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Abstract

Neuroscientific research using Electroencephalography is one of the most important tools
for understanding human brain function and dysfunction. Not many other methods can
non-invasively and directly access neural activity with millisecond precision. While basic
event related modulations of brain activity can easily be replicated, the spatial resolution
remains poor. Thus, complex or higher brain function and detailed aspects are much
more challenging to analyze. The properties of volume conduction in the human head
drastically decrease the spatial resolution of EEG. The mixing of neuronal sources on the
scalp is linear but spatially smeared. EEG is highly autocorrelated while additionally
non-stationary and non-linear in its emergence. Special methods are needed to differen-
tiate sources based on temporal, spectral and spatial considerations. Many approaches
based on common assumptions fail in practice. We need new ideas and a paradigm
shift towards new perspectives in order to advance technology. This thesis introduces
a new theory for the interpretation and classification of neural signals and develops al-
gorithms based on it. The theory includes new perspectives on volume conduction as
well as the propagation of oscillations and resonances in the cortex. This thesis suggests
novel approaches to models of volume conduction, spatial filtering and optimal classifiers.
The new perspective on volume conduction is based on but not limited to impedance
measurements and includes approximate head model, sensor position and homogeneous
conductivity estimations. In spatial filtering, novel side constraints on the common spa-
tial patterns algorithm are investigated. Optimal Bayesian classifiers are derived for the
direct classification of variance data and are related to established approaches based
on the logarithm of the variances or Riemannian Geometry. The new perspectives on
oscillations and resonance can be linked to the genesis of spectral harmonics due to the
non-linear relation of synaptic input and firing frequency in single neurons. The results
show the need for new approaches in head modeling, the interpretation of oscillations,
spatial filtering and classification. Furthermore, they deliver implications for the inves-
tigation of functional connectivity and neuronal dynamics: the brain is a large musical
instrument with finely tuned resonances in various spectral and spatial modes where
the current harmony is based on the present and past perceptual input. The single
resonances non-linearly depend on each other which leads to the necessary emergence of
harmonics based on the principles of compression and soft-clipping.
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Kurzbeschreibung

Neurowissenschaft mit Hilfe des Elektroenzephalogramm (EEG) ist eines der wichtigs-
ten Werkzeuge zum Verständnis menschlicher Hirnfunktion und -dysfunktion. Nur we-
nige andere Methoden können nicht-invasiv und mit der Präzision von Millisekunden
direkt auf die neuronale Aktivität zugreifen. Während einfache ereignisbasierte Verän-
derungen von Hirnaktivität leicht replizierbar sind, ist die räumliche Auflösung des EEG
nicht optimal. Die Analyse detaillierter Zusammenhänge sowie komplexer und höherer
Hirnfunktion bleibt eine Herausforderung. Die Volumenleitung führt zu einer schlechten
räumlichen Auflösung des EEG und hat die starke Vermischung neuronaler Quellen zur
Folge, während diese jedoch glücklicherweise linear ist. EEG weist durch dies und die
spezielle Form seiner Nicht-Stationarität eine hochgradige Autokorrelation auf, ist jedoch
zusätzlich nicht-linear in seiner Entstehung. Spezielle Forschungsansätze sind notwendig
um die unterschiedlichen Quellen unter zeitlichen, räumlichen und spektralen Gesichts-
punkten zu trennen. Da viele herkömmliche Ansätze versagen, braucht es neue Ideen
und Perspektiven um die EEG-Technologie weiterzuentwickeln. Diese Arbeit stellt neue
Theorien zur Interpretation und Klassifikation neuronaler Signale und darauf basieren-
de Algorithmen vor. Die Theorien umfassen neue Aspekte der Volumenleitung sowie zur
Entstehung und Weiterleitung von Oszillation und Resonanzen im Kortex. Biophysika-
lische Kopfmodelle, räumliche Filter und optimale Klassifikatoren werden daraus abge-
leitet. Die Ansätze zur Volumenleitung basieren auf Impedanzmessungen, bieten jedoch
darüber hinaus Näherungslösungen für individuelle Kopfmodelle sowie die Schätzung von
Sensorpositionen und homogener Gewebeleitfähigkeiten. Neuartige Randbedingungen in
der räumlichen Filterung werden untersucht. Bayessche optimale Klassifikatoren für Va-
rianzdaten werden hergeleitet und in Bezug zu etablierten Ansätzen gesetzt, die auf dem
Logarithmus der Varianzen oder Riemannscher Geometrie basieren. Die Entstehung im
EEG messbarer spektraler Oberwellen wird auf Grund herkömmlicher Annahmen über
den Zusammenhang von Feuerrate und synaptischem Input einzelner Neuronen aufge-
zeigt. Diese Arbeit zeigt die Notwendigkeit neuer Perspektiven in der Modellierung der
Volumenleitung, der Interpretation von Oszillationen, der räumlichen Filterung und der
Klassifikation. Die Ergebnisse eröffnen Implikationen für die Untersuchung funktionaler
Konnektivität und neuronaler Dynamik: Das Gehirn ist ein riesiges musikalisches Instru-
ment mit fein abgestimmten Resonanzen in vielfältigen räumlichen und spektralen Mo-
den, dessen momentane Harmonie auf gegenwärtigem und vergangenem perzeptuellem
Input basiert. Die Resonanzen hängen nicht-linear voneinander ab, was zur notwendigen
Entstehung von Oberwellen durch die Prinzipien der Kompression führt.
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Preface

Writing a dissertation is a long winding road that does not start at formulating the actual
first word. The writing itself is the intensely focused climax of gathering information,
discussing and formulating theory, generating insights through others as well as yourself.
But all of this is impossible without education from many different sources. While the
time of writing is often dominated by social isolation - intensified by the Corona virus
in this case - even then it is these inputs and discussions that are the most important
review of your thoughts and work.

If we believe that what we know about what people call ’reality’ is roughly true, we
are still enslaved by our senses to experience a world we actually cannot even prove to
exist. All we are left with is a conscious perception of a surrounding that seems heavily
influenced by our own experiences and expectations but nevertheless by external, by en-
vironmental factors. We perform actions to examine and manipulate this environment,
investigating the relationships and the ’truth’ behind our perceptions. This is inline with
studying the brain "from inside out" as György Buzsáki terms it [Buzsáki, 2019]. Gath-
ering rules and relationships that explain and sort the chaos around us seems inherent
to all cultures. Science, however, is not free from beliefs and axioms that have to be
trusted while simultaneously questioned as a basis for meaningful results.

Laplace, Lagrange and Legrendre first rejected Fourier transform, finding it mathe-
matically arbitrary to describe functions by a functional transform with sinusoids [Zayed,
2019]. However, Fourier transform is now the most widely used spectral decomposition.
This can be credited at least partly to the fact that our brain represents perceptions in a
similar, spectral way and, hence, the transform is a good estimator for our expectations
and perceptions.

Among many things in nature, our brain is simply a network of oscillations playing
harmonics like a big improvising free jazz orchestra. Or maybe that accounts for the
authors current brain state only. Brains might be playing classical music with a strict
and relentless conductor or simply chaotic disharmonics depending on the person, phase
in life, the day and the time of the day.

Nothing is universally true, it is shaped by our phantasy and this does not stop at the
author’s theories. You can only combine and formulate what you learn, see and hear as
well as discuss it with others to not get trapped within your own small world.
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• Section 4.1: Development and application of a novel spatial filtering approach
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Chapter 1
Introduction

In neuroscience, great achievements have been made during the last century since the
first recorded Electroencephalography (EEG) by Berger in the 1920s. While many of
the fundamental theoretical concepts date back to even earlier and many foundations
of theoretical neuroscience have also been laid during the mid-century, most technical
advances date later or around the turn of the millennium.

Magnetoencephalography (MEG) was invented around 1968 and has helped gain great
insights into the function of the neocortex. Functional Magnetic Resonance Imaging
(fMRI) was only developed around 1990, opening a whole new window on brain function
and connectivity. Diffusion Weighted Imaging (DWI) as a technique also based on MRI,
developed around 1985, found its way into brain research approximately in the year 2000.
It is now used to estimate conductivities, the functional connectivity and myelinization
within the brain.

The increasing computational power and the variety of approaches drastically changed
the analysis since the 1980s. In particular the evolution of machine learning culminated
around 2010 in the expectancy of being able to control almost anything with brain
computer interfaces (BCIs) within a few years and to build artificial brains.

Since then, openly speaking, not too much has happened that really advanced the field
of BCI. The main challenges remain the same while new approaches such as applying deep
learning on EEG data or the development of classifiers based on Riemannian Geometry
can improve performance, but, sadly, not substantially.

The novelties in theories in the last decade are mainly related to the development of
new paradigms explaining in particular brain connectivity and dynamics. The evolution
of computational neuroscience and the further increase particularly in parallel computing
power opens new fields. But, also, new perspectives on oscillations and background
activity of the brain among the insight that the thickness of myelinization within in the
brain is depending on learning effects lead to a manifestation of the importance of brain
dynamics.

This thesis is born out of necessity for integrating theoretical considerations and ad-
vances into the applied methods in order to build valuable new approaches. The main
focus lies in the investigation of and application to spontaneous EEG, while many of the
results also apply to event-related potentials (ERPs) and similar methods.
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Chapter 1 Introduction

In Chapter 2, we start from neurons - the main electric field generators within the
brain - and investigate the resulting external field based on volume conduction. We then
take a detour via the statistical implications of point processes like action potentials
and related synaptic potentials, in order to explain the emergence of certain spectral
phenomena that we observe in EEG, MEG and intracranial recordings. As a result of
these theoretical considerations, a foundation for the explanation of spectral harmonics
is laid, but, also other interpretations are revisited in a common theory.

Chapter 3 first introduces methods to measure neural activity and estimate the individ-
ual electrical properties of the human head. Details on standard analysis of spontaneous
EEG data are reviewed. The statistics of variances are investigated which results in a
novel perspective on one of the most common approaches, Linear Discriminant Analysis
(LDA) on the logarithm of variance, and its relation to Riemannian geometries.

In Chapter 4, a novel spatial filtering technique is introduced and evaluated on motor
imagery BCI data, after which a new family of classifiers is derived and evaluated on the
same data set. The classifiers are optimal Bayesian classifiers for 𝜒2 distributions and
related linear approximations.

Chapter 5 deals with novel approaches to approximating tissue conductivities, sensor
positions, geometric headmodels and EEG leadfields. Also, insights on technical details
are shared, that regard the essence of good correspondence in the electrode, source and
head geometry estimations for a proper estimation by approximate methods.

The key contributions of this thesis are novel theories of head model approximations
via impedance measurements, new approaches to the investigation of oscillations, novel
classifiers and spatial filters among a generic framework for geometric dimensionality
reduction.

2



Chapter 2
Theory of Electrical Signal Generation of Neurons

Electroencephalography (EEG) measures the electrical potential on the scalp in order
to gain information with millisecond precision directly linked to the electrical activity
caused by propagation of impulses from neuron to neuron. While it is under strong
influence of artefacts and thus suffers from a low Signal-To-Noise ratio (SNR), we will
focus here on the neural origins of EEG and treat the latter in the next chapter.

Commonly, the question arises which part of neural activity are measured and from
which areas of the brain. Presumably, predominantly assemblies of neocortical pyramidal
cells cause signals spatially large scale and strong enough to be visible in EEG. Of their
various small scale signals, the post-synaptic potentials (PSPs) are primarily measured,
but also hyper-polarization and action potentials (APs) can be measured under certain
circumstances.

In general, many more components take part in the neural processing of the brain.
These components are mainly other types of neurons - like stellate cells and interneurons
- as well as Glia cells but also involve subneuronal levels of activity. Within this chapter
we will start from the fields generated by single neurons, advance to their temporal and
thus spectral structure in elicited external electric fields and then discuss the effects of
distributed sources including their functional coupling.

2.1 Neurophysiology & Volume Conduction
Let us start with a single neuron and investigate its role in the electrical and the neuronal
signal propagation. Neurons are thought to be the main local node in the neural process-
ing taking place in the brain. There are, however, sub-neuronal levels of investigations
down to single molecules or below. Processes on this level contribute to or modulate
neural activity but the EEG in particular is only sensitive to the activity spread over a
large number of neurons. This leads to the focus on an investigational level from neurons
upscale within this thesis. Also, we will focus on the main contributors to EEG activity
while sources with minor impact and other recording methods will be mentioned.

3



Chapter 2 Theory of Electrical Signal Generation of Neurons

2.1.1 Sources and Models of Neuroelectric Activity
If there exists an electrical field measurable as potential in a conductive medium like
biological tissue, electrical current has to flow. Below 1 kHz, the investigations can be
reduced to quasi-electrostatic approximations [Häamäläinen et al., 1993]. This implies
that a separation of charges leads to a current flow towards equalizing the so produced
potential difference. In the brain, the main conductive elements are the small charged
ions such as sodium (𝑁𝑎+), potassium (𝐾+), chlorine (𝐶𝑙−) and calcium (𝐶𝑎2+). These
are also involved in the signaling between neuronal cells and muscle activation among
many other general purposes in the human body. The membranes of neurons are electri-
cally charged by active and passive transport mechanisms in shape of ion channels that
lie within the cell membrane. Neurons have a negative resting potential of around -65
mV that is in principle maintained by active pumps producing a concentration gradient
of 𝑁𝑎+ and 𝐾+.

When neurons receive synaptic input, the membrane potential changes which in turn
triggers active and passive mechanisms in the membrane that lead to an in- and outflux of
differently charged ions along the membrane. This triggers secondary currents restoring
electroneutrality in the extra- and intracellular space which are focused mainly along
the dendrites for PSPs and along the axon for APs. These external return currents
of the primary currents through the membrane are what is commonly termed volume
conduction due to its distribution over the whole surrounding conducting media [Buzsáki
et al., 2012].

2.1.1.1 Neuronal Sources of Electrical Fields

In Figure 2.1, we see a sketch of a pyramidal cell with five main sources and connected
current loops that resemble the main components of the neural activity linked to their
electrical far field. The sketch is a strong simplification and the sources and sinks are
only to be seen exemplarily. Among these current sources, there are two groups: synaptic
input on the dendrites and the action potential on the axon. The external currents differ
in spatial spread and orientation, synchronicity and time constants.

The main neuronal sources of EEG potentials are commonly related to spatially spread
excitatory and inhibitory post-synaptic potentials (EPSPs/IPSPs) producing an extracel-
lular return current along the dendrites [Buzsáki et al., 2012]. Notably, the probability
of inhibitory vs. excitatory synapses is location dependent. In CA1 pyramidal cells in
the Hippocampus, the distal apical dendrites have a ratio of 86% to 83% of excitatory vs
inhibitory synapses with a density up to 1.72𝑚−1. While advancing to the soma on the
thick distal radiatum first increases the ratio up to 98% and the density to 6.9𝑚−1, it
thereafter decreases down to 2% and a density of 1.7𝑚−1 approaching the soma [Megıas
et al., 2001].

The propagation of PSPs along the dendrites is mainly passive but their influence is

4



2.1 Neurophysiology & Volume Conduction
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Figure 2.1: External return currents of a hippocampal CA1 pyramidal cell: the main far-
field produced by a pyramidal cell comes from post-synaptic potentials in the
apical dendrites as all the other fields are on average closed by random orien-
tation (basal dendrites) or very local (action potential on the axon). Synaptic
density and excitation/inhibition ratio (E/I) are adopted from [Megıas et al.,
2001]

linearized by certain active mechanisms [Cash and Yuste, 1999]. In the axons, however,
action potentials, as an exclusive all-or-none event, dominate, leading to the limited
spatial spread of PSPs over dendrites and somata. The distribution of excitatory and
inhibitory synapses in distal and proximal areas to the soma (see Figure 2.1) leads to a
similar external field of both due to the oppositely charged currents. Inhibitory synapses
are mostly located close to the soma, while excitatory in the distal parts of the apical
dendrites. The propagation along the dendrites is thus in opposite directions but due to
the opposite polarity, EPSPs and IPSPs have a similar external field.

Additionally, the action potentials (APs) of spike bursts can have an effect on higher
frequencies of EEG e.g. in the somatosensory evoked potentials (SEPs) [Curio et al.,
1994; Baker et al., 2003; Gobbelé et al., 1998] or in epileptic seizures [Frauscher et al.,
2017]. The fact that they are additionally very local makes them challenging to measure
in EEG as their low amplitude in combination with spatial smearing mostly disappears
in particular in the noise of the amplifiers [Scheer et al., 2005]. Electrocorticography
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Chapter 2 Theory of Electrical Signal Generation of Neurons

(ECoG) and local field potentials (LFP) reveal further information on these more local
phenomena.

Another main source of EEG activity is what is closely related to the so-called Bere-
itschaftspotential. It is commonly concluded that the reason for this is not a direct
post-synaptic potential but an afterhyperpolarization of the cell membrane following ex-
cessive calcium-induced firing (bursts) [Hotson and Prince, 1980; Buzsáki et al., 2012].
The resulting passive currents along the dendrites produce similar field configurations
as those of the PSPs, which in turn leads to the usage of similar dipole models [Böcker
et al., 1994; Murakami and Okada, 2006].

In general, many effects of neural activity produce a local electric field (often termed
equivalently to the measurement method, the local field potential - LFP), but they are
usually not strong enough to be measurable by the far field in EEG and thus need more
local recording techniques to be identifiable.

For most of these sources, the equivalent current dipole (ECD) model is used as first
approximation, which we will take a closer look at in the next section.

2.1.1.2 The Equivalent Current Dipole

The different sources are commonly modeled by the so-called equivalent current dipole
(ECD) for EEG as well as Magnetoencephalography (MEG). The ECD approximates
the synchronized activities for sub-patches of cortex with common orientation of sources.
The equations for a dipolar source in general can be set up equivalently for the electrical
scalar potential 𝜑𝑑𝑖𝑝 and the source current density 𝐽𝑑𝑖𝑝:

𝜑𝑑𝑖𝑝(�⃗�) = 1
4𝜋𝜖

𝑝 · �⃗�

|�⃗�|3
(2.1)

𝐽𝑑𝑖𝑝(�⃗�) = −𝜎∇𝜑 = 𝜎

4𝜋𝜖

(︃
3𝑝 · �⃗�

|𝑟|5
· �⃗� − 𝑝

|𝑟|3

)︃
(2.2)

Given here are the analytical solutions for an infinite homogeneous medium with the
source at the origin that are usually the basis of more complex models incorporating
different levels of realism of the surrounding media. �⃗� is the position relative to the
dipole and 𝑝 = |𝑝| �⃗�𝑝 is the dipolar moment of the sub-patch of cortex, consisting of
the dipole strength |𝑝| and the mean field orientation �⃗�𝑝, which can alternatively be
expressed in a similar way directly related to the local currents [Murakami and Okada,
2006]. Conductivity is 𝜎 = 0.25𝑆/𝑚 and the relative permittivity is 𝜖𝑟 = 106 for the
neuronal source space (the gray matter of the neocortex) [Gabriel et al., 1996; Miklavcic
et al., 2006], where the absolute permittivity is 𝜖 = 𝜖𝑟𝜖0.

The larger the spatial spread �⃗�, the larger is the amplitude in the far field. Hence,
the action potential with its more local structure has much less effect on the far field, in
particular for EEG, as it is a very fast process on a small timescale rarely in synchrony
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2.1 Neurophysiology & Volume Conduction

with similarly oriented neighbors. The current produced by a single neuron is too small
to be measurable in the far field. A single cortical pyramidal cell produces currents
in the range of 0.2pA [Murakami and Okada, 2006] while an equivalent current dipole
as estimated by MEG [Häamäläinen et al., 1993] is in the range of 10nA. Hence, the
summation of large numbers (10 000 to 50 000, see also [Murakami and Okada, 2006])
of synchronously active and similarly oriented neurons lead to a dipolar structure in the
far field of those neurons strong enough to be measured by EEG or MEG.

It must be said, however, that the ECD model is a helpful approximation, as we have
a net-zero source and sink structure which coarsely resembles this dipole. However, it is
a valid in the far field only due to the distributed return currents along the dendrites.
In particular in the near-field of LFPs, relations are far more complex. Here, multi-pole
models or models of local ionic membrane currents at the synapse and passive cable
equations seem to be the minimum to receive a satisfactory field description [Hines and
Carnevale, 1997].

2.1.2 Volume Conduction
2.1.2.1 Phenomenological Observations

In order to qualitatively investigate the basic effects of volume conduction, we will start
off with a simple dipole in an infinite homogeneous medium. In Figure 2.2A, we can see
the distribution of equipotential lines and the connected vector field for a dipole in the
center. In general, the head consists of a mixture of different tissues and not an infinite
homogeneous medium. The resulting field in Figure 2.2B and C illustrates the local
situation of a pyramidal cell close to the cortex surface. This is a very simple example
of what happens for a sudden change in conductivity: if the conductivity decreases from
CSF to skull or in a 3-shell model between brain and skull (B), the current flow is
distorted away (repelled) from the boundary in search for the least energy consuming
path. While for an increase from brain to CSF (C), it is attracted, because more current
flows through the more conductive medium. B is by the way also an example of the
scalp-air interface effect.

Actually, the different tissues such as white and gray matter, Cerebrospinal Fluid
(CSF), skull and scalp are quite inhomogeneous themselves and there are several sud-
den changes between those tissue types with a change to non-conductive media at the
scalp which is rather the opposite of an infinite homogeneous medium. Additionally, we
find anisotropies in the conductivity in particular in white matter [Wolters et al., 2006;
Güllmar et al., 2010; Vorwerk et al., 2014].

Many papers have shown that the conductivities of the single tissue types have signif-
icant influence on amplitude and topography of scalp potentials, in particular those of
the skull and scalp (e.g. [Haueisen et al., 1999; Nissinen et al., 2011; Fernández-Corazza
et al., 2017; Ferree et al., 2000; Goncalves et al., 2003; Clerc et al., 2005b; Malony et al.,
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Figure 2.2: An upwards oriented current dipole (𝐼0 = 1𝑛𝐴) located at the white triangle
in different media: A in infinite homogeneous medium (𝜎1 = 0.25𝑆/𝑚 -
brain tissue), B in semi-infinite homogeneous medium (𝜎1 = 0.25𝑆/𝑚 - brain
tissue) with a boundary to a less conductive medium (𝜎2 = 0.004125𝑆/𝑚 -
skull tissue): this resembles a pyramidal cell very close to the skull in a 3-shell
head model, C in semi-infinite homogeneous medium (𝜎1 = 0.25𝑆/𝑚 - brain
tissue) with a jump to a much higher conductive medium (𝜎2 = 1.78𝑆/𝑚
- CSF): this resembles a pyramidal cell close to the CSF in a 4-shell head
model. The currents are repelled or attracted from a change in conductivity
(black line).

2011; Datta et al., 2013]). This is essential for source localization and functional con-
nectivity estimates as we will see in Chapter 3 [Baillet et al., 2001; Fuchs et al., 2002;
Darvas et al., 2006; Haufe et al., 2008; Valdés-Hernández et al., 2009].

Exemplarily, Figure 2.3 shows one of the simplest approaches for realistic head models:
Boundary Element Method (BEM) head models with different numbers of shells. The
effects seen here are what most people refer to as the effects of volume conduction or
spatial smearing. We can see that from adding the skull to the model (3-shell model), not
only the amplitude decreases but also the focality and the clear dipolar structure are lost
in the scalp potential. Further adding the CSF strengthens this effect (4-shell model).
We can see that the main voltage is produced close to the source in the upper row and
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Figure 2.3: A current dipole in the primary motor area (M1) in Boundary Element
Method (BEM) head models with different numbers of shells: shown is the
potential in a sagital cut at the level of the source in lateral direction in the
upper two and the scalp potential as measured by EEG on the lower row.

that the potentials are distorted in a similar way as in Figure 2.2 by the boundaries
between the tissue types (not shown).

