pidq) =def 0 = 0 · ω ∈ N[ω],

c (pba′q) =def 1 ∈ N[ω]

for ba′ one of the other basic map constants in bas,

c 〈v ⊙ u〉 =def c (u) + c (v) + 1 = c (u) + c (v) + 1 · ω0 ∈ N[ω],

c 〈u#v〉 =def c (u) + c (v) + 1,

c 〈u; v〉 =def c (u) + c (v) + 1,

c (u$) =def (c (u) + 1) · ω1 ∈ N[ω].

105

[() · ω1 is to account for unknown iteration count n in argument

〈x; n〉 before code expansion.]

Example: Complexity of addition + =by def s§ : N × N → N :

c p + q = c ps§q = c (psq $)

= (c psq + 1) · ω1 = 2 · ω ∈ N[ω] [≡ 0; 2 ∈ N+]

Motivation for the above definition—in particular for this latter

iteration case—will become clear with the corresponding case in proof

of descent Lemma below for evaluation

ev = ev (u, v) =def r ◦̂wh [cev > 0 , e] : PRX×X⊥ ⇀ PRX×X⊥
r
−→ X⊥

defined by a while loop which reads

while cev(u) > 0 do (u, x) : = e(u, x) od.

Evaluation step and complexity above are in fact the right ones to

give

Basic descent lemma: For formally partially defined and “never-

theless” epi-terminating evaluation map: the defined-arguments p. r.

enumeration of partial map is epi—this by axiom scheme (π)—,

ev = ev (u, x) =by def r ◦̂wh [cev > 0, e] :

PRX×X⊥ ⇀ PRX×X⊥
r
−→ X⊥

(epi-terminating within theory πR = PRa + (π))

i. e. for step e = e (u, x) = (emap, earg) : PRX×X⊥ → PRX×X⊥ and

complexity cev = cev(u, x) =def c (u) : PRX→ N[ω], we have descent

106

above 0 ∈ N[ω], and Stationarity at complexity 0 :

PRX ⊢ cev(u, x) > 0 =⇒ cev e (u, x) < cev(u, x) :

PRX×X⊥ → N[ω] × N[ω] → 2 i. e.

PRX ⊢ c (u) > 0 =⇒ c emap(u, x) < c (u) (Desc)

as well as

PRX ⊢ c (u)
.
= 0 [⇐⇒ u ≡ pidq]

=⇒ cev e (u, x)
.
= 0 ∧ e (u, x)

.
= (u, x) (Sta)

This with respect to the canonical, lexicographic, and—intuitively—

finite-descent order of polynomial semiring N[ω].

Proof: The only non-trivial case (v, b) ∈ PRX × X for descent

cev e (v, b) < cev(v, b) is iteration case (v, b) = (u$, 〈x; n〉). In this

“acute” iteration case we have

c (u[n]) = c (〈u ⊙ 〈u . . . ⊙ u〉 . . .〉)

= n · c (u) + (n .− 1) < ω · (c(u) + 1) = c(u$),

proved in detail by induction on n q.e.d.

5.4 Evaluation characterisation

Dominated characterisation theorem for evaluation:

ev = ev (u, a) : PRX×X ⇀ X is characterised by

• PRXa ⊢ [ev (pbaq , x)
.
= ba(x)]

as well as, again within PRXa, πR and strengthenings, by:

107

• [m deff ev (v ⊙ u, x)] =⇒

ev (〈v ⊙ u〉, x)
.
= ev (v, ev (u, x));

this reads: if m defines the left hand iteration ev , i. e. if iteration

ev of step e terminates on the left hand argument after at most

m steps, then ev terminates in at most m steps on right hand

side as well, and the two evaluations have equal results.

• [m deff ev (〈u#v〉, 〈x; y〉)] =⇒

ev (〈u#v〉, 〈x; y〉)
.
= 〈ev (u, x); ev (v, y)〉,

[m deff ev (〈u; v〉, z)] =⇒

ev (〈u; v〉, z)
.
= 〈ev (u, z); ev (v, z)〉.

• ev (u$, 〈x; p0q 〉)
.
= x,

[m deff ev (u$, 〈x; ν(s n)〉] =⇒ :

[m deff all ev below] ∧

ev (u$, 〈x; ν(s n)〉)
.
= ev (u, ev (u$, 〈x; ν n〉)).

• it terminates, with all properties above, when situated in a

set theory T, since there complexity receiving ordinal N[ω] has

(only) finite descent, in terms of existential quantification.

Corollary: within T, we have the double recursive equations

• ev (pbaq , x)
.
= ba(x),

• ev (〈v ⊙ u〉, x)
.
= ev (v, ev (u, x)),

• ev (〈u#v〉, 〈x; y〉)
.
= 〈ev (u, x); ev (v, y)〉,

ev (〈u; v〉, z)
.
= 〈ev (u, z); ev (v, z)〉,

108

• ev (u$, 〈x; p0q 〉)
.
= x, and

ev (u$, 〈x; ν(s n)〉)
.
= ev (u, ev (u$, 〈x; ν n〉)).

Within T—as well as within partial p. r. theories PR̂Xa, πR̂—these

equations can be taken as definition for PRX code evaluation ev .

Within T, they define evaluation as a total map.

Proof of theorem by primitive recursion (Peano Induction) on

m ∈ N free, via case distinction on codes w, and arguments z ∈ X

appearing in the different cases of the asserted conjunction (case w

one of the basic map constants being trivial). All of the following—

induction step—is situated in PRXa, read: PRXa ⊢ etc. If you

are interested first in the negative results for set theories T, you can

read it “T ⊢ . . .” but T still deriving properties just of PRX map

codes.

• case (w, z) = (〈v ⊙ u〉, x) of an (internally) composed, subcase

u = pidq : obvious.

Non-trivial subcase (w, z) = (〈v ⊙ u〉, x), u 6= pidq :

m + 1 deff ev (〈v ⊙ u〉, x) =⇒ :

ev (〈v ⊙ u〉, x)
.
= e§((〈v ⊙ emap(u, x)〉, earg(u, x)),m)

by iterative definition of ev in this case
.
= ev (v, ev (emap(u, x), earg(u, x)))

by induction hypothesis on m

=⇒ :

m + 1 deff ev (v, ev (emap(u, x), earg(u, x)))

∧ ev (v, ev (emap(u, x), earg(u, x)))
.
= ev (v, ev (u, x)) :

109

The latter implication “holds” same way back, by the same in-

duction hypothesis on m (map code v unchanged.)

• case (w, z) = (〈u#v〉, 〈x; y〉) of an (internal) cartesian product:

Obvious by definition of ev on a cartesian product map codes.

Pay attention to arguments out of X r 〈X ×̇X〉 evaluated into

⊥ in this case (and in similar cases). In more detail:

ev (w, z) : =

ev (〈u#v〉, 〈x; y〉)

= by def ev (〈emap(u, x)#emap(v, y)〉, 〈earg(u, x), earg(v, y)〉)
.
= 〈ev(emap(u, x), earg(u, x)), ev(emap(v, y), earg(v, y))〉

∈ 〈X ×̇X〉

• alternatively (or both): case (w, z) = (〈u; v〉, z) of an internal

induced:

ev(w, z)
.
= 〈ev(u, z), ev(v, z)〉 ∈ 〈X ×̇X〉.

• case (w, z) = (u$, 〈x; p0q 〉) of a null-fold (internally) iterated:

again obvious.

110

• case (w, z) = (u$, 〈x; ν(s n)〉) of a genuine (internally) iterated:

m + 1 deff ev (u$, 〈x; ν(s n)〉) =⇒

m + 1 deff all instances of ev below, and:

ev (u$, 〈x; ν(s n)〉)
.
= ev (emap(u

$, 〈x; ν(s n)〉), earg(u
$, 〈x; ν(s n)〉))

.
= ev (u[n+1], x)

.
= ev (〈u ⊙ u[n]〉, x)

.
= ev (u, ev (u[n], x))

the latter by induction hypothesis on m,

case of internal composed
.
= ev (u, 〈ev (u$, x); ν n〉) : same way back.

This shows the (remaining) predicative iteration equations “an-

chor” and “step” for an (internally) iterated u$, and so proves full-

fillment of the above double recursive system of equations for ev :

PRXa×X ⇀ X subordinated to global evaluation ev : PRX×X ⇀ X

q.e.d.

Characterisation corollary: Evaluation—PR̂Xa map—

ev = ev (u, x) : PRX×X ⇀ X

defined as complexity controlled iteration—CCI—with complexity val-

ues in ordinal N[ω], epi-terminates in theory πR̂ : has epimorphic

defined arguments enumeration. This by definition of this theory

strengthening PR̂Xa. And it satisfies there the characteristic double-

recursive equations above for evaluation ev .

Objectivity theorem: Evaluation ev is objective, i. e. for each

111

single, (meta free) f : A → B in theory PRXa itself, we have

PRXa, πR ⊢ [m deff ev(pfq , a)] =⇒

ev(pfq , a) = f(a), symbolically:

πR ⊢ ev(pfq ,) = f : A ⇀ B.

