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Zusammenfassung

In dieser Arbeit führen wir die S-Theorie ein und wenden diese auf Variationsprobleme für im-
mersierte Riemann Flächen, Elastizitätstheorie und die Spin Theorie an.

Aus der klassischen Mechanik ist bekannt, dass durch Symmetriebetrachtungen geometrische
Probleme wesentlich vereinfacht werden. Das Noether-Theorem erklärt dabei, wie man Erhal-
tungsgrößen aus der invarianten Eigenschaft der betrachteten Energie finden kann. Die zu anfangs
bestehende Motivation war es, den Raum der Immersionen

M = {f : M → R3},
für eine orientierte Riemannsche Mannigfaltigkeit M der Dimension kleiner oder gleich drei, eine
euklidisch invariante Beschreibung zu verleihen um schliesslich aus geometrische Energien, welche
unabhängig von Euklidischen Transformationen sind, automatisch Erhaltungssätze zu den jeweili-
gen Variationsproblemen herleiten zu können. Im Falle von immersierten Kurven ist bekannt, dass
diese durch ihre Krümmungsfunktion (κ1, κ2, τ) bis auf Euklidische Transformationen eindeutig
bestimmt sind. Im Falle von immersierten Flächen und immersierten 3-Mannigfaltigkeiten ist der
Sachverhalt komplizierter und führt zu einer nicht konformen Deformationstheorie (S-Theorie).

Die S-Theorie bildet die Grundlage für die folgenden Kapitel dieser Arbeit. Ausgehend von
einer Riemannschen Mannigfaltigkeit M und einer Referenzmetrik ⟨ , ⟩ lässt sich jede weitere
Riemansche Metrik g durch einen positiv definiten Operators S mittels

g = ⟨S, S⟩
modellieren. Der Operator S ist somit eine Isometrie, d.h. g = S∗⟨ , ⟩. Durch diese Sichtweise lässt
sich der Levi-Civita Zusammenhang bezüglich g aus dem Levi-Civita Zusammenhang bezüglich
der Referenzmetrik und dem Operator S berechnen.

Weiter werden Spin Bündel über zwei und drei dimensionalen orientierten Riemannschen Man-
nigfaltigkeiten eingeführt. Dabei haben Spin Bündel, anders als in der Literatur, zusätzlich eine
quaternionische Struktur. Viele Formeln werden dadurch übersichtlicher und zugänglicher. Es
wird gezeigt, dass jedes Spin Bündel Σ über (M, ⟨ , ⟩) einen eindeutigen Spin Zusammenhang
hat und berechnen mittels der S-Theorie den deformierten Spin Zusammenhang bezüglich der
Metrik g. Schliesslich betrachten wir das von einer Immersion f : M → R3 induzierte Spin Bün-
del und berechnen den dazugehörigen Spin Zusammenhang und finden eine neue Interpretation
der Gauss-Codazzi-Gleichung. Wir führen den Dirac Operator ein und berechnen wie sich dieser
bezüglich der Metrik g deformiert.

Nun sind wir in der Lage eine geometrische Beschreibung des Raumes M = {f : M → R3} der
immersierten Flächen im Euklidischen Raum zu geben. Wir berechnen dessen normalen Raum
und formulieren das Noether-Theorem. Als Anwendung werden Erhaltungsgrößen des Willmore-
Funktionals berechnet.

Schließlich wird eine intrinsische Version der distance-squared Energie auf einer n-dimensionalen
Riemanschen Mannigfaltigkeit beschrieben. Dann wird der Spannungstensor eingeführt. Dessen
Geschlossenheit liefert eine Charakterisierung für die kritischen Punkte der Energie. Dabei hat die
S-Theorie eine fundamentale Bedeutung für das Verständnis des Spannungstensors. Im Falle von
Riemannschen Flächen erhalten wir aus der S-Theorie eine Rotationsform, welche für kritischen
Punkte der distance-squared Energie, harmonisch ist.
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Abstract

In this thesis we introduce the S-theory. We apply the S-theory to variational problems of
immersed Riemann surfaces, Elasticity theory and Spin theory.

From classical mechanics it is known that geometric problems can be substantially simplified by
symmetry considerations. The Noether theorem describes in this case how to find conservation
laws from the invariance property of the observed energy. At first, the motivation was to give
the space of immersions

M = {f : M → R3},
for an oriented Riemannian manifold M of dimension less than or equal to three, an Euclidean
invariant description. For geometric energies, i.e. energies which are invariant under Euclidean
transformations, one would be able to derive conservation laws for the respective variational
problems. It is a well known fact that immersed space curves are uniquely determined by their
curvature functions (κ1, κ2, τ) up to Euclidean transformations. In the case of immersed surfaces
and immersed 3-manifolds the situation becomes more complicated and leads to a non conformal
deformation theory (S-Theorie).

The S-Theory builds the foundations of this thesis. Starting from a Riemannian manifold M and
a reference metric ⟨ , ⟩ one can modell any other Riemmanian metric g through a positive definite
and self adjoint operator S via

g = ⟨S, S⟩.
The operator S is an isometry, i.e. g = S∗⟨ , ⟩. From this point of view we compute the Levi-
Civita connection with respect to g out of Levi-Civita connection of the reference metric and the
operator S.

Further we introduce Spin bundles over two and three dimensional oriented Riemannian mani-
folds. Thereby Spin bundles, in contrast to most of the literature, have additionally a quaternionic
structure. Many formulas become clearer and more accessible. We show that any Spin bundle
Σ over (M, ⟨ , ⟩) has a unique Spin connection and compute via the S-Theory the deformed Spin
connection with respect to the metric g. Eventually we consider the induced Spin bundle of
an immersion f : M → R3 and compute the corresponding Spin connection and find a new in-
terpretation of the Gauss-Codazzi equation. We introduce the Dirac operator and compute its
deformation with respect to the metric g.

We are now able to give the space of immersed surfaces M = {f : M → R3} the desired geometric
description. We compute the normal space of M and formulate the Noether theorem. As an
application we compute conservation laws for the Willmore functional.

Finally we introduce the intrinsic version of the famous distance-squared energy on a n-dimensional
Riemannian manifold. We introduce the corresponding stress tensor and show that it’s closeness
is a characterization for critical points of the energy. Thereby the S-theory provides a funda-
mental concept for the understanding of the stress tensor. In the case of a Riemann surface, the
S-theory provides a canonical harmonic rotation 1-form for critical points of the distance-squared
energy.
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Introduction

Elasticity. A fundamental problem in nonlinear elasticity was to understand the relation between
the three-dimensional theory and theories of lower dimensional objects (plates, shells, rods, ...).
In 2002 Georo Frieseke, Richard D. James and Stefan Müller puplished a striking paper [8] where
they showed that several lower dimensional theories, like the famous Kármán plate equation, are
obtained from the Γ-Limit of the distance-squared Energy

E(f) :=
1

2

∫
M

dist(df, SO(3))2

of immersed maps f : M → R3 for a three dimensional Riemannian manifold M . Currently Jonas
Tervooren and Ulrich Pinkall are writing a paper about elastic deformations of regions in R2. They
found that critical points of the distance-squared energy admit a Weierstrass representation in
terms of holomorphic functions. In the fourth chapter we introduce the intrinsic distance-squared
energy,

E(S) =
1

2

∫
M

∥ S − I ∥2

for a given n-dimensional Riemannian manifold (M, ⟨ , ⟩) and a positive definite and self adjoint
operator S. Thereby E(S) measures the amount of elastic energy to deform the given metric ⟨ , ⟩
to the metric g := ⟨S, S⟩. In the case of Riemann surfaces we found that critical points of the
above elastic energy are characterized by the following
Theorem 1. S is a critical point of E if one of the following equivalent conditions are satisfied:

(1) (tr(S)− 1)J̃S−1 is holomorphic.

(2) The stress tensor σ = (tr(S)− 1)J̃S−1 − J̃ is closed.

For critical points S of E, ∇̂S−1 = −ηJ̃S−1, implies η to be co-closed. In particular, if M is
embedded in R2, then η is harmonic.

S-theory. The fundamental concept for deriving such a theorem was the S-theory, which we
develop in the first chapter and will be extremely useful for the whole thesis. Starting from a
Riemannian manifold M and a reference metric ⟨ , ⟩ one can modell any other Riemmanian metric
g through a positive definite and self adjoint operator S via

g = ⟨S, S⟩.

From this point of view we compute the Levi-Civita connection with respect to g out of the
Levi-Civita connection of the reference metric and the operator S. The resulting formula for the
Levi-Civita connection

∇̃ := ∇+ S−1(∇S) + S∇̂S−1,

is the first step for a non-conformal deformation theory.

The space of Immersions. In the third chapter we are seeking an Euclidean invariant descrip-
tion of the space of immersions

M = {f : M → R3},
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x INTRODUCTION

for a Riemann surface M . Starting with an isometric immersion f : M → R3 any other immersion
f̃ : M → R3 can be expressed by

df̃ = λ̄(df ◦ S)λ

for a quaternion-valued function λ : M → H with |λ| = 1 and a positive definite operator S ∈
Γ(End(TM). This leads to a generalization of Spin transformations [12], [5] to non conformal
deformations. We derive the corresponding Dirac equation for λ as an integrability condition.
We are now able to give the space of immersed surfaces M = {f : M → R3} the desired geometric
description. It is given by

M := {

⎛⎝ λ
ρ
τ

⎞⎠ ∈ H | − Re((df + τ) ∧ dλλ−1) = ρ|df |2 and λ̄(df + τ)λ is exact}.

We compute for any geometric functional

F : M → R

a conservation law, in particular we derive conservation laws for Willmore surfaces, Minimal
surfaces and Constant Mean curvature surfaces.

Spin theory. In the second chapter we discuss the theory of Spin bundles, Spin connections and
Dirac operators. The Spin theory, which is necessary for understanding the space of immersed
surfaces with all its applications towards variation problems, deserves an interest for its own. Spin
theory is a well studied topic in differential geometry and physics. For Riemann surfaces, Spin
theory was successfully used in [6], [1], [13], [10] for the understanding of global surface theory.
There are different approaches of dealing with spin manifolds. Thomas Friedrich [7] starts out
with the spin cover of SO(n), connections on principal bundles and associated vector bundles.
In contrast, Nicolas Ginoux [9] does not apply the principal bundle theory extensively, but his
definitions and formulas are formulated in coordinates, which often hides the geometric meaning.
Fortunately, in dimensions two and three one circumvents this difficulty by using right from the
start that the spin representations of the Clifford algebra are quaternionic in these dimensions.
We pay a special attention to the construction of the unique Spin connection (a prerequisite
to defining the Dirac operator) for three dimensional oriented Riemannian manifolds. Via the
S-theory we compute how the Spin connection transforms under the change of a Riemannian
metric g = ⟨S, S⟩. Eventually we consider the induced Spin bundle of an immersion f : M → R3

and compute the corresponding Spin connection and derive integrability conditions for λ and S
for finding new immersions. In the special case of a conformal metric deformation (g = e2u⟨, ⟩)
one obtains

dλ = −1

2
Gdfλ,

with G := df(gradu) as the integrability condition for the existence of a Spin transformation f̃ of
f . In this case the famous Liouville theorem implies that f̃ must be a Möbius transformation of f .
The above equation appeared also recently in a paper [3], where the authors found a variational
approach to construct deformations which are nearly conformal in a suitable sense. They were
seeking for minimizers of

E(u, λ) :=

∫
M

|dλ+
1

2
Gdf |2 s.t |λ| = 1.

In the language of Spin bundles dλ + 1
2Gdf turns out to be the deformed Spin connection. In

the case of Riemann surfaces the Spin theory yields a new interpretation of the Gauss-Codazzi
equation. We prove
Theorem 2. Let f : M → R3 be an immersion. We prescribe a new metric g = ⟨S, S⟩, a map
λ : M → S3 and Ã ∈ Γ(End(TM)). If there exists a f̃ with df̃ = λ̄df(S)λ with its shape operator
Ã then

dλλ−1 = −1

2
Ndf(SÃ−A) +

1

2
ηN.

Open problem. The above formula is interesting for Discrete Differential Geometry because it
can be discretized in a canonical way by taking the piecewise linear limit. A further problem in
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Discrete Differential Geometry is to find a notation of discrete holomorphicity that can be derived
from a variational problem. In [2] the above mentioned distance-squared energy was discretized.
For a three dimensional simplicial complex embedded in R3 via a map f : M → R3 one can find
for any another immersion f̃ : M → R3 on each tetrahedron t ∈M a unique positive definite self
adjoint operator St and a unique rotation matrix Rt ∈ SO(3) such that on the interior of t we
have

df̃ = Rt ◦ df ◦ St.

Now one can measure the deviation of f̃ from being an isometry (its elastic energy) by the integral∫
M

|df̃ −R ◦ df |2 =

∫
M

|S − I|2

=
∑
t

|St − I|2vol(t).

In the smooth theory the elastic deformations of regions in R2 admit a representation of holomor-
phic functions. We expect that the discretization of two-dimensional elasticity will yield another
approach to discrete holomorphicity.
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1 | S-Theory

Let (M, ⟨ , ⟩) be a Riemannian manifold. Any other metric g on M can be expressed with

g(X,Y ) = ⟨BX,Y ⟩,

where B is a positive definite and self adjoint operator with respect to ⟨ , ⟩. It is a well known
fact that B has a unique square root S, i.e.

S2 = B

and S is positive definite and self adjoint.

Let ⟨ , ⟩ and g := ⟨B, .⟩ = ⟨S, S⟩ two Riemannian metrics on M . Let (∇, ⟨ , ⟩) and (∇̃, g) be the
corresponding Levi-Civita connections. For any

A ∈ Γ(Hom((TM, ⟨ , ⟩), (TM, g)))

one can define a connection

∇̂ : Γ(TM)× Γ(Hom((TM, ⟨ , ⟩), (TM, g))) → Γ(Hom((TM, ⟨ , ⟩), (TM, g)))

(∇̂XA)Y := ∇̃XAY −A∇XY = (∇̃XA)Y +A(∇̃XY −∇XY ).

Let

R ∈ Γ(Iso((TM, ⟨ , ⟩), (TM, g))),

i.e.

g(RX,RY ) = ⟨X,Y ⟩

for any X,Y ∈ Γ(TM). Note that

S−1 ∈ Γ(Iso((TM, ⟨ , ⟩), (TM, g))),(0.1)

since g(S−1X,S−1Y ) = ⟨SS−1X,SS−1Y ⟩ = ⟨X,Y ⟩.
Lemma 1. Let R ∈ Γ(Iso((TM, ⟨ , ⟩), (TM, g))) then ∇̂R = ΩR, for some Ω ∈ Ω1(M, so(TM, g)).
For dimM = 2 we obtain ∇̂R = ηJ̃R for some η ∈ Ω1(M).

Proof.

g((∇̂XR)Y,RY ) = g(∇̃XRY −R∇XY,RY )

=
1

2
Xg(RY,RY )− 1

2
X⟨Y, Y ⟩

=
1

2
X⟨RY,RY ⟩ − 1

2
X⟨Y, Y ⟩

= 0.

□

Corollary 1.

S∇̂S−1 ∈ Ω1(M, so(TM, ⟨ , ⟩)).(0.2)

1



2 1. S-THEORY

Proof. From the previous lemma there must exist a Ω ∈ Ω1(M, so(TM, g)) with ∇̂S−1 = ΩS−1,
hence S∇̂S−1 = SΩS−1 ∈ Ω1(M, so(TM, ⟨ , ⟩)). □

Note that we obtain

∇XY = ∇̃XY + S(∇̃XS
−1)Y − S(∇̂XS

−1)Y.

