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Abstract

This dissertation is concerned with the derivation and implementation of discrete trans-

parent boundary conditions for systems of evolution equations. Transparent boundary con-

ditions (TBCs) are a special kind of artificial boundary conditions, that are constructed in

such a way, that the solution on a bounded domain with TBCs is equal to the solution of

the whole-space problem restricted to the bounded (computational) domain. The partial

differential equations are discretised by finite differences (θ-scheme) and discrete transpar-

ent boundary conditions (DTBCs) are constructed for the discrete equation. Therefore,

the DTBCs are well adapted to the numerical scheme. For scalar equations these DTBCs

are well established. Compared to discretising the analytical TBC, in the scalar case it is

known that these DTBCs have the advantage, not to destroy the stability properties of the

underlying discrete scheme and to avoid any numerical reflections. In this dissertation we

will deal with systems of partial differential equations (parabolic and Schrödinger type).

For these systems the approach of DTBCs is completely new and involves additional prob-

lems not encountered in the scalar case. Since the numerical computation of these DTBCs

is very costly, we give an approximation which greatly reduces the effort.

After a concise construction of the TBCs and DTBCs for the weakly coupled system

of parabolic equations arising from the mathematical description of fluid stochastic Petri

nets, we proceed to extend the results to a system of general parabolic equations. Finally

we will consider DTBCs for a system of Schrödinger-type equations, which arise e.g. in

the physics of layered semiconductor devices as the so called k · p-Schrödinger equation of

quantum mechanics.

For both kinds of systems we will give numerical examples, which show the very small

error caused by the DTBC.
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Zusammenfassung

Die vorliegende Doktorarbeit befasst sich mit der Herleitung und Implementierung von

diskreten transparenten Randbedingungen für Systeme von Evolutionsgleichungen. Trans-

parente Randbedingungen (TRBen) sind spezielle künstliche Randbedingungen, durch die die

Lösung der Gleichung auf beschränktem und mit TRBen versehenem Gebiet mit der exak-

ten Lösung des Ganzraumproblems (auf diesem beschränkten Gebiet) übereinstimmt. Die

Differentialgleichungen werden durch ein Finite-Differenzen-Verfahren (θ-Schema) diskre-

tisiert. Für die entstandene diskrete Gleichung werden diskrete transparente Randbedin-

gungen (DTRBen) hergeleitet, wodurch die DTRBen besonders gut an das numerische Ver-

fahren angepasst sind. Für skalare Gleichungen sind diese DTRBen bereits länger bekannt

und man weiß, dass im Gegensatz zur ad-hoc Diskretisierung der analytischen TRBen

Stabilitätsprobleme und künstliche Reflektionen am Rand vermieden werden können. Wir

werden uns hier mit Systemen von Differentialgleichungen (parabolisch und Schrödinger

Typ) befassen. Für diese Systeme ist der Ansatz der DTRBen gänzlich neu und wirft

zusätzliche Probleme auf, die für skalare Gleichungen nicht auftreten.

Nachdem wir uns eingehend mit den TRBen und DTRBen für schwach gekoppelte

Systeme von parabolischen Differentialgleichungen beschäftigt haben, die das Verhalten

von fluiden stochastischen Petri-Netzen beschreiben, verallgemeinern wir unser Vorgehen

auf ein beliebiges lineares parabolisches System. Im Anschluss daran betrachten wir ein

System von Schrödinger-Gleichungen, wie es z.B. in der Halbleiterphysik als sogenannte

k · p-Schrödinger Gleichung der Quantenmechanik auftritt.

Die angeführten numerischen Beispiele zeigen, dass sowohl für parabolische als auch

für Systeme von Schrödinger Gleichungen die DTRBen nur sehr kleine Fehler verursachen.
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Introduction

Applied mathematics often describe physical problems by partial differential equations

(PDEs), which frequently are posed on unbounded domains. But for numerical calculations

a finite domain is necessary. Therefore, the computational domain can be restricted by

introducing artificial boundary conditions or absorbing layers. Alternative approaches are

boundary element methods (BEM) (cf. [Kyt95]) or infinite element methods (IEM) (see

e.g. [HBSS98]).

In this dissertation we will be concerned with some special kind of artificial boundary

conditions, the so called transparent boundary conditions (TBCs): if the initial data of the

problem is supported on a finite domain Ω and the boundary conditions are constructed

such, that the exact solution of the whole-space problem (restricted to Ω) is approximated,

while the thus constructed initial boundary value problem (IBVP) is well-posed, then such

BCs are called absorbing boundary conditions. Furthermore, if the approximated solution

is equal to the exact solution, these BCs are called transparent boundary conditions.

The common way in numerics is to derive an analytic TBC, which is (often after an

approximation) discretised to be used with an interior finite difference discretisation of

the PDE. But this strategy proved not to be optimal: it can evoke stability problems

and suffers from reduced accuracy (compared to the discretised whole-space problem) (cf.

e.g. [May89]). At the boundary numerical reflections can be observed, particularly with a

coarse grid. A discrete approach overcomes these problems by changing the order of the two

steps of the usual strategy, i.e. first considering the discretisation of the PDE on the whole-

space and then deriving the TBC for the difference scheme directly on a purely discrete

level. The discrete approach completely avoids any numerical reflections at the boundary:

no additional discretisation errors due to the boundary conditions occur. Moreover, the

discrete TBC is already adapted to the inner scheme and therefore the numerical stability

is often better–behaved than for a discretised differential TBC.

In the literature the discrete approach did not gain much attention for a long time.

The first discrete derivation of artificial boundary conditions was presented in [EM79,

1



2 Introduction

Section 5]. This discrete approach was also used in [RC00], [Wag85], [Wil82] for linear

hyperbolic systems and in [Hal82] for the wave equation in one dimension, including error

estimates for the reflected part. In [Wag85] a discrete (nonlocal) solution operator for

general difference schemes (strictly hyperbolic systems, with constant coefficients in 1D)

is constructed. Lill generalised in [Lil92] the approach of Engquist and Majda [EM79]

to boundary conditions for a convection–diffusion equation and drops the standard as-

sumption that the initial data is compactly supported inside the computational domain.

However, the derived Z–transformed boundary conditions were approximated in order

to get local–in–time artificial boundary conditions after the inverse Z–transformation. In

[Ehr01] discrete transparent boundary conditions (DTBCs) for a Crank–Nicolson finite dif-

ference discretisation of general Schrödinger–type pseudo–differential evolution equations

in 1D were constructed such that the overall scheme is unconditionally stable and as ac-

curate as the discretised whole–space problem. The resulting DTBC is a generalisation

of the DTBC for the Schrödinger equation in [Arn98]. The same strategy applies to the

θ–scheme for scalar convection–diffusion equations [Ehr97] and was also used in [JSSB93]

for the wave equation in the frequency domain.

For scalar equations research results are already advanced (cf. [EA01]) and DTBCs give

outstanding results. Here, we are concerned with the construction and analysis of DTBCs

for a system of coupled partial differential equations (parabolic or Schrödinger–type) in

one spatial dimension. Such vector-valued parabolic equations arise for example at the

analysis of second order fluid stochastic Petri nets [Wol99] to investigate performance and

reliability of models for e.g. software systems [WZ01], linearised Navier-Stokes equations

[Hag94, Lil92], mathematical biology [WP98]. Linear systems of Schrödinger–type are

used in band structure calculations for layered semiconductor devices [BKKR00] and arise

in so-called ”parabolic systems” in electromagnetic wave propagation [Lev00].

To the author’s knowledge the only work concerned with TBCs for systems of parabolic

(or Schrödinger type) equations is by Hagstrom in [Hag94], which deals with a special 2×2

model problem. In general, the derivation and analysis of TBCs in the case of a coupled

system is much more complicated than in the scalar case, i.e. in the scalar case it is possible

to give an explicit analytic formula for the inverse Z–transformed boundary equation. Due

to the coupling this cannot be done in general for systems. Even for the simple 2×2 model

problem Hagstrom uses early approximations to overcome this problem. Nevertheless, in
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the application to Petri nets it is possible to prove some properties of the Z–transformed

boundary condition due to the special structure of the coupling term.

This dissertation is organised as follows. In Chap. 1 we will start with a brief introduc-

tion to Petri nets and stochastic processes and define fluid stochastic Petri nets (FSPNs),

that can be described by a system of S parabolic equations. By means of these FSPNs we

will explain two different approaches to derive DTBCs for a finite difference discretisation

of a system of partial differential equations. Both approaches are based on the explicit

solvability of the Z–transformed difference equation. The first approach will use the stan-

dard power ansatz, the other reduces the problem to a system of first order difference

equations. Both approaches give a different formulation of the boundary condition. In the

first case only S unknowns (series of convolution coefficients) have to be computed, but the

BC is constructed on S points at the boundary. The second approach needs to compute

S × S unknowns, but the BC is located - as usually - at the boundary point and its next

neighbour. We will be concerned with the relation between the two approaches. After

an investigation of these convolution coefficients and their numerical computation we will

give numerical examples for the constructed DTBCs. To conclude this chapter we show

for which coefficients of a general parabolic system the TBC can be formulated. Discrete

approximations of TBCs for parabolic systems can be found e.g. in [Hag94] and [WP98].

Since the second order differential equation arising from FSPNs was the origin for this

work, this chapter is rather detailed. Here we will also examine the numerical error of the

numerical inverse Z-transformation.

In Chap. 2 we consider a system of Schrödinger-type equations in one space dimension.

This arises e.g. in the physics of layered semiconductor devices as the so called k · p-
Schrödinger equation of quantum mechanics. For the considered system, which is described

by a self-adjoint operator, we will construct DTBCs analogously to the parabolic case.

Due to historical reasons, the most detailed part of this work is concerned with TBCs

for the system of parabolic equations, which describes a fluid stochastic Petri net. The

generalisation to other systems of parabolic equations and the extension to systems of

Schrödinger type equations, is held rather short.



4 Introduction

Notation

Throughout this work we will use bold characters for vectors and matrices, where

capitals are reserved for matrices. Scalars are always represented by ordinary (non-bold)

letters.

We will deviate from this convention in one case: at the opening of chapter 2 we will

use the notation of the physicists, which contains also small letters for matrices.



CHAPTER 1

Parabolic systems

In this chapter we will explain the concept of TBCs for systems of parabolic equations

with the special structure, that describes a fluid stochastic Petri net (FSPN). These systems

are weakly coupled, i.e. the coupling is restricted to the lowest order term of the differential

equation. Stochastic Petri nets are a device to model and analyse the dynamical behaviour

of complex technical systems. We will first give a description of stochastic Petri nets in

general and derive the system of differential equations, that represents a FSPN. Then

we will formulate and investigate the TBC, give numerical examples and at last give a

generalisation to other parabolic systems.

1. Petri nets and stochastic processes

This section is designed for readers that have no previous knowledge of Petri nets and

gives a brief introduction to Petri net theory. For a concise overview of stochastic Petri

nets (SPN) refer to [Ajm90] and [ABC+95].

We will explain the principle of a Petri net. Its dynamical behaviour can be described

by a reduced reachability graph, which is isomorphic to a Markov process. Now, it is

possible to give a differential equation, that describes the Markov process and thus the

time depending behaviour of the Petri net. The basic structure of stochastic Petri nets

was first used 1962 by C. A. Petri in [Pet62] and consists mainly of places and transitions,

which frame the main nodes of a bipartite directed graph. Places are drawn as circles,

transitions as rectangles and are connected by arrows. We call such an arrow input arc or

output arc depending if it goes into or out of a transition. Whereas places usually model

storage - e.g. computer memory or ware -, transitions represent its handling. Points in a

circle indicate the contents of the place and are called tokens. The actual amount of tokens

in every place is called marking. If each input place to a transition holds at least a certain

number of tokens, which is defined by the multiplicity of the corresponding input arc, the

transition is enabled and can fire. If an enabled transition fires, tokens can move along the

arcs. Thus the system’s dynamic is imitated.

5



6 1. Parabolic systems

Other arcs, called inhibitor arcs, are able to prevent the firing of transitions, if they go

out of a suitably marked place.

In order to give capability, reliability or other quantitative results, these Petri nets have

to be furnished with a time dependency. These stochastic Petri nets may consist of timed

and immediate transitions. Immediate transitions fire prior to timed transitions. Among

the set of timed transitions the priority is arranged by weights, that define the probability,

that an enabled transition will fire. It is possible to consider deterministic, exponential or

general firing times.

To illustrate stochastic Petri nets, we consider the M/M/1/K queueing system: namely

a system with a single-server and a system storage (or queueing) capacity of K, where inter-

arrival times of clients and service times are distributed exponentially. Fig. 1.1 shows an

initial marking without clients in the system. The mark K in place P3 indicates free

capacity to serve K customers.

P1 P2

K

P3

t1 t2

t3

t4

Figure 1.1: Petri net of a M/M/1/K queue

Transition t1 models the arrival process. With exponentially distributed firing time it

gives entrance to new clients. A new client coming to place P1 is immediately transfered

to the waiting place P2, if a mark in P3, i.e. free waiting space is available. If there is

no mark in P3 and all waiting space is occupied, the inhibitor arc is inactive and by the

firing of transition t3 the customer is lost to the system. A client in place P2 waits for an

exponentially distributed time until he is served by the firing of t4. Thus the mark is put

back into P3 and a new waiting unit is free for another client.
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A reachability graph is a directed graph, that pictures the succession of all markings,

that can be reached ensuing from the initial marking. Each vertex of the graph is a

reachable marking or a tuple (#P1,#P2,. . .), that gives the number of marks in every

place. An edge indicates the transition into a new state and is provided with the firing

transition’s name. Fig. 1.2 shows the reachability graph of the M/M/1/K queue for K = 2.

0, 0, 2 0, 1, 1 0, 2, 0

1, 0, 2 1, 1, 1 1, 2, 0

t4

t1

t4

t2 t1 t2 t1
t3

Figure 1.2: Reachability graph of M/M/1/2 queue

We distinguish between vanishing states, in which an immediate transition is enabled

and thus no time is spend, and tangible states, in which only timed transitions are enabled

and some time is spend. If we eliminate all vanishing states from the reachability graph,

we obtain the reduced reachability graph, which is given in Fig. 1.3 for the case of the

M/M/1/2 queue. The transition rate of a tangible state to another is given by the rate of

the exponential distribution of the firing transition. Eliminating a vanishing state yields

a new transition rate, that is the product of the rate of the exponential distribution with

the probability that the immediate transition will fire.

0, 0, 2 0, 1, 1 0, 2, 0

t1, t2t1, t2

t4 t4

Figure 1.3: Reduced reachability graph of the M/M/1/2 queue

The reduced reachability graph describes graphically a stochastic process. The stochas-

tic process underlying a Petri net is a Markov process. The tangible markings frame the

states of a continuous-time Markov-chain with the state space {1, 2, . . . , S}. We collect the

state probabilities in a vector π(t) = (π1(t), . . . , πS(t))T ∈ � S with πi(t) = P [N(t) = i]

if N(t) is a random variable, which satisfies the Markov property. For i, j ∈ {1, 2, . . . , S}
we define the transition rates from one state to another, i.e. the rates of the exponentially
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distributed firing times of the timed transitions as

(1.1.1) qij =





rate from i to j if i 6= j

−
S∑

j=1
j 6=i

qij if i = j
.

The arising matrix Q = (qij) is called generator matrix and has the typical property, that

each of its row sums equals zero:

(1.1.2)

S∑

j=1

qij = 0 ∀i = 1, . . . , S.

If π0 is the initial marking, the Chapman-Kolmogorov equation [Fel68] yields a system of

ordinary differential equations

(1.1.3)
d

dt
π(t)T = π(t)T · Q, t > 0

with the initial condition π(0) = π0. The transient solution can be given in closed form

by

(1.1.4) π(t)T = πT
0 · eQt.

For t → ∞ (1.1.3) yields the steady state equation or equilibrium distribution. Together

with the ”normalisation property”

(1.1.5) 0 = πT · Q,
S∑

i=1

πi = 1

it has a unique solution, if the process obeys certain requirements [CM65]. Solving the

system of equations yields a stationary solution, which is in many applications the aspect

of the process of most interest [CM65].

2. Fluid Petri nets

Stochastic Petri nets are well suited for model-based performance and dependability

evaluation of computer and communication systems. Due to the ever increasing complexity

of the systems, the size of the state space explodes. In the last years fluid stochastic

Petri nets have gained attention to approximate these extremely large state spaces or

to model continuous quantities (cf. [TK93],[HKNT98],[CNT97],[GSB99],[BGG+99]).

These extensions to SPNs have clearly divided discrete and continuous sub-models, that



2. Fluid Petri nets 9

can effect each other, but no probabilistic variation of the fluid flow is possible, because

the fluid flow is modelled as a first order process.

Here we will give a formalism to describe fluid stochastic Petri nets (FSPN) of second

order as defined in [Wol99], which we will simply call FSPNs. They have been used to

analyse the reliability and performance in different models [WZ01],[WZH02] and are

based on the previous described general stochastic Petri nets (GSPNs). An example will

illustrate the new class of petri nets. We will describe parameters and give the underlying

differential equations.

In addition to discrete places of SPNs, a FSPNs may contain places, that hold fluid.

Thus, the state space of FSPNs consists of a discrete and a continuous part, that can affect

each other.

Definition 1.1 (Second order fluid stochastic Petri net (FSPN)). A FSPN is a 12-

tuple

FSPN = (Pd,Pc, T , Id, Ic,Od,Oc,H,m0, g, λ, r, w)

where

• Pd is a set of discrete places, that can hold a discrete number of tokens. A marking

is defined by the number of tokens in each place p ∈ IN|P|. The number of tokens

in a place is denoted as #(P ).

• Pc = {P1,c, . . . , Pm,c} is a set of m fluid places that can hold a continuous amount

of fluid rather than discrete tokens and that are graphically represented by two

concentric circles. Its initial value is written as a real number in the middle of the

circles. For the content of a fluid place the variables xi, i = 1, . . . , m are used.

All fluid places may have a restricted capacity, that is denoted by the interval

[xmin
i , xmax

i ]. Otherwise the fluid is defined on [xmin
i ,∞). Often, xmin

i = 0 will

be the lower boundary for it is the natural restriction. Therefore, if only one

boundary is defined, it is assumed to be the upper bound and the lower bound is

set to zero.

The complete marking now is defined as composed of two parts, the discrete

and the continuous state and is given by m = (s,x) where s = (#pi, i ∈ Pd) and

x = (xk, k ∈ Pc). The initial marking is m0 = (s0,x0).



10 1. Parabolic systems

• T = {t1, . . . , t|T |} = TE∪TG∪TI is a set of transitions, that can be either immediate

(TI) or timed with exponentially distributed firing times (TE) or with arbitrary

firing time distribution (TG). The later transitions are drawn as grey rectangles.

• Id ⊆ Pd × (TE ∪ TI) is the set of all discrete input arcs from a discrete place to a

transition.

• Ic ⊆ Pc × (TE ∪TG) is the set of all fluid input arcs leading from a fluid place to a

timed transition. They are drawn like pipes. Fluid flows along the arc as long as

the fluid place is not empty and the transition is enabled by all its discrete input

places, or by a guard (see below), that can also depend on the continuous state.

If the arc is not labelled with a flow rate function it has to be computed from

the firing rates of the transition (see page 11). If the transition is only connected

to fluid places and its firing has no effect on the discrete state of the model, the

firing time can have any probability distribution. These are the transitions t ∈ TG.

• Od ⊆ (TE ∪ TI) × Pd is the set of all discrete output arcs from a transition to a

discrete place.

• Oc ⊆ (TE ∪ TG)×Pc is the set of all fluid output arcs analogous to the fluid input

arcs.

• H ⊆ Pd × T is the set of all inhibitor arcs from a discrete place to a transition.

• m0 = (s0,x0) is the initial marking consisting of a discrete part and a vector of

initial fluid levels in all fluid places. The set of all markings that are reachable

from the initial marking is called the reachability set

M = {m|m0
∗→ m} = S × X = S × (

m〉〈
i=1

[xmin
i , xmax

i ]) ⊆ IN|P| × IRm,

where
〉〈

means the cross product of the intervals.

• gτ : IN|P|×X → IB is the guard of transition t that can be a function of the discrete

and the continuous state. A transition is enabled only, if the guard function

evaluates to true. A guard is a short form for a sub-model, that not necessarily

has to exist for every model.

• λτ : IN|P| × X → IR ∪ {∞} is a function of both the continuous and the discrete

marking. It is the rate of the exponential distribution of the firing time of transi-

tion t. Immediate transitions have rate infinity λτ (s) = ∞ and their firing time is

zero.
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• rt,p, rp,t : IN|P| × [xmin
p , xmax

p ] → IR2, are the flow rate functions associated with

the fluid input and output arcs that assign a cardinality in form of a normal

distribution to each fluid arc in every marking. A transition is enabled only by

the discrete marking and a guard, that can depend on the continuous state as

well. Fluid flows along an arc as long as the transitions in its origin is enabled.

To preserve the flow rates’ independence they can only depend on the fluid level

of the fluid place the arc is connected to.

• wτ : IN|P| → IR is the weight function of an immediate transition that is enabled

in a vanishing marking. The firing probability of each immediate transition t is:

wτ(s)∑
t enabled in s

wt(s)
.

�

With this definition we introduced the elements of a FSPN. We will illustrate them by

the following example.

N

low

high

P3 down up

arrival1

serve

arrival2

t2

t3

t5

t6

t1

t4 t7

2

Figure 1.4: FSPN of a queueing system with failure and repair

Fig. 1.4 shows a queueing system, that represents the model of a node in a communi-

cation network. Its buffer is approximated by the fluid place P3. Transitions t3 and t4 fire

with different rates clients into the system. This imitates the existence of different peak

times. If there is a token in place down, the firing (with exponentially distributed firing

time) of transition t5 is prevented as would be the case if the server fails. The parame-

ters arrival1, arrival2 and serve are defined by the rates of the transitions t3, t4 and t5

respectively.

The state space of a FSPN consists of a discrete and a continuous part. Thus the

vertex of the reduced reachability graph consists not only of discrete numbers of tokens,

but contains real values for a fluid place. Thus, it is a tuple (#P1,d, . . . ,#P|P|,d, x1, . . . , xm).
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As an example we give in Fig. 1.5 the reduced reachability graph of the queueing system

of Fig. 1.4. We choose N = 2 to obtain a concise graph. The expressions up and down

give the partial markings #up = 1,#down = 0 and #up = 0,#down = 1 respectively. As

well high, high-low and low signify the two places in the left part of the petri net, which

currently share at least one of the two tokens, that were initially in place low.

high-low, up, z

high, up, z high, down, z

high-low, down, z

low, down, z

t1

t1 t1

t1t2

t2 t2

t2

t6

t6

t6

t7

t7

t7

low, up, z

Figure 1.5: Reduced reachability graph of the queueing system of Fig. 1.4 for N = 2

Transition t5 appears not in the reduced reachability graph, because it is not connected

to a discrete place. Its rate influences the fluid flow parameters.

The fluid parameters have to be specified for each discrete state i ∈ S and for every fluid

place. We first regard the continuous flow. The continuous flow for one fluid place k ∈ Pc

in a discrete state s ∈ S is specified by the fluid change rate function R : Pc × S → IR2,

that is a normal distribution, defined through its first two moments, R(k, s) = (µ, σ2).

There are two cases to be distinguished for the computation of the fluid change rate.

Either the rates along the single fluid arcs have been specified, then

(1.2.1) R(k, s) = (µk,s, σ
2
k,s) =




∑

(t,k)∈Oc

t∈T

µr(x) −
∑

(k,t)∈Ic

t∈T

µr(x),
∑

(t,k)∈Oc

(k,t)∈Ic

t∈T

σ2
r (x)




where (t, k) ∈ Oc are all the fluid arcs leading from a transition, that is enabled in state

s to the fluid place k and (k, t) ∈ Ic are the fluid arcs from a fluid place to a transition,

respectively. µr and σ2
r are expectation and variance of the rate specified for the arc.

If on the other hand no rate has been assigned to an arc in the FSPN, it is assumed,

that the fluid place is meant to replace a discrete place for approximation reasons and
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the firing rates of output and input transitions are used for the computations of the fluid

change rate function.

