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Abstract: Due to the rapid development of additive manufacturing, a growing number of components
in mechanical engineering are made of functionally graded materials. Compared to conventional
materials, they exhibit improved properties in terms of strength, thermal, wear or corrosion resistance.
However, because of the varying material properties, especially the type of in-depth grading of
Young’s modulus, the solution of contact problems including the frequently encountered tangential
fretting becomes significantly more difficult. The present work is intended to contribute to this
context. The partial-slip contact of axisymmetric, power-law graded elastic solids under classical
loading by a constant normal force and an oscillating tangential force is investigated both numerically
and analytically. For this purpose, a fictitious equivalent contact model in the mathematical space
of the Abel transform is used since it simplifies the solution procedure considerably without being
an approximation. For different axisymmetric shaped solids and various elastic inhomogeneities
(types of in-depth grading), the hysteresis loops are numerically generated and the corresponding
dissipated frictional energies per cycle are determined. Moreover, a closed-form analytical solution
for the dissipated energy is derived, which is applicable for a breadth class of axisymmetric shapes
and elastic inhomogeneities. The famous solution of Mindlin et al. emerges as a special case.

Keywords: structural damping; fretting; frictional energy dissipation; tangential contact; functionally
graded materials; Abel transform; Winkler foundation; hysteresis loops

MSC: 74-10

1. Introduction

In numerous mechanical engineering applications, machine components are subjected to
periodic oscillating loads, causing microslip within the contact interfaces. On the one hand,
this cyclic microslip is detrimental since it is associated with the wear formation and may
generate fretting fatigue cracks [1]. A classic example is turbine blades, which are mounted
on rotating disks by dovetail or fir-tree type roots. Due to the aerodynamic and centrifugal
forces as well as blade vibration, the blade-disk joints must withstand considerable loads and
relative motion on parts of their contact interfaces is inevitable [2]. Press-fitted shaft hub joints
and bolted joints are affected by fretting fatigue in a similar way [3].

On the other hand, the frictional energy dissipation due to partial or gross slip contact
can be beneficial since it contributes to effective structural damping. Remaining in the field
of turbomachinery applications, underplatform friction dampers are worth mentioning.
They are mounted underneath the platforms of adjacent turbine blades with the purpose of
limiting the blade vibration amplitude by frictional energy dissipation. In this way they
significantly reduce the risk of a high-cycle fatigue failure [4].
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Numerous theoretical studies on such elastic contacts subjected to oscillating loads
have been carried out in the past. Usually, they are based on the half-space assumption.
The solution of the classical contact problem of two parabolically curved bodies subjected
to an oscillating tangential force at constant normal force originates from Mindlin et al. [5]
and predicts cyclic microslip in a ring surrounding a central stick zone. Later, Johnson [6]
verified the resulting fretting damage experimentally and showed that the extension of the
damaged region in the contact area agreed well with the theoretically predicted one. The
influence of an oscillating force with a fixed oblique line of action (relative to the surface)
was treated in a seminal work by Mindlin and Deresiewicz [7]. However, of more practical
importance are the loading histories involving both periodically varying tangential and
normal forces. They have been studied in more recent works considering fairly general
profiles (not just spheres), including rough surfaces [8,9]. The results comprise the evolution
of stick-slip patterns and the frictional energy dissipation, which depends significantly on
the relative phase between the oscillations in normal and tangential direction.

All of the above-mentioned works have in common that they presuppose elastically
homogeneous isotropic solids. However, owing to the increased demands on the per-
formance and service life of mechanical power transmission systems, more and more
components with functionally graded material properties are being used. Such materi-
als are characterized by a gradually changing composition or microstructure, according
to a predefined law to meet a specific functionality. For example, gears must be tough
enough in the interior to withstand fracture, whereas its surface must be hard and wear
resistant. Likewise with turbine blades, except that a high heat resistance on the surface
is additionally required. Due to the rapid development in additive manufacturing, the
production of functionally gradient materials (FGMs) is no longer a challenge and will
become less expensive over time [10]. Here, we focus on FGMs whose Young’s modulus
varies continuously perpendicular to the solid surface. Contact problems of such solids
characterized by a predefined in-depth grading of Young’s modulus can usually only be
solved numerically with great computational effort [11]. The only exceptions are FGMs,
whose Young’s modulus changes with the depth according to a power law

E(z) = E0

(
z
c0

)k
with − 1 < k < 1, (1)

where c0 denotes a characteristic depth. For these so-called power-law graded elastic solids,
several closed-form analytical solutions to various types of contact problems have been
derived in the past. Even though this law of in-depth grading is, strictly speaking, of a
purely academic nature due to the infinitely large or vanishing Young’s modulus at the
surface, the basic contact behavior deviates slightly from that obtained for a more realistic
piecewise defined law [12]. Significant contributions to the solution of normal contact
problems of power-law graded elastic solids have been made by Booker et al. [13] as well
as by Giannakopoulos and Suresh [14]. The solutions of normal contact problems with
adhesion, according to Johnson, Kendall and Roberts and according to Maugis, respectively,
were developed in later years (see especially Refs. [15–17]). A rigorous theory for the
treatment of general three-dimensional tangential contacts of power-law graded elastic
solids has been derived just very recently [18]. An elegant method for solving tangential
contacts of axisymmetric power-law graded elastic solids was presented somewhat earlier
by Heß and Popov [19,20]. In the present work, this method is applied to study the energy
dissipation in partial slip tangential contacts of two axisymmetric power-law graded elastic
solids. Figure 1 schematically shows this type of contact, which is subjected to a constant
normal force and an oscillating tangential force specified by

Fz(t) = FN = const. , Fx(t) = FA sin(ωt). (2)
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Figure 1. Partial slip contact between two axisymmetric power-law graded elastic solids (tangential
fretting mode).

