Application-level Simulation for Network

Security

Stephan Schmidt

Rainer Bye

Joél Chinnow

Karsten Bsufka

Ahmet Camtepe

Sahin Albayrak

DAI-Labor, Berlin Institute of Technology,
Ernst-Reuter-Platz 7, 10587 Berlin,
Germany

nessi@dai-labor.de

NeSSi (network security simulator) is a novel network simulation tool which incorporates a variety
of features relevant to network security distinguishing it from general-purpose network simulators.
Its capabilities such as profile-based automated attack generation, traffic analysis and support for
detection algorithm plug-ins allow it to be used for security research and evaluation purposes. NeSSi
has been successfully used for testing intrusion detection algorithms, conducting network security
analysis and developing overlay security frameworks. NeSSi is built upon the agent framework JIAC,
resulting in a distributed and extensible architecture. In this paper, we provide an overview of the
NeSSi architecture as well as its distinguishing features and briefly demonstrate its application to

current security research projects.

Keywords: network simulation, network security, discrete-event simulation, packet-level simulation,

application-level simulation

1. Introduction

In contemporary communication infrastructures, IP-based
computer networks play a prominent role. The deploy-
ment of these networks is progressing at an exponential
rate as different kinds of participants such as corpora-
tions, public authorities and individuals rely on sophisti-
cated and complex services and communication systems.
With regard to information security, this leads to new chal-
lenges as large amounts of data, which may hold malicious
content such as worms, viruses or Trojans, are transferred
over open networks. Network security measures dealing
with these threats can be implemented in the network itself
as well as at hosts connected to access routers of the net-

SIMULATION, Vol. 86, Issue 5-6, May-June 2010 311-330

© 2010 The Society for Modeling and Simulation International
DOI: 10.1177/0037549709340730

Figures 1-12 appear in color online: http://sim.sagepub.com

work. The host-based approach has its merits, especially
with respect to the scalability of a resulting security frame-
work; for example, placing security capabilities such as
firewalls or virus scanners on individual hosts does not in-
hibit the traffic traveling through the network. However,
as the hosts are generally not under the control of network
operators, there is no way of ensuring a certain network-
wide security policy.

A consequence for network service providers (NSPs)
striving to offer improved security features to their cus-
tomers as a value-adding feature is to devise a security
framework in which detection devices are placed within
the network. Before doing so, the NSP must take into ac-
count that it is not desirable to make frequent changes or
experiment with various security feature deployments in
the network infrastructure of a production system. For this
reason, network operators can greatly profit from a net-
work simulation tool in which various features of the se-
curity architectures can be tested in order to ensure maxi-
mum attack detection efficiency before the actual physical
deployment. The advantage over conventional testbeds is

Volume 86, Numbers 5-6 SIMULATION 311

Schmidt, Bye, Chinnow, Bsufka, Camtepe, and Albayrak

X RE-Tla s B EHE

= Routing Table 22 | Repart = O | BE Milestons2l network &3 S Accesst
Destination IP Gateway IP fid
130.149.3.19 130,149.3,19
130.149.3.5 130,149.3.18
130.149.3.17 130.149.3.18
130.149.3.18 130.149.3.18
130.149,3.37 130.149,3.18
130.149.3.39 130.149.3.18 e ot
130.149.3.3 130.149.3.18 s Access3
130.149.3.4 130.149.3.18 ;'J
130,142.3.7 130,142.3,18 5 ’.‘J
130,149.3.5 130,149.3.18 Arcess? i
130.149.3.11 130.149.3.18 bt
130.149.3.16 130.149.3.18
130,149.3.36 130,149.3.18
130,149,3.38 130,149,3.18
130.149.3.2 130,149,3.18
130.149.3.13 130.149.3.18
130.149.3.14 130.149.3.18
130.149.3.33 130.149.3.18 S '\'\,\)
130,149,334 130.149.3.18 (4 —
130.149.3.6 130.149.3.18 {
130.149.3.21 130,149.3.18 E gt
130.149.3.22 130,149,3.18 f
130,149,340 130,149.,3,18 Accgssl
130.149.3 43 130.149.3.18 WL
130.149.3.9 130.149.3.18 " g
130.149.3.24 130.149.3.18
130,149.3.28 130,149.3.18
130.149.3.45 130.149,3.18
130.149.3 46 130.149.3.18 Cored
130.149,3.10 130.149,3.18 \‘\
130.149.3.28 130.149.3.18 ~,
130.149.3.30 130.149.3.18 e
130.149.3.49 130.149.3.18
130.149,3.50 130,149,3.18
130.149.3.12 130,149.3.18 .
130.149.3.15 130,149.3.18 _\"‘-n
130.149.3.20 130.149.3.18
130.149,3.23 130.149,3.18
130.149.3.25 130.149.3.18 [l Accessd)
< *

',’?‘! Logo]

Accessd

=1 Properties 52 | Chart

.l'["

= = s

I Property

* Position

= Subnet
Description
Mame
Metwork Address
Subnet Mask
SubnetType

"III DAIl-Labor

TU Berlin

Simulation running. ..

Figure 1. GUI of NeSSi: main Network Editor window

the low cost and ease at which tests can be carried out. The
presented network security simulator NeSSi (see Figure 1)
allows NSPs to experiment with different network-centric
security framework setups and algorithms in order to eval-
uate and compare intrusion detection efficiency and oper-
ational costs. In this fashion, a devised security framework
can be tested in a simulation environment before the actual
detection units are physically deployed in the network.

In the following section, we provide an overview of ex-
isting network simulation tools, focusing on security eval-
uation capabilities. We then describe the general software
architecture of NeSSi in Section 3. Subsequently, we focus
on the traffic and protocol support in Section 4 and secu-
rity features in Section 5 and finally demonstrate how it
can be used for the setup and execution of realistic attack
scenarios. Our conclusions and outlook on future exten-
sions of NeSSi are given in Section 7.

312 SIMULATION Volume 86, Numbers 5-6

= 5 ||sriffed Packets | 5= Outine 52 =0
Palette V[@B coret

[Select + & Corez
{7}, Marques 4§ cores
+ (gt Accessl
* laf AccessZ?
=
+

L <5ubnets> *
wJ New Core Subnet

e int Access3
ok Mew Access
o ot Access4

bl Subnet 1
‘ {1 tew Distrioution. || = (I Distrbutont
il 7 EdgeRauterl

T EdgeRouterz

By T W EdgeRouter3

_;,-"' pREEs 7% EdgeRouters
W EdgeRouters
W FdgeRouters
W EdoeRouter?
W EdgeRouterd
W EdgeRouter?
W EdgeRoutertn

ik Distributionz

(1 Distribution

int AccessS

inf Accesst

£ Access7

{nt Accesss

;"_? Accessd
% EdgeRouter23

AccessRouterdl

Carez

Accessh

[T e e B e

AccessRouterdz
AccessRouterdd
AccessRouterdd
AccessRouterds
= WebClientS1
WebClientsz
= WebClientS3
w WehClientSd
ebClientss
== WebClientSs
H webclents?
ebClientS3
ebClients3

B2 1 2= WebClientsd
= B eoist
ek ® potsz
B poisa
B ooise
Access net ,‘! o
= = Borss
255,256.255.0 ;T Bats?
Arcass o Botsg
= g
= B coso

2. Related Work

In recent years, the research community has used various
network simulation tools for the verification of new al-
gorithms, the investigation of design and interaction be-
havior of newly developed protocols as well as the exam-
ination of performance issues encountered in large-scale
network architectures. The most popular general-purpose
software tool in the research community is the open-
source network simulator ns2 [1]. ns2 performs network
simulation using a discrete-event model. This approach
has several advantages regarding application performance
and scalability. These important issues are discussed, for
example, in [2] and [3]. Discrete simulation allows very
cost-efficient exploration and experimentation with real-
life network topologies and architectures. In many areas
involving network analysis, ns2 is a powerful tool; how-

APPLICATION-LEVEL SIMULATION FOR NETWORK SECURITY

ever, it also poses certain limitations to the user. Concern-
ing the aspect of simulation efficiency for large networks,
ns2 does not support out-of-the-box a parallel execution
model. It does not support generic sockets, but protocols
have to be rewritten for use in ns2. Moreover, the script
language interface is not intuitive for use by novice users.
Alternatives to ns2 are, for example, the QualNET simu-
lator [4] or the Georgia Tech Network Simulator GTNetS
[5], which, in contrast to ns2, also offers parallel execution
support for large-scale simulation.

Most important of all, these simulators have limitations
in standard support of real-world network security evalua-
tion. A lot of work has been performed in the limited area
of worm simulation, as described extensively by Wei et al.
[6]. In this work, the authors noted that existing simulators
are mostly single-machine tools and hence do not scale
to model realistic attack mechanisms in large-scale real-
world networks. They proposed a distributed approach
termed PAWS, which is nevertheless not a comprehensive
tool but limited to worm simulation only. Another secu-
rity evaluation tool is RINSE, which is described by Lil-
jenstam et al. in [7]. It focuses on supporting real-time
large-scale simulations and allows for realistic emulation
of CPU and memory effects within the simulation. How-
ever, there is no mention of application-level simulation
capabilities in RINSE. The same drawback exists in the
solution presented in [8], although it allows model-driven
attack tree-based simulation in a reusable object-oriented
software architecture.

