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 13 

Abstract 14 

By improving energy management, smart home applications may reduce household energy consumption. This 15 

study therefore examines environmental saving potentials of a smart home system (SHS) with smart heating in 16 

Germany from a life cycle perspective. Research on the energy saving potential of an SHS usually focuses on 17 

single applications rather than the entire system and hence misses life cycle impacts of the system itself. To 18 

overcome this limitation, this study takes an interdisciplinary user-driven approach. We conduct an LCA of an 19 

average SHS in Germany that includes smart heating for five heating energy saving scenarios. The components 20 

of a representative SHS were determined by an online survey among users of smart homes with smart heating 21 

(N=375) in Germany. As a precondition, net savings can only be achieved when the environmental effects from 22 

savings in household heating energy exceed the effects from producing and operating an SHS. The results of our 23 

case study for the impact categories Climate Change (GWP), Primary Energy Demand (PED), Abiotic Depletion 24 

(ADP) and Ecotoxicity (Ecotox) are heterogeneous: we show that savings of GWP and PED can be achieved by 25 

an SHS that includes smart heating. However, minimum savings of 6% of annual heating energy over 3.1 years 26 

for PED and over 2.4 years for GWP need to be realised by an SHS in order to exceed the environmental effects 27 

caused by their production and operation. For ADP and Ecotox, the smart home represents a further 28 
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environmental burden. We show that including both the life cycle perspective and user-driven parameters is 29 

crucial when determining the total environmental effects of smart homes. Future research should further explore 30 

these links between the user perspective and LCA. 31 

Keywords 32 

Home Energy Management System (HEMS); Smart Home; Information and Communication Technology (ICT); 33 

Life cycle assessment (LCA); higher-order effect; user behaviour 34 

1. Introduction  35 

Private households’ energy consumption accounts for approximately 25% of total energy consumption 36 

throughout the European Union (eurostat, 2018a), and space heating accounts for approximately two thirds of the 37 

energy consumed by private households (eurostat, 2018b). The heating sector thus plays a decisive role in 38 

reducing total energy consumption and associated greenhouse gas (GHG1) emissions. 39 

Smart home technologies are discussed as one potential technical approach to reduce household energy 40 

consumption and associated GHG emissions (Floričić, 2020; Hargreaves et al., 2018; Sintov and Schultz, 2017). 41 

The term “smart home” is used to describe various networked applications in the home. Various different 42 

definitions of the term "smart home" can be found in the literature. We adopt the definitions provided by Gram-43 

Hanssen and Darby (2018) as well as by Strengers und Nicholls (2017), which understand smart homes as homes 44 

“in which a communications network links sensors, appliances, controls and other devices to allow for remote 45 

monitoring and control by occupants and others” (Gram-Hanssen and Darby, 2018). The purpose of a smart 46 

home is to provide frequent services such as energy management, home automation, security or comfort to 47 

occupants (Strengers and Nicholls, 2017). The definition does not include requirements for the degree of 48 

networking in the household, nor does it include requirements for specific functions and technical standards to be 49 

met. As will be shown below, this omission also affects questions relating to the environmental modelling of the 50 

system, e.g., choice of product system and system boundaries. 51 

The energy-saving potential of a smart home system (SHS) stems from process monitoring and automation 52 

(Habibi, 2017; van Dam et al., 2013) by using sensors and intelligent (learning) algorithms. Applications include 53 

regulation of room temperature, e.g. by smart thermostats or smart window control; lighting control depending 54 

on room occupancy, e.g. by occupancy based lighting or smart lighting; recommendations for energy savings 55 

                                                           
1 Abbreviations: GHG - Greenhouse gas; SHS - Smart home system; LCA - Life cycle assessment; ICT - Information and communication 

technology; HEMS - Home energy management system; EoL - End of life; RF - Radio frequency; GWP - Climate Change; PED - Primary 
Energy Demand; ADP - Abiotic Depletion; Ecotox - Ecotoxicity; FU - Functional unit; PCB - Populated circuit board  
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through visual feedback (e.g. home energy monitoring); or optimisation of overall energy consumption through 56 

the combination of different smart home technologies in the smart home (IEA 4E, 2018). In contrast to the other 57 

functions, the saving potential of smart heating management is considered particularly high (Beucker et al., 58 

2016). There are few studies to date that attempt to quantify energy saving potentials of smart heating: 59 

Depending on the technology, heating energy savings are up to 10% for smart thermostats and smart temperature 60 

control of specific rooms (‘smart zoning’), and up to 20% for smart window control and home energy 61 

monitoring (Ford et al., 2017; NEEP, 2015; Urban et al., 2016). In a recent study, the International Energy 62 

Agency (2018) provides a detailed overview of different smart home technologies and their corresponding 63 

energy saving benefits. However, due to the small number of studies and the different modelling approaches, no 64 

general conclusions can yet be drawn on the energy saving potentials of these different technologies (IEA 4E, 65 

2018).  66 

For a more accurate depiction of environmental effects of smart home technologies however, it is necessary to 67 

not only consider the energy saving potential of specific technologies, but also environmental effects from 68 

producing and operating these technologies as well as unintended side effects from their application (Pohl et al., 69 

2019a). The latter effects result from behavioural changes due to efficiency gains (rebound effects) or from 70 

increased device purchase (induction effects) (Rattle, 2010; Walnum and Andrae, 2016). In this context, motives 71 

for using the smart home also play a role in the overall environmental assessment (Frick and Nguyen, in press). 72 

This was also shown in a qualitative interview study (Jensen et al., 2018), which identified differences in the 73 

composition of smart home systems depending on the type of usage motive (help/comfort, optimisation, and 74 

hedonism).  75 

However, previous research on the environmental effects of an SHS has a rather product-related focus, which 76 

either lacks a life cycle perspective or only addresses single applications and, hence, neglects environmental 77 

effects of other functions, which are dependent on user behaviour and choices in the smart home composition 78 