The amplitude of the tangential force FA is assumed to be smaller than the maximum
frictional force, in order to achieve the partial slip regime and to avoid gross slip. Due to
the oscillating tangential loading, cyclic microslip is induced in an annulus surrounding
a central stick zone, resulting in frictional energy dissipation which contributes to the
effective structural damping of the dynamic systems. Here, we focus on investigating the
influence of the elastic inhomogeneity (type of in-depth grading) and the axisymmetric
shape of the contacting bodies on the hysteresis loops and thus the energy dissipation.

We explicitly emphasize that our theoretical investigations are based on the same
simplifying assumptions that were presupposed in the original theory of Mindlin et al. [5,7].
These include in particular: The bodies are assumed to be elastically similar half-spaces with
ideally smooth surfaces, incomplete contact occurs, and the local contact obeys Amontons–
Coulomb’s friction law with a constant friction coefficient. Although the Cattaneo–Mindlin
theory is widely accepted and its results are in good qualitative agreement with the ex-
perimental ones, its inherent limitations due to the simplified assumptions are evident.
Already, the early experimental work of Johnson [21] as well as Goodman and Brown [22]
revealed that in the range of small tangential forces, deviations can be observed. Johnson
attributed the deviations to the inadequacy of the theoretical assumption of a constant
coefficient of friction as a result of the breakdown of contaminant and oxide films by oscil-
lating slip. The practical applicability of the further simplified assumptions, in particular
that the energy dissipation is exclusively the result of interfacial slip, was questioned by
Etsion [23]. Neither the experimentally observed junction growth [24], nor the plastic yield
at the contact interface (or sub-surface) including its consequences in terms of damage can
be accounted for within the framework of the applied theory [25,26]. A detailed study on
the influence of the elastic mismatch and plasticity, as well as a phase-shifted alternating
normal force, was conducted by Patil and Eriten [26]. Despite the aforementioned works
that legitimately question the simplifying assumptions, the Cattaneo–Mindlin theory is
one of the most cited, widely accepted, and still frequently applied contact theories to date.
So, we make no apology applying the corresponding assumptions as well for investigating
the influence of the material gradient on the dissipated energy in a partial slip contact of
power-law graded elastic solids. For some aspects concerning the suppression of plastic
yielding and fretting wear of such materials, the reader is referred to [27].

The paper is structured as follows. Section 2 introduces the applied methods, including
the fundamentals of the method of dimensionality reduction for contact problems of power-
law graded elastic materials. The normal contact and the tangential contact for those
contact problems are introduced. Furthermore, the implementation with the method
of dimensionality, especially for power-law graded materials, is thematized. Section 3
analyzes the results of the tangential contact of the contact problem. Hysteresis curves and
especially the dissipated energy during one cycle of oscillation are investigated for different
initial gap functions. Additionally, various materials with corresponding exponents of the
elastic inhomogeneity k and characteristic depth c0 are examined. Section 4 introduces the
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closed-form analytical solution for the dissipated energy during one cycle of oscillation. The
solution is given for any choice of the exponent of the power function n and the exponent
of the elastic inhomogeneity k. The last chapter contains the final discussion of the results
and the conclusion.

2. Methods

A powerful mathematical tool for solving boundary value problems in the classical
theory of elasticity (and other physical fields) is the integral transform [28]. Examples
from contact mechanics are the Fourier transform for solving plane contact problems and
the Hankel transform for solving axisymmetric problems. Here, the partial differential
equations are first transferred to ordinary equations in the frequency domain by means
of the integral transform. The ordinary differential equations are then to be solved with
conventional methods including an adaptation to the also transferred boundary condi-
tions. A subsequent back transform then provides a solution of the original boundary
value problem.

The Abel transform is another transform for solving contact problems of axisymmetric
solids. Whereas all integral transforms have in common that the calculation in the trans-
formed domain requires typically simpler mathematical operations in comparison to those
in the original domain, the Abel transform has a decisive advantage: The corresponding
mathematics in the transformed domain can be linked to an extremely simple, equivalent
one-dimensional contact problem [29]. The latter is directly used in the so-called method
of dimensionality reduction (MDR) to solve axisymmetric contact problems of elastically
homogeneous solids [30,31]. Beneficial is that the relationships between global quantities,
such as normal force, indentation depth and contact radius can be calculated from the
equivalent one-dimensional problem, hence no back transform is required. If one is also
interested in the local quantities, such as the pressure distribution within the contact area or
the surface displacement outside, the inverse transforms must be applied. No information
is lost. Taking into account a slightly modified Abel transform, the method is also applicable
to the exact mapping of contact problems between axisymmetric power-law graded elastic
solids [16,19].