Analogously one could view S ∈ Γ(Hom((TM, g), (TM, ⟨ , ⟩))) as an isometry. With

(
˜̂∇XS)Y := ∇XSY − S∇̃XY

one obtains

S−1 ˜̂∇S ∈ Ω1(M, so(TM, g))

and

∇̃XY = ∇XY + S−1(∇XS)Y − S−1(
˜̂∇XS)Y.(0.3)

We have computed the difference of Levi-Civta connections for two Riemannian metrics ⟨ , ⟩
and g = ⟨S, S⟩. The following theorem examines the question of how to construct the Levi-
Civita connection ∇̃ of a metric g = ⟨S, S⟩, while prescribing a positive and self adjont Operator
S ∈ Γ(End(TM)).
Theorem 3. Let (M, ⟨ , ⟩,∇) a Riemannian manifold. We prescribe a positive definite and self
adjoint operator S and the Riemannian metric g := ⟨S, S⟩. Let Ω ∈ Ω1(M, so(TM, g)) the unique
one form which satisfies

Ω ∧ I = S−1d∇S,(0.4)

then the Levi-Civita connection with respect to g is given by

∇̃ := ∇+ S−1(∇S)− Ω.(0.5)

Proof. It is a well known fact that there exist a Levi-Civita connection ∇̃ of (M, g) and we
already know (0.3) that it is of the form

∇̃ := ∇+ S−1(∇S)− Ω,

Let us first check that if Ω1(M, so(TM, g)) then ∇̃ is compatible with the metric g. Let X,Y ∈
Γ(TM)

Xg(Y, Y ) = X⟨SY, SY ⟩
= 2⟨∇XSY, SY ⟩
= 2⟨(∇XS)Y + S∇XY, SY ⟩
= 2g(∇XY + S−1(∇XS)Y, Y )

= 2g(∇XY + S−1(∇XS)Y − Ω(X)Y, Y )

= 2g(∇̃XY, Y ).

Further ∇̃ is torsion free if and only if

0 = ∇̃XY − ∇̃YX − [X,Y ]

= S−1(∇XS)Y − Ω(X)Y − (S−1(∇Y S)X − Ω(Y )X)

= S−1d∇S(X,Y )− Ω ∧ I(X,Y ).

This shows that Ω must satisfy

Ω ∧ I = S−1d∇S.

Since there exist a unique Levi-Civita connection of (M, g) there must exist a unique Ω ∈
Ω1(M, so(TM, g)) which solves Ω ∧ I = S−1d∇S. □
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Knowing ∇ and ∇̃, then Ω is explicitly given by

Ω = S−1 ˜̂∇S.
Furthermore,
Corollary 2.

∇̂S−1 = −ΩS−1.(0.6)

Proof.

SΩ(X)S−1Y = S(S−1 ˜̂∇XS)S
−1Y

= ∇XSS
−1Y − S∇̃XS

−1Y

= −S(∇̃XS
−1Y − S−1∇XY )

= −S(∇̂XS
−1)Y.

□

Let (M, ⟨ , ⟩, J) be a Riemann surface. By changing the Riemannian metric g = ⟨S, S⟩ we obtain
a change of the complex structure by

J̃ = S−1JS.

Corollary 3. Let (M, ⟨ , ⟩, J) a Riemann surface with the Levi-Civita connection ∇. Then the
Levi-Civita connection of (M, g) is given by

∇̃XY = ∇XY + S−1(∇XS)Y − η(X)J̃Y,(0.7)

where η(X) := ⟨JS−1JZ,X⟩ and Z ∈ Γ(TM) is the unique vector field defined through Z det :=
d∇S.

In particular, if g = e2u⟨ , ⟩, then

∇̃XY = ∇XY + du(X)Y − ∗du(X)JY.

Proof. Let ∇̃ = ∇+ S−1∇S −Ω with Ω = ηJ̃ , η ∈ Ω1(M) and Ω ∧ I = S−1d∇S (0.4) , be the
Levi-Civita connection of (M, g). Let (X, JX) an orthonormal basis of eigenvectors of S.

Z = S(Ω(X)JX − Ω(JX)X)

= η(X)SJ̃JX − η(JX)SJ̃X

= η(X)JSJX − η(JX)JSX

= −η(X)⟨SJX, JX⟩X − η(JX)⟨SX,X⟩JX,
therefore

η(X) =
⟨Z,X⟩

⟨SJX, JX⟩
= ⟨JS−1JZ,X⟩.

□

Next we will examine the change of the curvature two form on a Riemann surface M . Let
Y ∈ Γ(TM) be direction field, i.e. ⟨Y, Y ⟩ = 1. At least locally such a vector field always exists.
The rotation 1-form is

ρ(X) = ⟨∇XY, JY ⟩.(0.8)

It is a well known fact that

dρ = K det(0.9)

is the curvature 2-form, whereby K denotes the Gaussian curvature. Next we compute the
rotation 1-form ρ̃ with respect to g.
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Theorem 4. The rotation 1-form ρ̃ with respect to g is given by

ρ̃ = ρ− η.(0.10)

In particular one gets ρ̃ = ρ− ∗du for a conformal change of the metric.

Proof. Let Y ∈ Γ(TM) be a direction field with respect to ⟨ , ⟩, then S−1Y is a direction filed
with respect to g.

ρ̃(X) = g(∇̃XS
−1Y, J̃S−1Y )

= ⟨S∇̃XS
−1Y, SJ̃S−1Y ⟩

= ⟨S∇̃XS
−1Y, JY ⟩.

Applying (0.6) we obtain,

−η(X)J̃S−1Y = (∇̂XS
−1)Y = ∇̃XS

−1Y − S−1∇XY,

and therefore

S∇̃XS
−1Y = ∇XY − η(X)SJ̃S−1Y = ∇XY − η(X)JY.

This proves the claim. □

Corollary 4. Let M be an embedded Riemann surface in R2 then η is closed.

Proof. Both rotation 1-forms ρ and ρ̃ are closed and therefore η must be closed as well. □

Now we consider the simplest 3 dimensional manifold which is made of a Riemann surface M ,
namely

M̃ :=M × R
with the product metric

⟨(X, a), (Y, b)⟩ := ⟨X,Y ⟩+ ab

on TM̃ = M × R. Now let ∇ be the Levi-Civita connection on M , then the corresponding
Levi-Civita connection ∇ of M̃ is given by

∇(X,a)(Y, b) = (∇XY, ab
′).

Changing the metric on M by g = ⟨S, S⟩ yields a change of the corresponding product metric on
M̃ . With

S̃ :=

(
S 0
0 1

)
the product metric changes with

g = ⟨S̃, S̃⟩.

Applying (0.7), the Levi-Civita connection of (M̃, g) is given by

∇̃(X,a)(Y, b) = (∇XY + S−1(∇XS)Y − η(X)J̃Y, ab′).(0.11)

Alternatively, we can apply (0.3) and get

∇̃(X,a)(Y, b) = ∇(X,a)(Y, b) + S̃−1(∇(X,a)S̃)

(
Y
b

)
− Ω(

(
X
a

)
)

(
Y
b

)
=
(
∇XY + S−1(∇XS)Y, ab

′)− Ω(

(
X
a

)
)

(
Y
b

)
.

With

ω(X) := η(X)∂t(0.12)

one can easily show

Ω(

(
X
a

)
)

(
Y
b

)
= ω(X)×̃

(
Y
b

)
,(0.13)
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where ×̃ is the cross product with respect to g, i.e.

X×̃Y = S−1(SX × SY ).(0.14)





2 | Spin theory

1 Spin bundles

Let M be an oriented Riemannian manifold The Clifford multiplication for any X,Y ∈ Γ(TM)
is defined by

XY := −⟨X,Y ⟩+X ∧ Y.

Let Cl⟨ ,⟩(M) be the Clifford bundle over (M, ⟨ , ⟩). The Clifford connection ∇c on Cl⟨ ,⟩(M) is
the unique connection, which extends the Levi Civita connection to Cl⟨ ,⟩(M) and satisfies the
Leibnitz rule with respect to the Clifford multiplication, i.e. ∇cXY = (∇X)Y + X∇Y for all
X,Y ∈ Γ(TM). A quaternionic line bundle over M is a real vector bundle Σ over M of rank
4 such that each fibre Σp has the structure of a 1-dimensional quaternionic vector space. We
require that for a smooth section Ψ ∈ Γ(Σ) and smooth function λ : M → H also the section Ψλ
is smooth. A hermitian quaternionic line bundle is a quaternionic line bundle Σ together with
positive definite quaternionic hermitian forms

⟨ , ⟩Σ : Σp × Σp → H

on each fibre. Quaternionic hermitian means

⟨Ψλ, ϕµ⟩Σ = λ̄⟨Ψ, ϕ⟩Σµ

⟨Ψ, ϕ⟩Σ = ⟨Ψ, ϕ⟩Σ

for all Ψ, ϕ ∈ Σp, λ, µ ∈ H. Again we require that for smooth sections Ψ, ϕ of Σ also the function
⟨Ψ, ϕ⟩Σ is smooth. Note that

(1) Every quaternionic line bundle can be made into a hermitian quaternionic line bundle
(this is proved using a partition of unity).

(2) If ⟨ , ⟩, ˜⟨ , ⟩ are two positive hermitian forms on the same quaternionic line bundle Σ then
there is a function u ∈ C∞(M) such that ˜⟨ , ⟩ = eu⟨ , ⟩.

Definition 1. A Spin bundle Σ over (M, ⟨ , ⟩) is a hermitian quaternionic line bundle such
that there exists a non trivial Clifford representation ˆ : Γ(Cl⟨ ,⟩(M)) → Γ(EndH(Σ)) such that
q̂p = q̂p̂ for all q, p ∈ Cl⟨ ,⟩(M). Further, a Spin connection ∇Σ is a connection on Σ, such that

(1) ∇Σ satisfies the Leibniz rule with respect to the Clifford representation, i.e. for any
q ∈ Γ(Cl⟨ ,⟩(M)) and Ψ ∈ Γ(Σ) one gets ∇Σ

X q̂Ψ = (∇̂c
Xq)Ψ + q̂∇Σ

XΨ.

(2) ∇Σ
X(Ψλ) = (∇Σ

XΨ)λ+Ψdλ, for any λ ∈ C∞(M,H).

(3) X⟨Ψ,Φ⟩Σ = ⟨∇Σ
XΨ,Φ⟩Σ + ⟨Ψ,∇Σ

XΦ⟩Σ.

Further we require that ⟨, ⟩Σ is compatible with the Clifford multiplication, i.e. for all q ∈
Γ(Cl⟨,⟩(M)) and Ψ ∈ Γ(Σ)

|q̂Ψ|Σ = |q|c|Ψ|Σ.
Lemma 2. Let X ∈ Γ(TM) then

X̂ ∈ Γ(so(Σ)).

7
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Proof. Let X̂Ψ = Φµ for µ ∈ C∞(M,H) and therefore −⟨X,X⟩Ψ = (X̂Φ)µ.

⟨X̂Ψ,Φ⟩Σ = ⟨Φµ,Φ⟩Σ = µ̄⟨Φ,Φ⟩Σ = µ̄|Φ|2Σ,

⟨Ψ, X̂Φ⟩Σ = ⟨− 1

⟨X,X⟩
(X̂Φ)µ, X̂Φ⟩Σ

= − µ̄

⟨X,X⟩
⟨X̂Φ, X̂Φ⟩Σ

= − µ̄

⟨X,X⟩
|X|2c |Φ|2Σ = − µ̄

⟨X,X⟩
|X|2|Φ|2Σ

= −µ̄|Φ|2Σ.

This shows

⟨X̂Ψ,Φ⟩Σ = −⟨Ψ, X̂Φ⟩Σ.

□

2 Spin bundles over 3 dimensional oriented Riemannian manifolds

Since our definition of a spin bundle differs from those in the literature the existence of such a
bundle is a priori not clear. It will turn out that only for 2 or 3 dimensional oriented manifolds
M such a spin structure exists. The aim of this section is to prove the existence of a Spin bundle
over a 3-dimensional oriented Riemannian manifold (M, ⟨ , ⟩). Then we will prove that any such a
Spin bundle has a unique Spin connection. But before showing the existence of a Spin bundle and
its unique Spin connection we will briefly summarize basic facts about Clifford representations.
Let p ∈ M and X,Y, Z an orthonormal basis of TpM . The Clifford multiplication for any two
vectors U, V ∈ TpM is defined by

UV := −⟨U, V ⟩+ U ∧W.
Let

E := −XY Z(2.1)

then X2 = Y 2 = Z2 = −1 and E2 = 1. Further,

EXY = −XY ZXY = +Z = X × Y,

EXZ = −XY ZXZ = −Y = X × Z,

EY Z = −XY ZY Z = +X = Y × Z,

in particular for any U, V ∈ TpM we obtain

E(U ∧ V ) = U × V,(2.2)
E(U × V ) = U ∧ V.(2.3)

Now one can easily prove
Lemma 3. E commutes with vectors and bivectors.

Let

Ap := R⊕ ETpM.

We claim that Ap is an Algebra isomorphic to H. For any a, b ∈ R and U, V ∈ TpM we get

(a+ EU)(b+ EV ) =

= ab+ E(bU + aV ) + UV

= ab− ⟨U, V ⟩+ E(bU + aV ) + U ∧ V
= ab− ⟨U, V ⟩+ E(bU + aV + U × V ) ∈ Ap.

The Clifford Algebra of TpM is

Cl⟨ ,⟩(TpM) = Ap ⊕ EAp.
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Note that E commutes with any element of the Clifford Algebra. Let A :=M ×R⊕ETM then
the Clifford bundle over M is

Cl⟨ ,⟩(M) = A⊕ EA.

Lemma 4. Let q = g + EY + E(h + EZ) ∈ Γ(Cl⟨ ,⟩(M)), then the Clifford connection is given
by

∇cq = dg + E∇Y + E(dh+ E∇Z).

Proof. Since E2 = 1 we obtain 0 = ∇c
XE

2 = N∇c
XE + E∇c

XE = 2E∇c
XE, therefor 0 =

∇c
XE. □

The next task will be to show that a representation is completely determined by its values on
Γ(A).
Lemma 5. Any representation ˆ : Γ(A) → Γ(EndH(Σ)) is irreducible.

Proof. Let U ̸= 0 be a real subspace of Σ such that q̂U ⊂ U for all q ∈ Γ(A). We show
U = Σ. Let X,Y, Z an orthonormal basis of TpM and Ψ ∈ U and Ψ ̸= 0. We claim that
Ψ, (̂EX)Ψ, (̂EY )Ψ, (̂EZ)Ψ ∈ U are linearly independent. Note that ((̂EX))2 = ((̂EY ))2 =

((̂EZ))2 = −I and note that these operators pairwise anti commute. For example we get
(̂EX)(̂EY ) = ˆ(EXEY ) = (̂XY ) = ˆ(X ∧ Y ) = −(̂EY )(̂EX). Since dimH(Σ) = 1, we can
find a, b, c ∈ H such that (̂EX)Ψ = Ψa, (̂EY )Ψ = Ψb, (̂EZ)Ψ = Ψc, where a, b, c obey a2 = b2 =
c2 = −1 and pairwise anti commute. Now let λ1, λ2, λ3, λ4 ∈ R with

0 =λ1Ψ+ λ2(̂EX)Ψ + λ3(̂EY )Ψ + λ4(̂EZ)Ψ

=λ1Ψ+ λ2Ψa+ λ3Ψb+ λ4Ψc

=Ψ(λ1 + λ2a+ λ3b+ λ4c).

This shows λ1 = λ2 = λ3 = λ4 = 0. Therefore dimRU = dimRΣ and we conclude U = Σ. □

Lemma 6. Let ˆ : Γ(Cl⟨ ,⟩(M)) → Γ(EndH(Σ)) be a representation, then Ê = ±I.

Proof. Let ˆ : Γ(A) → Γ(EndH(Σ)) be the induced representation of ˆ. By the previous lemma
this representation is irreducible. Note that E ̸∈ A. Any Ψ ∈ Γ(Σ) can be decomposed by

Ψ =
1

2
(Ψ + ÊΨ) +

1

2
(Ψ− ÊΨ),

thus

Σ = Σ+ ⊕ Σ−,

where ÊΨ = ±Ψ for Ψ ∈ Γ(Σ±). We claim that Σ+,Σ− are invariant subspaces of Σ with respect
to the induced representation. Let q ∈ Γ(A) and Ψ ∈ Γ(Σ±) then

Êq̂Ψ = Êq̂Ψ = ÊqΨ = q̂EΨ = q̂ÊΨ = ±q̂Ψ,

therefore q̂Ψ ∈ Γ(Σ±). Since the representation is irreducible we conclude that either Σ = Σ+

or Σ = Σ−, which is equivalent to Ê = ±I. □

Now one can easily prove the following
Theorem 5. Proof. Let ˆ be a representation for the Spin bundle (Σ,M, ⟨ , ⟩), then for any
P,Q ∈ Γ(A) one gets ˆP + EQ = P̂ ± Q̂. Conversely, any representation :̂ Γ(A) → Γ(EndH(Σ))

can be extended through, ˆP + EQ := P̂ ± Q̂, to a representation of the Spin bundle Σ.