2.1 Our Contribution

NeSSi aims to fill this gap by offering simulation and eval-
uation features specifically tailored to meet the needs of
security experts and network administrators. This target
group will be able to test and evaluate the performance
of commonly available security solutions as well as new
research approaches. As a distinguishing feature to the
previous tools described above, NeSSi provides extensive
support of complex application-level scenarios on top of
a faithful simulation of the TCP/IP protocol stack. Simu-
lated networks are modeled to reflect real-world network
topologies by supporting subnet-layer modeling and dif-
ferent node types with varying capabilities (core and ac-
cess subnets, wireless networks etc.). In particular, NeSSi
adheres to a modular design pattern and fosters the inte-
gration of third-party applications via a standardized plug-
in interface. Furthermore, it provides a comprehensive de-
tection API for the integration and evaluation of simulated
as well as external detection units. In particular, special
common attack scenarios are supported and can be sim-
ulated, worm-spread scenarios and botnet-based distrib-
uted denial-of-service (DdoS) attacks are only two of the
example scenarios supported by NeSSi. In addition, cus-
tomized profiles expressing the node behavior can be ap-
plied within the simulation.

The application layer simulation capabilities in NeSSi
are provided by distributed software agents, introducing
another layer of abstraction. In order to maintain scalabil-
ity, a parallel execution model is used in conjunction with
adiscrete-event model. In this context, the agent platforms
are running on multiple parallel machines and connect in-
dependently to a database server from which simulation
results can be retrieved in an asynchronous and concur-
rent fashion. The graphical user interface (GUI) allows for
real-time inspection and configuration of scenarios.

3. NeSSi Architecture

The design of a packet-level discrete-event simulator is
a challenging task. In order to handle the inherent com-
plexity, NeSSi has been structured into three distinct com-
ponents, the GUI, the simulation backend and the result
database. Each of these modules may be run on separate
machines depending on the computational requirements;
furthermore, this modular design facilitates network secu-
rity researchers using NeSSi to easily exchange network
topologies, scenario definitions and simulation results via
remote repositories. In the following sections, we describe
each of these modules in turn and delineate the workflow
in NeSSi, beginning with the creation of a network from
scratch up to the analysis of the simulation results.

3.1 GUI

The GUI is a rich client platform (RCP) application based
on the Eclipse framework [9]. It uses the Standard Widget
Toolkit (SWT) [10], a cross-platform open-source widget
toolkit which allows NeSSi to be run on almost all oper-
ating systems. As a RCP application, NeSSi is structured
into views, editors and perspectives.

A view is a composite widget for displaying data of a
certain type to the user; the different views implemented
in NeSSi will be described later in this section. Editor
windows contain the main data of interest (in the case of
NeSSi graphical representations of networks respectively
subnets), while the surrounding views display context-
related information based on the selection in the editor
window. Perspectives on the other hand are used to bundle
thematically related views and editors to present the user
with an interface to execute the desired task while hiding
functionality that is not essential to the current task.

The graphical frontend of NeSSi allows the user to
create and edit network topologies, attach runtime infor-
mation, and schedule them for execution at the simula-
tion backend. On the other hand, finished (or even cur-
rently executing, long-running) simulations can be re-
trieved from the database server and the corresponding
simulation results are visualized in the GUI. This consti-
tutes two distinct use cases: pre- and post-simulation visu-
alization. For this reason, the GUI has been divided in two
perspectives, a Network Editor perspective and a Network
Simulation perspective.

Volume 86, Numbers 5-6 SIMULATION 313

Schmidt, Bye, Chinnow, Bsufka, Camtepe, and Albayrak

3.1.1 Network Editor Perspective

The Network Editor perspective comprises a main Net-
work Editor window grouped with a variety of differ-
ent views which provide additional information pertain-
ing to the element currently selected in the Network Edi-
tor. Some of these views appear in both perspectives since
they are valuable in the editing as well as the evaluation
phase. These are as follows.

Console. Network status information and logged events
are displayed here. The desired level of verbosity
can be configured.

Routing table. When a network node, i.e. a client, server
or router, is selected, the respective routing table
is displayed. For each reachable target machine, it
contains the IP addresses of the gateway, the subnet
mask and the hop count.

Properties. Displays and allows a number of properties
to be edited for the selected element. Among other
information, device name and device type are dis-
played for nodes; for links, bandwidth, latency and
maximum transfer unit (MTU) is available.

Statistics. Graphical representation of simulation results.
The content of this view adapts to the element se-
lected in the editor or the outline.

Apart from these, by reusing the existing plug-ins avail-
able for Eclipse, we offer valuable standard functionality
in NeSSi such as the following.

Team support. Users of NeSSi can share networks, sce-
narios and sessions as well as database resources via
remote repositories based on CVS or SVN.

Update functionality. New versions can be downloaded
via an update site. The updates are deployed as sep-
arate features, allowing the user to decide which
components of their NeSSi distribution they want to
update. NeSSi is open source since late 2008; the
update site location is published at http://nessi2.de.

Integrated help. NeSSi offers an online help system.
This comprises different types of manuals (user, de-
veloper, etc.), Javadoc documentation and context-
based help for the current Ul selection.

Other views such as Bookmarks, Tasks and Progress are
also supported and used by NeSSi. They are not described
here for the sake of brevity.

Before starting to create their first simulation, the
user needs to become familiarized with the network/
scenario/session concept which NeSSi is built upon. This
paradigm serves to distinguish static topology informa-
tion from dynamic behavioral information with the goal of
enhancing the reusability of previously created elements.

314 SIMULATION Volume 86, Numbers 5-6

Simulations often need to be carried out for large networks
which differ only in a few parameters while most of the
information stays the same; sometimes the user wants to
apply different traffic-generation functionality in the same
network without having to create and subsequently man-
age unnecessary copies of the same static topology infor-
mation.

Network topology. The network topology describes the
static information contained in the network, i.e. the
nodes of the network, their (initial) properties and
how they are interconnected. Thus, a topology can
be reused in combination with several different sce-
narios.

Scenario. A scenario contains runtime information at-
tached to a particular network topology. For in-
stance, a scenario may contain the traffic-generation
properties for different nodes in the network. A
scenario can be reused in combination with differ-
ent sessions. For detailed information on the type
of scenarios that can be created with the standard
NeSSi version, refer to Section 4.

Session. Finally, the session information contains addi-
tional information specific for the selected scenario.
For example, the user may be interested only in a
certain type of traffic, or the scenario should be car-
ried out repeatedly, but with different tick runtimes
(tick is the term for the atomic discrete time unit).
This kind of information is encapsulated in the Ses-
sion object for a particular scenario.

Network topologies can be created by choosing network
elements such as routers and different kinds of end de-
vices such as web clients, mail servers, etc., and adding
them from a palette to the network editor main window
via drag-and-drop (cf. Figure 1). In the simulation, agents
realize the behavior of the nodes (cf. Section 3.2.2). The
node modeling occurs in two layers; the first layer reflects
their role in the network (client, server, switch or router).
This is further refined according to their application-level
role (such as web clients, mail clients, IRC server, etc.)
and inherent functionality.

The network is hierarchically structured by dividing it
into subnets. For example, a large-scale network usually
consists of a core area, a number of distribution networks
(for example, university or metropolitan area networks)
and access networks, i.e. company networks. Such a net-
work with a hierarchical structure is displayed in the cen-
tral network editor window of Figure 1. It is also possible
to automatically generate networks by specifying various
parameters such as the number of individual subnets and
their types, node degree, topology (star, ring, etc.), average
link bandwidth in the core, distribution and access subnets
and many more (see Figure 2). This is especially useful for
generating large-scale topologies, where the network gen-
eration is a two-step process: the user generates a topol-
ogy automatically and adjusts the resulting network by

APPLICATION-LEVEL SIMULATION FOR NETWORK SECURITY

File Edit ﬂa\ngate Project Netwnrkcnnhgurat\mn Window Help

Resource - /jwork/GUl/nessi2-rcp/plugins/nessi2-common/src/mainfresources/Networks/ASTest.network - NeSSi2 - Network Security Simulator

5606

NetE\occhuterSd? NetE\u:kRouterSSEi

=

NetEIu:kRouterSS?

-
r NetB\occhuterSdl
Create a new .network file |

Please enter a name for your new netwark

Please define Access subnet parameters

Select network parameters. NeSSi will create a random

Access subnet for you accordingly.

Subnet type
Subnet name.
Default topology
Number of routers

Node degres

Client Percentage
Server Percentage

Average access link bandwidth

Average bandwidth betwsen routers

7

278,883

End Devices per Access Router

3.0

100

2.0

0.5

100

J = God = s dlEa gk
H Natwnrk Simulation | R
' [5& ASTest.network 23 = Eﬂ@i Outline &8 . T O
& = = = -
’ kf-";“‘ ﬂ..,l ? [memEE e = as:
LS) | =]

Network name;) \e/
new.network
7y (< Back (Next>) (Bnish) cancel
) Create an empty network
= V7] N |
%) Generate parameter-based random network NetHloekHalit et 52 Nethiockitlersas ‘
I0RID.623 0.25300550(380.25.0.114 |
) Generate network with multiple Autonomous Systemns (AS)
I
_-_1 kil : AS4004
|
() Allow overwriting existing networks % . ASA005
NetBlockRouters4s
R BIRALS
7J (< Back (Next> [FEnish) (Cancel w
T s . 1
ASTest.ﬂetwurk‘ASl‘ASZ |As3| T a3
J] ASTest network successfully loaded J-vi Database connected « Agent Backend discar | & = | [Lﬂ

Figure 2. Wizard-assisted network creation

fine-tuning individual devices or device properties. These
subnets and their individual network elements such as
routers and links and their properties, i.e. routing tables,
network interfaces, etc., are modeled using the Eclipse
Modeling Framework (EMF) [11] which also allows au-
tomated source-code generation. Consequently, the model
can easily be extended to include new features or adapted
to match new requirements. Supported standard device
properties are processing speed, packet queuing mecha-
nisms and supported routing protocols; link properties in-
clude delay and bandwidth.