2.1. Fundamentals of the MDR for Mapping Contact Problems of Power-Law Graded Elastic Solids

In the following, the application of the MDR will be briefly explained. Figure 2 serves
this purpose, contrasting the contact configurations of the original axisymmetric contact
problem and the equivalent one-dimensional contact problem. On the left (Figure 2a), the
initial contact of two axisymmetric, power-law graded elastic solids is illustrated, where the
bodies just contact each other in a single point and no forces are acting. Young’s modulus
of both bodies changes with the depth according to the in-depth law given by Equation
(1), where equal exponents k of the elastic inhomogeneity are assumed. The initial gap
function is specified by f (r). On the right-hand side (Figure 2b), however, the extremely
simple equivalent contact problem is shown, which physically interprets the mathematics
in the Abel transformed domain. It consists of a rigid plane indenter with profile g(x) and
a so-called one-dimensional Winkler foundation which can be regarded as independent,
linear elastic springs arranged along a line having both normal and tangential stiffness.
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two power-law graded elastic solids with the initial gap function f (r); (b) 1D configuration of the
equivalent contact in the Abel-transformed domain consisting of a plane rigid indenter with profile
g(x) and a series of independent linear elastic springs.

If both systems are now loaded with a normal force, for example, both lead to exactly
the same relationships between the global quantities normal force, contact radius and
indentation depth. The same holds for the tangential loading. Due to its simplicity, solving
the equivalent one-dimensional contact problem can be accomplished by anyone. It doesn’t
need a higher knowledge in contact mechanics. However, two preliminary steps are
required [19]:

1. Profile transform. The profile g(x) of the plane rigid indenter must be calculated by
the (modified) Abel transform of the initial gap function f (r) according to

g(x) = |x|1−k
|x|∫
0

f ′(r)

(x2 − r2)
1−k

2
dr. (3)

2. Transform of the material behavior. The independent normal and tangential stiff-
nesses of the springs must be defined. Respectively, after the transition from discrete
springs to a continuous one-dimensional Winkler foundation, the normal and tangen-
tial foundation modulus must be specified. The latter are given by [19].

cN(x) =

(
1− ν2

1
hN(k, ν1)E01

+
1− ν2

2
hN(k, ν2)E02

)−1(
|x|
c0

)k
, (4)

cT(x) =
(

1
hT(k, ν1)E01

+
1

hT(k, ν2)E02

)−1( |x|
c0

)k
. (5)

The coefficients hN and hT , which depend on both Poisson’s ratio ν and the exponent
k of the elastic inhomogeneity are listed in Appendix A.

From Equations (4) and (5), it is evident that the elastic foundation moduli depend
on the coordinate x. They vary with the lateral distance from the initial contact point
to exactly the same power law as specified by the law of in-depth grading. However,
we strongly emphasize that this correlation may not be generalized to other laws of in-
depth grading. Nevertheless, there is no question that contact problems between solids
of arbitrary elastically layered or gradient material can always be mapped to equivalent
one-dimensional ones [32]. The only difficulty lies in finding the associated mapping
rules for the initial gap function and the material properties. Except for a few cases, their
calculation must be carried out in a numerical way.
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2.2. Normal Contact of Equal Power-Law Graded Elastic Solids with a Power-Law Initial Gap
Function

The stated objective of this work comprises the study of hysteresis and energy dissi-
pation in tangential (mode I) fretting of power-law graded axisymmetric solids. For this
purpose, the numerical computations and the analytical enhancement will be conducted
later based on the equivalent one-dimensional contact problem. Equal power-law graded
elastic materials are assumed, hence the tangential and normal contact are uncoupled. Since
the normal force is kept constant during the oscillating tangential loading, let us solve the
normal contact analytically, separately in advance. In order to represent a wide class of
axisymmetric shaped solids, an initial gap function in the form of a power law is assumed

f (r) = Anrn with n ∈ R+ , An = const. (6)

Application of the modified Abel transform according to Equation (3) leads to the
rigid plane indenter profile of the equivalent one-dimensional model

g(x) = κ(n, k)An|x|n = κ(n, k) f (|x|). (7)

It results from a vertical stretch of the initial gap function by the factor

κ(n, k) =
n
2

1∫
0

t
n
2−1(1− t)

k+1
2 −1dt =:

n
2

B
(

n
2

,
k + 1

2

)
, (8)

where B(x, y) denotes the complete beta function. By pressing the indenter with the profile
according to Equation (7) into the elastic foundation, only those springs undergo a displace-
ment that come into direct contact with the indenter. Consequently, the displacement of the
elastic foundation is simply given by

w1 D(x) := δz − g(x) = δz − κ(n, k)An|x|n, (9)

where the indentation depth δz represents the maximum displacement located at the center
of contact (x = 0), hence

δz(a) = κ(n, k)Anan. (10)

In addition to the vertical displacement of the Winkler foundation, a linear vertical
force density can be defined representing the distribution of the vertical spring forces per
unit length

qz(x) = cN(x)w1 D(x) (11)

and due to equilibrium, the sum of all spring forces must be equal to the externally applied
normal force