(van Dam et al., 2013). As a consequence, the importance of SHS in reducing energy demand may be 79 

overestimated. One of the reasons considered is the lack of integration of variances in user behaviour in 80 

environmental assessment (Geiger et al., 2017; Girod et al., 2011; Polizzi di Sorrentino et al., 2016). However, 81 

methodological proposals for a comprehensive environmental assessment of products that also includes effects 82 

from the product’s application are still pending. 83 

To address these research gaps, we pursue an interdisciplinary approach for a more systematic integration of user 84 

decisions and user behaviour into life cycle assessment (LCA). We focus on smart homes that include smart 85 
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heating because those smart home types have the potential to substantially reduce energy consumption. The 86 

study’s rationale is to measure environmental effects of average smart home systems that exist in reality. 87 

Therefore, we do not only assess the impact of smart heating devices (saving potential), but also include other 88 

components that are part of an average SHS (induction effects) as well as reported changes in usage behaviour 89 

(rebound effects) to assess the environmental effects of an SHS. We use primary data from a user survey among 90 

smart home users in Germany for our composition of the average SHS in Germany and include all respective 91 

components into our life cycle modelling. 92 

We address the following research question: What energy savings must a SHS achieve in order to exceed 93 

environmental effects caused by producing and using the SHS? This question touches on questions concerning 94 

the composition of an average SHS, the environmental relevance of devices that cannot be attributed to smart 95 

heating and whether significant differences can be found between single impact categories.  96 

The paper is structured as follows. In Section 2, we describe the state of research on environmental effects of the 97 

smart home and identify research gaps in assessing the environmental effects of smart home applications. To 98 

address these gaps, we present an interdisciplinary conceptual framework combining LCA and behavioural 99 

research that allows us to systematically integrate the user perspective into LCA in Section 3. Building on that, 100 

we present our interdisciplinary methodology in Section 4. Details of the results are analysed in Section 5, 101 

followed by the discussion of relevant findings in Section 6. We end with concluding remarks in Section 7. 102 

2. State of research 103 

A growing body of research is concerned with energy saving potentials and the environmental effects of smart 104 

homes. It includes studies that quantify the energy saving potential of smart home applications on the basis of 105 

operational energy demand. For instance, Kersken et al. (2018) compared smart heating control systems and 106 

estimated average savings potentials of 8-19% of final energy for heating and hot water, depending on household 107 

size and building type and age. In a field study, Rehm et al. (2018) determined an average heating energy 108 

reduction of 4% with smart heating control. The study involved 120 households and found a maximum energy 109 

reduction of more than 30% by using smart heating devices. At the same time, however, the study found that 110 

energy demand increased by more than 25%, an increase said to be due to incorrect handling and monitoring of 111 

the system as well as to changes in the heating surface (Rehm et al., 2018). Walzberg et al. (2017) investigated 112 

the sustainability potential of smart homes using agent-based modelling. Results showed a reduction potential of 113 

smart energy feedback information displayed to users of up to 2% for electricity consumption, climate change 114 

and further impact factors. When potential rebound effects are also considered, reduction potential can be 115 
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lowered by up to 24%, leading to a maximum reduction of 1.5% of overall electricity demand (Walzberg et al., 116 

2017). However, these studies have been criticised for taking into account only the operational phase (van Dam 117 

et al., 2013). Since environmental effects along the life cycle of the SHS are not considered, those studies give an 118 

incomplete picture of the associated environmental impact.  119 

Several studies have investigated energy saving potentials of smart home technologies from a life cycle 120 

perspective. Castorani et al. (2018) investigated the environmental effects of introducing smart kitchen hoods. 121 

The results show that smart kitchen hoods have similar energy savings and GHG reduction potentials as 122 

manually operated kitchen hoods. However, sensors and Information and communication technology (ICT) 123 

equipment of the smart kitchen hood lead to increases in metal depletion and human toxicity (Castorani et al., 124 

2018). Van Dam et al. (2013) analysed three different home energy management systems (HEMS; energy 125 

monitor, energy management device, complex energy management system). The results show that the 126 

cumulative energy demand of HEMS differ by a factor of up to 10 while energy payback times are between 6 127 

and 18 months, depending on the device and energy saving scenario (van Dam et al., 2013). In contrast, Beucker 128 

et al. (2016) computed low payback times for energy and GHG emissions from energy management systems in 129 

residential buildings with central heating and potential energy savings of 20% per year. Louis and Pongrácz 130 

(2017) investigated environmental effects of implementing HEMS as a function of the level of automation and 131 

number of inhabitants. Their results showed that the smart home application contributed to decreasing energy 132 

demand (level of automation: smart metering, two or more inhabitants) or increasing energy demand (level of 133 

automation: energy management system with/without automation, irrespective of number of inhabitants) (Louis 134 

and Pongrácz, 2017).  135 

Even the life cycle studies presented above only provide an incomplete picture of environmental effects of smart 136 

applications because the calculated energy savings mostly apply to single applications (e.g., smart heating) (van 137 

Dam et al., 2013). Other functions, in particular those that do not contribute to potential energy savings as well 138 

as variations in user behaviour or possible counteracting effects such as rebound effects, have barely been 139 

investigated (Ford et al., 2017; Pohl et al., 2019a; van den Brom et al., 2018). Overall, this omission may lead to 140 

the importance of smart home systems in reducing energy demand being overestimated. 141 

3. Framework 142 

In this paper, we apply the framework of environmental effects of ICT initially presented by Berkhout and 143 

Hertin (2001) and further developed by Hilty and Aebischer (2015) and Pohl et al. (2019a) to the case of smart 144 

homes. A central finding of the framework was that, in addition to the life cycle effects of the devices, effects 145 
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from application and resulting changes in user behaviour are also decisive for the environmental impact of ICT. 146 

Based on this framework, we develop a specific LCA methodology that incorporates the relevance of user 147 

behaviour and user decisions and their impact on LCA modelling. In the following, the conceptual approaches 148 

regarding the environmental effects of smart homes and their assessment as part of an LCA will be introduced. 149 

3.1 Environmental effects of smart homes 150 

The framework of environmental effects of ICT (Pohl et al., 2019a) describes first-order environmental effects 151 

along the ICT product life cycle due to raw material demand, production, use and disposal and higher-order 152 

environmental effects due to application on micro and macro levels. The latter effects can be positive (e.g., 153 

through optimisation and substitution of processes) or negative (e.g., through rebound effects and induction 154 

effects). Both rebound and induction effects can result from behavioural changes due to efficiency gains 155 