Inspecting the potential distributions inside the head (central row), we find a deflection
of the field away from the scalp surface in the 1-shell model which already distorts the
zero potential line (practically the yellow center of the green area) downwards. As the
exemplary dipole is perfectly oriented towards the superior direction (upwards), this
line would be perfectly horizontal in an infinite medium. By this already, the scalp
potential is slightly blurred and the dipolar structure is decreased. Adding the skull
(3-shell model) increases this effect in particular inside the brain, the zero potential line
is deflected further to inferior locations in this slice. In the 4-shell, we find two main
effects: the zero-potential line inside the brain is suddenly more similar to that of the
1-shell but the field is further compressed due to the jump to a higher conductivity in
the CSF as seen from the brain tissue. Inside of the skull, a lot of the current flows
through the CSF due to its high conductivity which counteracts the repelling effects of
skull and scalp surface (1 and 3-shell). However on the scalp surface the peak amplitude
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Chapter 2 Theory of Electrical Signal Generation of Neurons

is further lost and the dipolar structure further vanishes due to the shielding effect of
the CSF: the equipotential lines are blurred even further.

These theoretical considerations underline the importance of modeling not only the
skull but also the CSF within a reasonable head model. This need has also been found
in numerical simulations [Ramon et al., 2004]. In general, also the inhomogeneity of the
skull, the anisotropy of the white matter and further factors have to be considered for
highly precise volume conductor models [Haueisen et al., 1997; Wolters et al., 2006].

2.1.2.2 Theoretical Background

The relation between currents and potentials in frequencies below 1kHz is commonly
assumed to be constant and linear due to quasi-electrostatics. This resembles the lo-
cal form of Ohms law and the possibility of applying the superposition principle: the
resulting field of several simultaneously active sources is simply the sum of their effects.

For the theoretical derivation we will start from the local form of the Maxwell Equa-
tions

∇ · �⃗� = 𝜌

∇ · �⃗� = 0
∇ × �⃗� = −𝛿𝑡�⃗�

∇ × �⃗� = 𝐽 + 𝛿𝑡�⃗�,

wherein the charge retention ∇ · 𝐽 = −𝛿𝑡𝜌 is implicitly included in the last equation.
Here, �⃗� is the electric flux, �⃗� the magnetic flux, �⃗� the electric field strength and �⃗�
the magnetic field strength. In frequencies below 1kHz, we assume electrostatics, as
mentioned earlier, and thus neglect electromagnetic induction (𝛿𝑡�⃗� = 0) and assume a
static space charge (𝛿𝑡𝜌 = 0). This results in ∇ · 𝐽 = 0: a divergence free current is
found, meaning that there are no current sources in the field itself, only those of active
sources like the neuronal membrane activity or externally applied currents. Further, we
get the possibility of describing the electric field with a simple potential Φ: �⃗� = −∇Φ
as its curl is ∇ × �⃗� = 0 (the field is conservative).

A macroscopic model for the current density inside the head is the combination of this
field description including an ohmic current 𝐽𝑣𝑐 = 𝜎�⃗� with a primary source current 𝐽𝑃

(e.g. neuronal activity): 𝐽 = 𝜎�⃗� +𝐽𝑃 [Clerc et al., 2005b]. In this fashion the causes for
the currents (e.g. diffusion or an electric field) are only treated indirectly in 𝐽𝑃 while
the resulting field of these currents lead to the ohmic volume conduction 𝐽𝑣𝑐 = 𝜎�⃗�. If
we want to solve these differential equations, we need to find the homogeneous solution
for 𝐽𝑣𝑐 that solves the field for the imprinted partial solution 𝐽𝑃 .

The macroscopic model in combination with the charge retention leads to ∇ · 𝐽 =
∇ ·
(︁
𝜎𝐸 + 𝐽𝑃

)︁
= ∇ ·

(︁
−𝜎∇Φ + 𝐽𝑃

)︁
= 0. Reordered, we get a Poisson equation suitable
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2.1 Neurophysiology & Volume Conduction

for the EEG case [Sarvas, 1987]:

∇ · (𝜎∇Φ) = 𝑓 = ∇ · 𝐽𝑃 . (2.3)

where 𝑓 is a function of space describing the current source density. If we know the
distribution of sources and hence the current source density, we can solve the linear
system to receive the resulting field.

For injected currents through the scalp as in Transcranial Electrical Stimulation (TES)
or Electrical Impedance Tomography (EIT), we consider the contribution of the inner
sources as negligible and thus 𝑓 = 0 [Clerc et al., 2005b]. This leads to the following
Laplace equation inside the head:

∇ · (𝜎∇Φ) = 0. (2.4)

The basic solution 𝐺 (r, r′) to a Laplace operator solves ∇2𝐺 (r, r′) = −𝛿 (|r − r′|),
where ∇2 = ∇ · ∇ and 𝛿(𝑥) is the Dirac delta. This solution is not necessarily harmonic
and does in general not fulfill the boundary conditions of subspaces.

The Green function is such a solution. It also vanishes at infinity which is in corre-
spondence with the physical intuition that a static field has no effect far away from its
sources [Kybic et al., 2005]. In 3 dimensions the Green function G is:

𝐺
(︀
r, r′)︀ = 1

4𝜋 |r − r′|
. (2.5)

In contrast, for the problem described by a Laplace equation ∇2Φ = 0, the solution
is a harmonic function (by definition) and is fully determined by the values on the
boundaries.

The solution to these equations is unique, hence it does not matter how it is con-
structed. To construct a solution for any divergence function 𝑓 of the current source
density in a subspace e.g., we can first calculate the free space solution for ∇ · 𝐽𝑃 = 𝑓
and then add a harmonic solution for Equation (2.4) to fulfill the boundary conditions.

For source free subspaces the solution is a simple harmonic function determined by
the boundary conditions. Also sources in several subspaces are possible. An exemplary
numerical solution to these equations is introduced in Chapter 3.2.1.3.

The simulations in Figure 2.2 B+C were created in a similar fashion: we first simu-
lated the field of a dipole in an infinite homogeneous medium and then added the same
potential spatially mirrored at the boundary weighted by the conductivities in order to
fulfill the boundary conditions. The normal current has to have no jump on the bound-
ary (is continuous) and in this case (connected conductive space) the potential also has
to be continuous. Hence, we find jumps [ ] in the normal electrical field strength 𝛿𝑛Φ
which is the normal derivative of the potential Φ and proportional to the normal current
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Chapter 2 Theory of Electrical Signal Generation of Neurons

density 𝐽𝑛 by the conductivity change:

[Φ] = 0 (2.6)
[𝐽𝑛] = [𝜎𝛿𝑛Φ] = 0 (2.7)

For given discretized geometries, Equation (2.3) can be explicitly calculated and trans-
formed into a linear equation of the form:

Ax = b (2.8)

where A incorporates the spatial dependencies as convolutions with the Green function
and b depicts the inhomogeneities as boundary conditions while x are either related
to the normal currents or the potentials or a combination of both in different spatial
locations depending on the type of model.

2.2 Oscillations & Power Spectral Densities
Now that we know how single neurons contribute to the field measured by EEG and
that we need temporally synchronous activity for the mean field to be strong enough,
we want to investigate how this synchrony arises. There are many different perspectives
on EEG data, of which the oldest form is to look at the signal in the temporal domain.
In these, already the pioneer of EEG Hans Berger in 1929 [Berger, 1929] detected a
certain spontaneous rhythmic activity with two frequencies between 8-11 Hz and 25-30
Hz which he termed alpha and beta waves later on [Berger, 1931]. 1931 already, he had
observed an increase in beta and a decrease in alpha corresponding to the increase in
’mental work’. These early observations suggest the investigation in the spectral domain.

Various local and global oscillations influence the propagation of neuronal pulses.
These oscillations occur on all scales from membrane potentials of single neurons to net-
works spanning the whole nervous systems. However, also stochastic resonances [Baker
et al., 1999; Jones, 2016], the non-sinusoidal shape of neural firing [Cole and Voytek, 2019;
Pfurtscheller et al., 1997] and time-delayed same-frequency oscillations [Schaworonkow
and Nikulin, 2019] enter the average power-spectral densities as peaks. Hence, a spec-
tral peak does not necessarily mean an (ongoing) oscillation at that frequency but could
have various reasons. But let us first look at the properties of power-spectral densities
of EEG.

Power Spectral Densities (PSDs) 𝑆𝑥𝑥(𝜔) decompose a stochastic signal into differ-
ent sinusoidal component in their power usually using a windowed short-time Fourier
transformation using the Welch’s method [Welch, 1967]. It characterizes the average
(or expected) power density per frequency 𝜔 in short time windows of a signal 𝑥(𝑡) of
length 𝜏 in the frequency domain [Rieke et al., 1999]. If we denote by �̂�(𝜔) the Fourier
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Figure 2.4: Typical spectra of EEG and ECoG and a spectrogram of LFP in hand move-
ment tasks: we can observe a general shape of 1/f with certain oscillations
peaking in the PSDs of ECoG and EEG. The peaks are not sharp in frequency
suggesting a rather probabilistic oscillatory structure they are based on. The
source patterns of the different frequency differences overlap while they sug-
gest a decrease of the active areas. There is also a 3rd harmonic visible in
EEG. The higher frequencies reveal more focal spatial patterns. The LFP
changes mainly in higher (Gamma) frequencies while there is also a decrease
in the beta range and an increase in lower frequencies in motor prepara-
tion (the white line is hand movement speed, the Z-score depicts the change
from the mean standard deviation). Reprinted with permission: ECoG from
[Miller et al., 2007], copyright 2007 Society for Neuroscience, and LFP from
[Perel et al., 2015], copyright 2015 The American Physiological Society.
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transform of 𝑥(𝑡) which is defined over a finite time interval 𝑇 then:

𝑆𝑥𝑥(𝜔) = lim
𝑇 →∞

⟨
|�̂�(𝜔)|2

⟩
(2.9)

which is equivalent to the Fourier transform �̂�𝑥𝑥(𝜔) of the auto-correlation 𝑅𝑥𝑥(𝜏)
(Wiener-Kintchine-Theorem):

𝑆𝑥𝑥(𝜔) = �̂�𝑥𝑥(𝜔) (2.10)
In the PSD of EEG signals, we can observe:
• A general shape of 1/𝑓𝛼 in the spectrum

• Peaks at different frequencies
Both peaks and the ’background noise’ are found to be dependent on different cognitive
states.

Oscillations can be investigated in the spontaneous EEG as classically done by Berger,
but we can also investigate typical spectra in the event-related responses (ERP) con-
nected to a repeated stimulus or similar event. The ERP in time domain consists of
an oscillatory structure with different peaks, which seemingly have a basic frequency
of around 10 Hz at least for the first peaks, while the later P300 peak is slower. The
connection between spontaneous and event-related oscillations is highly under debate,
but high correlations between alpha and ERPs can be found [van Dijk et al., 2010]. As
the EEG is rather a macroscopic low-resolution signal of the brain - a complex non-linear
dynamical system - the separation into single sources of these oscillations is a tough task.

There are several theories and studies on phase synchrony and/or reset between ERPs
and spontaneous alpha oscillations [Risner et al., 2009; Milton and Pleydell-Pearce, 2016]
that are highly debated [Ritter and Becker, 2009] while a connection is thoroughly found,
e.g. between the patterns of the P300 and the alpha peak [Intriligator and Polich, 1994].
Also, the generation of ERD/ERS can be linked to ERPs [Yordanova et al., 2001]. We
will focus on the investigation of spontaneous EEG activity throughout this thesis.

2.2.1 Single Event Sources of EEG in the Spectral Domain
We will now investigate how single events of neurons contribute to the field in the
temporal and spectral domain. Although PSPs are the main event we measure in EEG,
they are triggered by single events - the action potentials - and hence must obey the
firing statistics of presynaptic neurons. As we will see, the point process like structure of
action potentials leads to a frequency-independent (white) spectral structure by itself,
while the type of triggered event (AP, IPSP or EPSP) determines the spectral shape
together with the statistics of the input. Synapses are the communications channels
between neurons and the brain is highly recurrent. So, if we measure certain oscillations
they can only emerge from the functional connectivity between neurons in combination
with the time delays of these feedback loops.
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Figure 2.5: Typical time course (A), PSD (B) and double logarithmic PSD (C) of action
potentials (AP) and postsynaptic potentials (PSP) simulated in a layer 5
pyramidal cell using NEURON [Hines and Carnevale, 1997]. The dashed
lines depict the fractional exponent 𝛼 in the high frequencies (𝛼 = 2.3 EPSP,
𝛼 = 2.7 IPSP, 𝛼 = 4.5 AP). Note that the scaling was fitted for visibility.

2.2.1.1 Action potentials (AP)

Action potentials (AP) are the main bits of neuronal communication, transporting infor-
mation within neurons along the axon. They also trigger the synaptic output from the
different sensory cells as well as the output to the different muscles. Many studies sug-
gest a non-deterministic stochastic firing of single neurons with a firing pattern in-vivo
influenced by the different excitatory and inhibitory inputs as well as the current past of
the neurons activity [Bair et al., 1994; Pesaran et al., 2002; Lampl and Yarom, 1993; Puil
et al., 1994; Pike et al., 2000; Pedroarena and Llinás, 1997]. Firing statistics of single
neurons are mostly characterized in inter-spike-interval (ISI) distributions which in-vivo
seem to be related to a Poisson process on first approach [Dayan and Abbott, 2001].
Isolated single cells stimulated by current injections in-vitro, however, seem to be firing
rather deterministically. This suggests that the reason for the irregularity rather lies
in the large amount of random input from synaptic ’background’ activity stochastically
influencing the membrane potential [Holt et al., 1996; Buzsaki, 2006]. The resulting ISI
distribution of spike times 𝜏 of such a Poisson process with a constant firing rate 𝑟 is a
simple exponential:

𝑝𝐼𝑆𝐼(𝜏) = 𝑟𝑒−𝑟𝜏 (2.11)

Interestingly, if we simulate random (Poisson) synaptic bombardment as linear super-
positions of many APs or PSPs and calculate the PSD of the resulting time signal, we
will receive a fuzzy version of the original waveform (AP/PSP), see Figure 2.6. The
reason is that if we take many action potentials in a random order as single events oc-
curring repeatedly over time and calculate the PSD, the resulting signal is still linearly
depending on the single events. The mathematical operation in time domain here rep-
resents a convolution with a delta pulses at different points in time which has a flat
(white) frequency spectrum. Convolution in time domain represents a multiplication in
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the PSDs depend on the rate and have been amplified for visualization.

frequency domain, hence we practically multiply it with a (in this imperfect case noisy)
constant.

If the firing rate 𝑟(𝑡) varies over time, we find what we call an inhomogeneous Poisson
process. It can be modeled similarly to a homogeneous Poisson process. The probability
of firing a spike during a short interval of duration Δ𝑡 is 𝑟(𝑡)Δ𝑡 which can be implemented
using a simple random number generator. We can see such a process for a 10𝐻𝑧 sine
wave in Figure 2.7. The resulting spectrum consists of the single peak of the sine wave
at 10Hz and the flat white spectrum of the Poisson process.

The fact that broad frequency peaks and the 1
𝑓𝛼 PSD structure, as commonly found in

EEG, can not be explained by the irregular firing of an inhomogeneous Poisson process
with constant firing rate suggests that it is just a good model for describing the behavior
but not the reasons for these distributions. Hence, the peak-width of oscillations com-
monly seen in EEG can not be explained by a Poisson process but rather variations in
the frequencies due to the non-stationarity of the stochastic sources [Jones, 2016].

2.2.1.2 Postsynaptic Potentials

Postsynaptic Potentials (PSP) take place in the dendrites of neurons and are triggered
by arriving action potentials on the presynaptic axon. The timescale of IPSPs and
EPSPs is different. In particular IPSPs are slower than APs and we can investigate the
corresponding spectrum in Figure 2.5. As the PSPs are triggered by action potentials
as single events, the single synapses share the same firing statistics as the presynaptic
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Figure 2.7: A spectrum of an inhomogeneous Poisson spike train driven by a pure sine
wave of frequency 10Hz: we can see a flat frequency response with a single
peak at 10 Hz superimposed. The single events were modeled as single Dirac
delta pulses in this case.

neuron and hence follow the distributions connected to a Poisson process. In order to
reproduce a certain structure in spectral behavior, the synaptic input in form of single
action potentials has to have this particular structure or lead to it in combination with
single cell membrane properties. This implies that a certain rhythmic or 1

𝑓𝛼 structure
in PSPs is directly related to firing patterns of presynaptic neurons (including local
and global feedback). The post-synaptic current (𝐼𝑃 𝑆𝐶) is commonly described by two
exponentials of the form [Buzsaki, 2006; Gao et al., 2017]:

𝐼𝑃 𝑆𝐶 = 𝐶(−𝑒
− 𝑡

𝜏𝑟𝑖𝑠𝑒 + 𝑒
− 𝑡

𝜏𝑑𝑒𝑐𝑎𝑦 )

where 𝐶 is an amplitude constant. A linear mixing of the IPSPs and EPSPs can create
various spectral shapes in the PSD depending on the ratio. In [Gao et al., 2017] it was
shown that, due to the differing time constants of excitation (𝜏𝑟𝑖𝑠𝑒 = 0.1𝑚𝑠, 𝜏𝑑𝑒𝑐𝑎𝑦 =
2𝑚𝑠) and inhibition (𝜏𝑟𝑖𝑠𝑒 = 0.5𝑚𝑠, 𝜏𝑑𝑒𝑐𝑎𝑦 = 10𝑚𝑠), the slope of the power spectrum is
influenced by the general level of excitation vs. inhibition (E/I ratio).

2.2.2 Distributed Sources of Spectral Structure
As we have seen in the last section, the single cell firing properties of cortical neurons and
their statistics that can be measured by single cell recordings cannot fully explain the
LFP statistics measured close to the cells. The spectral structure of single neurons has
to be produced by the ensemble statistical structure of the many inputs into each neuron
in combination with the active resonant behavior of the neuron and closely connected
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Chapter 2 Theory of Electrical Signal Generation of Neurons

interneurons. This is valid for oscillatory peaks but at least partly also for the 1/f
statistics, while the connection between input statistics and 1/f noise shape is highly
debated.

Additionally, the external currents of near and far fields are further determined by
the ensemble activity of distributed neuronal sources. Constructive and destructive
interference can amplify and annihilate local source activity in the far field.

We will thus investigate how different phenomena in the spectra may arise by this
ensemble activity. We will also introduce a new perspective on it that stems from
the non-linear dependence of firing rate and PSPs. This theory can explain the non-
sinusoidal shape of oscillations and the related emergence of harmonics in the spectrum
through the clipping effects of the firing thresholds.

2.2.2.1 Background Noise and Broadband Structure

Noise is usually characterized by two main statistical qualities: the distribution of ampli-
tudes and the power spectral densities. While the distribution of amplitudes is commonly
assumed to be Gaussian, the spectral behavior is a function of the frequency. Noise rel-
evant for EEG measurements can be charecterized by its spectral roll-off and follows the
function

𝑆(𝑓) = 1
𝑓𝛼

(2.12)

In technical applications, usually three main types of noise are defined based on their
spectral structure, while they actually form a continuum based on Equation (2.12):

• White noise: 𝑆(𝑓) = const.

• Pink noise: 𝑆(𝑓) = 1
𝑓

• Brownian noise: 𝑆(𝑓) = 1
𝑓2

Pink noise can emerge out of white noise by integration, or - more general - low-pass
filtering. The same accounts for Brownian noise. They all are related to basic physical
processes: white noise resembles random events like collisions of particles or what we
have seen as a random point process in the APs in the last section. Pink noise is often
referring to a fractional exponent 𝛼 between zero and two and is related to flicker noise
in electronic devices. Brownian noise charecterized a diffusion or random walk process
like Brownian temperature movements of particles.

Integrating the content of the last sections, we can say that actually random point
processes can produce any sort of spectral structure depending on the reaction of the
system to the single events. In pink noise, the single events are classically thought to
be exponential decays and the time constant determines the spectral roll-off [Schottky,
1926].
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2.2 Oscillations & Power Spectral Densities

In EEG, like many biological systems, mostly pink noise with an exponent between
one and two, often close to two is found. It is, however, important to mention first
that it makes little sense to talk about a 1

𝑓𝛼 structure of the EEG in general without
discriminating between frequency bands. Many effects described in the literature are
limited to certain frequency bands.

There are many different explanations for the measured 1
𝑓𝛼 power spectra that are

highly under debate [He, 2014]:

Self-Organized Criticality One of the most cited studies in the context of brain,
[Linkenkaer-Hansen et al., 2001], investigated long-range temporal correlations in the
amplitudes of band-pass filtered EEG and MEG data and discovered different but sim-
ilar 1

𝑓𝛼 dependencies in alpha, mu and beta bands and assessed these to self-organized
criticality in the neural network behavior of the brain. Problematic is that many different
reasons can actually lead to this sort of behavior, among which self-organized criticality
is only one possible explanation, because the PSD is only a second order statistic [He,
2014].

Point Processes As we have shown before, also single point processes like a Poisson
process can produce a similar structure depending on the time course of the single event.
If the single event has a 1

𝑓2 decay like the EPSP, the PSD of the process will have the
same structure [Lowen and Teich, 2005], similar to the first ideas of Schottky [Schottky,
1926] about the shot noise described by Johnson [Johnson, 1925]. He assumed a simple
exponential relaxation N(t) in the reaction to each single event:

𝑁(𝑡) = 𝑁1𝑒−𝛼Δ𝑡

that leads to a 1
𝑓𝛼 spectrum.

E/I-ratio As we have seen in Chapter 2.2.1.1, it is the structure of the input and so
most probably the network ensemble activity that leads to irregular firing of neurons, not
the behavior of single neurons. We know that the firing statistics of single presynaptic
neurons is Poisson distributed which leads to the spectrum depicted in Figure 2.6 for
the post-synaptic potentials. For example, [Freeman and Zhai, 2009; Gao et al., 2017]
have shown that fitting two exponentials for rise and fall time of EPSPs can explain
the spectral response of ECoG data. Also, the background noise as 1

𝑓𝛼 seems to be
influenced by various tasks conditions, in particular in higher frequencies [Miller et al.,
2014]. This could be related to a general increase in presynaptic activation resembling
a higher presynaptic firing rate, a local change in excitation inhibition ratios (E/I raio)
or even directly originating from clipped membrane potential oscillations as we will see
in Chapter 2.2.2.2.

19



Chapter 2 Theory of Electrical Signal Generation of Neurons

10
−4

10
−3

10
−2

10
−1

10
0

frequency [Hz]

P
S

D
 [
1
/H

z
]

2

10
−1

10
0

10
1

10
2

10
3

10
410

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

frequency [Hz]

P
S

D
 [
1
/H

z
]

fractional exponent α = 1.97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

time [s]

x
 [
a
.u

.]

10
−1

10
0

10
1

10
2

10
3

10
4

Figure 2.8: A time signal consisting of random rectangular pulses of random size, uni-
formly distributed over [0 100ms] and its Power Spectral Density (PSD). We
can see a clear 1

𝑓2 structure without any long range correlations (independent
rectangle lengths and positions). C The PSD of a single of the pulses used in
A: B is the simple sum of a lot of 𝑠𝑖𝑛𝑐2 functions with varying frequencies.

Action Potentials Also action potentials influence the structure of PSDs at least
locally. Due to the shorter time-pulses and the stochastic firing, the synchrony is quickly
lost with distance and action potentials have less influence in the far field. Because of
the broad-band peak in the PSD of an AP located around 100Hz, this effect is mostly
found as a peak in the Gamma frequency range but the actual influence of firing rate is
also found on a broader scale.