For frame a set theory T, there is no need for explicit domination

m deff etc.

Proof by substitution of codes of PRXa maps into code vari-

ables u, v, w ∈ PRX ⊂ N in Evaluation Characterisation above, in

particular:

• [m deff ev (pg ◦ fq , a)] =⇒

ev (〈 pgq ⊙ pfq 〉, a)
.
= ev (pgq , ev (pfq , a)),

.
= g(f(a))

.
= (g ◦ f)(a) recursively (on m) and

• [m deff ev (pf §q , 〈a; ν(s n)〉] =⇒ :

[m deff all ev below]∧

ev (pfq $, 〈a; ν(s n)〉)
.
= ev (pfq , ev (pfq $, 〈a; ν n〉))

.
= f(f §(a, νn)) = f §(a, ν(s n)) recursively on m.

• it terminates, with this objectivity, within set theory T.

6 PR Decidability by Set Theory

We embed evaluation ε(u, x) : PRX ×X ⇀ X of PR map codes into

set theory, theory T.

112

Notion f =PR g of p. r. maps is externally p. r. enumerated, by

complexity of (binary) deduction trees.

Internalising—formalising—gives internal notion of PR equality

(not: stronger T-equality)

u =̌k v ∈ PRX× PRX

coming by internal deduction tree dtreek, which can be canonically

provided with arguments in X—top down from (suitable) argument x

given to the root equation u =̌k v of dtreek.

We denote internal deduction tree argumented this way by dtreek/x,

root of dtreek/x then is u/x =̌k v/x.

6.1 PR soundness framed by set theory

PR Evaluation soundness theorem Framed by set theory T :

For p. r. theory PR with its internal notion of equality ‘=̌’ we have:

(i) PRX to T evaluation soundness:

T ⊢ u =̌k v =⇒ ev(u, x) = ev(v, x) (•)

Substituting in the above “concrete” PRXa codes into u resp.

v, we get, by objectivity of evaluation ε :

(ii) T-Framed Objective soundness of PR :

For PRXa maps f, g : X ⊃ A → B ⊂ X :

T ⊢ pfq =̌ pgq =⇒ f(a) = g(a).

113

(iii) Specialising to case u : = pχq , χ : X→ 2 a p. r. predicate, and

to v : = ptrueq , we get

T-framed Logical soundness of PR :

T ⊢ ∃ k ProvPR(k, pχq) =⇒ ∀xχ(x) :

If a p. r. predicate is—within T—PR-internally provable, then

it holds in T for all of its arguments.

Proof of logically central assertion (•) by primitive recursion on

k, dtreek the k th deduction tree of the theory. These (argument-free)

deduction trees are counted in lexicographical order.

Remark: A detailed proof is given for frame theory PRXa and

termination-conditioned evaluations in next section. This proof logi-

cally includes present case of frame theory a set theory T : within such

T as frame, both evaluations, ev as well as deduction tree evaluation

evd, terminate on all of their arguments.

Super Case of equational internal axioms:

• associativity of (internal) composition:

〈〈w ⊙ v〉 ⊙ u〉 =̌k 〈w ⊙ 〈v ⊙ u〉〉 =⇒

ev (〈w ⊙ v〉 ⊙ u, x) = ev (〈w ⊙ v〉, ev (u, x))

= ev (w, ev (v, ev (u, x)))

= ev (w, ev (〈v ⊙ u〉, x)) = ev (w ⊙ 〈v ⊙ u〉, x).

This proves assertion (•) in present associativity-of-composition

case.

114

• Analogous proof for the other flat, equational cases, namely

reflexivity of equality, left and right neutrality of id =by def idX,

all substitution equations for the map constants, Godement’s

equations for the induced map as well as surjective pairing and

distributivity equation for composition with an induced.

• proof of (•) for the last equational case, the

Iteration step, case of genuine iteration equation

dtreek = 〈u$ ⊙ 〈 pidq # psq 〉 =̌k u ⊙ u$〉 :

T ⊢ ev (u$ ⊙ 〈 pidq # psq 〉, 〈y; ν(n)〉) (1)

= ev (u$, ev(〈 pidq # psq 〉, 〈y; ν(n)〉))

= ev (u$, 〈y; ν(s n)〉)

= ev (u, ev(u$, 〈y; ν(n)〉)

= ev (u ⊙ u$, 〈y; ν(n)〉). (2)

Proof of termination-conditioned inner soundness for the remain-

ing deep—genuine Horn cases—for dtreek , Horn type deduction of

root:

Transitivity-of-equality case: with map code variables u, v, w

we start here with argument-free deduction tree

u =̌k w

dtreek = ⇑

u =̌i v ∧ v =̌j w

115

Evaluate at argument x and get in fact

T ⊢ u =̌k w

=⇒ ev(u, x) = ev(v, x) ∧ ev(v, x) = ev(w, x)

(by hypothesis on i, j < k)

=⇒ ev(u, x) = ev(w, x) :

transitivity export q.e.d. in this case.

Case of symmetry axiom scheme for equality is now obvious.

Compatibility case of composition with equality

〈v ⊙ u〉 =̌k 〈v ⊙ u′〉

deduk = ⇑

u =̌i u
′

By induction hypothesis on i < k we have

〈v ⊙ u〉 =̌k 〈v ⊙ u′〉 =⇒ :

[ev(u, x) = ev(u′, x) =⇒

ev(v ⊙ u, x) = ev(v, ev(u, x)) = ev(v, ev(u′, x))

= ev(v ⊙ u′, x)]

by hypothesis on u =̌i u
′ and by Leibniz’ substitutivity, q.e.d. in this

1st compatibility case.

Case of composition with equality in second composition factor:

〈v ⊙ u〉 =̌k 〈v
′ ⊙ u〉

deduk = ⇑

v =̌i v
′

116

[Here dtreei is not (yet) provided with all of its arguments, it is

completly argumented during top down tree evaluation.]

〈v ⊙ u〉 =̌k 〈v
′ ⊙ u〉 =⇒ :

ev(〈v ⊙ u〉, x) = ev(v, ev(u, x)) = ev(v′, ev(u, x)) (∗)

= ev(〈v′ ⊙ u〉, x).

(∗) holds by v =̌i v
′, induction hypothesis on i < k, and Leibniz’ sub-

stitutivity: same argument into equal maps.

This proves soundness assertion (•) in this 2nd compatibility case.

(Redundant) Case of compatibility of forming the induced map,

with equality is analogous to compatibilities above, even easier, since

the two map codes concerned are independent from each other.

(Final) Case of Freyd’s (internal) uniqueness of the initialised

iterated, is case

deduk/〈y; ν(n)〉

w/〈y; ν(n)〉 =̌k 〈v
$ ⊙ 〈u# pidq 〉/〈y; ν(n)〉〉

=

root (ti) root (tj)

where

root (ti)

= 〈w ⊙ 〈 pidq ; p0q ⊙ pΠq 〉/y =̌i u/y〉,

root (tj)

= 〈w ⊙ 〈 pidq # psq 〉/〈y; ν(n)〉 =̌j 〈v ⊙ w〉/〈y; ν(n)〉〉.

117

Comment: w is here an internal comparison candidate fullfilling

the same internal p. r. equations as 〈v$⊙〈u# pidq 〉〉. It should be—is:

soundness—evaluated equal to the latter, on 〈X ×̇ νN〉 ⊂ X.

Soundness assertion (•) for the present Freyd’s uniqueness case

recurs on =̌i, =̌j turned into predicative equations ‘=’, these being

already deduced, by hypothesis on i, j < k. Further ingredients are

transitivity of ‘=’ and established properties of basic evaluation ev of

map terms.

So here is the remaining—inductive—proof, prepared by

T ⊢ ev (w, 〈y; ν(0)〉) = ev (u; y) (0̄)

as well as

ev(w, 〈y; ν(s n)〉) = ev (w, 〈y; psq ⊙ ν(n)〉)

= ev (w ⊙ 〈 pidq # psq 〉, 〈y; ν(n)〉)

= ev (v ⊙ w, 〈y; ν(n)〉), (s̄)

the same being true for w′ : = v$ ⊙ 〈u# pidq 〉 in place of w, once

more by (characteristic) double recursive equations for ev , this time

with respect to the initialised internal iterated itself.

(0̄) and (s̄) put together for both then show, by induction on iter-

ation count n ∈ N—all other free variables k, u, v, w, y together form

the passive parameter for this induction—truncated soundness asser-

tion (•) for this Freyd’s uniqueness case, namely

T ⊢ ev (w, 〈y; ν(n)〉) = ev (v$ ⊙ 〈u# pidq 〉, 〈y; ν(n)〉).