(rebound effects) or from an increased choice of options (induction effects) (Rattle, 2010; Walnum and Andrae, 156 

2016).  157 

The framework of environmental effects of ICT can also be applied to smart homes. First-order effects of an 158 

SHS describe the environmental effects related to production, system operation and disposal of devices and ICT 159 

infrastructure (communication network and data centres). Higher-order effects describe intended and unintended 160 

environmental effects of applying the SHS. From an environmental perspective, the intended function is 161 

optimisation/management and control of the energy system with the overall goal of saving energy at a household 162 

level. Unintended effects may stem from applying and using additional smart home services (i.e., comfort, 163 

security) that do not contribute to reducing resource use (induction effect) or from behavioural changes such as 164 

increases in heating frequency and heating intensity in the (smart) home (rebound effect). We endeavour to 165 

include these user-related effects in addition to the product perspective for a more comprehensive environmental 166 

assessment. 167 

3.2 Integrating the user perspective in Life Cycle Assessment 168 

It follows from the above framework that user decisions and user behaviour can play an important role when 169 

assessing the environmental performance of products. We describe the inclusion of user decision and behaviour 170 

in LCA as user perspective in LCA. Those user decisions and behaviour form one aspect considered here under 171 

the broader term of “user-driven parameters in LCA”, which can be divided into product parameters and use 172 

parameters (see Fig. 1). The concept is based on the approach by Pohl et al. (2019b). By choosing different 173 

devices and settings, the user consciously or unconsciously determines product parameters. Product parameters 174 

include choice of products (in number and size) and services and choice of additives. Accounting for user 175 
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behaviour with regard to product parameters reveals how user decisions can have an effect not only on the use 176 

phase but also on the definition of the product system. For instance, users may purchase an SHS that includes 177 

other devices in addition to smart heating. Including such information in the LCA would allow induction effects 178 

to be accounted for. Furthermore, there is a direct link from a user’s choice of products and services to the 179 

technology parameters of specific products. These parameters are producer-driven, not user-driven, and include 180 

specifications on eco-design principles, the device’s energy efficiency, sourcing of raw material and technical 181 

service life.  182 

 183 
Fig. 1 The user perspective in LCA and its effect on LCA modelling characteristics (own work, adapted from Pohl et al., 2019b). 184 

Use parameters focus on use behaviour and include use frequency and intensity, active service life and specific 185 

choices regarding End of Life (EoL) scenarios. For instance, users may enjoy higher room temperatures or may 186 

heat more rooms than before as a result of their SHS. Including such information in the LCA would allow 187 

rebound effects to be accounted for. Users may also decide on specific EoL scenarios, i.e., whether products are 188 

disposed of and properly recycled or thrown into residual waste. 189 

Socio-demographic information on the users (e.g., gender, income, education, housing) is also relevant when 190 

considering the user perspective in the LCA. For instance, information regarding the housing situation helps 191 

specify the functional unit (FU) or may be useful for interpreting the results. In summary, integrating the user 192 

perspective into LCA affects, in particular, the goal and scope phase. In addition, information regarding product 193 

and technology parameters may also have an influence on the production phase. Product and use parameters may 194 

affect use phase modelling. Technology and use parameters may affect the EoL phase. Helpful tools for 195 
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including the user perspective into environmental modelling can be empirical methods from behavioural or 196 

social sciences, e.g., surveys, interviews or Living Labs (Pohl et al., 2019b; Polizzi di Sorrentino et al., 2016; 197 

Suski et al., 2020). 198 

4. Methodology and operationalisation 199 

As outlined above, the aim of the case study was to determine the size of energy savings that must be realised by 200 

an SHS in order to exceed the environmental effects caused by its production/operation and by unintended or 201 

intended side effects (i.e., induction effects). To estimate these minimum requirements for the energy savings of 202 

an SHS, an LCA of a typical smart home system in Germany was performed. Composition of the SHS and 203 

operationalisation of user-driven parameters in the smart home were based on an online survey among smart 204 

home users in Germany. Fig. 2 provides a flowchart depicting our research methodology. In the following, we 205 

first describe briefly the methodology underlying the online survey and which of the user-driven parameters 206 

were operationalised, before describing our LCA and the approach for calculating the minimum saving effects of 207 

an SHS.  208 

209 
Fig. 2: Research methodology 210 

4.1 Online survey  211 

The purpose of the online survey was to obtain information about (i) the average housing situation of smart 212 

home users in Germany, (ii) the average composition of an SHS that includes smart heating in Germany, and (iii) 213 

self-reported changes in heating behaviour after introducing an SHS. 214 

Survey sample An independent institute for data collection for market and social research (norstat) recruited the 215 

smart home group and the control group.  In the smart home group, N = 8151 individuals were screened as to 216 

whether their household had a smart heating system, of which initially N = 644 participants (7.9%) completed 217 

the questionnaire. Of the initial respondents, 269 were excluded due to inconsistent answering, resulting in a 218 
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final sample of N = 375 (4.6%). The control group consisted of an initial sample of N = 511 with no screening, 219 

out of which 112 were excluded for various reasons, resulting in a final sample of N = 399.  220 

Survey procedure The questionnaire for smart home users started with the mentioned screening question for 221 

smart heating systems (“Do you have a smart heating system?”). This screening was followed by assessing the 222 

number of smart home devices. This was measured step-wise as follows: First, the participants were asked 223 

whether they owned electronic device types; second, a filter question assessed how many of each device type 224 

they owned and; third, how many of the devices were connected to the smart home. All of the devices that were 225 

indicated as connected to the smart home were counted as part of the SHS. Single-choice items assessed how the 226 

smart devices were connected (e.g., cable, radio frequency (RF)) and how the users controlled their smart homes 227 

(e.g., smartphone, voice control). Then, household data (e.g., living space, source of heating energy) was 228 

acquired. Next, we measured heating behaviour during the heating season: First, filter questions assessed 229 

whether participants apply different heating temperatures to bedrooms and living areas, as well as during 230 

daytime and night-time. Next, participants could indicate the heating temperature, depending on their indication 231 

(during daytime and night-time, in bedrooms and living areas). Finally, sociodemographic information, including 232 

the living situation, was collected. In the control group, the same questionnaire was completed, with a few 233 

differences. An overview of the control and sample group is given in Table 1.  234 