In particular one can always assume that Ê = I, otherwise we define ˆP + EQ := P̂ − Q̂. □
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Consequently we obtain

X̂Y = −⟨X,Y ⟩+ X̂ ∧ Y

= −⟨X,Y ⟩+ ÊX̂ ∧ Y

= −⟨X,Y ⟩+ ˆ(EX ∧ Y )

= −⟨X,Y ⟩+ X̂ × Y .

Lemma 7. Let Σ be a Spin bundle over M , p ∈M and X,Y, Z a positively oriented orthonormal
basis of TpM . Then there is a ϕ ∈ Σp such that |ϕ| = 1 and

X̂ϕ = ϕi

Ŷ ϕ = ϕj

Ẑϕ = ϕk

ϕ is unique up to sign.

Proof. We think of Σp as a complex vector space where the complex structure is given as right
multiplication by i. X̂ is then a complex linear endomorphism of Σp with X̂2 = −I. Therefore
at least one among the two numbers ±i is an eigenvalue of X̂. If X̂Ψ = Ψ(−i) then

X̂(Ψj) = (X̂Ψ)j = −(Ψi)j = (Ψj)i.

Therefore in any case i is an eigenvalue and there exist a Ψ with |Ψ| = 1 and X̂Ψ = Ψi. The
same will then be true for

ϕ = cosαΨ+ sinαΨi

= Ψ(cosα+ sinαi)

where α ∈ R is arbitrary. Define λ ∈ H by Ŷ Φ = Φλ. Then

−Ψ = Ŷ 2Ψ = Ψλ2

implies |λ| = 1. Furthermore,

0 = (X̂Ŷ − Ŷ X̂)Ψ = Ψ(iλ+ λi).

Therefore λ anti commutes with i and therefore there is β ∈ R such that

λ = j(cosβ − sinβi).

Now

Ŷ ϕ = ŶΨ(cosα+ sinαi)

Ŷ ϕ = Ψλ(cosα+ sinαi)

= Ψj(cosβ − sinβi)(cosα+ sinαi)

= ϕ(cosα− sinαi)j(cosβ − sinβi)(cosα+ sinαi)

= ϕj(cos(2α− β) + sin(2α− β)i).

This shows that up to sign there is a unique ϕ ∈ Σp with |ϕ| = 1 for which the first two equations
in the statement of the lemma hold. The third equation then follows automatically. □

Now we will prove the existence of a Spin bundle over M .
Theorem 6. Every orientable 3-manifold has a Spin bundle Σ. If M is simply connected
and Σ, Σ̃ are two Spin bundles over M then there is a bundle isomorphism L : Σ → Σ̃ that is
quaternionic linear, unitary and compatible with the Clifford multiplication. L is unique up to
replacing L by −L.
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Proof. Since the tangent bundle of any oriented 3-manifold is trivial, there is an orientation-
preserving isometric bundle isomorphism

TM →M × imH

TM ∋ X ↦→ X̃ ∈ ImH

Now we can define a Clifford multiplication for Σ :=M ×H as

X̂(Φ) = X̃Φ.

If we have two different Spin bundles Σ and Σ̃ on M we can find on small enough open sets
U around every sets U around every point X,Y, Z ∈ Γ(TM|U ), ϕ ∈ Γ(Σ|U ) and ϕ̃ ∈ Γ(Σ̃|U )
as in the above Lemma. Then it is easy to see that on U the quaternionic linear bundle map
L : Γ(Σ|U ) → Γ(Σ̃|U ) defined by ϕ̃ = L◦ϕ is an isomorphism of Spin bundles. On the intersection
U1 ∩ U2 of two such open sets we have L1 = ϵL2 where ϵ : U1 ∩ U2 is a locally constant function.
If M is simply connected a cover space argument now shows that there is a consistent way to
define L globally. □

Theorem 7. Let Σ be a Spin bundle over an oriented Riemannian 3-manifold M . Then there
is a unique Spin connection ∇Σ on Σ.

Proof. Locally we may chose a positively oriented orthonormal frame field X,Y, Z on M and a
section ϕ ∈ Γ(Σ) as in Lemma (7). It is sufficient to prove the theorem locally, so this means that
without loss of generality we may assume TM =M×ImH, Σ =M×H, the Clifford multiplication
is the ordinary multiplication of quaternions and for Ψ, ϕ ∈ Γ(Σ) we have ⟨Ψ, ϕ⟩Σ = Ψ̄ϕ. After
these identifications there is an ImH valued 1-form ω on M such that for X,Y ∈ Γ(TM) we have

∇XY = dXY + ω(X)× Y.(2.4)

If ∇Σ is a connection for which the last two of the Leibniz rules hold there must be another ImH
valued 1-form ω̃ such that

∇Σ
XΨ = dXΨ+ ω̃(X)Ψ.

Now the Leibniz rule with respect to the Clifford representation implies

(dXY )Ψ + Y dXΨ+ ω̃(X)YΨ = dX(YΨ) + ω̃(X)YΨ

= ∇Σ
X(YΨ)

= (dXY + ω(X)× Y )Ψ + Y (dXΨ+ ω̃(X)Ψ).

Hence

ω(X)× Y = ω̃(X)Y − Y ω̃(X) = 2ω̃(X)× Y

and therefore

ω̃ =
1

2
ω.

This shows uniqueness of ∇Σ. Existence amounts to check that ∇Σ := d + ω̃ satisfies all three
Leibniz rules.

□

We showed the existence and the uniqueness of a Spin connection on Σ. We get the connection
∇Σ in a canonical way from the Levi-Civita connection on M .
Corollary 5. Let M ⊂ R3 an oriented 3-dimensional manifold and Σ :=M ×H then

d = ∇Σ.

Proof. The Levi-Civita connection coincides with d and therefore the ω from the previous
theorem (2.4) vanishes. □
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3 Spin bundles over Riemann surfaces

In Theorem (6) the existence proof for a Spin bundle Σ over an oriented 3-dimensional manifold
relied on the fact that oriented 3-manifolds are parallelizable. Thereof we concluded that any
Spin bundle Σ is isomorphic to

M ×H.

Clearly this argument does not work for a higher dimensional M . The task of this section will
be to show that every Riemann surface M has a Spin bundle Σ with a unique Spin connection.
The main idea is to extend M to a 3-dimensional manifold M̃ := M × R and apply the results
from the previous section.
Let (M, ⟨ , ⟩, J) be a 2 dimensional Riemannian manifold. Let X, JX be an orthonormal basis of
TpM and Np := XJX = X∧JX. Note that Np does not depend on the choice of the orthonormal
basis. The Clifford algebra of TpM is

Cl⟨,⟩(TpM) = R⊕ TpM ⊕ RNp.

Since X2 = (JX)2 = N2
p = −1 and X, JX,Np do pairwise commute, the Clifford algebra of

TpM is isomorphic to the quaternions, i.e. Cl⟨,⟩(TpM) = H. Therefore the Clifford bundle over
(M, ⟨, ⟩) is

Cl⟨,⟩(M) = (M × R)⊕ TM ⊕ (M × R)N.

isomorphic to the trivial bundle M ×H.
Lemma 8. For any U, V ∈ Γ(TM) we obtain

(1) U ∧ V = ⟨JU, V ⟩N .

(2) NU = JU = −UN .

Proof. We decompose U = ⟨U,X⟩X + ⟨U, JX⟩JX and V = ⟨V,X⟩X + ⟨U, JX⟩JX. Then

U ∧ V = (⟨U,X⟩⟨V, JX⟩ − ⟨U, JX⟩⟨U, JX⟩⟨V,X⟩)N
= ⟨JU, V ⟩N.

Further,

NU = N(⟨U,X⟩X + ⟨U, JX⟩JX) = −(⟨U,X⟩X + ⟨U, JX⟩JX)N = −UN.

□

The next task will be to show that every Riemann surface has a Spin bundle Σ with a unique
Spin connection ∇Σ on Σ. We consider the oriented 3-manifold

M̃ :=M × R

with the product metric

⟨(X, a), (Y, b)⟩ := ⟨X,Y ⟩+ ab

on TM̃ = M × R. Let X, JX be locally an orthonormal basis for M, then (X, 0), (JX, 0), ∂t is
locally an orthonormal basis for M̃ . For E := −(X, 0)(JX, 0)∂t we obtain by (2.2)

E((U, 0) ∧ (V, 0)) = (U, 0)× (V, 0) = ⟨JU, V ⟩∂t.

In the previous section (6) we proved that M̃ has a Spin bundle Σ. We claim that Σ is as well
a Spin bundle over M . Let ˜̂ be the Clifford representation of (Σ,Cl(M̃)). We have to define a
representation on (Σ,Cl(M)). Let U, V ∈ Γ(TM).

Û :=
˜̂

(U, 0)

Û ∧ V := ⟨JU, V ⟩ ˜̂∂t.



2. DEFORMATION OF A SPIN CONNECTION 13

Let us check that this really defines a Clifford representation.

Û V̂ =
˜̂

(U, 0)
˜̂

(V, 0)

=
˜̂

(U, 0)(V, 0)

= −⟨U, V ⟩I + ˜̂
(U, 0) ∧ (V, 0)

= −⟨U, V ⟩I + ˜̂
(U, 0)× (V, 0)

= −⟨U, V ⟩I + ⟨JU, V ⟩ ˜̂∂t
= −⟨U, V ⟩I + Û ∧ V

= ÛV .

Let ∇ be the Levi-Civita connection on M , then the corresponding Levi-Civita connection ∇ of
M̃ is given by

∇(X,a)(Y, b) = (∇XY, ab
′).

We already know that (Σ, M̃) has a unique Spin connection ∇Σ (7). We claim that

∇Σ
XΨ := ∇Σ

(X,0)Ψ(3.1)

defines the unique Spin connection on (Σ,M). Indeed, let Y ∈ Γ(TM), then

∇Σ
X ŶΨ = ∇Σ

(X,0)

˜̂
(Y, 0)Ψ

=
˜̂∇(X,0)(Y, 0)Ψ +

˜̂
(Y, 0)∇Σ

(X,0)Ψ

= ∇̂XYΨ+ Ŷ∇Σ
XΨ.

We haven proven the following theorem.
Theorem 8. Every Riemann surface has a Spin bundle Σ. If M is simply connected and Σ, Σ̃
are two Spin bundles over M then there is a bundle isomorphism L : Σ → Σ̃ that is quaternionic
linear, unitary and compatible with the Clifford multiplication. L is unique up to replacing L by
−L. Furthermore, every Spin bundle has a unique Spin connection.

Conversely, let M be a Riemann surface and Σ a Spin bundle over M with a representation ˆ.
Then Σ is a Spin bundle over M̃ :=M × R, since

˜̂
(X, a)Ψ := X̂Ψ+ aN̂Ψ(3.2)

defines a Clifford representation. Furthermore, the unique Clifford connection of (Σ, M̃) is an
extension of the Clifford connection of (Σ,M).

4 Deformation of a spin connection

We constructed (3) the Levi-Civita connection ∇̃ for a prescribed positive definite and self adjont
Operator S ∈ Γ(End(TM)) with respect to g = ⟨S, S⟩ out of the Levi-Civita connection ∇ of
(M, ⟨ , ⟩). In this section we want to compute the difference between the corresponding Spin
connections. As an application, we will be able to formulate elegant compatibility conditions for
the existence of immersions.
Let M be an oriented manifold with n := dimM ∈ {2, 3}. Let Σ be a Spin bundle over (M.⟨ , ⟩).
Now we prescribe a new Riemannian metric g = ⟨S, S⟩. The corresponding Clifford multiplication
is given by

X ∗ Y = −g(X,Y ) +X ∧ Y.

We obtain the corresponding Clifford bundle Clg(M) and its Clifford connection ∇̃c.
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Lemma 9. Let Σ be a Spin bundle over (M, ⟨ , ⟩,ˆ), then ˜̂ : Γ(Clg(M)) → Γ(EndH(Σ))

˜̂
(X1 ∧ ... ∧Xm) := ˆ(SX1) ∧ ... ∧ (SXm),

˜̂
1 := I

for any X1, .., Xm ∈ Γ(TM) with 1 ≤ m ≤ n, defines a Clifford representation.

Proof. For any X,Y ∈ Γ(TM) we get
˜̂
X

˜̂
Y = ŜXŜY

= ˆ(SX)(SY )

= −⟨SX,SY ⟩I + ˆSX ∧ SY

= −g(X,Y )I +
˜̂

X ∧ Y

=
˜̂

X ∗ Y .

□

Now we will compute the spin connection of (Σ,M, g). Recall (3), the Levi-Civita connection of
(M, g) is given by

∇̃ := ∇+ S−1(∇S)− Ω,

where Ω ∈ Ω1(M, so(TM, g)) and satisfies Ω ∧ I = S−1d∇S. First we will deal with a 3-
dimensional manifold M . Since Ω ∈ Ω1(M, so(TM, g)) we can find a ω ∈ Ω1(M,TM) with

Ω(X)Y = ω(X)×̃Y.(4.1)

Note that the cross product with respect to g is given by

X×̃Y = S−1(SX × SY ).

Theorem 9. Let (M, ⟨, ⟩) be an oriented 3 dimensional manifold and ∇Σ be the Spin connection
of the Spin bundle (Σ,M, ⟨, ⟩). Then

∇̃Σ
XΨ := ∇Σ

XΨ− 1

2
Ŝω(X)Ψ(4.2)

is the Spin connection of (Σ,M, g). In particular, if g = e2u⟨, ⟩, then

∇̃ΣΨ := ∇ΣΨ+
1

2
ˆ(gradu×)Ψ.

Proof. It suffices to check the Leibniz rule with respect to the Clifford representation

∇̃Σ
X(

˜̂
YΨ) = ∇Σ

X(ŜYΨ)− 1

2
Ŝω(X)ŜYΨ

= ∇̂XSYΨ+ ŜY∇Σ
XΨ− 1

2
Ŝω(X)ŜYΨ

= (Ŝ∇̃XY + ˆSΩ(X)Y − 1

2
Ŝω(X)ŜY )Ψ + ŜY∇Σ

XΨ

= (Ŝ∇̃XY + ˆS(ω(X)×̃Y )− 1

2
Ŝω(X)ŜY )Ψ + ŜY∇Σ

XΨ

= Ŝ∇̃XYΨ− 1

2
ŜY Ŝω(X)Ψ + ŜY∇Σ

XΨ

=
˜̂

∇̃XYΨ+
˜̂
Y ∇̃Σ

XΨ.

In particular, for

S = euI,

we obtain

Ω(X)Y = ω(X)×̃Y := euω(X)× Y.
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The unique solution of

Ω(X)Y − Ω(Y )X = S−1d∇S(X,Y ) = (X × Y )× gradu

is given by

ω(X) := − 1

eu
gradu×X

□

Now we will prove the analogous result for Riemann surfaces.
Theorem 10. Let (M, ⟨ , ⟩, J) be a Riemann surface and let ∇Σ be the Spin connection on
(Σ,M, ⟨ , ⟩) then

∇̃Σ
XΨ = ∇Σ

XΨ− 1

2
η(X)N̂Ψ,(4.3)

where η(X) := ⟨JS−1JZ,X⟩ and Z ∈ Γ(TM) is the unique vector field defined through Z det :=
d∇S (3). In particular, if g = e2u⟨, ⟩, then the Spin connection transforms as

∇̃Σ = ∇Σ +
1

2
∗ duN̂.