Induction runs as follows:

Anchor n = 0 :

118

ev (w, 〈y; ν(0)〉) = ev (u, y) = ev (w′, 〈y; ν(0)〉),

step:

ev (w, 〈y; ν(n)〉) = ev (w′, 〈y; ν(n)〉) =⇒ :

ev (w, 〈y; ν(s n)〉) = ev (v, ev (w, 〈y; ν(n)〉))

= ev (v, ev (w′, 〈y; ν(n)〉)) = ev (w′, 〈y; ν(s n)〉),

the latter since evaluation ev preserves predicative equality ‘=’ (Leib-

niz) q.e.d.

Comment: Already for stating the evaluations, we needed the—

categorical, free-variables theories PR,PRa,PRX,PRXa of primi-

tive recursion. Since this type of soundness is a corner stone in our

approach, the above complicated categorical combinatorics seem to be

necessary, even for the negative results on classical foundations.

6.2 PR-predicate decision by set theory

We consider here PRXa predicates for decidability by set theorie(s)

T. Basic tool is T-framed soundness of PRXa just above, namely

χ = χ(a) : A → 2 PRXa predicate

T ⊢ ∃k ProvPRXa(k, pχq) =⇒ ∀a χ(a).

Within T define for χ : A → 2 out of PRXa a partially defined

(alleged, individual) µ-recursive decision ∇χ = ∇PRχ : 1 ⇀ 2 by

first fixing decision domain

D = Dχ : = {k ∈ N | ¬χ(ctA(k)) ∨ ProvPRXa(k, pχq)},

119

ctA : N → A (retractive) Cantor count of A; and then, with (partial)

recursive µD : 1 ⇀ D ⊆ N within T :

∇χ =def






false if ¬χ(ctA(µD))

(counterexample),

true if ProvPRXa(µD, pχq)

(internal proof),

⊥ (undefined) otherwise, i. e.

if ∀a χ(a) ∧ ∀k ¬ProvPRXa(k, pχq).

[This (alleged) decision is apparently (µ-)recursive within T, even if

apriori only partially defined.]

There is a first consistency problem with this definition: are the

defined cases disjoint?

Yes, within frame theory T which soundly frames theory PRXa :

T ⊢ (∃ k ∈ N) ProvPRXa(k, pχq) =⇒ ∀a χ(a).

T-framed PRXa-soundness leads to

Complete T derivation alternative for PRXa predicate χ :

(a) T ⊢ ∇χ = false iff T ⊢ ∃a¬χ(a),

(b) T ⊢ ∇χ = true iff T ⊢ ∃k ProvPRXa(k, pχq)

iff T ⊢ ∃k ProvPRXa(k, pχq) ∧ ∀a χ(a),

the latter iff by T-framed soundness of PRXa.

(c) T ⊢ ∇χ = ⊥ iff T ⊢ ∀a χ(a) ∧ ∀k ¬ProvPRXa(k, pχq).

120

Remark:

• within quantified arithmetic T we have the right to replace

χ(ctA(µD)) by ∃ a (χ(a)) in the above, and

ProvPRXa(µD, pχq) by ∃ k ProvPRXa(k, pχq).

• for consistent T, χ an arbitrary T-formula, and Proof ProvT

in place of ProvPRXa, soundness—and therefore disjointness of

(termination) cases(a) and (b) above—does not work anymore:

take for χ Gödel’s undecidable formula ϕ with its “characteris-

tic” property

T ⊢ ¬ϕ ⇐⇒ ∃k ProvT(k, pϕq).

Merging now the (right hand sides) of the latter two cases gives

the following complete alternative,

Decidability of primitive recursive free-variable predicates by quan-

tified extension T (via µ-recursive decision algorithm ∇χ : 1 ⇀ 2):

For (arbitrary) PRXa predicate χ = χ(a) : A → 2 we have

T ⊢ ∀a χ(a) or

T ⊢ ∃a¬χ(a).

“Theorem or derivable existence of a counterexample” q.e.d.

Decision Remark: this does not mean a priori that decision algo-

rithm ∇χ terminates for all such predicates χ. The theorem says only

that χ is decidable “by”, within theory T, that it is not independent

from T.

121

For free-variable PRXa (!) predicate χ : = ¬ProvT(k, pfalseq) :

N → 2 the above entails the alternative

T ⊢ ∀k ¬ProvT(k, pfalseq) or

T ⊢ ∃k ProvT(k, pfalseq),

will say the alternative

T ⊢ ConT or

T ⊢ ¬ConT,

i. e. consistency decidability for set theory T.

First assertion of Gödel’s 2nd incompleteness theorem says:

T 0 ConT, if T consistent,

whence we get 2nd alternative above:

T ⊢ ¬ConT :

set theory T derives/proves its own inconsistency (formula).

Proof of first assertion of 2nd incompleteness theorem in Smoryn-

ski 1977, adapted to categorical language in next section.

This concerns set theories as PM, ZF, and NGB as well as “al-

ready” Peano arithmetic PA.

6.3 Gödel’s incompleteness theorems

We visit §2. Gödel’s theorems, in Smorynski 1977.

First Incompleteness Theorem. Let T be a formal theory

containing arithmetic. Then there is a sentence ϕ which asserts its

own unprovability and such that:

122

(i) If T is consistent, T 0 ϕ.

(ii) If T is ω-consistent, T 0 ¬ϕ.

In §3.2.6 Smorynski discusses possible choices of arithmetic (the-

ory) S, namely

(a) PRA = (classical, free-variables) primitive recursive arithmetic,

S. Feferman: “my PRA”, in contrast to PRa above.

(b) PA = Peano’s arithmetic.

Conjecture: PA ∼= PR∃ ⊏ PRa∃.

(c) ZF = Zermelo-Fraenkel set theory. “This is both a good and a

bad example. It is bad because the whole encoding problem is

more easily solved in a set theory than in an arithmetical theory.

By the same token, it is a good example.”

Conjecture: PRA can categorically be viewed as cartesian the-

ory with weak NNO in Lambek’s sense.

We take S : = PRa, embedding extension of categorical theory

PR, formally stronger than PRA because of uniqueness of maps

defined by the full schema of primitive recursion, and weaker than

PA ∼= PR∃.

By construction of arithmetic PRa, “one can adequatly encode

syntax in this S = PRa,” since Smorynski’s conditions (i)-(iii) for the

representation of p. r. functions are fulfilled.

We take for formal extension T of S one of the categorical pen-

dants to suitable set theories (subsystems of ZF, see Osius 1974), or

123

the (first order) elementary theory of two-valued Topoi with NNO, cf.

Freyd 1972, or, minimal choice, T : = PRa∃ ⊐ PA.

Derivability theorem: Our S encoding, extended from PRa to

T, meets the following (quantifier free categorically expressed) Deriv-

ability Conditions in §2.1 of Smorynski:

D1 T
k

⊢ ϕ infers S ⊢ ProvT(num(k), pϕq).

D2 S ⊢ ProvT(k, pϕq) =⇒ ProvT(j2(k), ProvT(k, pϕq)),

j2 = j2(k) : N → N suitable.

D3 S ⊢ ProvT(k, pϕq) ∧ ProvT(k′, pϕ ⇒ ψq)

=⇒ ProvT(j3(k, k′), pψq),

j3 = j3(k, k′) : N2 → N suitable.

Smorynski’s proof gives the First Gödel’s incompleteness theorem,

and from that the

Second incompleteness theorem: Let T be one of the exten-

sions above of PR∃, and T consistent. Then

T 0 ConT,

where ConT = ∀k ¬ProvT(k, pfalseq) is the sentence asserting the

consistency of T.

From this Gödel’s theorem and our PR Decidability theorem for

quantified arithmetic PRa∃,T we get

Inconsistency provability theorem for quantified arithmetical

(set) theories T :

124

If T is consistent, then

T ⊢ ¬ConT.

[If not, then it derives everything, in particular ¬ConT. We will see

that p. r. arithmetic, under a mild termination condition for external

evaluation, yields inconsistency of T.]

7 Consistency Decision within πR

7.1 Termination conditioned evaluation soundness

ES9 Theorem on termination-conditioned soundness:

For p. r. theory PRXa 10 and internal notion of equality =̌ = =̌k :

N → PRX× PRX, dtreek the k th deduction tree of universe theory

PRX ⊂ PR(N, N), we have:

(i) Termination-Conditioned Inner soundness:

With r = r(u, x) = x : PRX×X→ X right projection:

PRXa ⊢ 〈u =̌k v〉
.
= root (dtreek)

∧ m deff evd (dtreek/x)

=⇒ ev (u, x)
.
= ev (v, x) . (•)

9
Evaluation soundness

10 presumably not directly for πR with respect to its own internal equality,

without assumption of “π-consistency,” in this regard RCF 2 contains an error

125

explicitly:

PRXa ⊢ u =̌k v ∧ cd em
d (dtreek/x)

.
= 0

=⇒ ev (u, x)
.
= em(u, x)

.
= em(v, x)

.
= ev (v, x), (•)

free map-code variables u, v, variable x free in universal set X.