Table 1 Sample and control group. 235 

  
Smart home with smart heating system  Control group 

N = 375 N = 399 

Individual level 

Age M (SD) 47.99 (13.2) 52.8 (17.5) 

Gender 

29.1% female 48.6% female 

70.6% male 51.4% male 

0.3% other  

Household level 

Household income (Median) 3000 – 3500 € 2000 – 2500 € 

Persons in the household (SD) 2.78 (1.2) 2.3 (1.32) 

Square meters (Median) 100-120 m2  80-100 m2 

House type 

61.6% 1-2 family home  42.3% 1-2 family home 

37,9% apartment in a building with 3 or 

more apartments 

57.6% apartment in a building with 3 or 

more apartments 

0.5% other  2.8% other  

Heating energy source 

11.0% electricity 13.0% electricity 

58.9% gas 54.9% gas 

19.2% oil 24.3% oil 

3.8% solid fuel (e.g., wood, coal) 3.5% solid fuel (e.g., wood, coal) 

7.1% other  7.3% other  

 236 

4.2 Operationalisation of user-driven parameters in LCA 237 

We now explain how primary data from the online survey was fed into the LCA and which of the user-driven 238 

parameters introduced in the section above (see also Fig. 1) were addressed and operationalised in the study. 239 
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Operationalisation of the user perspective in our LCA and information on the primary and secondary data 240 

sources are summarised in Table 2. Use parameters as well as parts of product parameters were derived from 241 

primary data assessed in the online survey: Changes in heating intensity and heating frequency of the smart 242 

home (use parameters) were modelled in LCA as expenditure during use phase. Average number and coverage 243 

of smart heating devices and other smart home components (product parameters) form the smart home product 244 

system. Furthermore, the definition of the FU was specified by information on the living conditions of the 245 

average smart home user. For the device performance (technology parameters), as well as for the energy saving 246 

scenarios (product parameter) information was obtained from secondary data (e.g., data sheets and other 247 

technical documentation provided by a major smart home supplier in Germany).  248 

Table 2 Operationalisation of the user perspective in LCA in the smart home case study 249 
Parameter in 

LCA 
Operationalisation in LCA Data sources 

Environmental 

effects 

Primary data from online survey 

Use Parameters 

Proportionate increase/reduction of 

average annual heating energy demand 

due to changes in heating behaviour; 

included as expenditure of the system 

Changes in heating temperature and 

day/night frequency of rooms heated of 

smart home group compared to control 

group 

Rebound effects 

Product 

parameters 

Definition of the smart home product 

system 

Number and coverage of smart heating 

devices and smart home infrastructure 

First-order 

effects 

Number and coverage of other smart 

home components  

Induction 

effects 

Socio-

demographic 

information 

Specification of the functional unit Information on the average housing size . 

Secondary data from literature 

Product 

parameters 
Included as savings of the system 

Definition of energy saving scenarios 

from the application of smart heating 

according to Beucker et al. (2016), 

Rehm et al. (2018), Urban et al. (2016) 

Optimisation 

effects 

Technology 

parameters 
Inventory data 

Technical files exemplarily from one of 

the main producers in Germany, 

desktop research regarding load and 

sourcing of raw materials of devices 

First-order 

effects 

4.3 Life cycle assessment of an average smart home system 250 

For Germany, the average environmental effects of an SHS that includes smart heating is determined by 251 

conducting an LCA following ISO 14040 (2006).  252 

Aim and scope The goal of the LCA was to assess minimum saving effects that need to be realised by the 253 

average SHS in order to exceed the environmental effects caused by its production and operation. Except for 254 

production, the scope of the study is Germany. Country-specific data on the German energy grid mix (reference 255 
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year 2016) was used. Final assembly was assumed to take place in Germany. Sourcing of the components was 256 

assumed to take place worldwide, except for the device housing, which was manufactured in Germany. Our 257 

study took into account production phase and use phase. This limitation was justified because a large number of 258 

LCA studies on ICT devices and applications show that, in particular, the production phase and use phase are 259 

decisive, while the environmental effects due to transportation and EoL are negligible (Castorani et al., 2018; 260 

Louis and Pongrácz, 2017; Teehan and Kandlikar, 2012). Only the operational phase was considered for the ICT 261 

infrastructure because, for GWP and PED, effects from producing the ICT infrastructure are negligible 262 

(Malmodin et al., 2014). In addition, little data is available for the energy demand of an ICT infrastructure over 263 

and above that of the operational energy, and what is available is inconsistent.  264 

A proxy device was defined that represented the components of the SHS based on weight. The FU was defined 265 

based on a proposal by Suski et al. (2020), who suggest expanding the FU to household level in order to include 266 

all types of user-driven parameters into the LCA. Using the living conditions of the average smart home user 267 

from our online survey, the FU was defined as “110 m2 apartment space in Germany managed (monitored and 268 

controlled) for 5 years”. The product system was defined as a “typical SHS that encompasses heating in 269 

Germany”. The system boundaries of the SHS used on average include the SHS devices and the ICT 270 

infrastructure (see Fig. 3).  271 

 272 
Fig. 3 System boundaries of the SHS 273 

The different components that comprise the average SHS based on our survey are described in detail in the 274 

results section below. Since there is no standard regarding the functions that constitute an SHS, we followed the 275 

typology of usage motives by Jensen et al. (2018) and accordingly included smart home devices in the product 276 

system that provide the functions energy management, security, home automation or comfort. All other devices 277 

used to access the system for monitoring and control are outside the system boundaries, as they are primarily 278 

used for other purposes. Outside the scope were also all appliances related to heating, such as boilers and 279 

radiators. In line with IEA 4E (2019), the life time of the devices was set to 5 years.  280 
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Sensitivity analysis was used to assess the relevance of changes in operational energy demand, of changes in 281 

energy grid mix and of changes in the system’s active service life. Fig. 4 provides a matrix displaying impact 282 

categories, different SHS settings and five energy savings scenarios that were analysed. 283 

 284 
Fig. 4 Overview of impact categories, energy saving scenarios, and SHS settings considered in the study 285 

Inventory Analysis GaBi LCA software was used for inventory analysis and impact assessment. If available, 286 

inventory data was taken from the GaBi database Service Pack 39, except for electric connector, printed wiring 287 

board, and heat production from hard coal briquette stove, where inventory data was taken from the ecoinvent 288 