Proof. We extend M to the 3-dimensional manifold M̃ :=M × R. In the previous sections we
have seen that Σ is a Spin bundle over M̃ . Let ∇̃Σ and ∇Σ be the Spin connections of (Σ, M̃, g)

and (Σ, M̃, ⟨ , ⟩). Then the Spin connections of (Σ,M, g) and (Σ,M, ⟨ , ⟩) are given by (3.1)

∇Σ
XΨ = ∇Σ

(X,0)Ψ,

∇̃Σ
XΨ = ∇̃Σ

(X,0)Ψ.

Applying the previous theorem and a result from the first chapter (0.12) we obtain

∇̃Σ
XΨ = ∇̃Σ

(X,0)Ψ

= ∇Σ
(X,0)Ψ− 1

2
˜̂Sω(X)Ψ

= ∇Σ
XΨ− 1

2
η(X)∂̂tΨ

= ∇Σ
XΨ− 1

2
η(X)N̂Ψ.

□

Let Σ be a Spin bundle over a 2 or 3 dimensional oriented manifold (M, ⟨ , ⟩). Let Σ̃ be an-
other Spin bundle over M . Then there exists a bundle isomorphism L : Γ(Σ) → Γ(Σ̃). For any
X1, .., Xk ∈ Γ(TM) with 1 ≤ k ≤ 3

˜̂
X1 ∧ .. ∧Xk := L ◦ ˆ(SX1 ∧ .. ∧ SXk) ◦ L−1

defines a representation and makes Σ̃ a Spin bundle over (M, g). Indeed, for any X,Y ∈ Γ(TM)
we get

˜̂
X

˜̂
Y = L ◦ ŜX ◦ L ◦ L−1 ◦ ŜY ◦ L−1

= L ◦ ŜXSY ◦ L−1

= −g(X,Y )I + L ◦ ˆSX ∧ SY L−1

= −g(X,Y )I +
˜̂

X ∧ Y

=
˜̂

X ∗ Y .

Let ∇̃Σ be the Spin connection of (Σ,M, g), then

∇Σ̃L ◦Ψ := L ◦ ∇̃ΣΨ(4.4)

is the Spin connection of (Σ̃,M, g).
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Let M ⊂ R3 be an oriented 3 dimensional manifold and f : M → R3 be an immersion. We
consider the induced metric ⟨X,Y ⟩ := ⟨df(X), df(Y )⟩R3 on M . Then

Σ := f∗(R3 ×H) =M ×H

is a Spin bundle over (M, ⟨, ⟩), since for any X ∈ Γ(TM)

X̂Ψ := df(X)Ψ

defines a Clifford representation.

X̂ŶΨ = df(X)df(Y )Ψ

= −⟨X,Y ⟩Ψ+ df(X)× df(Y )Ψ

= −⟨X,Y ⟩Ψ+ df(X × Y )Ψ

= −⟨X,Y ⟩Ψ+ X̂ × YΨ

= −⟨X,Y ⟩Ψ+ X̂ ∧ YΨ

= X̂YΨ.

Let g := ⟨S, S⟩ be another metric on M and λ :M → S3 ⊂ H a smooth map. We define

L : Γ(Σ) → Γ(Σ)

Ψ ↦→ λ̄Ψ

a bundle isomorphism. The inverse is given by L−1Ψ = λΨ. With
˜̂
XΨ : = L ◦ ŜX ◦ L−1Ψ(4.5)

= λ̄df(SX)λΨ(4.6)

Σ becomes a Spin bundle over (M, g). Since M ⊂ R3 both Spin connections, ∇̃Σ of (M×H,M, g)
and ∇Σ of (M ×H,M, ⟨ , ⟩), coincide with the trivial connection d (5).

Now let Ψ ∈ Γ(M ×H), applying (4.4) and (4.2) we obtain

λ̄(dΨ(X)− 1

2
Ŝω(X))Ψ = d(λ̄Ψ)(X)

= dλ̄(X)Ψ + λ̄dΨ(X),

which is equivalent to

−1

2
λ̄df(Sω(X))Ψ = dλ̄(X)Ψ,

or

dλλ−1 =
1

2
df(Sω)

Any other immersion f̃ : M → R3 can be expressed by

df̃ = λ̄df(S)λ,

with a smooth map λ : M → S3 ⊂ H and a positive and self adjoint operator S. The induced
metric is

f̃∗⟨X,Y ⟩ = ⟨df̃(X), df̃(Y )⟩ = ⟨SX,SY ⟩ = g(X,Y ).

Further, the Spin structure induced by f̃ on Σ =M ×H is
˜̂
XΨ = df̃(X)Ψ

= λ̄df(SX)λΨ

= L ◦ ŜX ◦ L−1Ψ.

We haven proven the following
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Theorem 11. Let M ⊂ R3 be a three dimensional oriented manifold and f : M → R3 be an
immersion. We prescribe a new metric g = ⟨S, S⟩, a map λ : M → S3. If there exists a f̃ with
df̃ = λ̄df(S)λ then

dλλ−1 =
1

2
df(Sω).(4.7)

In particular, if g = e2u⟨ , ⟩ then

dλλ−1 = −1

2
df(gradu×).(4.8)

In this case f̃ is a Möbius transformation of f . □

Let G := df(gradu), then df(gradu× Z) = df(gradu)× df(Z) = G× df(Z). Since dλλ−1 is an
R3-valued 1-form we obtain

dλλ−1 = −1

2
Gdf.

This formula was recently found by Pinkall, Chern and Schroeder [3].

5 Gauss-Codazzi-formula

Let us first summarize the idea behind (11). We started with an immersion f : M → R3. Further
we prescribed a new metric g = ⟨S, S⟩ and a map λ : M → S3 and we were seeking for a new
immersion f̃ such that df̃ = λ̄df(S)λ. A necessary condition for the existence of such a f̃ is given
by (4.7)

dλλ−1 =
1

2
df(Sω).

Since ω is defined through (4.1), ω is determined by S. Thus (4.7) can be interpreted as a com-
patibility condition for the existence of a new immersion f̃ , between the inner geometry described
through S and the extrinsic geometry given by λ.

In this section we will derive the corresponding compatibility conditions for immersed surfaces.
Let M be a Riemann surface. Let f : M → R3 be an immersion and ⟨, ⟩ the induced metric on
M , further let Nf be the Gauss map of f . Let

Σ := f∗(R3 ×H) =M ×H.

X̂Ψ := df(X)Ψ,

N̂Ψ = NfΨ

induces a Spin structure on Σ. The shape operator A of f is defined by dNf = df(A). Note that
for any X,Y ∈ Γ(TM) one gets

Xdf(Y ) = df(∇XY )− ⟨Y,AX⟩Nf .

Let d be the connection on R3 ×H pulled back to M via f .
Theorem 12.

∇Σ
XΨ := dΨ(X)− 1

2
ĴAXΨ.(5.1)

is the Spin connection on Σ.
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Proof. It suffices to check the Leibniz rule with respect to the Clifford representation. So let
Y ∈ Γ(TM).

∇Σ
X ŶΨ = X(df(Y )Ψ)− 1

2
df(JAX)df(Y )Ψ

= (df(∇XY )− ⟨Y,AX⟩Nf )Ψ + df(Y )dΨ(X) +
1

2
⟨AX,Y ⟩NfΨ+

1

2
⟨JAX, Y ⟩Ψ

= df(∇XY )Ψ + df(Y )(dΨ(X)− 1

2
df(JAX)Ψ)

= ∇̂XYΨ+ Ŷ∇Σ
XΨ.

□

Let f̃ : M → R3 be another immersion with

df̃ = λ̄df(S)λ.

The Gauss map of f̃ is given by Ñ = λ−1Nλ and the induced metric is g = ⟨S, S⟩. Let
X ∈ Γ(TM) then

˜̂
XΨ = df̃(X)Ψ = λ̄df(SX)λΨ.

is a representation we have already discussed in the previous section (4.6). With (4.3) and (4.4),
we computed that the Spin connection on Σ̃ := f̃∗(R3 ×H) is given by

∇Σ̃
X λ̄Ψ = λ̄∇̃Σ

XΨ

= λ̄(∇Σ
XΨ− 1

2
η(X)N̂Ψ).

Applying (5.1) we get alternatively

∇Σ̃
X λ̄Ψ = d(λ̄Ψ)(X)− 1

2

˜̂
J̃ÃXλ̄Ψ

= d(λ̄Ψ)(X)− 1

2
λ̄ŜJ̃ÃXλλ̄Ψ

= d(λ̄Ψ)(X)− 1

2
λ̄ĴSÃXΨ.

Combining both expressions for ∇Σ̃
X λ̄Ψ we obtain

λ̄(dΨ(X)− 1

2
ĴAXΨ− 1

2
η(X)N̂Ψ) = d(λ̄Ψ)(X)− 1

2
λ̄ĴSÃXΨ,

which is equivalent to

λ̄dΨ(X)− d(λ̄Ψ)(X) =
1

2
λ̄(ĴAX − ĴSÃX)Ψ +

1

2
η(X)N̂Ψ,

or

dΨ(X)− λd(λ̄Ψ)(X) = −1

2
Ndf(SÃ−A)(X)Ψ +

1

2
η(X)NΨ.

Since dΨ− λd(λ̄Ψ)(X) = −λdλ̄(X)Ψ = dλ(X)λ−1Ψ, we get
Theorem 13. Let f : M → R3 be an immersion. We prescribe a new metric g = ⟨S, S⟩, a map
λ : M → S3 and Ã ∈ Γ(End(TM)). If there exists a f̃ with df̃ = λ̄df(S)λ with its shape operator
Ã then

dλλ−1 = −1

2
Ndf(SÃ−A) +

1

2
ηN.(5.2)

□

We want to derive the previous theorem from a more elementary approach. Seeking for an
immersion with an induced metric g = ⟨S, S⟩ and shape operator Ã we should at least require
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(1) λ̄df(S)λ is closed.

(2) d(λ−1Nλ) = λ̄df(SÃ)λ.

Since d(λ−1Nλ) = λ−1df(A)λ) + λ−1(Ndλλ−1 − dλλ−1N)λ) the second condition implies

Ndλλ−1 − dλλ−1N = df(SÃ−A).(5.3)

We split

dλλ−1 = (dλλ−1)− + (dλλ−1)+

in its tangential and normal part with respect to f . So for instance

(dλλ−1)+ = ⟨dλλ−1, N⟩N.(5.4)

We obtain

Ndλλ−1 − dλλ−1N = 2N(dλλ−1)−

and therefore

(dλλ−1)− = −1

2
Ndf(SÃ−A).(5.5)

It remains to compute the normal part (dλλ−1)+. Now we make use of the first condition (1).

0 = d(λ̄df(S)λ)(5.6)

= −2Im(λ̄df(S) ∧ dλ+ λ̄d(df(S))λ.(5.7)

(5.7) is equivalent to the existence of a real valued function ρ ∈ C∞ such that

ρ|df |2 = −2λ̄df(S) ∧ dλλ−1λ+ λ̄d(df(S))λ(5.8)

or

ρ|df |2 = −2df(S) ∧ dλλ−1 + d(df(S)).(5.9)

Note that only (dλλ−1)+ contributes to the tangential part of df(S) ∧ dλλ−1. Since d(df(S)) =
df ◦ d∇S + ⟨S ∧A⟩N we obtain

0 = −2df(S) ∧ (dλλ−1)+ + df ◦ d∇S.

From (3) we know that d∇S = S(ηJ̃ ∧ I) = η ∧ JS. Therefore

0 = −2df(S) ∧ (dλλ−1)+ + df ◦ d∇S(5.10)

= −2df(S) ∧ (⟨dλλ−1, N⟩N) + df(η ∧ JS)(5.11)

= −2df(⟨dλλ−1, N⟩ ∧ SJ) + df(η ∧ JS).(5.12)

Thus (dλλ−1)+ = 1
2ηN and with (5.5) we obtain again (5.2).

6 Dirac Operator

In (5.1) we could at least locally ensure the existence of an immersion f̃ by a compatibility
condition in terms of the geometric data (λ, Ã, S). In this section we want derive the compatibility
condition out of the Dirac equation. Let M be a two or three dimensional oriented Riemannian
manifold and Σ a Spin bundle over (M, ⟨ , ⟩). Let X1, .., Xn be a positively oriented orthonormal
basis. For any Ψ ∈ Γ(Σ) the Dirac operator is defined by

DΨ = X̂1∇Σ
X1

Ψ+ ..+ X̂n∇Σ
Xn

Ψ.

The Dirac operator is a self adjoint and elliptic differential operator. Let Ψ,Φ ∈ Γ(Σ) then

(Ψ,Φ)(X) := ⟨Ψ, X̂Φ⟩

defines a H-valued 1-form. The square (Ψ,Ψ) is even a R3-valued 1-form, since (Ψ,Ψ)(X) :=

⟨Ψ, X̂Ψ⟩ = −⟨Ψ, X̂Ψ⟩.
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Theorem 14. Let M be an oriented 3-manifold and Ψ ∈ Γ(Σ). Then

∗d(Ψ,Ψ)(Z) = 2Im⟨Ψ,∇Σ
ZΨ+ ẐDΨ⟩.(6.1)

Proof. Let X,Y, Z be a a positively oriented orthonormal basis, then

∗d(Ψ,Ψ)(Z) = d(Ψ,Ψ)(X,Y )

= X(Ψ,Ψ)(Y )− Y (Ψ,Ψ)(X)− (Ψ,Ψ)([X,Y ])

= X⟨Ψ, ŶΨ⟩ − Y ⟨Ψ, X̂Ψ⟩ − ⟨Ψ, ˆ[X,Y ]Ψ⟩

= ⟨∇Σ
XΨ, ŶΨ⟩+ ⟨Ψ,∇Σ

X ŶΨ⟩

− (⟨∇Σ
Y Ψ, X̂Ψ⟩+ ⟨Ψ,∇Σ

Y X̂Ψ⟩)− ⟨Ψ, ˆ[X,Y ]Ψ⟩

= ⟨∇Σ
XΨ, ŶΨ⟩ − ⟨∇Σ

XΨ, ŶΨ⟩

− ((⟨∇Σ
Y Ψ, X̂Ψ⟩ − (⟨∇Σ

Y Ψ, X̂Ψ⟩)

= 2Im⟨∇Σ
XΨ, ŶΨ⟩ − 2Im⟨∇Σ

Y Ψ, X̂Ψ⟩

= 2Im⟨X̂∇Σ
XΨ, X̂ŶΨ⟩ − 2Im⟨Ŷ∇Σ

Y Ψ, Ŷ X̂Ψ⟩

= 2Im⟨DΨ, ẐΨ⟩ − 2Im⟨∇Σ
ZΨ,Ψ⟩

= 2Im⟨Ψ, ẐDΨ⟩+ 2Im⟨Ψ,∇Σ
ZΨ⟩

= 2Im⟨Ψ,∇Σ
ZΨ+ ẐDΨ⟩.

□

We are looking for a similar formula in the case of a Riemann surface.
Corollary 6. Let M be a Riemann surface and Ψ ∈ Γ(Σ), then

d(Ψ,Ψ) = 2Im⟨Ψ, N̂DΨ⟩det .(6.2)

Proof. From (3.2) we know that Σ is a spin bundle over M̃ :=M × R via the representation

˜̂
(X, a)Ψ := X̂Ψ+ aN̂Ψ.

For an orthonormal basis (X, 0), (Y, 0), ∂t we obtain from (3.1)

D̃Ψ =
˜̂

(X, 0)∇Σ
(X,0)Ψ+

˜̂
(Y, 0)∇Σ

(Y,0)Ψ+
˜̂
∂t∇Σ

∂t
Ψ

= DΨ+ N̂∇Σ
∂t
Ψ,

where D̃ is the Dirac operator of M̃ and D the one of M . Applying (6.1) one gets

d(Ψ,Ψ)(X,Y ) = d(Ψ,Ψ)((X, 0), (Y, 0))

= 2Im⟨Ψ,∇Σ
∂t
Ψ+

˜̂
∂tD̃Ψ⟩

= 2Im⟨Ψ,∇Σ
∂t
Ψ+ N̂(DΨ+ N̂∇Σ

∂t
Ψ)⟩

= 2Im⟨Ψ, N̂DΨ⟩.

□

The formula (6.2) suggests to look at the operator

D̂ = ND.