[Argumentation dtreek/x of dtreek and definition of argumented

tree evaluation evd based on its evaluation step ed and complexity

cd is by merged recursion on depth(dtreek), within proof below]

In words, this “m-Truncated”, “m-Dominated” Inner soundness

says that theory PRa derives:

If for an internal PRX equation u =̌k v argumented deduction

tree dtreek/x for u =̌k v, argumented with x ∈ X, admits com-

plete argumented-tree evaluation, i. e.

if tree-evaluation becomes completed after a finite number m of

evaluation steps,

then both sides of this internal (!) equation are completly eval-

uated on x by (at most) m steps e of basic evaluation ev , into

equal values.

Substituting in the above “concrete” codes into u resp. v , we get,

by objectivity of evaluation ev , formally “mutatis mutandis”:

(ii) Termination-Conditioned Objective soundness for Map Equality:

126

For PRXa maps f, g : A→ B :

PRXa ⊢ [pfq =̌k pgq ∧ m deff evd(dtreek/a)]

=⇒ f(a)
.
=B r em(pgq , a)

.
=B g(a), a ∈ A free :

If an internal PR deduction-tree for (internal) equality of pfq

and pgq is available, and if on this tree—top down argu-

mented with a in A—tree evaluation terminates, then equality

f(a)
.
=B g(a) of f and g at this argument is the consequence.

(iii) Specialising this to case of f : = χ : A → 2 a p. r. predicate and

to g : = trueA : A → 2 we eventually get

Termination-Conditioned Objective Logical soundness:

PRXa ⊢ ProvPRX(k, pχq) ∧ m deff evd(dtreek/a) =⇒ χ(a) :

If tree-evaluation of an internal deduction tree for a free vari-

able p. r. predicate χ : A → 2—the tree argumented with a ∈ A—

terminates after a finite number m of evaluation steps, then

χ(a)
.
= true is the consequence, within PRXa as well as within

its extensions πR—and set theory T.

Remark to proof below: in present case of frame theory PRXa

(and stronger theory πR) we have to control all evaluation step it-

erations, and we do that by control of iterative evaluation evd of

whole argumented deduction trees, whose recursive definition will

be—merged—part of this proof.

Proof of—basic—termination-conditioned inner soundness, i. e.

of implication (•) in ES theorem is by induction on deduction tree

127

counting index k ∈ N counting family dtreek : N → Bintree, start-

ing with (flat) dtree0 = 〈 pidq =̌0 pidq 〉. m ∈ N is to dominate

argumented-deduction-tree evaluation evd to be recursively defined

below: condition

m deff evd(dtreek/x), step ed, complexity cd.

We argue by recursive case distinction on the form of the top up-

to-two layers—top (implicational) deduction—deduk/x of argumented

deduction tree dtreek/x at hand.

Flat super case depth(dtreek) = 0, i. e. super case of uncondi-

tioned, axiomatic (internal) equation u =̌k v :

The first involved of these cases is associativity of (internal) com-

position:

dtreek = 〈〈w ⊙ v〉 ⊙ u〉 =̌k 〈w ⊙ 〈v ⊙ u〉〉

In this case—no need of a recursion on k—

PRXa ⊢ m deff evd(dtreek/x) =⇒

[m deff ev (〈w ⊙ v〉 ⊙ u, x)]

∧ [m deff ev(〈w ⊙ v〉, ev (u, x))

∧ [m deff ev(w, ev(v, ev(u, x)))

∧ [m deff ev(w, ev(〈v ⊙ u〉, x))

∧ [m deff ev (〈w ⊙ 〈v ⊙ u〉〉, x)] ∧

ev (〈w ⊙ v〉 ⊙ u, x)
.
= ev (〈w ⊙ v〉, ev (u, x))

.
= ev (w, ev (v, ev (u, x)))
.
= ev (w, ev (〈v ⊙ u〉, x))

.
= ev (w ⊙ 〈v ⊙ u〉, x).

128

This proves assertion (•) in present associativity-of-composition case.

[New in comparison to previous Inconsistency chapter is here only the

“preamble” m deff etc.]

Analogous proof for the other flat, equational cases, namely re-

flexivity of equality, left and right neutrality of id =by def idX, all

substitution equations for the map constants, Godement’s equations

for the induced map as well as surjective pairing and distributivity of

composition over forming the induced map.

Godement’s equations ℓ ◦ (f, g) = f, r ◦ (f, g) = g :

m deff ev etc. =⇒

ev(pℓ̊q ⊙ 〈u; v〉, z)
.
= r em(pℓ̊q ⊙ 〈u; v〉, z)

.
= ℓ̊(〈ev(u, z); ev(v, z)〉)

.
= ev(u, z),

analogously for composition with right projection.

Fourman’s equation (ℓ ◦ h, r ◦ h) = h :

m deff ev etc. =⇒

ev(〈 pℓ̊q ⊙ w; p̊rq ⊙ w〉, z)
.
= 〈ev(pℓ̊q , ev(w, z)); ev(p̊rq , ev(w, z))〉
.
= 〈ℓ̊(ev(w, z)); r̊(ev(w, z))〉

.
= ev(w, z)

by SP equation on objective level.

Now here are the proofs—with preambles—of (•), for the last

equational case, the

Iteration step, case of genuine iteration equation

129

dtreek = 〈u$ ⊙ 〈 pidq # psq 〉 =̌k u ⊙ u$〉 :

PRXa ⊢ m deff evd(dtreek/〈y; ν(n))〉 =⇒

m deff all instances of ev below, and:

ev (u$ ⊙ 〈 pidq # psq 〉, 〈y; ν(n)〉) (1)
.
= ev (u$, ev(〈 pidq # psq 〉, 〈y; ν(n)〉))
.
= ev (u$, 〈y; ν(s n)〉)
.
= ev (u[s n], y) (by definition of ev step e)
.
= ev (u ⊙ u[n], y)
.
= ev (u, ev(u$, 〈y; ν(n)〉)
.
= ev (u ⊙ u$, 〈y; ν(n)〉). (2)

Proof of termination-conditioned inner soundness for the remain-

ing deep—genuine Horn cases—for dtreek , Horn type (at least) at

deduction of root:

Transitivity-of-equality case: with map code variables u, v, w

we start here with argument-free deduction tree

u =̌k w

dtreek =

u =̌i v

dtreeii dtreeji

v =̌j w

dtreeij dtreejj

It is argumented with argument x say, recursively spread down:

130

u/x w/x

dtreek/x =

u/x v/x

dtreeii/xii dtreeji/xji

v/x w/x

dtreeij/xij dtreejj/xjj

Spreading down arguments from upper level down to 2nd level

must/is given explicitly, further arguments spread down is then recur-

sive by the type of deduction (sub)trees dtreei, dtreej, i, j < k.

Now by induction hypothesis on i, j we have for tree evaluation

evd :

u =̌k w ∧ m deff evd(dtreek/x)

=⇒ m deff evd(dtreei/x), evd(dtreej/x) ∧

evd(dtreei/x)
.
= 〈 pidq /ev(u, x)

.
= pidq /ev(v, x)〉

∧ evd(dtreej/x)
.
= 〈 pidq /ev(v, x)

.
= pidq /ev(w, x)〉

=⇒ ev(u, x)
.
= ev(v, x) ∧ ev(v, x)

.
= ev(w, x)

=⇒ ev(u, x)
.
= ev(w, x).

and this is what we wanted to show in present transitivity of equality

case.

[Transitivity axiom for equality is a main reason for necessity to

consider (argumented) deduction trees: intermediate map code equal-

ities ‘=̌’ in a transitivity chain must be each evaluated, and pertaining

deduction trees may be of arbitrary high evaluation complexity]

Case of symmetry axiom scheme for equality is now obvious.

131

Compatibility Case of composition with equality11

〈v ⊙ u〉/x =̌k 〈v ⊙ u′〉/x

dtreek/x =

u/x =̌j u′/x

dtreeij/x dtreejj/x

By induction hypothesis on j < k

m deff evd(dtreek/x) =⇒

m deff evd(dtreej/x) =⇒

ev(u, x)
.
= ev(u′, x) =⇒

ev(v ⊙ u, x)
.
= ev(v, ev(u, x))

.
= ev(v, ev(u′, x))

.
= ev(v ⊙ u′, x)

by dominated characterisic equations for ev and Leibniz’ substitutiv-

ity, q.e.d. in this 1st compatibility case.

Spread down arguments is more involved in

Case of composition with equality in second composition factor:

argument spread down merged with tree evaluation evd and proof of

result.

11 this simplified version has been suggested by Joseph

132

〈v ⊙ u〉/x 〈v′ ⊙ u〉/x

dtreek/x =

v =̌i v
′

dtreeii dtreeji

[Here dtreei is not (yet) provided with argument, it is argumented

during top down tree evaluation below]

m deff evd(dtreek/x) =⇒

m deff all instances of ev below, and:

ev(〈v ⊙ u〉, x)
.
= ev(v, ev(u, x))

.
= ev(v′, ev(u, x)) (∗)

.
= ev(〈v′ ⊙ u〉, x).