Alternative Sources In [Bédard et al., 2004; Bédard and Destexhe, 2008] it was shown
that also different aspects of volume conduction and dendritic transmission can lead to
similar structures in the PSD of EEG signal in higher frequencies. Opening and closing
of ion channels is also expected to produce a low-frequency 1

𝑓𝛼 spectrum [Lundström
and McQueen, 1974; Musha and Yamamoto, 1997; Novikov et al., 1997] among many
others factors. In particular in EEG, even non-neural mechanisms like the sweat cells
of the skin produce a temperature and physiological stress dependent alteration of the
1/f structure in the low frequency as well as the electrode impedance influenced by
temperature and time [Kappenman and Luck, 2010]. In the very low frequencies, scalp
EEG is highly contaminated with single event artefacts from the eyes that lead to a 1

𝑓𝛼

spectral structure, which are based on eye movements in form of saccades and changes
of line of sight and eyelid closures [Plöchl et al., 2012]. They also have a broadband
effect in the Gamma range: micro-saccades have a rate of around 1-2 Hz while the
actual pattern is a transient burst in 40-100 Hz related to general muscle artefacts.
Muscles activity is promoted by action potentials arriving in muscle fibers, potentially
explaining the similarity of the broadband effect of APs on the PSD as in Figure 2.7 and
also explaining one factor, why Gamma activity in EEG is usually difficult to reliably
extract.
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2.2 Oscillations & Power Spectral Densities

Excursion: Sinc Function In Figure 2.8 we can see a small experimental setup: a
random sequence of pulses with random length in between 0 and 100ms leads to an
almost perfect 1

𝑓2 structure in the PSD. Each of these pulses has a Fourier transform of
a sinc function of which the maxima follow a 1/𝑓 spectrum. The simple reason:

𝑠𝑖𝑛𝑐(𝑓) = 𝑠𝑖𝑛(𝑓)
𝑓

(2.13)

For the local maxima 𝑓𝑚𝑎𝑥 = 𝑛*𝜋 with 𝑛 ∈ 𝑁 corresponding to the maxima and minima
of the sine:

𝑠𝑖𝑛𝑐(𝑓𝑚𝑎𝑥) = 𝑠𝑖𝑛(𝑓𝑚𝑎𝑥)
𝑓𝑚𝑎𝑥

= 1
𝑓𝑚𝑎𝑥

. (2.14)

This 1
𝑓𝑚𝑎𝑥

amplitude spectrum corresponds to a 1
𝑓2

𝑚𝑎𝑥
power spectrum. A linear superpo-

sition of many of these leads to a loss of the minima and hence a straight 1/𝑓 structure
in the Fourier transform and hence a 1

𝑓2 structure in the PSD. The flattening in the
PSD at below 10 Hz is due to the limited length of the rectangles (including longer rect-
angles would shift it to lower frequencies). Random opening and closing of membrane
channels could thus reproduce such an event [Lundström and McQueen, 1974; Musha
and Yamamoto, 1997; Novikov et al., 1997]. This is an example of an integrated random
point process. A completely random event can thus create a 1

𝑓2 spectrum which strongly
weakens conclusions about self-organized criticality drawn alone from the spectrum.

2.2.2.2 Spectral Peaks

Spectral peaks occur on all scales of spatial resolution from intracellular recordings to
scalp EEG. Their origin, however, cannot be explained by the mechanisms of pure feed-
forward synaptic transmission. We will look at different mechanisms that can produce
peaks in the PSD including distributed but - for the occurrence of harmonics - also local
mechanisms.

For an oscillatory behavior, a dependence on the recent past in shape of some feedback
of activity has to be present [Buzsaki, 2006]. Actually, to provide stable oscillations
in a stochastic system with non-stationary noise, a certain non-linearity is needed in
order for the oscillation not to diverge. These non-linearities are found in form of the
firing thresholds and the maximum firing rates of neurons, often described by a sigmoid
function.

Concerning the different peaks commonly found in neurophysiological recordings, there
is a large debate about their role and distinctions. Classically, frequency bands are mostly
separated into alpha (8-13Hz), beta (15-30Hz), gamma (>30 Hz) and theta band (4-6
Hz) in the awake conscious state. Additionally delta (1-4Hz), sleep spindles (10-20Hz)
and slow rhythms (0.05-1Hz) occur in sleep and similar states of (un-)consciousness. The
focus throughout this thesis will be on the awake conscious human.
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Figure 2.9: Harmonic (A) and relaxation oscillators (B) as action potential outputs in a
neuron produced by super-threshold and around threshold oscillations of the
membrane potential: a simple toy model to explain the emergence of har-
monics. By clipping the alpha oscillation in B, the PSD at the fundamental
frequency (10Hz) is decreased, while harmonics appear. A can be basically
interpreted as a version of B with a constant excitation term added.

The separation of bands has its root in the occurrence of different rhythms in differ-
ent states over different areas [Wróbel, 2000] but is in general not clearly visible and
straight-forward detectable in real-world data. In particular, the alpha rhythm intro-
duces harmonics due to its non-sinusoidal shape, which mix with beta and gamma peaks,
see Section 2.2.2.2. Also, the fact that local stochastic resonances can in general syn-
chronize to the harmonics of an external driver, makes the phenomena indistinguishable
as they influence each other.

Alpha and theta are thought to stem mainly from sub-cortical structures: while alpha
is related to the cortico-thalamic feedback network, theta is related to hippocampal and
hippocampal-cortical activity. Beta and gamma oscillations are commonly linked to
more local connections within different cortical and gamma also sub-cortical areas. A
generic framework based on neural mass models can explain this by simple conduction
delays depending on distance and connectivity.

Oscillations and Stochastic Resonance In [Buzsaki, 2006] the concept of harmonic
and non-harmonic oscillators in order to investigate the oscillations in the brain was
introduced. Most oscillators in the brain are non-harmonic of a pulsatile type describing
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2.2 Oscillations & Power Spectral Densities

their rhythmic discharge in shape of spike trains of neurons.
The two phenomena (harmonic and non-harmonic) are not separable but form a con-

tinuum depending actually on the average membarne potential and the time delay of the
feedback. In the brain, we find mainly non-linear dependence of the firing rate on the
membrane potential with firing thresholds at minimum and maximum excitation levels.
We can transform a harmonic (sinusoidal oscillator) into a relaxation (pulsatile) oscil-
lator with long silence phases by simply clipping the output which is likely to happen
with around-threshold oscillations in the brain. Most biological oscillators are relaxation
types including heartbeats, respiration, walking and hormone secretion [Buzsaki, 2006].

In neural networks like the brain, a myriad of feedback connections exist between
different neurons, on large-scale, sub-networks and close to single neuron perspectives.
These include inhibitory interneurons establishing self-feedback to a single neuron and
its neighbors but little long-range connections with other cortical areas [Deco et al.,
2008]. While most long-range feed-forward connections are found to be dependent on
chemical synaptic transmission, in particular fast local inhibition in the gamma range
occur to be based on electrical synapses based on gap junctions between interneurons
[Lefler et al., 2014].

Membrane Potential Oscillations Subthreshold membrane potential oscillations
(SMPO) have been found in slices of different areas of the cortex, where neuronal mem-
branes show resonances at certain frequencies [Lampl and Yarom, 1993; Puil et al.,
1994; Pike et al., 2000; Pedroarena and Llinás, 1997]. Through experimental blocking
of different ion channels, the conclusion emerges that the resonance is based on their
interplay. In brain slices in-vitro, the ion channels of 𝑁𝑎+ and 𝐶𝑎2+ have been found
to influence resonances in lower but also in higher gamma frequencies [Puil et al., 1994;
Pike et al., 2000; Pedroarena and Llinás, 1997]. Most of the studies on SMPOs were
done in slices of neurons with remaining network connectivity leaving an open question
whether the blocking of the channel actually inhibits a neuronal resonant mechanism or
only inhibits the resonance of the network. [Lefler et al., 2014] have shown that direct
electrical coupling of neurons in form of gap junctions can lead to these SMPOs and
hence supports the network generation hypotheses while it is out of question that prop-
erties of ion channels can at least enhance or attenuate reactions at certain frequencies,
depending on their time constants [Dickson et al., 2000].

Traveling Waves and the Dispersion Relation [Nunez and Srinivasan, 2006] inves-
tigated a theoretical basis for standing and traveling brain waves in human EEG that
is based on a dispersion relation to explain spatio-temporal dynamics. The further de-
velopments of this approach are handy at explaining the resting-state activity of the
brain, the occurrence of certain frequencies and their spatial spread as modes of the ba-
sic dispersion relation. [Deco et al., 2008, 2011] were some of the first to prove that slow
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fluctuations (<0.11Hz) in the blood-dependent deoxygenation level (BOLD) of fMRI
[De Luca et al., 2006; Damoiseaux et al., 2006] and linked to EEG [Mantini et al., 2007]
can be modeled by stochastic local oscillators and their delayed coupling with other cor-
tical areas. The assumed conductance velocities were around 1.5𝑚/𝑠. They particularly
could show, how a sparsely connected network with a lack of long-range inhibitory con-
nections can explain in-vivo measured correlations between activities in different areas.
This can also be related to local 40Hz (Gamma) oscillations.

Recent studies on resting state functional data of the brain have revealed resonance
phenomena on different scales that are topologically sorted and can be related to modes
of the Laplace operator on the functional connectivity of the brain [Robinson et al., 2016;
Atasoy et al., 2016, 2018]. Based on diffusion tensor images (DTI), a technique related
to magnetic resonance imaging, so-called Connectomes estimate functional connectivity
between different brain regions. These can then be used to build macroscopic field models
of the brain that are shown to resonate in certain modes [Robinson et al., 2016]. These
modes are based on the spatio-temporal coupling of the activity Ψ(𝑥, 𝑡) of different brain
areas 𝑥 in time 𝑡. This can be described by Laplace’s equation:

ΔΨ(𝑥, 𝑡) = 𝐹 (𝑥, 𝑡) (2.15)

linking time and space by the average neuronal coupling in combination with conduction
delays and the external input in the function 𝐹 (𝑥, 𝑡). We can finally transform the
dispersion relation into a Helmholtz equation where the eigenvalues of Laplace’s operator
Δ are the principal modes [Atasoy et al., 2018]:

ΔΨ𝑘 = 𝜆𝑘Ψ𝑘 (2.16)

Similar models can also explain local emergence of those rhythms in cortical areas due to
the feedback between pyramidal, stellate cells and inhibitory interneurons in combination
with different synaptic time constants of excitation and inhibition[David and Friston,
2003].

State-of-the-art research also proposes a strong roll of Olygodendrocites, a type of Glia
cells, in the manipulation of transmission (plasticity) by a change in myelinization of the
axons of neurons. The myelinization is important for the timing and the amplitude of
the communication between cells [Pajevic et al., 2014; Fields, 2015]. Thus a fine tuning
of the large-scale oscillations could be promoted by such a mechanism an enhance or
decrease the propagation of certain frequencies.

Exemplary Rhythms: We will now look at two important examples of rhythmic
activity stemming from sub-cortical structures that we also commonly find in EEG
measurements. They can be related to the described resting state oscillations by the
structure of their functional connectivity:
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2.2 Oscillations & Power Spectral Densities

Thalamo-Cortical Rhythms: In the Thalamus of awake and conscious humans two
main rhythmic frequencies are found: alpha/mu/tau rhythms (8-12Hz) and ultra-high
frequency oscillations (300-600Hz), while there are also different sleep related waves and
spindles not discussed here [Buzsaki, 2006]. The source of the alpha-like rhythms is
highly under debate and the emergence is commonly related to local pacemakers as
well as thalamo-cortico-thalamic feedback loops [Suffczynski et al., 2001]. The ultra-
high frequency is most likely related to local inhibitory feedback networks, which will
be further discussed below. Functionally, we find oscillations in the 10-Hz range to be
relevant for sensory-motor activity (mu) [Pfurtscheller and Neuper, 2001], visual (tau)
[Sauseng et al., 2005] and auditory attention (alpha) [Lehtelä et al., 1997] and hence also
within the corresponding cortices.

Hippocampal Rhythms: The Hippocampus of awake humans has two main rhythms:
theta and sharp wave gamma rhythms [Colgin, 2016] but also other rhythms like a 3-Hz
oscillation have been found [Matsumoto et al., 2016]. The origin of the sharp-wave ripples
in rats has been accounted to local inhibitory networks similar to those of the thalamus
and data supports that similar mechanisms could be present in humans [Le Van Quyen
et al., 2008]. The theta rhythm of Hippocampus is related to memory [Kirchner, 1958]
and the same rhythm in fronto-central locations of EEG is usually related to working
memory activity [Gevins et al., 1998].

Gamma and high-frequency spike bursts The Gamma and higher frequency firing and
bursts are directly related to the firing frequency of single neurons also seen in classical
Hodgkin-Huxley membrane models. The so-called refractory state of neurons, related to
the hyper-polarization caused by potassium channels, is a time period of 3𝑚𝑠 on average
with blocked excitability of action potentials. The maximal firing frequency during
classical excitation based firing is thus around 𝑓𝑚𝑎𝑥 = 1

3𝑚𝑠 = 333𝐻𝑧. But, depending on
the location of the specific neuron within the brain and cell layer, the neurons are tuned
to different spectral behavior for the same input. Fast spiking inhibitory interneurons
can reach instantaneous firing frequencies up to over 800 Hz while making up about
one third of neocortical interneuronal population [Wang et al., 2016]. Under normal
conditions the preferred firing frequency of pyramidal cells is rather in the range of 50-
80 Hz, while for these cells maximal rates of around 200-300Hz are found [Cardin et al.,
2009].

We have seen that the firing rate of neurons modeled as Poisson point processes do not
produce peaks at the relevant frequencies (see Figure 2.6) but only a reproduction of the
shape of the Action potential’s PSD with added white noise. While in this figure, the AP
of a pyramidal cell was modeled, fast-spiking interneuronal APs consist of much more
narrow peaks [Wang et al., 2016] and hence the spectral characteristics differ. The shorter
time constants will lead to a shift of the main activity to higher frequencies. Nevertheless,
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the direct spectral influence of APs is rather broadband in both cases. Hence, temporal
ripples (or equivalently spectral peaks) need some sort of (local) feedback in order to
consist. Peaks in the lower gamma range are usually found to be spectrally broad and
spatial focused. They are mostly thought to be related to an asynchronous increase in
firing of larger assemblies of neurons [Miller et al., 2007], most probably pyramidal cells.

In the gamma band of rodents (here 20-80 Hz), the main source of spectral peaks
of cortical origin is related to local feedback by inhibitory interneurons [Cardin et al.,
2009], while we will see later that in particular in the range below 50Hz, also harmonics
of alpha and other low frequency rhythms play a role. The gamma band oscillations
need to include synchronous firing to produce a far field and are hence related to so-
called fast-spiking interneurons connected by gap junctions to local excitatory neurons
synchronizing them [Hasenstaub et al., 2005; Wang and Buzsáki, 1996]. They are func-
tionally related to an increase in evoked response and focused attention [Fell et al., 2003],
meaning the synchronicity in the network spiking activity seems to be related to afferent
excitation and, hence, the network input to these areas [Bair and Koch, 1996; Nadasdy,
2010].

In particular in thalamic neurons, rhythmic ultra-high frequency spike burst (300-
700Hz) have been found [Buzsaki, 2006; McCormick and Pape, 1990]. An extension
of the Hodgkin-Huxley model is necessary to account for these spike bursts due to its
relation to afterhyperpolarization caused by slow Calcium currents. Oscillations in this
frequency range are also found in and over somatosensory-areas [Curio et al., 1994;
Baker et al., 2003; Fedele, 2014]. Interestingly, this kind of spike bursts are limited to
a maximum of 10Hz modulation rate in single neurons, as they need an inactivation
period of longer than 100ms to occur [Sherman, 2001], which is again a hint towards the
necessary ensemble activity to create higher-frequency patterns.

The synchrony of the spikes in different neurons are promoted by local networks of
fast-spiking inhibitory interneurons, also for ultra-high-frequency spike-bursts [Draguhn
et al., 1998]. The highest firing frequency of feed-forward neurons like pyramidal cells is
found in the range of 200-400Hz meaning that oscillations measured at higher rates could
be traveling waves of spike trains promoted by local inhibitory inter-neuronal networks
[Draguhn et al., 1998] or directly the firing rates of those fast-spiking cells. Cortical
high-frequency as well as ultra-high-frequency spike bursts are most likely related to
highly synchronous action potentials in the axons of thalamic afferents to the cortex and
the reaction to them in local feedback [Ozaki and Hashimoto, 2011].

[Nadasdy, 2010] suggested a model that predicts synchronous firing of many neurons
when sub-threshold oscillations are modified to just cross the threshold which could also
be related to afterhyperpolarization effects in the shape of a relaxation oscillator. This
model includes the phase-locking of local high-frequency oscillations to low-frequency
oscillations like alpha and theta. The synchrony between the spikes of different cells
at the higher frequency often measured [Curio et al., 1994; Baker et al., 2003] can be
explained by an additional inhibitory interneural network. An interesting point is that
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2.2 Oscillations & Power Spectral Densities

high and low frequency oscillations do not need to be synchronous to explain these
effects.

Higher frequency oscillation are thus most probably directly related to firing rates
and their local inhibitory feedback, the synchronization of which quickly decreases with
distance. The very coarse neural mass models that can explain basic oscillations by
dispersion relations inherently incorporate high-frequency oscillations by modeling in-
hibitory feedback only as fast and local.

Non-Sinusoidal nature of signals Neural signals are known to be non-sinusoidal and
changes in the oscillatory shape seem to play an important part in diseases like Parkin-
son’s [van Dijk et al., 2010; Cole and Voytek, 2019; Schaworonkow and Nikulin, 2019].
Let us get back to Figure 2.9: we can see how clipping of a sine wave introduces har-
monics in the frequency spectrum and hence in the PSD. We find different aspects of
clipping: the symmetry and the softness of clipping. While the symmetry influences the
occurrence of odd and even harmonics, the softness of clipping determines the spectral
roll-off. We find clipping and soft-clipping in the sigmoid dependence of the firing rates
on the synaptic activity. Hence, interpreting the individual spectral peaks in the PSD
independently makes in general no sense. We will now look at a model of a single neuron
mechanism that produces non-sinusoidal harmonics even when driven with a pure sine
wave.

In Figure 2.10 we can see the firing rate of neurons depending on the current injection
relative to the firing threshold current into the dendrites. The different transfer functions
of neurons can be modeled with the Connor-Stevens model [Connor and Stevens, 1971],
which is an extension to Hodgkin-Huxley membrane models. We can see a sudden jump
in firing rate to a maximum firing rate which, here describes the afterhyperpolarization
spike bursts described in the last sections, while in usual tonic firing, the increase is more
constantly. In all of these models, we can see a non-linear compression of input, which
in fact does lead to described effects of (soft-) clipping and hence introduces harmonics
into the spectra. This can in general be described by a sigmoid function.

Hence, we find a sigmoid shape of the frequency depending on the input as the main
root of non-linearity in neural transmission. It can be included into the general dispersion
based wave model of neural activity [Nunez and Srinivasan, 2006; Deco et al., 2008;
Robinson et al., 2016; Atasoy et al., 2016, 2018] in order to link micro- and macroscopic
perspective of brain function [Jirsa and Haken, 1997].

In Figure 2.9 we have seen how simple clipping of perfectly sinusoidal signal leads
to the emergence of harmonics in the amplitude spectra. Figure 2.11 shows, how the
non-linearity in the frequency dependence of firing on the membrane potential leads to a
soft-clipping or compression around the minimal and maximal firing thresholds. These
non-sinusoidal in the time domain lead mainly to the occurrence of spectral peaks at
the harmonics (multiples) of the base frequency. If we simulate a more realistic alpha
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peak, apply the sigmoid compression and calculate the power spectra, we find that the
occurrence of other peaks, in particular that of even harmonics like beta, can depend on
these effects. Hence, even a seemingly independent occurrence or modulation of single
peaks can be reduced to the effect of a single variable, meaning they are not necessarily
independent as often assumed [Wolpaw and McFarland, 2004; Nikulin and Brismar,
2006; Hari and Salmelin, 1997]. Also, [Wolpaw and McFarland, 2004] actually made
their conclusions on the ability to differential control of left hand area alpha vs. right
hand beta, which mixes up the effects of frequency and spatial location. The data also
shows a co-modulation of alpha and beta and hence strongly weakens the conclusions
drawn. In [Nikulin and Brismar, 2006; Hari and Salmelin, 1997] the difference in scalp
patterns is taken as a hint towards distinct mechanisms, while mostly an overlap of the
larger spatial scale alpha with beta is present. This does not proof distinct processes but
could still mean only partly modulation of harmonics, while further (local) resonances
additionally influence the spectral powers and phases.

In Figure 2.12, we see an inhomogeneous Poisson process driven by a single alpha peak
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Figure 2.11: Sigmoid compression of an alpha oscillation by various parameters: A the
asymmetry/offset in large, B the asymmetry/offset in detail, C the am-
plitude of ’subthreshold’/asymmetric alpha, D the amplitude of symmetric
alpha. The decay of the harmonics’ peak amplitudes and their dominance
depends on the amplitude of the base oscillation. The individual amplitude
of each peak depends on the asymmetry/offset. We can also observe that
the peakwidths increase with frequency. No independent noise was added,
hence the background noise comes from the simulation process of the alpha
peak and is thus modulating with amplitude. The spectral roll-off of noise
in the input is thus also modulated with its amplitude by the emergence of
harmonics.
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that can explain some of the measurements usually obtained. The design is strongly
simplified and transmission delays are neglected, but this resembles in principle the
output of the thalamus onto a neocortical layer. The oscillation is first transformed into
a firing rate using a sigmoid function and then into a time signal using an inhomogeneous
Poisson point process in combination with single APs as events. At the neocortical layer,
the APs are transformed into EPSPs in a second set of neurons which trigger a new set
of action potentials based on the same mechanisms as in the Thalamus. The resulting
signal consists not only of the base frequency, but also harmonics and broadband power
increase related to the APs. Inhibition is not taken of care in this simple example.

Strong coupling of in particular alpha and beta amplitude and phase are generally
found, suggesting a common mechanism of creation [Carlqvist et al., 2005; Nikulin and
Brismar, 2006]. This could be at least partly explained by the effects of non-linear
neuronal firing rates.

Another factor is the width of the spectral peaks, which could be also an indication
of the harmonicity. The width of the peaks in alpha is usually about half as wide as the
one in beta, while taking the double frequency values of alpha explains this. A varying
base frequency leads to double the variance in the first harmonics, triple in the third
and so on.

In Chapter 2.2.1.1 we have seen that the firing of single neurons is unlikely to cause
the imprecision in the oscillation frequency and so the width of the peaks in the spectra.
Hence, three possible sources are reasonable: either the thalamic source of the oscillations
consists of a horde of single oscillations with different frequencies, they are relayed by
stochastic resonators with varying frequencies or the whole oscillation is based on long-
range feedback loops of thalamo-cortico-thalamo structure with varying transmission
delay. The latter goes well in line with the neural field theories of average connectivity
and transmission speed leading to a variety of resonances that need to be diffuse on their
spatial boundaries of the basic modes in order to coexist.

[Klimesch, 2012] and others strongly suggested alpha oscillations to be a distinct mech-
anism of active inhibition/suppression to enhance focus to non-inhibited areas, while this
could also be explained by an area of the cortex moving to a more local and thus higher
frequency mode in neural field and similar theories or the creation of harmonics. [Hae-
gens et al., 2011] found a increase in the firing rate in LFPs in monkeys that was coherent
with a decrease in alpha and an increase in beta power. While they concluded that alpha
is thus responsible for active inhibition/suppression, these findings go also inline with
hypotheses of the creation of harmonics due to a general increase in an excitation level
from a balanced mean firing level of excitation. This could be additionally selectively
amplified by stochastic resonances of the receiving cells and their network.

Summarizing the most plausible effects based on the theory of this chapter, many
factors contribute to the shape of the PSD. While the effects related to E/I-ratio and
population firing rate seem more local and thus are rather measured intracranially, EEG
seems mainly influence by mass PSPs. LFP and ECoG spectra include all effects: de-
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Figure 2.13: Different hypothetical changes in the spectra due to different mechanisms
in comparison to real EEG data: a change in E/I-ratio changes the spectral
roll-off in frequencies above 15 Hz, a change in firing rate the spectral roll-
off in even higher frequencies. A change in synchronization of oscillations
increases or decreases peaks and their harmonics, while the same presy-
naptically changes in the non-linearity changes the spectral roll-off in the
harmonics and also the amplitude of the base frequency. The average PSP
level leads to an overall increase/decrease of the spectrum while presynap-
tically, it has an effect on the spectral roll-off for 1

𝑓𝛼 -shaped spectra.
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Figure 2.14: Investigating the most plausible explanation for the class difference in EEG
between left and right hand motor imagery based on the assumption of
beta being a harmonic of alpha: a linear increase in the presynaptic syn-
chronization leading to a nonlinear amplitude change in the firing frequency
of presynaptic action potentials of which the mean field amplitude is de-
creased by desynchronization across neurons.