Individual subnets are connected at edge routers, which
are logically assigned to both subnets. The user can jump
to the corresponding other subnet by double-clicking on
an edge router, which allows for easy navigation through
the entire network, although individual subnets are dis-
played in separate tabs.

The user interacts with the application via context-
sensitive actions. For more complex operations, the user is
supported by wizards. For example, when an IRC server is

drag-and-dropped on the network editor, a context-menu
action is dynamically created for this node which allows
the execution of a pre-defined IRC exploit scenario. When
the user selects it, a wizard appears, describing the sce-
nario and guiding the user through the process.

After the static network topology configuration is com-
plete, the dynamic scenario components need to be cre-
ated. A scenario comprises elementary building blocks for
each device in the network, the concept of node profiles.
Node profiles allow the customization of network node
behavior in order to automatically generate traffic adher-
ing to well-defined characteristics, simulate network out-
ages by means of router or link failures as well as evaluat-
ing network-based defense measures. The basic elements
used to describe these profiles are actions and plans.

Actions. Actions are clustered into three different types:
traffic, failure and detection units. Traffic actions
describe the behavior of a single service (HTTP,
SMTP, etc.) with various parameters depending on

Volume 86, Numbers 5-6 SIMULATION 315

Schmidt, Bye, Chinnow, Bsufka, Camtepe, and Albayrak

their type. Failure actions are used to simulate net-
work failures such as link outage or router mal-
function. Detection unit actions configure security-
related applications which utilize the Detection Unit
API (see Section 5.2).

Plans. The time characteristics are described with plans
for the corresponding action. They contain at least
one time span in which the action is executed ac-
cording to various distribution functions (standard,
binomial, etc.).

Profiles. Profiles, the top-level elements, describe the ac-
tual node behavior by utilizing different plans. An
execution plan can be included in a profile multi-
ple times for repeated execution. After defining a
profile, it can easily be attached to several clients by
enabling it in the respective clients’ context menu.
In addition, the profiles can be distributed in a
percentage-based fashion on end devices, routers or
(in the case of failures) links. Security-related ap-
plications such as network intrusion detection sys-
tem (NIDS) sensor components can also be de-
ployed on a selection of machines based on a user-
defined measure of optimality in order to maximize
the efficiency of the NIDS. To this end, the set of
machines selected for running the profile may, for
example, be obtained by a betweenness centrality
or game-theory approach (cf. Section 6.2).

The sum of all profiles for a given network topology con-
stitutes the scenario. In order to execute a scenario, the last
set of parameters to specify are the session parameters.
These include, for example, the number of times a given
scenario is to be executed and the types of events to log in
the database. The security expert may wish to run a single
scenario multiple times if the employed node profiles are
not statically configured but make use of distribution func-
tions for generating network traffic. In this case, multiple
runs allow the generation of statistically significant mean
values and the comparison of individual runs to examine
standard deviations.

The ability to specify the types of events to log al-
lows for a higher degree of scalability for large-scale sim-
ulations, where the user is only interested in a particu-
lar subset of the simulation results. For example, it can
be configured that only application-level traffic for a cer-
tain protocol type is to be logged, which may greatly in-
crease the simulation speed when a lot of other back-
ground traffic is generated which does not need to be
logged.

Supplementary NeSSi includes automated attack gen-
eration for the purpose of examining security-related net-
work features. Several adversary models are supported,
among others worm spread and DDoS attack models. This
feature has proven highly useful in the research of the
cooperative detection approach for generating simulation

316 SIMULATION Volume 86, Numbers 5-6

data (cf. Section 5). In the resulting paper [12], traffic sta-
tistics of captured real traffic data were mapped to node
profiles.

Once a session has been created for a particular sce-
nario and topology, it can be transmitted to the simulation
backend for execution. For details on how the simulation
is carried out refer to Section 3.2; in the following section
we first describe how the results are presented to the user
of NeSSi.

3.1.2 Network Simulation Perspective

The Network Simulation perspective contains a set of re-
lated views which allow the visualization of simulation
results. Upon connecting to the database server, the avail-
able simulation results are depicted in a tree structure an-
notated with the date of the execution and the user who
has submitted them. The desired session can be selected,
and the corresponding simulation results are downloaded
for display.

The user has several options for displaying the simu-
lation results. The main editor window contains the net-
work topology associated with the selected session; nat-
urally however, no network elements may be edited or
deleted (in contrast to the Network Editor perspective).
In the menu bar, the user can step forward and backward
through the simulation to inspect the state of the network
at the desired tick. For demonstration purposes, a play-
back functionality is also provided where the simulation
is visualized at the desired speed.

In the main network window, the status of the network
elements is visualized by different means. For example,
link widths and colors change depending on the type and
amount of traffic on the link, while devices which have
failed (for example, due to a successful attack) appear
grayed out, or devices which are infected but operational
are flagged with a corresponding symbol. Since not all rel-
evant information can be displayed in the editor window,
however, two additional views contain context-based in-
formation relevant to the network element selected in the
editor. The Properties view displays detail information for
the current tick (for example, routing tables may change
over time), while the Statistics view contains graphical in-
formation of logged events for the selected network ele-
ment. For example, this may be a graphical representation
of the packets on a given link, sorted by protocol type. As
an added feature, this view is highly configurable and may
be adapted to show cumulative values, restrict the results
to certain subsets of interesting data sources and so on.

3.2 Simulation Backend

The actual simulation is performed on a machine with
hardware dedicated solely to this purpose, the simulation
backend. At the Berlin Institute of Technology, for exam-
ple, the NeSSi simulation backend runs on a Sun XFire

APPLICATION-LEVEL SIMULATION FOR NETWORK SECURITY

- Resource - /work/GUI/nessi2-rcp/plugins/nessi2-common/src/main/resources/Networks/Paper.network - NeSsi2 - Network Security Simulator 066
File Edit Navwgats Project Natwurk Configuration Window Help
Fel - CRER e e e T
i £ Network Simulation m
L Project Explorer &3 = (5% paper = L } Outline 22 =
=57 Al palette b ||b G Accessio Al
|~ 12 MyNets q : = I s Select b G Accessio
n T b4
¥ g Networks & R (i Marquee 7 iitAccessll
S WebServerss WebServerss Web Service C"er + New Connection ¥ AccessRoutergd
ok ASTopelogy.network 217145 192.171.4.2 % AccessRolterss

¢ DDoSDemo.netwark
2 DDoSDama.retuor] 162.171.4.4 £92.171.43

S 192.17T% F‘
WebServersd 192,171.4.6

52 LargeASTopology.network
s LargeASTopology2 network

\

= % EdgeRouter2s
WEbC\IEntQO 1.4.28 % New Edge Router W Packetsniffer2
192 171.4.29 W New Access = web Service Client1

S SnifferTest.network

i

i Test.network

¥ AccessRouterl3
% AccessRouter1ld

52 Welcome.network

¥ AccessRouterl5

S WormScenario network

Pspar‘AccessZ ‘Accesss ‘ Core2 |AccsssB |AccesslU ‘DlstrlbutmnB Accesslll

(3
(3
3
3
b
Router
b S LargeASTopology3.network 2 Web Service Client2
\,] i o
b 5 MilestoneSmallAS network XMLFirewall2 Acce || ||l= <End Devices 2 webclientgo
b = MilestoneTest.network Ry e ew Client PC o]
e 4 b = webClient91
g © New Web-Server
b 52 New.network 192.171.4.23 g) 2 webclienta2 o
b 52 P2PScenario.network i Mew Mall Server O webclientos
i 4 New IRC Server =
b 3% P2PScenario2 network PacketSniffer2 T o = webclientas
b S Paper.network = Sl 2w
1= Webclientas
b SEPTest.network EL web service =
[Test.networl 192.171.4.25 ~ B St 2 webclientss
L= PT 12.nets k ./ 5
2 e ey webClients3 t53 7 [Packetsniffer < WebServersd
b SEP|Test3.nstwork WebClientez 1927371414 le2d71a o XMLFirewall < WebServerss
b 52 p[Testd.network St = i
~ e huackngSi. b & websServeras
b & ProtocolDemo.network = | " [
& 192.171.4.15 T L New DDoS Client XMLFirewall2
b SE ProtocolTest network B ® New Worm v £t Access2
5 __ _seErTas | =
b 5 smallAs network e laccessRouterss| infected Client ¥ AccessRouterll
b S smallDemo.network @ G % AccessRouter12
b WebClienta1)
b
(3
3
3

e .1 tarlf
S WormScenarioCaoperative [Tasks [l Properties 57 LIl Bookmarks| R
b g Networks [re Property [value 4]
| Device Type AccessRouter
Interfaces [182.171.4.8,192.171.4.10, 192.171.4.12, 192.171.4.15, 192.171.4.17, 182.171.4.18, 192.171.4.20] m'
Name AccessRouterg8s 1
Status oM
|¥ Position
X 351 vl

3 3

| %' Database connected + Agent Backend discol

Figure 3. Subnet Editor with user-defined devices such as XML firewa

4600 blade server (eight blades, eight cores per blade).
Once a session is submitted for execution, the simula-
tion backend parses the desired session parameters (which
event types to log, how many runs to execute, etc.), creates
a corresponding simulation environment, sets up the data-
base connection and schedules the simulation to run as
soon as the necessary processing resources are available.