FN(a) =
a∫
−a

qz(x)dx. (12)

Taking into account Equations (9)–(11) as well as the normal foundation modulus
according to Equation (4), Equation (12) yields

FN(a) =
hN(k, ν)κ(n, k)nAnE0an+k+1

(k + 1)(n + k + 1)ck
0(1− ν2)

. (13)

It should be emphasized once again that the indentation depth and the normal force
as a function of the contact radius, according to Equations (10) and (13), agree exactly with
those from the original problem, i.e., the axisymmetric contact of two power-law graded
elastic solids with a power-law gap function in the initial undeformed state.
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2.3. Contact of Equal Power-Law Graded Elastic Solids under a Constant Normal Force and a
Monotonically Increasing Tangential Force

The equivalent 1D contact problem for the case where a constant normal force is fol-
lowed by a monotonically increasing tangential force is illustrated in Figure 3a. Amontons–
Coulomb’s friction law is applied to each individual spring which means that as long as the
tangential spring force is smaller than the normal spring force, multiplied by the coefficient
of friction, the spring is in a state of stick, otherwise it slips. Figure 3b exemplarily shows a
sticking spring, which therefore undergoes the whole tangential rigid body translation.
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If we introduce a tangential line load analogous to the linear vertical force density, the
following applies [19].

qx(x) =


cT(x)δx for |x| ≤ c (stick)

µcN(x)w1D(x)︸ ︷︷ ︸
= qz(x)

for c < |x| ≤ a (slip) . (14)

Note that the tangential displacement of a spring at position x is directly proportional
to the tangential line load qx(x) = cT(x)u1D(x). The relationship between the tangential
rigid body displacement and the stick radius can be calculated from the requirement that
the tangential line load must be continuous at the border of the stick domain.

δx = µ
cN(c)
cT(c)

w1D(c). (15)

The externally applied tangential force must in turn be equal to the sum of all the
tangential spring forces

Fx(a) =
a∫
−a

qx(x)dx. (16)

It should be emphasized once again, that by simply applying the Amontons–Coulomb’s
friction law to each individual spring of the equivalent 1D model, it is ensured that the
relationships between the tangential force Fx, the tangential rigid body displacement δx, as
well as the stick radius c, are exactly those being present in the original tangential contact
between the two axisymmetric, power-law graded elastic solids. For the tangential contact
of two power-law graded elastic solids with the power-law initial gap function defined in
the last section, the application of Equations (14)–(16) leads to the following results

δx = µ
hN(k, ν)κ(n, k)Anan

(1− ν2)hT(k, ν)

[
1−

( c
a

)n]
, (17)
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Fx = µFN

[
1−

( c
a

)n+k+1
]

. (18)

Let us discuss these results considering a simple conical initial gap (n = 1). Figure 4
illustrates, in this case, the dependence of the normalized tangential force on the normalized
tangential displacement for three different materials: An elastically homogeneous material
(k = 0) and two power-law graded solids, one with a Young’s modulus that decreases
with depth (k = −0.5) and another one with an increasing Young’s modulus (k = 0.5).
The same normal force was assumed in all cases, resulting in different contact radii. The
tangential displacement was normalized to the tangential displacement for homogeneous
material at the onset of gross slip, δmax

x,0 . The corresponding contact radius is denoted by
a0. The characteristic depth c0 as a parameter in the material law according to Equation (1)
was set equal to this contact radius. Note that the Young’s modulus at a depth of z = c0 is
equal to E0 irrespective of which value the exponent of elastic inhomogeneity k has.
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Figure 4. Influence of the exponent of the elastic inhomogeneity on the normalized tangential force
as a function of the normalized tangential displacement in the case of a conical initial gap function.

Two main results emerge from Figure 4. First, the tangential contact stiffness de-
creases with anincreasing exponent of elastic inhomogeneity. This means that the material
characterized by a soft surface and a stiff core (k = 0.5) reacts more compliant than that
characterized by a stiff surface and a soft core (k = −0.5). Furthermore, the onset of gross
slip is reached for positive k at larger tangential displacements and for negative k at smaller
ones, compared to the homogeneous material. These trends hold for other initial gap
functions (e.g., parabolic) as well and are similar in behavior to a substrate with soft or stiff
coatings, respectively [33].

Figure 5 demonstrates the dependency of the characteristic depth on the normalized
tangential force as a function of the normalized tangential displacement. It indicates that a
power-law graded material whose elastic modulus increases with depth (k = 0.5) behaves
softer when the characteristic depth increases (Figure 5a). For a power-law graded material
with a stiff surface but whose Young’s modulus decreases with depth (k = −0.5), the
opposite effect is observed (Figure 5b).
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Figure 5. Influence of the characteristic depth on the normalized tangential force as a function of the
normalized tangential displacement, in the case of a conical initial gap function and (a) a positive
exponent of elastic inhomogeneity, (b) a negative exponent of elastic inhomogeneity.