Let ti ∈ TE ∪ TG be the transitions with firing time distribution fi, connected to the

fluid place k by a fluid arc (ti, k) ∈ Oc and let t′i ∈ TE ∪ TG be the transitions with firing

time distribution gi, connected to the fluid place k by a fluid arc (k, ti) ∈ Ic and let all be

enabled in state s ∈ S. The distributions fi and gi are assumed to have an expectation µfi

and µgi
and a variance σ2

fi
and σ2

gi
. The squared coefficient of variation (scv) is defined as

cfi
=

σ2
fi

(µfi
)2

, and cgi
analogously. Then, R(k, s) is computed as:

R(k, s) = (µk,s, σ
2
k,s) with

(1.2.2) µk,s =
∑

i

1

µfi

−
∑

i

1

µgi

and σ2
k,s =

∑

i

cfi

µfi

+
∑

i

cgi

µgi

.

If fi and gi are exponential distributions with parameter λi and µi, respectively, the scv

evaluates to c = 1 and the parameters µk,s and σ2
k,s reduce to

(1.2.3) µk,s =
∑

i

1

λi
−
∑

i

1

µi
and σ2

k,s =
∑

i

1

λi
+
∑

i

1

µi
.

With (1.2.2) the fluid flow parameters for one discrete state are specified. For all states

in the model and for each fluid place they are collected into diagonal matrices for the

expectation

(1.2.4) Mk(x) = diag
(
µk,1(x) . . . , µk,|S|(x)

)

and for the variance

(1.2.5) ΣΣΣ2
k(x) = diag

(
σ2

k,1(x), . . . , σ
2
k,|S|(x)

)
.
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For Example 1.4 with N = 2 we get the following fluid parameters, if we enumerate

the tangible states in Fig. 1.5 from left to right.

M =diag




arrival1 − serve

arrival1

arrival1 + arrival2 − serve

arrival1 + arrival2

arrival2 − serve

arrival2




= diag




−1.2

0.4

0.0

1.6

−0.4

1.2




(1.2.6)

Σ2 =diag




arrival1 + serve

arrival1

arrival1 + arrival2 + serve

arrival1 + arrival2

arrival2 + serve

arrival2




= diag




2.0

0.4

3.2

1.6

2.8

1.2




,(1.2.7)

if we choose arrival1 = 0.4, arrival2 = 1.2 and serve = 1.6.

To derive the differential equation, that describes the time dependent behaviour of a

FSPN with one fluid place, we will introduce some concepts of the underlying stochastic

processes. A fluid place can be deemed itself a queueing system, therefore we will use the

corresponding terminology.

The important processes in a queueing system are the arrival and service processes.

They are defined as follows

A(t) = Number of arrivals until time t

D(t) = Number of departures until time t
(1.2.8)

Their difference gives the number of customers N(t) in the system at time t.

(1.2.9) N(t) = A(t) −D(t),

for t = 0 it is N(0) = 0. The random variable N(t) is the length of the queue. For the

time dependent change in the number of customers holds in the interval [t, t+ 4t]

(1.2.10) N(t + 4t) −N(t) = A(t+ 4t) − A(t) − {D(t+ 4t) −D(t)} .

If the customers arrive at discrete arrival times 0 < ta1 < ta2 < . . . and leave the system at

the service times 0 < td1 < td2 < . . ., then the inter-arrival times an = tan − tan−1 and the
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inter-service times dn = tdn − tdn−1 are both independent and identically distributed with

expectation µa, µd resp. and variance σ2
a and σ2

d respectively. It holds

(1.2.11) P [(A(t + 4t) − A(t)) ≥ n] = P [t4t
an ≤ 4t] ,

where t4t
an is the arrival time of the n-th customer in a time interval of length 4t. t4t

an can

be written as the sum of the inter-arrival times in 4t

(1.2.12) t4t
an = a4t

1 + a4t
2 + . . .+ a4t

n .

Analogously holds for the service process

(1.2.13) t4t
dn = d4t

1 + d4t
2 + . . .+ d4t

n .

Then t4t
an and t4t

dn are the sum of n independent and identically distributed random variables

and the central limit theorem holds. Thus, t4t
an and t4t

dn are normally distributed, if 4t is

sufficiently large (and therefore the number of arrivals and services in [t, t+4t] is sufficiently

large). Thus, alsoN(t+4t)−N(t) = t4t
an−t4t

dn (cf. (1.2.11)) is as a difference of two normally

distributed random variables again normally distributed with the first and second moment

(1.2.14) E [N(t + 4t) −N(t)] =

(
1

µa
− 1

µd

)
4t

and

(1.2.15) V ar [N(t + 4t) −N(t)] =

(
ca
µa

− cd
µd

)
4t

with

(1.2.16) ca =
σ2

a

µ2
a

and cd =
σ2

d

µ2
d

.

For the differential equation the infinitesimal mean and variance, which are derivatives

with respect to the time of the conditional mean and variance (cf. [Kle76]) are required.

They evaluate for all time homogeneous arrival and service processes to

(1.2.17) E

[
d

dt
N(t)

]
=

1

µa
− 1

µd
=: µ and V ar

[
d

dt
N(t)

]
=
ca
µa

− cd
µd

=: σ2 .

The approximate continuous process Z(t) of N(t) is then chosen such, that dZ(t) = Z(t+

4t) − Z(t) is normally distributed with mean µ4t and variance σ24t.
We consider the probability density function (p.d.f.)

(1.2.18) πs(t, x) =
∂

∂x
P [S(t) = s, Z(t) ≤ x] ,
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which is collected for s = 1, . . . , S in the vector π(t, x) ∈ � S. π(t, x) is a non-negative

function, which satisfies the Chapman-Kolmogorov equation

(1.2.19) πs(t+ 4t, x) =

∫

Ω

πs(t + 4t, x|t, x̃)πs(t, x̃) dx̃ + (πT (t, x)Q)s4t

for Ω =
[
xmin, xmax

]
and where π(t + 4t, x

∣∣ t, x̃) is the conditional p.d.f.. The Chapman-

Kolmogorov equation describes the change in the p.d.f. over a small time interval of length

4t by considering all possible intermediate continuous states (first term) and summing

up the discrete state transitions (second term). We will consider the integrands for each

component. The function πs(t, x̃) can be approximated by its Taylor expansion around x,

where we regard terms up to order two (second order FSPNs):

(1.2.20) πs(t, x̃) = πs(t, x) + (x̃− x)
∂

∂x
πs(t, x) +

(x̃− x)2

2

∂2

∂x2
πs(t, x) + O((x̃− x)3).

Since πs(t+4t, x|t, x̃) is a density function of a normally distributed random variable with

the infinitesimal expectation x−4t µs and the variance 4t σ2
s , it holds

(1.2.21) πs(t+ 4t, x|t, x̃) =
1√

2π4tσ2
s

exp

{
− (x− x̃−4tµs)

2

24tσ2
s

}
.

We simplify (1.2.19) with (1.2.20) and (1.2.21)

∫

Ω

πs(t+ 4t, x|t, x̃)πs(t, x̃) dx̃

≈ 1√
2π4tσ2

s

∫

Ω

e
−(x−x̃−4tµs)2

24tσ2
s ·

[
πs(t, x) + (x̃− x)

∂

∂x
πs(t, x) +

(x̃− x)2

2

∂2

∂x2
πs(t, x)

]
dx̃.

Since we integrate a density function, 1√
2π4tσ2

s

∫
Ω
e

−(x−x̃−4tµ)2

24tσ2 dx̃ = 1 holds and yields

∫

Ω

πs(t+ 4t, x|t, x̃)πs(t, x̃) dx̃

≈ πs(t, x) − x
∂

∂x
πs(t, x) +

∂

∂x
πs(t, x)

∫

Ω

1√
2π4tσ2

s

e
−(x−x̃−4tµs)2

24tσ2
s · x̃ dx̃

︸ ︷︷ ︸
Definition of expectation =x−4tµs

+
1

2

∂2

∂x2
πs(t, x)

∫

Ω

1√
2π4tσ2

s

e
−(x−x̃−4tµs)2

24tσ2
s · (x̃− x)2 dx̃

︸ ︷︷ ︸
Definition of the second moments

.
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Using the definition of expectation and second moment 4t2µ2
s +4tσ2

s (not the central one,

cf. [New71]), (1.2.19) reads

(1.2.22)

πT (t+4t, x) = πT (t, x)−4t ∂
∂x

πT (t, x)M+4t1
2

∂2

∂x2
πT (t, x)

(
4tM 2 + Σ2

)
+πT (t, x)Q4t.

Here, M and Σ2 are diagonal S×S-matrices, with M = diag(µs) and Σ2 = diag(σ2
s). We

subtract πT (t, x) and divide by 4t
(1.2.23)
πT (t+ 4t, x) − πT (t, x)

4t = − ∂

∂x
πT (t, x)M +

1

2

∂2

∂x2
πT (t, x)

(
4tM 2 + Σ2

)
+ πT (t, x)Q.

The limit 4t→ 0 yields the differential equation

∂

∂t
πT (t, x) = − ∂

∂x
πT (t, x)M+

1

2

∂2

∂x2
πT (t, x)Σ2+πT (t, x)Q ∀x ∈

◦
Ω =

(
xmin, xmax

)
, t ≥ 0

for M and Σ2 not depending on x.

According to [CM65] for the process with space depending M = M (x) and Σ2 =

Σ2(x) results in

(1.2.24)
∂

∂t
πT (t, x) = − ∂

∂x

{
πT (t, x)M(x)

}
+

1

2

∂2

∂x2

{
πT (t, x)Σ2(x)

}
+ πT (t, x)Q

∀x ∈
◦
Ω =

(
xmin, xmax

)
, t ≥ 0

This partial differential equation is called Kolmogorov forward equation.

The boundary condition is determined by using the property of a mixed discrete-real

random variable

(1.2.25)
S∑

s=1

∫ ∞

−∞
πs(t, x) dx =

S∑

s=1

∫ ∞

xmin

πs(t, x) dx = 1.

The boundary xmin is called a reflecting barrier. (1.2.25) together with (1.2.24) yields the

reflecting boundary condition and thus the initial boundary value problem reads

(1.2.26a)

∂

∂t
π(t, x)+

∂

∂x
(M(x)π(t, x)) =

1

2

∂2

∂x2

(
Σ2(x)π(t, x)

)
+QT π(t, x), x ∈ Ω, t ≥ 0,

(1.2.26b)
1

2

∂

∂x

(
Σ2(x)π(t, x)

) ∣∣∣
x=xmin

− M(x)π(t, x)
∣∣∣
x=xmin

= 0,

(1.2.26c) π(0, x) = δ(x− x0)π0, x ∈ Ω.



18 1. Parabolic systems

Here δ denotes the Dirac-Delta distribution. From now on we assume, that Σ2 is a regular

matrix.

Fluid places are bounded from below by xmin, which is often equal to zero. Thus the

reflecting boundary condition, which prohibits any mass flow through the boundary, is

postulated at the left boundary (cf. (1.2.26b)). If the fluid place is also bounded from

above, the same kind of boundary condition is posed at the upper boundary. If e.g. the

average fill level of a fluid place is looked for and no upper bound can be given beforehand,

the initial boundary problem is posed on the half-space x ≥ xmin. To calculate its solution

numerically, TBCs have to be imposed. For the formulation of these TBCs it is necessary

to know about some properties of the evolution equation (1.2.26) and in particular of the

generator matrix Q.

3. Properties of the generator matrix Q

The generator matrix Q is the only coupling between the differential equations. There-

fore, its structure and properties are very important for the behaviour and analysis of the

solutions to the differential equation. These characteristics will also enter the derivation

of the TBCs in Sec. 7.2. Hence, we will here investigate the generator matrix Q in detail.

We summarise the essential properties:

• all off-diagonal entries are transition rates and thus nonnegative

(1.3.1) qij ≥ 0 ∀i, j = 1, . . . , S with i 6= j

• all diagonal entries are the negative sum of the off-diagonal entries in the row

(1.3.2) qii = −
S∑

j=1
j 6=i

qij ∀i = 1, . . . , S

and as a consequence of the two preceeding properties, we have

• the row sum is equal to zero (cf. (1.1.2))

(1.3.3)

S∑

j=1

qij = 0 ∀i = 1, . . . , S

In the following we will show, that λ = 0 is a simple eigenvalue of Q, provided that Q

is irreducible.

Definition 1.2 ([HJ99a]). A matrix A of dimension n× n is said to be
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(a) reducible if either

• n = 1 and A = 0; or

• n ≥ 2, there is a permutation matrix P and some integer r with 1 ≤ r ≤ n−1

such that

PTAP =

(
A11 A12

0 A22

)

where A11 is a r×r-matrix and A22 is a (n− r)×(n− r)-matrix.

(b) irreducible if it is not reducible.

To study the spectrum of Q, we define a matrix P by

(1.3.4) P := I +
1

qmax
Q, qmax = max

i=1,...,S
|qii|.

The scaling factor qmax is chosen in a way such that all entries in P are nonnegative and the

row sums equal one, i.e. P is a stochastic matrix. If Q is irreducible also P is irreducible

and the following lemma holds.

Lemma 1.1 ([HJ99a],Theorem 8.4.4). If the stochastic matrix P is irreducible, then

ρ(P ) is an algebraically (and hence geometrically) simple eigenvalue of P .

Lemma 1.2. The stochastic matrix P has the spectral radius ρ(P ) = 1.

Proof. Since the row sums of P constantly evaluate to one, the vector x = (1, . . . , 1)T

is an eigenvector of P to the eigenvalue ||P ||∞ = 1 (|| · ||∞ denotes the maximum row sum

matrix norm):

Px = ||P ||∞x = 1 · x.

Thus ρ(P ) ≥ ||P ||∞ = 1 holds. And since ρ(P ) ≤ ||P || for any matrix norm induced by

a vector norm, we conclude ρ(P ) = ||P ||∞ = 1. �

Since the spectrum of Q is σ(Q) = qmax (σ(P ) − 1), the ensuing assertion follows di-

rectly from Lemma 1.1 and 1.2:

Lemma 1.3. If the generator matrix Q is irreducible, then λ = 0 is an algebraically

(and hence geometrically) simple eigenvalue of Q.
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remark 1.4. λ = 0 is the eigenvalue of Q with the largest real

part. All other eigenvalues have negative real part. This results

from a consideration of Gerschgorin circles as in the right hand

figure: In each row i of Q the diagonal entry is the negative sum

of the off-diagonal entries (cf. (1.3.2)).

��
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4. Properties of the evolution equation

The evolution equation (1.2.26) is a system of linear second order partial differential

equations of parabolic type in one spatial dimension (advection-diffusion equation, Fokker-

Planck equation, cf. [Ris84]).

Here we will show two properties of equation (1.2.26). First we recall that the quantity

(1.4.1)
S∑

s=1

∫ ∞

xmin

πs(t, x)dx

is constant in time (normalisation condition). Integrating (1.2.26) for xmin < x <∞ yields

(1.4.2)
∂

∂t

∫ ∞

xmin

π(t, x) dx =

[
1

2

∂

∂x
Σ2(x)π(t, x) − M(x)π(t, x)

]∞

xmin

+

∫ ∞

xmin

QT π(t, x) dx.

The boundary term equals zero, due to the boundary condition (1.2.26b) and the decaying

condition πs(t, ·) ∈ L1(
� +). The coupling term vanishes after summation w.r.t. the number

of states s.

Second we want to show the positivity of the solution to (1.2.26), i.e. starting with

nonnegative initial data, the solution will remain nonnegative. To do so we split (operator

splitting) equation (1.2.26) in the following way [CHMM78]:

π1
t =

1

2
Σ2π1

xx − Mπ1
x =: Gπ1, for i4t < t < (i+ 1)4t, x ≥ xmin(1.4.3)

π1(i4t, x) = π2(i4t, x)
1

2

∂

∂x

(
Σ2(xmin)π1(t, xmin)

)
− M(xmin)π1(t, xmin) = 0

π2
t = QT π2, for i4t < t < (i+ 1)4t, x ≥ xmin(1.4.4)

π2(0, x) = δ(x− x0)π0, x ≥ xmin

π2(i4t, x) = π1 ((i + 1)4t, x) .
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The solutions to (1.4.3) remain nonnegative, because the equation is nothing else but S

scalar convection diffusion equations with Robin boundary data, for which the positivity

preservations is well known ([PW84],Chap. 3, Sec. 2). Equation (1.4.4) has the solution

π(t, x) = eQ
T tπ(0, x), which is nonnegative, since in

(1.4.5) eQ
T t = eqmaxt(PT −I) = eqmaxtPT

e−qmaxtI

the first exponential is a nonnegative matrix for t ≥ 0 and the second is diagonal.

G is the infinitesimal generator of a C0 semigroup in L1(
� +) [Paz83] and QT is a

bounded linear operator. Then G + QT is also the infinitesimal generator of a C0 semi-

group (cf. [Paz83],Theorem 3.1.1) and hence closed. If now G and QT are generators of

quasi-contractive semigroups (i.e. || exp{tG}||B(L1( � +)) ≤ exp{tγ}, || exp{tQT}||B(L1( � +)) ≤
exp{tη}), then we know from [CHMM78], application 3.5, that the splitting converges

for 4t→ 0, and also the solution of (1.2.26) is nonnegative. For the quasi-contractiveness

we consider solutions π1 to (1.4.3). The L1-norm of π1 is non-increasing ||π1(t, ·)||L1( � +) ≤
||π1(0, ·)||L1( � +) and thus

(1.4.6) || exp{tG}||B(L1( � +)) = sup
|| exp{tG}π1(0, ·)||L1( � +)

||π1(0, ·)||L1( � +)

= sup
||π1(t, ·)||L1( � +)

||π1(0, ·)||L1( � +)

≤ 1,

i.e. γ can be chosen as zero.

For the quasi-contractiveness of QT we consider

(1.4.7) ||π̃(t)||L1( � +) ≤ || exp{tQT}||B(L1( � +)) · ||π̃0||L1( � +)

≤
∞∑

n=0

1

n!
||QT ||nB(L1( � +))t

n||π̃0||L1( � +) = et||QT ||
B(L1( � +))||π̃0||L1( � +)

and thus we have η = ||QT ||B(L1( � +)) and any solution of (1.2.26) with nonnegative initial

data remains nonnegative.

After these preparations we can proceed to derive the transparent boundary condition

at x = xmax.

5. The transparent boundary condition

To derive the transparent boundary condition we consider the differential equation on

the exterior domain. Performing a Laplace transformation gives a system of ordinary dif-

ferential equations with constant coefficients, which can be solved explicitly. Therefore
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we reduce the problem to a system of first order differential equations (reduction of or-

der method). Its solution is given by calculating the Jordan form and the corresponding

eigenvectors of the system matrix. We will prove, that the eigenvalues split in two groups:

half have positive and half have negative real parts. The eigenvalues with a negative real

part create a for x → ∞ decaying solution, which can be used to formulate the Dirichlet-

to-Neumann map on the boundary. We can give no explicit formulation of these TBCs,

because their derivation involves the inverse Laplace transform of matrices of eigenvectors,

that in general cannot be calculated explicitly.

For the derivation of the TBC we cut the original half-space problem at x = xmax,

where the TBC is supposed to be. This generates two subproblems: the interior and the

exterior problem. They are coupled by the assumption, that π and πx are continuous at

the boundary x = xmax. The interior problem then reads

∂

∂t
π =

1

2

∂2

∂x2
(Σ2π) − ∂

∂x
(Mπ) + QT π, xmin < x < xmax,

π(0, x) = δ(x− x0)π0,(1.5.1)

0 =
1

2

∂

∂x

(
Σ2(x)π(t, x)

)∣∣∣
x=xmin

− M(x)π(t, x)
∣∣∣
x=xmin

,

πx(t, x
max) = (Tπ)(t, xmax),

where T denotes the Dirichlet-to-Neumann operator, that is determined by solving the

exterior problem

ξt =
1

2
Σ2ξxx − Mξx + QT ξ, x > xmax,

ξ(0, x) = 0,(1.5.2)

ξ(t, xmax) = η(t), t > 0, η(0) = 0,

ξ(t,∞) = 0,

(Tη)(t) := ξx(t, x
max).

The coefficient matrices of this exterior problem are all constant in x. Therefore, it can be

solved explicitly by the Laplace-method. By this way, the Dirichlet-to-Neumann operator,

that gives the TBC in (1.5.1), is determined .

5.1. Reduction of order method. We solve the Laplace-transformed matrix dif-

ferential equation after reducing its order. We obtain a system of ordinary differential
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equations of the form

(1.5.3) wx = Ww = PWJWP−1
W w,

where JW is the Jordan form of W and P−1
W contains the corresponding (possibly gener-

alised) eigenvectors. For the TBCs it is necessary to find a decaying solution to (1.5.3). We

will show, that the 2S eigenvalues of W split into S eigenvalues with positive real part and S

with negative real part. Since the solution to (1.5.3) is given by w(x) = eWx = ePW JW P
−1
W

x,

the S negative eigenvalues yield S linearly independent solutions wi(x), i = 1, . . . , S, which

decay for x→ ∞: |wi(x)| → 0.

In the construction of the TBC we start with the differential equation on the exterior

domain x ≥ xmax (“exterior problem”)

(1.5.4) πt =
1

2
Σ2πxx − Mπx + QT π,

where M,Σ2 and QT are assumed to be constant in x. Using the Laplace transformation

(in t)

(1.5.5) π̂(x, s) =

∫ ∞

0

e−stπ(x, t) dt, s = α + iξ, α > 0, ξ ∈ �
,

of (1.5.4) yields a system of ordinary differential equations

(1.5.6) Mπ̂x −
1

2
Σ2π̂xx −

(
QT − sI

)
π̂ = 0, x ≥ xmax

depending on the complex parameter s ∈ �
. We will discuss, under which conditions the

exterior problem (1.5.6) has a unique solution at the end of this section in Lem. 1.8.

In order to derive the TBC we reformulate the exterior problem (1.5.6) as a first order

system by introducing ζi = π̂i and ηi = (ζi)x:

(1.5.7) A

(
ζ

η

)

x

= B

(
ζ

η

)
, x > xmax

with

(1.5.8) A :=

(
M −1

2
Σ2

−1
2
Σ2 0

)
, B :=

(
QT − sI 0

0 −1
2
Σ2

)
.

If σ2
s 6= 0 for s = 1, . . . , S, then A is regular and we can write

(1.5.9)

(
ζ

η

)

x

= A−1B

(
ζ

η

)
with A−1 =

(
0 −2(Σ2)−1

−2(Σ2)−1 −4(Σ2)−1M(Σ2)−1

)
.
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In the following we will show, that the 2S eigenvalues of A−1B include exactly S

eigenvalues with negative real parts, which correspond to a decaying solution.

Theorem 1.5 (Splitting Theorem). The eigenvalues of A−1B split in S eigenvalues

with positive and S with negative real part, if Re(s) > ρ(Q+QT

2
).

Proof. To prove this we first consider the eigenvalues of A:

(1.5.10)

∣∣∣∣∣
M − λI −1

2
Σ2

−1
2
Σ2 −λI

∣∣∣∣∣ = 0,

from which we sort rows and columns to obtain the following block diagonal structure:

(1.5.11)

∣∣∣∣∣∣∣∣∣∣

A1 0 . . . 0

0 A2 . . . 0

0
. . . 0

0 . . . 0 AS

∣∣∣∣∣∣∣∣∣∣

= 0 with Ai =

(
µi − λ −1

2
σ2

i

−1
2
σ2

i −λ

)
.

This determinant can be calculated by the product of the determinants of the matrices on

the diagonal

(1.5.12) detA =
S∏

i=1

det (Ai) = 0.

Hence, the eigenvalues are

(1.5.13) λ+
i =

µi

2
+

1

2

√
µ2

i + σ4
i , λ−i =

µi

2
− 1

2

√
µ2

i + σ4
i , i = 1, . . . , S.

And thus, for each i = 1, . . . , S the eigenvalues λ+
i and λ−i have different signs

(1.5.14)
λ+

i > 0

λ−i < 0

}
for µi ≥ 0 and

λ+
i < 0

λ−i > 0

}
for µi < 0, i = 1, . . . , S.

We define the inertia of a matrix M :

Definition 1.3 ([HJ99b]). Let M be a complex matrix. The inertia of M is the

ordered triple

(1.5.15) i(M) = (i+ (M) , i− (M) , i0 (M)) ,

where i+(M) is the number of eigenvalues of M with positive real part, i−(M) is the number

of eigenvalues of M with negative real part, and i0(M) is the number of eigenvalues of M

with zero real part, all counting multiplicity.
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For the matrix A we know from (1.5.14) that i(A) = (S, S, 0) = i(A−1). With the

following theorem, we will deduce the inertia of A−1B from the inertia of A−1:

Theorem 1.6 ([HJ99b]Theorem 2.4.15). Let A−1 and B be quadratic matrices with

A−1 Hermitian and B + B∗ positive definite. Then: i(A−1B) = i(A−1).