3.5 database. The different components of the average SHS were included proportional to average coverage 289 

among the smart home users and number of devices per component, based on the online survey. Related 290 

technical data (weight, load) was derived from product data sheets of major German smart home suppliers and 291 

from reports of the International Energy Agency. In supplementary material A we display detailed information 292 

on technical data and references. Average coverage and number of components/devices of the SHS are described 293 

in the results section below. 294 

Together with a major supplier of smart home devices, control unit “X1” was selected as a weight-based proxy 295 

device representing the composition/production phase of all components of the SHS. The reasons for this 296 

simplification were twofold. First, based on the case study design, it was not possible to assign the average SHS 297 

to a specific supplier. A simplification therefore had to be made. Second, collecting inventory data for ICT 298 

devices is challenging (Moberg et al., 2014; van Capelleveen et al., 2018). Due to the proportionately high 299 

weight of the populated circuit board (PCB) in the device, it can be assumed that the inclusion of effects from 300 

production is slightly above average. This device was consciously chosen to ensure that the environmental 301 

effects from its production were fully covered. The proxy device was disassembled and weighed/measured. In 302 

line with other studies, the printed wiring board for a laptop mainboard was selected as the PCB. In 303 

supplementary material B we provide modelling details.  304 

The energy use model for downstream energy use was energy use per device (IEA 4E, 2019). We assumed that 305 

all devices ran under full load. This assumption was necessary due to a lack of data regarding average standby 306 

times of smart home devices. For calculations, the German grid mix was assumed. Upstream energy was 307 
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required for transmitting data over the Internet and processing data in data centres. Here, the energy use model 308 

was energy intensity (IEA 4E, 2019), and data transmission in kWh/GB was calculated for home and access 309 

network, core and edge network and data centre, in line with the work by Schien and Preist (2014). For upstream 310 

energy, the EU-28 grid mix was assumed. Currently, no information is available on the average amount of data 311 

transmitted per year by smart home devices. Therefore, the average global IP traffic per year by Internet-of-312 

Things devices (Barnett et al., 2018) was used here. In supplementary material B we provide modelling details. 313 

Heating energy saved due to the smart home’s optimisation effect was included in the assessment as savings. 314 

Five heating energy saving scenarios (2%, 4%, 6%, 10%, and 20% of annual heating energy demand) were 315 

applied to the average heating energy consumption of German households, based on the average apartment size, 316 

apartment type and heating energy source according to the online survey (see also Table 1) and energy 317 

consumption statistics of German households (co2online, 2019). For each heating energy source, reference 318 

heating appliances of households were defined in line with Tebert et al. (2016). The inclusion of specific heating 319 

appliances is necessary in order to take into account the appliances’ different degrees of efficiency per unit of 320 

thermal energy provided. In supplementary material B we provide modelling details. 321 

Impact Assessment The results are presented for the impact categories Climate Change (ReCiPe 2016 v1.1 (H)), 322 

Primary Energy Demand (from renewable and non-renewable resources), Abiotic Depletion (CML2001 - Jan. 323 

2016, elements) and Ecotoxicity (USEtox 2.1, recommended). The indicators Climate Change (GWP) and 324 

Primary Energy Demand (PED) were chosen to analyse the optimisation effects related to the energy savings and 325 

GHG savings of the SHS from a life cycle perspective. The indicator Abiotic Depletion (ADP) was chosen to 326 

provide an insight into the mineral material present in the smart home. Ecotoxicity (Ecotox) is a measure for 327 

assessing the toxicity of all emissions from the technosphere to air, water and soil and is also used to analyse the 328 

ratio of optimisation effects and first-order effects from producing and operating the devices. We carefully chose 329 

the impact categories to address different environmental impacts and to investigate potential burden shifting 330 

through implementing SHS.  331 

4.4 Calculation of net saving effects 332 

Net saving effects of an SHS can only be observed when the energy saved by having smart heating (optimisation 333 

effect) exceeds the effects that contribute to increasing resource consumption (through producing and operating 334 

the system as well as through changing consumption patterns).  335 
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The break-even point 𝐸𝐵𝐸, when environmental effects from energy saved 𝐸𝑆𝑎𝑣𝑒𝑑  equal environmental effects 336 

that stem from production 𝐸𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛  and operation 𝐸𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and changes in behaviour 𝐸𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟  can be 337 

described as follows:  338 

𝐸𝐵𝐸(𝑡) = 𝐸𝑠𝑎𝑣𝑒𝑑(𝑡) = 𝐸𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + (𝐸𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐸𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟) ∙ 𝑡 339 

Except for effects from production, all other effects are time-dependent. The equation, when resolved to t, gives 340 

payback time 𝑡𝑃, which describes the point in time at which the effects from production and operation/behaviour 341 

change have been amortised within a particular savings scenario: 342 

𝑡𝑃 =
𝐸𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝐸𝑠𝑎𝑣𝑒𝑑 − 𝐸𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐸𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟
 343 

Since information about the actual optimisation potential of the SHS cannot be measured directly through the 344 

survey method, we follow the approach of van Dam et al. (2013) and define energy savings scenarios for the 345 

smart heating device. We draw on results from previous studies by Beucker et al. (2016), Rehm et al. (2018) and 346 

Urban et al. (2016) and assume five energy saving scenarios of 2%, 4%, 6%, 10% and 20% of annual heating 347 

energy demand to determine under which conditions in which scenarios the break-even point is reached.  348 

5. Results 349 

First in this section, we present how, using the results of the online survey, we defined the SHS. Second, we 350 

present results from our LCA and discuss net saving effects of the SHS for five saving scenarios.  351 