It is not difficult to show that D̂ is a self adjoint and an elliptic operator.
Corollary 7. Let Ψ ∈ Γ(Σ) then (Ψ,Ψ) is closed if and only if D̂Ψ = ρΨ and ρ ∈ C∞(M).
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Proof. D̂Ψ = Ψρ, where ρ is a quaternion valued function. If (Ψ,Ψ) is closed then we want to
show that ρ is a real valued function.

0 = d(Ψ,Ψ) = 2Im⟨Ψ, D̂Ψ⟩
= 2Im⟨Ψ,Ψρ⟩
= 2Im(⟨Ψ,Ψ⟩ρ)
= 2|Ψ|2Imρ.

□

Now let M be a Riemann surface and f : M → R3 be an immersion. Once again we consider the
induced Spin bundle

Σ = f∗(R3 ×H) =M ×H.

In (5.1) we showed that the corresponding Spin connection was given by

∇Σ
XΨ = dΨ(X)− 1

2
ĴAXΨ.

Theorem 15.

D̂Ψ = −df ∧ dΨ
|df |2

+HΨ.(6.3)

Proof. Let (X, JX) be a orthonormal basis.

D̂Ψ = N̂(X̂∇Σ
XΨ+ ˆJX∇Σ

JXΨ)

= N̂(df(X)(dΨ(X)− 1

2
df(JAX)Ψ) + df(JX)(dΨ(Y )− 1

2
df(JAJX)Ψ))

= df(JX)dΨ(X)− df(X)dΨ(JX) +
1

2
(df(X)df(JAJX)− df(JX)df(JAX)Ψ

= −df ∧ dΨ(X,JX) +HΨ.

□

Let

DfΨ := −df ∧ dΨ
|df |2

then D̂ = Df+H and eigenfunctions of D̂ are eigenfunctions of Df , and vice versa. Let 1f ∈ Γ(Σ)
with

df(X) =: (1f , X̂1f ).

Let Ψ ∈ Γ(Σ) and

(Ψ,Ψ)˜ := (Ψ,Ψ) ◦ S

We obtain for a λ ∈ Γ(Σ) = C∞(M,H) with |λ| = 1

(λ, λ)˜(X) = ⟨λ, ˜̂Xλ⟩

= ⟨λ, ŜXλ⟩
= λ̄df(SX)λ.

We already computed the Spin connection with respect to the representation ˜̂
X := ŜX in (4.3).

∇̃ΣΨ = ∇ΣΨ− 1

2
ηÑΨ

= dΨ− 1

2
ĴAΨ− 1

2
ηÑΨ.
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Let D̃ be the corresponding Dirac operator, then

d(λ, λ)˜= 2Im⟨λ, N̂D̃λ⟩detS det .

With ˜̂
D := N̂D̃ and (5.7),(5.8) we obtain

Corollary 8. Let λ ∈ C∞(M.H) with |λ| = 1. Then the following statements are equivalent:

(1) (λ, λ)˜ is closed.

(2) There exists a ρ ∈ C∞(M) with ˜̂
Dλ = ρλ (Dirac equation ).

(3) There exists a ρ ∈ C∞(M) with ρ|df |2 = −2λ̄df(S) ∧ dλ+ λ̄d(df(S))λ .

□

In (8) the compatibility conditions are formulated in terms of (λ, ρ, S). Put simply, the operator
˜̂
D is completely determined by S. Further, if (λ, ρ) satisfy the Dirac equation

˜̂
Dλ = ρλ,

then (λ, λ)˜ is closed and therefore at least locally we can find an immersion f̃ : M → R3 with

df̃ = (λ, λ)˜.

Now we want to drop the restriction |λ| = 1 in order to work in a vector space. We can decompose
S = trS

2 (I + T ), where TJ = −JT . With τ := df ◦ T we can describe any immersion f̃ by

df̃ = λ̄(df + τ)λ,

for some λ : M → H∗. τ describes the change of the conformal structure, i.e. f̃ and f induce the
same conformal structure if and only if τ = 0. So instead of looking at (λ, ρ, S) with |λ| = 1 we
will parametrize immersions via (λ, ρ, τ) ∈ H, where H is the Prehilbertspace

H := C∞(M,H)× C∞(M)× Γ(K̄ ⊗ ImH).

Here Γ(K̄ ⊗ ImH) := {τ ∈ Ω1(M,R3)| ∗ τ = −Nτ} is the space of quadratic differentials. (8)(3)
translates to

−(df + τ) ∧ dλ = (ρ|df |2 − 1

2
dτ)λ.(6.4)



3 | The space of immersions

1 The space of immersions and its tangent space

Let M be a Riemann surface and f : M → R3 a reference immersion. By (6.4) the space of
immersions up to translations is given by

M := {

⎛⎝ λ
ρ
τ

⎞⎠ ∈ H | − Re((df + τ) ∧ dλλ−1) = ρ|df |2 and λ̄(df + τ)λ is exact}.(1.1)

The reference immersion f corresponds to

⎛⎝ 1
0
0

⎞⎠ ∈ M. The formal tangent space is given by

the time derivative at t = 0 of all smooth curves

⎛⎝ λt
ρt
τt

⎞⎠ ∈ M with

⎛⎝ λ0
ρ0
τ0

⎞⎠ =

⎛⎝ 1
0
0

⎞⎠ .(1.2)

The infinitesimal version of (6.4) is

−df ∧ dλ̇ = ρ̇|df |2 − 1

2
dτ̇.

and therefore the tangent space at the base point f is described by

TfM = {

⎛⎝ λ̇
ρ̇
τ̇

⎞⎠ ∈ H | −Re(df ∧ dλ̇) = ρ̇|df |2 and ¯̇
λdf + dfλ̇+ τ̇ is exact}.(1.3)

In the following section we will compute the normal space of TfM which is a subspace of the
dual space of H. First we need to find the dual space of quadratic differentials. Any quaternion
valued 1-form α can be decomposed in its normal part and tangential part with respect to an
immersion f .

α = α+ + α−,

α+ ∈ Ω1(M)⊗ Ω1(M)N,

α− ∈ df ◦ Ω1(M,TM).

Further we can decompose any quaternionic valued 1-form in its conformal and anti conformal
part.

α = α′ + α′′

:=
1

2
(α−N ∗ α) + 1

2
(α+N ∗ α),

then

∗ α′ = Nα′

∗ α′′ = −Nα′′.

23
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Assume that α′ and α′′ are both R3 valued one forms then both are automatically tangential
valued 1-forms. In this case we obtain

α′ ∧ α′′(X, JX) = α′(X)α′′(JX)− α′(JX)α′′(X)

= −α′(X)Nα′′(JX)−Nα′(X)α′′(X)

= Nα′(X)α′′(JX)−Nα′(X)α′′(X)

= 0.

A quadratic differential τ in this terms is simply τ ′ = 0 and τ+ = 0. Let σ be any R3 valued
1-form and τ a quadratic differential, then

⟨τ ∧ σ⟩ = ⟨τ ∧ σ−⟩(1.4)

= ⟨τ ∧ (σ−)
′ + (σ−)

′′⟩(1.5)

= ⟨τ ∧ (σ−)
′′⟩.(1.6)

Note that (σ−)
′′ is a quadratic differential. With

⟨τ, σ⟩ :=
∫
M

⟨∗τ ∧ σ⟩

we obtain from (1.6) a non degenerated pairing between quadratic differentials with themselves,
i.e.

Γ(K̄ ⊗ ImH)∗ = Γ(K̄ ⊗ ImH)

and therefore

H∗ = (Ω2(M)⊗H)× Ω2(M)× Γ(K̄ ⊗ ImH).

Further we consider the non degenerated pairing

⟨

⎛⎝ λ̇
ρ̇
τ̇

⎞⎠ ,

⎛⎝ σ
µ
η

⎞⎠⟩ :=
∫
M

⟨λ̇, σ⟩+ ρ̇µ+ ⟨∗τ̇ ∧ µ⟩.

2 The normal space of immersions

Our next goal is to compute the normal space of immersions at a base point f . Note,

⎛⎝ λ̇
ρ̇
τ̇

⎞⎠ ∈

TfM if and only if

0 =

∫
M

Re(df ∧ dλ̇+ ρ̇|df |2)Ψ + ⟨η ∧ ¯̇
λdf + dfλ̇+ τ̇⟩,

for all Ψ ∈ C∞(M,R) with compact support and all closed η ∈ Ω1(M, ImH) with compact
support.
Theorem 16. The normal space of immersions at a base point f is given by

NfM = {

⎛⎝ df ∧ (dΨ+ η)
Ψ|df |2
− 1

2 ∗ η′′

−

⎞⎠ | Ψ ∈ C∞
0 (M,R), η ∈ Ω1

0(M, ImH) closed one form}.(2.1)
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Proof. Let Ψ a smooth function with compact support.∫
M

Re(df ∧ dλ̇+ ρ̇|df |2)Ψ

=

∫
M

ρ̇Ψ|df |2 + ⟨Ψ, df ∧ dλ̇⟩

=

∫
M

ρ̇Ψ|df |2 − ⟨Ψ, d(dfλ̇)⟩

=

∫
M

ρ̇Ψ|df |2 + ⟨dΨ ∧ dfλ̇⟩

=

∫
M

ρ̇Ψ|df |2 + ⟨λ̇, df ∧ dΨ⟩.

Further, let η ∈ Ω1
0(M, ImH) closed.∫

M

⟨η ∧ (
¯̇
λdf + dfλ̇+ τ̇)⟩

=

∫
M

2⟨λ̇, df ∧ η⟩+ ⟨η′′− ∧ τ̇⟩

=

∫
M

2⟨λ̇, df ∧ η⟩ − ⟨∗τ̇ ∧ ∗η′′−⟩.

Patching all together, we obtain

⎛⎝ λ̇
ρ̇
τ̇

⎞⎠ ∈ TfM if and only if

0 =

∫
M

⟨λ̇, df ∧ (dΨ+ η)⟩+ ρ̇Ψ|df |2 − 1

2
⟨∗τ̇ ∧ ∗η′′−⟩.

□

Consequently the normal space of immersions at a base point f with prescribed conformal struc-
ture is given by

NfM = {
(
df ∧ (dΨ+ η)

Ψ|df |2
)

| Ψ ∈ C∞
0 (M,R), η ∈ Ω1

0(M, ImH) closed one form}.

3 Noether Theorem on the space of immersions

Let f : M → R3 be a reference immersion. We consider an arbitrary geometric smooth functional
F, i.e.

F : M → R, (λ, ρ, τ) ↦→
∫
M

L(λ, ρ, τ)|df |2,

such that for all smooth curves

⎛⎝ λt
ρt
τt

⎞⎠ ∈ M with property (1.2)

d

dt t=0
F ◦

⎛⎝ λt
ρt
τt

⎞⎠
exists. Then

gradF =

⎛⎝ ∂λF
∂ρF
∂τF

⎞⎠ ∈ H∗ = (Ω2(M,H)× Ω2(M)× Γ(K̄ ⊗ ImH)
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such that

d

dt t=0
F ◦

⎛⎝ λt
ρt
τt

⎞⎠ =:

∫
M

⟨λ̇, ∂λF⟩+ ρ̇∂ρF + ⟨∗τ̇ ∧ ∂τF⟩.

Let

∂λF = (g1 + df(Y ) + g2N)|df |2,

∂ρF = g3|df |2,

where g1, g2, g3 ∈ C∞(M) and Y ∈ Γ(TM).

We are interested in critical points of F. Clearly,

⎛⎝ λ
ρ
τ

⎞⎠ ∈ M is a critical point if and only if

gradF ∈ NfM.(3.1)

The following theorem gives a complete characterization for critical points of F.
Theorem 17. gradF ∈ NfM if and only if the ImH valued one form

η :=
g2
2
df +

g1
2

∗ df + 2 ∗ ∂τF + (∗dg3 − ⟨Y, .⟩)N(3.2)

is closed.

Proof. Assume gradF ∈ NfM then there exists a Ψ ∈ C∞(M) and a closed one form η ∈
Ω1(M, ImH) such that η

′′

− = 2 ∗ ∂τF and

∂λF = df ∧ (dΨ+ η).

We decompose dΨ+ η = (dΨ+ η)+ + η−. Further we can decompose (dΨ+ η)+ = (dΨ+ η)
′

+ +

(dΨ+η)
′′

+ and η− = η
′

−+η
′′

− in their conformal and anti conformal types. Let η
′

− = α1df+α2 ∗df
for some functions α1, α2 ∈ C∞(M). We obtain

df ∧ η
′

− = 2α2|df |2 + 2α1N |df |2.

Further (dΨ+ η)
′

+ can be decomposed as

(dΨ+ η)
′

+ = α3 − ∗α3N,

where α3 = ⟨Ỹ, .⟩ fore some Ỹ ∈ Γ(TM).

df ∧ (dΨ+ η)
′

+ = df ∧ α3 − df ∧ ∗α3N = 2df ∧ α3

and therefore

df ∧ (dΨ+ η)
′

+ = −2df(JỸ )|df |2.
Now we put all together.

(g1 + df(Y ) + g2N)|df |2 = ∂λF = df ∧ (dΨ+ η)

= df ∧ ((dΨ+ η)+ + h−)

= df ∧ ((dΨ+ η)
′

+ + h
′

−)

= −2df(JỸ )|df |2 + 2α2|df |2 + 2α1N |df |2.

We obtain α1 = g2
2 , α2 = g1

2 and Ỹ = 1
2JY . Note that

(dΨ+ η)+

= dΨ+ ⟨η,N⟩N
= α3 − ∗α3N + (dΨ− α3) + ∗(dΨ− α3)N

= dΨ+ (∗dΨ− 2 ∗ α3)N

= dΨ+ (∗dψ − ⟨Y, ⟩)N.
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Finally,

dΨ+ η

= (dΨ+ η)+ + η−

= dΨ+ (∗dΨ− ⟨Y, ⟩)N + η
′

− + η
′′

−

= dΨ+ (∗dΨ− ⟨Y, ⟩)N +
g2
2
df +

g1
2

∗ df + 2 ∗ ∂τF,

or

η = (∗dg3 − ⟨Y, ⟩)N +
g2
2
df +

g1
2

∗ df + 2 ∗ ∂τF.

Conversely, assume η is closed. We want to show that gradF ∈ NfM. Note that ∂τF = − 1
2 ∗ η

′′
−.

Let Ψ := g3. We have to show

∂λF = df ∧ (dΨ+ η).

dΨ+ η = g2
2 df + g1

2 ∗ df + dΨ+ ∗dΨN + 2 ∗ ∂τF − ⟨Y, ⟩N . By a type argument we obtain

df ∧ (dΨ+ η) = df ∧ (
g2
2
df +

g1
2

∗ df − ⟨Y, ⟩N)

= g1|df |2 + g2|df |2N + df(Y )|df |2

= ∂λF.

□

Corollary 9. For a critical point (λ, ρ, τ) of F we obtain for two homologous cycles γ1 and
γ2 in M ,

∫
γ1
η =

∫
γ2
η. So on each homology class [γ],

∫
γ
η is a conserved vector. We call η the

momentum flux.