We can apply Thm. 1.6, since A−1 is symmetric and real and thus Hermitian with

i (A) = (S, S, 0). Furthermore, B+B∗ =

(
QT + Q − 2Re(s)I 0

0 −Σ2

)
is negative definite

for Re(s) sufficiently large (Re(s) > 0 for the Laplace-transformation). Then −B+ (−B)∗

is positive definite and we obtain for the inertia of C := A−1B:

(1.5.16) i(C) = i
(
(−A−1) (−B)

)
= i(−A−1) = i(A−1) = i(A) = (S, S, 0),

which finishes the proof of Thm. 1.5. �

For the elements of C we have

(1.5.17) C = A−1B =

(
0 I

−2(Σ2)−1(QT − sI) 2(Σ2)−1M

)

and (1.5.9) reads

(1.5.18)

(
ζ

η

)

x

= C

(
ζ

η

)
with i(C) = (S, S, 0).

Now we transform C into Jordan form C = PJP−1, where P holds the possibly gen-

eralised eigenvectors in columns and the eigenvalues of C are the diagonal elements of J .

Since we know, that there are n eigenvalues with negative and n with positive real part,

we can suppose the eigenvalues in J, λ1, . . . , λ2S, to be sorted with respect to increasing

real parts. Accordingly we can split J =
(

J1 0
0 J2

)
, where J1 holds all Jordan blocks to

eigenvalues with negative and J2 all eigenvalues with positive real part. Now the system

looks as follows

(1.5.19)

(
f

g

)

x

=

(
J1 0

0 J2

)(
f

g

)
with

(
f

g

)
:= P−1

(
ζ

η

)

and f decays for x→ ∞.

Let P−1 =
(

P1 P2
P3 P4

)
, then

(1.5.20) P−1

(
ζ

η

)

x

=

(
J1 0

0 J2

)(
P1 P2

P3 P4

)(
ζ

η

)
=

(
J1 0

0 J2

)(
P1ζ + P2η

P3ζ + P4η

)
.
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The lower row of this equation

(1.5.21) P3ζ + P4η = 0

yields the transparent boundary condition, since eigenvalues with positive real part involve

increasing - and thus unphysical - solutions, which are thus eliminated. If P4 is regular

the TBC can be formulated in Dirichlet-to-Neumann form

(1.5.22) πx = −P−1
4 P3π.

remark 1.7. The order of the eigenvalues and the eigenvectors in P is insignificant

(within the two blocks of decaying and increasing solutions). To illustrate this we set

X = P3 and Y = P4. Then for regular Y the TBC reads ζx = −Y−1Xζ. We ex-

press Y−1 using Laplacian determinant expansion by minors. Then holds (Y−1X)i,j =
∑S

l=1
(−1)i+j

det(Y)
det(Ỹl,i)Xl,j, where Ỹl,i is a minor of Y. Since the summation index l occurs

as row index for X as well as for Y, the order of rows in X and Y is of no importance.

In this section we derived a transparent boundary condition using the solution of the

exterior problem. It finally remains to discuss the existence and uniqueness of this solution:

Lemma 1.8. (Existence and uniqueness of the solution to the Laplace-transformed

exterior problem).

a) If the solution of the boundary value problem (1.5.6) with the boundary data

(1.5.23) π̂(x = xmax) = π̂max, π̂(x = ∞) = 0

exists, it is unique for Re(s) sufficiently large.

b) If the matrix PPP1 is regular, the solution exists.

Proof. a) To prove uniqueness we assume, that there are two such solutions π̂1 and

π̂2 of (1.5.6),(1.5.23) . Then their difference π̂ = π̂1 − π̂2 is a solution of the problem with

homogeneous boundary data. Multiplying (1.5.6) by ¯̂πT from the left and integrating from

xmax to ∞ yields after integrating by parts

(1.5.24)
1

2

∫ ∞

xmax

¯̂πT
x Σ2π̂xdx+

∫ ∞

xmax

¯̂πTMπ̂xdx+

∫ ∞

xmax

¯̂πT (sI− QT )π̂dx = 0.
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Taking real parts and denoting 1
2
Σ2 ≥ σ0 > 0 and λ0

Q = 0 to be the eigenvalue of Q with

the largest real part gives

0 =
1

2

∫ ∞

xmax

¯̂πT
x Σ2π̂xdx+ Re

∫ ∞

xmax

¯̂πTMπ̂xdx+

∫ ∞

xmax

¯̂πT

(
Re(s)I − QT + Q

2

)
π̂dx

≥ σ0

∫ ∞

xmax

|π̂x|2dx− ||M||
∫ ∞

xmax

|π̂| · |π̂x|dx+ (Re(s) − λ0
Q)

∫ ∞

xmax

|π̂|2dx

≥ σ0

∫ ∞

xmax

(
|π̂x| −

||M||
2σ0

|π̂|
)2

dx +

(
Re(s) − ||M||2

4σ2
0

)∫ ∞

xmax

|π̂|2dx ≥ 0,

for all s with Re(s) > ||M||2
4σ2

0
. From this we conclude π̂ ≡ 0 and thus the solution to

(1.5.6),(1.5.23) is unique.

b) A general solution of (1.5.18) is given by

(1.5.25)(
ζ

η

)
(x) = eCxc̃ = PeJxP−1c̃ = PeJxc =

(
PPP1 PPP2

PPP3 PPP4

)(
eJ1x 0

0 eJ2x

)(
c1

c2

)
, x > xmax.

To fulfil the decaying condition π̂(x) → 0 (x → ∞) the constant c2 is chosen as zero.

Thus the general solution to (1.5.6) is given by π̂(x) = PPP1e
J1xc1. The constant c1 can

be determined by the boundary condition π̂(xmax) = π̂max, if the matrix PPP1 is regular .

Thus, for regular PPP1 the existence of a solution to the exterior problem is guaranteed. �

remark 1.9. Standard methods to prove the existence do not work here. Adding an

inhomogeneous term to (1.5.6) yields an homogeneous boundary condition. Then, by the

variation of constant method we derive the integral representation of the solution

(1.5.26) π(x) = PPP1e
J1x

(
c1 +

∫ x

xmax

eJ1yf1e
−ydy

)
−PPP2e

J2x

∫ ∞

x

e−J2yf2e
−ydy, x > xmax

with f1,2 = −P2,4

(
I + 2(Σ2)−1

(
QT − sI− M

))
πmax.

To apply the well-known technique of the Fredholm alternative, the integral operator in

(1.5.26) must be compact. But the solution operator given by (1.5.26) is of convolution

type and thus it is not compact on X =
{
f : continuous on [0,∞) , lim

x→∞
f(x) exists

}
,

since operators of convolution type are compact only on bounded domains [GLS90] but not

on unbounded domains [Hac89].

remark 1.10. The regularity of PPP1 is not clear in general, but was true for all consid-

ered examples.
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The TBC (1.5.21) is still in a Laplace-transformed formulation. The analytical inverse

transform cannot be calculated for a general case as this is possible for a scalar parabolic

equation [Ehr01]. In [Hag94] Hagstrom considered a simple 2 × 2 model problem. The

parameters were chosen in such a way, that the characteristic polynomial factorises and

the eigenvalues and eigenvectors can be given explicitly. Still these formulations include

terms of the form s1/4, which Hagstrom approximates before inverse Laplace-transforming

to yield local boundary conditions. We will approximate as late as possible and inverse

transform numerically.

6. Discretisation

In this section we briefly present a numerical method to solve the transient equation

(1.2.26), which will be the basis for constructing the DTBCs in the following section. We

use a finite difference discretisation (θ-method), which includes as special cases the fully

implicit (θ = 1), explicit (θ = 0) and the Crank-Nicolson (θ = 1
2
) scheme. The coupling

term QTπππ is discretised explicitly such that the system of equations, which has to be solved

at each time step, can be decoupled to reduce the computational effort. Hence, one solves

a separate equation for each state in which the coupling term appears as an inhomogeneity.

For a state s the equation to be discretised reads

(1.6.1)

∂πs(t, x)

∂t
+

∂

∂x

(
πs(t, x)µs(x)

)
=

1

2

∂2

∂x2

(
πs(t, x)σ

2
s(x)

)
+

S∑

l=1

ql,sπl, t ≥ 0, x ∈ Ω.

subject to the initial condition (1.2.26c) and the boundary conditions (1.2.26b).

The discretisation is carried out on an equidistant grid with step-size k in time direction

and step-size h in space x-direction: xj = xmin + jh, tn = nk for n = 0, . . . , T and

j = 0, . . . , J . At the grid points the function πs(t, x) is approximated by the discrete

function un
s,j with un

s,j ≈ πs(tn, xj) and un
j = (un

s,j) is a column vector. The coupling term

is discretised explicitly by using the second order extrapolation from the two ‘old’ time

levels n and (n− 1)

(1.6.2)
(
π((n+θ)k, xmin+jh)Q

)
s
≈ (1+θ)

(
(un

0,j, . . . , u
n
S,j)Q

)
s
−θ
(
(un−1

0,j , . . . , u
n−1
S,j )Q

)
s
.

In that way the coupling term is not involved in the implicit part and therefore the equations

can be solved separately. We abbreviate the r.h.s. of (1.6.2) by (QTu)n+θ
s,j . In the following

the index s for the discrete state will be omitted and an arbitrary state will be used.
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The second derivative is discretised with the standard central difference quotient. For

the first order spatial derivatives an upwind scheme is used (cf. [Str89]). Upwind means

that forward and backward differences are used, weighed with the upwind parameter ρ and

(1 − ρ), respectively. The parameter ρ, 0 ≤ ρ ≤ 1, depends on the sign of the convection

parameter µ. This is motivated by the fact that if e.g. µ(x) > 0 , the mass moves to the

right and the backward difference is more appropriate in describing this motion and thus

yields a stable scheme.

With the abbreviation un+θ
s,j = (1 − θ)un

s,j + θun+1
s,j the discrete scheme for state s is

(1.6.3)
un+1

s,j − un
s,j

k
+ (1 − ρj)

µs,ju
n+θ
s,j − µs,j−1u

n+θ
s,j−1

h
+ ρj

µs,j+1u
n+θ
s,j+1 − µs,ju

n+θ
s,j

h

=
1

2

σ2
s,j−1u

n+θ
s,j−1 − 2σ2

s,ju
n+θ
s,j + σ2

s,j+1u
n+θ
s,j+1

h2
+

S∑

l=1

(
(1 + θ) un

l,j − θun−1
l,j

)
qs,l.

A basic property of the parabolic differential equation (1.2.26) is the maximum principle

(1.6.4) sup
x∈Ω

S∑

s=1

πs(t, x) ≤ sup
x∈Ω

S∑

s=1

πs(t
′, x), if t > t′.

The scheme (1.6.3) will have a similar property and satisfies a discrete maximum principle,

if the following conditions hold [Zis98]:

0 ≤ ρj <
σ2

j

2h µj
for µj > 0 and

(1.6.5)
1 ≥ ρj > 1 − σ2

j

2h|µj | for µj < 0.

On the other hand the upwind scheme induces artificial diffusion. Therefore we choose ρj

as close to 1/2 as (1.6.5) allows, in order to minimise this artificial influence.

The transient solution of a second order FSPN is then numerically approximated by

solving the system of linear equations

(1.6.6) un+1
j−1 (−θraj−1) + un+1

j (1 + θr(aj + bj)) + un+1
j+1 (−θrbj+1)

= un
j−1(1 − θ)raj−1 + un

j (1 − (1 − θ)r(aj + bj)) + un
j+1(1 − θ)rbj+1 + (QT u)n+θ

j ,

n = 0, . . . , T − 1, j = 1, . . . , N − 1,

with the abbreviations aj = h(1 − ρj)µj + 1
2
σ2

j , bj = −hρjµj + 1
2
σ2

j and r = k
h2 .
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7. Discrete boundary conditions

The considered BCs are derived on a discrete level. This can be important, if solu-

tions of the discrete scheme should have the same qualitative properties as solutions of

the continuous equation, such as satisfying a normalisation condition. In the next section

we will derive discrete reflecting boundary conditions, that conserve the probability mass.

Usually the analytic boundary condition is discretised in an ad-hoc way. Thus, an addi-

tional normalisation step is necessary. The use of our discrete reflecting BCs makes this

normalisation step obsolete and avoids thereby not only extra errors and effort but is also

a more adequate way to calculate the numerical solution.

For the TBCs it will be even more important to construct the BC on a completely

discrete level, because the discretisation of the continuous BC can destroy the stability of

the underlying difference scheme and induce artificial reflections.

7.1. The discrete reflecting boundary condition. The discrete reflecting BCs are

a consistent discretisation of the BC (1.2.26b) which were derived by postulating that the

normalisation condition

(1.7.1)

S∑

s=1

∫

Ω

πs(t, x) dx = 1

should hold on the discrete level, i.e.

(1.7.2) h

S∑

s=1

J∑

j=0

un
s,j = 1, n = 0, . . . , T.

The summation of (1.6.6) over all interior points j = 1, . . . , J−1 and states s = 1, . . . , S

finally yields after applying (1.7.2) the reflecting boundary conditions at the left xmin = x0

and right boundary xmax = xJ

(1.7.3a) un+1
0 (1 + θra0) − un+1

1 θrb1 = un
0 [1 − (1 − θ)ra0] + un

1 (1 − θ)rb1,

(1.7.3b) un+1
J (1 + θrbJ) − un+1

J−1θraJ−1 = un
J [1 − (1 − θ)rbJ ] + un

J−1(1 − θ)raJ−1,

which are consistent with the analytic formulation, i.e. (1.7.3a) is consistent with (1.2.26b)

with order O(h, k2).

For each time step the following system of linear equations has been obtained

(1.7.4) Lun+1 = Run + (QT u)n+θ,
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with the matrices

(1.7.5) L =




1 + r+a0 −r+b1 0 · · · 0

−r+a0 1 + r+(a1 + b1) −r+b2
. . .

. . .
. . .

. . .
. . .

. . .

0 −r+aJ−2 1 + r+(aJ−1 + bJ−1) −r+bJ

0 −r+aJ−1 1 + r+bJ




and

(1.7.6) R =




1 − r−a0 r−b1 0 · · · 0

r−a0 1 − r−(a1 + b1) r−b2
. . .

. . .
. . .

. . .
. . .

. . .

0 r−aJ−2 1 − r−(aJ−1 + bJ−1) r−bJ

0 r−aJ−1 1 − r−bJ




and the abbreviations are

(1.7.7)

aj = h(1−ρj)µj+
1

2
σ2

j , bj = −hρjµj+
1

2
σ2

j , r =
k

h2
, r+ = θr, r− = (1−θ)r.

This is the system of difference equations, that has to be solved, if the domain Ω is

bounded. If Ω is unbounded for x→ ∞, then we have to introduce an artificial boundary

at some point xJ . At this point we prescribe transparent boundary conditions.

7.2. The discrete transparent boundary condition. To derive the discrete trans-

parent BC we consider the discrete difference equation on the exterior domain. Performing

a Z-transformation gives a system of ordinary difference equations, which for constant

coefficients can be solved explicitly. An inverse Z-transformation yields the discrete trans-

parent boundary condition as a discrete convolution, which is non-local in time. We will

present two approaches, which differ in the way to solve the system of ordinary difference

equations: the first uses the usual power ansatz (ansatz method), the second reduces the

problem to a system of first order difference equations (reduction of order method). Both

methods yield DTBCs, that are quite different in appearance. While the second involves

just the boundary point and its direct neighbour, the first is supported on the number
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of points equal to the size of the system. We will illustrate later, that both boundary

conditions are equivalent.

7.2.1. The ansatz method. In the ansatz method we solve the Z-transformed difference

equation using the standard power ansatz for difference equations with constant coefficients.

Therefore, we consider the original discretisation scheme for some point j ≥ J outside of

the computational domain, where all coefficients are constant

r
(
un+1

s,j −un
s,j

)
=

θ

2

[
σ2

su
n+1
s,j+1 − 2σ2

su
n+1
s,j + σ2

su
n+1
s,j−1

]
+

1 − θ

2

[
σ2

su
n
s,j+1 − 2σ2

su
n
s,j + σ2

su
n
s,j−1

]

−h
{
θ
[
ρs

(
µsu

n+1
s,j+1 − µsu

n+1
s,j

)
+ (1 − ρs)

(
µsu

n+1
s,j − µsu

n+1
s,j−1

)]

+(1 − θ)
[
ρs

(
µsu

n
s,j+1 − µsu

n
s,j

)
+ (1 − ρs)

(
µsu

n
s,j − µsu

n
s,j−1

)]}

+h2
S∑

l=1

Ql,s

[
(1 + θ)un

l,j − θun−1
l,j

]
.

Using the Z-transformation, which is defined as

(1.7.8) Z
{
un

j

}
= ûj(z) :=

∞∑

n=0

un
j z

−n, z ∈ �
, |z| > 1,

we obtain in matrix notation

r(z − 1)ûj(z) =
1

2
Σ2 (ûj+1(z) − 2ûj(z) + ûj−1(z)) (θz + 1 − θ)

−h {(I − R)M(ûj(z) − ûj−1(z)) + RM(ûj+1(z) − ûj(z))} (θz + 1 − θ)

+h2

[
1 + θ − θ

1

z

]
QT ûj(z).

The shifted sequences additionally yield the terms −zu0
j on the l.h.s. and an equivalent

one on the r.h.s. for the first and second differences. We assume, that the function at the

boundary u0
j for j ≥ J̄ vanishes, where J̄ is the innermost point involved in the construction

of the DTBCs. Strategies to overcome this constraint were presented in [EA01]. Sorting

the last equation according to ûj−1(z), ûj(z) and ûj+1(z) this linear system reads

(1.7.9) 0 = MMM+ûj+1(z) + MMM0ûj(z) + MMM−ûj−1(z) + h2mQQT ûj(z),
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with the abbreviations

MMM+ =
1

2
Σ2 − hRM, MMM0(z) = −Σ2 + h(2R − I)M − r

z − 1

θz + 1 − θ
I,

MMM− =
1

2
Σ2 + h(I − R)M, mQ =

1 + θ − θ 1
z

θz + 1 − θ
.

This system has solutions of the following form (power ansatz)

(1.7.10) ûj(z) = αj(z)k(z),

which decay for j → ∞ if | α(z) |< 1. For simplicity of notation we will frequently omit

the z-dependency in the following. Using (1.7.10) in (1.7.9) yields

(1.7.11) αj−1
(
α2MMM+ + α

(
MMM0 + h2mQQT

)
+ MMM−)k = 0,

which has a non-trivial solution k if and only if the determinant of the system matrix

equals zero. This condition leads to a polynomial in α of degree 2S. In the case S = 2

there exists an explicit formula for the zeros of a polynomial with complex coefficients.

For S ≥ 3 a numerical algorithm (e.g. a MATLAB routine or the Jenkins-Traub algorithm

[JT72]) is used.

The absolute value of α determines, if a solution of (1.7.11) increases or decays for

j → ∞. At the right boundary only decreasing solutions can form the boundary condition.

The following theorem therefore investigates the absolute value of α = α(z):

Theorem 1.11 (Discrete Splitting Theorem). Of the 2S zeros of (1.7.11) S have an

absolute value larger than one, and the other S zeros have an absolute value smaller than

one, if |z| is sufficiently large.

A proof will be given at the end of this section.

We compute the S zeros ��� 1, . . . , ��� S with the smallest absolute values |��� s| < 1, s =

1, . . . , S numerically. Since not all zeros are necessarily simple, we assume that there are

N different zeros {α1, . . . , αN} ⊂ {��� 1, . . . , ��� S} with the algebraic multiplicities ν1, . . . , νN

and the geometric multiplicities γ1, . . . , γN with S =
∑N

i=1 νi. Γ :=
∑N

i=1 γi is the number

of Jordan blocks in J (see below). Furthermore we will consider the family {a1, . . . , aΓ},
where the occurrence of each zero is its geometric multiplicity.

Then all decaying solutions of the exterior problem are given by

(1.7.12) ûj = PJjP−1c̃ =: PJjc,
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where P ∈ �
S×S holds the eigenvectors and generalised eigenvectors of the system matrix

(1.7.11) and J is the corresponding Jordan form with arbitrary constants c ∈ �
S (cf.

[Ela96]). Let J be the index of the right boundary point and ûJ the Z-transform of the

approximated function in each discrete state at the boundary. For the boundary condition

a relation between uJ and its neighbours is needed. Consequently, we are looking for a

representation of the kind

(1.7.13) ûJ =

S∑

m=1

ˆ̀
mûJ−m,

where the ˆ̀
m = ˆ̀

m(z) ∈ �
for m = 1, . . . , S must be determined. Inserting (1.7.12) for ûJ

and ûJ−m in (1.7.13) yields

(1.7.14) PJJc =
S∑

m=1

ˆ̀
mPJJ−mc

or for each Jordan block Jp, p = 1, . . . ,Γ

(1.7.15) JJ
pc =

S∑

m=1

ˆ̀
mJJ−m

p c

for arbitrary constants c. The power of a Jordan block has the special upper triangular

form

(1.7.16) Jn
p =




an
p ( n

1 ) an−1
p ( n

2 ) an−2
p . . . ( n

γp−1 ) a
n−γp+1
p

an
p ( n

1 ) an−1
p . . . ( n

γp−2 ) a
n−γp+2
p

. . .
. . .

...

an
p ( n

1 ) an−1
p

an
p




.

Therefore, backward substitution gives for each row of equation (1.7.15) one of the condi-

tions

(1.7.17) ( J
k ) aJ−k

p =

S∑

m=1

ˆ̀
m

(
J−m

k

)
aJ−m−k

p , for k = 0, . . . , γp − 1,

because c is arbitrary; or equivalently

(1.7.18) JkaS
p =

S∑

m=1

ˆ̀
m(J −m)kaS−m

p , for k = 0, . . . , γp − 1, p = 1, . . . ,Γ.
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The equivalence of (1.7.17) and (1.7.18) can be seen easily by multiplying (1.7.17) with

k! αS−J+k
p . This yields identical polynomials in J and J−m on either side. Now successively

inserting this equation for smaller k gives the equivalence for the highest powers.

Equation (1.7.18) gives S equations for the S unknown quantities ˆ̀
m. These equations

are linearly independent if and only if the the geometric multiplicity of every eigenvalue

is one. For any i = 1, . . . ,N with γi > 1 the associated Jordan blocks give equivalent

conditions.

Therefore we define the following matrices and vectors for i = 1, . . . ,N :

(
AAA(S)

i

)
p,q

:= aS−q
i (J − q)p−1 , AAA(S)

i ∈M(γi × S),(1.7.19)

(
bS

i

)
p

:= Jp−1aS
i , p = 1, . . . , γi(1.7.20)

and

AAA(S) :=




AAA(S)
1
...

AAA(S)
N


 ∈M(S × S), bS =




bS
1
...

bS
N


 , ˆ̀̀̀S

:=




ˆ̀(S)
1
...

ˆ̀(S)
S


 .(1.7.21)

The upper index S is introduced to allow a succeeding proof by induction over S. The

equation to determine ˆ̀(S)
1 , . . . , ˆ̀

(S)
S now reads

(1.7.22) AAA(S)ˆ̀̀̀S
= bS.

If all S zeros of AAA(S) are different, AAA(S) is the well-known Vandermonde matrix and the

system has the special structure

(1.7.23)




αS−1
1 αS−2

1 . . . α1 1

αS−1
2 αS−2

2 . . . α2 1
...

αS−1
S αS−2

S . . . αS 1







ˆ̀
1

ˆ̀
2

...
ˆ̀
S




=




αS
1

αS
2
...

αS
S



.

The following lemma shows the regularity of the matrix AAA(S):

Lemma 1.12. The Matrix AAA(S) is regular if γi = 1 for all i = 1, . . . ,N .
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Proof. For the special case of a Vandermonde matrix (i.e. νi = 1 for i = 1, . . . , S),

this is obvious, since

(1.7.24) det(AAA(S)) =
S∏

i,j=1
i>j

(αi − αj)

and due to γi = 1 all zeros are simple. In the general case, Gauss elimination shows the reg-

ularity. E.g. Gauss elimination yields in each sub-matrix for p ≥ q :(AAA(S)
i )p,q = αS−q

k

(
q−1
p−1

)
.

If we enlarge this sub-matrix by another sub-matrix for a single zero αk, k 6= i the Gauss

elimination of the matrix

(
AAA(S)

i

AAA(S)
k

)
gives in the last row (αi − αk)

νi. �

If the solution of (1.7.22) is unique, it is given by the following theorem. If AAA(S) is not

regular and the solution of (1.7.22) is not necessarily unique, we will nevertheless use the

following formula:

Theorem 1.13. (1.7.22) is solved by

(1.7.25) ˆ̀(S)
k = (−1)k+1

∑

1≤s1<...<sk≤S

��� s1 · . . . · ��� sk
, k = 1, . . . , S.