5.1 Description of the smart home system and relevant user behaviour 352 

The results of the online survey provide information on the composition of the SHS as well as information on 353 

changes in heating behaviour in the smart home. In Fig. 5, the average smart home based on the online survey is 354 

displayed. The average SHS consists of components that provide services in the smart home and of components 355 

that can be assigned to smart home infrastructure. Based on the survey, only those networked components 356 

actually interconnected to each other were included in the definition of the smart home product system. In 357 

addition to smart heating related components (here: room and radiator thermostats), the average SHS was found 358 

to consist of eight additional components, which provide various services, plus the control unit, which functions 359 

as the interface between the SHS and the Internet. A total of 25.4 devices were identified (with a coverage 360 

between 30% and 100% among all smart home users) with different components present several times in the 361 

system. The smart home devices exchanged and received information via a communication network. Based on 362 

the survey, WiFi is the most commonly used RF standard. 363 
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 364 
Fig. 5 The average SHS that encompasses heating in Germany. The numbers within the circles display the number of devices per component. 365 
The colour-coded boxes display the average coverage of the component among all smart home users.  366 

In order to determine the extent of rebound effects, we further analysed changes in heating behaviour of the 367 

smart home sample and the control group. An average room temperature of 19.43 °C was determined for the 368 

smart home sample and 19.45 °C for the control group. Since the differences between the smart home group and 369 

the control group are not significant, no rebound effect could be determined and the annual heating energy 370 

demand thus remained unchanged. Further information on the average SHS and relevant user behaviour based on 371 

the survey can be found in the supplementary material A. 372 

5.2 Environmental effects of the smart home system 373 

First, environmental effects through production, operation and network transmission (first-order effects) were 374 

analysed over the life time of 5 years for the different impact categories (see Fig. 6).  375 

 376 
Fig. 6 Relative share of GWP, PED, ADP and Ecotox of the SHS for production, operation and data transmission over life time  377 
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The ratios of the different origins vary for GWP, PED, ADP and Ecotox. While for impact categories GWP and 378 

PED, the environmental effects due to the system’s operational energy demand are dominant (62%, 65% resp.), 379 

ADP originates almost solely (99.7%) from production and material input. For Ecotox, environmental effects 380 

from production and material input are dominant (68%). Environmental effects of data transmission are 381 

insignificant for all impact categories due to the low data volumes.  382 

Within the SHS, the environmental effects of the smart heating component is largest for all four impact 383 

categories. The reason for this is that the smart heating component accounts for the largest weight share and 384 

highest operational energy demand in the overall SHS. The environmental effects of the control unit are the 385 

second largest for GWP and PED due to the component’s high operational energy demand. For ADP and Ecotox, 386 

the security camera component is the second highest in the SHS due to the high self-weight of the component. 387 

Overall, components that do not have an essential energy optimisation function account for 79% of GWP, 80% 388 

of PED, 62% of ADP and 70% of Ecotox in the SHS. 389 

In the next stage of this study, we investigated different savings scenarios. Below, we present the results of that 390 

stage (see Fig. 7 for GWP; corresponding figures for PED, ADP and Ecotox can be found in supplementary 391 

material C).  392 

For GWP and PED for the saving scenarios 2% and 4%, environmental effects of the SHS due to production and 393 

operation are greater than the environmental effects due to smart heating; operating the system over 5 years 394 

increases GWP and PED. For the saving scenarios 6%, 10% and 20% the environmental effects of the system 395 

due to production and operation are smaller than the environmental effects due to smart heating; operating the 396 

system over 5 years reduces GWP and PED and net savings can be achieved. For ADP and Ecotox, however, 397 

environmental effects from producing and operating the system over 5 years are greater than the effects from 398 

heating optimisation. 399 

 400 
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Fig. 7 Changes in impact category Climate Change (GWP) of the SHS for 5 scenarios and a life time of 5 years. The negative values are 401 
savings in the overall system. 402 

Sensitivity analyses showed that changes in (i) operational energy demand, (ii) in the energy grid mix and (iii) in 403 

the duration of the system’s service life have particularly an effect for GWP and PED. For ADP and Ecotox, 404 

changes are marginal and do not affect the overall results. 405 

Lowering the system’s operational energy demand changes the results for GWP and PED. For those impact 406 

categories, saving effects in the 4% scenario are already larger than those from production and operation, and 407 

therefore, net savings can be achieved. 408 

Powering the SHS with green energy significantly lowers GWP of operational energy demand but leads to 409 

increases in the other impact categories. For GWP, net savings can be achieved in the 2% scenario. For PED, 410 

ADP and Ecotox, the switch to green energy has no effect on the overall results. The effect of applying the 411 

Future 2030 Grid Mix Scenario is particularly evident for GWP and PED for the 4% and the 6% scenarios. For 412 

GWP, optimization in the 4% scenario are already greater than those effects from production and operation. For 413 

PED, amortising first-order effects from production and operation requires at least a 6% scenario. However, 414 

compared to the baseline, the saving effects are up to 10% larger.  415 

Doubling the active service life to 10 years halves the allocated share of environmental burden from material 416 

input and production per year and doubles actual heating energy savings. For GWP and PED, saving effects can 417 

be achieved in the 4% scenario and above. In supplementary material C we provide detailed results. 418 

5.3 Net saving effects of the system 419 

The study shows that the use of an SHS can indeed contribute to savings of GWP and PED. However, actual net 420 

savings are much smaller than the savings in heating energy. This is due to the environmental effects from 421 

producing and operating the SHS, which have to be subtracted from the heating energy savings. Considerable 422 

differences in the amount of net savings over 5 years and payback times can be observed for the different saving 423 

scenarios across the impact categories. For GWP, net savings over time and payback times 𝑡𝑃 are illustrated in 424 

Fig. 8 for the five energy saving scenarios. Detailed results for all the impact categories are compiled in the 425 

supplementary material C. For GWP and PED, net savings over the lifetime of 5 years can be seen for the 6%, 426 

10%, and 20% savings scenarios. For GWP, net savings are between 381 kg CO2 eq. for the 6% scenario and 427 

3,423 kg CO2 eq. for the 20% scenario. For PED, net savings range between 3,533 MJ for the 6% scenario and 428 

51,228 MJ for the 20% scenario. For GWP, payback time 𝑡𝑃 is between 6 months and 2.4 years depending on the 429 

scenario. This means that the SHS must be operated for up to 2.4 years with minimum savings of 6% of annual 430 
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heating demand in order to outweigh the environmental effects from producing and operating the SHS. Only 431 

then can net savings be realised. For PED, payback time 𝑡𝑃 is between 6 months and 3.1 years depending on the 432 

scenario. Corresponding break-even points for GWP and PED differ widely for the saving scenarios. This is due 433 

to payback time and thus operational energy demand decreasing with increasing savings level. For ADP and 434 