3.2.1 JIAC Agent Framework

NeSSi is built upon the JIAC framework [13]. JIAC is a
service-centric Java-based middleware architecture based
on the agent paradigm. Within NeSSi, agents are used for
modeling and implementing the network entities such as
routers, clients and servers. The underlying JIAC agent
framework provides a rich and flexible basis for imple-
menting and testing of various security deployments and
algorithms in NeSSi. Moreover, building upon an agent
framework allows the combination of the partial knowl-
edge of the agents residing in the network in a coopera-

lls and packet sniffers

tive approach for identifying and eventually eliminating
IP-based threats. For example, this may be achieved by
monitoring the structure of the encountered IP traffic and
the behavior of potentially compromised target systems.
For an illustrative example where we successfully utilized
the agents’ cooperative features, refer to Section 5. Al-
though the software agents provide powerful application-
level capabilities, their complexity unfortunately also af-
fects the scalability of the simulation. NeSSi mitigates this
problem by building upon a parallel-execution model.

3.2.2 Parallel-execution Model

Simulations in large-scale networks are very costly in
terms of processing time and memory consumption.
Therefore, NeSSi has been designed as a distributed simu-
lation, allowing the subdivision of tasks to different com-
puters and processes in a parallel-execution model. NeSSi
introduces an additional layer of abstraction at the level
of network design by explicitly modeling subnets (which

Volume 86, Numbers 5-6 SIMULATION 317

Schmidt, Bye, Chinnow, Bsufka, Camtepe, and Albayrak

& Preferences (&)
type filter text Database Preferences e L
¥ General Database Settings
P Appearance
ComparefPatch DB Username: pg|jser
Content Types ‘.
: DB Password: 20000000
P Editors S
acation: b "
keys jdbe:mysqgli/10.0.110.108/
Perspectives DB Schema: o502
Startup and Shutdown DE Driver:

b Workspace
b Help

Install/{Update
= NeS5i2

Simulation Settings
Special Modes

b Team

corm.mysql jdbc.Driver

Restore Defaults | (3

Apply

QK N[cancel \w

Figure 4. Preference pages allow the user to control all aspects of NeSSi: from local preferences to remote repository locations

constitute the nodes of the abstract network view in Fig-
ure 1). This abstract view on the network is shown in
the main editor area, which contains core, distribution
and access subnets. In this instance, the network depicted
in Figure 1) contains three core, three distribution and
nine access subnets. In the property sheet below the ed-
itor area, the properties of the selected element is visible;
in this case it displays that for the Accessl network, the
network address is /30.149.3.0 and the subnet mask is
255.255.255.0.

Each of these subnets can in turn be opened (via
double-clicking or the outline view on the right) to show
the devices of the subnet. An example of a subnet open
in the main editor window can be seen in Figure 3, where
a section of an access subnet containing web clients and
servers, firewalls and access routers is visible. This view
also contains more detailed information such as network
interfaces or link bandwidths. In addition, actual traffic in
the runtime phase will be visualized on the links by color
and thickness, which allows the selection of ‘interesting’
links in order to obtain even more detailed statistical and
graphical information (cf. Figure 5).

In NeSSi, the handling of subnets and the contained de-
vices is distributed to several processes on different in-
dividual machines, allowing the simulation to scale bet-
ter with increasing network size. Figure 6 shows the
main components of NeSSi, backend, GUI and Simulation
Database, as well as their interaction. In the GUI, the net-
work with appropriate scenario and session information is
created (cf. Section 3.1.1) and transmitted to the backend,
where the simulation is executed. In this regard, log data

318 SIMULATION Volume 86, Numbers 5-6

is stored in the Simulation Database and can be accessed
again by the GUI to show the results of a simulation run
(cf. Section 3.1.2).

In the backend, different agent roles carry out the task
of the parallel simulation execution. On the Master as
well as Slave Simulation Node, Subnet Agents (SAs) and
a Platform Coordination Agent (PCA) are running. In ad-
dition, the Master Simulation Node executes the Network
Coordination Agent (NCA).

Subnet Agent (SA). A SA is responsible for managing
an individual subnet. During execution, the SA re-
ceives events from the PCA (see below) indicating
that a new tick has started. It performs all relevant
operations such as packet forwarding and applica-
tion handling that need to be executed for the cur-
rent tick (an atomic time frame in the discrete-event
model). Once all events have been handled, the SA
reports back to the PCA that the tick has been suc-
cessfully executed.

Platform Coordination Agent (PCA). On a single plat-
form, different subnet agents are created, configu-
red and controlled by a PCA. A platform is meant
as a software environment for agents running on one
computer. The number of SAs handled by the PCA
is dependent on the available computing resources.
The PCA receives events from the NCA and relays
them to all of the SAs residing on its platform. As
soon as all SAs have reported back that a tick has
been executed successfully, the PCA is responsible

APPLICATION-LEVEL SIMULATION FOR NETWORK SECURITY

- Network Simulation - fhome/joel/NeSsi2/Networks/ProtocolDemo.network.network - NeSsi? - Network Security Simulator 066
Fle Edit Mavigate Project Network Configuration Window Help
I o ks | B e
T4 |£2Network Simulation | - Resource
#I * Recorded Simulations 52 = O[3 protocolDemo.network 5% =0
== il
?g.l = ASTopology & |
i
= [08-07 18:31:32] dai on 10.0.3.27 192.169.0.3 e
P WormProtection_NonCollaberative E‘g u
P WormProtection_Collaborative — Edgerouters 192 0.8
'~ ProtocolDemo %
= [08-13 14:11:20] joel on 10.0.4.15 [10
= default Scenario - S
192.169.0.9
— EdgaReuEary
~ DDoSDemo 192.169.0.11 % EdgaRoutar
b [08-13 15:24:14] joel on 10.0.4.15 et
= smallDemo <t (= — = 3> |
b [08-15 08:28:37] bsufka on 10.0.4.108 ProtocolDemo.network | Distribution1 -Accessl‘AcEessZ‘AccsssE}Accassﬂ}
P [08-15 08:30:40] bsufka on 10.0.4.108 |[_ Properties [~ Progress Console [Simulations [i Statistics &2 =g

i, >

Geqsrgl Options

‘ DNS packets sent |
[FTP packets sent

HTTP packets sent

SMTP packets sent
Unknown packets sent

(5= Qutline

b iak Accessl

b 4ot Access2

= {1 Access3
% AccessRouter2l
W AccessRouter22
% AccessRouter23
% AccessRouter24
% AccessRouter2s
W AccessRouter26
% AccessRouterz7

% AccessRouter28

% AccessRouter29

0
10"

ot . - SS

Event

Statistics for EdgeRouter5-EdgeRouterl

Interval Length: 10

1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000
Tick

10.000

" DNS packets sent [l FTP packets sent ll HTTP packets sent [ISMTP packets sent I Unknown packets sent‘

Jick

|

J . Database connected « Agent Backend discol

Figure 5. Graphical depiction of traffic in the Network Simulation perspective

for forwarding the packets traveling from one sub-
net to another subnet on a different platform to the
respective target PCA. Subsequently, it informs the
NCA that the platform has finished the requested
task. The platform also sustains a connection to the
database, where simulation results and history can
be stored (see Section 3.3).

Network Coordination Agent (NCA). The entire net-
work simulation is controlled by the NCA. The
NCA coordinates the distribution of the subnets at
the beginning of a simulation as well as the syn-
chronization of the platforms. The NCA receives
its network model data from the GUI agent. The
GUI can also trigger the beginning and determine
the end of the simulation, but the NCA does not
depend on a GUI agent to be present once it has
been started. This architecture allows the distrib-
uted network simulation. In addition, the GUI can
be disconnected from the simulation environment

and later reconnected to it, even from another com-
puter. Figure 6 is a graphical representation of the
distributed agent architecture.

3.3 Persistent Session Management

In NeSSi, we refer to a scenario where we generate traffic
via pre-defined profiles (cf. Section 3.1.1) on a single net-
work over a certain amount of time as a session. The accu-
rate reproduction of a session enables users to use differ-
ent detection methods or various deployments of detection
units for the same traffic data set. This allows the compar-
ison of performance and detection efficiency of different
security framework setups.

For these purposes, we use a distributed database in
which the traffic generated during a session is stored. For
each session, the agents log the traffic and detection data
and send it to the database that occurs in a simulated sce-
nario between a start and end time. The data types to be
logged are specified by the user in the session parameters.

Volume 86, Numbers 5-6 SIMULATION 319

Schmidt, Bye, Chinnow, Bsufka, Camtepe, and Albayrak

~ 2 A
5 NeSSfWE
2 Local
‘ @ Repository
: A
NeSSi Master

Simulation Node

NeSSi Simulation Backend <t

———e
i ~
. Ve ~
Nessi v \1
Local : ® ponmnna= -
Repository 3
_____ SATIN | £
NeSSi Slave NeSSi Slave

E— ey NeSSi
i = Local
[l DAH.abor Repository

NeSSi Ul: Editor and Simulation Result View

Simulation Node

Simulation Node

Y

NeSSi Simulation Database

Figure 6. Architecture for distributed simulations with NeSSi.

The network model is saved in an XML file. This network
file is stored and annotated with a version number based
on its hash code in order to link a network uniquely to
a session. In addition, attack-related events can be stored
in the database for evaluation purposes. Those events are
explained in greater detail in Section 5.3.