/synchronization, E/I-ratio and firing rate. E/I-ratio and firing rate are challenging to
distinguish as the spectral change is similar and also functionally interrelated, because
a higher excitation level leads to higher firing rate. However, the directly increasing
influence of APs with firing rate is happening rather in higher frequencies due to the
short time constants of the process. The postsynaptic average PSP-level in the mean
field of the cortices has not neccessarily a large role, because a general shift of the
spectrum is not observed. Harmonics, on the other hand, are capable of explaining
changes in spectral peaks that are not independent from each other. A mixture of all
effects is in general most likely and challenges interpretations. It depends on the spatial
resolution of the measurement technique, which effects can be observed. The logistic
firing probability is an approximation and not neccessarily very realistic. Also a change
in the firing properties of single neurons can have similar effects.

The class differences are most likely explained by a presynaptic synchronization with
a postsynaptic desynchronization, while other combinations like independent alpha and
beta oscillations with individual synchronization/desynchronization or a change in the
firing rate dependence on the membrane potential may lead to similar spectra.

Cross-freqeuncy Interactions A very deep result is that a perfectly sinusoidal oscilla-
tion at alpha frequencies around the firing threshold of neurons in combination with a
non-linear relationship between the membrane potential and the firing rate can lead to
a phenomenon we often observe: high-frequency spike bursts on top of lower-frequency
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oscillations. This is observed often in intracranial recordings, but it can also be extracted
from EEG with special equipment and experimental paradigms [Curio et al., 1994; Baker
et al., 2003]. The offset of the oscillation from the threshold modulates the output from
no output via oscillations to tonic firing of a single neuron (see Figure 2.11).

Coupling of the different oscillations was recently further investigated [Jensen and Col-
gin, 2007], it describes the interaction of different frequencies’ phase and power which can
be explained by non-linear clipping of the synaptic input by the cells introduced within
this thesis. Actually the multiplication in the time domain is related to a convolution
in the frequency domain. Hence, a basic sine wave is transformed by a sinusoid and
its output is multiplied with a higher frequency modulation. This basically resembles
a phase power relationship but also a power-power relationship due to the firing rate
being influenced by the sine wave amplitude.

2.3 Chapter Summary
The spatial separation of charges due to the synaptic currents and similar events leads to
a current flow along the dendrites inside and outside the neuron due to the limited passive
conductivity of the membrane. The same accounts for APs but spatially on a smaller
scale. The equilibrium of charges is reached by return currents along the dendrites and
axons inside and outside of the cells. The outside current is termed volume conduction
and leads to a potential distribution across the whole head depending on the neural
activity. The neural sources can mostly be approximated by a dipolar field and resulting
field equations are solved in electrostatics leading to a linear voltage-current relationship.
The external field increases with spatial scale and the synchrony of the current sources.
This leads to the conclusions that EEG consists predominantly of postsynaptic potentials
of neocortical pyramidal cells.

Various factors contribute to the spectral shape of the electrical signals produced dur-
ing neural activity. These factors range from frequency preference of single neurons via
network based synchronization and oscillations up to being simple harmonics of their
base frequencies due to their non-sinusoidal nature. An interplay of all these factors
suggests that oscillators on all levels can lock in to necessarily occurring harmonics and
resonate in spectral and spatial modes of the base frequency, while a second local in-
hibitory network synchronizes higher frequency spiking in the gamma range up to around
200Hz. The inhibitory networks themselves incorporate fast-spiking interneurons that
can have higher firing frequencies up to around 800Hz and also produce high frequency
temporal patterns most probably as a result of wave propagation within their network.

Constructive and destructive interference in the linear superposition of source currents
due to synchrony and asynchrony lead to a predominance of different spectral peaks at
different levels of spatial resolution, while the large spatial scale EEG signals mainly
deliver the low-frequency regimen.
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Chapter 3
Methods for Electrophysiological Signal Analysis

3.1 Imaging and Recording Methods
Neuroelectrical signals can be measured in different levels of spatial resolution and either
directly in the electrical domain or magnetic fields resulting from volume current flows.
Non-invasive recording techniques like Electroencephalography (EEG) [Berger, 1931]
or Magnetoencephalography (MEG) [Cohen, 1968] exhibit comparatively low signal-to-
noise ratio (SNR). In contrast, invasive techniques like Electrocorticography (ECoG) or
the measurement of local field potentials (LFPs) [Henrie and Shapley, 2005] have higher
SNR but are not (yet?) applicable to standard experiments on healthy subjects or even
everyday applications. Measuring invasively increases spatial resolution due to decreased
spatial smearing and lower interference from artefacts of eyes and muscles.

Imaging methods like Magnetic Resonance Imaging (MRI) [Pykett, 1982], Electri-
cal Impedance Tomography (EIT) [Barber and Brown, 1984; Holder, 2005] are mainly
anatomical imaging methods, while near-infrared spectroscopy (NIRS) is intended to
estimate the light spectral properties of materials. But, the blood oxygenation as a
metabolic effect of neural activity, can also be detected in functional MRI (fMRI) [Bel-
liveau et al., 1991] and functional NIRS (fNIRS) [Jobsis, 1977]. Hence, they serve as an
indirect measure of neural activity through the Blood-Oxygenation-Level-Dependency
(BOLD) on neural activity. Local conductivity changes due to the change of ion con-
centration leads to EIT being also sensitive to neural activity [Aristovich et al., 2016].
We will however focus on their use as anatomical imaging methods.

3.1.1 Invasive Methods
3.1.1.1 Intracellular Recordings

Almost exclusively performed in animals models, intracellular recordings are the unique
method to directly measure the sources of extracellular fields: fluctuations in the mem-
brane potentials [Buzsáki et al., 2012]. This includes action potentials and post-synaptic
potentials among more specific approaches like single ion channel patch clamps.
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Figure 3.1: An example of simultaneous intra- and extracellular recording: The intra-
cellular recordings clearly reveal action potentials and hyper-polarizations in
the membrane potential, while the AP spikes are visible extracellularly but
with strongly decreased amplitude and a loss of temporal focus. Adopted
with permission from [Buzsáki et al., 2012] and [Contreras and Steriade,
1995], copyright 1995 Society for Neuroscience

3.1.1.2 Local Field Potentials

Local field potentials (LFPs) are measured in the proximity of neurons within the cortex
(see figure Figure 3.1) [Henrie and Shapley, 2005]. Usually needle-like pins with several
electrodes - termed tetrodes for four - are inserted into the cortex and placed close to
cells in the targeted cortex area with the help of audio-guiding. The electrodes are
positioned such that the geometric source location can be well estimated and more
importantly the signals of different cells can be distinguished. Local field potential pick
up the electrical field of all surrounding cells and PCA and ICA are usually applied
to separate the different sources. The measurements mainly catch EPSPs and APs of
the closest cells, as the amplitude of the in first approximation dipolar field decreases
quadratically with radius (compare the equation in Section 2.1.1.2) [Buzsáki et al.,
2012]. In Section 2.2.2.2 we have seen how cross-frequency interactions like alpha or
theta coupling with the gamma range occur. These are often measured in LFPs.

3.1.1.3 Electrocorticography

Electrocorticography (ECoG) is measured directly on the cortex surface inside the head
leading to a spatial resolution between LFPs and EEG. As discussed in detail in Chap-
ter 2, ECoG provides a larger coverage across brain tissue while its sensitivity to local
signals is much higher than in EEG, as EEG suffers from the effects of skull and CSF as
a intermediate isolation and shielding layers between sources and sensors [Miller et al.,
2007]. Hence, we can observe mean field network activity on a smaller spatial scale than
EEG while the analysis is mostly limited to epileptic or similar patients. This is maybe
the biggest drawback, as most research done in this field is based on data of patients with
neurological disorders under the influence of medication during surgeries, which alters
brain function and the characteristics of the signal such as its power spectral density
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Figure 3.2: SNR comparison between MEG and EEG: the maximum SNR of EEG is in
general lower than that of MEG while it is higher away from the surface.
MEG has a higher SNR close to the surface, which decreases strongly with
centricity. Adopted with permission from [Goldenholz et al., 2009], copyright
2008 Wiley-Liss, Inc.

(PSD). However, ECoG drastically improves spatial resolution in the frequencies from
beta upwards and is hence an irreplaceable tool for investigating brain activity.

3.1.2 Non-Invasive Methods
3.1.2.1 Electroencephalography

Electroencephalography (EEG) [Berger, 1931; Nunez and Srinivasan, 2005] is the most
widely used recording technique for neural activity in humans because of its low cost,
non-invasive nature and ease-of-use. Electrodes are placed on the surface of the head,
and the potential differences between different locations can be measured. This gives a
spatio-temporal image of the electrical activity with a high temporal but a low spatial
resolution. The spatial resolution can be increased by spatial filters that counteract the
strong spatial smearing effects of in particular CSF and skull onto the volume conduction.
Biophysical models of the volume conduction can additionally help to localize the sources.

EEG, however, also (or mainly) catches the eye movements and lid closures, Elec-
troocolugram (EOG), the activity of muscles, Electromyogram (EMG), including the
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huge heart muscles, termed Electrocardiogram (ECG) among pulse wave related effects
(Mayer wave) and other biological or electrical noise caused by the measurement equip-
ment (electrodes/amplifiers). The main challenge is that many of the mentioned sources
have a higher amplitude in the EEG measurements than the neural activity.

3.1.2.2 Magnetoencephalography

Magnetoencephalography (MEG) measures the magnetic field resulting from the neu-
ronal volume currents of neural activity within the brain [Cohen, 1968; Häamäläinen
et al., 1993; Hari and Salmelin, 1997]. The measurements are thus not effected by the
shielding of CSF and skull while the low SNR restricts measurements to superficial
sources. Additionally, technical details additionally result in a sensitivity to tangential
dipoles, while radial dipoles are hardly measurable [Eulitz et al., 1997].

3.1.2.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI)[Pykett, 1982] is a technique that is based on the
magnetic spin polarization of predominantly water molecules in the body and can hence
be used to receive anatomical images with high contrast of soft tissue as shown in figure
Figure 3.3. Additionally, as the magnetic properties of blood depend on the oxygenation
level, opens the door to the detection of metabolic effects of neural or other activity in
functional Magnetic Resonance Imaging (fMRI) [Ogawa et al., 1990]. Further, Diffusion
Tensor Imaging (DTI) - a special recording technique in MRI - can estimate the location,
orientation and density of white matter fiber tracts which have an effect on the anisotropy
of volume conduction [Basser, 1995; Tuch et al., 2001; Güllmar et al., 2010]. Also,
Connectomes - estimates for the connectivity between different brain areas - can be
built from DTI data.

3.1.2.4 Electrical Impedance Tomography

Electrical impedance tomography (EIT) is an image generating technology using elec-
trical impedance measurements [Barber and Brown, 1984; Holder, 2005]. In EIT, infor-
mation about the distribution of inhomogeneities within some medium (e. g., the human
head) is usually gained by applying low currents between some electrodes, and measur-
ing the resulting impedance at another set of electrodes. EIT then uses this information
to construct or refine an image of the individual head’s conductivity. Compared to CT
or MRI the measurements in EIT provide less information for spatial inferences, on the
other hand, the application of EIT is much less costly than the acquisition of an MRI or
CT scan. In fact, EIT can be performed with conventional EEG and current stimulation
hardware commonly available in research and clinical settings. This is done in the fol-
lowing fashion: small harmless currents are injected through pairs of conventional EEG
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electrodes into the scalp and the resulting potential is measured on the remaining elec-
trodes all over the head. Successively, all possible pairs of electrodes (e.g. 64 electrodes:
64×63

2 combinations) or subsets are investigated.
EIT has recently been employed for head model refinement and verification in neuro-

scientific contexts [Ferree et al., 2000; Goncalves et al., 2003; Clerc et al., 2005b; Malony
et al., 2011; Datta et al., 2013]. However, its use has so far been restricted to estimat-
ing tissue conductivities, in particular the skull-to-scalp conductivity ratio. Although
the spatial distribution of these conductivities also contains geometric information, EIT
has not been used to estimate a shape model of the human head for the purpose of
head model individualization. Optimizing shape parameters is therefore one of the key
novelties within approaches introduced in Chapter 5.

Dedicated EIT devices typically achieve Signal-to-Noise ratios (SNR) in the range of
60dB (1000:1) or even higher [Holder, 2005]. Currents are typically applied at small
amplitudes of 100uA and below due to biomedical safety regulations, although higher
values are possible (see [Gilad et al., 2007]).

3.2 Biophysical Models
The local distribution of conductivities play a crucial part in the complex electrical
interaction between neuronal activity within the brain and it is non-invasive imaging and
stimulation. These conductivities are directly connected to the individual head geometry,
which can be modeled by more or less realistic head models. Volume conductor models
are required both for electromagnetic brain mapping using EEG and MEG as well as for
all variants of targeted electrical stimulation and also Electrical Impedance Tomography
(EIT). In fact, the same model can be used to model current propagation in both ways
from active neural populations to scalp electrodes as well as from scalp injection sites to
the entire brain. In the following, a brief overview of the dominant modeling approaches
is provided.

3.2.1 Realistic Head Models
Historically, modeling the electric properties of the human head has first been done using
spherical models for the brain, skull and skin compartments. The reason was mainly due
to the lack of analytic formulas for more complex geometries and the low availability of
computational power. However, this coarse approximation to the individual anatomy -
where the only parameters are the radii of the spheres - leads to source localization errors
of up to 25mm [Yvert et al., 1997]. Improvements were made using spherical harmonics
expansions, where the individual head geometry is approximated with equations for
which analytic solutions are known [Nolte and Dassios, 2005]. Nowadays these analytic
and semi-analytic approaches are almost obsolete due to the fact that practically any
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Figure 3.3: A single subject MRI and the corresponding 4-shell BEM head model

standard computer can solve complex numerical models with thousands or even millions
of variables within a reasonable amount of time.

Several studies have underlined the importance of realistic volume conductor models
of individual heads for obtaining accurate forward model solutions. These studies for-
mulated guidelines for what needs to be included in such models (e. g., [Ferree et al.,
2000; Baillet et al., 2001; Wolters et al., 2006; Güllmar et al., 2010; Malony et al., 2011;
Dannhauer et al., 2011; Nissinen et al., 2011; Vorwerk et al., 2014]): Not only do the head
size and shape vary strongly among people and generally influence the measurements
[Nissinen et al., 2011], also the shapes of the inner structures are different. Moreover, tis-
sue conductivities vary between subjects, and can even change within subjects depending
on the organism’s activities and state. Other main factors varying across people are the
thickness, shape and position of the skull, the (inhomogeneous) conductivity of the skull,
the size, shape and position of the brain, as well as white matter anisotropy [Wolters
et al., 2006; Güllmar et al., 2010; Vorwerk et al., 2014]. In order to obtain a precise head
model, the above-mentioned properties need to be estimated on the level of individual
subjects.

The ’gold standard’ in EEG/MEG studies involving source localization is based on the
acquisition of magnetic resonance imaging (MRI) scans of each individual subject. From
this, almost all information about the geometrical structure and even most of the dif-
ferent conductivities of the tissues can in principle be inferred. The strongly anisotropic
properties of white matter can be estimated using diffusion tensor imaging (DTI) simi-
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lar to how the functional Connectomes mentioned in Section 2.2.2.2 are extracted [Tuch
et al., 2001], because both are based on the local orientation of white matter fiber tracts.

3.2.1.1 Extraction of Realistic Anatomy

While an individual geometric model can be obtained up to a very high detail for every
subject through MRI and/or computed tomography (CT), these procedures are intensive
in cost and labor. Given a subject’s individual MRI data, a segmentation of the head
into compartments corresponding to different tissue types is obtained using image pro-
cessing algorithms [Ashburner and Friston, 2005; Huang et al., 2013]. The segmentation
information is then used to solve the electromagnetic forward problem. The tissue-type
is mostly estimated within each voxel of an MRI by its probability derived from an
aligned template. Most approaches involve the Statistical Parametric Mapping toolbox
(SPM) [Friston et al., 2007] and use the template extracted from the International Con-
sortium for Brain Mapping (ICBM) average of 152 images (ICBM152) [Mazziotta et al.,
2001]. This standard template is not applicable to extract realistic skull geometries as it
is limited to tissues within the brain (CSF, white and gray matter). In order to extract
realistic geometries, other approaches are necessary. Among a variety of approaches, the
new_segment algorithm of the SPM-toolbox [Friston et al., 2007], can incorporate an
extended tissue probability map template and can perform this automatically [Huang
et al., 2013]. The segmentation includes a non-linear warp between the template and
the individual MRIs. Subsequently, an automatic cleanup procedure corrects for errors
of the segmentation. After smoothing the mesh with a vertex-based anisotropic flow
[Zhang and Haniza, 2006], a BEM head model can be built through, e.g., the open-
MEEG software [Gramfort et al., 2010; Kybic et al., 2005] (see Section 3.2.1.3). This
procedure was implemented to run independently and automatically. The final meshes
can be examined exemplarily in Figure 3.3.

3.2.1.2 Tissue Conductivities

As introduced in Section 2, quasi-electrostatic assumptions are usually made upon the
properties of the field below 1kHz in the human head. This leads to a linear cur-
rent/voltage relationship also known as Ohms law. In addition, for electrical methods
like EEG or transcranial current stimulation (tCS), the individual tissue conductivity
influences the electrical field distributions and thus has an effect on the measurements
and stimulations. To simplify the model, the different tissues types are usually approxi-
mated by homogeneous conductors with fixed specific conductivities, although they are
in general heterogeneous biological tissue with locally and temporally varying conductiv-
ity. The homogeneous conductivities can be approximated by standard values [Geddes
and Baker, 1967; Gabriel et al., 1996; Oostendorp et al., 2000] or estimated, e.g., by
combined MRI or CT with Electrical Impedance Tomography (EIT) [Fuchs et al., 1998;
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Ferree et al., 2000; Goncalves et al., 2003; Clerc et al., 2005b; Turovets et al., 2008], by
diffusion tensor MRI methods [Tuch et al., 2001], combinations of the two [Sajib et al.,
2016] or by data-driven EEG based estimates [Şengül and Baysal, 2012; Hansen et al.,
2016; Acar et al., 2016].

Within this thesis, conductivities were approximated by standard values but new
approaches to estimating them out of EIT measurements were also developed, see Sec-
tion 5.1. These specific standard conductivities used were 𝜎1 = 0.465 𝑆

𝑚 for the scalp,
𝜎2 = 0.01 𝑆

𝑚 for the skull, 𝜎3 = 1.65 𝑆
𝑚 for the CSF and 𝜎4 = 0.201 𝑆

𝑚 for the brain.
We will see in Section 5.4.3.3 that the estimated conductivity depends strongly on the
model in use and the level of realism in anatomy representation.

3.2.1.3 Numerical Models

After segmentation of the individual 3-dimensional anatomical MRI or CT image into
different types of tissues, typically numerical models are applied to estimate the indi-
vidual electrical properties of the head. This is done either in a volumetric approach
on a single voxel level for Finite Element Method (FEM) or Finite Differences Method
(FDM) or on discretized sets of boundaries through Boundary Element Method (BEM)
based models (see [Vorwerk et al., 2012] for an overview).

The dominant approach in EEG/MEG forward modeling uses a three-shell boundary
element model (e. g., [Gramfort et al., 2010]), although finite element models (FEM), fi-
nite difference models (FDM) and approaches using semi-analytic expansions into spher-
ical harmonics are also frequently considered [Wolters et al., 2006; Nolte and Dassios,
2005]. Notably, for all these modeling approaches, standard data-analysis pipelines, that
require only moderate manual intervention, exist and are often available in open-source
toolboxes (e. g., [Oostenveld et al., 2011]). Using these toolboxes, the obtained segmen-
tations might however not always be of acceptable quality. In such case time-consuming
manual corrections by trained personnel are necessary.

Whenever the generation of a realistic individual head model is too expensive or
simply to time consuming, approximate head models are used. Due to the similarity
of the head geometry between people in general, even using simply the head model of
another random person works to some extent [Valdés-Hernández et al., 2009]. Another
possibility is to implement average head models of databases. Both are to some extent
reasonable approximations but in particular very different heads - or outliers in terms
of the statistics - are not well represented.

In between average and individual head models, we find approaches that measure the
outer head shape and non-linearly warp an MRI or discrete representation of a head to
fit this outer shape [Darvas et al., 2006; Acar and Makeig, 2010]. This mostly improves
the head model compared to a random person’s or most average head models, but, a
simple average of co-registered leadfields over subjects was found to perform comparably
well as the non-linearly warped template head model [Valdés-Hernández et al., 2009].
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ICBM152 [Fonov et al., 2009, 2011; Huang et al.,
2015]

warp4 4-shell BEM of a non-linear warp [Tadel
et al., 2011; Acar and Makeig, 2010]

const3 3-shell BEM model constant skull thickness
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real3 3-shell BEM model with realistic skull

real4 realistic 4-shell BEM model

average4 average realistic 4-shell

linear4 impedance-based linear leadfield

Figure 3.4: The comparison of the quality of different modeling approaches validated on
a highly-detailed FEM head model over N=4 subjects in the cortex surface
(57 electrodes 10/10 system).

Behind this average over leadfields, a non-linearly warped electrode and source position
alignment was applied throughout the database.

Still, all these simpler approaches introduce higher systematic modeling errors than
the more sophisticated procedures involving an individual MRI or CT as can be seen in
Figure 3.4.

Boundary Element Method We will now look at one specific type of head model
using the Boundary Element Method (BEM) and the resulting formulas, which will
then be used in Section 5. In general, if we can divide a space into subspaces Ω𝑖 with
boundaries 𝛿Ω𝑖 where solutions are known, the use of BEM becomes of interest. As
an approximation, this is the case for the human head. Often, BEM is coupled with
other methods like FEM or analytic solutions (like the free space dipole solution) in
some of the subspaces. In this fashion also anisotropic, inhomogeneous or non-linear
solutions for subspaces are possible but the computational advantages mostly vanish
over other methods. BEM is most advantageous if we can use simple solutions for most
of the compartments. In the following model, harmonic solutions solve all compartments
for EIT and for EEG for all except the brain, where an analytic dipole solution is
superimposed.

With 𝑆𝑖 we define the interfaces between boundary 𝛿Ω𝑖 and 𝛿Ω𝑖+1, so 𝑆𝑖 = 𝛿Ω𝑖∩𝛿Ω𝑖+1.
If we assume the conductivity to be piecewise constant in subspaces Ω𝑖 we get a set of

coupled Laplace/Poisson equations in the EEG case and only Laplace equations (𝑓 = 0)

43



Chapter 3 Methods for Electrophysiological Signal Analysis

for the EIT case:

𝜎𝑖∇2𝑉 = 𝑓 in Ω𝑖, for all 𝑖 = 1, ..., 𝑁

∇2𝑉 = 0 in Ω𝑁+1

[𝑉 ]𝑗 = [𝜎𝛿𝑛𝑉 ]𝑗 = 0 on 𝑆𝑗 , for all 𝑗 = 1, .., 𝑁

where 𝑁 is the number of inner compartments of the head and Ω𝑁+1 is the space outside
the head. Here, conductivity 𝜎𝑁+1 = 0 is assumed and the absence of inner primary
currents in EIT leads to 𝑓 = 0 in all subspaces.

The realistic 4-shell BEM extraction in Figure 3.3 is a procedure created to receive a
modeling approach with increased geometric realism compared to common 3-shell BEM
and less computational effort than common FEM approaches. It improves common 3
and 4-shell approaches that either strongly simplify the geometries, especially the skull
surface shape or otherwise lose their computational advantages over FEM models by
having too complex surface discretization. It involves reasonable complexity and lower
computation time than common FEM approaches with a relatively high level of anatomic
detail compared to common 3 and 4-shell approaches. The reduction in computational
effort is advantageous for the size of a head model database we will use. In Section 5.3,
a low-dimensional representation for the individual head for which BEM models are the
better choice is introduced. These can also be used in shape estimations by impedance
measurements.