4 The mean curvature half density

The mean curvature half density of an immersion f : M → R3 is

H|df |.(4.1)

Let λ ∈ C∞(M,H) with Dfλ = ρλ. Thus

(λ, λ) = λ̄dfλ

is a closed 1-form and therefore we locally can find an immersions f̃ with

df̃ = λ̄dfλ.

f̃ and f induce the same conformal structure on M . It is a well known fact [11] that the mean
curvature half density transforms as

H̃|df̃ | = (ρ+H)|df |.(4.2)

Now we are going to generalize (4.2) for an arbitrary deformation f̃ .
Let f̃ : M → R3 with df̃ = λ̄(df + τ)λ and Ñ = λ−1Nλ, ω̃ := df̃ ◦ Q̃.
Theorem 18. The mean curvature half-density transforms as

H̃|df̃ | =
√
det(I + T )

(
(H + ρ)|df |+ 1

|df |
(⟨τ ∧ (dλλ−1)−⟩ −

1

2
⟨τ ∧ df ◦ JQ̃⟩)

)
,(4.3)

and the infinitesimal version is

˙(H|df |) = ρ̇|df | − 1

2|df |
⟨∗τ̇ ∧ ω⟩.(4.4)

Proof. dÑ = λ̄(H̃(df + τ) + df ◦ U)λ, where U := Q̃ + TQ̃. From Ñ = λ−1Nλ one gets
dÑ = λ−1(Hdf + ω + 2(Ndλλ−1)−)λ, hence

|λ|2(H̃(df + τ) + df ◦ U) = Hdf + ω + 2(Ndλλ−1)−.
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From 1
2 ∗ df ∧ df = −|df |2 and wedging the previous equation with 1

2 ∗ df from the left we obtain
by a type argument

−|λ|2H̃|df |2 − 1

2
tr(U)|df |2 = −H|df |2 − ⟨(∗df ∧ (Ndλλ−1)−)⟩,

where we used Re( 12 ∗ df ∧ df ◦ U) = − 1
2 tr(U)|df |2 and Re(∗df ∧ (Ndλλ−1)−) = −⟨(∗df ∧

(Ndλλ−1)−)⟩. Taking the real part of the Dirac equation (6.4) we obtain

⟨df ∧ (dλλ−1)−⟩+ ⟨τ ∧ (dλλ−1)−⟩ = ρ|df |2,

or

⟨∗df ∧ (Ndλλ−1)−⟩ = ρ|df |2 + ⟨τ ∧ (dλλ−1)−⟩,

and therefore

|λ|2H̃|df |2 = (H + ρ− 1

2
tr(U))|df |2 + ⟨τ ∧ (dλλ−1)−⟩.

Furthermore, the area element transforms as |df̃ |2 = |λ|4|df |2 det(I + T ). Note that tr(U) =

tr(TQ̃) = ⟨T ∧ JQ̃⟩ = ⟨τ ∧ df ◦ JQ̃⟩, hence

H̃|df̃ | =
√
det(I + T )

(
(H + ρ)|df |+ 1

|df |
(⟨τ ∧ (dλλ−1)−⟩ −

1

2
⟨τ ∧ df ◦ JQ̃⟩)

)
.

Let us now compute the infinitesimal version.

˙(H|df |) = ρ̇|df |+ 1

2|df |
⟨τ̇ ∧ ∗ω⟩ = ρ̇|df | − 1

2|df |
⟨∗τ̇ ∧ ω⟩.

□

5 The Rivin-Schlenker Schläfli formula

In this section we will give a new proof for a special case of the Rivin-Schlenker Schläfli formula
[15].

Lemma 10. Let

⎛⎝ λt
ρt
τt

⎞⎠ ∈ M a deformation of our reference immersion f : M → R3.

(1) The infinitesimal change of the metric is

ġ(X,Y ) = 4Reλ̇⟨X,Y ⟩+ 2⟨ṪX, Y ⟩.

(2) The infinitesimal change of the area element is

˙|df |2 = 4Reλ̇|df |2.

Proof. (1) Let dft = λ̄t(df + τt)λt =
λ̄t

|λt| (|λt|
2(df + τt)

λt

|λt| and

gt(X,Y ) = ⟨dft(X), dft(Y )⟩ = |λt|4⟨(I + Tt)X, (I + Tt)Y ⟩

⇒

ġ(X,Y ) = 4Reλ̇⟨X,Y ⟩+ 2⟨ṪX, Y ⟩.

(2) |dft|2 = |λt|4 det(I + Tt)|df |2 ⇒ ˙|df |2 = 4Reλ̇|df |2.
□
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Theorem 19. Let M be two dimensional Riemannian manifold without boundary and let

⎛⎝ λ̇
ρ̇
τ̇

⎞⎠ ∈

TfM then ∫
M

(Ḣ +
1

2
⟨İ , II⟩)|df |2 = 0.

Proof. Since

⎛⎝ λ̇
ρ̇
τ̇

⎞⎠ ∈ TfM we get −df ∧ dλ̇ = ρ̇|df |2 − 1
2dτ̇ and

∫
M

ρ̇|df |2 = 0.

In the previous section (4.4) we computed the infinitesimal change of the mean curvature half
density ˙(H|df |) = ρ̇|df | − 1

2|df | ⟨∗τ̇ ∧ ω⟩.∫
M

˙(H|df |)|df | =
∫
M

ρ̇|df |2 − 1

2
⟨∗τ̇ ∧ ω⟩ = −

∫
M

1

2
⟨∗τ̇ ∧ ω⟩,

therefore

0 =

∫
M

˙(H|df |)|df |+ 1

2
⟨∗τ̇ ∧ ω⟩

=

∫
M

Ḣ|df |2 + 1

2
H ˙|df |2 + 1

2
⟨∗τ̇ ∧ ω⟩

=

∫
M

Ḣ|df |2 + 2HReλ̇|df |2 + 1

2
⟨∗τ̇ ∧ ω⟩.

Now let us compute 1
2 ⟨İ , II⟩|df |

2(X, JX) for the eigenbasis (X, JX) of the shape operator.

1

2
⟨İ , II⟩|df |2(X,JX) =

1

4
tr(

(
4Reλ̇+ 2⟨ṪX,X⟩ 2⟨ṪX, JX⟩

2⟨ṪX, JX⟩ 4Reλ̇− 2⟨ṪX,X⟩

)(
κ1 0
0 κ2

)
)

= 2Reλ̇H +
1

2
(k1 − κ2)⟨ṪX,X⟩.

Finally, one can easily verify 1
2 ⟨∗τ̇ ∧ ω⟩(X, JX) = 1

2 (κ1 − κ2)⟨ṪX,X⟩. □

Corollary 10. For conformal surface deformations we even obtain∫
M

˙(H|df |)|df | = 0.

Proof. 0 =
∫
M
(Ḣ + 1

2 ⟨İ , II⟩)|df |
2 =

∫
M

˙(H|df |)|df |+
∫
M

1
2 ⟨∗τ̇ ∧ ω⟩ =

∫
M

˙(H|df |)|df |. □

6 The mean curvature functional

Now we will investigate the mean curvature functional

H :=

∫
M

H|df |2.

We obtain

Ḣ =

∫
M

˙(H|df |)|df |+H|df | ˙|df |

=

∫
M

ρ̇|df |2 − 1

2
⟨∗τ̇ ∧ ω⟩+ 2HReλ̇|df |2

=

∫
M

−1

2
⟨∗τ̇ ∧ ω⟩+ 2HReλ̇|df |2,
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and therefore

gradH =

⎛⎝ 2H|df |2
0

− 1
2ω

⎞⎠ .

Theorem 20. (λ, ρ, τ) ∈ M is a critical point of H if and only if the momentum flux NdN is
closed. In particular, all critical points have a vanishing Gaussian curvature.

Proof. We apply the Noether Theorem (3.2) with g1 := 2H, g2 = g3 = 0, Y = 0 and ∂τH =
− 1

2ω. The momentum flux η := g2
2 df + g1

2 ∗ df + 2 ∗ ∂τF + (∗dg3 − ⟨Y, .⟩)N simplifies to

η = H ∗ df − ∗ω = HNdf +Nω = NdN.

Further d(NdN) = dN ∧ dN = 2KN |df |2. □

7 Willmore surfaces

In this section we will investigate Willmore surfaces and derive conservation laws.

W =

∫
M

(H|df |)2.

We compute the gradient of W.

Ẇ =

∫
M

2H|df | ˙(H|df |) =
∫
M

2Hρ̇|df |2 − ⟨∗τ̇ ∧Hω⟩.

this shows

gradW =

⎛⎝ 0
2H|df |2
−Hω

⎞⎠ .

Theorem 21. f is a Willmore surface if and only if the momentum flux

η = ∗dHN −H ∗ ω(7.1)

is closed. Moreover, if η is closed, then the following forms are closed as well:

(1) fη + ω the stretch-torque flux.

(2) −2⟨f, η⟩f + ⟨f, f⟩η − 2f × ω the Möbius flux.

Proof. Applying the Noether Theorem (3.2), we obtain 0 = ∂λW, hence g1 = g2 = 0 and
Y = 0. Further ∂ρW = 2H|df |2 and therefore g3 = 2H. Finally, ∂τW = −Hω and one gets
η = ∗dHN −H ∗ ω.

(1) d(fη+ω) = df ∧η+dω = df ∧(∗dHN−H ∗ω)+d(dN−Hdf) = df ∧∗dHN−dH∧df =
dH ∧ df − dH ∧ df = 0.

(2) Since fη + ω = −⟨f, η⟩ + f × η + ω, one concludes that the real part −⟨f, η⟩ must be
closed as well.

d(−2⟨f, η⟩f + ⟨f, f⟩η − 2f × ω)

= 2⟨f, η⟩ ∧ df + 2⟨f, df⟩ ∧ η − 2f × dω

= 2⟨f, (∗dHN −H ∗ ω)⟩ ∧ df + 2⟨f, df⟩ ∧ (∗dHN −H ∗ ω) + 2f × dH ∧ df
= 2dH ∧ (⟨f, ∗df⟩N − ⟨f,N⟩ ∗ df + f × df)− 2H(⟨f, ∗ω⟩ ∧ df + ⟨f, df⟩ ∧ ∗ω).
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Note that f × df = −⟨f, ∗df⟩N + ⟨f,N⟩ ∗ df whereby the first term in sum cancels. Let
us decompose f = df(Y ) + ⟨f,N⟩N . Then

⟨f, ∗ω⟩ ∧ df(X, JX)

= ⟨Y,QJX⟩df(JX) + ⟨Y,QX⟩df(X)

= df(⟨QY,X⟩X + ⟨QY, JX⟩JX)

= df(QY ).

Similarly one computes ⟨f, df⟩ ∧ ∗ω(X, JX) = −df(QY ) ⇒ the Möbius flux is closed.

□

Note that the momentum flux η = ∗dHN − H ∗ ω of a Willmore surface already appeared in
the Phd thesis of Jörg Richter [14]. Soon we will give a really simple prove for the fact that the
Möbius flux and the momentum flux are from the Möbius geometric point of view the same. But
first we prefer a computational approach.
Lemma 11. Let f̃ := f−1, then the mean curvature and the Hopf differential transform as

H̃ = H|f |2 − 2⟨f,N⟩

and

ω̃ = fωf−1.

Proof. Since df̃ = −f−1dff−1 and Ñ = fNf−1 one obtains ∗df̃ = Ñdf̃ . A straightforward
computation shows

dÑ = (H|f |2 − 2⟨f,N⟩)df̃ + fωf−1.

□

Theorem 22. The momentum flux of f̃ = f−1 is minus the Möbius flux of f . In particular,
the Möbius flux is closed if and only if the momentum flux is closed.

Proof.

∗ dH̃Ñ − H̃ ∗ ω̃
= (|f |2 ∗ dH − 2⟨f, ∗ω⟩)fNf−1 − (H|f |2 − 2⟨f,N⟩)f ∗ ωf−1

= |f |2f(∗dHN −H ∗ ω)f−1 + f(2⟨f,N⟩ ∗ ω − 2⟨f, ∗ω⟩N)f−1

= f(|f |2η − 2f × ω)f−1

= −fηf +
2

|f |2
f(f × ω)f

= −(−⟨f, η⟩+ f × η)f +
2

|f |2
(f × (f × ω))f

= 2⟨f, η⟩ − |f |2η + 2

|f |2
(f⟨f, ω⟩ − ω|f |2)f

= 2⟨f, η⟩ − |f |2η − 2ω × f.

□

Up to now it is not clear how we have found the stretch-torque flux and the Möbius flux. Even
the momentum flux, which we obtained from the Noether Theorem, haven’t been elaborated in

detail yet. Note, each

⎛⎝ λ̇
ρ̇
τ̇

⎞⎠ ∈ TfM corresponds to an infinitesimal deformation ḟ , where ḟ

is defined up to translations. The translation invariant description M of the space of immersed
surfaces is the reason for the existence of the momentum flux. To appreciate our approach and
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to justify the name Noether Theorem, we will not describe our surfaces with the geometric data
(λ, ρ, τ) but with the surface f itself. First we consider the Möbius invariant Willmore functional

W(f) =

∫
M

(H2 −K)|df |2,

which has the same critical points as W(f) =
∫
M
H2|df |2. A quite lengthy computation shows,

that critical points f of W are characterized by

0 =

∫
∂N

⟨ḟ, ∗dHN −H ∗ ω⟩+ ⟨Ṅ, ∗ω⟩ −
∫
N

⟨ḟ, (d ∗ dH −H⟨∗ω ∧ ω⟩)N⟩.

for any compact 2-dimensional submanifold N ⊂ M and all variations ft of f with compact
support on N .

So f is a Willmore surface if and only if the 2-form d ∗ dH −H⟨∗ω ∧ ω⟩ vanishes on M . Let f
be a Willmore surface, then for any 2-dimensional compact submanifold N ⊂ M the restriction
f on N is still a Willmore surface. Let v ∈ R3 be a constant vector and ft = f + tv a family
of translations of f all having their compact support on N , then obviously ft are all Willmore
surfaces, which all have the same Willmore-energy as f . Therefore

0 =
d

dt
WN (f) =

d

dt
WN (ft) =

∫
∂N

⟨ḟ, ∗dHN −H ∗ ω⟩+ ⟨Ṅ, ∗ω⟩.

Note that ḟ = v and Ṅ = 0. We obtain for all compact 2-dimensional N ⊂M and all v ∈ R3

0 =

∫
∂N

⟨v, η⟩ =
∫
N

⟨v, dη⟩,

which shows that η is closed on M . The Willmore functional is also invariant under rotations.
An infinitesimal rotation is given by ḟ = v × f and Ṅ = v ×N for a constant vector v ∈ R3. As
before, we get

0 =

∫
∂N

⟨v × f, η⟩+ ⟨v ×N, ∗ω⟩ =
∫
∂N

⟨v, f × η + ω⟩.

This shows that f × η + ω is closed. The scaling invariance implies that ⟨f, η⟩ is closed, we will
omit the details. Let us check what the inversion invariance will bring us. One can show that
the infinitesimal inversions are described by ḟ = faf = −2⟨f, a⟩f + a⟨f, f⟩, for a constant vector
a ∈ R3. The infinitesimal change of the Gauss map is Ṅ = 2N × (a× f), so

0 =

∫
∂N

⟨ḟ, η⟩+ ⟨Ṅ, ∗ω⟩

=

∫
∂N

⟨−2⟨f, a⟩f + a⟨f, f⟩, η⟩+ ⟨2N × (a× f), ∗ω⟩

=

∫
∂N

−2⟨f, a⟩⟨f, η⟩+ ⟨a, ⟨f, f⟩η⟩ − 2⟨a, f × ω⟩

=

∫
∂N

⟨a,−2⟨f, η⟩f + ⟨f, f⟩η − 2f × ω⟩,

which shows that −2⟨f, η⟩f + ⟨f, f⟩η − 2f × ω is closed.
This approach shows clearly that the momentum flux is a result of varying the origin, while
the Möbius flux results by varying the infinity point. But there is no difference from a Möbius
geometric point of view, which implies the equality of the Möbius flux and the momentum flux.
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Figure 1. Half a torus. Figure 2. The other half.

Now we give an application of our momentum flux.
Theorem 23. Among all tori of revolution with a circle of radius 1 as meridian, the Clifford
torus is the only Willmore torus.

Proof. Let f be such a Willmore torus. We want to show r =
√
2− 1. Let e3 be a unit vector,

which spans the rotation axle. We consider the two homologous cycles γ1 and γ2. Since f is
Willmore, the momentum flux η is closed. The mean curvature achieves its minimum along γ1
and its maximum along γ2 and therefore η simplifies to η = ∗dHN −H ∗ ω = −H ∗ ω. Further
H ◦ γ1 =

− 1
r+1

2 and H ◦ γ2 =
1

r+2+1

2 . For eigendirections X, JX of the shape operator we get
ω(X) = κ1−κ2

2 df(X) and ω(JX) = κ2−κ1

2 df(JX). Hence,

γ∗1η = −H(γ1) ∗ ω(γ′1)

= −
− 1

r + 1

2
rω(JX)

= −
− 1

r + 1

2
r
− 1

r − 1

2
− e3

= −1

4
(r − 1

r
)e3

and

γ∗2η = −H(γ2) ∗ ω(γ′2)

= −
1

r+2 + 1

2
(r + 2)ω(JX)

= −
1

r+2 + 1

2
(r + 2)

1
r+2 − 1

2
e3

=
1

4
(r + 2− 1

r + 2
)e3.∫

γ1
η =

∫
γ2
η implies −(r − 1

r ) = r + 2− 1
r+2 or

r =
√
2− 1.