Owing to the modular design of the database com-
ponent, the actual implementation of the database is up
to the user. This can be comfortably managed via the
GUI, where the location of the database, database user
name, password and the database driver can be specified.
NeSSi has been tested extensively with a MySQL data-
base server, but depending on the user’s preferences, this
can easily be substituted by another module (see Fig-
ure 4). The event types to log are specified indepen-
dent of the underlying implementation via XML-based
log4j logger repository settings where multiple appenders
can be configured. For example, for simple scenarios the
user can simply write the results to a text file if they so
desire.

4. The Features of NeSSi

NeSSi is designed to extend conventional network sim-
ulation tool features by supporting detailed examination

320 SIMULATION Volume 86, Numbers 5-6

and testing opportunities of security-related network algo-
rithms, detection units and frameworks. The main focus of
NeSSi is to provide a realistic packet-level simulation en-
vironment as a testbed for the development of new detec-
tion units as well as existing units. We use detection unit
as an abstract term for any algorithm or tool employed for
the purpose of detecting malicious activity such as intru-
sion or service degradation attempts.

NeSSi has been designed as a modular application with
the focus on extensibility. In particular, NeSSi provides
out-of-the-box support for various protocols of the TCP/IP
stack; a selection of these is described in Section 4.2.
These features provide the basis for designing, incorpo-
rating and simulating detection units. The framework pro-
vided by NeSSi for simulating is subsequently described in
Section 5.2. The general plug-in API for integrating new
user-designed protocols, device types and detection units
is beyond the scope of this paper.

4.1 Traffic Generation

Network traffic in the form of IP packets, complete with
header and body, can be generated by different means.
Implementing the TCP/IP protocol stack, NeSSi features
an application layer module which is based on standard

APPLICATION-LEVEL SIMULATION FOR NETWORK SECURITY

Java socket implementations. NeSSi incorporates several
application-level protocols (HTTP, SMTP, etc.) and sup-
ports static and dynamic routing protocols, which can be
selected by the user. At the moment, static and dynamic
protocols are implemented. A static routing protocol cen-
trally computes the shortest paths as the network is loaded
and each time the topology changes. The resulting rout-
ing tables are subsequently loaded onto the individual
network nodes. On the other hand, IS-IS (intermediate-
system-to-intermediate-system) has been implemented as
a link-state protocol, which relies on a decentralized al-
gorithm during which routers exchange information about
their link states and gather topology information locally.
In an iterative fashion, the routing tables at the individ-
ual nodes are updated through control message exchange.
NeSSi can also easily be extended to support a variety of
other applications (see Section 4.2).

For this purpose, it is necessary to implement, in ad-
dition to the application, the previously described ac-
tion with the required parameter. In case of a DDoS
application, this would be source and destination port,
the attacked IP address as well as the packet frequency.
Through this, the user’s own enhancements can be eas-
ily configured, deployed in a network and simulated with
NeSSi.

4.2 Protocol Stack and Socket-based AP

The TCP/IP reference model is the de-facto standard for
Internet communication. Owing to its importance, NeSSi
also offers an implementation for it. The routers as well
as the end devices in the simulation contain a Network
Layer; end devices also exclusively have a Transport and
an Application Layer. At the Network Layer, IPv4 is re-
alized with the key features global addressing, routing
and fragmentation support. Moreover, TCP/IP model im-
plementation allows containing several protocols in each
layer; hence, we also provide IPv6 support in NeSSi. For
the fault management, TTL (time to live) and header
checksums are supported and the ICMP protocol has been
implemented for failure notification. Network Layer com-
munication is realized directly on the drop-tail queues that
are located at the network interfaces.

On the next level, the Transport Layer is comprised
of the User Datagram Protocol (UDP) and Transmission
Control Protocol (TCP). TCP in NeSSi offers a reliable
and in-order delivery of data. Sockets represent the inter-
face to the Application Layer, i.e. applications can set up
several stream sockets as well as the corresponding server
sockets. In this fashion, third-party Java libraries can eas-
ily be integrated into the simulation by substituting Java
sockets with NeSSi sockets. As a proof-of-concept, the
JavaMail API' has been successfully adapted in NeSSi.
All applications that are run in NeSSi follow a common

1. See http://java.sun.com/products/javamail

Ne S5Si-Network Security Simulator
Traffic Modesling Distributed Simulation Visualization
Attack Modelling e iaEyen Reporting Engine
Network and Security : Statistical Evaluation
Infrastructure Detection UnkAPY Component

Design Environment Simulation Core Evaluation of Results

Eclipse RCP JIAC TNG EMF

Figure 7. NeSSi comprises several components presented in
the middle layer; the bottom layer depicts the main technologies
NeSSi relies upon.

interface that abstracts from their specific behavior but al-
lows a standardized way of executing them. Currently, the
HTTP, SMTP and IRC protocols are integrated in NeSSi.

Generated traffic in NeSSi can also be exported to files
in the pcap® format in order to inspect the data with
standard traffic inspection tools such as wireshark®. Sev-
eral tests have been conducted with the traffic exported
from NeSSi, verifying that the generated traffic is well
formed. Wireshark is able to reconstruct the application
data stream without errors if all corresponding IP packets
are in the exported file. The generated traffic can be ana-
lyzed either offline, for example with the aforementioned
tools, or online within the application itself, for example
by displaying a graphical summary (cf. Figure 1).

5. Security Simulation Features

In the previous sections, we described the basic network
model and traffic-generation features of NeSSi as well as
other aspects regarding general network simulation. The
distinguishing feature of NeSSi is the focus on network se-
curity framework and algorithm evaluation. Figure 7 pro-
vides a conceptual view on NeSSi. The bottom layer shows
some of the important technologies that NeSSi uses. This
includes the JIAC agent framework used for representa-
tion of the different entities in the simulation, EMF for
the network data model and Eclipse RCP as the platform-
independent, plug-in-based execution environment. On
top of the bottom layer, several concepts realized in NeSSi
can be found. These are the aforementioned general net-
work simulation components such as traffic modeling via

2. See http://www.tcpdump.org
3. See http://www.wireshark.org

Volume 86, Numbers 5-6 SIMULATION 321

Schmidt, Bye, Chinnow, Bsufka, Camtepe, and Albayrak

node profiles, a parallel execution model, discrete-event
simulation and the visualization.

In this section, we presume that a network topology and
background traffic have been created, as described in the
previous sections. We now highlight the security simula-
tion capabilities of NeSSi that can be added to this basic
setup in a four-step process. First, we describe how attacks
are modeled and generated in Section 5.1. Subsequently,
detection capabilities are added to the network in order to
evaluate their efficiency in detecting the configured attack
scenarios (Section 5.2). Finally, Section 5.3 demonstrates
how the results of the simulation are presented to the user
in order to draw conclusions as to whether the selected de-
tection approach is performing well in protecting against
the configured attack.

In a final step, we show how the abovementioned
concepts are put into practice by means of an example
scenario. Using the example of detecting and contain-
ing worm spread in a network of multiple autonomous
systems, Section 5.4 applies the concepts from the Sec-
tions 5.1, 5.2 and 5.3 in a step-by-step process.

5.1 Generating Attacks

The simulation setup in NeSSi not only comprises net-
work creation and attachment of traffic profiles (cf. Sec-
tion 3.1.1), but additionally security related settings can
be configured. When a security framework composed of
several detection units is to be tested, profiles can also be
used in NeSSi to simulate attacker behavior and attack pat-
terns. Accordingly, NeSSi provides out-of-the box support
for various attack scenarios such as bot networks initiat-
ing DDoS attacks. Here, infected end device nodes, ‘zom-
bies’, are controlled by the bot net commander via the In-
ternet Relay Chat application. The commander is capable
of initiating different kinds of DDoS attacks such as the
SYN Flooding or UDP Storm. To this end, the attacker
connects to an IRC communication server and sends at-
tack commands to a chat channel that all of the bots are
listening to. As a result, the bots execute the desired at-
tack.

In addition, worm propagation schemes are supported.
Here, the behavior of the SQL Slammer worm and the
Blaster worm have been realized exemplarily in NeSSi.
In general, a worm propagation scheme as well as the
susceptible—infected—recovered (SIR) model as an epi-
demiological model is included in NeSSi. The worm prop-
agations scheme can be configured in different ways: on
the one hand, there exist configuration files defining the
number of initial propagators and where in the network
the outbreak should take place. In addition, the spreading
scheme, i.e. which IP addresses to attack and delays in
between, can be set.

On the other hand, the worm application model itself
can either be extended or a new model can seamlessly be
integrated via the application interface provided in NeSSi

322 SIMULATION Volume 86, Numbers 5-6

FILTERING
SELECTION
= iy / _’
L) e 9 ,,/ TIMESTAMP
Input Source
INLINING

Packet Capturing

+ 4

DU-DATA-
GENERATION

AGGREGATION
FILTERING

B ——

CLASSIFICATION
SELECTION

Packet Post Processing

!

ANOMALY-BASED

Packet Processing

SIGNATURE-BASED

Detection Units

Figure 8. The components of the Detection Unit APl and the
packet/data flow between them; the Packet Processing compo-
nent is not necessary for all detection algorithms

(cf. Section 4.2). In the second step, newly developed or
pre-configured detection units can be deployed on a set of
links in the simulation. Therefore, analogous to the traffic
profiles, detection profiles can be created. Those detection
profiles consist of one or more detection units and can
be deployed on end devices, links or routers. Details of
how these deployments are evaluated with regard to their
efficiency can be found in Section 6.2. The tools used for
these evaluation tasks are described in the next section.