2.4. Numerical Implementation of the MDR for Studying the Tangential Contact of Two
Power-Law Graded Elastic Solids under General Loading Scenarios

Due to the enormous reduction of degrees of freedom associated with the mapping of
the original problem into an equivalent problem in the Abel space, the method is particu-
larly suitable for fast numerical calculations of contact interfaces. For a direct calculation
with the equivalent model, only simple linear spring laws have to be implemented and
Amontons–Coulomb’s law has to be applied locally for each spring. However, in this case,
a displacement-controlled loading procedure is preferred to a force-controlled one and in
order to map arbitrary loading scenarios, an incremental version of the stick-slip rule is
defined. For a small displacement ∆δx of the plane rigid indenter, then holds

∆u1D(x) = ∆δx , if |cT(x)δx| < µqz(x)
u1D(x) = ± µqz(x)

cT(x) , in a state of slip
(19)

By tracking the incremental difference of the plane rigid indenter position, the tan-
gential displacements of all springs within the contact area can be uniquely determined,
thus yielding the values of all tangential spring forces, whose sum corresponds to the total
transmitted tangential force. Even for the calculation of the dissipated frictional energy, the
equivalent one-dimensional model is convenient. No back transformation into the original
space is necessary for this! The tangential force density and the local slip in the equivalent
one-dimensional model are used to calculate the dissipated energy. The latter is defined
as follows

s1D(x) = u1D(x)− δx. (20)

and especially its incremental change ∆s1D does not depend on the coordinate. Using
the MDR for the calculation of the dissipated energy becomes extremely simple. In this
way, Hanisch et al. [34] numerically investigated the energy dissipation in the tangential
contact of parabolic homogeneous elastic solids subjected to oscillations in normal and
tangential directions with the same frequency, but a phase shift. There is just one method
that is similarly simple to the MDR and is excellent for analyzing tangential contacts under
arbitrary loading histories. This is the method of memory diagrams (MMD) developed
by Aleshin et al. [35]. It is based on replacing the complex traction distribution inside the
contact area by a simple internal function containing the same memory information. In a
more recent work [36], the MMD has applied to calculate the frictional energy dissipation
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in the contact of two convex axisymmetric solids subject to arbitrarily varying oblique
loading. However, to date the MMD has only been designed for tangential contacts of
elastically homogeneous solids.

According to the information provided in this section, the MDR has been implemented
numerically to study the tangential contact of axisymmetric, power-law graded elastic
solids under classical conditions of a constant normal force and an oscillating tangential
force. In the following the numerical results are presented.

3. Numerical Results for Tangential (Mode I) Fretting of Two Axisymmetric
Power-Law Graded Elastic Solids

In the following chapter, the numerical results for a tangential (mode I) fretting of
two axisymmetric power-law graded elastic solids are investigated. The normal force was
kept constant and additionally an oscillating tangential force was applied, as illustrated in
Figure 1. The previous chapter describes the numerical implementation of the MDR for
such a case.

The object of the study are the hysteresis curves and especially the dissipated energy
during one cycle of oscillation. They are examined for different initial gap functions
and corresponding indenter forms, various exponents of the elastic inhomogeneity k and
quotients of the characteristic depth c0/a0.

The energy dissipation during a complete cycle |∆W| shall be investigated numerically.
Two approaches for the calculation can be considered. The energy dissipation in one period
of oscillation T is computed with the numerical integration

∆W =

T∫
0

Fx(t)dδx(t) (21)

computing the enclosed area of the hysteresis curve during one cycle. The second approach
for the calculation of the energy dissipation is explained in more detail in Section 4. Energy
dissipation due to friction appears only in the slip region

W(t) = −hTE0

a∫
c

(
x
c0

)k

|u1D||δx − u1D|dx, |∆W| = 4|W(t)|max, t ∈ [0, T] (22)

Figure 6a,b show two sample graphs of the energy dissipation W(t), which reaches
its maximum Wmax at the maximal tangential displacement δx,max. Independent of the
material, all curves show the qualitatively same behavior for various exponents of the elastic
inhomogeneity k. The same applies to the indenter form, both curves for a conical and
parabolic indenter show the qualitatively same behavior. It is noticeable that on the initial
branch during the first tangential displacement up to δx,max the curve is monotonically
non-increasing, but not in the following cycles, because of the deflection of the springs.
This is additionally documented in the Supplementary Materials. In the present study,
both approaches to calculate the dissipated energy were implemented, which receive the
same results.

Discussing the influence of specific parameter on the dissipation energy during one
cycle of oscillation, the normal force FN was kept constant in all simulations to ensure
comparability. The contact radius in the case of homogeneous material (k = 0) and a
power-law initial gap function results from Equation (13)

a0 =

(
FN
(
1− ν2)(n + 1)

κ(n, 0)nAnE0

) 1
n+1

(23)

It is used for the normalization and to specify the characteristic depth c0 by the
characteristic quotient c0/a0. At first, it is chosen as c0/a0 = 1 and varied later. With
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fixed values E0 and c0/a0, the power law graded materials can be compared, varying
the exponent of the elastic inhomogeneity k. The dissipated energy during one cycle is

normalized with the quotient µ2FN
2

E0a0
, which is composed of constants and depends only on

the exponent of the power function n.
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Figure 6. Time-dependent dissipation energy of an indenter with homogenous material: (a) for the
conical indenter; (b) for the parabolic indenter.