These ˆ̀(S)
k obey the recursion formula

ˆ̀(M)
k = ˆ̀(M−1)

k − ��� M
ˆ̀(M−1)
k−1 , k = 1, . . . , S

(1.7.26)

with ˆ̀(M)
0 = −1, ˆ̀(M)

m = 0 if




m < 0 or

m > M
, M = 1, . . . , S

and the γi-level recursion

(1.7.27) ˆ̀(γ1+...+γN )
i =

γN∑

k=0

( γN
k ) (−1)k

���
k
N ˆ̀(γ1+...+γN−1)

i−k , i = 1, . . . , S

The proof of Theorem 1.13 is deferred to the appendix.

The transformed DTBC reads

(1.7.28) ûJ =
S∑

m=1

ˆ̀
mûJ−m.
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Finally an inverse Z-transformation of (1.7.13) yields

Z−1 {ûJ} = un
J = Z−1

{
ˆ̀
1

}
∗
{
un

J−1

}
+ Z−1

{
ˆ̀
2

}
∗
{
un

J−2

}
+ . . .+ Z−1

{
ˆ̀
S

}
∗
{
un

J−S

}

= {`1} ∗
{
un

J−1

}
+ {`2} ∗

{
un

J−2

}
+ . . .+ {`S} ∗

{
un

J−S

}
(1.7.29)

=

n∑

k=1

`1,n−ku
k
J−1 +

n∑

k=1

`2,n−ku
k
J−2 + . . .+

n∑

k=1

`S,n−ku
k
J−S.

This representation of un
J is implemented as a boundary condition. We have to compute

the inverse Z-transformations `1, . . . , `S of ˆ̀
1(z), . . . , ˆ̀S(z) numerically. Therefore we use

a MATLAB routine or the procedure ENTCAF ([LS71]), that calculates approximations

to a set of normalised Taylor coefficients. Note that the Z-transformation (1.7.8) can be

regarded as a Taylor series in 1
z
.

PROOF of Theorem 1.11. Here, at the end of this section, we will return to the

proof of Thm. 1.11. Therefore, we observe, that for M = 0 the equation (1.7.11) remains

invariant under the change of j → −j. This implies, that the number of decaying and

increasing solutions (and therefore the number of zeros with absolute value larger and

smaller than one) is equal. We will show, that there exists no α with |α| = 1. In that case,

Thm. 1.11 holds for M = 0, and a continuity argument shows the assertion for M 6= 0:

instead of M consider M̃ = εM. For ε increasing from zero to one the zeros of (1.7.11)

are continuously depending on ε, and since |α| = 1 is impossible, S zeros remain inside the

unit circle, and S stay outside.

It remains to show, that |α| = 1 is impossible for |z| sufficiently large. Therefore, we

multiply (1.7.11) with k̄T from the left

(1.7.30) α2k̄TMMM+k + k̄TMMM−k = −αk̄T
(
MMM0 + h2mQQT

)
k.

We observe, that MMM0 = −(MMM+ +MMM−)+ r z−1
θz+1−θ

I and by taking absolute values we obtain

(1.7.31)
∣∣α2k̄TMMM+k + k̄TMMM−k

∣∣ = |α|
∣∣∣∣k̄

T

(
MMM+ + MMM− + r

z − 1

θz + 1 − θ
I − h2mQQT

)
k

∣∣∣∣ .

We assume |α| = 1 and use the triangle inequality:

(1.7.32) k̄T (MMM+ + MMM−)k ≥
∣∣∣∣k̄

T (MMM+ + MMM−)k + k̄T

(
r

z − 1

θz + 1 − θ
I− h2mQQT

)
k

∣∣∣∣ ,

where MMM+ and MMM− are diagonal matrices, which have only positive entries due to the

maximum principle (cf. p. 29). Now, we introduce the abbreviation β := k̄T (MMM++MMM−)k ∈
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� + and rewrite (1.7.32)

(1.7.33) β ≥
∣∣∣∣β + k̄T

(
r

z − 1

θz + 1 − θ
I − h2mQQT

)
k

∣∣∣∣ .

But the absolute value of the r.h.s. of (1.7.33) is strictly larger than β, if

(1.7.34) Re

(
r

z − 1

θz + 1 − θ
|k|2 − h2mQk̄T QTk

)
> 0.

We now proceed investigating the two z-depending terms: the real part of the first term is

(1.7.35) Re

(
r

z − 1

θz + 1 − θ

)
=
h2

k

1

θ

(2 − 1
θ
)
[
|z|2 − Re(z)

]
+
(

1
θ
− 1
) [

|z|2 − 1
]

|z + 1−θ
θ
|2 ,

which is positive for 1
2
≤ θ ≤ 1 and |z| > 1. The factor mQ(z) in the second term is a

heart shaped function for |z| > 1 and asymptotically behaves like

(1.7.36) mQ(z) =
1 + θ − θ

z

θz + 1 − θ
=

1 + θ

θz
+ O(z−2), z → ∞.

Therefore the condition (1.7.34) holds for |z| sufficiently large and (1.7.33) leads to a

contradiction, i.e. we showed |α| 6= 1 for |z| sufficiently large. This finishes the proof of

Thm. 1.11. �

7.2.2. Reduction of order method. This method to derive the discrete transparent bound-

ary condition also arises when solving the Z-transformed system of ordinary difference

equations on the exterior domain. Here, the system is solved by reducing the difference

equations to first order. It yields the DTBC in matrix form.

Again we start with the original discrete scheme for some point j ≥ J outside of the

computational domain, where all coefficients are constant:

h2

k

(
un+1

j − un
j

)
= θ

[
1
2
Σ24+4− − hM {R∆+ + (I − R)∆−}

]
un+1

j

+(1 − θ)
[
Σ2∆+∆− − hM {R∆+ + (I − R)∆−}

]
un

j(1.7.37)

+h2QT
[
(1 + θ)un

j − θun−1
j

]
.

We use again the Z-transformation to get a system of ordinary difference equations

h2

k
(z − 1) ûj = (θz + 1 − θ)

[
1

2
Σ2∆+∆−ûj − hM

{
R∆+ + (I − R)∆−} ûj

]

+

(
1 + θ − θ

z

)
h2QT ûj, j > J.(1.7.38)
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Lemma 1.14. If the boundary value problem (1.7.38) with the boundary data

(1.7.39) û(xj = xJ) = ûJ , û(xj = ∞) = 0

has a solution, it is unique for |z| sufficiently large.

Proof. For showing the uniqueness we assume, that there are two solutions û1 and

û2 of (1.7.38), (1.7.39). The difference û = û1 − û2 is then a solution of the problem with

homogeneous boundary data. We multiply (1.7.38) with ûH
j from the left and sum from J

to infinity

(1.7.40) − 1

2

∞∑

j=J

ûH
j Σ24+4−ûj + h

∞∑

j=J

ûH
j (I− R)M4−ûj + h

∞∑

j=J

ûH
j RM4+ûj

+

∞∑

j=J

ûH
j

(
h2

k

z − 1

θz + 1 − θ
I − h2 1 + θ − θ

z

θz + 1 − θ
QT

)
ûj = 0.

We will abbreviate the first row with X and investigate it further. With the abbreviations

from Sec. 7.2.1 it reads

(1.7.41) X =
∞∑

j=J

ûH
j

(
−MMM+ûj+1 + (MMM+ + MMM−)ûj −MMM−ûj−1

)
.

Mark that MMM+ and MMM− are diagonal matrices with diagonal entries strictly larger than

zero. This is due to the discrete maximum principle. We consider

Re

( ∞∑

j=J

ûH
j MMM−ûj−1

)
= Re

( ∞∑

J−1

ûH
j+1MMM−ûj

)

= Re

( ∞∑

j=J

(ûH
j MMM−ûj+1)

)
= Re

( ∞∑

j=J

ûH
j MMM−ûj+1

)
.(1.7.42)

Analogously for the left term we get Re
(∑∞

j=J ûH
j MMM+ûj+1

)
= Re

(∑∞
j=J ûH

j MMM+ûj−1

)
.

In this way we can write Re(X) = −Re
(∑∞

j=J ûH
j (MMM+ + MMM−)4+ûj

)
as well as Re(X) =

Re
(∑∞

j=J ûH
j (MMM+ + MMM−)4−ûj

)
and which together with summation by parts yields

Re(X) = −1

2
Re

( ∞∑

j=J

ûH
j (MMM+ + MMM−)4+4−ûj

)

=
1

2
Re

( ∞∑

j=J

4−ûH
j (MMM+ + MMM−)4−ûj

)
≥ 1

2
M±

0

∞∑

j=J

|ûj|2,(1.7.43)
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if M±
0 is the smallest off-diagonal entry of MMM+ +MMM−. Taking real parts in (1.7.40) yields

(1.7.44)

0 ≥ 1

2
M±

0

∞∑

j=J

|ûj|2 −
∞∑

j=J

Re

(
ûH

j

1 + θ − θ
z

θz + 1 − θ
QT ûj

)
+ Re

(
z − 1

θz + 1 − θ

) ∞∑

j=J

|ûj|2 ≥ 0,

if |z| is sufficiently large. Because then
1+θ− θ

z

θz+1−θ
is small and the difference of the first two

terms is positive. But Re
(

z−1
θz+1−θ

)
> 0 for all |z| > 1. Thus, we conclude ûj = 0 for j > J ,

which is a contradiction to the assumption. �

remark 1.15. Analogously to the continuous problem the existence of a solution is

guaranteed by the regularity of the S × S principal submatrix of the matrix of right eigen-

vectors (cf. Lem. 1.8 and Rem. 1.9), which holds for all considered examples.

To solve the system (1.7.38) we reduce it to a system of first order by introducing

v̂j = ∆−ûj and abbreviate z1 = θz + 1 − θ, z2 = 1 + θ − θ
z
, mQ = z2

z1
and t = z−1

z1
:

(1.7.45)

(
hRM −1

2
Σ2

−I 0

)(
∆+ûj

∆+v̂j

)
=

(
h2mQQT − th2

k
I −(I − R)M

0 −E

)(
ûj

v̂j

)
,

where E is the shift operator Ewj = wj+1, which is eliminated by

(1.7.46)

(
hRM −1

2
Σ2

−I I

)(
ûj+1 − ûj

v̂j+1 − v̂j

)
=

(
h2mQQT − th2

k
I −h(I − R)M

0 −I

)(
ûj

v̂j

)
.

We define the matrices A =

(
hRM −1

2
Σ2

−I I

)
and B =

(
h2mQQT − th2

k
I −h(I − R)M

0 −I

)

and have for regular A

(1.7.47)

(
∆+ûj

∆+v̂j

)
= A−1B

(
ûj

v̂j

)
, j ≥ J.

For the DTBC we have to reproduce a solution, that decays for j → ∞. Therefore, we will

now discuss, under which conditions a solution of the general equation

(1.7.48) ∆+wj = Wwj, j ≥ 0

decays for x → ∞. If JW is the Jordan form of W + I and PW holds the corresponding

(possibly generalised) eigenvectors, we have

(1.7.49) wj+1 = (W + I)wj = PWJWP−1
Wwj = PWJ

j+1
W P−1

Ww0.
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And thus P−1
Wwj decays in any matrix norm (see also [QSS00])

(1.7.50) ||P−1
Wwj+1|| ≤ ||JW|| · ||P−1

Wwj||,

if ||JW|| < 1, where || · || denotes the associated matrix norm. Since P−1
W is regular, this

implies that also wj decays.

Equation (1.7.47) is equivalent to

(1.7.51)

(
ûj+1

v̂j+1

)
= (A−1B + I)

(
ûj

v̂j

)
= PJP−1

(
ûj

v̂j

)
, j ≥ J,

when J is the Jordan form of A−1B+I and P holds the corresponding (possibly generalised)

eigenvectors. Thus, any solution of (1.7.51) involving eigenvalues

λ(A−1B) of A−1B with |λ−(A−1B) + 1| < 1 is decreasing for

j → ∞ in at least one vector norm (cf. Satz 6.9.2 [SB90]). The

others with |λ+(A−1B)+ 1| > 1 are increasing. This splitting of

the eigenvalues was already shown in Thm. 1.11 for the ansatz

method.
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
����������� Im

Re−1

λ (     )A B λ (     )A B+−
−1

−1

Thus, we may again split the Jordan form J =
(

J1 0
0 J2

)
, J1 holding the eigenvalues λ−

and J2 holding λ+. With the matrix of eigenvectors P−1 =
(

P1 P2
P3 P4

)
the equation

P−1

(
ûj+1

v̂j+1

)
= P−1(A−1B + I)

(
ûj

v̂j

)
= P−1P

(
J1 0

0 J2

)(
P1 P2

P3 P4

)(
ûj

v̂j

)

=

(
J1 0

0 J2

)(
P1ûj + P2v̂j

P3ûj + P4v̂j

)
, j ≥ J(1.7.52)

holds and the transformed discrete transparent boundary condition reads

(1.7.53) P3ûJ + P4v̂J = 0.

If the matrix P4 is regular, then the boundary condition can be formulated in Dirichlet-

to-Neumann form

(1.7.54) ∆−ûJ = Φ̂ûJ ,

where Φ̂ = −P−1
4 P3 . The regularity of P4 is not clear, but it is true for every example

we considered.
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Thus, we have for each component s

(1.7.55) ûs,J − ûs,J−1 =

S∑

l=1

φ̂s,lûl,J ,

or after an inverse Z-transformation

un+1
s,J − un+1

s,J−1 =
S∑

l=1

n+1∑

k=0

φn+1−k
s,l uk

l,J

=

S∑

l=1

(
n∑

k=1

φn+1−k
s,l uk

l,J + φ0
s,lu

n+1
l,J

)

un+1
s,J − un+1

s,J−1 −
S∑

l=1

φ0
s,lu

n+1
l,J =

S∑

l=1

n∑

k=1

φn+1−k
s,l uk

l,J .(1.7.56)

Since we were able to confine the influence of the coupling term QT to time steps smaller

or equal to n, the system of equations could be solved for each state s independently. The

boundary condition in the form of (1.7.56) would destroy this advantage. Fortunately, we

have φ0
s,l = 0 for l 6= s. This can be seen, if the initial value theorem (cf. [Doe67])

(1.7.57) φ0
l,s = lim

z→∞
φ̂l,s(z)

is regarded. Φ̂ is defined as the product of blocks of the matrix, that contains the eigen-

vectors of A−1B + I. If we change limit and eigenvalue calculation, we have

mQ(z) =
1 + θ − θ

z

θz + 1 − θ
=

1 + θ

θz + 1 − θ
− θ

θz2 + (1 − θ)z
, lim

z→∞
mQ(z) = 0,(1.7.58)

t(z) =
z − 1

θz + 1 − θ
=

1

θ

(
1 − 1

θz + 1 − θ

)
, lim

z→∞
t(z) =

1

θ
(1.7.59)

and A−1B+ I is block-diagonal with a matrix of eigenvectors which is also block-diagonal.

Of course, the product of two such blocks is diagonal.

Finally, we obtain for each state s the discrete transparent boundary condition

(1.7.60)
(
1 − φ0

s,s

)
un+1

s,J − un+1
s,J−1 =

S∑

l=1

n∑

k=1

φn+1−k
s,l uk

l,J , s = 1, . . . , S.
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7.2.3. The relation between the two discrete transparent boundary conditions. In the

preceeding sections we derived two different methods to formulate the DTBC. The con-

struction and also the formulation differ significantly: The ansatz method calculates S

scalar values and formulates the DTBC on S neighbouring grid points at the boundary.

We have to presume, that the initial function vanishes at all boundary points involved.

The reduction of order method needs to calculate a complete S×S-matrix, but formulates

the DTBC by a matrix equation for two boundary points. Only at these two boundary

points, we assume the initial function to vanish.

In this section we will show, that the two different DTBCs (1.7.29) and (1.7.55) can be

transformed into each other. Therefore we will show, that the DTBC of the ansatz method

(1.7.29) is equal to

(1.7.61)

(
S∑

i=1

ˆ̀
iYi

)
ûJ−1 =

(
I −

S∑

i=2

ˆ̀
iXi

)
ûJ

for appropriate definitions of the matrices Xi and Yi. Comparing this formulation with

the DTBC of the reduction of order method (1.7.55) in matrix notation

(1.7.62) ûJ−1 = (I − Φ̂)ûJ ,

yields a unique relation between the occurring matrices, if
∑S

i=1
ˆ̀
iYi is regular.

To show the equality of (1.7.29) and (1.7.61), we consider the Z-transformed difference

scheme in the form (1.7.9) or

(1.7.63) ûJ−1 = B0ûJ + B+ûJ+1

with B+ = − (MMM−)
−1 MMM+ and B0 = − (MMM−)

−1 (MMM0 + h2mQQT
)
, which exist, since all

diagonal entries in MMM− are positive due to the discrete maximum principle and thus the

diagonal matrix MMM− is regular. For simplicity we will only consider x-independent pa-

rameters M, Σ2 and QT here. Otherwise the matrices MMM−,MMM0 and MMM+ have a more

complex structure, but still remain diagonal.

As a preparation we will now prove the following lemma:

Lemma 1.16. For the difference scheme (1.7.63) the following recursion holds:

(1.7.64) ûJ−m = YmûJ−1 + XmûJ , for m ≥ 2,
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with the matrices

X1 = I, X2 = B+, Xm+1 = B0Xm + B+Xm−1, m ≥ 2,(1.7.65)

Y1 = I, Y2 = B0, Ym+1 = B0Ym + B+Ym−1, m ≥ 2.(1.7.66)

Proof. By induction:

For the induction basis m = 2 we have just the interior scheme ûJ−2 = B0ûJ−1 +B+ûJ .

For the induction step m → m + 1 we consider the interior scheme and then use the

induction hypothesis for m and m− 1

ûJ−(m+1) = B0ûJ−m + B+ûJ−(m−1)

= B0(YmûJ−1 + XmûJ) + B+(Ym−1ûJ−1 + Xm−1ûj)

= (B0Ym + B+Ym−1)ûJ−1 + (B0Xm + B+Xm−1)ûJ

= Ym+1ûJ−1 + Xm+1ûJ .

�

After this preparation we are able to show the following lemma:

Lemma 1.17. The discrete TBC (1.7.29) of the ansatz method ûJ =
∑S

i=1
ˆ̀
iûJ−i is for

all S ≥ 1 an equivalent formulation of

(1.7.67) ûJ =

S∑

i=1

ˆ̀
iYiûJ−1 +

S∑

i=2

ˆ̀
iXiûJ .

Proof. By induction we will prove the equality of the r.h.s. and thus formulate the

induction hypothesis

(1.7.68)
S∑

i=1

ˆ̀
iûJ−i =

S∑

i=1

ˆ̀
iYiûJ−1 +

S∑

i=2

ˆ̀
iXiûJ .

For the induction basis we consider S = 1:

(1.7.69) ˆ̀
1ûJ−1 = ˆ̀

1Y1ûJ−1,

which is true, since Y1 = I.



7. Discrete boundary conditions 45

For the induction step S → S+1 we use the induction hypothesis (IH) and Lem. 1.16:

S+1∑

i=1

ˆ̀
iûJ−i =

S∑

i=1

ˆ̀
iûJ−i + ˆ̀

S+1ûJ−(S+1)

IH
=

S∑

i=1

ˆ̀
iYiûJ−1 +

S∑

i=2

ˆ̀
iXiûJ + ˆ̀

S+1ûJ−(S+1)

lem.1.16
=

S∑

i=1

ˆ̀
iYiûJ−1 +

S∑

i=2

ˆ̀
iXiûJ + ˆ̀

S+1(YS+1ûJ−1 + XS+1ûJ)

=

S+1∑

i=1

ˆ̀
iYiûJ−1 +

S+1∑

i=2

ˆ̀
iXiûJ .

�

We showed, that the boundary condition of the ansatz method, that involves S bound-

ary points is equivalent to a formulation based only on two boundary points. It is equal

to the BC of the reduction of order method if the l.h.s. matrix of (1.7.61) is regular.

7.2.4. Summed convolution coefficients. For S = 1, i.e. a scalar problem, the DTBC

(1.7.60) is equivalent to the DTBC for parabolic equations derived by Ehrhardt in [Ehr01].

He showed, that the coefficients φs,l are an oscillating series, and hence considered summed

coefficients to avoid subtractive cancellation. An additional advantage of the summed

coefficients is, that they are faster decreasing (in the scalar case like O(n−3/2)) and the sum

over k can be truncated to obtain local in time “simplified DTBCs”. In Sec. 8 ”Numerical

examples” we will see, that also our coefficients for systems are oscillating. Therefore, we

construct summed coefficients based on (1.7.56) by multiplying the boundary condition for

two successive time steps by θ and 1 − θ respectively and adding the resulting equations.

The DTBC with summed coefficients then results in

(1.7.70) θ(1 − ψ0
s,s)u

n+1
s,J − θun+1

s,J−1 =

S∑

l=1

n∑

k=0

ψn+1−k
s,l uk

l,J + (1 − θ)(un
s,J−1 − un

s,J)

with Ψn
s,l := θφn

s,l + (1 − θ)φn−1
s,l for n = 1, 2, . . . and Ψ0

s,l = θφ0
s,l. The summed coefficients

Ψn
s,l are obtained by an inverse Z-transformation:

(1.7.71) Ψn
s,l := Z−1

{θz + 1 − θ

z
φ̂s,l(z)

}
.

These summed convolution coefficients yield very good numerical results as we will

present in Chap. 8. Nevertheless the convolution with the “normal” as well as with the
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summed coefficients yields nonlocal in time boundary conditions, which cause a linearly

increasing numerical effort each time step, i.e. the total effort is a quadratic function of time.

It depends on the application, if such high accuracy is necessary. If not, the high numerical

effort makes the usage of the exact discrete TBCs rather unattractive. In the next section

we will therefore present the derivation of approximated convolution coefficients, which

allow for a fast evaluation of the discrete approximate convolution.

7.2.5. Approximated convolution coefficients. In order to reduce the numerical effort

due to the boundary condition below that of the overall scheme, it is necessary to make

some kind of approximation. We decided to approximate as late as possible and focused on

the convolution coefficients. A simple approach is to cut off the convolution after a constant

number of summands. But this method yields bad results. In this section we will use

the approach of Arnold, Ehrhardt and Sofronov [AES03] to approximate the coefficients

ψn
s,l by the sum of exponentials ansatz. Afterwards we explain how these approximated

convolution coefficients ψ̃n
s,l enable us to fast evaluate the discrete convolution.

We use for each s, τ = 1, . . . , S the following ansatz, which uses a sum of exponentials

(1.7.72) ψn
s,τ ≈ ψ̃n

s,τ :=





ψn
s,τ , n = 0, . . . , ν − 1

Ls,τ∑
l=1

gs,τ,l h
−n
s,τ,l, n = ν, ν + 1, . . . ,

where Ls,τ ∈ � S×S and ν ≥ 0 are fixed numbers. The approximation quality of this ansatz

depends on Ls,τ , ν and the sets {gs,τ,l} and {hs,τ,l} for all s, τ = 1, . . . , S.

In the following we present a method to calculate these sets for given Ls,τ and ν. We

consider the formal power series

(1.7.73) fs,τ(x) := ψν
s,τ + ψν+1

s,τ x + ψν+2
s,τ x

2 + . . . , for |x| ≤ 1.

If there exists the Padé approximation of (1.7.73)

(1.7.74) f̃s,τ (x) :=
n

(Ls,τ−1)
s,τ (x)

d
(Ls,τ )
s,τ (x)

(where the numerator and the denominator are polynomials of degree Ls,τ − 1 and Ls,τ

respectively), then its Taylor series

(1.7.75) f̃s,τ (x) = ψ̃ν
s,τ + ψ̃ν+1

s,τ x + ψ̃ν+2
s,τ x

2 + . . .
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satisfies the conditions

(1.7.76) ψ̃n
s,τ = ψn

s,τ , for n = ν, ν + 1, . . . , 2Ls,τ + ν − 1

according to the definition of the Padé approximation rule.

We now consider, how to compute the coefficient sets {gs,τ,l} and {hs,τ,l}.