5.2 Detection Unit API

First and foremost, NeSSi provides a Detection Unit APl
for the development of new detection algorithms as well
as the integration of existing algorithms. The architec-
ture for this purpose is shown in Figure 8. It consists
of four main components whose activation depends on
the configuration of the detection approach; the Packet
Capturing component is mandatory and processes incom-
ing traffic from a data source. This is usually a link in
the NeSSi simulation but can also be file system streams
or a database connection. Here, packets are selected ac-
cording to filter rules and a sampling policy (such as
‘every tenth packet’) to narrow down the processing over-

APPLICATION-LEVEL SIMULATION FOR NETWORK SECURITY

head. Accordingly, the packets are associated with time
stamps.

Several detection algorithms, e.g. behavior-based ap-
proaches, do not only process packets but also related sta-
tistical information. As an example, the well-known SYN
Flood attack is characterized by a massive amount of open
TCP connections. In this case, the Packet Processing com-
ponent offers the construction of IPFIX* data flows based
on the packet data. The flow specification is open to the
developer by configuration files. To this end, a tree struc-
ture of the flow is defined by providing key attributes and
optional data fields. A data flow representing distinct TCP
sessions must have at least a source IP address, destina-
tion IP address, source port, destination port and a proto-
col flag as key attributes.

Moreover, the Packet Post Processing component gen-
erates the actual input to the detection units. This input can
also be specified by a detection unit which ranges from
raw packets for signature-based schemes such as virus
scanners, to complex ratios of traffic statistics based on
the flow data; for example, in the case of a SYN Flood
attack, the ratio of half-open TCP connections to all TCP
connections can be specified.

Finally, the detection units may be well-known secu-
rity solutions as contemporary commercial virus scan-
ner software or new tools developed in scientific research
projects. In NeSSi, both can be incorporated as long as
they adhere to a specified interface. The configuration of
a detection unit and the required components are stored in
a template. Furthermore, additional properties such as In-
lining, i.e. synchronous packet processing, can be set. This
allows the application of counter measures. A processing
interval for a detection algorithm is another option that can
be set here.

5.3 Reporting and Evaluation

NeSSi allows the simulation of various security scenar-
ios. In addition, there is a huge diversity in network se-
curity evaluation metrics. Here, the developer of a de-
tection algorithm respectively of a special security in-
frastructure set-up may not only be interested in detec-
tion rates, but also in the economical assessment of a sce-
nario. Hence, the gathering of simulation results and the
evaluation needs to be very flexible. Here, we apply an
event-based approach, the so-called Meta Attack Events.
Already included events incorporate dropped packets, in-
fected flows, compromised machines, unavailable ser-
vices, etc. Those events are stored in the database at run-
time. Events belonging to the same attack refer to a global
ID to differentiate between the impacts of different at-
tacks. The database associates those events with a time
stamp in the simulation as well as a device and/or trans-
mitted packets related to that specific event.

4. See http://www.ietf.org/html.charters/ipfix-charter.html

Furthermore, we apply BIRT (Business Intelligence
and Reporting Tools) [14] for visualization and analysis
of results. BIRT comprises, on the one hand, a graphi-
cal report designer capable of creating report templates. In
those templates, different input sources such as databases,
simple Java objects or XML files can be declared. In ad-
dition, BIRT allows standard statistical operations on the
data and enables the choice of several chart types to dis-
play the resulting data series. More complex preprocess-
ing can easily be carried out by adding Java or JavaScript
code.

On the other hand, BIRT offers an environment for
the generation of the reports at runtime. In this case,
a report template is loaded and the actual selected data
source, in the example of NeSSi usually a simulation ses-
sion is bound to the report. Subsequently, an HTML docu-
ment containing the desired report is generated and can be
shown in any Internet Browser. Figure 9 shows an exam-
ple report created in the NeSSi environment. It compares
detection rates of different algorithms; the detection rate is
measured as detected number of infections in comparison
to the total number of infections (sensitivity).

5.4 Example Scenario: Signature-based Worm
Spread Detection and Prevention

Computer worms represent a serious threat to communica-
tion networks, even motivating the development of several
special-purpose simulation tools to examine their prop-
erties (cf. Section 2). Therefore, we analyzed how the
impact of an epidemic that spreads too fast to be con-
tained using human supervision processes can be mini-
mized with signature-based countermeasures. To be able
to model realistic scenarios, we extended NeSSi to sup-
port multi-autonomous system topologies. In the follow-
ing, we show how this simulation study is conducted; se-
lected steps are shown in Figure 10.

In the beginning, the AS topology is created using the
wizard for parameter-based automated network creation.
An extract is shown in the main editor window in the
background of Figure 10 (step 1). Next, this scenario re-
quires a worm and a detection unit application. As shown
in Figure 10 (step 2), applications can be customized by
specifying various parameters. In this manner, it is pos-
sible to emulate the behavior of existing malware such as
CodeRed or SQL Slammer. We used a CodeRed-like scan-
ning behavior with small adaptations due to the smaller
IP space. The worm application has two states: suscepti-
ble and infected. Initially, only a few worm applications
are in the infected state, but they will be switched if they
receive a worm packet on the vulnerable port. The detec-
tion application utilizes network error messages (ICMP).
If hosts cause too much ICMP traffic, they are marked as
suspicious and the detection application starts to generate
signatures for their traffic. After a predefined amount of
a certain signature has been created for different hosts,

Volume 86, Numbers 5-6 SIMULATION 323

Schmidt, Bye, Chinnow, Bsufka, Camtepe, and Albayrak

-
-

BIRT Report Viewer

H 3k I H

|Shuwing page 1 of 1

Dietection Ratio [%4]

Tirae [Tick]

L9 TS

A S canmer
Wi nlafhe

i« ¥ I Gotopage: ﬂ
[

Detection Rates of Different Detection Units

Figure 9. Reporting in NeSSi: this example report shows an evaluation of the detection ratio (sensitivity) of different detection algorithms

it will be deployed and prevents infections. For multi-
autonomous system topologies, the applications are de-
ployed automatically. Alternatively, manual configuration
as shown in step 3 is also possible. Now that both the at-
tack and the detection profiles have been set up, the user
has to create, configure and execute a session.

Finally, the simulation can be evaluated in the corre-
sponding perspective. The results of this example run are
pictured in Figure 1. Here, we differ between the spread
inside and outside the protected autonomous system. For
the latter, the events are split into two graphs, the infec-
tions inside the protected autonomous systems and the
averted attacks after the signatures where deployed. Here
the mitigation was successful as less then a quarter of the
vulnerable hosts have been infected.

In the following section, we discuss further security re-
search conducted with NeSSi to demonstrate that it is not
merely a worm simulation tool but has been successfully
used to conduct a wide variety of simulation studies in
various fields.

324 SIMULATION Volume 86, Numbers 5-6

6. Recent and Published Research Activities

NeSSi has already demonstrated its value in recent re-
search and was employed as a test framework for various
network-centric security approaches.

6.1 Artificial Immune System

As an example, a distributed and collaborative Artificial
Immune System (AIS) was implemented in NeSSi for test-
ing an anomaly-based detection algorithm [12]. In this
scenario, anomaly detection units on different hosts com-
pute the probability of an anomaly by an AIS component.
The idea of AIS is to compute the possibility of an anom-
aly by comparing the actual status of the system to a set
of detectors created by negative selection [15]. This algo-
rithm is a metaphor of the biological negative selection
taking place during the maturation of the immune cells.
The detectors are produced nearly randomly and com-
pared with the normal data; if a detector is similar to a

APPLICATION-LEVEL SIMULATION FOR NETWORK SECURITY

Applications
Craate and adt applications.

:-\N{\:\'Hf Fualable Appboatrans P . (IYTees

N

a8

et Feute _— Pratile Deployment
Lt IF yous nend addtional categores for distributing profiles, please

W double-clitk on the tab-area,
=]

Tinsanr

2120725

AsS2

@/l‘/ AS2001

AS2000

Global Values
i Interval Length: 1
= DDoSDemo -
,. Protected AS Device Not Infi
~ [08-13 R ey 20000
=i tected AS Device Infecte
- tected AS Device Infecte i
40,000
35.000
& 30,000
L% 25.000
20,000
15,000
10,000
5000
0
2,000 4,000 5000 8.000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000
DAIl-Labor Tick
10 Berin

Device Infected - Frotected AS Device MNOT Infected — Frotected AS Device |nTected

Figure 11. Evaluating worm spread prevention efficiency: spread in protected (lower, blue) and unprotected (upper, yellow) autonomous
systems

Volume 86, Numbers 5-6 SIMULATION 325

Schmidt, Bye, Chinnow, Bsufka, Camtepe, and Albayrak

normal feature vector, it is deleted and a new one is cre-
ated, and this is repeated until no detector is similar to the
normal feature vector set (training set).

The data processed by the AIS is statistical in na-
ture and obtained by a monitoring component on the host
agent. Here, the probability of an anomaly constitutes the
status of a client. The cooperation between the clients
takes place by sharing these status levels and computing
new status level information based on the incoming sta-
tus of others and its own status. The tests results, verified
in NeSSi, indicated a very good performance of the AIS
in general while the false positive rate (the main problem
of anomaly detection systems) was lowered significantly.
The communication between the AIS clients described
in [12] has been implemented in NeSSi via a customized
peer-to-peer protocol to avoid the single point-of-failure
of a central server. This peer-to-peer protocol allows the
combination of AISs into detection groups.

As an extension, a scheme for the decentralized de-
tector set generation was presented by Bye et al. [16].
Here, the overall feature space is partitioned in several
subspaces administrated by AIS-enabled nodes. As a re-
sult, the individual computational load for each node is de-
creased. Nevertheless, by the application of combinatorial
design techniques such as Symmetric Balanced Incom-
plete Block Design or Generalized Quadrangles, a con-
trolled level of overlap between the detector sets is re-
alized and sets are exchanged deterministically between
peers. Finally, this results in a trade-off between the afore-
mentioned computational task on the one hand and a guar-
anteed level of redundancy on the other hand.