3.1. Numerical Results for the Conical Indenter

Starting with the conical indenter, Figure 7a shows the hysteresis curve of the tangen-
tial force over the tangential displacement. The tangential displacement δx is normalized
by the maximal tangential displacement of the homogenous case δmax

x,0 . The exponent of the
elastic inhomogeneity k is varied. The gradient of the hysteresis is smaller for positive and
higher for negative exponents k than the homogenous case. The enclosed area is larger for
positive and smaller for negative exponents k than the homogenous case. Since the enclosed
area is equal to the dissipated energy, increasing the exponent k increases the dissipated en-
ergy. This is also depicted in Figure 7b, the higher the exponent k, the higher the dissipated
energy. It shows the behavior of the dimensionless dissipated energy in one cycle |∆W|
over the traction ratio FA

µFN
. The force FA is the maximal tangential force during one cycle.

Increasing the traction ratio causes a power-law increase of the dissipated energy.
The Figure 8a–d demonstrate the influence of the characteristic depth c0

a0
. For a negative

exponent of the elastic inhomogeneity k = −0.5, the gradient of the hysteresis increases
with an increase of the characteristic depth, as shown in Figure 8a. Figure 8b illustrates
that the dissipated energy |∆W| rises exponentially with the traction ratio FA

µFN
. The higher

the characteristic depth, the smaller the dissipated energy. The Figure 8c,d show the same
dependencies for a positive exponent of the elastic inhomogeneity k = 0.5. The influence of
the characteristic depth is reversed. Increasing the characteristic depth, the gradient of the
hysteresis decreases and the dissipated energy increases.
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Figure 7. Hysteresis curve and energy dissipation of a conical indenter for various exponents of
the elastic inhomogeneities k: (a) Tangential force over the tangential displacement; (b) Energy
dissipation over the traction ratio FA

µFN
.
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Figure 8. Hysteresis curve and energy dissipation of a conical indenter for a fixed elastic inhomogeneity
k and various quotients of the characteristic depth c0/a0: (a) Tangential force over the tangential displace-
ment for k = −0.5; (b) Energy dissipation over the traction ratio FA

µFN
for k = −0.5; (c) Tangential force

over the tangential displacement for k = 0.5; (d) Energy dissipation over the traction ratio FA
µFN

for k = 0.5.
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3.2. Numerical Results for the Parabolic Indenter

Considering the parabolic indenter, Figure 9a shows the hysteresis curve of the tangential
force over the tangential displacement, varying the exponent of the elastic inhomogeneity k.
The gradient of the hysteresis is smaller for positive and higher for negative exponents k than
the homogenous case. Figure 9b shows the behavior of the dimensionless dissipated energy in
one cycle |∆W| over the traction ratio FA

µFN
. Increasing the traction ratio increases the dissipated

energy. The higher the exponent k, the higher the dissipated energy.
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Figure 9. Hysteresis curve and energy dissipation of a parabolic indenter for various elastic inhomo-
geneities k: (a)Tangential force over the tangential displacement; (b) Energy dissipation over the traction
ratio FA

µFN
.

The Figure 10a–d demonstrate the influence of the characteristic depth c0/a0, which
has the same qualitative influence on the conical and the parabolic indenter. For a negative
exponent of the elastic inhomogeneity k = −0.5 the gradient of the hysteresis rises for larger
characteristic depths, as shown in Figure 10a. Figure 10b depicts an exponential growth of the
dissipated energy |∆W| in dependence of the traction ratio FA

µFN
. Increasing the characteristic

depth decreases the dissipated energy. The Figure 10c–d show the same dependencies for
a positive exponent of the elastic inhomogeneity k = 0.5 with a reversed influence of the
characteristic depth. Increasing the characteristic depth, the gradient of the hysteresis decreases,
and the dissipated energy grows.
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Figure 10. Hysteresis curve and energy dissipation of a parabolic indenter for a fixed elastic inho-
mogeneity ݇ and various quotients of the characteristic depth ܿ଴/ܽ଴: (a) Tangential force over tan-
gential displacement for ݇ = −0.5; (b) Energy dissipation over the traction ratio ிಲఓிಿ  for ݇ = −0.5; 
(c) Tangential force over tangential displacement for ݇ = 0.5; (d) Energy dissipation over the trac-
tion ratio ிಲఓிಿ  for ݇ = 0.5. 

4. Analytical Study on Frictional Energy Dissipation 
Since the relationships between the externally applied forces, the relative rigid body 

displacements, and the stick and contact radius of the original problem, exactly emerge 
from the (fictional) equivalent contact problem in the Abel domain, it is possible to deter-
mine the energy dissipated per cycle from it, as well. One way is to evaluate the work 
carried out by the tangential force on the tangential rigid body displacement of the plane 
rigid indenter during a complete cycle. Another, perhaps less elaborate way, is to consider 
the energy dissipation over a complete cycle for each single spring contact and subse-
quently sum up the energy loss of all spring contacts. Figure 11 illustrates the variation of 

Figure 10. Hysteresis curve and energy dissipation of a parabolic indenter for a fixed elastic in-
homogeneity k and various quotients of the characteristic depth c0/a0: (a) Tangential force over
tangential displacement for k = −0.5; (b) Energy dissipation over the traction ratio FA

µFN
for k = −0.5;

(c) Tangential force over tangential displacement for k = 0.5; (d) Energy dissipation over the traction
ratio FA

µFN
for k = 0.5.