Theorem 1.18 ([AES03], Theorem 3.1.). Let d
Ls,τ
s,τ have Ls,τ simple roots hs,τ,l with

|hs,τ,l| > 1, l = 1, . . . , Ls,τ . Then

(1.7.77) ψ̃n
s,τ =

Ls,τ∑

l=1

gs,τ,l h
−n
s,τ,l, n = ν, ν + 1, . . . ,

where

(1.7.78) gs,τ,l := − n
(Ls,τ−1)
s,τ (hs,τ,l)(
d

(Ls,τ )
s,τ

)′
(hs,τ,l)

hν−1
s,τ,l 6= 0, l = 1, . . . , Ls,τ .

remark 1.19. The asymptotic decay of the ψ̃n
s,τ is exponential. This is due to the sum

of exponentials ansatz (1.7.72) and the assumption |hs,τ,l| > 1, l = 1, . . . , Ls,τ .

Now we describe the fast evaluation of the discrete approximate convolution. The

convolution

(1.7.79) C(n+1)
s,τ (u) :=

n+1−ν∑

k=1

ψ̃n+1−k
s,τ uk

τ,k,

with

(1.7.80) ψ̃n
s,τ :=

Ls,τ∑

l=1

gs,τ,l h
−n
s,τ,l, n = ν, ν + 1, . . .

can be calculated efficiently by a simple recurrence formula:

Theorem 1.20 ([AES03], Theorem 4.1.).

(1.7.81) C(n+1)
s,τ (u) =

Ls,τ∑

l=1

C
(n+1)
s,τ,l (u)

with

C
(n+1)
s,τ,l (u) = h−1

s,τ,lC
(n)
s,τ,l + gs,τ,lh

−ν
s,τ,lu

n+1−ν
τ,J , n = ν, ν + 1, . . .(1.7.82)

C
(ν)
s,τ,l(u) ≡ 0
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Finally, we summarise the above method to evaluate approximate DTBCs:

Step 1: For each s, τ choose Ls,τ and ν and calculate the exact convolution coefficients

ψn
s,τ for n = 0, . . . , 2Ls,τ + ν − 1.

Step 2: For each s, τ use the Padé approximation (1.7.74) for the series (1.7.75) with

ψ̃n
s,τ = ψn

s,τ , for n = ν, ν + 1, . . . , 2Ls,τ + ν − 1 to calculate the sets {gs,τ,l} and

{hs,τ,l} for all s, τ = 1, . . . , S according to Theorem 1.18.

Step 3: Implement the recurrence formulas (1.7.81), (1.7.82) to calculate approximate con-

volutions.

7.3. Stability. To check the stability we have to assert that the l1-norm of the nu-

merical solution in the computational domain is bounded from above. Therefore, we define

(1.7.83) ||un||l1(0,d) :=
d−1∑

j=0

S∑

s=1

|un
s,j| =

d−1∑

j=0

S∑

s=1

un
s,j, d > 1.

Thus, inserting the discrete equation (1.6.3) and remembering that the row sum of Q

equals zero, the half-space problem satisfies

h2

k
4+||un||l1(0,∞) =

h2

k

S∑

s=1

(un+1
s,0 − un

s,0)

+

∞∑

j=1

S∑

s=1

(
1

2
4+4−(σ2

s,ju
n+θ
s,j ) − h4+(µs,jρs,ju

n+θ
s,j ) + h4−(µs,j(1 − ρs,j)u

n+θ
s,j )

)

=
S∑

s=1

( ∞∑

j=1

T+
s,j+1u

n+θ
s,j+1 −

∞∑

j=1

(T+
s,j + T+

s,j)u
n+θ
s,j +

∞∑

j=1

T−
s,j−1u

n+θ
s,j−1 +

h2

k
(un+1

s,0 − un
s,0)

)

=
S∑

s=1

(
−T+

s,1u
n+θ
s,1 + T−

s,0u
n+θ
s,0 +

h2

k
(un+1

s,0 − un
s,0)

)
= 0

(1.7.84)

after an index transformation for the first and third sum over j. The abbreviations are

T+
s,j = 1

2
σ2

s,j − hρs,jµs,j and T−
s,j = 1

2
σ2

s,j + h(1 − ρs,j)µs,j. The last equality is just the

reflecting boundary condition (1.7.3a) at j = 0.

Since with transparent boundary conditions at the right boundary xJ we just cut off a

part of the solution of the half-space problem, the l1-norm on the computational domain

is bounded by the l1-norm of the half-space problem:

(1.7.85) ||un||l1(0,J) ≤ ||un||l1(0,∞) = ||u0||l1(0,∞).
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But this is only valid for exact DTBCs. With numerically computed convolution coefficients

a calculation analogous to (1.7.84) yields

(1.7.86)
h2

k
4+||un||l1(0,J) =

S∑

s=1

(
T+

s,Ju
+
s,Ju

n+θ
s,J − T−

s,J−1u
n+θ
s,J−1

)
.

The aim is now, to show that (1.7.86) is non-positive. But using the DTBC does not yield

any estimate, because our information about properties of the convolution matrix is to

small. It remains the possibility to check the sign of (1.7.86) numerically. This we will do

for the numerical example at the end of Sec. 8.

7.4. The numerical inverse Z-transformation. The Z-transformation (or in the

analytical part the Laplace-transformation) is the mighty instrument, which enables us to

solve occurring equations and to formulate this kind of transparent boundary conditions.

In the implementation the numerical inverse Z-transformation proved to be a more subtle

problem than every other point including e.g. the calculation of eigenvectors. For that

reason, we will investigate it further.

7.4.1. Performing Z-transformation with Fourier-transformation. Many mathematical

toolboxes contain ordinary transformations, including a (fast) Fourier-transformation as a

standard routine. The less common Z-transformation is rarely found. Here, we will present

the easy coherence between both. The Z-transform will be denoted by Z, F is the discrete

Fourier-transform. On the unit circle holds for the finite Z-transform ZN for z = eiϕ

(1.7.87) Z(fj) ≈ ZN(fj) =

N∑

j=0

fjz
−j =

N∑

j=0

fje
−ijϕ = F (eiϕ).

On a circle with radius r holds

(1.7.88) F (reiϕ) =
N∑

j=0

fjr
−je−ijϕ =

N∑

j=0

fjr
−jz−j = ZN(fjr

−j) ≈ Z(fjr
−j).

We observe, that applying the inverse Z-transformation not on the unit circle necessitates

a rescaling of the n-th convolution coefficient with rn. For big circles this causes numerical

problems.

7.4.2. The error of the numerical inverse Z-transformation. In this section we will

examine the numerical error caused by the inverse Z-transformation, since it is the crucial

point in the numerical implementation. For the transformation we have to choose a radius r
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and a number N of points zk to define the circle on which the transformation is performed.

An intelligent choice of these parameters is essential to achieve good results.

The numerical error can be separated in εapprox the error in the approximation on a finite

number of sampling points and the roundoff error εround. `
N
n denotes the approximation on

a circle with N sampling points. A tilde on top of it indicates that the roundoff error is

considered.

The Z-transformation of {`m} at the sampling points zk reads

ˆ̀
k := ˆ̀(zk) =

∞∑

m=0

`mz
−m
k , with zk = re−ik 2π

N .(1.7.89)

If we assume, that ˆ̀(z) is an analytic function for |z| > R , then the `n are just identical

with the Laurent coefficients of ˆ̀(z) given by

(1.7.90) `n =
1

2πi

∮

Sρ

ˆ̀(z)zn−1dz,

where Sρ denotes the circle with radius ρ > R. If we substitute z = ρeiϕ , we obtain

(1.7.91) `n =
ρn

2π

∫ 2π

0

ˆ̀
(
ρeiϕ

)
einϕdϕ.

Defining Mρ
ˆ̀ = max

0≤ϕ≤2π

∣∣∣ˆ̀(ρeiϕ)
∣∣∣ gives the estimate

(1.7.92) |`n| ≤ ρnMρ
ˆ̀ .

The inverse Z-transformation of ˆ̀ can be approximated on N discrete sampling points as

follows

(1.7.93) `Nn =
1

N
rn

N−1∑

k=0

ˆ̀
k e

ink 2π
N , n = 0, . . . N − 1.
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We insert (1.7.89) in (1.7.93), change the order of summation and use the orthogonality

property

`Nn =
1

N
rn

∞∑

m=0

`mr
−m

N−1∑

k=0

e−imk 2π
N eink 2π

N

=
1

N
rn

∞∑

m=0

`mr
−m




N , if m = n + jN , j ∈ �

0 , else

= rn
∞∑

k=0

`n+kN r−(n+kN).

This gives

(1.7.94) `Nn − `n =

∞∑

k=1

`n+kN r−kN .

Now, we insert inequality (1.7.92) in (1.7.94) and sum the geometric series, which yields

(1.7.95) |`Nn − `n| ≤ ρnMρ
ˆ̀

∞∑

k=1

(ρ
r

)kN

= ρnMρ
ˆ̀

(
ρ
r

)N

1 −
(

ρ
r

)N

for r > ρ > R.

Similar estimates have been derived in the application of quadrature rules to numerical

integration by Lubich, which involve Fourier transformation (cf. [Lub88], [Hen79]).

The other influential error is the roundoff error, that depends on the machine accuracy

εm and the accuracy ε in the numerical computation of ˆ̀
k. For instance,we will use ã =

a(1 + εm) as the computer representation of an exact value a. The roundoff error of the

inverse Z-transformation is calculated from equation (1.7.93). The main part results from

the N fold summation of ˆ̀
k and the exponential function.

(1.7.96)
∣∣∣˜̀Nn − `Nn

∣∣∣ ≤ rn (CNεm + ε)M r
ˆ̀
k

Together with (1.7.95) the error is bounded by

(1.7.97) | ˜̀Nn − `n| ≤ ρnMρ
ˆ̀

(
ρ
r

)N

1 −
(

ρ
r

)N + rn ((N + 1)εm + ε)M r
ˆ̀
k

+O(ε2m + εεm).

It is possible to show this behaviour of the error roughly in numerical examples. We

calculated the series `n for an arbitrary problem with four states with different accuracy

(20, 30 and 40 digits precision) and considered the solution obtained with 50 digits precision
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as a reference solution. We used N = 256 sampling points on the circle. The Euclidean

norm of the error is shown in Fig. 1.6 for each of the 16 entries in the matrix `. Each

plot gives the four elements of one row. For each element the error decreases with growing

radius, up to a ropt, after which the roundoff error grows rapidly. Observe, that the y-axis

of the plots are in logarithmic scale. The curves for 20, 30 and 40 digits coincide for small

values of r up to the radius r20
opt, r

30
opt respectively. This can be seen best in Fig. 1.7 which

shows just the first diagonal element of `.
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Figure 1.6: Error in the 4× 4-matrix ` compared to numerical solution calculated with 50

digits precision and N = 256 sampling points for the inverse Z-transformation on radius

r ∈ [1.00001, 1.2]
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Figure 1.7: Error in one element of the matrix `

Since the calculation for a system is rather expensive, it is desirable to predict a radius

close to ropt. From Fig. 1.6 we can learn, that even for different entries in our matrix, the

optimal radius varies. But the dependency on the model parameters seems to be much

less than the dependency on the working precision or the number of sampling points. In

Fig. 1.6 we have 1.05 ≤ r20
opt ≤ 1.075 and thus r = 1.06 might be a good compromise for a

working precision of 20 digits and N = 256 sampling points.

All subsequent plots are restricted to but one element of the matrix `, since we could

discern no perceptible qualitative difference between the elements.
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Figure 1.8: Error in one element of the matrix ` calculated with 20 digits precision de-

pending on the number N of sampling points for the inverse Z-transformation
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The preceeding figures showed the influence of the mantissa length on the accuracy

of the calculation. Now, we want to show the dependence of the error on the number N

of sampling points. Fig. 1.8 shows five error curves with 20 digits precision; one for N=

64, 128, 256, 512 and 1024 respectively. The error norm is summed up to 64. A higher

number of sampling points yields a faster decreasing error, ropt becomes smaller and of

course the error at ropt becomes less. An influence of N on the round off error is hardly

discernable. Comparing the errors at the different N -depending ropt, we notice, that the

gain of taking the double number of points gets less with increasing N . Of course the

error cannot become less than the precision in the calculation of ˆ̀
n. Fig. 1.8 shows that

N = 1024 is absolutely sufficient. Just the need for a larger number of coefficients in time

requires more sampling points.

In Fig. 1.9 we compare the error in the Euclidean norm with the error bound (1.7.97),

i.e. with the separate bounds for the approximation error and roundoff error. We assumed

ε = 10 · εm and calculated the maximum of ˆ̀ on all r for simplicity reasons.
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Figure 1.9: Error and error bounds

Estimate (1.7.97) and the plots reveal the reason, why it is so hard to find an appropriate

radius r, on which we perform the transformation: the approximation error necessitates a

larger radius; but for a bigger radius the roundoff error grows.
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8. Numerical examples

In this section we will give some numerical examples to show the quality of the DTBCs.

Before we reconsider the queueing system example of Fig. 1.4 in Chap. 2, we will start

to give some confidence in the DTBC and especially in the numerical calculation of the

convolution coefficients, whose accurate computation is the foundation for good numerical

results.

We used the reduction of order method in all considered numerical examples for two

reasons: first the numerical results for this method are better then those for the ansatz

method. Second the convolution coefficients of the reduction of order method can be

compared directly to those in the scalar case obtained by Ehrhardt [Ehr01]. This we will

do in the first example.

8.1. Example 1 - the diagonalisable problem. In order to scrutinise the quality

of the convolution coefficients, we give an example, in which the parabolic system (1.2.26a)

can be transformed to a purely diagonal system

(1.8.1)
∂

∂t
π(t, x) +

∂

∂x
(M(x)π(t, x)) =

1

2

∂2

∂x2

(
Σ2(x)π(t, x)

)
+ QT π(t, x), x ∈ Ω, t ≥ 0,

where QT is diagonalisable with QT = VTQT (VT )−1 = diag(λ1, . . . , λS), M(x) = M(x) =

µ I, Σ2(x) = Σ2(x) = σ2 I and π(t, x) = VTπ(t, x). Then the convolution coefficients are

Φn = (VT)−1ΦnVT. In this case we have for each component just a separate scalar

equation and the convolution coefficients of the DTBC (1.7.56) can be computed explicitly

by

φ0

i,i
= 1 − 1

1 + τ+
i

(
Hi +

κi

Ki
+

1 +
√
Ai

2θKi

)

φn

i,i
= − (−1)n

2θ(1 − θ)Ki

(
1 − θ

θ

)n
1

1 + τ−i
− 1

Ki

√
Ai

1

1 + τ−i
·

·
(
Ai

2θ
P̃n(υi) +

Ci

2(1 − θ)
+

1

2θ(1 − θ)2

n−1∑

k=0

(
θ − 1

θ

)n−k

P̃k(υi)

)
, n ≥ 1(1.8.2)

(cf. [Ehr01]). The abbreviations are

Ki =
1

2
σ2

i,i

k

h2
, Hi = 1 − (1 − 2ρi,i)

µ
i,i

σ2
i,i

h,

κ+
i = 1 − θkQ

i,i
, κ−i = 1 + (1 − θ)kQ

i,i
,



56 1. Parabolic systems

β+
i = −θµ

i,i

k

h
, β−

i = −(1 − θ)µ
i,i

k

h
,

τ+
i = −2ρi,i

µ
i,i

σ2
i,i

h, τ−i = 2(1 − ρi,i)
µ

i,i

σ2
i,i

h,

Ai = (κ+
i )2 + 4θKiHiκ

+
i + (β+

i )2, Bi = κ+
i κ

−
i − 2KiHi[(1 − θ)κ+

i − θκ−i ] − β+
i β

−
i ,

Ci = 1 − 4(1 − θ)KiHi + (β−
i )2,

and P̃n(υi) :=
(√

Ci√
Ai

)n

Pn(υi) are the “damped” Legendre polynomials with the argument

υi = Bi√
Ai

√
Ci

.

Note that the above formulas just hold in the case of using a θ-discretisation also

for the coupling term (instead of the described extrapolation, which leads to separated

scalar difference equations), i.e. the factor mQ in the reduction of order method in (1.7.45)

evaluates to mQ ≡ 1.

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

n

s=1, τ=1

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4
x 10

−4

n

s=1, τ=2

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5
x 10

−7

n

s=1, τ=3

Figure 1.10: Example 1: Exact convolution coefficients φn

s,τ
for s = 1, τ = 1, . . . , 3

We will compare the summed form ψn

s,τ
of these exact coefficients to the numerically

calculated coefficients ψn
s,τ of the reduction of order method. Therefore we consider a simple

3 × 3 problem with Σ = 0.9 · I, M = 3 · I and Q =
( −1 1 0

0.5 −1 0.5
0 1 −1

)
in the interval [0, 1] and

choose the discretisation parameters as k = 1/1000, h = 1/40 and θ = 1/2 (Crank-Nicolson

scheme). The coefficients have been obtained by an inverse transformation on a circle of

radius rcirc = 1.002 with 213 sampling points. Fig. 1.10 shows the convolution coefficients

φn
1,1, . . . , φ

n
1,3. We observe the different behaviour of these coefficients: φn

1,1 oscillates heavily

and does not visibly decrease. The other two decrease; φn
1,2 rapidly, φn

1,3 after surmounting

to a local maximum (observe the different numbers of plotted coefficients n = 50 and

1000 respectively as well as the different size). We can classify all convolution coefficients

with one of these three types. To which class coefficients belong seems easy to decide:
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Figure 1.11: Example 1: Exact summed convolution coefficients ψn

s,τ
for s, τ = 1, . . . , 3

coefficients of diagonal entries belong to the first class. Non-diagonal entries φn
s,τ belong

to the second class, if the corresponding entry in the generator matrix is nonzero qT
s,τ > 0,

otherwise to the third. We cannot prove this coherence, but the consideration of many

different examples confirms this conjecture. Fig. 1.11 shows the the summed coefficients for

each matrix entry of the problem. We observe, that also the diagonal summed coefficients

decrease rapidly, which makes it extremely desirable to use them instead of the un-summed

coefficients.
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Figure 1.12: Example 1: Absolute error |φn
s,τ − φn

s,τ
| for s, τ = 1, . . . , 3

Fig. 1.12 and 1.13 show the absolute error of the coefficients φn
s,τ and the summed

coefficients ψn
s,τ for n = 0, . . . , 3000, respectively. We observe, that the error in the off-

diagonal coefficients φn
s,τ is close to the computational accuracy (MATLAB on our machine:

εm = 10−16), whereas the error in the diagonal coefficients φn
s,s is approximately 10−7. We

also notice, that the error in the summed coefficients ψn
s,τ is nearly as small as εm, even

for the diagonal coefficients. This improvement for the summed coefficients is due to the

elimination of a singularity in the Z-transform at z = −1 by the multiplication with the
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Figure 1.13: Example 1: Absolute error |ψn
s,τ − ψn

s,τ
| for s, τ = 1, . . . , 3

factor z + 1 in (1.7.71). Fig. 1.14 illustrates this behaviour: It shows the Z-transformed

convolutions coefficients for s = 1 and τ = 1, . . . , 3 on the l.h.s. . For all three coefficients

we can observe peaks in real and imaginary part of the Z-transform. Choosing different

amounts of sampling points verifies, that there is a singularity in φ̂1,1 at z = −1, whereas

the peak at z = 1 in φ̂1,2 and φ̂1,3 is none. By a multiplication with z+1
z

(cf. Sec. 7.2.4) we

obtain the Z-transformed summed coefficients. These are plotted in Fig. 1.14 on the r.h.s.

for ψ̂1,1, ψ̂1,2 and ψ̂1,3. We observe, that the singularity is completely eliminated. Thus,

the summed coefficients do not only avoid subtractive cancellation in the evaluation of the
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Figure 1.14: Example 1: Z-transform of the coefficients φ̂s,τ on the l.h.s. and of the summed

coefficients ψ̂s,τ on the r.h.s. for s = 1, τ = 1, . . . , 3

convolution, but also is their Z-transform better to inverse transform. All this caused us

to use the summed coefficients in the further numerical calculations.

With the DTBC and these summed coefficients we calculated the density function π.

In order to check the quality of the boundary condition we computed a reference solution
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Figure 1.15: Example 1: The numerically calculated density function π1, π2 and π3 on the

l.h.s. and the error to a reference solution on the r.h.s.
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Figure 1.16: Example 1: Absolute error of the difference scheme with approximated coef-

ficients for s = 1, . . . , 3

πexact on a much bigger interval [0, 2.5]. Fig. 1.15 shows the time evolution of the density

function πs for each state/component s on the l.h.s. and the error to the reference solution

πsexact on the r.h.s. . Not only the positive drift µ = 3 can be seen in each state, but also

the effect of diffusion σ2 = 0.9 is obvious. Further we can observe, that the error is at

first proportional to the amount of fluid at the transparent boundary: The error at the

transparent boundary at first grows, then declines for a short time. Afterwards it keeps on

growing. This grows is caused by the fact, that the convolution is increased in each time

step by one summand.

The numerical computation of this example with 1000 time steps required 361,85 sec

CPU time, thereof are 23,35 sec initialisation and calculation of the convolution coefficients.

The main part of the remaining CPU time is due to the boundary condition, and this part

increases with each step in time. To reduce the computational effort, we also used the
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approximated coefficients (cf. Sec. 7.2.5)as an alternative. With this approximated bound-

ary condition the algorithm required 28,5 sec CPU time for 1000 time steps. Not included

is here the time for calculating the approximated coefficients. This required additional

240,2 sec for L = 30 and ν = 2 including the computation of the first ν coefficients with

128 sampling points. The comparatively high effort is caused by the Padé approximation,

which must be performed with high precision (2L − 1 digits mantissa length) to avoid a

”nearly breakdown” by ill conditioned steps in the Lanczos algorithm (cf. [BB97]). If such

problems still occur, the degree of the polynomial is successively reduced. Thus, the ap-

proximated DTBC shows its advantages for large-time calculations. The given CPU-times

seem rather large. Nevertheless, there is no real alternative: even the solution on a bigger

domain with some kind of more effective boundary conditions cannot yield good results,

because due to the diffusion any boundary is reached after a few time steps and the bound-

ary error is again “instantly” diffused on the whole domain. Fig. 1.16 shows the error of

the numerical solution with approximated DTBCs to a reference solution. The error is

with 10−4 and 10−5 respectively rather large compared to the error of the exact TBC (cf.

Fig. 1.15). Still a direct comparison of the density functions gives no visible difference, i.e.

the solution with the approximated TBC yields very good qualitative results.
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8.2. Example 2 - the queueing system example. Next we will consider the queue-

ing system example of Fig. 1.4 in Chap. 2. The generator matrix Q results from the the

rates

λ1 = 4.0, λ2 = 5.0,(1.8.3)

λ6 = 1.0, λ7 = 0.25(1.8.4)

of the transitions (t1, t2, t6 and t7), which have exponential distribution time and are part

of the discrete petri net. Thus Q evaluates to

(1.8.5) Q =




−5.25 0.25 5.0 0.0 0.0 0.0

1.0 −6.0 0.0 5.0 0.0 0.0

4.0 0.0 −9.25 0.25 5.0 0.0

0.0 4.0 1.0 −10.0 0.0 5.0

0.0 0.0 4.0 0.0 −4.25 0.25

0.0 0.0 0.0 4.0 1.0 −5.0




.

The fluid parameters

M = diag (−1.2, 0.4, 0, 1.6, −0.4, 1.2) ,(1.8.6)

Σ2 = diag (2.0, 0.4, 3.2, 1.6, 2.8, 1.2)(1.8.7)

have already been given. At the beginning the system is in the state one shown in Fig.

1.4. Thus, the initial marking is

(1.8.8) π0 =
(
1, 0, 0, 0, 0, 0

)
.

Again we used the Crank-Nicolson scheme (θ = 0.5) with the step sizes h = 0.025 in

space and k = 0.001 in time. We inverse transformed the convolution coefficients on a

circle with radius rcirc = 1.001 with 212 sampling points and used summed convolution

coefficients.

Fig. 1.17 shows the xt-diagram of the density function π for all six states. We observe,

that the mass in the states s = 2, 4, 6 moves to the right, what we expected due to

µ2, µ4, µ6 > 0. The mass moving to the right is interpreted as an increasing number of

waiting clients in the system, which grows since for s = 2, 4, 6 the server fails and the petri

net is in the state “down”. Due to the coupling, the mass in state s = 3 moves to the left.
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Figure 1.17: Example 2: The numerically calculated density π1, . . . , π6
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Figure 1.18: Example 2: Error |πs − πsexact |of the numerical solution πs compared to the

reference solution πsexact for s = 1, . . . , 6
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Figure 1.19: Example 2: The time dependent change in the l1-norm of the solution:

4+
t ||un||l1

µ3 is zero, but the by the coupling in-flowing mass comes especially from state s = 1 and

s = 5 (see above q1,3 = 5, q5,3 = 4), which have negative µ.