6.2 Detection Device Placement

As a second use-case scenario, we studied various detec-
tion device placement approaches. To this end, we used a
number of identical detection units in order to ensure com-
parability. The type of detection unit to use can be selected
prior to starting the device placement scenario in NeSSi.
Furthermore, the configuration dialog allows the selection
of how many total detection devices may be placed, rep-
resenting a total sampling budget. The objective is then
to maximize the detection efficiency subject to the budget
constraints. Several algorithms are supported for comput-
ing sensible deployment strategies, for example Between-
ness Centrality [17], Traffic Betweenness Centrality [18]
or a selection of game-theoretic approaches [19, 20].

In NeSSi, we have already successfully evaluated two
of these approaches, namely node selection algorithms
using the Betweenness Centrality paradigm as well as a
monitor placement game described in [20]. The Between-
ness Centrality algorithm originates from social network
theory and indicates the importance of a node in the over-
all network communication. It is run asynchronously in
NeSSi after a change to the network topology occurs and
returns a numerical value for every node indicating its cen-
trality index.

326 SIMULATION Volume 86, Numbers 5-6

Subsequently, detection devices are placed on the de-
vices corresponding to the nodes with the largest values
as an optimal deployment. We then ran a test with default
traffic-generation profiles on all clients for a fixed number
of execution cycles. For comparison, we subsequently fed
the same traffic in the same network but deployed the de-
tection units randomly. The results indicate the superiority
of deploying on nodes with high Betweenness Centrality
index. We assume that in case traffic is not uniformly dis-
tributed in the network, i.e. there are clients who gener-
ate considerably more traffic than others, the Traffic Be-
tweenness Centrality [18] approach would be even more
suitable. Puzis et al. [21] mention the possibility of adapt-
ing the Betweenness Centrality to find a most prominent
group in a network, which they define as a set of nodes
which covers the most distinct source—destination (client—
server) paths.

In a more recent paper, Brandes also considers vari-
ous variants of Shortest-Path Betweenness Centrality [22].
Some of these are particularly suited for application to
real-world scenarios, such as the proxies and endpoints
subproblems. In NeSSi, we have applied the algorithms
for these variants in order to generate more realistic Be-
tweenness Centrality values.

These applications result in being able to generate
subnet-weighted Betweenness Centrality values, where it
is assumed that traffic in subnets will be proportionally
larger than intra-subnet traffic. A second variant takes into
account that only end devices will initiate connections and
generate traffic while the intermediate routers merely for-
ward it. This enables us to disregard all shortest paths (s,f)
where s or ¢ is a router, leading to more meaningful cen-
trality values.

In the second study, a game-theoretic approached was
employed where the attackers and the IDS are modeled
as adversaries in a two-person game. We were able to
demonstrate the existence of a mixed-strategy saddle-
point equilibrium and computed its value for two example
networks. The adversaries are modeled as Runnables in
NeSSi. Upon starting the simulation, the respective threads
are started concurrently, and elementary player actions
from the strategy matrix are selected using a random num-
ber generator. It was possible to verify the game-theoretic
optimality and measure the performance of the obtained
strategies to the devised network security game.

Finally, hierarchical intrusion detection approaches are
emerging as important tools in managing the increasing
complexity of network-based intrusion detection systems.
This is particularly true for ad-hoc networks, where the
lack of central audit points mandates a distributed and
adaptive intrusion detection approach [23]. The hierar-
chy needs to be constantly able to adapt to nodes leav-
ing and entering the network. In this respect, we have im-
plemented Basagni’s algorithm [24] for performing a dis-
tributed clustering and determining the clusterheads of the
intrusion detection hierarchy. This is a first step towards
building a multi-level intrusion detection hierarchy as de-

APPLICATION-LEVEL SIMULATION FOR NETWORK SECURITY

scribed in [23]. We expect to obtain relevant results as
soon as ad-hoc network protocol support in NeSSi through
plug-ins reaches a mature level.

6.3 Collaborative Intrusion and Malware Detection

Another case study realized in NeSSi took place in the
scope of CIMD (Collaborative Intrusion and Malware De-
tection). The CIMD framework enables cooperative intru-
sion detection approaches via an overlay network. For this
purpose detection groups, i.e. groups with a common ob-
Jjective for intrusion detection are built. Each participant of
CIMD is characterized by attributes, e.g. hardware, soft-
ware or network configuration. Based on this data model,
the interests, i.e. characteristics of desired group members
can be expressed. Subsequently, the overlay network per-
forms the look-up of potential group members and con-
ducts the grouping. Bye et al. introduced the main aspects
of CIMD which are the data model, grouping algorithm
and matching function(s) in [25]. In this work, also vul-
nerability analysis and realization strategies of the system
are given as well as simulation and analysis was conducted
pinpointing the benefit of the overall approach.

In this regard, the case study of heterogeneous detec-
tion groups for signature exchange was applied. These
groups of disparate NIDSs follow the common objec-
tive of ‘signature exchange’ while originating from dis-
tinct manufacturers. Customer networks are connected to
a NSP and provided a portfolio of disparate NIDS prod-
ucts as a commercial service. Each customer network is
protected by a randomly selected NIDS type installed at
the gateway to the NSP. The attack vector bases on drive-
by downloads, i.e. malicious web servers exploit browser
vulnerabilities of a user when accessing web sites. In this
regard, clients in the customer networks continuously ac-
cess the web servers and become infected in the case the
server is malicious. However, in the case that a signature
for the attack is already available on the NIDS, the attack
is prevented. In the beginning, attacks are unknown and
devices are exposed to the vulnerability window, i.e. time
between an exploit becomes available and appropriate sig-
nature is generated. However, signatures for the threats
become available with different update times depending
on the manufacturer. In the non-collaborative scenario, the
NIDS are working on their own, whereas in the collabora-
tive scenario the heterogeneous detection groups are built
in advance with the purpose to mediate upcoming signa-
tures between the distinct participants.

The benefit of the detection groups has been evalu-
ated in NeSSi. Here, a topology of 58 access networks
connected to the backbone of the NSP was realized (cf.
Figure 12). The NIDS portfolio was composed of three
different products, which were equally distributed over
the customer networks. Signatures for the attack become
available in the interval between a minimum and a max-
imum update time. We simulated the collaborative and

non-collaborative in NeSSi with varying malicious web
server probabilities. The results of the simulation showed
a reduction of the number of infections compared with
the non-collaborative approach. Probabilistic analysis was
also conducted to support the simulation results show-
ing also that collaboration becomes the more feasible the
more heterogeneous the detection groups are.

6.4 Detection Algorithm Evaluation

In a university graduate class, NeSSi was used to pro-
duce data for the evaluation of detection algorithms imple-
mented by students without any knowledge of the simula-
tor. When it is not required to analyze simulation data at
runtime, NeSSi allows the storage of simulation data, e.g.
the IP packets, in the database. In the anomaly detection
class, NeSSi was used to simulate non-infected traffic, a
DDoS attack and a worm attack. The students were tasked
with implementing an anomaly detection algorithm and
comparing detection results between different algorithms,
attack types and detector placements within in NeSSi. All
of these different experiments were based on the simula-
tion data stored in the NeSSi database. The evaluated de-
tection approaches included a distributed AIS [26], a self-
organizing map [27] and naive Bayes classifiers [28].

7. Conclusion and Outlook

We have presented and described the network secu-
rity simulator NeSSi. Based on agent technology and
discrete-event simulation, it is a highly scalable, platform-
independent network simulation tool with special features
for evaluating security solutions. In particular, the plug-
in-based API allows security experts to write their own
detection unit plug-ins and test them in NeSSi.

Network simulation is a very wide and complex area
in software engineering. There is an abundance of fea-
tures existing in real-life networks; moreover, standards
are changing and new standards are introduced contin-
uously at a rapid rate. Hence, keeping NeSSi up-to-date
with the latest trends in network technology is a great chal-
lenge. The following is a list of features we plan to focus
on in the further development of NeSSi. For comparison,
a list of features for the next generation of ns-2 (some of
them are already supported in NeSSi) can be found in [29].

Usability. In order to appeal to a greater audience, the
usability of the simulator can be improved. This
includes role-based user-interface perspectives de-
pendent on experience level (novice or expert).

Scenarios. More default attack scenarios will be sup-
ported. We will extend the already realized bot net
infrastructure capable of executing DDoS-attacks
(cf. Figure 10) by peer-to-peer principles. Peer-to-
peer bot nets are regarded as an emerging important
threat in network security.

Volume 86, Numbers 5-6 SIMULATION 327

Schmidt, Bye, Chinnow, Bsufka, Camtepe, and Albayrak

Figure 12. Backbone of the simulated network used for the heterogeneous detection group scenario

Critical infrastructures. In future versions, we aim to
extend the strictly IP-based topology models by
adding features for examining higher-level secu-
rity risks, for example in critical infrastructures.
In particular, we focus on providing more generic
network models which interoperate with standard
graph libraries, for example JUNG [30]. This will
allow the user to examine interdependencies be-
tween different types of commodities (i.e. power
and communication infrastructures) and assess the
related security risks.

Since the end of 2008, NeSSi is available under an open-
source license. Please visit http://www.nessi2.de for the
newest developments.