4. Analytical Study on Frictional Energy Dissipation

Since the relationships between the externally applied forces, the relative rigid body
displacements, and the stick and contact radius of the original problem, exactly emerge from
the (fictional) equivalent contact problem in the Abel domain, it is possible to determine the
energy dissipated per cycle from it, as well. One way is to evaluate the work carried out by
the tangential force on the tangential rigid body displacement of the plane rigid indenter
during a complete cycle. Another, perhaps less elaborate way, is to consider the energy
dissipation over a complete cycle for each single spring contact and subsequently sum up
the energy loss of all spring contacts. Figure 11 illustrates the variation of the spring force
per unit length and the slip for a point of contact at position x during one cycle.
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Figure 11. Rectangular hysteresis loop of a single spring contact at position x.

If we start from the initial, tangentially unloaded state, the spring will initially stick
until the tangential line load has reached the limiting value µqz(x). Then, the spring begins
to slip while the tangential line load remains constant. At the point when the loading phase
of the cycle stops and the unloading starts, the spring instantaneously sticks. During the
unloading, the spring remains in stick until the tangential line load reaches the limiting
value −µqz(x). Then, the reverse slip begins at constant tangential line load, and so on.
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Since the hysteresis loop represents a rectangle, the energy dissipated at each spring contact
is simply given by

∆Ws(x) = 4µqz(x)smax
1D (x) (24)

and the total dissipated energy is obtained by summing up the energy losses of all
spring contacts

∆W = 2
a∫

c

4µqz(x)smax
1D (x) dx. (25)

Using the definitions in Equations (9), (11), (15) and (20), Equation (25) can be rewritten
as follows

∆W = 8µ2 hN(k, ν)

(1− ν2)hT(k, ν)

a∫
c

cN(x)(g(a)− g(x)) (g(c)− g(x))dx, (26)

where we have already assumed power-law graded solids of equal material. According to
Equation (26), apart from the normal stiffness of the springs, only the indenter profile of the
equivalent one-dimensional contact problem is required to calculate the full energy loss.

In the following, we will calculate the dissipated energy per cycle for an axisymmetric
contact with an initial gap function in the form of a power-law under tangential fretting
conditions. The gap function is stated in Equation (6) and the rigid plane indenter profile
of the equivalent one-dimensional model is given in Equation (7). After the insertion of the
profile and considering the normal stiffness, according to Equation (4), the integral can be
easily performed. The result is

∆W = −
8µ2(1 + k)(k + n + 1)2ck

0F2
N

n(k + 2n + 1)hT(k, ν)E0ak+1

[
1−

(
1− FA

µFN

) k+2n+1
k+n+1

− k + 2n + 1
2(k + n + 1)

FA
µFN

(
1 +

(
1− FA

µFN

) n
k+n+1

)]
. (27)

Herein, we have taken into account the normal force determined in Equation (13) and
substituted the ratio of the stick radius to the contact radius according to Equation (18). FA
denotes the amplitude of the oscillating tangential force. The partial slip regime is present
as long as FA < µFN . Using the analytically determined formula for the loss of energy, both
the influence of the geometry of the solids and the influence of the elastic inhomogeneity
can be discussed. In the case of a parabolic initial gap function (n = 2) and elastically
homogeneous material (k = 0) Equation (27) yields

∆W = −
9µ2F2

N(2− ν)

5G0a

[
1−

(
1− FA

µFN

) 5
3
− 5

6
FA

µFN

(
1 +

(
1− FA

µFN

) 2
3
)]

, (28)

where hT(0, ν) = 2/[(1+ ν)(2− ν)] and E0 = 2(1+ ν)G0 have been adopted. The frictional
energy dissipation, according to Equation (28) is the famous result from Mindlin et al. [5].
For an arbitrary exponent of the elastic inhomogeneity but still a parabolic initial gap
function (n = 2), Equation (27) agrees with a result, derived in [37] based on the Ciavarella–
Jäger theorem applied to the original contact problem. This case will be exemplarily
discussed below. The dissipated energy in the normalized form is illustrated in Figure 12.