Ecotox, no net savings are achieved; first-order effects are considerably higher than the savings achieved through 435 

smart heating. For Ecotox, however, the payback time for the 20% scenario is 5.4 years and thus slightly longer 436 

than the assumed service life of five years. However, due to the underlying uncertainty of the impact category 437 

Ecotox (Rosenbaum et al., 2008), no significant benefits can be determined here. As part of our sensitivity 438 

analyses, we also calculated the payback times for changed SHS settings (changes in operational energy demand 439 

and changes in the energy grid mix). The results are compiled in the supplementary material C. 440 

 441 
Fig. 8 Gross and net savings over time for the five energy saving scenarios for GWP. Primary y-axis represents SHS savings, secondary y-442 
axis represents SHS releases. The marked area above ‘First-order effects’ represents the net savings in each scenario. For 2% and 4% 443 
scenario, no net savings are achieved. 444 

6. Discussion 445 

In the following, we discuss the results concerning methodological considerations and limitations and identify 446 

future research needs. We further derive implications for practitioners and policy. 447 

6.1 The user perspective in LCA 448 

With the present study, we have proposed a methodological approach that allows for a more systematic 449 

integration of user decisions and user behaviour into LCA. By including user-driven parameters in our 450 

environmental assessment, we did not focus only on one part of SHS (i.e., the smart heating component) but on 451 
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the average SHS in the context of its application. This focus is important in order to provide a complete picture 452 

of environmental effects of SHS and related net saving effects. As the user-driven parameters are mirrored in the 453 

framework of environmental effects of ICT, our approach can also be used to assess user-related higher-order 454 

effects of ICT (i.e., rebound and induction effects).  455 

The importance of the user perspective for the overall result manifests in our study at a number of points. First, 456 

the shift from the product perspective to the user perspective is reflected in the definition of the FU. The FU is 457 

not limited to one product but refers to the application of the entire SHS in relation to the basic heating energy 458 

unit (apartment size) of the average smart home user. The definition of the FU thus proves to be crucial in 459 

determining the perspective. Second, we found that the product system consists of a total 25.4 devices that can 460 

be assigned to eight components and the control unit, in addition to the smart heating component (product 461 

parameters). The components that provide other services than energy optimisation account for more than 60% of 462 

GWP, PED, ADP and Ecotox from producing and operating the SHS. Without the inclusion of these 463 

components, the calculation for break-even points would have been significantly lower for all scenarios, thus 464 

overestimating net saving effects. This also becomes evident when comparing our results with other studies. Van 465 

Dam et al. (2013) calculate energy payback times for energy management devices between 6 months for a 10% 466 

saving scenario and 18 months for a 2% saving scenario. Beucker et al. (2016) calculate a payback time of less 467 

than one month for energy and GHG emissions for a 20% energy saving scenario of energy management systems 468 

in residential buildings with central heating. In both studies, calculated payback times are lower than in our 469 

study. One of the reasons for this discrepancy is the definition of the product system in said studies, which only 470 

includes single applications and not the entire SHS. Third, our approach also provided for integrating changes in 471 

heating intensity and heating frequency into the modelling (use parameters). However, since we did not find any 472 

significant changes in heating energy and intensity in the smart home sample, this parameter remained 473 

unchanged. We have shown that integrating the user perspective into LCA can affect all phases of the LCA, 474 

from defining the goal and scope of the study to collecting inventory data and interpreting results. Contrary to 475 

the obvious assumption that including user behaviour is mainly relevant in the use phase, it is mainly those 476 

aspects related to defining goal and scope that decisively determine the perspective. So far, however, there is still 477 

a lack of underlying interdisciplinary concepts that address the user perspective in a profound way in LCA. 478 

Initial work has been presented by Polizzi di Sorrentino et al. (2016) and by Suski et al. (2020), and the study in 479 

hand should also be understood in this sense. However, more interdisciplinary research is needed to better 480 

understand the role of user behaviour and related environmental effects as well as the interplay of behavioural 481 

concepts such as acquisition motivation, user motivation or pro-environmental behaviour within environmental 482 
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assessment. To ensure comparability of results in LCA that include the user perspective, there is a need to 483 

develop recommendations for the definition of FU, product system and system boundaries. This development is 484 

particularly relevant with regard to addressing multifunctionality. Initial considerations have been made in 485 

investigating product/service-systems in LCA (Kjaer et al., 2018), but adopting these approaches to user 486 

perspective in LCA is still pending. 487 

6.2 Strength and Limitations  488 

This LCA has some limitations and assumptions. The LCA was modelled cradle-to-use, excluding the 489 

transportation and EoL phases. A full life cycle perspective should include all phases, cradle-to-grave, into the 490 

modelling. Including the transportation phase may increase the total environmental effects of an SHS. 491 

Depending on the actual EoL scenario (e.g,. incineration, recycling), credits for the different impact categories 492 

can be expected, and the SHS total environmental effects may slightly decrease. However, as we had no 493 

information about user-driven EoL choices, they could not be included in the study. Further investigations are 494 

needed into user-related practices of different EoL scenarios of electronic devices, such as that presented by 495 

Frick et al. (2019). For ICT infrastructure, only the operational phase was considered. Including the production 496 

phase of the ICT infrastructure would probably lead to interesting results for impact categories such as ADP.  497 

In line with other studies, the service life of the SHS was set to 5 years, and sensitivity analysis was used to 498 

determine the environmental relevance of doubling the service life to 10 years. Results showed that prolonging 499 

the system’s service life is environmentally beneficial, in particular for settings with low energy optimisation. 500 

The results of this study, however, only apply to life times of 5 years and 10 years. Prolonging or shortening a 501 

system’s service life (even of some components of the system) beyond this period was not examined.  502 

The use of a proxy device representing all smart home components is also a simplification. A simplification was 503 

necessary as it was not possible to assign an average SHS to a specific supplier. The results could thus be subject 504 

to variability. However, this is a common problem when modelling electronic devices. Like others (Moberg et 505 

al., 2014; van Capelleveen et al., 2018), we were confronted with the complex collection of inventory data for 506 