(∗) holds by Leibniz’ substitutivity and

m deff evd(dtreek/x) =⇒

m deff evd(dtreei/ev(u, x))

[argumentation of dtreei with

ev(u, x)—calculated en cours de route,

extra definition of ed]

=⇒

m deff ev(v, ev(u, x))
.
= ev(v′, ev(u, x)),

by induction hypothesis on i < k : The hypothesis is independent

of substituted argument, provided—and this is here the case—that

dtreei is evaluated on that argument, in m′ < m steps, m′ suitable

(minimal).

133

This proves assertion (•) in this 2nd compatibility case.

(Redundant) case of compatibility of forming the induced map

with map equality is analogous to compatibilities above, even easier,

because of almost independence of any two inducing map codes from

each other.

(Final) case of Freyd’s (internal) uniqueness of the initialised

iterated, is case

w/〈y; ν(n)〉 =̌k 〈v
$ ⊙ 〈u# pidq 〉/〈y; ν(n)〉〉

deduk/〈y; ν(n)〉 =

root (ti) root (tj)

where

root (ti) = 〈w ⊙ 〈 pidq ; p0q ⊙ pΠq 〉/y =̌i u/y〉,

root (tj) = 〈w ⊙ 〈 pidq # psq 〉/〈y; ν(n)〉 =̌j 〈v ⊙ w〉/〈y; ν(n)〉〉

Comment: w is here an internal comparison candidate fullfilling

the same internal PR equations as 〈v$⊙〈u# pidq 〉〉. It should be—is:

soundness—evaluated equal to the latter, on 〈X ×̇ νN〉 ⊂ X.

soundness assertion (•) for the present Freyd’s uniqueness case

recurs on =̌i, =̌j turned into predicative equations ‘
.
=’, these being

already deduced, by hypothesis on i, j < k. Further ingredients are

transitivity of ‘
.
=’ and established properties of basic evaluation ev of

map terms.

134

So here is the remaining—inductive—proof, prepared by

T ⊢ m deff dtreek/〈y; ν(n)〉 =⇒

m deff all of the following ev -terms and

ev (w, 〈y; ν(0)〉)
.
= ev (u; y) (0̄)

as well as

m deff both of the following ev -terms, and

ev(w, 〈y; ν(s n)〉)
.
= ev (w, 〈y; psq ⊙ ν(n)〉)

.
= ev (w ⊙ 〈 pidq # psq 〉, 〈y; ν(n)〉)
.
= ev (v ⊙ w, 〈y; ν(n)〉), (s̄)

the same being true for w′ : = v$ ⊙ 〈u# pidq 〉 in place of w, once

more by (characteristic) double recursive equations for ev , this time

with respect to the initialised internal iterated itself.

(0̄) and (s̄) put together for both then show, by induction on iter-

ation count n ∈ N—all other free variables k, u, v, w, y together form

the passive parameter for this induction—truncated soundness asser-

tion (•) for this Freyd’s uniqueness case, namely

T ⊢ m deff dtreek/〈y; ν(n)〉 =⇒

m deff all of the ev-terms concerned above, and

ev (w, 〈y; ν(n)〉)
.
= ev (v$ ⊙ 〈u# pidq 〉, 〈y; ν(n)〉).

Induction runs as follows:

Anchor n = 0 :

ev (w, 〈y; ν(0)〉)
.
= ev (u, y)

.
= ev (w′, 〈y; ν(0)〉),

135

Step: m deff etc. =⇒

ev (w, 〈y; ν(n)〉)
.
= ev (w′, 〈y; ν(n)〉) =⇒ :

ev (w, 〈y; ν(s n)〉)
.
= ev (v, ev (w, 〈y; ν(n)〉))

.
= ev (v, ev (w′, 〈y; ν(n)〉))

.
= ev (w′, 〈y; ν(s n)〉),

the latter since evaluation ev preserves predicative equality ‘
.
=’ (Leib-

niz) q.e.d. Termination Conditioned PR soundness theorem.

Comment: Already for stating the evaluations, we needed the—

categorical, free-variables theories PR,PRa,PRX,PRXa of primi-

tive recursion, as well as—for termination, even in classial frame T—

PR complexities within N[ω]. Since this type of soundness is a corner

stone in our approach, the above complicated categorical combina-

torics seem to be necessary, even for the negative results on classical

Foundations.

7.2 Framed consistency

From termination-conditioned soundness—resp. from T-framed

PR soundness—we get

πR-framed internal PR consistency corollary: For descent

theory πR = PRXa + (π), axiom (π) stating non-infinite iterative

descent in ordinal N[ω], we have

πR ⊢ ConPRX, i. e. “necessarily” in free-variables form:

πR ⊢ ¬ProvPRX(k, pfalseq) : N → 2, k ∈ N free,

T ⊢ ConPRX :

136

theory πR—as well as set theories T as an extension of πR—derive

that no k ∈ N is the internal PRX-Proof for pfalseq .

Proof for this corollary from termination-conditioned soundness:

By assertion (iii) of that theorem, with χ = χ(a) : = false(a) = false :

1→ 2, we get:

Evaluation-effective internal inconsistency of PRX—i. e. availabil-

ity of an evaluation-terminating internal deduction tree of pfalseq —

implies false :

PRXa, πR ⊢ ProvPRX(k, pfalseq) ∧ cd em
d (dtreek/〈0〉)

.
= 0

=⇒ false.

Contraposition to this, still with k,m ∈ N free:

πR ⊢ true =⇒ ¬ProvPRX(k, pfalseq) ∨ cd em
d (dtreek/〈0〉) > 0,

i. e. by free-variables (boolean) tautology:

πR ⊢ ProvPRX(k, pfalseq) =⇒ cd em
d (dtreek/〈0〉) > 0 : N2 → 2.

For k “fixed”, the conclusion of this implication—m free—means infi-

nite descent in N[ω] of iterative argumented deduction-tree evaluation

evd on dtreek/0, which is excluded intuitively. Formally it is excluded

within our theory πR taken as frame:

We apply non-infinite-descent scheme (π) to evd, which is given by

step ed and complexity cd—the latter descends (this is argumented-tree

evaluation descent) with each application of ed, as long as complexity

0 ∈ N[ω] is not (“yet”) reached. We combine this with—choice of—

overall “negative” condition

ψ = ψ(k) : = ProvPRX(k, pfalseq) : N → 2, k ∈ N free

137

and get—by that scheme (π)—overall negation of this (overall) ex-

cluded predicate ψ, namely

πR ⊢ ¬ProvPRX(k, pfalseq) : N → 2, k ∈ N free, i. e.

πR ⊢ ConPRX q.e.d.

So “slightly” strengthened theory πR = PRXa + (π) derives free

variables Consistency Formula for theory PRX of primitive recursion.

Scheme (π) holds in set theory, since there O : = N[ω] is an ordinal,

not quite to identify with set theoretical ordinal ωω, because classical

ordinal addition on that ordinal ωω does not commute, e.g. classically

ω + 1 6= 1 + ω = ω. As linear orders (with non-infinite descent) the

two are identical.

As is well known, consistency provability and soundness of a theory

are strongly tied together. We get in fact even

Theorem on πR-framed objective soundness of theory PRXa :

• for a PRXa predicate χ = χ(a) : A → 2 we have

πR ⊢ ProvPRX(k, pχq) =⇒ χ(a) : N × A → 2.

• more general, for PRXa-maps f, g : A → B we have

πR ⊢ pfq =̌k pgq =⇒ f(a)
.
= g(a).

[Same for set theory T taken as frame]

Proof of first assertion is a slight generalisation of proof of framed

Internal Consistency above as follows—take predicate χ instead of

false :

138

Use termination-conditioned soundness, assertion (iii) directly:

Evaluation-effective internal provabiliity of pχq within PRXa—

i. e. availability of an evaluation-terminating internal deduction tree of

pχq —implies χ(a), a ∈ A free :

PRXa, πR ⊢ ProvPRX(k, pχq) ∧ cd em
d (dtreek/〈0〉)

.
= 0

=⇒ χ(a) : N2 × A → 2.

Boolean free-variables calculus, tautology

[α ∧ β ⇒ γ] = [¬ [α ⇒ γ] ⇒ ¬β]

(test with β = 0 as well as with β = 1),

gives from this, still with k,m, a free:

πR ⊢ ¬ [ProvPRX(k, pχq) ⇒ χ(a)]

=⇒ cd em
d (dtreek/〈0〉) > 0 : (A × N) × N → 2.

As before, we apply non-infinit scheme (π) to evd, in combination

with—choice of—overall “negative” condition

ψ = ψ(k, a) : = ¬ [ProvPRX(k, pχq) ⇒ χ(a)] : N × A → 2,

and get—scheme (π)—overall negation of this (overall) excluded pred-

icate ψ, namely

πR ⊢ ProvPRX(k, pχq) =⇒ χ(a) : N × A → 2.

q.e.d. for first assertion.