328 SIMULATION Volume 86, Numbers 5-6

8. Acknowledgements

The authors would especially like to thank their
scientific advisors Tansu Alpcan and Katja Luther
for their invaluable support and their fellow col-
leagues Thorsten Rimkus, Sebastian Linkiewicz, Mar-
cus Lagemann, Thomas Hauschild, Jakob Strafer and
Dennis Grunewald for their dedicated work on this
project. This research was supported and funded by
Deutsche Telekom AG.

9. References
[1] USC Information Sciences Institute. NS-2 network simula-

tor 2.31. http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf (accessed
07/15/2008.

APPLICATION-LEVEL SIMULATION FOR NETWORK SECURITY

[2] Nicol, D.M., M. Liljenstam and J. Liu. 2005. Advanced concepts
in large-scale network simulation. In M.E. Kuhl, N.M. Steiger,
F. Armstrong and J.A. Joines, Eds, 37th Winter Simulation Con-
ference, ACM Press, New York, pp. 153-166.

[3] Liu, B., D.R. Figueiredo, Y. Guo, J. Kurose and D. Towsley. 2001.
A study of networks simulation efficiency: Fluid simulation vs.
packet-level simulation. In INFOCOM 2001. Twentieth Annual
Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, Vol. 3, pp. 1244—-1253.

[4] Scalable Network Technologies Inc. Qualnet. http://www.scalable-
networks.com.

[5] Riley, G.F. 2003. The Georgia Tech Network Simulator. In Pro-
ceedings of the ACM SIGCOMM Workshop on Models, Methods
and Tools for Reproducible Network Research, ACM Press, New
York, pp. 5-12

[6] Wei, S., J. Mirkovic and M. Swany. 2005. Distributed worm simula-
tion with a realistic internet model. In PADS 2005. Workshop on
Principles of Advanced and Distributed Simulation, June 2005,
pp- 71-79.

[7] Liljenstam, M., J. Liu, D.M. Nicol, Y. Yuan, G. Yan and C. Grier.
2006. RINSE: The Real-Time Immersive Network Simulation
Environment for Network Security Exercises (Extended Ver-
sion). Simulation, 82(1): 43-59.

[8] Yun, J.B., E.K. Park, E.G. Im and H.P. In. 2005. A scalable, ordered
scenario-based network security simulator. In Systems Modeling
and Simulation: Theory and Applications (Lecture Notes in Com-
puter Science, Vol. 3389), Springer, Berlin, pp. 487-494.

[9] Eclipse Foundation. Eclipsepedia: RCP. http://wiki.eclipse.org/RCP
(accessed 10/11/2008).

[10] Eclipse Foundation. Eclipsepedia: SWT. http://www.eclipse.org/swt
(accessed 10/11/2008).

[11] Eclipse Foundation. Eclipse modeling framework project. http://
www.eclipse.org/modeling/emf (accessed 10/11/2008).

[12] Luther, K., R. Bye, T. Alpcan, S. Albayrak and A. Miiller. 2007. A
cooperative AIS framework for intrusion detection. In Proceed-
ings of the IEEE International Conference on Communications
(ICC 2007).

[13] Fricke, S., K. Bsufka, J. Keiser, T. Schmidt, R. Sesseler and S. Al-
bayrak. 2001. Agent-based telematic services and telecom appli-
cations. Communications of the ACM, 44(4): 43-48.

[14] Eclipse Foundation. Business intelligence and reporting tools.
http://www.eclipse.org/birt/phoenix (accessed 10/11/2008).

[15] Forrest, S., A.S. Perelson, L. Allen and R. Cherukuri. 1994. Self-
nonself discrimination in a computer. In Proceedings of the IEEE
Symposium on Research in Security and Privacy, IEEE Computer
Society Press, Los Alamitos, CA, pp. 202-212.

[16] Bye, R., K. Luther, S.A. Camtepe, T. Alpcan, S. Albayrak and
B. Yener. 2008. Decentralized detector generation in coopera-
tive intrusion detection systems. In S. Masuzawa and T. Tixeuil,
Eds, Stabilization, Safety, and Security of Distributed Systems
9th International Symposium, SSS 2007 Paris, France, November
14-16, 2007 Proceedings (Lecture Notes in Computer Science,
Vol. 4838), Springer, Berlin.

[17] Brandes, U. 2001. A faster algorithm for betweenness centrality.
Journal of Mathematical Sociology, 25(2): 163-177.

[18] Bloem, M., T. Alpean, S. Schmidt and T. Basar. 2007. Malware
filtering for network security using weighted optimality mea-
sures. In IEEE International Conference on Control Applica-
tions, 2007. CCA 2007, pp. 295-300.

[19] Kodialam, M. and T. Lakshman. 2003. Detecting network intru-
sions via sampling: a game theoretic approach. In Proceedings
IEEE INFOCOM 2003. Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications Societies, Vol. 3,
pp- 1880-1889.

[20] Schmidt, S., T. Alpcan, S. Albayrak and A. Miiller. 2007. A mon-
itor placement game for intrusion detection. In Proceedings of
CRITIS, 2nd International Workshop on Critical Information
Infrastructures Security (Lecture Notes in Computer Science),
5141, Springer, Berlin.

[21] Puzis, R., Y. Elovici and S. Dolev. 2007. Fast algorithm for succes-
sive computation of group betweenness centrality. Physical Re-
view E (Statistical, Nonlinear, and Soft Matter Physics), 76(5):
056709.

[22] Brandes, U. 2008. On variants of shortest-path betweenness central-
ity and their generic computation. Social Networks, 30(2): 136—
145.

[23] Sterne, D., P. Balasubramanyam, D. Carman, B. Wilson, R. Tal-
pade, C. Ko, R. Balupari, C.-Y. Tseng and T. Bowen. 2005. A
general cooperative intrusion detection architecture for manets.
In Proceedings of the Third IEEE International Workshop on In-
formation Assurance, pp. 57-70.

[24] Basagni, S. 1999. Distributed clustering for ad hoc networks. In
Parallel Architectures, Algorithms, and Networks, 1999. (I-SPAN
'99) Proceedings. Fourth International Symposium on, pp. 310—
315.

[25] Bye, R. and S. Albayrak. CIMD—-Collaborative Intrusion and Mal-
ware Detection, Technical Report TUB-DAI 08/08-01, Technis-
che Universitit Berlin, DAI-Labor, August 2008, http://www.dai-
labor.de.

[26] Hofmeyr, S. and S. Forrest. 2000. Architecture for an artificial
immune system. Evolutionary Computation Journal, 8(4): 443—
473.

[27] Hoglund, AJ., K. Hitonen and A.S. Sorvari. 2000. A com-
puter host-based user anomaly detection system using the self-
organizing map. In IJCNN ’00: Proceedings of the IEEE-
INNS-ENNS International Joint Conference on Neural Networks
(IJCNN’00), Vol. 5, IEEE Computer Society, Washington, DC,
p. 5411.

[28] Amor, N.B., S. Benferhat and Z. Elouedi. 2004. Naive Bayes vs
decision trees in intrusion detection systems. In SAC '04: Pro-
ceedings of the 2004 ACM Symposium on Applied Computing,
ACM Press, New York, pp. 420-424.

[29] ns-3 project. NS-3 network simulator. http://www.nsnam.org/docs/
architecture.pdf (accessed 07/15/2008).

[30] JUNG. 2003. Java universal network/graph framework software li-
brary. http://jung.sourceforge.net (accessed 26/10/2008).

Stephan Schmidt received the Diplom-Informatiker (compara-
ble with international master’s degree) in 2005 at Technische
Universitdt Berlin. Currently he is working as a researcher and
project leader at DAI-Labor at Technische Universitit Berlin
and pursuing his PhD.

Rainer Bye received the Diplom-Informatiker in 2005 at Tech-
nische Universitit Braunschweig. Currently he is working as a
researcher and project leader at DAI-Labor at Technische Uni-
versitdt Berlin and pursuing his PhD.

Joel Chinnow received the Diplom-Informatiker in 2009 at Tech-
nische Universitdt Berlin. Currently he is working at DAI-Labor
Technische Universitdt Berlin and pursuing his PhD.

Karsten Bsufka received his degree in 2006 from the Technische
Universitdt Berlin. He currently works has a senior researcher
at the DAI-Labor and coordinates research projects related to
network security and network simulation and teaches classes on
network simulation and intrusion detection. He was the lead de-
veloper for the security mechanisms in the JIAC 1V agent frame-
work and responsible for the Common Criteria evaluation of
JIACIV.

Volume 86, Numbers 5-6 SIMULATION 329

Schmidt, Bye, Chinnow, Bsufka, Camtepe, and Albayrak

Seyit Ahmet Camtepe received a PhD (2007) in Computer Sci-
ence from Rensselaer Polytechnic Institute, Troy, NY, and BSc
(1996) and MSc (2002) degrees in Computer Engineering from
Bogatzici University, Istanbul, Turkey. He worked as a Network
and Security Engineer in Pamukbank (currently Halkbank), Is-
tanbul, Turkey, from 1996 to 2002. He is currently pursuing his
habilitation and directing the Competence Center Security in
DAI-Labor at Technische Universitdt Berlin.

330 SIMULATION Volume 86, Numbers 5-6

Sahin Albayrak is the chair of the professorship on Agent
Technologies in Business Applications and Telecommunication
(AOT) at Technische Universitdt Berlin. He is the founder and
head of DAI-Labor, currently employing about 100 researchers
and support staff. He is a member of IEEE, ACM, Gesellschaft
fiir Informatik (German Computer Science Society, GI), and
AAAL He is one of the founding members of Deutsche Telekom
Laboratories (T-Labs) and currently a member of its steering
board.