Fig. 1.18 shows the error to the reference solution. It is with 10−7 to 10−9 after 1000

time steps very small, but growing in time. Probably the growth is not only due to the fact,

that the convolution is increased in each time step by one summand. Also the accuracy of

the convolution coefficients becomes worse with larger time.

Finally, we want to check numerically the stability of the θ-scheme with DTBCs for the

current example. Therefore, we have to show, that (1.7.86) is non-positive for the whole

computed time. Fig. 1.19 shows the time dependent change in the l1-norm of the numerical

solution. It is negative for each time step n = 1, . . . , 1000. Thus, we used a stable scheme

for this example.
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9. The general system of parabolic equations

Here we will show, that it is possible to formulate the transparent boundary condition

given in the preceeding sections, also for a more general system of parabolic equations.

Whereas in the continuous case this is always possible, the discrete case necessitates addi-

tional restrictions. We consider

(1.9.1) ut =
∂

∂x
(A(x, t)ux) + M(x, t)ux + V(x, t)u, x ∈ �

, t > 0,

where A, M and V are real valued n × n-matrices. We recall in which case a system is

called parabolic:

Definition 1.4 ([KL89]). The system (1.9.1) is called parabolic in 0 ≤ t ≤ T if there

is a constant δ > 0 such that for all x ∈ �
, 0 ≤ t ≤ T and for all eigenvalues κ of the

matrix A holds

(1.9.2) κ ≥ δ > 0.

We again split the whole-space problem into three parts: the interior problem for

xL ≤ x ≤ xR and the left and right exterior problems. For the exterior problems

(1.9.3a) sû = ALûxx + MLûx + VLû, x < xL,

(1.9.3b) sû = ARûxx + MRûx + VRû, x > xR,

where the matrices AL,R, ML,R and VL,R are constant in x and t, the condition (1.9.2)

reads:

(1.9.4) κ > 0, for all eigenvalues κ of AL,R.

Thus, we will restrict our considerations to positive definite matrices AL,R.

For the transparent boundary condition we again use the solution of the exterior prob-

lems. These will be solved using the Laplace transformation in time, yielding 2n solutions.

We will show, that n solutions decay and n increase. The derivation of the left and right

boundary condition just differs in the decision, which solutions increase and thus have to

be extinguished by the DTBC. Therefore, we restrict the derivation to the right exterior

problem. The Laplace transformed exterior problem reads

(1.9.5)

(
u

ux

)

x

=

(
0 I

A−1(sI − V) −A−1M

)(
u

ux

)
= C

(
u

ux

)
, x ≥ xR,
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where A = AR,M = MR and V = VR are constant matrices. With the matrix P−1 =(
P1 P2
P3 P4

)
of left (possibly generalised) eigenvectors of C and J =

(
J1 0
0 J2

)
the Jordan form of

C split in J1 containing eigenvalues associated with decaying and J2 containing eigenvalues

associated with increasing solutions, we have

(1.9.6) P

(
u

ux

)

x

=

(
J1 0

0 J2

)(
P1u + P2ux

P3u + P4ux

)

and claim, that no influence of for x → ∞ / x → −∞ increasing solutions exists at the

right/left boundary, which yields the TBCs

(1.9.7a) PR
3 u + PR

4 ux = 0, x = xR,

(1.9.7b) PL
1 u + PL

2 ux = 0, x = xL.

This splitting into eigenvalues associated to increasing and decreasing solutions gives

then the right number of boundary conditions at each boundary, if it splits the eigenvalues

into two equal groups. This will be asserted in the following lemma.

We remember from 5.1, that eigenvalues with a positive /negative real part, yield for

x→ ∞ increasing/decreasing solutions.

Theorem 1.21 (Splitting Theorem). Of the 2n eigenvalues of C n have a positive and

n a negative real part (and thus yield n for x → ∞ increasing and n decaying solutions),

if Re(s) is sufficiently large.

Proof. We will first show, that there is no purely imaginary eigenvalue λ of C. There-

fore, we use the ansatz

(1.9.8) û = eλxu0

in (1.9.3), which yields

(1.9.9) λ2ūT
0 Au0 + λūT

0 Mu0 + ūT
0 Vu0 − s|u0|2 = 0.

Assume λ = iβ, β ∈ �
. We consider real parts. Since A is positive definite, it holds

λ2ūT
0 Au0 < 0 and thus, if the condition

(1.9.10) Re
(
ūT

0 Vu0 + λūT
0 Mu0 − s|u0|2

)
< 0
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holds, (1.9.9) is a contradiction. But this condition is true, since

(1.9.11)
V + VT

2
− βIm

(
M − MT

2

)
− Re(s)

is negative definite for Re(s) sufficiently large.

Now, instead of M consider εM in (1.9.3) with ε ∈ [0, 1]. For ε = 0 equations (1.9.3)

are invariant for x → −x and thus the number of increasing and decreasing solutions, i.e.

the number of eigenvalues of C with positive and negative real parts must be the same.

Now, for ε from zero to one, the eigenvalues of C are continuously depending on ε and

there exists no purely imaginary eigenvalue for any ε ∈ [0, 1]. For ε = 1, still n eigenvalues

have positive and n have negative real part. �

Thus, the conditions (1.9.7) give for any parabolic system of the form (1.9.1) the right

number of boundary conditions.

9.1. The discretisation of the general parabolic system. In this section we will

shortly give an appropriate discretisation of the parabolic system. For the given discreti-

sation, we then derive discrete transparent boundary conditions. To this end we solve the

exterior problems using a Z-transformation and assert, under which conditions this yields

the right number of boundary conditions.

For a discretisation of (1.9.1) we use the θ-scheme with a central difference approxi-

mation for the first and second spatial derivative. An extrapolating discretisation of the

lowest order term as for the Petri nets is no longer of advantage, because the coupling

is not restricted to this term. Instead we use again the θ-scheme with the abbreviation

un+θ
s,j = (1 − θ)un

s,j + θun+1
s,j :

(1.9.12)
h2

k
(un+1

j − un
j ) = ∆+(A∆−un+θ

j ) +
h

2
M(∆+ + ∆−)un+θ

j + h2Vun+θ
j .

For the derivation of the right DTBC we consider the Z-transformed discrete equation

for the right exterior problem

(1.9.13)
h2

k

z − 1

θz + 1 − θ
ûj = A∆+∆−ûj +

h

2
M(∆+ + ∆−)ûj + h2Vûj,

for j ≥ J , where A = AR,M = MR and V = VR are constant. We reduce the system of

difference equations to first order

(1.9.14)

(
h
2
M A

−I I

)(
∆+ûj

∆+∆−ûj

)
=

(
h2

k
z−1

θz+1−θ
I − h2V −h

2
M

0 −I

)(
ûj

∆−ûj

)
,
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or since A is regular equivalently

(
∆+ûj

∆+∆−ûj

)
=


(T+)−1

[
h2

k
z−1

θz+1−θ
I − h2V

]
(T+)−1T−

(T+)−1
[

h2

k
z−1

θz+1−θ
I − h2V

]
(T+)−1T− − I



(

ûj

∆−ûj

)

= C̃

(
ûj

∆−ûj

)
,(1.9.15)

with the abbreviations T+ := A + h
2
M and T− := A − h

2
M. We claim, that T+ and T−

are positive definite matrices, which can be ensured by a sufficiently small space step size

h.

We decompose the Jordan form J of C̃ + I in two blocks J =
(

J1 0
0 J2

)
, where J1 holds

the eigenvalues with an absolute value smaller than one, J2 those with an absolute value

larger than one. Then (1.9.15) reads with the matrix P−1 =
(

P1 P2
P3 P4

)
of left (possibly

generalised) eigenvectors

(1.9.16) P

(
∆+ûj

∆+∆−ûj

)
=

(
J1 0

0 J2

)(
P1 P2

P3 P4

)(
ûj

∆−ûj

)
.

The eigenvalues in J2 yield for j → ∞ increasing solutions. Therefore the DTBC reads

(1.9.17) P3ûJ + P4∆
−ûJ = 0.

Now we will justify the splitting of the eigenvalues:

Theorem 1.22 (Discrete Splitting Theorem). Of the 2n eigenvalues of C̃ + I n have

an absolute value strictly larger and n have an absolute value strictly smaller than one, if
V+VT

2
is negative definite, 1

2
≤ θ ≤ 1, |z| > 1 and h sufficiently small.

Proof. The proof is analogous to that of Thm. 1.21. We will show, that no eigenvalue

λ of C̃+I with an absolute value of one exists. As in the continuous case, equation (1.9.13)

is invariant for j → −j for M = 0 and a continuity argument proves the splitting.

To investigate the absolute value of the eigenvalues of C̃ + I we insert the ansatz

ûj = λjû0 in (1.9.13)

(1.9.18) λ2T+û0 + T−û0 = λ

(
T+ + T− − h2V +

h2

k

z − 1

θz + 1 − θ
I

)
û0.
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We assume |λ| = 1, consider absolute values of (1.9.18) and use the triangle inequality

after multiplication with ¯̂uT
0 from the left

(1.9.19) ¯̂uT
0 (T+ + T−)û0 ≥

∣∣∣∣¯̂u
T
0 (T+ + T−)û0 − h2 ¯̂uT

0 Vû0 +
h2

k

z − 1

θz + 1 − θ
|û0|2

∣∣∣∣ ,

where ¯̂uT
0 (T+ + T−)û0 is a positive real value. But the absolute value on the r.h.s. is

strictly larger than ¯̂uT
0 (T+ + T−)û0, if

(1.9.20) Re

(
−h2 ¯̂uT

0 Vû0 +
h2

k

z − 1

θz + 1 − θ
|û0|2

)
> 0,

which is a contradiction. Thus for V+VT

2
negative definite, 1

2
≤ θ ≤ 1 and |z| > 1 (cf.

(1.7.35)) there exists no eigenvalue with absolute value one and the eigenvalues divide into

two equal groups. �

remark 1.23. We used the central difference to discretise the first spatial derivative,

since this is possible for any matrix M. If M is diagonalisable, it can be advantageous to

use again an upwind discretisation. The upwind matrices R and I − R are determined

from Mdiag the diagonalised M = S−1MdiagS. This changes the matrices T+ and T− into

T+ = A + hS−1MdiagRS(1.9.21a)

and

T− = A − hS−1Mdiag(I − R)S,(1.9.21b)

which still must be claimed to be positive definite.

In this discrete section, we could not formulate the DTBC without any restriction as

in the continuous case. Nevertheless, for all systems with V+VT

2
negative definite and by

assuring that T+ and T− are positive definite by choosing the step size h sufficiently small,

we can derive the DTBC given in (1.9.17).



CHAPTER 2

Schrödinger–type systems

In the previous chapter we were dealing with parabolic systems. Here, we will be con-

cerned with the derivation and analysis of DTBCs for systems of Schrödinger-type equations

in one space dimension. These occur i.e. in the physics of layered semiconductor devices

([Car96],[Kan82]) as the so called k ·p-Schrödinger equations, which are a well established

tool for band structure calculations [Chu91]. The k · p method in combination with an

envelope function approximation ([Bas88],[Sin93],[Chu95],[Car96]) is frequently used to

calculate the near band edge electronic band structure of semiconductor heterostructures

([Sin93],[WZ96],[CC92]), such as quantum wells. In the notation we follow Bandelow,

Kaiser, Koprucki and Rehberg, who performed in [BKKR00] a rigorous analysis of spec-

tral properties for the spatially one-dimensional k · p-Schrödinger operators. The system

then reads as follows

i
∂

∂t
ϕ = − ∂

∂x
(m(x)

∂

∂x
ϕ) + M0(x)

∂

∂x
ϕ − ∂

∂x
(MH

0 (x)ϕ)

+k1

(
M1(x)

∂

∂x
ϕ − ∂

∂x
(MH

1 (x)ϕ)

)
+ k2

(
M2(x)

∂

∂x
ϕ − ∂

∂x
(MH

2 (x)ϕ)

)
(2.0.1)

+k1U1(x)ϕ + k2U2(x)ϕ + k2
1U11(x)ϕ + k2

2U22(x)ϕ + k1k2(U12(x) + U21(x))ϕ

+v(x)ϕ + e(x)ϕ, x ∈ �
, t > 0, k1, k2 ∈

�
,

where ϕ(x, t) ∈ �
d and m(x), e(x) are real diagonal d × d-matrices. Ui(x), Uij(x) and

v(x) are Hermitian d × d-matrices. The d × d-matrices M0(x), M1(x) and M2(x) are

skew-Hermitian. This physical formulation is rather lengthy and we abbreviate

(2.0.2a) MS(x) := M0(x) + k1M1(x) + k2M2(x),

(2.0.2b)

V(x) := k1U1(x)+k2U2(x)+k2
1U11(x)+k2

2U22(x)+k1k2(U12(x)+U21(x))+v(x)+e(x).

Then MS(x) is skew-Hermitian, V(x) is Hermitian and (2.0.1) reads

(2.0.3) i
∂

∂t
ϕ = − ∂

∂x
(m(x)

∂

∂x
ϕ)+MS(x)

∂

∂x
ϕ− ∂

∂x
(MH

S (x)ϕ)+V(x)ϕ, x ∈ �
, t > 0.

73
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1. Properties of the system of Schrödinger equations

An important property of the system (2.0.3) is the constancy in time of ||ϕ||2L2 (con-

servation of mass). To verify this we multiply (2.0.3) with ϕH from the left and integrate

by parts:

∂

∂t
||ϕ||2L2 =

∂

∂t

∫

�
ϕHϕ dx =

∫

�
ϕHϕt + ϕH

t ϕ dx = 2 Im

∫

�
iϕHϕt

= 2 Im

(
−
∫

�
ϕH ∂

∂x
(m

∂

∂x
ϕ) dx+

∫

�
ϕHVϕ dx

+

∫

�
ϕHMS

∂

∂x
ϕ dx−

∫

�
ϕH ∂

∂x
(MH

S ϕ)dx

)

= 2 Im



∫

�
ϕH

x mϕx dx +

∫

�
ϕHVϕ dx +

∫

�
ϕHMSϕx + ϕH

x MH
S ϕ︸ ︷︷ ︸

∈ �

dx




= 0.

The last equality can be seen by remembering that V and m are Hermitian and thus the

imaginary part of the quadratic forms vanishes. The other term is of the form y+yH which

is real.

2. Transparent boundary conditions

In this section we will derive transparent boundary conditions for the k · p-Schrödinger

equation (2.0.1) at the left x = xL and right x = xR boundary. In the scalar case (classical

Schrödinger equation of quantum mechanics), the Laplace-transformed equation in the

exterior domain can be solved explicitly. Afterwards the solution is inverse transformed,

thus yielding the analytic TBC (cf. [Arn98]). Here (as for the parabolic system) the

inverse Laplace transform can not be calculated explicitly for a system. Nevertheless, we

will present the derivation of the Laplace transformed TBC.

For the derivation we proceed analogously to Chap. 1: we consider the Schrödinger

equation in the left/right exterior domain. A Laplace transformation yields a system of

ordinary differential equations, that can be reduced to first order. Then the solution of this

system can be given in terms of its eigenvalues and eigenvectors. We will prove, that half of

the eigenvalues have positive real parts and thus yield solutions increasing for x → ∞; the

other half has negative real parts, yielding decreasing solutions. Demanding that the part
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of the increasing solutions in the right (and the decreasing solutions in the left) exterior

domain vanishes, leads to the transparent boundary condition.

We consider equation (2.0.1) in the bounded domain [xL, xR] together with TBCs at

x = xL and x = xR. The TBC at x = xR is constructed by considering (2.0.1) with

constant coefficients for x > xR, the so called right exterior problem

(2.2.1) iϕt = −Nϕxx + iMϕx + Vϕ, x > xR, t > 0,

where M = MH , V = VH. N is diagonal, real and regular and given by

N = m,(2.2.2a)

M = −i
(
M0 − MH

0 + k1(M1 − MH
1 ) + k2(M2 − MH

2 )
)

(2.2.2b)

= −i(MS − MH
S ),(2.2.2c)

V = k1U1 + k2U2 + k2
1U11 + k2

2U22 + k1k2(U12 + U21) + v + e.(2.2.2d)

remark 2.1. If MS is skew-Hermitian, then MS−MH
S = 2MS is also skew-Hermitian,

thus M = −2iMS is Hermitian.

We now use the Laplace-transformation given by

(2.2.3) ϕ̂(x, s) =

∫ ∞

0

e−stϕ(x, t) dt, s = α + iξ, α > 0, ξ ∈ �
,

on (2.2.1) and obtain the transformed right exterior problem

(2.2.4) Nϕ̂xx − iMϕ̂x = (V − isI)ϕ̂, x > xR.

Lemma 2.2. If the solution of the exterior problem (2.2.4) with the boundary data

(2.2.5) ϕ̂(x = xR) = ϕ̂R, ϕ̂(x = ∞) = 0

exists, it is unique for Re(s) sufficiently large.

Proof. We assume, that there exist two such solutions of (2.2.4),(2.2.5) ϕ̂1 and ϕ̂2.

Then the difference ϕ̂ = ϕ̂1 − ϕ̂2 is a solution of (2.2.4) with homogeneous boundary

data. Multiplying (2.2.4) with ϕ̂H from the left and integrating from xR to ∞ yields after

integrating by parts

(2.2.6) −
∫ ∞

xR

ϕ̂H
x Nϕ̂xdx− i

∫ ∞

xR

ϕ̂H
Mϕ̂xdx+

∫ ∞

xR

is|ϕ̂|2dx−
∫ ∞

xR

ϕ̂H
Vϕ̂dx = 0.
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Taking imaginary parts simplifies this, because the quadratic forms of the Hermitian ma-

trices are purely real

0 = −
∞∫

xR

Re(ϕ̂H
Mϕ̂x)dx +

∞∫

xR

Re(s)|ϕ̂|2dx

= −
∞∫

xR

d∑

k=1

Re( ¯̂ϕkmk,kϕ̂kx)dx−
∞∫

xR

d∑

k=1

d∑

l=1
l 6=k

Re( ¯̂ϕkmk,lϕ̂lx)dx +

∞∫

xR

Re(s)|ϕ̂|2dx

= −1

2

∞∫

xR

d∑

k=1

mk,k∂x|ϕ̂k|2dx−
∞∫

xR

d∑

k=1

d∑

l=k+1

Re( ¯̂ϕkmk,lϕ̂lx + ¯̂ϕlm̄l,kϕ̂kx)dx+

∞∫

xR

Re(s)|ϕ̂|2dx

=

∞∫

xR

Re(s)|ϕ̂|2dx ≥ 0 for Re(s) > 0,

because ∂x|ϕ̂k|2 = ¯̂ϕkxϕ̂k + ¯̂ϕkϕ̂kx = 2Re( ¯̂ϕkϕ̂kx) and with partial integration
∫
mk,l

¯̂ϕkϕ̂lx +∫
m̄l,k

¯̂ϕlϕ̂kx = 2
∫

Im(mk,l
¯̂ϕkϕ̂lx), since M is Hermitian. From this we conclude ϕ̂ ≡ 0,

which is a contradiction to our assumption. �

remark 2.3. As for the parabolic system the existence of a solution to the Laplace-

transformed exterior problem is not clear (cf. Rem. 1.9). But in all considered examples

the matrix of right eigenvectors has a regular submatrix, that gives a representation of the

solution (cf. Lem. 1.8).

To derive the transparent boundary condition we define ν = ϕ̂ and η = ϕ̂x and thus

reduce the order of the differential equation to obtain a system of first order differential

equations

(2.2.7)

(
M iN

−iN 0

)

︸ ︷︷ ︸
A

(
νx

ηx

)
=

(
iV + sI 0

0 −iN

)

︸ ︷︷ ︸
B

(
ν

η

)
.

We will show that the matrix A−1B is regular, because A−1 and B are regular. To this

end we calculate the determinant of A:

(2.2.8) det

(
M iN

−iN 0

)
= (−1)ndet

(
iN M

0 −iN

)
= (−1)ndet(N)2 6= 0,
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since the determinant of a block-tridiagonal matrix is the product of the determinants of

the block matrices on the diagonal. Here the determinant is obviously nonzero, since N is

regular. Therefore the matrix A is regular with the inverse

(2.2.9) A−1 = N−1

(
0 iI

−iI −MN−1

)
.

The matrix B is a block diagonal matrix and thus its eigenvalues are the eigenvalues of the

matrices on the diagonal. V is Hermitian, and thus it is diagonalisable and its eigenvalues

µ1, . . . , µn are real. Then iV + sI is similar to diag(α+ (µ1 + ξ)i, . . . , α+ (µn + ξ)i) which

is regular for Re(s) = α > 0, s = α + iξ, ξ ∈ �
. Therefore, A−1B as a product of regular

matrices is regular for Re(s) > 0.

In order to distinguish between increasing and decaying solutions of (2.2.4), we formu-

late the following lemma:

Theorem 2.4 (Splitting Theorem). For Re(s) > 0 the regular matrix A−1B has d

eigenvalues with positive real part and d with negative real part.

A proof of Thm. 2.4 will be given at the end of this section as a conclusion of Lem. 2.5

and Lem. 2.6.

We now transform A−1B into Jordan form with A−1B = PJP−1, where P contains the

left eigenvectors in columns. We sort the Jordan blocks in J with respect to an increasing

real part of the corresponding eigenvalue. Thus J can be written as J =
(

J1 0
0 J2

)
, where J1

holds all Jordan blocks to eigenvalues with negative real parts and J2 those with positive

real parts. Due to Thm. 2.4 J1 and J2 are d× d-matrices. With P−1 =
(

P1 P2
P3 P4

)
equation

(2.2.7) can be written as

(2.2.10) P−1

(
νx

ηx

)
=

(
J1 0

0 J2

)(
P1 P2

P3 P4

)(
ν

η

)
=

(
J1 0

0 J2

)(
P1ν + P2η

P3ν + P4η

)

Obviously, the upper equation yields parts of the solution, which decrease for x → ∞
and increase for x → −∞. The opposite is true for the lower equation. We define the

left exterior problem for x < xL analogous to the right exterior problem and denote the

occurring matrices with “ ˜ ”. Then, an analogous equation holds for the left exterior

problem. Thus the transformed transparent boundary conditions for the left (a) and right

(b) boundary is obtained by extinguishing the respectively increasing parts of the exterior
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solutions:

(2.2.11a) P̃2ϕ̂x(0, s) = −P̃1ϕ̂(0, s),

(2.2.11b) P4ϕ̂x(L, s) = −P3ϕ̂(L, s).

If the matrices P̃2 and P4 are regular, then the Laplace-transformed TBC can be written

in Dirichlet-to-Neumann form. It is not clear, if these matrices are regular, but for all

considered examples this applies.

In the remainder of this section we will prove Thm. 2.4 proceeding as follows: Lem.

2.5 will show that under certain assumptions the inertia of A−1B can be ascribed to the

inertia of A. Thereafter we will show, that exactly d eigenvalues of A are positive and d

are negative.

Lemma 2.5 (Lemma 2 in [CS63]). Let F,G be d × d-matrices with G Hermitian

and regular, suppose H := GF + FHG is positive semi-definite and i0(F) = 0. Then

i(F) = i(G).

This semi-definite case of the general inertia theorem was proved by Carlson and

Schneider by showing that for G Hermitian and regular and H positive semi-definite then

In(F) ≤ In(G)
(
with Theorem 1 of [OS62] and where In(F) ≤ In(G) means: i+(G) ≤ i+(F)

and i−(G) ≤ i−(F)
)

and In(G) ≤ In(F) if i0(F) = 0 and H Hermitian and positive semi-

definite. A similar result was verified by Chen in [Che73]: the condition “G regular” can

be weakened to “the rang of the d× d2 matrix [HFH . . . ,Fd−1H] is maximal”.

We will now check the assumptions of Lem. 2.5. Since M is Hermitian, A = AH as

well. We already showed, that G := A is regular. For F := A−1B we have

H = GF + FHG = A(A−1B) + BH(A−1)HAH(2.2.12)

= B + BH =

(
2Re(s)I 0

0 0

)
≥ 0.

It remains to show, that i0(A
−1B) = 0. Therefore we prove the following lemma:

Lemma 2.6. For Re(s) > 0 the matrix A−1B has no purely imaginary eigenvalues.

Proof. We assume that iλ with λ ∈ �
is eigenvalue of A−1B. In that case ϕ̂(x) =

ϕ̌eiλx is a solution of (2.2.4) and yields

(2.2.13) isϕ̌ = (iα− ξ)ϕ̌ = (Nλ2 − Mλ + V )ϕ̌.
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This means, that iα − ξ is an eigenvalue of Nλ2 − Mλ + V . But since Nλ2 − Mλ + V is

- as a sum of Hermitian matrices - again Hermitian, all its eigenvalues must be real, and

therefore α = 0 which is a contradiction. �

Conclusion 2.7. For any eigenvalue λ of A−1B, Re(λ) = 0 implies λ = 0. Thus,

since A−1B is regular, we have i0(A
−1B) = 0.