The quality of head models extracted from single subjects is evaluated on a realistic
FEM head model in Figure 3.4. In this figure, also an average realistic 4-shell BEM and
an impedance-based linear headmodel are compared, which we will discuss in detail in
Section 5.4.

The symmetric 4-shell BEM model used throughout this thesis is based on the set
of linear equations defined in [Clerc et al., 2005b]. A symmetric BEM brings certain
advantages in terms of accuracies and numerical nature due[Gramfort et al., 2010]. It
combines Single- and Double layer approaches, two reciprocal approaches in potential
theory [Kybic et al., 2005]. For the linear system equation (compare also Equation (2.8))

A𝜃[x1, y1, x2, y2, x3, y3, x4]⊤ = b , (3.1)
where the vectors xk|𝑘 ∈ {1, . . . , 4} correspond to the potentials on the interfaces 𝑆𝑘

of the different compartments (scalp, skull, CSF and brain), and where the vectors yk
correspond to its normal currents, we get:

A (𝜃) =⎡⎢⎢⎢⎢⎣
(𝜎1 + 𝜎2) N11 −2D*

11 −𝜎2N12 D*
12 0 0 0

−2D11
(︀

𝜎−1
1 + 𝜎−1

2

)︀
S11 D12 −𝜎−1

2 S12 0 0 0
−𝜎2N21 D*

21 (𝜎2 + 𝜎3) N22 −2D*
22 −𝜎3N23 D*

23 0
D21 −𝜎−1

2 S21 −2D22
(︀

𝜎−1
2 + 𝜎−1

3

)︀
S22 D23 −𝜎−1

3 S23 0
0 0 −𝜎3N23 D*

32 (𝜎2 + 𝜎3) N33 −2D*
33 −𝜎4N34

0 0 D23 −𝜎−1
3 S32 −2D33

(︀
𝜎−1

3 + 𝜎−1
4

)︀
S3 D34

0 0 0 0 −𝜎3N34 D*
43 𝜎4N44

⎤⎥⎥⎥⎥⎦ ,

(3.2)
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Figure 3.5: Source locations (∙) for surface-based analysis on the gray-white matter in-
terface (blue) together with the smoothed cortex surface (light brown).

The matrix elements N𝑖𝑗 , S𝑖𝑗 , D𝑖𝑗 and D*
𝑖𝑗 are block matrices assembling discretized

versions of the integral operators of classical (Newtonian) potential theory between layers
𝑖 and 𝑗 that are all based on convolutions with the Green function (Equation (2.5) ).

For EEG source modeling we have:

b =

⎡⎢⎢⎢⎣
𝜎1D*

1𝑑d
S1𝑑d

0
0
0

⎤⎥⎥⎥⎦ (3.3)

for discretized source locations in a dipole strength vector or tensor d which is built
from the analytic solution of source density 𝑓 for the voltage 𝑣 = − 1

𝜎1
𝑓*𝐺 by convolution.

𝐺 is the distance dependent Green function.
For the current injection case (EIT,tCS) we obtain:

b =
[︁
0, 0, 0, 0, −D*

34z, 𝜎−1
4 S34z,

(︁
−1

2 I44 + D*
44

)︁
z
]︁⊤

. (3.4)

Here, z is the discretization of the normal currents on the scalp and I𝑖𝑗 is an identity
operator. It assembles injected currents involving the conductivities 𝜎𝑖 and, within the
operators, the shapes of the interfaces.

3.2.1.4 Source Models

The neuronal sources are commonly modeled using an equivalent current dipole on the
gray-white interface [Nunez and Srinivasan, 2005; Buzsáki et al., 2012], as it is a common
assumption that the main neuronal contributions to EEG come from currents between
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the soma (cell bodies) and the afferent synapses located in the dendrites. As outlined
in Section 2.1.1.1, synchronously active populations of pyramidal cells of the neocortex
layer are the main source of neuronal activity measured by EEG. For source simulation,
the normal direction of the so generated triangulations can be used to make the contri-
butions more realistic and reduce dimensionality. Still, contributions from all over the
brain might be generally found in the EEG. Thus, analysis of source activity can be
performed over the whole cortex and source location is then often linked to MRI voxels.
(see blue mesh in Figure 3.5).

The head models in use include almost exclusively neuronal sources and expect a
separate artefact reduction and/or precise experimental procedure avoiding those.

In order to have a comparable set of source locations, the geometric transformations
to the segmentation template can be used. This way, sources lie in similar regions of the
cortex for different subjects, which is also a basis for average or linear leadfields to work
as we will see in Section 5.4. In particular, electrode and source locations relative to the
surface must meet for the localization to be precise.

3.2.1.5 Gain Matrices: Leadfields for EEG and EIT

After discretization of the geometry, we need to build a model that connects neuronal
source activity within the brain to scalp electrode potentials for EEG, scalp electrode
currents to scalp potentials for EIT and scalp currents to electric field at source locations
for tCS targeting.

Under the assumptions of electrostatics and linearity we can discretize the effects of
volume conduction into a set of linear equations like Equation (3.1) for all kinds of head
models.

Including all the necessary state variables (potentials and/or currents) into a column
vector x, we get a linear equation of the form:

A x = b, (3.5)

where b is a column vector representing the inhomogeneities (the source terms of EIT,
tCS or EEG by their boundary conditions on the interfaces). The dimensionalities of
the variables depend on the type of head model and the discretizations of the boundaries
used.

If A is regular (as in our case) we can reorder the system in Equation (3.5) to:

x = A−1b.

With an equation of this general form, we can map any known distributions of surface
normal currents (like in the EIT and tCS case) or neural source currents (as in EEG
source localization) to a potential distribution on the head surface or electrical field
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within the brain. If we introduce the interpolation matrix V of the sensor voltages v
out of the state variables x

v = V x

and similarly divide b into a forward matrix from sources B and a vector of scalp currents
i for EIT:

b1 = B i,

or a vector of current dipole moment s for EEG and another matrix C:

b2 = C s,

we can rephrase the linear system using so called gain matrices. These are often called
the leadfield in the EEG and MEG community. We denote them by K for the EIT gain
matrix and L for the EEG gain (or leadfield) matrix (which can also be a tensor):

v = K i. (3.6)

v = L s. (3.7)

where

K = VA−1B
L = VA−1C

The 𝑛 × 1 vector v stands for the 𝑛 sensor voltages on the scalp, i (also 𝑛 × 1) for
the 𝑛 injected currents on the sensors and s (dimensionality 𝑚 × 1) for the current
dipole moment of the 𝑚 supposed source locations within the brain. Accordingly, K has
dimensionality 𝑛×𝑛 and L has 𝑛×𝑚. If we want to include all possible source directions
(not only the realistic normal to cortex), L turns into a tensor of size 𝑛 × 𝑚 × 3.

For any linear electrostatic head modeling approach that can link the source currents
on the scalp or the source current dipole moments within the brain to the sensor volt-
ages on the electrodes, we can receive the resulting potentials as a superposition of the
contributions of the single sources. This can be written in a matrix fashion as the so
called gain matrices.

Interestingly, through the principle of reciprocity in electrostatics, L can also be used
to estimate the electrical field strength in the sources imposed by current injection
through the electrodes [Wagner et al., 2016].

3.2.2 The Linear Model of EEG
As we have seen in the last section, we can formulate the propagation from sources 𝑠
to sensors 𝑥 in terms of a linear relationship as the mixing 𝐴 is instantaneous. This is
often called the linear forward model of EEG [Haufe et al., 2014b]. In the case of EEG,
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the number of sources is in general much higher than the number of sensors, making
this problem under-determined. Another important factor is that the strongest sources
are not neccessarily of neural origin. Therefore, a noise term 𝜖 is commonly added for
all noise that is not taken care of or is not of interest in the source model:

𝑥 = 𝐴𝑠 + 𝜖 (3.8)

Within the forward model, the propagation of signals from sources to sensors are stored
as patterns in columns of the matrix 𝐴. It is in general difficult to measure the source
activity directly and the common situation is rather that we have a set of measurements
and want to estimate the source activity or localize the most probable sources. This
is what is called source reconstruction/separation and source localization, respectively.
To this end, the unmixing matrix 𝑊 has to be estimated, which usually accounts for
reducing noise 𝜖 and estimating orthogonal or independent sources 𝑠:

𝑠 = 𝑊 ⊤𝑥 (3.9)

As we are operating in a spatial domain with a linear filter, this approach is also termed
spatial filtering and can be performed unsupervised (ICA,PCA,..) or in a supervised
fashion including prior knowledge about the different points in time (CSP, LDA,...). We
will investigate this further in the following chapter.

3.3 Analysis of oscillatory EEG data
We will now focus on the analysis of rhythmic neuronal activity as we face, e.g., in the
sensorimotor rhythm (SMR) [Pfurtscheller and Neuper, 2001; Blankertz et al., 2008b,
2010] or estimation of cognitive workload [Gevins et al., 1998; Smith et al., 2001; Holm
et al., 2009]. In these, usually mainly a change in amplitude of peaks in the Power-
Spectral Density (PSD) related to events in experimental conditions like left/right hand
motor imagery or cognitive workload level is investigated. This change is assumed to be
due to synchronization/desynchronization effects on the mean field and is thus termed
Event Related Synchronization/Desynchronization (ERD/ERS). The related sponta-
neous changes in background or broadband activity mentioned in Section 2.2 are to
be considered rather in future approaches. Also, the fact that in our simulations SSD
suppressing the background activity works best in classifying motor imagery data sug-
gests, that those factors do not play such a crucial role in Brain Computer Interfaces
(BCIs) using spontaneous EEG.

Analyzing or classifying rhythmic (or oscillatory) neuronal activity is not a straight-
forward task, as the signal itself contains a spatially smeared mixture of non-linear
amplitude dynamics distributed over different frequency bands. Many of the peaks in
the PSD actually covary due to the non-sinusoidal nature of the source signal which is
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caused by the non-linear interactions of neurons. Focusing on a single peak, we experi-
ence that the amplitude of that signal in time or its power in frequency covaries with task
condition. Also, the background activity in shape of the 1/f noise is known to covary
with different conditions. Additionally, the different peaks can linearly and non-linearly
covary and actually originate from the same source area.

We thus need to transform the time-varying multivariate EEG signal into an amplitude
or power variable in order to interpret, relate or classify different conditions. To counter-
act the effects of spatial smearing it is mostly useful to perform linear demixing before
amplitude extraction in order to increase the separability of different sources. EEG
sources are expected to mix linear due to the quasi-electrostatic assumption [Häamäläi-
nen et al., 1993] in the usual EEG frequency range below 1kHz and the linear de-mixing
is thus optimal for electrophysiological sources in that range. The interaction of the
sources, however, is highly non-linear as we have seen in Section 2.2. Now, we will
revisit and extend common perspectives and approaches to EEG analysis and classifica-
tion.

3.3.1 Signal Processing
EEG signal processing has two main goals in order to extract the relevant information
from a raw signal:

• The reduction of EEG artefacts from non-neural origin

• Linear de-mixing for separating different sources superimposed through volume
conduction

These two aims can be, however, combined into one single step or algorithm. There
are two domains in which the signals can be preprocessed: the temporal (including
frequency) and the spatial. Approaches can work on one or both of the domains si-
multaneously. In order to decrease the influence of motion and eye artefacts as well as
channels with changing or high impedance, rejection of epochs and channels based on
variances is among the most common first steps [Blankertz et al., 2008b]. After this, re-
gression based on EOG channels, Principal Component Analysis (PCA) or Independent
Component Analysis (ICA) on the whole dataset is commonly performed to identify and
exclude artefactual components [Winkler et al., 2011]. PCA and ICA can also be used
to separate different sources, while algorithms like CSP performs supervised separation
based on class-differences, which can also be neurophysiologically interpreted [Blankertz
et al., 2011].

3.3.1.1 Spatial Filtering
We will now focus on approaches based on spatial filters in order to reduce artefacts
and or separate relevant sources. The easiest spatial filters are bipolar references or the
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(surface) Laplace filter simply taking the neighbors as reference. Current source density
(CSD) filtering is based on head models and is related to the surface Laplace filter as
the surface Laplacian is the equivalent of the surface source current density [Tenke and
Kayser, 2005]. Other techniques usually performed are Blind Source Separation or spe-
cific algorithms to identify the different components based on theoretical considerations.

Blind source separation techniques like Principal Component Analysis (PCA) or Inde-
pendent Component Analysis (ICA) have the drawback of mostly not perfectly unmixing
(separating) the artefacts from neuronal components and the need to identify the arte-
factual components. The imperfect unmixing is mainly caused by the fact that these
techniques can only linearly unmix as many sources as channels are present, while ad-
ditionally often the assumption of identically independently distributed samples (iid) is
violated due to the high auto-correlation of EEG.

Algorithms like spatio-spectral decomposition (SSD)[Nikulin et al., 2011] are expected
to minimize the effect of artefacts and background activity by prior knowledge of the
noise structure. SSD uses the fact that the noise is rather broad-band while the neuronal
signals of interest are spectrally bundled in peaks around specific frequencies. An artefact
reduction followed by a maximization of class differences is commonly found in the design
of the analysis and a consecutive application of SSD followed by CSP has been proposed
[Haufe et al., 2014a; Halme and Parkkonen, 2016].

If we want to maximize the covariance between specific conditions of the experiment,
Common Spatial Patterns (CSP) is usually the tool of choice [Fukunaga, 1990; Koles,
1991; Ramoser et al., 2000; Blankertz et al., 2008b]. It optimizes spatial filters to max-
imize the difference between the covariance matrices within the classes. Many different
approaches to regularizing CSP in order to overcome some of its weaknesses have been
proposed: CSP is prone to the influence of single artefacts and also strongly - although
commonly used for dimensionality reduction - to over-fitting to the training set, see [Lotte
and Guan, 2011] for an overview. Examples are simply the regularization of the covari-
ance estimation (e.g. by shrinkage) [Lu et al., 2009], invariant CSP (iCSP) [Blankertz
et al., 2008a], which uses additional measurements of artefacts for regularization and
stationary CSP (sCSP), a version that penalizes non-stationary patterns [Samek et al.,
2012]. It is based on similar theoretic grounds as a preprocessing by Stationary Sub-
space Analysis (SSA) [von Bünau et al., 2009]. SSA finds stationary directions in order
to reduce artefacts in the data.

Artefacts are mostly non-stationary, but, additionally, stationary components theo-
retically generalize better. Problematic is, as we will see in Section 3.3.2 and Section 4
that also the relevant sources are most probably non-stationary. It is found in the 1

𝑓𝛼

structure of the amplitudes of oscillations.
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Unsupervised algorithms

PCA Principal Component Analysis (PCA) is a method that detects uncorrelated
directions in the covariance of the data [Pearson, 1901]. It is related to an eigenvalue
decomposition of the covariance matrix Σ𝑥 of the data 𝑥. It can be formulated as an
optimization problem for the single filters (eigenvectors):

𝑤* = arg max
𝑤

𝑤⊤Σ𝑥𝑤

𝑤⊤𝑤
(3.10)

while this relates to an eigenvalue problem that solves:

𝑊 ⊤Σ𝑥𝑊 = 𝐷 (3.11)
𝑊 ⊤𝑊 = 𝐼 (3.12)

PCA is often used as an artefact reduction step in EEG as the strongest components are
most likely eye and muscle artefacts due to their high variance [Blankertz et al., 2011].

ICA Independent component analysis (ICA) is a common tool for finding statisti-
cally independent sources in EEG [Makeig et al., 1996]. In its assumptions, it is similar
to PCA but involves approximation of statistical independence. Correlation and inde-
pendence are related while decorrelation can be seen as one of the most straight-forward
approximations of independence. Independence leads to uncorrelated variables but un-
correlatedness does not imply independence as it is based on lower-order statistics only.
Hence, PCA is mostly used as a preprocessing step for ICA in order to facilitate conver-
gence of the algorithm. ICA usually adds higher-level statistics in order to improve the
robustness to non-Gaussian distributions and non-linear interactions. There are many
different ICA algorithms of which fastICA [Bell and Sejnowski, 1995] is one of the most
widely used. It uses the Infomax principle related to the entropy in combination with
assumption of nonlinear distributions. The Infomax principle is based on maximizing
the mutual information between input 𝑋 and output 𝑌 using the entropy of the out-
put 𝐻(𝑌 ) and the entropy of the output not coming from the input 𝐻(𝑋|𝑌 )[Bell and
Sejnowski, 1995]:

𝐼(𝑌, 𝑋) = 𝐻(𝑌 ) − 𝐻(𝑌 |𝑋) (3.13)

A non-linear neural network is trained to optimize the target function.
In EEG and similar applications, it often fails at properly de-mixing sources [Lühmann,

2018] as it assumes identically independent distribution of data points which is not given
in EEG due to the temporal long-range autocorrelation. Newer approaches consider these
facts and lead to better separation of sources [Lühmann, 2018; Adali et al., 2014].
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SSD Spatio-Spectral Decomposition (SSD) is a dimensionality reduction technique
that is expected to extract neurophysiologically plausible sources [Nikulin et al., 2011]. If
we maximize the ratio of the covariance Σ𝑥 of the signal of interest 𝑥 in a frequency band
of interest against the noise in the flanking bands Σ𝑁 in the extracted components, we
obtain spatial filters that practically maximize the signal-to-noise ratio of these compo-
nents. Noise here rather describes everything that is unrelated to the signal of interest:
the neural oscillation as a spectral peak in a certain frequency range. The objective
function for the optimal spatial filter 𝑤* is

𝑤* = arg max
𝑤

𝑤⊤Σ𝑥𝑤

𝑤⊤Σ𝑁 𝑤
(3.14)

while this relates to a generalized eigenvalue problem that solves

𝑊 ⊤Σ𝑥𝑊 = 𝐷 (3.15)
𝑊 ⊤Σ𝑁 𝑊 = 𝐼 (3.16)

for the filter matrix 𝑊 .
SSD is useful as a dimensionality reducing preprocessing step that mainly results in

components of neural origin. While the selection of the number of necessary components
has been proposed in [Haufe et al., 2014a] by an outlier detection based on the inter-
quartile range, a selection of the 14 best components seems to work comparably. The
fact that also broadband activity changes with task condition in the higher frequency
band, limits the success of this approach most probably to lower bands like alpha and
beta.

Supervised algorithms

CSP The Common-Spatial-Patterns (CSP) algorithm is one of the most successful
in the classification of motor imagery based brain-computer interfaces[Blankertz et al.,
2008b]. It finds directions in the covariance of the data space that maximize the differ-
ence between the classes linked to different tasks (e.g. left vs. right hand movement).
There are several different versions of CSP, while the following objective function is used
throughout this thesis due to its favorable form in normalizing the output:

𝑤* = arg max
𝑤

𝑤⊤ (Σ1 − Σ2) 𝑤

𝑤⊤ (Σ1 + Σ2) 𝑤
(3.17)

This objective function can be solved by generalized eigenvalue decomposition and leads
to the following relationships between the filter matrix 𝑊 , the class-wise covariance
matrices Σ𝑐 and the eigenvalues 𝐷. For two classes, we get:
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𝑊 ⊤ (Σ1 − Σ2) 𝑊 = 𝐷 (3.18)
𝑊 ⊤ (Σ1 + Σ2) 𝑊 = 𝐼 (3.19)

CSP directly maximizes the difference in variance between classes, which is then used
logarithmized for classification.

iCSP Invariant Common Spatial Patterns (iCSP) adds covariances of confounding
sources Ξ as a regularization term in order to select components that are invariant to
these [Blankertz et al., 2008a].

𝑤* = arg max
𝑤

𝑤⊤Σ1𝑤

𝑤⊤ [(1 − 𝜂) (Σ1 + Σ2) + 𝜂Ξ] 𝑤
(3.20)

with the related generalized eigenvalue equation:

𝑊 ⊤Σ1𝑊 = 𝐷 (3.21)
𝑊 ⊤ [(1 − 𝜂) (Σ1 + Σ2) + 𝜂Ξ] 𝑊 = 𝐼 (3.22)

sCSP In [Samek et al., 2012], stationary Common Spatial Patterns (sCSP) was
proposed. It penalizes non-stationary directions in the data by the term Δ = Δ1 + Δ2,
which consists of the average class-wise difference to the average spatial covariance Δ𝑐

for class 𝑐 ∈ 1, 2 over trials :

𝑤* = arg max
𝑤

𝑤⊤Σ1𝑤

𝑤⊤
(︁
Σ1 + Σ2 + 𝛼Δ

)︁
𝑤

(3.23)

The related generalized eigenvalue equation is:

𝑊 ⊤ (Σ1 − Σ2) 𝑊 = 𝐷 (3.24)

𝑊 ⊤
[︁
Σ1 + Σ2 + 𝛼Δ

]︁
𝑊 = 𝐼 (3.25)

The algorithm uses the measure Δ to penalize directions that are non-stationary, which
imply large differences to the average trial-wise covariance.

sCSSP Combining the ideas of CSP, sCSP and SSD, sCSSP maximizes the difference
between class-wise covariance matrices Σ1 and Σ2 while diagonalizing the weighted sum
of the noise matrix Σ𝑁 and a non-stationarity constraint Δ. The rational behind this is
that any two consecutively applied linear spatial filters can be combined into one filter
without loss of information and that a combined extraction optimizing all objectives at
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once could lead to a selection of better components. The results can be found in section
Section 4.1. We define the maximization problem as:

𝑤* = arg max
𝑤

𝑤⊤ (Σ1 − Σ2) 𝑤

𝑤⊤
(︁
Σ𝑁 + 𝛼Δ

)︁
𝑤

(3.26)

with the connected generalized eigenvalue equation:

𝑊 ⊤ (Σ1 − Σ2) 𝑊 = 𝐷 (3.27)

𝑊 ⊤
(︁
Σ𝑁 + 𝛼Δ

)︁
𝑊 = 𝐼 (3.28)

LDA Linear Discriminant Analysis (LDA) is an approach that is mostly used for
classification in many different contexts including the BCI community [Blankertz et al.,
2008b; Congedo et al., 2017]. The assumptions for LDA being the optimal classifier
include equal covariances within the classes, Gaussian and known distributions [Fried-
man, 1989]. Due to the bias in covariance estimation, shrinkage helps to estimate the
true covariances [Ledoit and Wolf, 2004]. It nevertheless practically works in all kinds
of applications without these being met. It is a generalization to Fisher linear discrimi-
nant [Bishop, 2006; Fisher, 1936] and is related to the maximization of the between-class
variance 𝑆𝐵 against the within-class variance 𝑆𝑁 within the Fisher criterion:

𝑤* = arg max
𝑤

𝑤⊤𝑆𝐵𝑤

𝑤⊤𝑆𝑤𝑤
= arg max

𝑤

𝑤⊤ (𝜇1 − 𝜇2)
𝑤⊤ (Σ1 + Σ2) 𝑤

(3.29)

We can directly see its connection to CSP from the formula. While not maximizing the
filter direction in the covariance between classes it maximizes it in the variance between
classes and hence between their means.

3.3.2 Signal Classification
Classification is not only necessary in Brain Computer Interface (BCI) applications but,
strictly speaking, every scientific experiment intending to find differences in probability
distributions is basically performing a discrimination task.

In classification of spontaneous oscillations in EEG, three predominant approaches are
the most widely used:

• Envelope extraction (ERD/ERS) and LDA classification

• Logarithm of variances with LDA

• Riemannian geometric classifiers
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Apart from them, there is a variety of approaches including deep learning and other
highly involved machine learning based algorithms that, properly validated, do not sub-
stantially improve performance [Schirrmeister et al., 2017]. It is debatable, whether the
spatial resolution and the relatively low amount of training data are the reason for the
success of simple close-to-linear classifiers or the class differences in neural activity are
actually that simple.

Usually, the logarithm of the variances is the linearized feature vector of each CSP-
channel in use with a consecutive linear classifier. Mostly linear discriminant analysis
(LDA) is applied here, see e.g. [Blankertz et al., 2008b].