For proof of second assertion, take in the above

χ = χ(a) : = [f(a)
.
= g(a)] : A → B2 → 2

139

and get

πR ⊢ pfq =̌k pgq

=⇒ ProvPRX(j(k), pf
.
= gq)

(substitutivity into
.
=)

=⇒ [f(a)
.
= g(a)] : N × A → 2 q.e.d.

7.3 πR decision

As the kernel of decision for p. r. predicate χ = χ(a) : A → 2 by theory

πR we introduce a (partially defined) µ-recursive decision algorithm

∇χ = ∇PRχ : 1 ⇀ 2 for (individual) χ. This decision algorithm is

viewed as a map of theory πR̂, of partial πR maps.

As a partial p. r. map it is given—see chapter 2—by three (PR)

data:

• its index domain D = D∇χ, typically (and here): D ⊆ N,

• its enumeration d = d∇χ : D → 1 of its defined arguments, as

well as

• its rule ∇̂ = ∇̂χ : D → 2 mapping indices k, k′ in D pointing to

the same argument d(k)
.
= d(k′) in domain 1, to the same value

∇̂(k)
.
= ∇̂(k′).

Now define alleged decision algorithm by fixing its graph

∇χ = 〈(d, ∇̂) : D → 1× 2〉 : 1 ⇀ 2

as follows:

140

Enumeration domain for defined arguments is to be

D = D∇χ =def {k | ¬χ ctA(k) ∨ ProvPRX(k, pχq)} ⊂ N,

with ctA : N → A (retractive) Cantor count, A assumed pointed.

Defined arguments enumeration is here “simply”

d =def Π : D
⊆
−→ N

Π
−→ 1

—not a priori a retraction or empty—, and rule is taken

∇̂(k) = ∇̂χ(k) =def





false if ¬χ ctA(k),

true if ProvPRX(k, pχq)
: D → 2.

∇̂ : D → 2 is in fact a well defined rule for enumeration d : D → N →

1 of defined argument(s) since by (earlier) framed logical soundness

theorem

πR ⊢ ProvPRX(k, pχq) =⇒ χ(a) : N × A → 2,

whence disjointness of the alternative within D = D∇χ.

This taken together means intuitively within πR—and formally

within set theory T :

∇(k) = ∇χ(k) =






false if ¬χ ctA(k),

true if ProvPRX(k, pχq),

undefined otherwise.

We have the following complete—metamathematical—case dis-

tinction on D ⊂ N :

141

• 1st case, termination: D has at least one (“total”) PR point

1→ D ⊆ N, and hence

t = t∇χ = by def µD = min D : 1→ D

is a (total) p. r. point.

Subcases:

– 1.1st, negative (total) subcase:

¬χ ctA(t) = true.

[Then πR ⊢ ∇χ = false.]

– 1.2nd, positive (total) subcase:

ProvPRX(t, pχq) = true.

[Then πR ⊢ ∇χ = true,

by πR-framed objective soundness of PRX.]

These two subcases are disjoint, disjoint here by πR framed

soundness of theory PRX which reads

πR ⊢ ProvPRX(k, pχq) =⇒ χ(a) :

N × A → 2, k ∈ N free, and a ∈ A free,

here in particular—substitute t : 1→ N into k free:

πR ⊢ ProvPRX(t, pχq) =⇒ χ(a) : A → 2, a free.

So furthermore, by this framed soundness, in present sub-

case:

πR ⊢ χ(a) ∧ ProvPRX(t, pχq) : A → 2.

142

• 2nd case, derived non-termination:

πR ⊢ D = ∅N ≡ {N | falseN} ⊂ N

[then in particular πR ⊢ ¬χ = falseA : A → 2,

so πR ⊢ χ in this case],

and

πR ⊢ ¬ProvPRX(k, pχq) : N → 2, k free;

• 3rd, remaining, ill case is:

D (metamathematically) has no (total) points 1 → D, but is

nevertheless not empty.

Take in the above the (disjoint) union of 2nd subcase of 1st

case and of 2nd case, last assertion. And formalise last, remaining

case frame πR. Arrive at the following

Quasi-Decidability Theorem: p. r. predicates χ : A → 2 give

rise within theory πR to the following complete (metamathemat-

ical) case distinction:

(a) πR ⊢ χ : A → 2 or else

(b) πR ⊢ ¬χ ctA t : 1→ D∇χ → 2

(defined counterexample), or else

(c) D = D∇χ non-empty, pointless, formally: in this case we would

have within πR :

[D ◦̂µD =̂ true : 1 ⇀ N → 2]

and “nevertheless” for each p. r. point p : 1→ N

¬D ◦ p = true : 1→ N → 2.

143

We rule out the latter—general—possibility of a non-empty, point-

less predicate, for quantified arithmetical frame theory T by gödelian

assumption of ω-consistency which rules out above instance of ω-

inconsistency.

For frame πR we rule it out by (corresponding) metamathematical

assumption of “µ-consistency,” as follows:

Intermission on two variants of ω-consistency:

Gödelian assumption of ω-consistency—non-ω-inconsistency—for a

quantified arithmetical theory T reads:

For no p. r. predicate ϕ : N → 2

T ⊢ (∃n ∈ N) ϕ(n)

and (nevertheless)

T ⊢ ¬ϕ(0), ¬ϕ(1), ¬ϕ(2), . . .

Adaptation to (categorical) recursive theory πR is the following as-

sumption of µ-consistency, non-µ-inconsistency for πR :

For no p. r. predicate ϕ : N → 2

πR ⊢ ϕ(µϕ) = by def ϕ ◦̂µϕ =̂ true : 1 ⇀ 2

and

πR ⊢ ¬ϕ(0), ¬ϕ(1), . . . , ¬ϕ(num(n)), . . .

For quantified T first line reads: T ⊢ ∃nϕ(n), and hence µ-consistency

is equivalent to gödelian ω-consistency for such T.

Alternative to µ-consistency: π-consistency.

144

By assertion (iii) of Structure theorem in chapter 2—section

lemma—for theories Ŝ of partial p. r. maps, first factor µϕ : 1 ⇀ N

of (total) p. r. map true : 1 → 2 above is necessarily itself a—totally

defined—PR map: Intuitively, a first factor of a total map cannot

have undefined arguments, since these would be undefined for the

composition.

Now consider—here available—(external) point evaluation into nu-

merals12, externalisation of objective evaluation

ev : ⌈1, N⌉
∼=
−→ ⌈1, N⌉ × 1

ev

⇀ N
∼=
−→ νN ⊆ ⌈1, N⌉

of point codes into (internal) numerals, ev(u) =̌ u ∈ ⌈1, N⌉.

This externalised evaluation ev is assumed—meta-axiom of π-

consistency—to (correctly) terminate:

πR(1, N) ⊃ num N ∋ ev(p) =π p ∈ πR(1, N).

Comment: π-consistency means Semantical Completeness of de-

scent axiom (π), this axiom is modeled into the external world of p. r.

Metamathematic. But π-consistency is somewhat stronger: it assumes

termination of ev instead of non-infinite descent.

Non-µ-inconsistency (of πR) is then a consequence of π-consistency

of theory πR above:

πR ⊢ true = ϕ(µϕ) = ϕ ◦̂µϕ = ϕ ◦ µϕ : 1→ N → 2

entails πR ⊢ ¬ (¬ϕ(num(n0))), with ev(µϕ) = num(n0).

End of Intermission.

12Lassmann 1981

145

First consequence: Theory πR admits no non-empty predicative

subset {n ∈ N |ϕ(n)} ⊆ N such that for each numeral num(n) : 1→ N

πR ⊢ ¬ϕ ◦ num(n) : 1→ N → 2.

This rules out—in quasi-decidability above—possibility (c) for decision

domain D = D∇χ
⊆ N of decision operator ∇χ for predicate χ : A →

2, and we get two unexpected results:

Decidability theorem: Each free-variable p. r. predicate χ : A →

2 gives rise to the following complete case distinction within, by

πR :

• Under assumption of µ-consistency or π-consistency for πR :

– πR ⊢ χ(a) : A → 2 (theorem) or

– πR ⊢ ¬χ ctA µD : 1→ D∇χ → 2

(defined counterexample.)

• Under assumption of ω-consistency for set theory T :

– T ⊢ χ(a) : A → 2 (theorem) or

– T ⊢ ¬χ ctA µD : 1→ D∇χ → 2, i. e.

T ⊢ (∃ a ∈ A)¬χ(a).

Take here, in case of set theory T, for predicate χ, T’s own free-

variable consistency formula ConT = ¬ProvT(k, pfalseq) : N → 2,

and get, under assumption of ω-consistency for T, consistency

decidability for T.

146

This contradiction to (the postcedent) of Gödel’s 2nd Incom-

pleteness theorem shows that the assumption of ω-Consistency

for set theories T must fail.