Finally, it remains to verify, that d eigenvalues of A have positive and d have negative

real parts. Therefore we will use a continuity argument: we consider the matrix

(2.2.14) A(ε) :=

(
εM iN

−iN 0

)
, ε ∈ [0, 1].

A(0) has d positive and d negative eigenvalues, which are given by

(2.2.15) λ0
2k−1 = nk,k and λ0

2k = −nk,k, k = 1, . . . , d.

Furthermore for all ε ∈ [0, 1] the matrix A(ε) has no zero eigenvalue (cf. 2.2.8). Then for ε

from zero to one d eigenvalues of A(ε) are positive and d are negative, since the eigenvalues

are continuous in ε.

Thus, i(A) = (d, d, 0) holds and with Lem. 2.5 follows i(A−1B) = (d, d, 0), if Re(s) > 0,

which finishes the proof of Thm. 2.4.

3. Discretisation

As in Chap. 1 we do not discretise equation (2.2.11) (by a numerical inverse Laplace

transformation), but derive discrete TBCs for a discretisation of (2.0.3). For the discretisa-

tion we choose a uniform grid with the step sizes h in space and k in time: xj = K+jh, tn =

nk with j = 0, . . . , J , n = 0, . . . , N . We discretise (2.0.3) using the Crank-Nicolson scheme

in time and the central differences for the first and second spatial derivatives. The discrete

k · p-Schrödinger equation then reads

(2.3.1) i
h2

k
(ϕn+1

j − ϕn
j ) = −∆0

h
2

(Nj∆
0
h
2

ϕ
n+ 1

2
j ) + MSj∆

0ϕ
n+ 1

2
j − ∆0(MH

Sjϕ
n+ 1

2
j ) + Vjϕ

n+ 1
2

j

for j = 1, . . . , J − 1 and n = 0, . . . , N with the difference operators

(2.3.2a) ∆0
h
2

ϕn
j = ϕn

j+ 1
2
− ϕn

j− 1
2
,

(2.3.2b) ∆0ϕn
j =

1

2
(∆+ + ∆−)ϕn

j = ϕn
j+1 − ϕn

j−1
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and ϕ
n+ 1

2
j =

ϕ
n+1
j +ϕ

n
j

2
.

3.1. Properties of the discrete equation. An appropriate discretisation scheme

should carry over properties of the continuous equation to the difference equation. This

is the case for the Crank-Nicolson scheme: it conserves the whole-space l2-norm and thus

it is unconditionally stable for the whole-space problem. To shows this, we first observe,

that

(2.3.3)

4+
t ||ϕn||2l2 =

∞∑

j=−∞
4+

t

((
ϕn

j

)H
ϕn

j

)
=

∞∑

j=−∞

((
ϕ

n+ 1
2

j

)H

4+
t ϕn

j + (4+
t ϕn

j )Hϕ
n+ 1

2
j

)

= 2Re

( ∞∑

j=−∞

(
ϕ

n+ 1
2

j

)H

4+
t ϕn

j

)
= 2Im

( ∞∑

j=−∞
i
(
ϕ

n+ 1
2

j

)H

4+
t ϕn

j

)
.

Using this equality together with (2.3.1) and summation by parts yields

h2

k
4+

t ||ϕn||2l2 = 2Im

(
−

∞∑

j=−∞

(
ϕ

n+ 1
2

j

)H

40
h
2

(
Nj40

h
2
ϕ

n+ 1
2

j

)
+

∞∑

j=−∞

(
ϕ

n+ 1
2

j

)H

MSj40ϕ
n+ 1

2
j

−
∞∑

j=−∞

(
ϕ

n+ 1
2

j

)H

40
(
MH

Sjϕ
n+ 1

2
j

)
+

∞∑

j=−∞

(
ϕ

n+ 1
2

j

)H

Vjϕ
n+ 1

2
j

)
(2.3.4)

= Im

( ∞∑

j=−∞

(
40

h
2

ϕ
n+ 1

2
j

)H

Nj40
h
2

ϕ
n+ 1

2
j

+

∞∑

j=−∞

(
ϕ

n+ 1
2

j

)H

MSj40ϕ
n+ 1

2
j +

∞∑

j=−∞

((
ϕ

n+ 1
2

j

)H

MSj40ϕ
n+ 1

2
j

)H
)

= 0,

because the matrices Nj and Vj are Hermitian. Thus, for the whole-space problem the

discrete l2-norm is constant in time.

4. Discrete transparent boundary conditions

For the case of a scalar Schrödinger equation Arnold [Arn98] derived a discrete trans-

parent boundary condition. This DTBC is reflection-free compared to the discrete whole-

space solution and conserves the stability properties of the whole-space Crank-Nicolson

scheme. The DTBC has the form of a discrete convolution. The convolution coefficients



4. Discrete transparent boundary conditions 81

are a function of Legendre polynomials but can be obtained more easily by a three-term

recurrence formula. Ehrhardt and Arnold showed in [EA01], that the imaginary parts of

the convolution coefficients are not decaying and therefore introduced summed coefficients.

To derive the DTBC for (2.3.1) we solve the Z-transformed system of ordinary difference

equations in the exterior domain. Then all its solutions are determined by eigenvalues and

eigenvectors, which can be distinguished into decaying and increasing solutions by the

absolute value of the involved eigenvalue. We obtain the DTBC by claiming, that no

influence of increasing solutions exists.

In the exterior space j ≥ J (xJ = xR) the Crank-Nicolson scheme (2.3.1) simplifies to

(2.4.1) i
h2

k
(ϕn+1

j − ϕn
j ) = −N∆+∆−ϕ

n+1/2
j + ihM

1

2
(∆+ + ∆−)ϕ

n+1/2
j + h2Vϕ

n+1/2
j

for j ≥ J and n ≥ 0. The Z-transformation given by

(2.4.2) Z{ϕn
j } = ϕ̂j(z) :=

∞∑

n=0

z−nϕn
j , z ∈ �

, |z| > 1,

transforms (2.4.1) to

(2.4.3) 2i
h2

k

z − 1

z + 1
ϕ̂j = −N∆+∆−ϕ̂j + ihM

1

2
(∆+ + ∆−)ϕ̂j + h2Vϕ̂j, j ≥ J.

Lemma 2.8. If the solution of the Z-transformed exterior problem (2.4.3) with the

boundary data

(2.4.4) ϕ̂j=J = ϕ̂J , ϕ̂∞ = 0

exists, it is unique.

Proof. We assume, that there exist two solutions of (2.4.3), (2.4.4) ϕ̂1 and ϕ̂2. The

difference ϕ̂ = ϕ̂1 − ϕ̂2 is then a solution of (2.4.3) with homogeneous boundary data.

For this solution ϕ̂ we consider (2.4.3) multiplied by ϕ̂H
j from the left and take imaginary
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parts:

0 = Im

(
2i
h2

k

z − 1

z + 1

∞∑

j=J

|ϕ̂j|2 +

∞∑

j=J

ϕ̂H
j N4+4−ϕ̂j(2.4.5)

−1

2
ih

∞∑

j=J

ϕ̂H
j M

(
4+ + 4−) ϕ̂j −h2

∞∑

j=J

ϕ̂H
j Vϕ̂j

)

= 2
h2

k
Re

(
z − 1

z + 1

) ∞∑

j=J

|ϕ̂j|2 + Im

(
−

∞∑

j=J

4−ϕ̂H
j N4−ϕ̂j

−1

2
ih

∞∑

j=J

ϕ̂H
j M4−ϕ̂j +

1

2
ih

∞∑

j=J

(
ϕ̂H

j M4−ϕ̂j

)H
)

≥ 0,

if |z| > 1 (cf. (1.7.35)) and even strictly larger than zero, if
∑∞

j=J |ϕ̂j|2 6= 0. But this is a

contradiction. �

remark 2.9. Analogously to the continuous problem the existence of a solution is guar-

anteed by the regularity of the S×S principal submatrix of the matrix of right eigenvectors

(cf. Lem. 1.8 and Rem. 1.9), which holds for all considered examples.

We proceed to solve the Z-transformed exterior problem and define ξ̂j = ∆−ϕ̂j and

use the reduction of order method, i.e. we write (2.4.3) as a system of first order difference

equations

(2.4.6)

(
ih
2
M −N

−I I

)(
∆+ϕ̂j

∆+ξ̂j

)
=

(
h22 z−1

z+1
1
k
iI − h2V −ih

2
M

0 −I

)(
ϕ̂j

ξ̂j

)
,

i.e.
(

∆+ϕ̂j

∆+ξ̂j

)
= A−1B

(
ϕ̂j

ξ̂j

)
or

(
ϕ̂j+1

ξ̂j+1

)
= (A−1B + I)

(
ϕ̂j

ξ̂j

)
.(2.4.7)

The regularity of A follows from Lem. 2.13.

Solutions of (2.4.3),that are constructed with an eigenvalue λ of A−1B+I, are decaying

for x → ∞ if |λ+ 1| < 1 and increasing if |λ+ 1| > 1 (cf. Sec. 5.1). Analogously to Thm.

2.4 we prove a splitting property of A−1B + I:

Theorem 2.10 (Discrete Splitting Theorem). d of the 2d eigenvalues of A−1B+I have

an absolute value larger than unity and d have a smaller absolute value, if |z| 6= 1.
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A proof of Thm. 2.10 will be given succeeding to the DTBC at the end of this section.

If the eigenvalues λ1, . . . , λ2d of A−1B split into two commensurate groups, then the

solutions involving those with |λk + 1| < 1 for k = 1, . . . , d decay for j → ∞ and those

with |λk + 1| > 1 for k = d, . . . , 2d decay for j → −∞.

Thus, we may again split the Jordan form J =
(

J1 0
0 J2

)
of A−1B+ I , J1 containing the

Jordan blocks corresponding to solutions decaying for j → ∞ and J2 those which increase.

With the matrix of left eigenvectors P−1 =
(

P1 P2
P3 P4

)
the equation

P−1

(
ϕ̂j+1

ξ̂j+1

)
= P−1(A−1B + I)

(
ϕ̂j

ξ̂j

)
= P−1P

(
J1 0

0 J2

)(
P1 P2

P3 P4

)(
ϕ̂j

ξ̂j

)

(2.4.8)

=

(
J1 0

0 J2

)(
P1ϕ̂j + P2ξ̂j

P3ϕ̂j + P4ξ̂j

)

holds and the transformed discrete transparent boundary conditions read

(2.4.9a) P̃1ϕ̂1 + P̃2ξ̂1 = 0,

(2.4.9b) P3ϕ̂J + P4ξ̂J = 0

for the left (a) and right (a) boundary respectively.

remark 2.11. In all considered examples the matrices P1, . . . ,P4 and P̃1, . . . , P̃4 were

regular, but this is not clear in general.

For regular matrices P4 and P̃2 the Z-transformed DTBC can be given in Dirichlet-

to-Neumann form

∆−ϕ̂1 = ̂̃
Dϕ̂1,(2.4.10a)

∆−ϕ̂J = D̂ϕ̂J ,(2.4.10b)

where D̂ = −P−1
4 P3 and ̂̃

D = −P̃−1
2 P̃1. After an inverse Z-transformation the discrete

transparent boundary conditions read

ϕn+1
1 − ϕn+1

0 − D̃0ϕn+1
1 =

n∑

k=1

D̃n+1−kϕk
1,(2.4.11a)

ϕn+1
J − ϕn+1

J−1 − D0ϕn+1
J =

n∑

k=1

Dn+1−kϕk
J .(2.4.11b)
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remark 2.12. Note, that in equation (2.4.10a) and (2.4.11a) the left boundary condi-

tion is given at j = 1. Of course, the boundary condition can also be formulated at j = 0

using ξ̂j = ∆+ϕ̂j. This changes the lower row in A and B and thus the matrix D̃ differs

from D. Posing the boundary condition at j = 1 as we do, has the advantage, that these

matrices coincide, if the constant coefficients for x < xL and x > xR are equal, what occurs

often in the application. In that case we can reduce the numerical effort to calculate the

convolution coefficients by half.

As for parabolic systems we will define summed coefficients (cf. Sect. 7.2.4 in Chap.

1). For a scalar Schrödinger equation Ehrhardt and Arnold showed in [EA01] that the

imaginary parts of the coefficients were not decaying but oscillating. Therefore they intro-

duced summed coefficients. These decay rapidly like O(n−3/2). Since the scalar equation

is as a special case included in our system, it suggests itself to use the summed coefficients,

although we can give no asymptotic behaviour of the systems’ coefficients, because they

cannot be formulated explicitly. In Sec. 5 we will give some examples of the numerically

calculated coefficients. The diagonal elements show the same properties as those for the

scalar case. For the summed coefficients ̂̃Ss,l = z+1
z
̂̃
Ds,l and Ŝs,l = z+1

z
D̂s,l the DTBCs read

ϕn+1
1 − ϕn+1

0 − S̃0ϕn+1
1 =

n∑

k=1

S̃n+1−kϕk
1 − ϕn

1 + ϕn
0 ,(2.4.12a)

ϕn+1
J − ϕn+1

J−1 − S0ϕn+1
J =

n∑

k=1

Sn+1−kϕk
J − ϕn

J + ϕn
J−1.(2.4.12b)

It remains to prove Thm. 2.10. Therefore, we will first show in Lem. 2.13, that no

eigenvalue of A−1B+ I has an absolute value of one. Then we will show the asserted split-

ting of the eigenvalues for M = 0 and argue, that due to the continuity of the eigenvalues

the border |λ| = 1 cannot be crossed.

Lemma 2.13. For |z| 6= 1 the matrix A−1B + I has no eigenvalue λ with |λ| = 1.

Proof. Assume that λ = a + bi with |λ| = 1 were an eigenvalue of the discrete

problem (2.4.3). Then ϕ̂j = λjϕ̂0 is a solution of (2.4.3). For the differences the following
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expressions are valid:

∆+ϕ̂j = λj−1ϕ̂0

(
λ2 − λ

)
(2.4.13a)

∆−ϕ̂j = λj−1ϕ̂0 (λ− 1)(2.4.13b)

∆+∆−ϕ̂j = λj−1ϕ̂0

(
λ2 − 2λ+ 1

)
.(2.4.13c)

Defining g(z) = z−1
z+1

and inserting ϕ̂j = λjϕ̂0 in equation (2.4.3) yields

i
2h2

k
g(z)λϕ̂0 =

(
−N(λ2 − 2λ+ 1) + iM

h

2
(λ2 − 1) + h2Vλ

)
ϕ̂0

=

(
−N(2a2 + 2abi− 2(a+ bi)) + iM

h

2
(−2b2 + 2abi) + h2Vλ

)
ϕ̂0(2.4.14)

=

(
−N(λ(a− 1)) + iM

h

2
2b(b− ai) + h2Vλ

)
ϕ̂0,

i.e.

(2.4.15) i
2h2

k
g(z)ϕ̂0 =

(
−N(a− 1) + Mhb + h2V

)
ϕ̂0.

Equation (2.4.15) is an eigenvalue equation for the matrix −N(a− 1)+Mhb+h2V, which

is as a sum of Hermitian matrices again Hermitian, and has therefore only real eigenvalues.

Thus i2h2

k
g(z) must be real. We examine this expression further:

(2.4.16) g(z) =
z − 1

z + 1
=

|z|2 − 1 + 2i Im(z)

|z + 1|2 .

Thus it is obvious, that g(z) ∈ i
�

if and only if |z| = 1. �

To understand the eigenvalue-splitting for the general case, i.e. equation (2.4.3), we shall

now use a perturbation argument and consider the special case M = 0. Then equation

(2.4.3) reads

(2.4.17) 2i
h2

k

z − 1

z + 1
ϕ̂j = −N∆+∆−ϕ̂j + h2Vϕ̂j.

Exchanging the space index j → −j yields the identical equation. Thus, both problems

have the same solutions and the eigenvalues of A−1B+ I are in both cases the same. Since

decaying solutions are increasing for j → −j and vice versa, the eigenvalues must split in

d yielding for decaying and d yielding increasing solutions for |z| 6= 1 and j → ∞.

To (2.4.17) we add the term iεh
2
M(∆+ + ∆−)ϕ for 0 ≤ ε ≤ 1. Then Lem. 2.13 shows

that no eigenvalue λ can have an absolute value one. Since these eigenvalues are continuous
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in ε(cf. [HJ99a]), d eigenvalues must remain inside the unit circle when ε varies from 0 to

1 and d eigenvalues stay outside.

This finishes the proof of Thm. 2.10.

4.1. Stability. In Sec. 3.1 we showed that the l2-norm of the whole-space problem is

constant in time. For the interior scheme with the DTBC the l2-norm is bounded by the

l2-norm of the whole-space problem, because the DTBCs cut off the exterior parts of the

solution:

(2.4.18) ||ϕn||2l2(0,J) ≤ ||ϕn||2l2(−∞,∞) = ||ϕ0||2l2(−∞,∞).

Thus the interior scheme with DTBCs constructed from exact convolution coefficients is

stable. Since we compute the convolution coefficients numerically we consider (2.3.4) for

j = 0, . . . , J . Then there remain some boundary terms due to the summation by parts

rule:

(2.4.19)
h2

k
4+

t ||ϕn||2l2 = Im
(
(ϕ

n+ 1
2

0 )HNL4+ϕ
n+ 1

2
0 + (ϕ

n+ 1
2

0 )HMH
SLϕ

n+ 1
2

0

+(ϕ
n+ 1

2
J )HNR4−ϕ

n+ 1
2

J + (ϕ
n+ 1

2
J )HMH

SRϕ
n+ 1

2
J

)
.

As differences we rather consider 4+ and 4− than 40
h
2

. This is possible, since at the

boundaries the coefficient matrix N is already constant. Thus, if (2.4.19) is non-positive

the Crank-Nicolson scheme with DTBCs is stable. Unfortunately, inserting the DTBCs

for the differential terms does not help to show this, because we know too little of the

properties of the convolution matrices. Instead, we will perform in Sec. 5 a numerical

evaluation of the boundary terms in (2.4.19) and thus numerically test the stability for an

example.

5. Numerical examples

In this section we will present two numerical examples. The first example is a simple

4×4 system of Schrödinger equations without any external potential. For this example we

show the typical behaviour of the convolution coefficients and of the numerical solution.

The second example investigates the previous system of Schrödinger equations with a

piecewise step function as a potential.
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5.1. Example 1: The 4 × 4 system of free Schrödinger equations. To start

with, we use a 4-band structure for light holes, which yields a 4× 4 system of Schrödinger

equations. We do not consider any external potential, but only the four free coupled

Schrödinger equations (2.3.1) with

N =




γ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 γ




M1 = −1

2

γ3

γ1 + 2γ2

√
3i




0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0



, M2 = −iM1

U11 =
1

2

1

γ1 + 2γ2




γ1 + γ2 0 −
√

3γ2 0

0 γ1 − γ2 0 −
√

3γ2

−
√

3γ2 0 γ1 − γ2 0

0 −
√

3γ2 0 γ1 + γ2




U22 =
1

2

1

γ1 + 2γ2




γ1 + γ2 0
√

3γ2 0

0 γ1 − γ2 0
√

3γ2√
3γ2 0 γ1 − γ2 0

0
√

3γ2 0 γ1 + γ2




U12 + U21 =
1

γ1 + 2γ2

√
3γ2i




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




k1 = 2.3,γ = γ1−2γ2

γ1+2γ2
, γ1 = 4 · 6.85,γ2 = 4 · 2.1,γ3 = 4 · 2.9.

At first we will investigate the convolution coefficients Dn
k,l. Their real and imaginary

parts are given in Fig. 2.1 and Fig. 2.2 respectively. We observe, that the overall behaviour

of the diagonal elements is equivalent to that in the scalar case: the real parts decay

rapidly, but the imaginary parts alternate without visible decay. This behaviour cannot

be found for any non-diagonal element: four non-diagonal elements show an opposite be-

haviour: for dn
1,2,d

n
2,1,d

n
3,4 and dn

4,3 the real parts alternate, whereas the imaginary parts



88 2. Schrödinger–type systems

0 50 100
−1

−0.5

0

0.5

0 50 100
−0.5

0

0.5

0 50 100
−0.02

0

0.02

0.04

0 50 100
−2

0

2

4
x 10

−3

0 50 100

0

0 50 100
−0.5

0

0.5

0 50 100
−2

0

2

4
x 10

−3

0 50 100
−5

0

5
x 10

−3

0 50 100
−5

0

5
x 10

−3

0 50 100
−4

−2

0

2
x 10

−3

0 50 100
−0.5

0

0.5

0 50 100

0

0 50 100
−4

−2

0

2
x 10

−3

0 50 100
−0.02

0

0.02

0.04

0 50 100
−0.5

0

0.5

0 50 100
−1

−0.5

0

0.5

Figure 2.1: Example 1: Real parts of the convolution coefficients Dn
k,l

decay rapidly. For the other non-diagonal elements none of the previous behaviour can

be observed. They have a much smaller absolute value and decay comparatively slowly.

The asymptotic behaviour of the diagonal and four non-diagonal elements with alternating

imaginary and respectively real parts, suggest the use of summed convolution coefficients

to avoid subtractive cancellation. That this is successful can be seen in the summed con-

volution coefficients Sn
k,l. Their real and imaginary parts are given in Fig. 2.3 and Fig.

2.4 respectively. The eight slowly decaying elements remain unchanged in their qualitative
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Figure 2.2: Example 1: Imaginary parts of the convolution coefficients Dn
k,l

behaviour, but for the diagonal elements and the four non-diagonal elements with alter-

nating real parts the real parts as well as imaginary parts decay rapidly. Therefore we will

use the summed convolutions coefficients Sn
k,l for the numerical solution in both examples.

The time dependent behaviour of the numerical solution is illustrated in Fig. 2.5 for the

first and second component. The fourth and fifth component are nearly equal to zero and

thus we will not show them. As initial condition we use a Gaussian wave packet in the sec-

ond component ϕ(x, 0) =
(
(2πσ2)

1
4 exp (ikrx) − (x−x0)2

σ2

)( 0
1
0
0

)
with σ = 3, x0 = −2σ and

kr =
√

6.99. We observe, that the right-travelling wave packet after a short time t = 0.5
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Figure 2.3: Example 1: Real parts of the summed convolution coefficients Sn
k,l

decomposes in two wave packets with different velocities. Fig. 2.6 shows the l2-norm of the

solution. After about 130 time steps (t = 6.5) the first wave packet has left the computa-

tional domain, the second is just about to start leaving it. After 1000 time steps (t = 50)

nearly all the density left the computational domain. If we disregard the dispersion, the

l2-norm of the solution should be equal to the concatenation of two error functions (erf),
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Figure 2.4: Example 1: Imaginary parts of the summed convolution coefficients Sn
k,l

one for each wave packet, while it leaves the computational domain. On the r.h.s. of Fig

2.6 we illustrate how good the l2-norm of the solution can be approximated by two error
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Figure 2.5: Example 1: Time dependent behaviour of ϕ1,j (solid) and ϕ2,j (dashed).
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Figure 2.6: Example 1: Overall density
d∑

l=1

|ϕl|l2 with marked points for the time dependent

output in Fig. 2.5 (left) and approximated by the error function erf (right)

functions. For the second erf we had to use a transformation in time to get a good fit

due to the advanced dispersion.

At the beginning of the computation the density oscillates between the two first com-

ponents. With advancing time this becomes less. Fig. 2.7 compares the l2 norms of the

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18

20

t

|φ
1
|
l2

|φ
2
|
l2

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

20

t

Figure 2.7: Example 1: l2-norm of the components one and two
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Figure 2.8: Example 1: Error in the time dependent behaviour of ϕ1,j (solid) and ϕ2,j

(dashed) compared to a reference solution.
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first and second component. We observe, that this oscillation ceases after about 70 time

steps (t=3.5), which is about the same time the local maximum of the first wave package

leaves the computational domain. We made sure, that there is no connection between these

events, by regarding the solution on a much bigger computational domain (xmax = 41).