Already LDA tends to overfit mainly due to bias in the estimation of the covariance
matrices which can be partly counteracted by shrinkage [Blankertz et al., 2008b], while
this challenge increases with complexity of the classification algorithm. For CSP-filtered
data, however, shrinkage is usually not necessary due to the low dimensionality of the
data. The main issue seems to be in generalization to unseen data due to the non-
stationarities in the EEG.

Another approach uses the theory of Riemannian Manifolds [Congedo et al., 2017;
Yger et al., 2016] in order to be less prone to outliers and thus artefacts in the co-
variance estimations. These approaches are among the best performing state-of-the-art
using classification on the tangent space of the geometric mean between the two class
covariance matrices. This implies a logarithmization of the distances. The results often
lead to the lowest classification errors, while CSP remains a good approximation to these
and performs almost as good [Congedo et al., 2017].

In certain settings in more realistic environments simple classification of PSD de-
compositions can be more successful than CSP and the logarithm of variances. These
applications and the relation to increased non-stationarity and the presence of systematic
artefacts is discussed in [Miklody et al., 2016, 2017].

Investigating the distribution of single time points over channels from spatial and
band-pass filtered EEG data (see Figure 3.6), we can see that a Gaussian is the most
likely underlying distribution. The images exemplarily show the measured probability
density over all data points per class and the difference for one subject. Because of
the zero-mean oscillatory structure of the data, most points lie at around zero for both
classes. Hence, we need to integrate information over time in order to see a difference
between the conditions. This is usually done with either direct or indirect amplitude
or (co-)variance extraction in the time domain - the so-called event-related synchro-
nization/desynchronization (ERD/ERS) measures - or with transformation into the fre-
quency or similar domain of short time windows - Wavelet or Fourier approaches. Due
to its robustness, the mostly performed approach is the logarithm of the channel-wise
variances of CSP-channels. CSP perform a class-wise variance maximization in combi-
nation with a separation of sources by decorrelation. Spatially unfiltered data have a
much higher covariance among channels.

Another important fact visible in Figure 3.6 is that the covariances are non-stationary.
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Figure 3.6: The distribution of CSP-spatial and mu band-pass filtered EEG data over
different CSP-channels for two classes in a motor-imagery experiment: the
information lies in the (co-)variances of the different channels. Another im-
portant fact visible is that the covariances are non-stationary in particular
in channel 3, the covariance changes from training to test data in magnitude
and shape.

The covariance matrices Σ𝑥 of the underlying multi-variate Gaussian distribution change
over time for the same condition. This is already present in the training data but as the
spatial filtering is optimized on the whole training set, the statistics over the whole set
are by definition optimal. Even sub-sets of training data can and usually will, however,
be non-optimal in the statistics.

If we investigate the covariance matrices of CSP-channels (Figure 3.7), we can see a
certain structure of the data caused by the CSP filtering: the channels are de-correlated
and the covariance for either of the classes is maximized in each channel. As a result, the
variance of a single channel over a certain time window carries the main class information.

Looking at Figure 3.8 we find that Gaussian distribution is neither given in the vari-
ances nor in the logarithm of the variances. Variances of Normal-distributed data is in
general 𝜒2

𝑘-distributed with the degrees of freedom 𝑘 = 𝑛 − 1 being one less than the
number of time points due to the subtraction of the mean. As mentioned, LDA is the op-
timal classifier for Gaussian-distributed variables with equal covariance in both classes,
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Figure 3.7: The covariance matrices of strongest CSP-channels for training, test and re-
normalized test data. A covariance of 0.5 means equal covariance in both
classes, 1 full covariance for class 1 and 0 for class 2 data. The test data has
been re-normalized for the sum of the class-wise covariance matrices to form
an identity matrix. We can see how the magnitude and structure changes
for different data with the same experimental conditions. While the first and
strongest three channels remain similar in structure, the next three channels
are non-transferable to the feedback data as the differences disappear or even
flip.

which is neither given. The question arises, why it is still among the best performing
algorithms.

The distribution of the variance 𝑦 for a zero-mean Gaussian-distributed variable 𝑥
with variance 𝜎𝑥 is (see Appendix A.1):

𝑝𝑦(𝑦) =
(︃

𝑘

𝜇𝜎2
𝑥

)︃ 𝑘
2 1

2
𝑘
2 Γ
(︁

𝑘
2

)︁𝑦
𝑘
2 −1𝑒

− 𝑘𝑦
2𝜇

𝜎2
𝑥 (3.30)

where the degree of freedom 𝑘 = 𝑛 − 1 is one less than the number of samples 𝑛 on
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Figure 3.8: The CSP-variances per epoch for one subject in its native and a logarithmic
space: the logarithm helps linearizing the data while the results are still not
perfectly Gaussian distributed.

which the variances are calculated. The mean 𝜇𝑦 and variance 𝜎2
𝑦 for CSP-channels with

variance 𝑑𝑖 are:

𝜇𝑦 = 𝑑𝑖

𝜎𝑦 = 2𝑑2
𝑖

𝑘

This holds for a stationary variable and, with larger degrees of freedom 𝑘, the variance
𝜎𝑦 quickly decreases relative to the mean, which can be seen in the decrease in coefficient
of variation 𝑐𝑉 with k:

𝑐𝑉 = 𝜎𝑦

𝜇𝑦
=
√︂

2
𝑘

In spontaneous EEG data we often measure the variance of individual epochs with
𝑡 time points each, which in general leads to a 𝜒2 distribution with 𝑘 = 𝑡 − 1 degrees
of freedom. As shown in Figure 3.9, the non-stationarity of the data, however, leads
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Figure 3.9: The measured and estimated distributions of variances in a CSP-channel
for two classes. The non-stationarity in the signal leads to a broader 𝜒2

distribution than using the degrees of freedom according to the variance
theory for stationary signals. For the fitted distribution, the estimated degree
of freedom (blue curve) is 𝑘(1) = 10.0 for class 1 and 𝑘(2) = 16.6 for class
2, while for 293 data points of a stationary variable the degrees of freedom
would be 𝑘 = 292 (red curve). The histogram is based on one subject and
75 data points per class.

to non-identical distribution of the trials and is even time-dependent due to the 1
𝑓𝛼

structure in the amplitudes. This leads to a higher variance of the variance distribution
than determined by the degrees of freedom 𝑘.

We can fit the distribution to the measurements by estimating a virtual 𝑘 using the
measured variance of the variances 𝜎2

𝑦 = 𝜎2
𝜎2

𝑥
and their mean 𝜇𝑦 = 𝜇𝜎2

𝑥
(see Appendix

A.1):
𝑘 = 2 * 𝜇𝑦

𝜎2
𝑦

(3.31)

This resembles a fit of the generalized 𝜒2 distribution to the data by the first moments 𝜇𝑥

and 𝜎2
𝑥. Behind this lies the assumption that the non-stationarity is Gaussian-distributed

with a similar structure as the amplitudes themselves. This is justified by the Gaussianity
of the distributions of the individual epochs, although a better model might exist. We
can now introduce a more general 𝜒2 distribution which encompasses this effect by using
this virtual degree of freedom 𝑘 by Equation (3.30). It has to be said again, however that
the assumption of identically independent distributed (iid) samples is not valid for EEG
with its long-range auto-correlation. The Gaussian distribution of amplitudes seems,
however, justified, which leads to a generalized 𝜒2-distributed variance.

In Section 4.2, we will derive optimal classifiers for these kind of distributions, which
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Figure 3.10: CSP-channel 1 vs channel 3 plotted as probability density estimated on
the test data and training data. Also, the optimal and log-var LDA clas-
sifiers trained on the training data are shown. The different classifiers are
logarithm of variances with LDA (logvarLDA), nonlinear optimal 𝜒2 classi-
fier (nonlinChi), linearized nonlinear optimal 𝜒2 classifier (linzChi) and the
linear optimal 𝜒2 classifier for equal degrees of freedom per class (linChi).

perform with lower precision but close to LDA on the logarithm of variances for unseen
data. In Figure 3.10, we can see one reason, why: the estimated distribution changes
for the test data and, hence, the classifier is not optimal anymore, while LDA is less
affected. The different classifiers are shown together with LDA on the logarithm of
variances (logvarLDA) and the distribution of variances and will be further explained in
Section 4.2.

LDA of the logarithm of variances is less affected by the individual non-stationarities
in scaling of the variables per class due to use of the logarithm. The reason is simple and
lies in the basic properties of the logarithm. If the change 𝑎𝑖 in scale in the 𝑛 features
𝑥𝑖 is different, a linear classifier like LDA 𝑦 = w⊤x + 𝑏 leads to:

𝑦 =
𝑛∑︁

𝑖=1
(𝑤𝑖𝑙𝑜𝑔(𝑎𝑖𝑥𝑖)) + 𝑏 =

𝑛∑︁
𝑖=1

(𝑤𝑖𝑙𝑜𝑔(𝑥𝑖)) +
𝑛∑︁

𝑖=1
(𝑤𝑖𝑙𝑜𝑔(𝑎𝑖)) + 𝑏

while for the direct classification in the variances 𝑥, we get:

𝑦 =
𝑛∑︁

𝑖=1
(𝑤𝑖𝑎𝑖𝑥𝑖) + 𝑏

This implies that if the change in scale is on average zero over all channels, it will have
no effect for the logarithm but a channel-wise effect for the direct variance classification.
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Additionally, the commonly performed bias adaptation will only systematically help
in the logarithmic space, as the change in scale is additive. This is also an explanation,
why adaptation of the covariance matrix in the LDA classifier usually does not substan-
tially have an effect on the classification of the logarithm of variances [Vidaurre et al.,
2011]. Improvements in classification results using pMeans adaptation can be found in
Section 4.1.

This is similar to the effects of applying Riemannian Geometries, where the special
properties of the space lead to an equivalence in distance between source and sensor
space [Congedo et al., 2017]. This also implies that non-stationary amplitudes even for
spatially non-stationary sources do not affect the distance and, hence a classifier based
on it. Also, here, a logarithmization of space is performed which is why logarithm of
variances of CSP with its spatial unmixing and approximated scale invariance are a
good approximation of some Riemannian classifiers. They just miss the invariance to
non-stationarities.

3.4 Chapter Summary
Different methods exist for directly measuring neuroelectric activity. There is non-
invasive method with low spatial resolution and broad coverage like EEG on the one
hand and invasive with high spatial resolution but only local coverage like intracellular,
LFPs and ECoG recordings on the other. MEG is in between, with a higher resolution
but a lower coverage than EEG.

While, due to the effects of volume conduction, in particular for EEG spatial filtering
is almost inevitable to receive good signals, the non-stationarities of artefacts and the
neuronal sources themselves introduce issues with generalization to unseen data. LDA
trained on the logarithm of variances of CSP-channels is relatively robust in this sense.
Looking at the distributions of the different features reveals also why results are more
robust in a logarithmic space: the scale invariance helps to counteract non-stationarities.
Another factor is that CSP focuses on the main objective: the separation of classes. Al-
gorithms with the objective of robustifying CSP to artefacts by directly constraining
them or non-stationarities do not lead to reliable improvements. This can also be ac-
counted to the non-stationarity of the artefacts and thus an overfitting to these. Only
in highly artefact-polluted and non-stationary environments like realistic scenarios, CSP
fails and simple approaches based on PSDs can perform superior. Other more recent
approaches like Riemannian Geometry completely avoid these issues by the equivalence
of source and sensor space in their metric.
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Chapter 4
Oscillation-based EEG Analysis

We will analyze in detail the application of some of the most effective tools in spatial
filtering of EEG data and combine two of them into one algorithm. By this, we will
verify whether it is of advantage to execute those algorithms consecutively, as commonly
performed, or we rather combine the extraction into one spatial filter. In the second
part of this chapter, we will introduce new classifiers for variance data and evaluate
their performance on the same motor imagery dataset. These classifiers are based on
the 𝜒2 distribution and are optimal for stationary variance classification. We will thus
investigate the effect of the non-stationarities of EEG on their generalization perfor-
mance.

4.1 Combining Linear Spatial Filters
We will evaluate the advantages of SSD, CSP and sCSP performed sequentially and
combined into one algorithm on the same data. On the one hand, it may be of advantage
to receive optimal spatial filters within one single step and on the other hand two sets
of linear filters can be mathematically combined into one. We will also investigate the
effect of classifier adaptation in the shape of moving average pMean [Vidaurre et al.,
2011].

The new approach combining SSD and sCSP, termed stationary Common Spatio-
Spectral Patterns (sCSSP), additionally offers the possibility to easily update the spatial
filters to non-stationary noise structures. The eigenvalue of the filters directly depicts the
signal-to-constrain ratio of the components, which, depending on the hyper-parameter,
mixes between signal-to-noise and signal-to-non-stationarity constraints.

4.1.1 Formulation of the Optimization Problem for sCSSP
Combining the ideas of CSP, sCSP and SSD, we designed an algorithm that maximizes
the difference between class-wise covariance matrices Σ1 and Σ2 while diagonalizing the
weighted sum of the noise matrix Σ𝑁 and a non-stationarity constraint Δ. We define
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the maximization problem as:

𝑤* = arg max
𝑤

𝑤⊤ (Σ1 − Σ2) 𝑤

𝑤⊤
(︁
Σ𝑁 + 𝛼Δ

)︁
𝑤

(4.1)

Here, Δ = Δ1 + Δ2 with Δ𝑐 = 1
𝐾

∑︀𝐾
𝑘=1 Δ(𝑘)

𝑐 being the average (positive definite) dif-
ference matrix of class c [Samek et al., 2012] (see also Section 3.3.1.1). So, Δ corresponds
to the penalty term of sCSP connected to non-stationarities and 𝛼 is the corresponding
hyper-parameter. Note that we did not normalize the covariance matrices by their traces
as in the original sCSP article in order to keep the meaningful covariance values.

Similar to CSP and other optimization algorithms, we can perform a generalized
eigenvalue decomposition in order to obtain the spatial filters connected to the maximal
and minimal covariance ratios. If we take all Eigenvectors w𝑖 into a matrix 𝑊 , they
serve as simultaneous diagonalizers for (Σ1 − Σ2) and Σ𝑁 + 𝛼Δ.

𝑊 ⊤ (Σ1 − Σ2) 𝑊 = 𝐷 (4.2)

𝑊 ⊤
(︁
Σ𝑁 + 𝛼Δ

)︁
𝑊 = 𝐼 (4.3)

While the noise and non-stationarity term are whitened in the source space 𝑆 = 𝑊 ⊤𝑋
(see Equation (4.3)), the difference between classes is maximized (see Equation (4.2)).
An absolute eigenvalue above 1 implies the class difference being stronger than the noise
and non-stationarity level, which turns out to be the optimal selection criterion for a
subset of filters in classification.

4.1.1.1 Online Update of Constraints
As we do not know the class-labels in general, we cannot update the class-wise covariance
matrices Σ1 and Σ2 in a usual application like online experiments. Hence, we will only
update the denominator of the objective function Equation (4.1). This also implies that
the stationarity constraint Δ must be approximated by a deviation from the pooled
covariance over classes in the online update Δ. The constrain terms 𝐶 = Σ𝑁 + 𝛼Δ in
the denominator at 𝑀 sample are calculated by:

𝐶(𝑀) = Σ(𝑀)
𝑁 + 𝛼Δ(𝑀) = 1

𝑀

𝑀∑︁
𝑖=1

(︁
𝑥

(𝑖)⊤
𝑁 𝑥

(𝑖)
𝑁 + 𝛼Δ(𝑖)

)︁
(4.4)

for the noise band signal 𝑥𝑁 with its i-th sample 𝑥
(𝑖)
𝑁 and 𝐶(𝑖) the constrain term at

sample 𝑖.1 If we receive a new sample 𝑀 after 𝑀 − 1 samples, then:

𝐶(𝑀) =
(︂

1 − 1
𝑀

)︂
𝐶(𝑀−1) + 1

𝑀

(︁
𝑥

(𝑀)⊤
𝑁 𝑥

(𝑀)
𝑁 + 𝛼Δ(𝑀)

)︁
(4.5)

1Note that the covariance estimation is calculated with the normalization 1
𝑀

instead of 1
𝑀−1 for ho-

mogeneity with the non-stationarity term and simplicity but can easily be changed.
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Updating the filters, the following equation (see Equation (4.2)) needs to still hold,
only the eigenvalues and vectors can change to new values �̃� := 𝑊 (𝑀) and �̃� := 𝐷(𝑀):

�̃� ⊤ (Σ1 − Σ2) �̃� = �̃� (4.6)

The noise covariance and the non-stationarity terms can change due to a covariate shift
in the data, leading to a need to adapt the weights to still fulfill the diagonalization of
the constrain term (compare Equation (4.3)):

�̃� ⊤𝐶(𝑀)�̃� = 𝐼 (4.7)

This is equivalent to whitening the new noise matrix while still separating the classes in
a similar fashion. Our old 𝑊 (𝑀−1) still fulfills the following equation, helping to simplify
the update rule:

𝑊 (𝑀−1)⊤𝐶(𝑀−1)𝑊 (𝑀−1) = 𝐼 (4.8)

We can introduce a noise-update transformation V at every time step leading to �̃� :=
𝑊 (𝑀−1)𝑉 to avoid the recalculation of the whole covariance matrix (which can be com-
putationally and memory intense).

If we insert �̃� = 𝑊 (𝑀−1)𝑉 into Equation (4.7), use Equation (4.5), Equation (4.8)
and define a new matrix 𝐴, we yield:

�̃� ⊤𝐶(𝑀)�̃� = 𝑉 ⊤𝑊 ⊤𝐶(𝑀)𝑊𝑉

= 𝑉 ⊤
[︂(︂

1 − 1
𝑀

)︂
𝐼 + 1

𝑀
𝑊 ⊤

(︁
𝑥

(𝑀)⊤
𝑁 𝑥

(𝑀)
𝑁 + 𝛼Δ(𝑀)

)︁
𝑊

]︂
𝑉

𝐼 =: 𝑉 ⊤𝐴𝑉

Equation (4.6) leads to:

�̃� ⊤ (Σ1 − Σ2) �̃� = 𝑉 ⊤𝑊 ⊤ (Σ1 − Σ2) 𝑊𝑉 = 𝑉 ⊤𝐷𝑉 = �̃�

Now, we can solve a new generalized eigenvalue decomposition 𝐷𝑉 = 𝐴𝑉 �̃� and receive
the noise-update transformation 𝑉 and the new eigenvalues �̃�.

We can see that the factor 1
𝑀 balances between keeping the old covariance matrix

and the effect of the new sample. In the case of exact covariance matrices of the so far
seen data, this is determined by the number of samples 𝑀 that were seen before. We
can also replace 1

𝑀 by a parameter 𝜆 and make the algorithm adopt to non-stationary
covariance matrices over time. This can be of advantage as EEG data is known to be
prone to covariate shifts. Also, it has the advantage of not needing to memorize the
number of samples. Choosing 𝜆 appropriately can additionally help adopt the spatial
filters to different data.

Then A turns into:

𝐴 = (1 − 𝜆) 𝐼 + 𝜆𝑊 ⊤
(︁
𝑥

(𝑀)⊤
𝑁 𝑥

(𝑀)
𝑁 + 𝛼Δ(𝑀)

)︁
𝑊 (4.9)
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4.1.1.2 Pooled Mean Online Adaptation

In order to improve the performance of the algorithms, an adaptation of the LDA classi-
fier bias 𝑏 is commonly helpful. It was used to adapt sCSSP but also - to compare with
fair means - for CSP and the other approaches. The formula that is used is based on
unsupervised pMean [Vidaurre et al., 2011] and uses a constant update factor 𝜂 updating
at every single trial (hence building the pooled mean over classes implicitly).

𝑏(𝑡 + 1) = (1 − 𝜂) 𝑏(𝑡) + 𝜂𝑤⊤𝑥(𝑡) (4.10)

In Chapter 3.3.2 we have seen that pMeans adaptation with logarithm of variances
actually adapts to the non-stationarity in amplitudes of the oscillations.

4.1.1.3 Choice of Components

Approaches like CSP and PCA are commonly used for dimensionality reduction, for
which a subset of components has to be chosen. Choosing the components strongly in-
fluences the behavior of the algorithms and different approaches can be pursued. Not all
extracted filters and components might actually provide useful information and improve
classification. For CSP commonly the filters with the highest eigenvalues for any of the
classes or a certain number per class is a common choice. The 3-6 largest eigenvalues
for either of the classes is a reasonable choice for CSP [Blankertz et al., 2008b]. These
procedures are usually justified by cross-validation and/or Skree-plot investigations. We
determined the best 𝑛 components on the calibration set and measured the resulting
error on the feedback data.

A similar selection scheme can be applied for sCSSP but, actually, the eigenvalues
provide additional information: the class-difference-to-noise-and-non-stationarity ratio.
For components with eigenvalues above an absolute value of 1, the actual information
content is larger than the noise and non-stationarity and this selection criterion turns
out to perform best in our analysis. This is a similar selection procedure as the Kaiser
criterion [Kaiser, 1958].

For sCSSP we implemented two approaches:

1. The components were determined based on their eigenvalue: an absolute value
above 1 means a higher signal level concerning the class-difference than the con-
straints (noise, non-stationarity). In addition to that a minimum number was
chosen to avoid the selection of no components for subjects with low SNR.

2. Similarly as for CSP, a certain number of the highest eigenvalues were chosen.

For SSD, we simply chose the 15 components based on [Haufe et al., 2014a].
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4.1.1.4 Choice of Frequencies
The choice of the frequency bands was performed automatically based on the bi-serial
correlation coefficient (r), used signed and squared as a measure of separability between
classes. The frequency bands for the signal band were chosen based on the same al-
gorithm described in [Blankertz et al., 2010]. In the analysis involving either SSD or
sCSSP, we however had to additionally introduce an estimation of the optimal noise
band. This was done based on three approaches:

I The noise band ranging from 75% to 95% of the lower cut-off frequency and from
105% to 125% of the higher cut-off frequency of the signal band.

II The noise band chosen by the difference of the 𝑟2 to 1. So the score for the selection
𝑠 =

(︀
1 − 𝑟2)︀.

III The noise band chosen by the squared difference of the 𝑟 score to 1. So the score
for the selection 𝑠 = (1 − |𝑟|)2.

Approaches I and II where done with these altered scores and the same peak detection
algorithm as the selection of the signal band. This lead to the selection of bands that
were not contributing to the class-difference.

Investigating Motor Imagery data, the information is commonly linked to alpha and
beta bands. While in the original study, a single band peak was chosen automatically
in the range from 8 to 35 Hz, we additionally investigated a selection of two peaks, one
in the alpha (8-14Hz) and one in the beta range (15-35Hz), as we do not expect peaks
spanning over the two sub-bands. A single clear peak surrounded by non-discriminative
noise bands is essential for sCSSP and SSD to work. For comparing equal means, we
also validated the split band approach with a multi-band CSP.

4.1.2 Main Experiments: Motor Imagery in a
Calibration-Feedback Setting

In this study, BCI-naive participants (𝑁 = 80, 41 female age 29.9 ± 11.5 years, 4 left-
handed) were recorded in an experimental routine consisting of two phases. The exper-
imental design minimized the effect of artefacts like eye-movements or muscle activity
on EEG. The details of the study and the original approach using CSP can be found in
[Blankertz et al., 2010].

In the first phase, the calibration phase, participants were instructed to imagine right
hand, left hand or foot movements. The instruction was given by an arrow displayed
behind a fixation cross in the center of a computer screen. These data where then used
for determining the time interval, the frequency range and the spatial filters according
to CSP and sCSSP and other algorithms. The logarithm of the variance of these band-
pass and spatially filtered epochs was then used to train an LDA classifier. The best
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Figure 4.1: left Test (Te) and training error (Tr) in the calibration/feedback motor im-
agery study for different algorithms. sCSSP leads to the lowest median error
rates for test data but the highest on the training set. Significances are
shown with level (* 𝛼 < 0.05,** 𝛼 < 0.01,*** 𝛼 < 0.005) for the average
error being lower in the corresponding column compared to the start of the
line indicated by an arrow. Parameters: a - artefact reduction, p - pooled
mean adaptation.

performing pair of classes of imagined movements were then chosen for the feedback for
each subject.