□

8 Minimal surfaces and Constant mean curvature surfaces

Now we are going to investigate minimal surfaces. Recall (10), the area element of f̃ changes by

|df̃ |2 = |λ|4 det(I + T )|df |2,

and therefore
˙|df |2 = 4Reλ̇|df |2.
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The gradient of the area functional is given by

gradA =

⎛⎝ 4|df |2
0
0

⎞⎠ .

The Noether Theorem immediately implies the following
Theorem 24. f is a minimal surface if and only if the momentum flux ∗df is closed. Moreover,
if ∗df is closed, then the torque flux f × ∗df is also closed.

Constant mean curvature surfaces are critical points of the volume functional under all variations
which keep the area fixed. The volume functional is only defined for closed surfaces. So let M
be a closed surface, then

V̇ =

∫
M

⟨ḟ, N⟩

=
1

2

∫
M

⟨ḟ, df ∧ df⟩

=
1

2

∫
M

⟨ḟ, d(fdf)⟩

=
1

2

∫
M

−d⟨ḟ, fdf⟩+ ⟨dḟ ∧ fdf⟩

=
1

2

∫
M

⟨dḟ ∧ fdf⟩

Let dḟ =
¯̇
λdf + dfλ̇+ τ̇ , then

V̇ =

∫
M

⟨(¯̇λdf + dfλ̇+ τ̇) ∧ fdf⟩.

⟨¯̇λdf ∧ fdf⟩ = −Re(dfλ̇ ∧ fdf) = ⟨λ̇, df ∧ dff⟩ = 2⟨λ̇, Nf⟩|df |2,

⟨dfλ̇ ∧ fdf⟩ = −Re(
¯̇
λdf ∧ fdf) = −⟨λ̇, df ∧ fdf⟩ = ⟨λ̇,−2⟨f,N⟩|df |2⟩.

Let f = df(Z) + ⟨f,N⟩N . Then fdf = df(Z)df + ⟨f,N⟩ ∗ df and therefore ⟨τ̇ ∧ fdf⟩ = 0.

Finally,

V̇ =

∫
M

⟨λ̇, Nf − ⟨f,N⟩⟩|df |2 =

∫
M

⟨λ̇,−2⟨f,N⟩+N × f⟩|df |2,

gradV =

⎛⎝ (−2⟨f,N⟩+N × f)|df |2
0
0

⎞⎠
Now we want to characterize constant mean curvature surfaces through the corresponding mo-
mentum flux. Recall, f : M → R3 is a CMC surface if and only if gradV + agradA ∈ NfM,
where a ∈ R is a Lagrangian multiplier.

gradV + agradA =

⎛⎝ (−2⟨f,N⟩+N × f + 4a)|df |2
0
0

⎞⎠ .

Theorem 25. f is a CMC surface if and only if

η = (2a− ⟨f,N⟩) ∗ df + ⟨f, ∗df⟩N

is closed. Further, η is closed if and only if H = 1
2a .

Proof. We apply the Noether Theorem with g1 = 4a − 2⟨f,N⟩, g2 = g3 = 0, ∂τF = 0 and
df(Y ) = N ×f . For our momentum flux η := g2

2 df +
g1
2 ∗df +2∗∂τF+(∗dg3−⟨Y, .⟩)N we obtain

η = (2a− ⟨f,N⟩) ∗ df − ⟨Y, ⟩N.
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Note, for any X ∈ Γ(TM) one gets ⟨Y,X⟩ = ⟨df(Y ), df(X)⟩ = ⟨N × f, df(X)⟩ = −⟨f, ∗df(X)⟩.
Thus,

η = (2a− ⟨f,N⟩) ∗ df + ⟨f, ∗df⟩N.
Now one can easily compute

dη = (4aH − 2)|df |2N + ⟨f, ∗df⟩ ∧ dN − ⟨f, dN⟩ ∗ df = (4aH − 2)|df |2N.

So η is closed if and only if H = 1
2a . □

9 The normal space of space curves

Similar to the space of immersions of a Riemann surface M into R3, which we described by the
geometric data (λ, ρ, τ), we will describe the space of space curves in terms of their curvature
functions. We investigate space curves with prescribed end points and prescribed frames at the
end points and give an Euclidean invariant characterization. Let κ1, κ2, τ be smooth functions
on the interval [0, L]. We consider

A =

⎛⎜⎜⎝
0 −κ1 −κ2 1
κ1 0 −τ 0
κ2 τ 0 0
0 0 0 0

⎞⎟⎟⎠ .

LetG be the group of euclidean motions. A framed curve F ∈ G has the form F =

(
T N B γ
0 0 0 1

)
,

where (T,N,B) : [0.L] → SO(3) and γ : [0, L] → R3. Then

F ′ = FA

is equivalent to

γ′ = T

T ′ = κ1N + κ2B

N ′ = −κ1T + τB

B′ = −κ2T − τN.

(κ1, κ2, τ) are the curvature functions of γ with respect to the frame (T,N,B). Thus, the space
of space curves with prescribed and points and prescribed frames at the end points is given by

M := {

⎛⎝κ1κ2
τ

⎞⎠ ∈ C∞([0, L],R3) | F ′ = FA with (F (0), F (L)) are both fixed}.(9.1)

Let γ be an arc length parametrized curve with curvature functions (κ1, κ2, τ). Let (κ1,t, κ2,t, τt) ∈
M a variation of γ. Let F ′

t = FtAt then we obtain

(ḞF−1)′ = Ḟ
′
F−1 − ḞF−1F ′F−1 = (ḞA+ FȦ)F−1 − ḞAF−1 = FȦF−1.

The condition that the framed curves Ft stay fixed at the end points translates to

0 = Ḟ (L)F−1(L)− Ḟ (0)F−1(0) =

∫ L

0

(ḞF−1)′ =

∫ L

0

FȦF−1,(9.2)

which is equivalent to

∫ L

0

τ̇T − κ̇2N + κ̇1Bds = 0

and



36 3. THE SPACE OF IMMERSIONS

∫ L

0

(τ̇T − κ̇2N + κ̇1B)× γds = 0.

Here the dot stands for the time derivative at t = 0. The tangent space is given by

T(κ1,κ2,τ)M =

⎧⎨⎩
⎛⎝κ̇1κ̇2
τ̇

⎞⎠ ∈ C∞([0, L],R3)
⏐⏐⏐ ( ∫ L

0
τ̇T − κ̇2N + κ̇1B∫ L

0
(τ̇T − κ̇2N + κ̇1B)× γ

)
=

(
0
0

)⎫⎬⎭ .

Theorem 26. The normal space of space curves is given by

N(κ1,κ2,τ)M =

⎧⎨⎩
⎛⎝ ⟨B,a+ γ × b⟩

⟨−N,a+ γ × b⟩
⟨T,a+ γ × b⟩

⎞⎠ |a,b ∈ R3

⎫⎬⎭ .(9.3)

Proof.

⎛⎝κ̇1κ̇2
τ̇

⎞⎠ ∈ T(κ1,κ2,τ)M if and only if for all (a,b) ∈ R3 × R3

0 =

∫ L

0

⟨a, τ̇T − κ̇2N + κ̇1B⟩ =
∫ L

0

⟨

⎛⎝κ̇1κ̇2
τ̇

⎞⎠ ,

⎛⎝ ⟨B,a⟩
−⟨N,a⟩
⟨T,a⟩

⎞⎠⟩ds

and

0 =

∫ L

0

⟨b, (τ̇T − κ̇2N + κ̇1B)× γ⟩ =
∫ L

0

⟨

⎛⎝κ̇1κ̇2
τ̇

⎞⎠ ,

⎛⎝ ⟨B,b× γ⟩
−⟨N,b× γ⟩
⟨T,b× γ⟩

⎞⎠⟩ds.

□

The normal space can also be expressed by the linear combination of the six R3 valued functions⎛⎝ ⟨B, e1⟩
⟨−N, e1⟩
⟨T, e1⟩

⎞⎠,

⎛⎝ ⟨B, e2⟩
⟨−N, e2⟩
⟨T, e2⟩)

⎞⎠,

⎛⎝ ⟨B, e3⟩
⟨−N, e3⟩
⟨T, e3⟩

⎞⎠,

⎛⎝ ⟨B × γ, e1⟩
⟨−N × γ, e1⟩
⟨T × γ, e1⟩

⎞⎠,

⎛⎝ ⟨B × γ, e2⟩
⟨−N × γ, e2⟩
⟨T × γ, e2⟩

⎞⎠,

⎛⎝ ⟨B × γ, e3⟩
⟨−N × γ, e3⟩
⟨T × γ, e3⟩

⎞⎠.

The functions are linear independent unless there exists a,b ∈ R3 such that

a+ γ × b = 0.

Thus, the normal space has constant rank away from plane curves. By the infinite dimensional
version of the implicit function theorem we could say that M without plane curves defines a
manifold.

Let us shortly discuss the space of plane curves with prescribed end points and prescribed frames
at the end points. A plane curve γ could be seen as a space curve with κ2 = τ = 0. Therefore
we can apply the results which we derived for space curves. Let κ ∈ M be the curvature function
of γ. Then the tangent and normal spaces are

TκM =

{
κ̇
⏐⏐⏐ ∫ L

0

κ̇ = 0,

∫ L

0

κ̇γ = 0

}
and

NκM = span(1, γ1, γ2).

Obviously the three functions (1, γ1, γ2) are linear independent unless the curve γ is a straight
line. Consequently the space of all closed regular curves is a manifold. To motivate the following
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section and to appreciate our approach we discuss the well studied elastic curves. The elastic
energy of a plane curve is defined by

E(γ) =
1

2

∫ L

0

k2ds.

Elastic curves are critical points of E under all variations with fixed end points, fixed frames at
the end points and fixed length. So instead of minimizing the elastic energy of γ we could look
at

Ê(κ) :=
1

2

∫ L

0

k2ds,(9.4)

where κ is the curvature function of γ. We are now looking for a critical points κ of Ê under all
variations in M. Obviously

grad Ê(κ) = κ

and κ is a critical point of Ê if and only if grad Ê(κ) ∈ NκM. So let a ∈ R and b = (b1, b2) ∈ R2

with

κ = grad Ê(κ) = a+ b1γ1 + b2γ2 = a+ ⟨b, γ⟩.

This shows that κ is proportional to distance of γ to the axis ib. This is a well known character-
ization for elastic curves.

10 Noether Theorem on space curves

In this section we want to generalize the idea behind the example (9.4). We consider a geometric
functional, i.e.

F : M → R, F(κ1, κ2, τ) =

∫ L

0

L(κ1(s), κ2(s), τ(s))ds,

such that for each smooth variation

⎛⎝κ1,tκ2,t
τt

⎞⎠ ∈ M of

⎛⎝κ1κ2
τ

⎞⎠ ∈ M

d

dt t=0
F ◦

⎛⎝κ1,tκ2,t
τt

⎞⎠
exists.

gradF =

⎛⎝∂κ1F

∂κ2
F

∂τF

⎞⎠
is defined by

d

dt t=0
F ◦

⎛⎝κ1,tκ2,t
τt

⎞⎠ =: ⟨gradF(κ1, κ2, τ),

⎛⎝κ̇1κ̇2
τ̇

⎞⎠⟩L2

=

∫ L

0

⟨

⎛⎝∂κ1
F

∂κ2
F

∂τF

⎞⎠ ,

⎛⎝κ̇1κ̇2
τ̇

⎞⎠⟩ds.

⎛⎝κ1κ2
τ

⎞⎠ ∈ M is a critical point of F if and only if

gradF(κ1, κ2, τ) ∈ N(κ1,κ2,τ)M.
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Let

⎛⎝κ1κ2
τ

⎞⎠ ∈ M be a critical point of F. From

γ × b = ⟨γ × b, T ⟩T + ⟨γ × b, N⟩N + ⟨γ × b, B⟩B

we obtain

γ × b+ a = (∂τF)T − (∂κ2F)N + (∂κ1F)B.

The essential information is in b, so taking the derivative yields

T × b = ((−∂κ2
F)′ + κ1(∂τF)− τ(∂κ1

F))N + ((∂κ1
F)′ + κ2(∂τF)− τ(∂κ2

F))B

Now one can easily compute

⟨b, N⟩ = (∂κ1
F)′ + κ2(∂τF)− τ(∂κ2

F),

⟨b, B⟩ = ((∂κ2
F)′ − κ1(∂τF) + τ∂κ1

F)

and

(∂τF)
′ = κ2∂κ1

F − κ1∂κ2
F.(10.1)

The trick now, is to see that

⟨b, T ⟩ = ⟨gradF(κ1, κ2, τ), (

⎛⎝κ1κ2
τ

⎞⎠)⟩ − L(κ1, κ2, τ) + µ,

for some constant µ ∈ R. Indeed,

⟨b, T ⟩′

= κ1⟨b, N⟩+ κ2⟨b, B⟩
= κ1(∂κ1

F)′ + κ2(∂κ2
F)′ + τ(κ2∂κ1

F − κ1∂κ2
F)

= κ1(∂κ1F)
′ + κ2(∂κ2F)

′ + τ(∂τF)
′

= (⟨gradF(κ1, κ2, τ), (

⎛⎝κ1κ2
τ

⎞⎠)⟩ − L(κ1, κ2, τ))
′.

Summarizing: For critical points of F we obtain two constant vectors a and b. We expressed a
and b in terms of the framed curve F . Of course, one could define a and b, not only for critical
points of F, but in that case a and b need not to be constant anymore. So the question which
arises: Is the constants of a and b a characterization of critical points of F? First, we figure out
the relationship between b and a.
Lemma 12. Let

b := (⟨gradF(κ1, κ2, τ), (

⎛⎝κ1κ2
τ

⎞⎠)⟩ − L(κ1, κ2, τ) + µ)T

+ (∂κ1
F)′ + κ2(∂τF)− τ(∂κ2

F)N

+ ((∂κ2
F)′ − κ1(∂τF) + τ∂κ1

F)B

and

a := (∂τF)T − (∂κ2F)N + (∂κ1F)B − γ × b.

If b is a constant vector then a is a constant vector as well.

Proof. By the definition of b and a we obtain

a′ = ((∂τF)
′ − κ2∂κ1

F + κ1∂κ2
F)T = 0.

For the last equality we used (10.1). This shows that a is constant. □
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Theorem 27. (κ1, κ2, τ) is a critical points of F if and only if

b = (⟨gradF(κ1, κ2, τ), (

⎛⎝κ1κ2
τ

⎞⎠)⟩ − L(κ1, κ2, τ) + µ)T

+ (∂κ1F)
′ + κ2(∂τF)− τ(∂κ2F)N

+ ((∂κ2
F)′ − κ1(∂τF) + τ∂κ1

F)B

is constant.

Proof. If (κ1, κ2, τ) is a critical points of F then we already know that b is conserved. If b is
constant, then a is constant as well and we obtain

T × b = ((−∂κ2
F)′ + κ1(∂τF)− τ(∂κ1

F))N + ((∂κ1
F)′ + κ2(∂τF)− τ(∂κ2

F))B,

and

γ × b+ a = (∂τF)T − (∂κ2F)N + (∂κ1F)B,

or

gradF(κ1, κ2, τ) =

⎛⎝ ⟨a, B⟩
−⟨a, N⟩
⟨a, T ⟩

⎞⎠+

⎛⎝ ⟨γ × b, B⟩
−⟨γ × b, N⟩
⟨γ × b, T ⟩

⎞⎠ ,

which shows that (κ1, κ2, τ) is a critical points of F. □

An interesting application are Elastic strips [4].

F :=

∫ L

0

κ2(1 + λ2)2ds, λ =
τ

κ
.