This solution served also as a reference solution to investigate the error caused by the

DTBC. Fig. 2.8 shows this error for the same time steps as considered before. We observe,

that the error is larger than in the parabolic case. Since no approximation was introduced,

this error is due to numerical problems. One problem that occurs, is the inversion of the

matrices P2, P4 respectively (cf. 2.4.9). Numerically they are sometimes badly conditioned

- where sometimes means for about 10 of 4096 sampling points.
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Figure 2.9: Example 1: Time dependent behaviour of the separate stability terms and the

time dependent change in the the l2-norm at the bottom
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At last we will numerically check the stability for this example. In (2.4.19) we showed,

that for the stability the imaginary part of

(2.5.1)

(ϕ
n+ 1

2
0 )HNL4+ϕ

n+ 1
2

0 + (ϕ
n+ 1

2
0 )HMH

SLϕ
n+ 1

2
0 + (ϕ

n+ 1
2

J )HNR4−ϕ
n+ 1

2
J + (ϕ

n+ 1
2

J )HMH
SRϕ

n+ 1
2

J

must be less or equal to zero. For the current example we give in Fig. 2.9 the terms in

(2.5.1) in order of appearance from top left to bottom right. The last plot is the sum of the

preceding ones. We observe, that the third term dominates and thus ensures the stability.

If we change the initial condition in that way, that the wave packages travel to the left, i.e.

choosing a negative kr, exchanges the behaviour of the left and right boundary terms.

5.2. Example 2: The quantum well structure with double barrier. More in-

teresting than the system of free Schrödinger equations, is an additional external potential.

We will again consider Example 1 with an additional double barrier near the right bound-

ary, which yields a quantum well structure. The considered double barrier structure is

defined by

(2.5.2) e(x) =





0, x ≤ 22

25
2
, 22 < x ≤ 22.5

5
2
, 22.5 < x ≤ 23

0, 23 < x ≤ 23.5

25
2
, 23.5 < x ≤ 24

0, 24 < x

and can be seen in Fig. 2.10 and 2.11, where it is scaled to fit the more important data.

Fig. 2.10 shows the time dependent behaviour of ϕ1,j (solid) and ϕ2,j (dashed). We

concentrate again on the first two components, since there is less to observe in component

three and four. We enlarged the computational domain on the l.h.s. to show some nice

effects later. As in Example 1 the initial Gaussian wave packet moves to the right and

fragments in two. When the faster wave package reaches the first barrier, it is partly

reflected and partly transmitted. Fig. 2.11 shows a closer view of the barrier area. With

advancing time some part of the density accumulates between the barriers and is slowly

transmitted through the second barrier, then leaving the domain of computation. The part

of the density, which is reflected at the first barrier moves on to the left and after a time,
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Figure 2.10: Example 2: Time dependent behaviour of ϕ1,j (solid) and ϕ2,j (dashed).
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Figure 2.11: Example 2: Zoom of barrier zone of the time dependent behaviour of ϕ1,j

(solid) and ϕ2,j (dashed).
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Figure 2.12: Example 2: Error of the time dependent behaviour of ϕ1,j (solid) and ϕ2,j

(dashed) compared to a reference solution.
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where the wave packages superpose each other, it moves again in form of a Gaussian wave

package to the left boundary of the computational domain. The slower wave package seems

not to recompose smoothly. Fig. 2.12 shows the error compared to a reference solution on

a larger domain (xmax = 51). Again 10−6 is the order of magnitude of the error.



Conclusion and perspectives

In this dissertation we generalised the approach of discrete transparent boundary con-

ditions as they were used in [Arn98],[Ehr01] and [EA01] for the scalar parabolic and

the scalar Schrödinger equation to systems of parabolic or Schrödinger-type equations.

To construct the TBC the exterior problem is solved. To this end the partial differen-

tial (difference) equation is Laplace-transformed (Z-transformed), yielding an ordinary

differential (difference) equation. The main additional problem arising from systems of

equations is the fact, that in general the Laplace-transformed (Z-transformed) solution

cannot be inverse transformed explicitly as it is possible for scalar equations. At this point

it is possible to approximate the image function in such a way, that an explicit inverse

Laplace-transformation (Z-transformation) of the solution exists. This was e.g. done in

[Lil92] and [Hag94].

In this dissertation we decided to perform the inverse Z-transformation numerically,

involving new sources for numerical errors and new problems, particularly the detection

of a suitable radius for inverse Z-transforming the convolution coefficients. We discussed

the error of the numerical inverse Z-transformation. It is composed of the approximation

and the roundoff error. Whereas the approximation error decays for increasing radius,

the roundoff error grows. Additionally the numerical error depends on the coefficient

parameters of the considered example and the number of sampling points. Still we observed

for the numerical examples, that the dependence on the number of sampling points is

stronger than the dependence on the model parameters.

For both types of equations (parabolic and Schrödinger type) we gave examples and

computed a numerical solution with discrete transparent boundary conditions and com-

pared it to a reference solution, that was obtained by enlarging the computational domain.

For the fluid stochastic Petri nets as well as for the k · p Schrödinger equation the DTBC

worked well. It was possible to show the stability of the used difference schemes.
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A real drawback is the numerical effort of the DTBCs. The number of terms in the

convolution grows with each time step. Therefore it is necessary to look for good ap-

proximations. The simple cut-off of the convolution yields bad results and cannot be

recommended. We showed for the fluid stochastic Petri nets the use of approximated con-

volution coefficients as proposed in [AES03] for scalar equations. These worked well for

all considered examples, but of course involve a reduction of accuracy. This approximation

should also be implemented for the system of Schrödinger equations, which was not realised

in the scope of this dissertation.

Another interesting prospect is the construction of TBCs for systems of linear hyper-

bolic equations. We are confident, that the DTBCs for systems of hyperbolic equations

will work as well as for systems of parabolic equations.



Appendix

Proof of Theorem 1.13

In this section we will prove Thm. 1.13, which yields an explicit formulation for the

coefficients in the DTBC generated by the ansatz method. Theorem 1.13 will be proved

by induction over the number N of different zeros. Before we proceed to the main proof,

we will first show the following identity:

Lemma 2.14. For M ≥ 2 the following identity holds

(2.5.3)
M∑

k=1

( M
k ) (−1)k+l+1kl = δl,0 =





1, l = 0

0, l 6= 0
, l = 0, . . . ,M − 1.

Proof: We first consider l = 0 and use the binomial theorem
M∑

k=1

( M
k ) (−1)k+1k0 = ( M

0 ) +

M∑

k=0

( M
k ) (−1)k+1

= 1 −
M∑

k=0

( M
k ) (−1)k1M−k = 1 − (1 − 1)M = 1.

For l ∈ {1, . . . ,M − 1} we use induction over M and first verify the basis M = 2, l = 1:

(2.5.4)
2∑

k=1

( 2
k ) (−1)k+2k = ( 2

1 ) (−1) + ( 2
2 ) (−1)22 = −2 + 2 = 0.

For the induction step M →M + 1 we consider

M+1∑

k=1

(
M+1

k

)
(−1)k+l+1kl =

M+1∑

k=1

{
( M

k ) +
(

M
k−1

)}
(−1)k+l+1kl

=

M∑

k=1

( M
k ) (−1)k+l+1kl +

M+1∑

k=1

(
M

k−1

)
(−1)k+l+1kl

(?)
=

M∑

k=1

( M
k ) (−1)k+l+1kl −

M∑

k=1

( M
k ) (−1)k+l+1kl = 0.
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At (?) we used the identity

M+1∑

k=1

(
M

k−1

)
(−1)k+l+1kl = −

M∑

k=1

( M
k ) (−1)k+l+1kl,

that we will show now using the induction hypothesis for ω < l ≤M at (??)

M+1∑

k=1

(
M

k−1

)
(−1)k+l+1kl =

M∑

k=0

( M
k ) (−1)k+l(k + 1)l =

M∑

k=0

( M
k ) (−1)k+l

l∑

ω=0

( l
ω ) kω1l−ω

=

l∑

ω=0

( l
ω ) (−1)l−ω−1

M∑

k=0

( M
k ) (−1)k+ω+1kω

=

l∑

ω=0

( l
ω ) (−1)l−ω−1

{
(−1)ω+10ω +

M∑

k=1

( M
k ) (−1)k+ω+1kω

}

(??)
= ( l

0 ) (−1)l−10 + ( l
l ) (−1)−1

{
(−1)l+10 +

M∑

k=1

( M
k ) (−1)k+l+1kl

}

= 0 −
M∑

k=1

( M
k ) (−1)k+l+1kl.

�

After the preceeding preparations we can now prove

Theorem 1.13 (1.7.22) is solved by

ˆ̀(S)
k = (−1)k+1

∑

1≤s1<...<sk≤S

��� s1 · . . . · ��� sk
, k = 1, . . . , S.

These ˆ̀(S)
k obey the recursion formula

ˆ̀(M)
k = ˆ̀(M−1)

k − ��� M
ˆ̀(M−1)
k−1 , k = 1, . . . , S

with ˆ̀(M)
0 = −1, ˆ̀(M)

m = 0 if




m < 0 or

m > M
, M = 1, . . . , S

and the γi-level recursion

ˆ̀(γ1+...+γN )
i =

γN∑

k=0

( γN
k ) (−1)k

���
k
N ˆ̀(γ1+...+γN−1)

i−k , i = 1, . . . , S.

Proof:

First we will show that the recursion (1.7.26) yields the ˆ̀(S)
k given in (1.7.25). Then an

induction over the number N of different zeros will show that these ˆ̀(S)
k in fact solve
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(1.7.22).

For the induction over M we formulate the induction hypothesis: The recursion

ˆ̀(M)
k = ˆ̀(M−1)

k − ��� M
ˆ̀(M−1)
k−1 , k = 1, . . . , S

with ˆ̀(M)
0 = −1, ˆ̀(M)

m = 0 if




m < 0 or

m > M
, M = 1, . . . , S

can be described by the explicit formula

ˆ̀(S)
k = (−1)k+1

∑

1≤s1<...<sk≤S

��� s1 · . . . · � � sk
, k = 1, . . . , S.

We first verify the basis for M = 2:

recursion explicit

ˆ̀(2)
1 = ˆ̀(1)

1 − ��� 2
ˆ̀(1)
0 = ��� 1 + ��� 2

ˆ̀(2)
1 = (−1)2

2∑

k=1

��� k = ��� 1 + ��� 2

ˆ̀(2)
2 = ˆ̀(1)

2 − ��� 2
ˆ̀(1)
1 = −� � 1 ��� 2

ˆ̀(2)
2 = (−1)3

��� 1 ��� 2

( �recursion basis)

For the induction we consider the step M →M + 1:

ˆ̀(M+1)
k = ˆ̀(M)

k − ��� M+1
ˆ̀(M)
k−1

IH
= (−1)k+1

∑

1≤s1<...<sk≤M

��� s1 · . . . · ��� sk
− ��� M+1(−1)k

∑

1≤s1<...<sk−1≤M

��� s1 · . . . · ��� sk−1

= (−1)k+1





∑

1≤s1<...<sk≤M

��� s1 · . . . · � � sk
+

∑

1≤s1<...<sk−1≤M

kfactors︷ ︸︸ ︷
��� s1 · . . . · � � sk−1

· ��� M+1





= (−1)k+1
∑

1≤s1<...<sk≤M+1

� � s1 · . . . · ��� sk
for k = 1, . . . ,M.

For the remaining case k = M + 1 holds

ˆ̀(M+1)
M+1 = ˆ̀(M)

M+1 − ��� M+1
ˆ̀(M)
M = −��� M+1(−1)M+1

∑

1≤s1<...<sM≤M

� � s1 · . . . · ��� sM+1

= (−1)M+2
∑

1≤s1<...<sM≤M

M+1factors︷ ︸︸ ︷
��� s1 · . . . · � � sM

· ��� M+1

= (−1)M+2
∑

1≤s1<...<sM+1≤M+1

��� s1 · . . . · � � sM+1
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. (2recursion)

The γi-level recursion follows by application of the simple recursion γi times.

In the following we will refer to the (variable) number of states as SN where N gives

the number of different zeros with
∑N

i=1 νi = SN . With induction over N we will show the

hypothesis:

AAA(SN )ˆ̀̀̀(SN )
= b(SN ), for N ∈ � . (IH)

First we verify the basis N = 1 with one zero of multiplicity S1 = ν1:

Let be ��� 1 = . . . = ��� S1 =: α. Then

ˆ̀S1

k = (−1)k+1
∑

1≤s1<...<sk≤S1

��� s1 · . . . · � � sk
= (−1)k+1

∑

1≤s1<...<sk≤S1

αk = (−1)k+1
(

S1
k

)
αk, k = 1, . . . , S1.

Now we can show AAA(S1)ˆ̀̀̀(S1)
= b(S1) or equivalently AAA(S1)

1
ˆ̀̀̀(S1)

= b
(S1)
1 :

(
AAA(S1)

1
ˆ̀̀̀(S1)

)
p

=

S1∑

q=1

(J − q)p−1αS1−q ˆ̀ (S1)
q =

S1∑

q=1

(J − q)p−1αS1−q(−1)q+1
(

S1
q

)
αq

= αS1

S1∑

q=1

(−1)q+1
(

S1
q

) p−1∑

l=0

(
p−1

l

)
Jp−1−l(−q)l

= αS1

p−1∑

l=0

(
p−1

l

)
Jp−1−l

S1∑

q=1

(−1)q+l+1
(

S1
q

)
ql

Lem.2.14
= αS1

p−1∑

l=0

(
p−1

l

)
Jp−1−lδl,0 for p = 1, . . . , S1, l = 1, . . . , p− 2

= αS1Jp−1 =
(
b

(S1)
1

)
p
, p = 1, . . . , S1

(2basis)

For the induction step we have to show AAA(SN+1)ˆ̀̀̀(SN+1)
= b(SN+1). Therefore we consider
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i = 1, . . . ,N and p = 0, . . . , νi − 1:

(
AAA(SN+1)

i
ˆ̀̀̀(SN+1)

)
p+1

=

SN+1∑

n=1

α
SN+1−n
i (J − n)p ˆ̀(SN+1)

n

(1.7.27)
=

SN+1∑

n=1

α
SN+1−n
i (J − n)p

νN+1∑

k=0

( νN+1

k ) (−1)kαk
N+1

ˆ̀(SN )
n−k

=

νN+1∑

k=0

(
νN+1

k ) (−1)kαk
N+1

SN+1∑

n=1

α
SN+1−n
i (J − n)p ˆ̀(SN )

n−k

︸ ︷︷ ︸
=:d

Setting ñ = n− k we get

d =

SN+1−k∑

ñ=1−k

α
SN+1−ñ−k
i (J − ñ− k)p ˆ̀(SN )

ñ = α−k
i

SN+1−k∑

n=1−k

(J − n− k)pα
SN+1−n
i

ˆ̀(SN )
n

= α−k
i

(
0∑

n=1−k

(J−n−k)pα
SN+1−n
i

ˆ̀(SN )
n +

SN∑

n=1

(J−n−k)pα
SN+1−n
i

ˆ̀(SN )
n

+

SN+1−k∑

n=SN+1

(J−n−k)pα
SN+1−n
i

ˆ̀(SN )
n

)

= α−k
i

(
(J − k)pα

SN+1

i (δk,0 − 1) +

SN∑

n=1

(J − n− k)pα
SN+1−n
i

ˆ̀(SN )
n + 0

)
.

The last equality is true since ˆ̀SN
n = 0 for n < 0 and n > SN . Furthermore we notice that

the first sum is empty for k = 0. This leads to the δk,0 term. Setting J̃ = J − k and using

the induction hypothesis we obtain

d = α−k
i

(
(J − k)pα

SN+1

i (δk,0 − 1) +

SN∑

n=1

(J̃ − n)pαSN−n
i α

νN+1

i
ˆ̀(SN )
n

)

IH
= α−k

i

(
(J − k)pα

SN+1

i (δk,0 − 1) + α
νN+1

i J̃pαSN

i

)

= (J − k)pα
SN+1−k
i δk,0

We insert d in the original equation and get

(
AAA(SN+1)

i
ˆ̀̀̀(SN+1)

)
p+1

=

νN+1∑

k=0

( νN+1

k ) (−1)kαk
N+1α

SN+1−k
i (J − k)pδk,0 = α

SN+1

i Jp = (b)p+1.
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So far we could prove that the hypothesis is valid for 0 < i ≤ N . We now regard i = N +1

with 0 ≤ p < νN+1 − 1:

(
AAA(SN+1)

N+1
ˆ̀̀̀(SN+1)

)
p+1

=

SN+1∑

n=1

(J − n)pα
SN+1−n
N+1

ˆ̀(SN+1)
n

(1.7.27)
=

SN+1∑

n=1

(J − n)pα
SN+1−n
N+1

νN+1∑

k=0

(
νN+1

k ) (−1)kαk
N+1

ˆ̀(SN )
n−k .

Including the summand for n = 0 enables us to change summation limits later.

(
AAA(SN+1)

N+1
ˆ̀̀̀(SN+1)

)
p+1

= −Jpα
SN+1

N+1

ν
N+1∑

k=0

(
νN+1

k ) (−1)kαk
N+1

ˆ̀(SN )
−k

+

νN+1∑

k=0

(
νN+1

k ) (−1)kαk
N+1

SN+1∑

n=0

(J − n)pα
SN+1−n
N+1

ˆ̀(SN )
n−k

= −Jpα
SN+1

N+1 (−1) +

νN+1∑

k=0

(
νN+1

k ) (−1)kαk
N+1

SN+k∑

n=k

(J − n)pα
SN+1−n
N+1

ˆ̀(SN )
n−k .

For all other n the sum is zero, because ˆ̀SN
n = 0 for n < 0 and n > SN . We set d = n− k.

(
AAA(SN+1)

N+1
ˆ̀̀̀(SN+1)

)
p+1

= Jaα
SN+1

N+1 +

νN+1∑

k=0

( νN+1

k ) (−1)kαk
N+1

SN∑

d=0

(J − d− k)pα
SN+1−d−k
N+1

ˆ̀(SN )
d

= Jaα
SN+1

N+1 +

νN+1∑

k=0

( νN+1

k ) (−1)k

SN∑

d=0

α
SN+1−d
N+1

ˆ̀(SN )
d

p∑

ω=0

( p
ω ) (J − d)p−ω(−k)ω

= Jaα
SN+1

N+1 −
SN∑

d=0

α
SN+1−d
N+1

ˆ̀(SN )
d

p∑

ω=0

( p
ω ) (J − d)p−ω

νN+1∑

k=0

(
νN+1

k ) (−1)k+ω+1kω

= Jaα
SN+1

N+1 −X = Jaα
SN+1

N+1 = (b)
(SN+1)
p+1 , p = 0, . . . , νN+1 − 1

To realize that X = 0 we discern the two cases

• νN+1 = 1

X =

SN∑

d=0

α
SN+1−d
N+1

ˆ̀(SN )
d

p∑

ω=0

( p
ω ) (J − d)p−ω

(
( 1

0 ) (−1)ω+10ω + ( 1
1 ) (−1)ω1ω

)
= 0
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• νN+1 ≥ 2

X
Lem.2.14

=

SN∑

d=0

α
SN+1−d
N+1

ˆ̀(SN )
d

p∑

ω=0

( p
ω ) (J − d)p−ω

(
( νN+1

0 ) (−1)ω+10ω + δω,0

)

=

SN∑

d=0

α
SN+1−d
N+1

ˆ̀(SN )
d (−1 + 1) = 0.

2





Glossary

Here we will give an overview of the used notation.

Variables in Petri nets 109

π(t, z) density function 109

Q generator matrix 8

R(k, s) fluid parameters 12

Mk(x) expectation of the flow rate 13

Σ2
k(x) variance of the flow rate 13

Φn matrix of convolution coefficients 41

Ψn matrix of summed convolution coefficients 45

Variables in the Schrödinger equation 109

Dn matrix of convolution coefficients 83

Sn matrix of summed convolution coefficients 84

Error notation 109

εapprox approximation error 50

εround roundoff error 50

εm machine accuracy 51

Number fields 109
�

boolean values 109
�

complex numbers 109

� natural numbers 109
�

real numbers 109

Complex numbers 109

Im(z) imaginary part of complex variable z 109

Re(z) real part of complex variable z 109

111



112 GLOSSARY

Functions of random variables 109

P (X > x) probability of the random variable X to be larger than x 109

E(X) expectation of a random variable X 109

Var(X) variance of a random variable X 109

Grid parameters 109

h step size in space 109

k step size in time 109

Matrix properties and functions 109

vT , MT transpose of a vector or matrix 109

MH Hermitian matrix (transpose conjugate) 109

i(M) inertia of matrix M, i(M) =
(
i+(M), i−(M), i0(M)

)
24

diag(v) diagonal matrix with the diagonal elements v 109

γ geometric multiplicity 109

ν algebraic multiplicity 109

ρ(M) spectral radius of matrix M, ρ(M) = max{|λ| : λ ∈ σ(M)} 109

σ(M) spectrum of matrix M, σ(M) = {λ : λ eigenvalue of M} 109



Bibliography

[ABC+95] M. Ajmone Marsan, G. Balbo, G. Chiola, S. Donatelli, and G. Francheschinis. Modelling with

Generalized Stochastic Petri Nets. John Wiley & Sons, 1995.

[AES03] A. Arnold, M. Ehrhardt, and I. Sofronov. Discrete transparent boundary conditions for

the Schrödinger equation: Fast calculation, approximation, and stability. Comm.Math.Sci.,

1(3):501–556, 2003.

[Ajm90] M. Ajmone Marsan. Stochastic Petri Nets: an elementary Introduction. In G. Rozenberg,

editor, Advances in Petri Nets 1989, volume 424 of Lecture Notes in Computer Science, pages

1–29. Springer-Verlag, 1990.

[Arn98] A. Arnold. Numerically Absorbing Boundary Conditions for Quantum Evolution Equations.

VLSI Design, 6:313–319, 1998.

[Bas88] G. Bastard. Wave Mechanics Applied to Semiconductor Heterostructures. Hasted Press, 1988.

[BB97] A. Bultheel and M. Van Barel. Linear algebra, rational approximation and orthogonal polyno-

mials. Studies in Computational Mathematics 6. North-Holland, 1997.

[BGG+99] A. Bobbio, S. Garg, M. Gribaudo, A. Horváth, M. Sereno, and M. Telek. Modeling Soft-

ware Systems with Rejuvenation, Restoration and Checkpointing through Fluid Stochastic

Petri Nets. In Proc. Eighth International Workshop on Petri Nets and Performance Models -

PNPM’99, Zaragoza, Spain, 1999.

[BKKR00] U. Bandelow, H.-Chr. Kaiser, Th. Koprucki, and J. Rehberg. Spectral properties of k · p

Schrödinger operators in one space dimension. Numer. Funct. Anal. Optimization, 21(3-4):379–

409, 2000.

[Car96] M. Cardona. Fundamentals of Semiconductors. Springer-Verlag, Berlin, 1996.

[CC92] C. Y.-P. Chao and S. L. Chuang. Spin-orbit-coupling effects on the valence-band structure of

strained semiconductor quantum wells. Phys. Rev. B, 46(7):4110–4122, 1992.

[Che73] C.-T. Chen. A generalization of the inertia theorem. SIAM J. Appl. Math., 25(2):158–161,

1973.

[CHMM78] A. J. Chorin, T. J. Hughes, M. F. McCracken, and J. E. Marsden. Product formulas and

numerical algorithms. Comm. Pure Appl. Math., 31:205–256, 1978.

[Chu91] S. L. Chuang. Efficient band-structure calculations of strained quantum wells. Phys. Rev. B,

43(12):9649–9661, 1991.

[Chu95] S. L. Chuang. Physics of optoelectronic Devices. Wiley & Sons, New York, 1995.

[CM65] D.R. Cox and H.D. Miller. The Theory of Stochastic Processes. Chapman and Hall, 1965.

113



114 BIBLIOGRAPHY

[CNT97] G. Ciardo, D. Nicol, and K.S. Trivedi. Discrete-event Simulation of Fluid Stochastic Petri Nets.

In Proc. Seventh International Workshop on Petri Nets and Performance Models - PNPM’97,

pages 217–225, Saint Malo, France, June 3–6 1997. IEEE-CS Press.

[CS63] D. Carlson and H. Schneider. Inertia theorems for matrices: The semidefinite case. J. Math.

Anal. Appl., 6:430–446, 1963.

[Doe67] G. Doetsch. Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-

Transformation. R. Oldenburg Verlag München, Wien, 3rd edition, 1967.

[EA01] M. Ehrhardt and A. Arnold. Discrete transparent boundary conditions for the Schrödinger

equation. Rivista di Matematica della Università di Parma, 6:57–108, 2001.
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probability density function, 15

queueing system, 6, 11, 64

reachability graph, 7

reduced reachability graph, 7

reduction of order method, 22, 38

Schrödinger system, 73

singularity of the image function, 58
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general parabolic, 69

parabolic, Petri net, 24

Schrödinger, 77

discrete
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Schrödinger, 82

squared coefficient of variation (scv), 13
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