The second phase was a pure feedback phase, where the participants were instructed
again to follow the indication of the target while the cross moved based on a continuous
classification in the detected direction to freeze at a final point after 4s.

Different parameter settings were investigated and will be treated in detail in Sec-
tion 4.1.4. These parameters are: a - artefact reduction, p - pooled mean adaptation, f
- filter adaptation, s - stationarity constraint.

As can be seen in Figure 4.1, sCSSP has the lowest median error of all approaches.
All significances mentioned are based on one-sided paired Wilcoxon signed rank test.

The average loss over subjects on classification of sCSSP is significantly lower than
of any of the standard CSP approaches. sCSP in our case significantly decreases per-
formance, we could not fully replicate the findings of [Samek et al., 2012] that sCSP
improves classification on this same dataset. It has to be said that they used cross-
validation to select the parameters for each subject while we used static parameters
leading to lower errors. CSP with proper bandpass frequency and interval selection was
performing superior to sCSP already and using p-means adaptation even increased the
difference. We show sCSP only with adaptation due to the mentioned improvements.
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Table 4.1: Mean and median errors for the different approaches.

method mean median
CSP 28.9% 25.8%
CSPa 27.9% 25.3%
CSPp 26.9% 23.5%
CSPap 25.4% 22.3%
sCSPp 27.2% 24.0%

SSD+CSPp 23.6% 21.0%
SSD+sCSPp 24.8% 23.0%

sCSSP 23.8% 20.1%

The CSP used for comparison in the original sCSP article seems to perform not up to
its capabilities.

Using SSD as preprocessing for CSP significantly improved results while not signifi-
cantly in combination with sCSP. The difference between SSD+CSP and sCSSP is not
significant (𝑝 = 0.62). Artefact reduction non-significantly decreased average perfor-
mance for SSD+CSP to 24.2% (not shown), hence artefact reduction was not used in
this case.

In figures Figure 4.2, the subject-wise classification loss for different sub-approaches
of CSP and sCSSP is given. We can see that the largest improvements in both CSP
and sCSSP are actually obtained by using pMeans-adaptation. Artefact rejection has
little effect. However, using sCSSP significantly improves in all comparisons. Using or
not using the stationarity constraint (s) makes up 0.3% improvement. sCSSP already
significantly improves the results without prior artefact reduction (compare column sfp).
Notably, sCSSP seems to mainly decrease the loss of subjects with CSP loss above
10 − 15% in general.

4.1.3 Validation Experiments: Motor Imagery with Changing
Artefact Level

In this experiment, we investigated the performance of the algorithms with further data
sets of healthy subjects ((N=28). Additionally, the transfer of the classifier between
different artefact levels was evaluated. Likewise, overfitting of the parameters to the
data set we optimized them for can be validated.

There were two experimental settings: in one condition, the subjects fixated on the
center of the screen, where the motor imagery conditions were shown in form of a letter
(R for right hand, L for left hand and F for feet). This minimized eye movements as
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Figure 4.2: A direct subject-wise performance comparison between different CSP and
sCSSP approaches. sCSSP significantly improves the results on average (*
𝛼 < 0.05,** 𝛼 < 0.01,*** 𝛼 < 0.005) with the same level of preprocessing and
adaptation. The percentages of trials on each side of the equal performance
line (dashed) are given (some are exactly on the line). Graphs with green
percentages are significantly better for sCSSP and black means no significant
differences. Parameters: a - artefact reduction, p - pooled mean adaptation,
f - filter adaptation, s - stationarity constraint.

well as neck and jaw muscle artefacts. The same subjects then performed a similar task,
where the instruction was constantly moving on the screen in a random fashion, leading
to the same task with different artefact level.

Looking at the different classification rates under block-wise cross-validation within the
conditions, sCSSP does have a significantly lower average error (18.2%) in the condition
with fixation (fix) than CSP (20.0%). In the movement condition (move), the averages
are almost the same (17.7%) and there is no significant difference. The results look
similar to those in the other dataset (Section 4.1.2) with a performance increase for low
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Figure 4.3: Classification results of motor imagery with changing artefact level
(fix=fixation, move=movement) with the optimal parameters of the first
dataset (𝛼 = 0.01, 𝜆 = 1𝑒 − 4, 𝜂 = 0.05): an improvement is found by using
sCSSP for condition fix, while the transfer between fix and move and the
classification on move do not change significantly.

performance subjects under CSP and a slight decrease for those with high performance.
If we look at the transfer between the conditions, we find overall rather a slight decrease

in performance for sCSSP compared to CSP which is not significant (CSP 19.7%/18.3%,
sCSSP 20.4%/18.9%).

Interestingly, the average errors are lower in the condition polluted by eye and muscle
artefacts (17.7% CSP/17.7% sCSSP) than in the fixation condition (20.0% CSP/18.2%
sCSSP), which has a higher visual alpha level due to the reduced visual input. Addi-
tionally, the classification trained on the movement condition also works better in the
fixation condition for all approaches shown here (18.3% CSP/18.9% sCSSP). This could
be related to the algorithm either choosing components less polluted by artefacts and/or
the visual alpha being selected. These differences are not significant.

4.1.4 Effects of Parameter Selection
4.1.4.1 Selection of Components

For CSP, we reached the best results with 3-6 components. We chose 3 for the lowest
mean error (25.4% for 3), see the black line in Figure 4.4A. The median error for 4
components was slightly lower (22.3% for 3 vs. 21.7% for 4) but the upper quartile was
higher (41.7% for 3 vs. 42.8% for 4).
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Investigating the blue line in Figure 4.4A, we see that sCSSP produces the best results
on average by choosing only components with an eigenvalue greater than 1 (25.1%),
while setting a minimum of 1 or 2 per band further improves those results (23.8% for 2
components). With more components, the results approach on average those of choosing
only a constant number of best components per band based on the eigenvalue (red line).
In this case, using only 2 components per band leads to the best results with an average
error below any of the CSP approaches (25.1%).

4.1.4.2 Selection of Frequencies

Selecting the noise band frequencies with 𝑠 = (1 − |𝑟|)2 (approach III in Section 4.1.1.4
leads to the lowest average error (23.8%), followed by 𝑠 =

(︀
1 − 𝑟2)︀ (approach II, 24.2%).

Using a noise band based on relative frequencies around the central peak (I) increases
average error (24.8%) non-significantly.

Using multi-band CSP on alpha and beta band leads to no significant difference on
the single band values (25.4% for single-band vs. 25.3% for multi-band CSP). The result
using sCSSP is different: the multi-band approach improves the results (24.7% for single-
band vs. 23.8% for multi-band). This difference is not significant but it is more probable
for multi-band sCSSP to improve the results (𝑝 < 0.1). Also, single-band sCSSP leads
to a lower average error than single-band CSP, but this difference is neither significant.

4.1.4.3 Online Spatial Filter Adaptation

The online spatial filter adaptation has only a small effect, in particular when using
pMeans adaptation. It improves classification as we can see in Figure 4.4B for a range
of values around 10−4 while the best value is at 1.75 ·10−4. This lead us to choosing this
a a standard value for the other simulations, where filter adaptation was involved. The
specific minimum at that value seems related to the dataset it was optimized on, as we
could not find similar differences with the validation experiments.

4.1.4.4 Pooled-Mean Adaptation

Pooled-mean adaptation (pMeans) has a significant influence on the loss. The improve-
ment compared to no adaptation for CSP and sCSSP is in the area of 2.5% on the average
loss with a smooth convex shape over the tested parameter range. The minimum is at
𝜂 = 0.05 for most cases as also reported by [Vidaurre et al., 2011].

4.1.4.5 Stationarity Constraint

Practically, the best results are obtained with low 𝛼 values which leads to mainly optimiz-
ing the class-difference-to-constrain ratio for sCSSP. Figure 4.4B reveals an area around

71



Chapter 4 Oscillation-based EEG Analysis

10−2 to lead to the lowest average error, while the effect is not smoothly depending on
the parameter and interrelated with the settings of other parameters.

4.1.5 Investigations of Scalp Patterns
Investigating the patterns in Figure 4.5, we can see clear similarities between the patterns
with largest eigenvalues extracted by CSP and those extracted by sCSSP. In general,
CSP seems to be more influenced by artefacts in particular if we look at the smallest
eigenvalues. In the subjects where CSP performance is superior to sCSSP (tbt,jv,tal),
sCSSP has seemingly also caught artefacts in particular in the weakest eigenvalues.

4.1.6 The Effects of Combining Spatial Filters
We have shown, how sCSSP improves classification compared to plain CSP. In a valida-
tion set of subjects, we showed how the parameters optimized on the main experiments
lead to very similar improvements in a similar setting, but work on the same level as
CSP if the artefact levels change. Here, training on a highly (artificially) randomized
movement pattern dataset improved the classifier for both CSP and sCSSP, while the
difference remains not significant. This effect could be related to a robustification of
both algorithms due to the inclusion of non-systematic artefacts in the training data.

Using SSD and CSP separately in a processing chain has a similar effect as sCSSP
which is basically a combination of the two algorithms. The advantage of sCSSP is
that only one set of spatial filters is learned in one step instead of two filter matrices.
The spectra of subjects with lower performance for sCSSP suggest a non-optimal se-
lection of frequency bands in these cases, which could influence sCSSP stronger than
SSD+CSP due to the lower total number of components. In SSD, the data is reduced
to a higher number of components with lower signal-to-noise ratio before CSP reduces
the dimensionality in a second step only based on the class-differences. In sCSSP both
decisions are combined and the choice of frequencies and number of components has an
interrelated effect. On the other hand, less parameters influence the success of SSD in
combination with CSP compared to sCSSP.

In general, a proper frequency selection around an oscillatory peak seems to be the
essence of the SSD and sCSSP to work well, similar to the effect of selecting the pass-
band in CSP. A further improved frequency selection procedure could improve results. It
is less crucial how wide the noise bands around the central signal peak are but that they
do not catch any relevant (here: discriminative) frequencies. If only a small part of the
peak is caught by the noise bands, the algorithms minimize the peaks and corresponding
components are not selected.
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Figure 4.4: The dependence of the average test loss on different parameters: the actual
optimal combination of parameters is complex. A Number of components
per frequency band: an eigenvalue of 1 with an additional minimum of 2
components per channel is the optimum, while a fixed value of three is opti-
mal for fixed selection and CSP. (for the EV criterion the parameter is the
minimum number of components per band) B The pMeans adaptation has a
similarly large effect and a clear optimal value at 𝜆 = 0.05 can be found. C
The effect of the online adaptation is low and depends on the other parame-
ters. D the stationarity constrain has an effect in the optimal setting for the
other parameters but little effect else. Parameters: a - artefact reduction, p
- pooled mean adaptation, f - filter adaptation, s - stationarity constraint.
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Figure 4.5: Scalp patterns of the three subjects with the highest performance increase be-
tween CSP and sCSSP on the left and the highest decrease on the right. We
can see a general similarity between CSP and sCSSP patterns, while more
CSP patterns seem to be affected by artefacts. One subject with around
chance performance (loss> 0.45%) for both algorithms was excluded from
this graph. Shown are the largest and smallest Eigenvalues of selected com-
ponents.
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4.2 Distributions of Variance
In the preceding section, one of the most successful classifiers in the context of EEG BCI
was implemented: Linear Discriminant Analysis (LDA). LDA is the optimal classifier
based on three assumptions: Gaussian distribution of variables, the same covariance
within both classes and that the distribution is known. As we have seen in Chapter 3.3.2,
all assumptions are violated in the case of classification of variance as features as in the
previous section. The variance itself follows a 𝜒2-distribution and the logarithm of it is
not Gaussian and neither the same distribution accounts for both classes, see Figure 3.8.
The variances are non-stationary meaning estimation does dot easily lead to a known
distribution. Still, apart from Riemannian Geometric-based classifiers, it is the most
successful and most widely used. We now will investigate this and derive another type
of classifier that is the optimal classifier for 𝜒2 distributed data.

4.2.1 Optimal 𝜒2 Classifiers
As introduced in Section 3.3.2, the variance 𝑦 of Gaussian distributed data 𝑥 with mean
𝜇𝑥 = 0 and 𝜎2

𝑥 = 𝑑𝑖 is distributed according to a generalized 𝜒2-distribution (see also
Appendix A.1):

𝑝𝑦(𝑦) =
(︃

𝑘

𝜇𝜎2
𝑥

)︃ 𝑘
2 1

2
𝑘
2 Γ
(︁

𝑘
2

)︁𝑦
𝑘
2 −1𝑒

− 𝑘𝑦
2𝜇

𝜎2
𝑥

If we have an n-dimensional distribution of variances of 𝑛 uncorrelated Gaussian vari-
ables, we can assume independence as an approximation due to the uncorrelatedness.
This leads to the n-dimensional 𝜒2 distribution being a product of the variance-wise
distributions:

𝑝(𝑥1, 𝑥2, ...𝑥𝑛) =
𝑛∏︁

𝑖=1
𝑝𝑥𝑖(𝑥𝑖)

For unseen data of non-stationary processes, however, this assumption can be vio-
lated. In the case of CSP as in Figure 3.7, a simple renormalization helps to remain a
more stationary and uncorrelated structure. This can be done in online classification
in a similar fashion as with pooled covariance adaptation of linear discriminant analysis
(LDA) [Vidaurre et al., 2011].

For generalized 𝜒2 distributed variables, an optimal classifier can be derived (see
Appendix A.2). For 𝑛 stationary independent variables with equal degrees of freedom 𝑘𝑖

for all classes within each channel 𝑖, the optimal classifier is linear in the variance space:

𝑦 = w⊤x + 𝑏 (4.11)
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with 𝑤𝑖 = 𝑘𝑖
2

(︁
1

1−𝑑𝑖
− 1

𝑑𝑖

)︁
and 𝑏 =

∑︀𝑛
𝑖=1

(︁
𝑘𝑖
2 − 1

)︁
log 1−𝑑𝑖

𝑑𝑖
. In the case of two-class CSP,

𝑑𝑖 is the i-th eigenvalue corresponding to the average variance of channel 𝑖 in class 1,
while 1 − 𝑑𝑖 is the average variance in class 2.

As mentioned, the non-stationarity of the data leads to a much higher variance in the
distribution of trial-wise variances. In the case of non-equal (virtual) degrees of freedom
𝑘

(1)
𝑖 for class 1 and 𝑘

(2)
𝑖 for class 2, the theoretic optimal separating hyperfunction is

non-linear (see Appendix A.2):

𝑦 = 𝑓(x) =
𝑛∑︁

𝑖=1
(𝑎𝑖 + 𝑏𝑖 log 𝑥𝑖 + 𝑐𝑖𝑥𝑖) (4.12)

which can also be linearized at the ’hotspot’ signifying the location on the separating
hyper-curve with highest gradient or any other point 𝑞 in order to receive a linear clas-
sifier, see also Appendix A.2). To this and a nonlinear minimization algorithm like the
trust region approach [Coleman and Li, 1996] can be used - constrained with the non-
linear separating hyperfunction. We will now apply these classifiers on the data from
the sCSSP study.

4.2.2 Application to Motor Imagery Data
In Figure 4.6, we find the estimated and measured probability distributions between two
CSP-channels. Each of them is discriminative for another class in a 2-class paradigm.
Also, we can see different separating hyperfunctions of classifiers including:

logvarLDA: LDA on the logarithm of variances
linChi: the linear 𝜒2 classifier for stationary variables (k=292)
nonlinChi: the non-linear 𝜒2 classifier for estimated degrees of freedom 𝑘
linzChi: classifier linearized at the ’hotspot’ - the point with largest gradient
We can see that for the displayed CSP-channels, the non-linear classifier is close to

an optimal separation for the training data. The test data has changed structure due to
the non-stationarities and, hence, the classifier is not optimal anymore, while the shape
of the separating hyperfunction of logvarLDA prevents a strong performance decrease.
logvarLDA is a linear classifier in the logarithmic space, leading to a hyperplane. In the
variance itself it is a hyperfunction of exponential shape.

CSP either overfitted to the training data, the non-stationarities shifted the data
or both. Actually thinking about how precise the variance measurements should be
according to the underlying 𝜒2

𝑘 distributions with k=292 (compare Figure 3.9), the data
is obviously non-stationary while CSP is known to overfit[Blankertz et al., 2008b], so
both is most probably true.

In Figure 4.9 we can see the different separating hyperfunctions in logarithmic space.
LDA is linear, while the others are non-linear. We have seen in Section 3.3.2 that the
logarithmization in LDA classifications of the logarithm of variances transforms single
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Figure 4.6: CSP-channel 1 vs channel 3 plotted as the fitted 𝑐ℎ𝑖2-distribution of training
and estimated probability density of training and test data. Also, the optimal
and log-var LDA classifiers are shown trained on the training data only.
The different classifiers are logarithm of variances with LDA (logvarLDA),
nonlinear optimal 𝜒2 classifier (nonlinChi), linearized nonlinear optimal 𝜒2

classifier (linzChi) and the linear optimal 𝜒2 classifier for equal degrees of
freedom per class (linChi).

channel amplitude changes into an additive component. If this is on average zero over all
channels, the classifier output is not affected. By this, the robustness of this approach
can be explained.

Observing the results over the database described in Section 4.1.2 reveals a large
incongruence between training and test errors. The 𝜒2 based classifiers have obviously
been overfitted as their training error is on average lower than for LDA (not significant)
but higher on the test data (significant 𝛼 ≤ 0.005). The classifiers themselves are
hyperplanes in the variance space so probably one of the lowest possible complexities.
The problem with generalization is thus rather found in the non-stationarity of the data.
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Figure 4.7: CSP-channel 1 vs channel 2 plotted as the fitted 𝑐ℎ𝑖2-distribution of training
and estimated probability density of training and test data. Also, the optimal
and log-var LDA classifiers are shown trained on the training data only.
The different classifiers are logarithm of variances with LDA (logvarLDA),
nonlinear optimal 𝜒2 classifier (nonlinChi), linearized nonlinear optimal 𝜒2

classifier (linzChi) and the linear optimal 𝜒2 classifier for equal degrees of
freedom per class (linChi).
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Chapter 4 Oscillation-based EEG Analysis

4.3 Chapter Summary
The novel sCSSP algorithm is successful in improving results. Combining the algorithms
leads to similar results as applying SSD and CSP sequentially. Said differently, combining
linear spatial filters increases complexity but does not have an advantage on classifica-
tion for the algorithms considered here. It seems that combining too many objectives
into one optimization introduces many inter-dependencies that are hard to tackle. sC-
SSP does improve performance if appropriately trained on data with similar statistics
particularly in those of artefacts and noise. Hence, in this case it is well justified to use
SSD and CSP as consecutive spatial filters and this drastically increases performance.
Also, most probably due to the non-stationarity of the signal, constraining the influence
of non-stationarities onto the spatial filters as with sCSP does not necessarily improve
performance on average.

A large effect on classification is found in pMeans adaptation, which adapts the classi-
fiers to unseen data. For logarithm of variances classification the adaptation of the bias
directly relates to the non-stationarity of the amplitude over time.

Variances are in general 𝜒2-distributed for which optimal classifiers were derived within
this chapter. These lead to lower training and higher test errors on motor-imagery data
compared to logarithm of variances LDA classification but reasonable performance on
average. The decreased quality in generalization can be accounted to the non-stationarity
of the variance distributions that leads to an overfitting to the training data. The
logarithm of variances is less prone to amplitude changes due to its transfer of this
scaling into an additive component.
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Chapter 5
Impedance Based Head Models

Inhomogeneity estimation in conductivity is the original purpose of Electrical Impedance
Tomography (EIT). Therefore, a large body of literature exists [Munck et al., 1999;
Ferree et al., 2000; Goncalves et al., 2003; Clerc et al., 2005b; Turovets et al., 2008;
Malony et al., 2011]. The low technical burden in use makes it appealing for application,
while its precision remains low due to the underlying ill-posed inverse problem. We will
now look at different approaches that use EIT nevertheless by utilizing appropriate low
complexity in the models. The aim is to use EIT for individual head model estimation
on the fly, while preparing for an EEG experiment. We will develop algorithms for
proper conductivity estimations, electrode position estimation, dimensionality reduction
of head models and a linear approach to leadfield individualization.

5.1 Conductivity Estimations with Bounded EIT
For realistic head modeling in general and satisfactory EEG source localization and
tCS targeting in particular, a good volume conduction model is crucial. A commonly
overseen parameter are the individual absolute conductivities of the different tissues
of the subjects’ heads. Mostly, rather theoretical, generic values are used and if esti-
mated, these estimations are limited to in-vitro or to the scalp-skull conductivity ratio
(SSCR) through bounded Electrical Impedance Tomography (bEIT) [Ferree et al., 2000;
Goncalves et al., 2003; Clerc et al., 2005a; Turovets et al., 2008; Fernández-Corazza
et al., 2016]. [Clerc et al., 2005a] conclude that the sensitivity of EIT is insufficient for
estimating inner conductivities, while geometric model errors showed up to be the actual
problem more recently for the SSCR [Fernández-Corazza et al., 2016]. We will see that
using a more appropriate optimization algorithm than [Clerc et al., 2005a] leads to the
successful and highly precise estimation of all 4 absolute parameters in simulations using
4-shell BEMs while the generalization to more complex data is limited, most probably
due to the systematic errors in the model and not the amplitudes or the signal-to-noise
ratio (SNR).

We define the conductivity as parameters and tune them to optimally link our mea-
surements to the model. In this manner conductivities have already been estimated by
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Chapter 5 Impedance Based Head Models

EIT before, using 3-sphere head models [Goncalves et al., 2000], a 4-sphere model [Fer-
ree et al., 2000], 3-compartment Boundary Element Methods (BEM) [Goncalves et al.,
2003; Clerc et al., 2005b] and also using Finite Differences Methods (FDM) [Turovets
et al., 2008] and Finite Elements Methods (FEM) [Malony et al., 2011]. [Malony et al.,
2011] have even successfully used EIT for estimating the skull inhomogeneity and white
matter anisotropy values for a known geometry.

Most authors use either first order optimization like gradient descent [Clerc et al.,
2005b] or stochastic optimization like the downhill simplex algorithm [Ferree et al.,
2000] or simulated annealing [Malony et al., 2011]. The usage of higher order algorithms
was somewhat limited to Gauss-Newton [Nissinen et al., 2015] or quasi-Newton like
Broyden–Fletcher–Goldfarb–Shanno algorithm [Horesh et al., 2004], which only partly
account for the interdependencies of parameters. [Fernández-Corazza et al., 2013] intro-
duced the classical Newton algorithm involving an FEM head model.

We will now develop and apply a Newton Algorithm to a 4-shell BEM head model.
This involves the derivation and implementation of analytical Gradient and Hessian
calculations for this type of model and the use of an unregularized modified Newton
algorithm to estimate the absolute conductivities within each homogeneous subspace of
the head. We can show the success in simulations while a generalization to more complex
models (FEM) remains problematic. However, this seems due to the compensation of
systematic model errors rather than a problem of the optimization algorithm.

MRI (1 𝑚𝑚3 isotropic resolution, T1-weighted) of four healthy individuals, all Cau-
casian male, age range 27–45 at a magnetic field of 3 T (see [Huang et al., 2013])
were acquired. Sets of 92 electrodes spanning down to the neck will be used. For this
model, specific conductivities are 𝜎1 = 0.465 𝑆

𝑚 for the scalp, 𝜎2 = 0.01 𝑆
𝑚 for the skull,

𝜎3 = 1.65 𝑆
𝑚 for the CSF 𝜎4 = 0.126 𝑆

𝑚 for the gray matter and 𝜎4 = 0.276 𝑆
𝑚 for the white

matter.

From these MRIs, A BEM head model can be built involving the openMEEG software
[Gramfort et al., 2010]. Two sets of simulations will be conducted in order to investigate
the success of bEIT for absolute conductivity estimation in BEM headmodels. Starting
values are chosen with a variance of 30% around the true values (𝜎1 = 0.465 𝑆

𝑚 for the
scalp, 𝜎2 = 0.01 𝑆

𝑚 for the skull, 𝜎3 = 1.65 𝑆
𝑚 for the CSF and 𝜎4 = 0.201 𝑆

𝑚 for the
brain.).