The same normalization was adopted as in the chapter on numerical results, i.e., the
same normal force was always applied irrespective of k. Furthermore, the contact radius
a0 that arises in the classical Hertzian contact was taken for normalization. It is evident
that the curves for k = −0.5, 1, 0.5 agree well with those from the numerical calculation
depicted in Figure 9b (computed, e.g., by the evaluation of the area of the hysteresis curves).
Please note that the numerical results were plotted only up to FA = 0.99µFN , while the
analytical function was plotted up to FA = µFN . The influence of the characteristic depth
can be studied in an analogous way and other shapes than only the conical or parabolic one
can be investigated with the help of the analytically derived energy dissipation, as well.
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5. Discussion and Conclusions

Tangential fretting between two axisymmetric power-law graded elastic solids has
been studied by using the simple equivalent one-dimensional contact model in the mathe-
matical space of the Abel transform, both numerically and analytically. One critical question
could be why the method was implemented numerically at all, although a closed-form
analytical solution exists, which was subsequently derived. Well, on the one hand it should
be demonstrated that the equivalent contact problem is ideally qualified as a module for
the numerical computation of contact interfaces in dynamic systems, such as multibody
systems. The transform of the contact problem is associated with an enormous reduction of
degrees of freedom, which means a considerable saving of computation time. Since only
linear spring laws need to be implemented, the contact forces can be determined in real
time and transferred to the macrodynamic of the system at each time step [38,39].

On the other hand, we intend to show that the equivalent one-dimensional model is
well suited to derive the closed-form analytical solutions of contact problems in a simple
way. For this purpose, no deeper knowledge of contact mechanics is required. A central
role of the method represents the mapping rules for normal contact problems [16,29]. This
can be explained by the fact that most of the other contact problems, such as the tangential
contact, normal contact with adhesion or rolling contact (even viscoelastic contacts) can be
represented as superposition of normal contact problems.

Another critical point in this work certainly forms the assumed power-law of in-depth
grading, which serves more as an academic example than a real material law due to the
infinite or vanishing Young’s modulus, at the surface. To go into this in more detail, let
us consider again the elastic inhomogeneities mainly used in the numerical calculations
depicted in Figure 13.

For a positive exponent, Young’s modulus increases with depth, starting from an
(infinitely) compliant surface to an (infinitely) stiff core. For negative exponents the inverse
characteristic holds. At the characteristic depth z = c0, Young’s modulus takes the value
E0 regardless of the exponent k. Our numerical and analytical studies concluded that the
tangential contact stiffness decreases with increasing exponent of the elastic inhomogeneity.
This means that the material characterized by a soft surface and a stiff core (k = 0.5, k = 0.7)
reacts more compliant than a material characterized by a stiff surface and a soft core
(k = −0.5, k = −0.7). In addition, the dissipated energy per cycle increases by increasing
the exponent of the elastic inhomogeneity k. Wang et al. [11] studied tangential fretting
of the contact between an elastic sphere and a substrate of the same elastic material but
coated with a functionally graded layer. Depending on the material gradient of the coating,
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the same qualitative results were obtained with respect to the tangential stiffness and
the dissipated energy. Moreover, the influence of the coating thickness was investigated
and in fact it correlates completely with the influence of the characteristic depth of the
power-law graded elastic material. Increasing the characteristic depth c0, the dissipated
energy decreases and the tangential stiffness increases for negative exponents of the elastic
inhomogeneity k. For positive exponents of the elastic inhomogeneity k, both trends
are reversed.
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Figure 13. Power-law in-depth grading plotted for the five characteristic cases k = −0.7, k = −0.5,
k = 0, k = 0.5 and k = 0.7.

It is obvious that the spring forces do not coincide with the normal and tangential
stresses of the original contact problem. The same applies to the displacements and the
relative slip. However, these can be determined by the back transform from the image into
the original space. At this point, it should be emphasized that the relative displacements
are only accurate in the sense of the Cattaneo–Mindlin approximation, hence the model is
not suitable for capturing the surface density of the energy dissipation.

Supplementary Materials: The Supplementary Materials contain videos for illustration purpose.
Those videos show the values of the tangential displacement of all springs in contact and the
stick and slip regions during oscillation. The simulation videos show the contact of a parabolic
indenter for various exponents of the elastic inhomogeneity k (k = −0.5, k = 0, k = 0.5) for
the traction ratio FA

µFN
= 0.9 and the quotient of the characteristic depth c0

a0
= 1. The hysteresis

curve and the energy dissipation are illustrated. The following supporting information can be
downloaded at: https://www.mdpi.com/article/10.3390/math10193641/s1, Video S1: Tangen-
tial_fretting_negative_exponent, Video S2: Tangential_fretting_homogenous_material, Video S3:
Tangential_fretting_positive_exponent.
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Appendix A

In the following, the quantities are listed, which are needed for the calculation of the
normal and tangential elastic foundation modulus according to Equations (4) and (5).

hN(k, ν) =
2(1 + k) cos

(
kπ
2

)
Γ
(

1 + k
2

)
√

πC(k, ν)β(k, ν) sin
(

β(k,ν)π
2

)
Γ
(

1+k
2

) , (A1)

hT(k, ν) =
2β(k, ν) cos

(
kπ
2

)
Γ
(

1 + k
2

)
(1− ν2)

√
πC(k, ν) sin

(
β(k,ν)π

2

)
Γ
(

3+k
2

)
+ β(k, ν)(1 + ν)Γ

(
1 + k

2

) , (A2)

C(k, ν) =
21+kΓ

(
3+k+β(k,ν)

2

)
Γ
(

3+k−β(k,ν)
2

)
π Γ(2 + k)

and β(k, ν) =

√
(1 + k)

(
1− kν

1− ν

)
. (A3)
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