Now take in the theorem for χ πR’s own free variable PR consis-

tency formula

ConπR = ¬ProvπR(k, pfalseq) : N → 2 and get

Consistency Decidability for descent theory πR :

• πR ⊢ ConπR : 1→ 2 or else

• πR ⊢ ¬ConπR, will say

πR ⊢ ProvπR(µ ProvπR(k, pfalseq), pfalseq) = true q.e.d.

Consistency provability theorem: πR ⊢ ConπR, under as-

sumption of π-consistency of theory πR.

Proof: Suppose we have 2nd alternative in consistency decidability

above,

πR ⊢ ProvπR(t, pfalseq),

t =def µ ProvπR(k, pfalseq) : 1→ N, necessarily (”total”) PR. Meta

p. r. point evaluation ev would turn—π-consistency—t into a numeral

num(k0) : 1→ N, k0 ∈ N, num(k0) =π t, hence

πR ⊢ ProvπR(num(k0), pfalseq).

But by derivation-into-proof internalisation we have

πR ⊢ ProvπR(num(k), pχq) (only) iff πR ⊢k χ, whence we would

get inconsistency πR ⊢k0
false, (and an inconsistent theory derives

everything.)

147

This rules out in fact 2nd alternative in consistency decidability

and so proves the theorem, here our main goal.

For proof of soundness of πR below we need

ν-Lemma for theory πR :

(i) family νA : A → [1, A]π = ⌈1, A⌉/=̌π is a natural transformation,

will say

(νB ◦ f)(a) = νB(f(a))

=̌π
k(a) pfq ⊙ νA(a) (∗)

= [1, f]π(νA(a)),

k(a) : A → N suitable PR.

As a commuting diagram:

A ∋ a
Â νA //

_

f

²²

νA(a) ∈ ⌈1, A⌉
_

⌈1,f⌉

²²
pfq ⊙ νA(a)

=̌π

B ∋ f(a) Â νB // νBf(a) ∈ ⌈1, B⌉

(ii) ν = ν(n) : N → [1, N]π is injective, i. e.

ν(m) =̌π ν(n) =⇒ m
.
= n.

148

(iii) same for all objects A of πR : νA = νA(a) : A → [1, A]π is

injective.

Proof: We show assertion (i) by structural recursion on

f : A → B.

anchor cases f = idA as well as f = 0 : 1→ N are obvious.

anchor case f = s : N → N :

ν(s(a)) =by def psq ⊙ ν(a) = [1, s] (ν(a)).

Map composition g ◦ f : A → B → C : combine the two commuting

squares for f and for g into commuting rectangle for g ◦ f.

cartesian Structure: use

ν(A×B) = by def ind ◦ (νA × νB) :

A × B → ⌈1, A⌉ × ⌈1, B⌉
∼=
−→ ⌈1, A × B⌉ → [1, A × B],

componentwise definition of (any) equality on cartesian product, as

well as the universal properties of the cartesian product A × B and

[1, A × B] ∼= [1, A] × [1, B], projections [1, ℓ], [1, r].

Iterated f §(a, n) : A×N → A of (already tested) endo f : A → A :

Straight forward by recursion on n, since iteration is repeated com-

position.

149

Assertion (ii) on injectivity of ν = ν(n) : N → [1, N]π :

ν(m) =̌π ν(n) =⇒ p
.
= q ⊙ (ν(m) × ν(n)) =̌π ptrueq

by internal substitutivity into predicative equality
.
=

⇐⇒ ⌈1,
.
= ⌉ ◦ (ν × ν)(m,n) =̌π ptrueq

=⇒ ν2[m
.
= n] =̌π ν2(true)

by naturality of transformation ν

=⇒ m
.
= n, by self-consistency (!) of theory πR.

General ν injectivity assertion (iii) now follows from that special

just above, from componentwise definition of ν—and componentwise

definition of injectivity—on cartesian products (and restriction of both

to predicative subobjects), via naturality of transformation [νA : A →

[1, A]π]A∈πR q.e.d.

This is to give self-consistency πR ⊢ ConπR to be equivalent to

Objective soundness theorem for descent theory πR :

• for πR-maps f, g : A → B :

πR ⊢ [pfq =̌π
k pgq] =⇒ f(a)

.
=B g(a) : N × A → 2.

• this gives in particular logical soundness of theory πR :

For a predicate χ = χ(a) : A → 2 we have

πR ⊢ ProvπR(k, pχq) =⇒ χ(a) : N × A → 2,

a ∈ A free, meaning here ∀a, and k ∈ N free, meaning here ∃k.

150

Proof: Granted self-consistency of theory πR means just injectiv-

ity of numeralisation

ν2 : 2→ [1,2]π = ⌈1,2⌉/=̌π.

The Lemma deduces that this injectivity carries over first to numer-

alisation νN = ν : N → [1, N]π, and then to all numeralisations

νB : B → [1, B]π, B a πR object.

Now compatibility of internal composition with internal equality as

well as—Lemma again—naturality of transformmation νA : A →

[1, A]π give

πR ⊢ [pfq =̌π
k pgq]

=⇒ pfq ⊙ νA(a) =̌π pgq ⊙ νA(a)

=⇒ νB(f(a)) =̌π νB(g(a))

=⇒ f(a)
.
= g(a),

the latter implication following from injectivity of νB : B → [1, B]π
q.e.d.

ω-completeness theorem for theory πR : theory πR admits the

following scheme of test by all internal numerals:

χ = χ(a) : A → 2 predicate,

k = k(a) : A → N such that

πR ⊢ ProvπR(k(a), pχq ⊙ νA(a)) : A → 2

(ω−Comp)

πR ⊢ χ : A → 2.

151

Proof: By ν naturality—within πR—the antecedent gives

πR ⊢ ProvπR(k′(a), ν2 ◦ χ(a)) : A → 2,

and from this, by πR self-consistency: injectivity of ν2 within πR,

πR ⊢ χ(a) : A → 2 q.e.d.

Interpretation: The νA(a), a ∈ A are jointly epic, νA lies dense

in [1, A]π. theory πR is in particular internally µ-consistent, object 1

is an internal separator, all of this with respect to πR maps (on object

language level). Would it work for (free variable) internal map codes

either?

Question: Can we then have/assume this test to work on the

external level too? can we have/assume at least object 1 to be/to

become a separator for category πR?

Attempt to an answer: logic/arithmetic externalisation of ax-

ioms and theorems, as opposite to—successfull—internalisation/ar-

ithmetisation seems me to be legitimate/consistent: both internalisa-

tion and externalisation can be seen/formalised as preserving/reflecting

logical invariants. A theory T for which this is not always possible—

Consistency/consistency provability—has a defect in this regard, it is

not sound in the technical sense, see Smorynski 1977.

Conclusion: descent theory πR—in the role of metamathematic—

derives its own consistency (formula) as well as—see below—the in-

consistency (formulae) for set theories T, the latter including Peano-

arithmetic PA+ with order of N[ω] to satisfy finite descent.

152

All of this under assumption, meta-axiom, that theory πR is π-

consistent, that it externalises its axiom (π) into (correct) termination

of (external) evaluation ev .

The πR (in part) internal version of µ-consistency, consequence of

π-consistency, is ω-completeness above.

Question: Are quantified arithmetical theories T, in particular the-

ory PA+, even inconsistent?

By Gödel’s 2nd Incompleteness theorem, first assertion, T 0 ConT

if T consistent, hence πR 0 ConT if T consistent: this since T is an

extension of πR. But then, by Decidability theorem above, for πR

and p. r. free-variable predicate ConT = ¬ProvT(k, pfalseq) : N → 2,

πR ⊢ ¬ConT, [a fortiori T ⊢ ¬ConT.]

Now if we take as metamathematic the external version PR of

fundamental theory PR, then the consistency questions are open.

But if we take as metamathematic an external version πR of

descent theory πR, then we get in fact consistency of p. r. theories

PR,PRa,PRXa—and of descent theory πR—as well as inconsis-

tency of set theories T.

Problems:

(1) Is axiom scheme (π) redundant, πR ∼= PRXa? Certainly not,

since isotonic maps from lexicographically ordered N×N, . . . , N+ ≡

N[ω] ≡ ωω to N are not available.

(2) Can we get internal soundness for theory πR itself? Up to now

we have only Objective soundness: this is the one considered by

153

mathematical logicians. Internal soundness (of evaluation ver-

sus the object language level) is a challenging open Problem with

present approach.

8 Discussion (tentative)

The claim for our set theories is that T proves ¬ConT which formally

denies Gödel’s second incompleteness theorem:

Its second postcedent and hence the assumption of ω-consistency

for PM and ZF. Gödel himself was said to be not completely con-

vinced of this assumption.

All of our theories, in particular PA ∼= PR∃, are standard recur-

sively axiomatized extensions of primitive recursive arithmetic PR.