With our new approach one can easily verify
Theorem 28. A strip is elastic if and only if the force vector

b :=

1

2
(κ2(1 + λ2)2 + µ)T

+ (κ′(1 + λ2)2 + 2κ(1 + λ2)λ′λ)N

− (κ2(1 + λ2)2λ+ (
κ′

κ
)(1 + λ2)2λ)′ + ((1 + λ2)2λ))′′)B.

is constant. Further, the torque vector

a = 2κλ(1 + λ2)T +
1

κ
(2κλ(1 + λ2))′N + κ(1 + λ2)(1− λ2)B − b× γ.

is constant.





4 | Elastic deformation

1 The intrinsic distance-squared energy

In this chapter we introduce the intrinsic distance-squared energy on a Riemannian manifold M .
In contrary to most of the sources in the literature [2], [8] it seems to be the first intrinsically
defined energy. Ulrich Pinkall and Jonas Tervooren are writing a paper about elastic deformations
in the plane. We briefly summarize the main definitions and results.

Let M ⊂ Rn be a domain and ⟨ , ⟩ the induced metric on M . Let f : M → Rn be a smooth
orientation preserving immersion. The distance-squared energy is

E(f) :=
1

2

∫
M

dist(df, SO(n))2.

Here the distance dist(df, SO(n)) := min{∥ df −R ∥ |, R ∈ SO(n)} and ∥ A ∥2:= 1
n tr(AA∗) is the

euclidean norm on GL(n,R). Since f is an orientation preserving immersion there exists a unique
R ∈ SO(n) that minimizes ∥ df − R ∥. R is obtained from the polar decomposition df = RS
where S is positive definite self adjoint operator. We obtain

dist(df, SO(n)) =∥ S − I ∥

and therefore

E(f) =
1

2

∫
M

∥ S − I ∥2 .

For a 2 dimensional M the energy can be expressed by

E(f) =

∫
M

(|fz| − 1)2 + |fz̄|2,

where df = fzdz + fz̄dz̄ is the usual decomposition of df in its complex linear and complex anti
linear parts. They proved, that among all compactly supported variations, the critical points
(which are not melting points, i.e. |fz| = 1

2 ) are characterized by the following
Theorem 29. f is a critical point of E if one of the following equivalent conditions are satisfied.

(1) g := (2− 1
|fz| )fz is holomorphic function.

(2) The stress tensor σ := i((1− 1
|fz| )fzdz − fz̄dz̄) is closed.

Furthermore, for a critical point f the argument arg(fz) is harmonic.

Thinking of M ⊂ Rn as consisting of a perfectly elastic homogeneous and isotropic material E(f)
measures the amount of elastic energy to deform the domain M to the domain f(M). Both on
M and f(M) we put the induced metric ⟨ , ⟩ of Rn. Since df = RS, f induces a metric g = ⟨S, S⟩
on M and obviously

f : (M, g) → (f(M), ⟨ , ⟩)

is an isometry. So instead of measuring the elastic energy to deform M to f(M), we could
alternatively set f as the identity map and measure the energy to deform (M, ⟨ , ⟩) to (M, g).

41
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For f = I we obtain the polar decomposition I = RS, which leads to R = S−1 an orientation
preserving isometry in

G := Γ(Iso((TM, ⟨ , ⟩), (TM, g))) = S−1(O(TM, ⟨ , ⟩)).

This idea leads us to introduce the following
Definition 2.

E(S) :=
1

2

∫
M

dist(I,G)2(1.1)

is called the intrinsic distance-squared energy. Here the distance is dist(I,G) = min{∥ I −
S−1U ∥ℵ |U ∈ SO(TM, ⟨ , ⟩)}, where

∥ A ∥ℵ:=∥ SA ∥=
√

1

n
tr(AA∗S2).

The reason for introducing this matrix norm is that we require the distance to remain unchanged
under left and right multiplication by matrices S−1U ∈ G.
Theorem 30.

E(S) =
1

2

∫
M

∥ S − I ∥2 .

Proof. We have to show

dist(I,G) =∥ I − S−1 ∥ℵ=∥ S − I ∥ .

Let U ∈ SO(TM, ⟨ , ⟩). Then ∥ I−S−1U ∥ℵ=∥ S−U ∥. So it remains to show ∥ S−U ∥≥∥ S−I ∥.
First we show

tr(SU) ≤ tr(S).

Let X1...Xn be an orthonormal basis of eigenvectors of S. Since S is positive definite all eigen-
values λi are positive.

tr(SU) =
∑

⟨SUU−1Xi, U
−1Xi⟩

=
∑

λi⟨Xi, U
−1Xi⟩

≤
∑

λi

= tr(S).

Now

∥ S − U ∥2 =
1

n
(tr((S − U)(S − U∗))

=
1

n
(tr(S2 + I − SU∗ − US))

=
1

n
(tr(S2 + I)− 2tr(SU))

≥ 1

n
(tr(S2 + I)− 2tr(S))

=∥ S − I ∥2 .

□

2 Euler-Lagrange-equation

Let (M, ⟨ , ⟩,∇) be a n-dimensional Riemannian manifold and ∇ the corresponding Levi-Civita
connection. We are interested in the critical points of the functional

E(S) =
1

2

∫
M

∥ S − I ∥2 dV,
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among all positive definite and self adjoint operators S ∈ Γ(End(TM)) with tr(S) > 1. Let
S ∈ Γ(End(TM)) then g = ⟨S, S⟩ defines a Riemannian metric onM . Let ∇̃ be the corresponding
Levi Civita connection. Note that for any operator L ∈ Γ(End(TM)) the adjont with respect to
g is given by L∗̃ := S−2L∗S2.
Lemma 13. Let X ∈ Γ(TM) and S ∈ Γ(End(TM)) then ġ = LXg implies

S−1Ṡ + (S−1Ṡ)∗̃ = ∇̃X + (∇̃X)∗̃.

Proof.

LXg(Y,Z) = Xg(Y,Z)− g([X,Y ], Z)− g(Y, [X,Z])

= g(∇̃XY, Z) + g(Y, ∇̃XZ)− g(∇̃XY − ∇̃YX,Z)− g(Y, ∇̃XZ − ∇̃ZX)

= g(∇̃YX,Z) + g(Y, ∇̃ZX)

= g((∇̃X + (∇̃X)∗̃)Y,Z)

= ⟨S2(∇̃X + (∇̃X)∗̃)Y,Z⟩,

and

ġ(Y,Z) = ˙⟨SY, SZ⟩

= ⟨ṠY, SZ⟩+ ⟨SY, ṠZ⟩

= ⟨(SṠ + ṠS)Y,Z⟩.

We obtain SṠ + ṠS = S2(∇̃X + (∇̃X)∗̃) or S−1Ṡ + S−2ṠS = ∇̃X + (∇̃X)∗̃. Since (S−1Ṡ)∗̃ =

S−2ṠS we proved the claim. □

For any A,L ∈ Ω1(M,TM) the Hodge star is defined by

⟨∗A ∧ L⟩ = tr(AL∗) det .

We will now compute the Hodge star ∗̃ with respect to g
Lemma 14.

∗A = A ∗ I.
∗̃A = (detS)AS−2 ∗ I.

Proof. The first statement follows from

⟨A ∗ I ∧ L⟩ = ⟨∗I ∧A∗L⟩
= tr((A∗L)∗) det

= tr(L∗A) det

= tr(AL∗) det

= ⟨∗A ∧ L⟩.

The second statement follows from

⟨S2∗̃A ∧ L⟩ = g(∗̃A ∧ L)

= tr(AL∗̃)d̃et

= tr(AS−2L∗S2) detS det

= tr(S2AS−2L∗) detS det

= detS⟨∗S2AS−2 ∧ L⟩
= detS⟨S2AS−2 ∗ I ∧ L⟩.

□

We are now looking for critical points S of E among all compactly supported variations of S.
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Theorem 31. Critical points of E are characterized by

d∇̃ ∗ (I − S−1) = 0.

We will call

σ := ∗(I − S−1)(2.1)

the stress tensor.

Proof. Let Ṡ be a compactly supported variation of S. Thus there exist a X ∈ Γ(TM) with
compact support such that S−1Ṡ + (S−1Ṡ)∗̃ = ∇̃X + (∇̃X)∗̃.

Ė : =

∫
M

⟨S − I, Ṡ⟩dV

=

∫
M

tr((S − I)Ṡ)dV

=

∫
M

tr(S(S − I)ṠS−1)dV

=

∫
M

tr((S2 − S)ṠS−1)dV

=

∫
M

tr(ṠS−1(S2 − S))dV

=

∫
M

tr(S−1Ṡ(S2 − S))dV

=

∫
M

1

2
tr((S−1Ṡ + (S−1Ṡ)∗̃)(S2 − S))dV

=

∫
M

1

2
tr((∇̃X + (∇̃X)∗̃)(S2 − S))dV

=

∫
M

tr((∇̃X)(S2 − S))dV

=

∫
M

1

detS
tr((∇̃X)(S2 − S))dVg

=

∫
M

g(∇̃X, S
2 − S

detS
)dVg

=

∫
M

g(∗̃S
2 − S

detS
∧ ∇̃X)

=

∫
M

g(d∇̃∗̃S
2 − S

detS
,X).

Applying the previous lemma we obtain

∗̃(S
2 − S

detS
) = ∗(I − S−1),

and therefore

d∇̃ ∗ (I − S−1) = 0.

□

Lemma 15. For any A ∈ Ω1(M,TM) one obtains d∇̃ ∗A = ∇̂A ∧ ∗I.
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Proof. Let Y1, ..., Yn be a positively oriented orthonormal basis with respect to ⟨, ⟩ such that
∇YiYi = 0 and [Yi, Yj ] = 0.

d∇̃ ∗A(Y1, ..., Yn) =
n∑

j=1

(−1)j−1(−1)n−j∇̃YjAYj

= (−1)n−1
n∑

j=1

∇̃YjAYj

= (−1)n−1
n∑

j=1

∇̃Yj
Yj −A∇Yj

Yj

= (−1)n−1
n∑

j=1

(∇̂Yj
A)Yj

= (∇̂A ∧ ∗I)(Y1, ..., Yn).

□

Theorem 32. S is a critical point of E if and only if

(∇̂I +ΩS−1) ∧ ∗I = 0.

Proof. This follows from ∇̂(I − S−1) = ∇̂I − ∇̂S−1 = ∇̂I + ΩS−1 and the application of the
previous lemma. □

3 The two dimensional case

First we want to interpret the results of Pinkall and Tervooren and translate them to our theory.
For a 2 dimensional M ⊂ R2 Pinkall and Tervooren decomposed the differential of f : M → R2

df = fzdz + fz̄dz̄

in its complex linear and complex anti linear parts. In our case we have to decompose I : (TM, J) →
(TM, J̃) in its complex linear and and complex anti linear parts.

I = I+ + I−

=
1

2
(I − J̃J) +

1

2
(I + J̃J)

where J̃I+ = I+J and J̃I− = −I−J . Let S = 1
2 tr(S)I +Q with JQ = −QJ then one can easily

check

I+ =
1

2
tr(S)S−1

and

I− = S−1Q.

With f = I we obtain I = fzdz + fz̄dz̄ = 1
2 tr(S)S−1 + S−1Q and therefore the stress tensor

found by Pinkall and Tervooren translates to

σ = i((1− 1

|fz|
)fzdz − fz̄dz̄)(3.1)

= J̃((1− 2

tr(S)
)
1

2
tr(S)S−1 − S−1Q)(3.2)

= J̃S−1((
1

2
tr(S)− 1)I −Q)(3.3)

= J̃S−1((tr(S)− 1)I − S)(3.4)

= (tr(S)− 1)J̃S−1 − J̃.(3.5)
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We now establish the necessary theory to prove the intrinsic counterpart of (29). Let M be a
Riemann surface. Any A ∈ Ω1(M,TM) can be decomposed

∇̂A = ∂A+ ∂̄A,

with

(∂XA)Y =
1

2
((∇̂XA)Y − J̃(∇̂JXA)Y ),

(∂̄XA)Y =
1

2
((∇̂XA)Y + J̃(∇̂JXA)Y ).

A ∈ Γ(End((TM, J), (TM, J̃))) is holomorhic if it is complex linear, i.e. J̃A = AJ , and

∂̄A = 0.

Let A be complex linear, then for any X ∈ Γ(TM)

(∇̂XA)JY = ∇̃XAJY −A∇XJY

= J̃∇̃XAY − J̃A∇XY

= J̃(∇̂XA)Y.

Therefore ∇̂XA is complex linear.
Lemma 16. Let A ∈ Ω1(M,TM) be complex linear, then

d∇̃ ∗A(X, JX) = −2(∂̄XA)X,

d∇̃A(X, JX) = 2J̃(∂̄XA)X.

In particular, a complex linear A is holomorhic if and only if A is closed and co-closed.

Proof.

d∇̃ ∗A(X, JX) = ∇̂A ∧ J(X, JX)

= −(∇̂XA)X − (∇̂JXA)JX

= −(∇̂XA)X + J̃(∇̂JXA)X)

= −2(∂̄XA)X.

Furthermore,

d∇̃A(X, JX) = −d∇̃ ∗ ∗A(X, JX)

= −∇̂ ∗A ∧ J(X, JX)

= −J̃∇̂A ∧ J(X, JX)

= 2J̃(∂̄XA)X.

□

Lemma 17. Let A = euR for a R ∈ Γ(Iso((TM, J), (TM, J̃))) with ∇̂R = ηJ̃R. If A is
holomorphic then is η is co-closed.

Proof.

0 =
1

2
(∇̂A+ J̃ ∗ ∇̂A)

= eu(duR+ ∇̂R+ J̃ ∗ (duR+ ∇̂R))

= eu(duR+ ηJ̃R+ ∗duJ̃R− ∗ηR)

= eu(du− ∗η)I + (∗du+ η)J̃)R.

Thus A is holomorphic if and only if du = ∗η and ∗du = −η. □

Using (0.10) we obtain
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Corollary 11. Let M ⊂ R2 and A = euS−1. Let ∇̂S−1 = −ηJ̃S−1 (0.6). If A is holomorphic
then η is harmonic.

The next lemma is most probably only true for a 2-dimensional M .
Lemma 18.

∗(I − S−1) = (tr(S)− 1) ∗ S−1 − ∗̃I.(3.6)

In particular, our stress tensor coincides with (3.5).

Proof. Applying the Cayley-Hamilton theorem we obtain S2 − tr(S)S + (detS)I = 0 or S =
(trS)I − (detS)S−1 = 0.

∗(I − S−1) = J − S−1J

= (S − I)S−1J

= (S − I)J̃S−1

= (tr(S)− 1)I − (detS)S−1)J̃S−1

= (tr(S)− 1)J̃S−1 − (detS)S−1J̃S−1

= (tr(S)− 1)J̃S−1 − J̃.

□

We have proven the intrinsic counterpart of (29).
Theorem 33. S is a critical point of E if one of the following equivalent conditions are satisfied:

(1) (tr(S)− 1)J̃S−1 is holomorphic.

(2) The stress tensor σ = (tr(S)− 1)J̃S−1 − J̃ is closed.

For critical points S of E, ∇̂S−1 = −ηJ̃S−1, implies η to be co-closed. In particular, if M is
embedded in R2, then η is harmonic.

Finally we want to interpret the co-closedness of η. Let us now look at the Dirichlet energy for
R ∈ Γ(Iso((TM, ⟨ , ⟩), (TM, g)))

D(R) :=
1

2

∫
M

∗η ∧ η,

where η is defined through ∇̂R = ηJ̃R.
Theorem 34. R is a critical point of D if and only if d ∗ η = 0.

Proof. Let Rt ∈ Γ(Iso((TM, J), (TM, J̃))) a variation of R and ηt ∈ Ω1(M) such that ∇̂Rt =

ηtJ̃Rt and let Ṙ = fJ̃R for compactly supported function f .

∇̂Ṙ = η̇J̃R+ ηJ̃Ṙ

= η̇J̃R− fηR.

Further, ∇̂(fJ̃R) = dfJ̃R− fηR and therefore η̇ = df .

Ḋ =

∫
M

∗η ∧ η̇

=

∫
M

∗η ∧ df

=

∫
M

−d(∗ηf) + fd(∗̃η)

=

∫
M

fd(∗η).
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□
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