ICT devices. One solution to this complexity is to apply simplified approaches. Thus, together with a major 507 

smart home supplier, we selected a proxy device representing all smart home components. The device was used 508 

as a weight-based proxy for all devices of the SHS. The modelling of the proxy device was based on production 509 

data from the major smart home supplier. Nevertheless, a simplification in inventory data selection was still 510 

needed and the ecoinvent data set “printed wiring board, mounted mainboard, laptop computer, Pb free” was 511 

used for PCB. Comparison with other modelling approaches for PCB shows a rather conservative modelling, and 512 
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the environmental effects from the production phase of the SHS might be overestimated. However, running the 513 

assessment with variations of 90% and 110% of environmental burden from the production phase showed that 514 

variation in the overall results was not significant. Payback times for PED, GWP, ADP and Ecotox changed 515 

slightly, but general conclusions regarding the achievement of net savings within the specific saving scenarios 516 

did not change. Overall, this study showed, once more, the strong need for more product-specific inventory data 517 

for electronic devices, in particular for global data sets for mixed electronic devices.  518 

Further assumptions and simplifications in terms of the definition of the product system and heating behaviour 519 

scenarios were made. Based on participants’ self-report of owned devices we modelled the average SHS.We 520 

chose self-report surveys as a means to provide detailed information about which smart home compositions exist 521 

in practice. Yet this method also has its limitation, as self-reports are sometimes subject to memory bias or 522 

limitations of knowledge. Thus, measurement errors may occur, e.g. with regards to heating temperature or 523 

number and type of networked devices in the smart home. To counteract this, personal in-home surveys or semi-524 

structured interviews could be conducted instead of online surveys. Furthermore, information about the actual 525 

optimisation potential of the SHS cannot be measured directly through the survey method. We therefore defined 526 

energy saving scenarios based on existing studies, which may differ from the actual savings potentials of smart 527 

home technologies as described by IEA (2018). To validate our energy saving scenarios, future studies should 528 

produce long-term measurements of energy consumption in households are needed, e.g., by observing targeted 529 

households in a Living Lab study. They may further examine what share of energy savings can actually be 530 

attributed to the SHS and where external conditions such as building refurbishments are the cause.  531 

By comparing the effects for changing the average electricity grid mix to 100% Green Energy/ Future 2030 Grid 532 

Mix (Sensitivity Analysis), green energy was counted double. This issue can be avoided by offsetting the share 533 

of renewable energy in the average electricity grid mix. 534 

6.3 Implications for practitioners and policy 535 

According to the study, achieving net saving effects is tied to preconditions. It was shown that the levels of net 536 

saving effects for GWP and PED depend on three factors: (i) the environmental effects from producing the 537 

devices, (ii) the level of operational energy demand, and (iii) the level of actual energy savings. Hence, the smart 538 

home devices should be designed to last as long as possible. However, there are cases where active service life of 539 

smart devices is shortened due to incompatibilities with software requirements (software-induced obsolescence 540 

of hardware). This obsolescence could be prevented by using open source standards and by guaranteeing a right 541 

to repair. Standby settings and applying low-energy communication standards significantly lower the level of the 542 
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system’s operational energy demand. The level of actual energy savings depends greatly on the overall 543 

technological design approach (Beucker et al., 2016). A standard defining what a smart home actually is and 544 

determining the overall technical design would ensure maximum saving effects for all smart home applications. 545 

If a minimum 6% of annual heating energy can be saved by smart heating devices, then, as we have shown, the 546 

use of an SHS can contribute to overall GWP and PED savings. Applied to the different smart home 547 

technologies such as smart thermostat, smart window control or home energy monitoring (IEA 4E, 2018), this 548 

means that the level of savings can be achieved by almost all currently available smart heating devices. In this 549 

regard, there are only limitations for smart thermostats, for which saving effects can also be less than 6% of 550 

annual heating energy demand. However, at the same time, the optimisation of heating energy demand and 551 

substitution of parts of the heating energy with electricity leads to impact shifting (here, GWP and PED decrease, 552 

while ADP and Ecotox increase). Whether these impact shifts are appropriate is not least a societal negotiation 553 

process. 554 

7. Conclusions  555 

The case study examined the environmental saving potentials of an average SHS with smart heating in Germany 556 

from a life cycle perspective. To estimate minimum requirements for the energy savings of an SHS with smart 557 

heating, we applied an interdisciplinary user-centred approach that also includes environmental effects from the 558 

application of smart heating into life cycle modelling. To define what an average smart home looks like and to 559 

estimate variances in user behaviour, we used primary data from a user survey among smart home users in 560 

Germany. Our case study showed that the average smart home with smart heating consisted of 8 additional 561 

components with a total of 25.4 devices. Furthermore the case study showed that environmental savings can be 562 

achieved by SHS when they include smart heating. However, net savings are much smaller than the actual 563 

savings in heating energy. Minimum savings of 6% of annual heating energy over 3.1 years for PED and over 564 

2.4 years for GWP need to be realised by the SHS in order to exceed the environmental effects caused by 565 

producing and using the SHS. For ADP and Ecotox, no net savings can be achieved and the smart home 566 

represents a further environmental burden. The case study thus further shows that there are significant 567 

differences between single impact categories and that the implementation of SHS comes along with potential 568 

burden shifting. Through the interdisciplinary study design developed here, which emphasises the user 569 

perspective, fundamental criticisms of previous study designs, i.e., lack of life cycle perspective, focus on single 570 

applications only, lack of user-related effects, could be overcome. The interdisciplinary LCA methodology “The 571 
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user perspective in LCA” further contributes to the methodological investigation of the environmental effects of 572 

ICT application. 573 

The holistic focus applied here is key to identifying realistic opportunities to improve environmental 574 

performances and to provide conscientious advice to political decision-makers, businesses and the consumers. 575 

Three key conclusions for future research can be drawn from these investigations: Interdisciplinary approaches 576 

such as combining behavioural and social sciences with LCA modelling are essential in ensuring that the user 577 

behaviour and decisions are adequately considered in LCA. Future research should particularly focus on 578 

developing further approaches of combining LCA with behavioural and social science research. This also 579 

includes concepts for integrating quantitative and qualitative primary data on user behaviour into LCA. For a 580 

holistic focus, future studies should furthermore consider a variety of impact categories in order to examine 581 

burden shifting when applying smart technologies. 582 
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