Everybody then expects for these set theories T ω-consistency. But

this is only an assumption. Remains the possibility that this text

contains a formal irreparable error. If so, where?

Axiomatisation and predicate ProvT of “being a proof for”, are

constructed in categorical parallel to Smorynski

(and to Gödels predicate 45. xB y, x ist ein Beweis für die Formel

y, not to Rosser’s ProvR
T),

no room for “informally motivated” formal proof predicates.

References

[1] J. Barwise ed. 1977: Handbook of Mathematical Logic. North

Holland.

154

[2] H.-B. Brinkmann, D. Puppe 1969: Abelsche und exakte Kat-

egorien, Korrespondenzen. Lecture Notes in Math. 96.

[3] L. Budach, H.-J. Hoehnke 1975: Automaten und Funktoren.

Akademie-Verlag Berlin.

[4] C. Chevalley 1956: Fundamental Concepts of Algebra. Aca-

demic Press.

[5] H. Ehrig, W. Kühnel, M. Pfender 1975: Diagram Charac-

terization of Recursion. LN in Comp. Sc. 25, 137-143.

[6] H. Ehrig, M. Pfender und Studenten 1972: Kategorien

und Automaten. De Gruyter.

[7] S. Eilenberg, C. C. Elgot 1970: Recursiveness. Academic

Press.

[8] S. Eilenberg, G. M. Kelly 1966: Closed Categories. Proc.

Conf. on Categorical Algebra, La Jolla 1965, pp. 421-562.

Springer.

[9] S. Eilenberg, S. Mac Lane 1945: General Theory of natural

Equivalences. Trans. AMS 58, 231-294.

[10] U. Felgner 2012: Das Induktions-Prinzip. Jahresber. DMV

114, 23-45.

[11] M. P. Fourman 1977: The Logic of Topoi. Part D.6 in Barwise

ed. 1977. Handbook of Mathematical Logic. North Holland.

155

[12] G. Frege 1879: Begriffsschrift. Reprint in “Begriffsschrift und

andere Aufsätze”, 2te Auflage 1971, I. Angelelli editor. Georg

Olms Verlag Hildesheim, New York.

[13] P. J. Freyd 1972: Aspects of Topoi. Bull. Australian Math. Soc.

7, 1-76.

[14] K. Gödel 1931: Über formal unentscheidbare Sätze der Prin-

cipia Mathematica und verwandter Systeme I. Monatsh. der

Mathematik und Physik 38, 173-198.

[15] R. L. Goodstein 1957/64: Recursive Number Theory. A Devel-

opment of Recursive Arithmetic in a Logic-Free Equation Calcu-

lus. North-Holland.

[16] R. L. Goodstein 1971: Development of Mathematical Logic,

ch. 7: Free-Variable Arithmetics. Logos Press.

[17] P. T. Johnstone 1977: Topos Theory. Academic Press

[18] A. Joyal 1973: Arithmetical Universes. Talk at Oberwolfach.

[19] W. Kühnel, M. Pfender, J. Meseguer, I. Sols 1977:

Primitive recursive algebraic theories and program schemes. Bull.

Austral. Math. Soc. 17, 207-233.

[20] J. Lambek, P. J. Scott 1986: Introduction to higher order

categorical logic. Cambridge University Press.

[21] M. Lassmann 1981: Gödel’s Nichtableitbarkeitstheoreme und

Arithmetische Universen. Diploma Thesis. Techn. Univ. Berlin.

156

[22] F. W. Lawvere 1964: An Elementary Theory of the category

of Sets. Proc. Nat. Acad. Sc. USA 51, 1506-1510.

[23] F. W. Lawvere 1970: Quantifiers and Sheaves. Actes du

Congrès International des Mathématiciens, Nice, Tome I, 329-

334.

[24] F. W. Lawvere, S. H. Schanuel 1997, 2000: Conceptual

Mathematics. Cambridge University Press.

[25] S. Mac Lane 1972: Categories for the working mathematician.

Springer.

[26] M. E. Maietti 2010: Joyal’s arithmetic universe as list-

arithmetic pretopos. Theory and Applications of Categories

24(3), 39-83.

[27] G. Osius 1974: Categorical set theory: a characterisation of the

category of sets. J. Pure and Appl. Alg. 4, 79-119.

[28] B. Pareigis 1969: Kategorien und Funktoren. Teubner.

[29] B. Pareigis 2004: Category Theory. pdf Script, author’s Home

page LMU München.

[30] R. Péter 1967: Recursive Functions. Academic Press.

[31] M. Pfender 1974: Universal Algebra in S-Monoidal Categories.

Algebra-Berichte Nr. 20, Mathematisches Institut der Universität

München. Verlag Uni-Druck München.

157

[32] M. Pfender 2008b: RCF 2: Evaluation and Consistency.

arXiv:0809.3881v2 [math.CT]. Has a gap.

[33] M. Pfender 2008c: RCF 3: Map-Code Interpretation via Clo-

sure. arXiv:0809.4970v1 [math.CT]. Has a gap.

[34] M. Pfender 2012: α version of present text.

http://www3.math.tu-berlin.de/preprints/files/Preprint-38-

2012.pdf

[35] M. Pfender 2013a: RCF 3: Inconsistency Provability for Set

Theory. Preliminary submission to TAC.

[36] M. Pfender, M. Kröplin, D. Pape 1994: Primitive Recur-

sion, Equality, and a Universal Set. Math. Struct. in Comp. Sc.

4, 295-313.

[37] M. Pfender, R. Reiter, M. Sartorius 1982: Constructive

Arithmetics. Lecture Notes in Math. 962, 228-236.

[38] B. Poonen 2008: Undecidability in Number Theory. Notices of

the AMS 55, 344-350.

[39] W. Rautenberg 1995/2006: A Concise Introduction to Math-

ematical Logic. Universitext Springer 2006.

[40] R. Reiter 1980: Mengentheoretische Konstruktionen in arith-

metischen Universen. Diploma Thesis. Techn. Univ. Berlin.

[41] R. Reiter 1982: Ein algebraisch-konstruktiver Abbil-

dungskalkül zur Fundierung der elementaren Arithmetik. Disser-

tation, rejected by Math. dpt. of TU Berlin.

158

[42] E.P. Robinson, G. Rosolini 1988: Categories of partial maps.

Inform. Comp. 79, 94-130.

[43] L. Romàn 1989: Cartesian categories with natural numbers ob-

ject. J. Pure and Appl. Alg. 58, 267-278.

[44] M. Sartorius 1981: Kategorielle Arithmetik. Diploma Thesis.

Techn. Univ. Berlin.

[45] D. Scott 1975: Lambda calculus and recursion theory. Proc.

3rd Scandinavian Logic Symposium (Univ. Uppsala 1973), 154-

193. Stud. Logic Found. Math. 82, North Holland, Amsterdam.

[46] J. R. Shoenfield 1967: Mathematical Logic. Addison-Wesley.

[47] Th. Skolem 1970: Selected Works in Logic. Universitetsforlaget

Oslo - Bergen - Tromsö.

[48] C. Smorynski 1977: The Incompleteness Theorems. Part D.1

in Barwise ed. 1977. Handbook of Mathematical Logic. North

Holland.

[49] A. Tarski, S. Givant 1987: A formalization of set theory with-

out variables. AMS Coll. Publ. vol. 41.

[50] M. Tierney 1972: Sheaf theory and the continuum hypothesis.

Toposes, algebraic geometry and logic. LN in Math. 274, 13-42.

[51] A. Yashuhara 1971: Recursive function theory and logic. Aca-

demic Press.

159

Address of the author:

Michael Pfender

Institut f. Mathematik MA 1-1

Technische Universitaet Berlin

Str. d. 17. Juni 136

D-10623 Berlin

michael.pfender@campus.tu-berlin.de

160

	Primitive Recursion
	The fundamental theory PR of primitive recursion
	The full scheme of primitive recursion
	Uniqueness of the NNO N
	A monoidal presentation of theory PR
	Introduction of free variables
	Goodstein FV arithmetic
	Sum objects and definition by distinction of cases
	Substitutivity and Peano induction
	Integer division and related

	Predicate Abstraction
	Extension by predicate abstraction
	Predicate calculus

	Partial Maps
	Theory of partial maps
	Structure theorem for PR"0362Ra:
	Equality definability for partials
	Partial-map extension as closure
	-recursion without quantifiers
	Content driven loops

	Universal Sets and Universe Theories
	Strings as polynomials
	Universal object X of numerals and nested pairs
	Universe monoid PRX
	Typed universe theory PRXa

	Evaluation of p.r. map codes
	Complexity controlled iteration
	PR code set
	Iterative evaluation
	Evaluation characterisation

	PR Decidability by Set Theory
	PR soundness framed by set theory
	PR-predicate decision by set theory
	Gödel's incompleteness theorems

	Consistency Decision within R
	Termination conditioned evaluation soundness
	Framed consistency
	R decision

	Discussion (tentative)