First, a corresponding BEM head model with additional Gaussian white noise will
be used for the simulation of EIT measurements, after which the same procedure is
repeated on a differently generated more realistic FEM headmodel involving 6 tissue
types from manual segmentation [Huang et al., 2013]. By this, we will investigate the
external validity in form of the generalization to more complex models.
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5.1 Conductivity Estimations with Bounded EIT

5.1.1 Error Function and Conductivity Derivatives
As it is common in the EIT literature [Clerc et al., 2005b; Goncalves et al., 2003; Ferree
et al., 2000; Malony et al., 2011], we can use the sum of squares of the difference between
modeled and measured potentials as the cost function to be minimized. The cost function
is defined as

𝐸(𝜃) = 1
2 ‖v − v̂ (𝜃)‖2

2 = 1
2

𝑛∑︁
𝑘=1

(𝑣𝑘 − 𝑣𝑘 (𝜃))2 , (5.1)

where considering the linear head model depending on the parameter(s) 𝜃 is:

A (𝜃) x = b (𝜃)

and its scalp voltage estimate as a linear interpolation:

v̂ (𝜃) = Wx̂ (𝜃)

leads to
v̂ (𝜃) = WA (𝜃)−1 b (𝜃) (5.2)

For the 4-shell BEM model considered here, derivatives of the cost function Equa-
tion (5.1) w. r. t. conductivity parameters can be obtained analytically. The first deriva-
tive w. r. t. to any model parameter 𝜃𝑖 is according to the chain rule given by

𝑑𝐸

𝑑𝜃𝑖
= −

𝑛∑︁
𝑘=1

(𝑣𝑘 − 𝑣𝑘 (𝜃)) 𝑑𝑣𝑘 (𝜃)
𝑑𝜃𝑖

. (5.3)

and the second derivative:

𝑑2𝐸

𝑑𝜃𝑖𝜃𝑗
=

𝑛∑︁
𝑘=1

𝑑𝑣𝑘 (𝜃)
𝑑𝜃𝑖

𝑑𝑣𝑘 (𝜃)
𝑑𝜃𝑗

− (𝑣𝑘 − 𝑣𝑘 (𝜃)) 𝑑2𝑣𝑘 (𝜃)
𝑑𝜃𝑖𝑑𝜃𝑗

. (5.4)

The variables modeled by the BEM equations are [x1, y1, x2, y2, x3, y3, x4]⊤ = A−1b,
where the model scalp potentials v̂ (𝜃), which are of interest here, are contained in x4.
The derivatives 𝑑A

𝑑𝜎𝑖
and 𝑑b

𝑑𝜎𝑖
can easily be found, since A contains the conductivities 𝜎𝑖

only as block-wise scalar multiplicands (see Equation (3.2)). The corresponding equa-
tions for the 4-shell BEM head model can be found in Appendix B.

The modified Newton algorithm for the vector of conductivities 𝜎 is:

𝜎(𝑡 + 1) = 𝜎(𝑡) − 𝜂
∇𝐸(𝜎(𝑡))
∇2𝐸(𝜎(𝑡)) ; (5.5)

where 𝜂 is a step size that is one unless an error increase takes place. If so, the step size
is decreased until the error decreases or it reaches a small value (2−10).
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Figure 5.1: The shape of the error depending on conductivity: the error is smooth across
parameters, while the sensitivity to either of them strongly varies. It mainly
depends on the conductivity of the skull, while dependence on inner structure
conductivities (CSF,brain) is rather low and strongly interdependent between
the parameters.

5.1.2 Feasibility of Conductivity Estimations
As can be seen in Figure 5.1, the optimization problem is smooth also across parameters.
There is a very narrow error valley in particular for the skull conductivity. In the 3-
dimensional representation on the left, we can see that the mean squared error (MSE)
mainly depends on the conductivity of the skull, while is less sensitive to the CSF and
brain conductivity (note the dB-scale). On the right, we can see the dependence of the
MSE in a linear scale on the conductivities of brain and CSF. Here, the dependency is
almost equal on both factors as we can see a valley of low error that leads to almost
equal error with proportional scaling of both parameters. This leads to the expectation
that this narrow error valley is sub-optimal for first order optimizations that tend to
oscillate around this valley due to the higher gradient normal to it than along it.

Gradient descent with individual step sizes for the different tissues can account only
partly for the strong difference in derivative towards the single parameters. It usually
stops at a suboptimal point within this valley after roughly optimizing scalp and skull
values (not shown). Analysis on the final points revealed that the gradient heavily
decreased until almost no error change appeared with an oscillation around a set of
parameters. It had not converged and the gradient had drastically decreased.

In Figure 5.2, we can see the outcome of modified Newton optimization on the con-
ductivity. Newton, in contrast to gradient descent, quickly finds the optimal ’true’
values after around 20 iterations for plausible random starting values. For a low noise
level (left, SNR=40dB), the optimal ’true’ parameters are quickly found, while adding

84



5.1 Conductivity Estimations with Bounded EIT
M

S
E

 [
V

²]
c
o
n
d
u
c
ti
v
it
y
 [
S

/m
]

10
−10

10
−5

10
0

0 5 10 15 20 25 30 35
−5

0

5

10

15

Iteration No
c
o
n
d
u
c
ti
v
it
y
 [
S

/m
]

10
−10

10
−5

10
0

0 5 10 15 20 25 30
−5

0

5

10

15

Iteration No

c
o
n
d
u
c
ti
v
it
y
 [
S

/m
]

10
−3

10
−2

10
−1

0 5 10 15 20 25 30 35
−5

0

5

10

15
x 10

4

Iteration No

scalp
skull

csf
brain
true value

40dB-SNR 10dB-SNR FEM

M
S

E
 [
V

²]

M
S

E
 [
V

²]

scalp
skull

csf
brain
true value

scalp
skull

csf
brain
true value

Figure 5.2: The evolution of the error for optimizations with different noise levels and
reference models for an exemplary subject: while with an equal geometry
head model (BEM) the optimum can quickly be found even with relatively
high level of noise (SNR=10dB), for the FEM an optimum is also found
quickly after which the inner parameters (CSF, brain) diverge.

stronger noise (middle,10dB) does not drastically increase convergence speed but results
in a higher final error level.

In general, optimizing the conductivities of the BEM to fit the FEM simulated mea-
surements reveals a similar behavior for the Newton algorithm as in the case of optimiz-
ing it for the BEM with noise. The algorithm reproducibly converges to a distinct set
of conductivities after 12-30 iterations, while these values differ from the ones used in
FEM and BEM modeling. In particular the CSF conductivity is often estimated at very
low values (𝜎 ≤ 0.5𝑆/𝑚) instead of the relatively high conductivity used for simulation
(𝜎 = 1.65𝑆/𝑚). After this initial optimization, the values of CSF and brain conductivity
drift away into highly implausible values, which are often even negative for the brain.
The error still decreases slowly and no noise was added, leading to the conclusion that
the algorithm counterbalances systematic geometric differences in the two models. The
median source localization error using the MUSIC algorithm [Mosher et al., 1992] in-
creases from 6.8 mm for identical conductivity values in the BEM as in the FEM model
to 10.6 mm for the bEIT-optimized conductivities in 4 subjects underlining the highly
implausible conductivity values.

Many multi-parameter optimizations of conductivity with lower order than Newton
fail due to the shape of the error function. In particular gradient descent gets stuck
in a local error valley for the values of the inner structures (CSF, brain), where the
gradients decrease strongly after scalp and skull are optimized and so the optimizations
are oscillating. The interdependencies of the parameters and their similar effect on
the error leads to similarly low errors for very different sub-optimal ratios. Newton
in contrast, modeling the quadratic part of the dependencies explicitly in the Hessian
matrices, takes a higher computational load per iteration but finds the correct values
with fewer steps for a corresponding headmodel. For an external validation with a more
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Chapter 5 Impedance Based Head Models

complex FEM head model, however, optimal values are also quickly found but they
over-fit the model errors/differences found from outside the head to reduce the EIT
error, while the source localization accuracy decreases. Because no additional noise was
added, this decrease in performance suggests an overfitting to the systematic errors in
the geometry. This is most probably related to systematic differences in the model,
in particular the geometry of skull and CSF due to the lower anatomical detail and
smoothing of surfaces in the BEM.

5.2 Automatic Electrode Position Estimation
The position of electrodes in electrical imaging and stimulation of the human brain is an
important variable with vast influences on the precision in modeling approaches and thus
source localization [Wang and Gotman, 2001; Van Hoey et al., 2000; Acar and Makeig,
2013; Ollikainen et al., 2000; Michel et al., 2004].

Nevertheless, the exact position is obscured by many factors. 3-D Digitization devices
can measure the distribution over the scalp surface but remain uncomfortable in appli-
cation and often imprecise[Russell et al., 2005; Darvas et al., 2006]. We will now look at
a new approach that uses solely the impedance information between the electrodes to
determine the geometric position.

In electrical imaging and stimulation of the human brain, the interface between neural
activity and the electrical hardware is mainly determined by the volume conduction
properties of the individual head, the positions and size of the electrodes and their
(contact) impedances. Different models with varying validity exist while the modeling
error is strongly influenced by the acquisition of these variables.

Electrode positions have a huge influence on the modeling. While standardized elec-
trode caps in different sizes are the most common approach to offer a basic positioning
and reproducibility, they leave space for variations of up to centimeters. Therefor, for
higher precision, electrode positions are often measured. This involves the application of
3-D digitization devices for every single subject. While this is very time consuming, the
precision of the resulting data is often not satisfactory, because of (1) the imprecision of
most of these devices and (2) the only vaguely known contact position and area of the
electrodes.

Concerning the device imprecision (1), this is mostly better for the electromagnetic
techniques such as the commonly used Polhemus [Darvas et al., 2006], while ultrasound
devices offer less reliable data. Nevertheless, for most approaches the application re-
mains unattractive due to the cumbersome acquisition process in combination with the
relatively low precision.

Procedures based on moving or fixed cameras have been developed. This leads to good
accuracies and a more pleasant acquisition process. However, they are based on a manual
acquisition procedure [Baysal and Şengül, 2010] or automatic procedure involving a large
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5.2 Automatic Electrode Position Estimation

fixed structure around the subject [Russell et al., 2005].
The electrode position and area (2) in most approaches is only usually estimated as a

point while the exact contact surface remains unclear. In gel based electrode systems, the
spatial spread of this saline contact matter is smeared over the scalp, but also in water
based and dry electrode systems, the exact contact position and area is not precisely
known.

To ensure a good contact for most applications, impedances between electrodes are
routinely measured and the contact is improved until they meet the individual needs.
This impedance data is mostly obtained only between the electrode and the head which
offers an estimate of the contact impedance. With small modifications to the acquisition
process much more information can be gathered: by measuring the influence of injected
currents on the scalp potential, the electrical properties of the whole head can be surveyed
with EIT [Holder, 2005].

5.2.1 Impedance: A Measure of Electrical Distance
We can use the impedance between electrodes as an electrical distance measure and
develop an algorithm to employ only this information for an automatic electrode position
estimation. The measurements process can be conveniently implemented into common
EEG and tDCS hardware and offers an easy-to-use solution for the automatic acquisition
of electrode coordinates.

The algorithm consists of 3 main steps: we calculate the pairwise impedances between
all electrodes as an electrical distance matrix (1) and use this information involving
multidimensional scaling to create a Euclidean metric space (2). We then align this
space to a reference and estimate the geometrical position out of a weighted interpolation
from the k-Nearest-Neighbors of the electrical position (3). The weights are based on
the electrical distance of the electrode to a set of base points in the reference space.

5.2.1.1 Head Model

While any common modeling approach can be used for the volume conduction proper-
ties of the individual head, a realistic 4-shell Boundary Element Method (BEM) based
on individual MRIs will be used in this section. This is due to the high precision and
anatomical detail in combination with a reasonable complexity. The openMEEG tool-
box [Kybic et al., 2005; Gramfort et al., 2010] for BEM modeling in combination with
fieldtrip [Oostenveld et al., 2011] for the interfacing is a convenient approach. The seg-
mentation can be done involving SPMs’ new_segment algorithm in combination with a
post-processing. A segmentation procedure can be found in [Huang et al., 2013]. We
will use 6 subjects from the OASIS database [Marcus et al., 2007] for the head model
creation. The standard positions of a 64-channel Brainproducts EasyCap are aligned
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and projected onto the segmentation template. It can then be morphed to the individ-
ual head involving the same non-linear warp used for segmentation. Scalp points for
the reference positions are extracted from the scalp surface boundary in the relevant
positions by excluding all points below a tilted coronal-transversal plane from the eye-
brows to the neck. The position of the plane can be fitted manually for every single
subject. Conductivities are fixed to 𝜎𝑠𝑐𝑎𝑙𝑝 = 0.25 𝑆

𝑚 , 𝜎𝑠𝑘𝑢𝑙𝑙 = 0.004125 𝑆
𝑚 , 𝜎𝐶𝑆𝐹 = 1.78 𝑆

𝑚
and 𝜎𝑏𝑟𝑎𝑖𝑛 = 0.33 𝑆

𝑚 for all subjects in this chapter.

5.2.1.2 Electrical Distance Estimation

Electrical impedances 𝑍 in a linear quasi-electrostatic situation with finite conductivities
are directly interpretable as a distance metric between points, because:

• 𝑍 ≥ 0 (they are non-negative)

• 𝑍(𝑃, 𝑄) = 0 if and only if 𝑃 = 𝑄 (an impedance between 2 points is only 0 if the
points coincide)

• 𝑍(𝑃, 𝑄) = 𝑍(𝑄, 𝑃 ) (symmetry)

• 𝑍(𝑃, 𝑅) ≤ 𝑍(𝑃, 𝑄) + 𝑍(𝑄, 𝑅) (subadditivity / triangle inequality)

In the abstract case of an infinite homogeneous medium, the impedance between
two points is directly proportional to the 3 dimensional Euclidean distance. Another
situation where this proportionality assumption holds, is a plane, infinite conductor
sheet of constant thickness with points only on one surface. In the human head, the
impedances between the electrodes are dominated by the better conducting scalp which
is similar to the second case. This leads to our expectations that a 3 dimensional
Euclidean approach makes sense, which is primarily the case in superior scalp regions
and in a local context.

In our case, we receive an EIT gain matrix K from the BEM head model. It maps the
current injection for every electrode to scalp voltages on all electrodes: 𝑣 = 𝐾𝑖. From
this we can calculate the impedance 𝑍𝑖𝑗 between two electrodes 𝑗 and 𝑘 by

𝑍(𝑗𝑘) = 𝐾(𝑗𝑗) + 𝐾(𝑘𝑘) − 2𝐾(𝑗𝑘)

.
A measurement of real impedances inherits the difficulty of unknown electrode con-

tact impedances. The effects can be minimized by measuring on all but the injecting
electrodes [Holder, 2005]. From these measurements the pairwise impedances can be
estimated. This will not be discussed in detail here.
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5.2.1.3 Multidimensional Scaling
Multidimensional Scaling (MDS) is a method that first emerged in psychometrics to over-
come deficits of measuring in an absolute scale [Torgerson, 1952; Shepard, 1962; Kruskal,
1964]. It takes pairwise distance measurements of a set of points in an unknown space
as input and estimates the embedding of points in a multidimensional space minimiz-
ing the error in these distances. We use a metric scaling with a metric stress 𝑆 as a
goodness-of-fit criterion because we expect our space to be approximately metric:

𝑆 =

⎯⎸⎸⎷∑︀(𝑍(𝑖𝑗) − ̂︀𝑍(𝑖𝑗))2∑︀
𝑍2

(𝑖𝑗)
, (5.6)

where 𝑍(𝑖𝑗) is the ’real’ impedance between point i and j, while ̂︀𝑍(𝑖𝑗) is the resulting
impedance of the model, which is an Euclidean norm of the distance in the multidimen-
sional embedding.

The dimensionality of the resulting space is usually prefixed or chosen to fulfill some
stress value criterion. However, a low number of dimensions is necessary in order to
facilitate comparison of the results to the set of reference points and the inclusion of
more dimensions increases the ambiguity. We will chose to generally embed into a space
of dimensionality 3 (see Section 5.2.2).

Still, the resulting spaces of 3-dimensional scaling extracted from the different data
are not directly comparable. The orientation of the coordinate system as well as the
origin are ambiguous and the algorithm chooses them somewhat randomly.

We will test two different possibilities for the position of the origin: (1) the mean
centroid of all points in the corresponding space and (2) the electrode ’Cz’ of the head
as a directly matched with the reference space.

For the definition of the different axes we will chose the following conventions:

• The first dimension points from left to right by using the direction of C1 towards
C2. This direction is later adjusted to be orthogonal to the second dimension.

• The second dimension points from anterior to posterior by using the direction Pz
to Fz.

• The third dimension is simply the right-hand orthogonal to the first two dimen-
sions.

The correspondence of the output is achieved by a coordinate transform into a space
fulfilling the aforementioned conventions.

5.2.1.4 k-Nearest-Neighbor Interpolation
For the transformation back to the real head geometry, we introduce a simple linear
interpolation of position based on k-Nearest-Neighbors in the 3 dimensional impedance
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Table 5.1: Average electrode position error over subjects with centroid and Cz as origins

origin Average Std
centroid 1.67cm 0.17cm

Cz 2.46cm 0.52cm

space. The nearest neighbors are found based on the euclidean distance of the electrode
in the impedance space to a set of reference points on the scalp. These points are based
on the vertexes of the scalp triangulation used for the head modeling (see Section 3.2.1).
The 𝑘 neighbors of each electrode with the lowest distance values are then used to
calculate a weighted average �⃗�𝑒𝑙𝑒𝑐 of their geometrical position �⃗�𝑖 in the real head space
Equation (5.7).

�⃗�𝑒𝑙𝑒𝑐 =
𝑘∑︁

𝑖=1
𝑤𝑖�⃗�𝑖 (5.7)

The weight is calculated from the impedance space by a linear weighting scheme
Equation (5.8). This weighting scheme is appropriate as it keeps an influence of all
neighbors while the strongest for the closest. The influence of all neighbors is appreciated
because it decreases errors resulting from misalignment and distortion of the electrodes’
impedance space to the reference points’ space.

𝑤𝑖 =
1 − 𝑑𝑖∑︀𝑘

𝑗=1 𝑑𝑗

𝑘 − 1 (5.8)

Here, 𝑤𝑖 is the influence of the position of electrode 𝑖 and 𝑑𝑖 is the distance of it to the
estimated position in impedance space.

5.2.2 Estimating Electrode Locations through Impedances
The average error over all subjects is 1.67cm for the centroid-referenced approach, while
centering on a corresponding electrode Cz location yields an average position error of
2.46cm. The centroid approach is significantly (𝑝 ≤ 0.01) better than the Cz reference
approach. The centroid approach is dependent on the correspondence of the scalp area
included in the reference points and the electrode locations.

The results are best for superior electrode positions, which supports the hypothesis
that the 3 dimensional Euclidean assumption fits best for superior areas. The largest
error (12cm) is for electrode Tp7 of one of the subjects, which is one of the outer lower
electrodes. It was incorrectly assigned to the other side of the head which only happened
once to this extent.
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Figure 5.3: The reference locations (blue) together with the aligned electrode locations
(red) in the impedance space. left from top and right in 3 dimensions.

A dimension of 3 for the impedance space seems appropriate, higher or lower numbers
of dimensions increase the error for all subjects. A squared stress function improves the
results for higher dimensionality but nevertheless 3 dimensions lead to the lowest errors.
For a lower dimensionality than 3 the locations are not sufficiently separable with these
methods, which is to be expected by the 3-dimensional geometry.

Concerning the nearest neighbor interpolation, a linear combination of the coordinate
vectors of a minimum of 3 nearest neighbors improves the result significantly. A higher
number has no significant effect on the average error per subject.

The results show a basic feasibility of electrode position estimation via impedance
measurements. Almost no geometric or topological information of the individual head
was used to estimate the geometric position of the electrodes but those of a small set
of reference points. The only geometric information used is the topological location of
some electrodes for impedance space alignment. The average error was 1.67cm within
6 subjects. An embedding in a dimensionality of 3 seems reasonable for the approach,
while a linear interpolation from the positions of the 3 nearest neighbors is of advantage.

To fulfill the needs for precision in head modeling concerning EEG source localization
or tDCS targeting, improvements have to be made. The created impedance spaces are
in general of practical use but distortions are inherent. This could be avoided by intro-
ducing shape constraints in the impedance space or by introducing another method than
multidimensional scaling for mapping the distances into the impedance space. Also, a
better alignment procedures might improve the results especially in a higher dimension-
ality than 3. Here, a correct alignment should help decrease the error.
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Chapter 5 Impedance Based Head Models

5.3 Dimensionality Reduction for Geometric Head
Models

In the estimation of individual head geometries for source localization and electrical
stimulation in neuroelectric investigations and applications, mostly complex geometrical
models are directly extracted from anatomical images. We will now look at a novel
method that uses a dimensionality reduction from thousands down to the range of tens
of parameters to successfully represent an individual 4-shell BEM head model, which
can successively be fitted to any kind of data from an individual head (e.g. headshape,
impedances) and then used for individual head model creation. The results show that
around 5 -10 components can lead to satisfactory results.

Fitting the outer head shape of an MRI to the individual, is commonly used to ap-
proximate individual head models [Darvas et al., 2006; Acar and Makeig, 2010]. [Hansen
et al., 2016] have successfully used PCA as a dimensionality reduction on leadfields
based on 16 different head models with a variety of conductivity values to include the
estimation of the individual conductivities into their model.

In the following, we will look at a PCA based low-dimensional 4-shell representation
of individual head geometries that can be easily adopted to all kinds of individual pa-
rameters, like headshape or impedance measurements, and can then be used as a basis
for the electrical modeling of the individual head. The low-dimensional representation is
of advantage, as it reduces complexity for optimization procedures that adopt the head
model to individual parameters such as headshape warps and impedance based model
generation. Some of the ideas for this approach are conceptually inspired by morphable
3D shape models of faces [Blanz and Vetter, 1999].

5.3.1 Geometric PCA for Dimensionality Reduction
For the representation of the individual geometry of 142 heads from the OASIS database
[Marcus et al., 2007], we will 4-shell descriptions of the tissue boundaries for brain, cere-
brospinal fluid (CSF), the skull and the scalp extracted from individual structural Mag-
netic Resonance Images (MRIs). These descriptions are based on single points (vertices)
of the boundaries between the different tissue types and their triangular connections,
which are termed meshes. From these meshes, an average head is built to transform
the meshes point-wise into projection coefficients from the average head. This is done
in order to linearize the description for subsequent principal component analysis (PCA)
[Pearson, 1901] based extraction of the main shape manipulations as a low-dimensional
description.

In a number of simulations, we will examine in a leave-one-head-out cross-validation
(CV) how well different sub-approaches perform on an unseen sample and how many
principle components are necessary to receive a sufficiently precise description of the
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5.3 Dimensionality Reduction for Geometric Head Models

Figure 5.4: The average head from the database of 299 subjects (left) and the vector
projection used to describe single subjects’ vertices as a parametrization of
this average head (right)

individual head geometry.

Segmentation and Meshing Segmentation of the MRIs of individual subjects are based
on the new_segment algorithm of the SPM8 toolbox [Ashburner and Friston, 2005] and
make use of an extended tissue probability map template [Huang et al., 2013]. To correct
morphological errors, the Matlab function imdilate can subsequently be used to broaden
the CSF and skull shells to a minimum thickness of 3 voxels, and the scalp shell to a
minimum thickness of 4 voxels. Surface meshes are extracted using the ft_project_mesh
function of the fieldtrip toolbox [Oostenveld et al., 2011]. Used here are 1922 nodes for
every surfaces (scalp, skull, CSF, and brain). Nodes located more than 25mm away from
any neighbor were relocated to the geometric mean of all neighbors. The meshes were
smoothed using vertex-based anisotropic flow [Zhang and Haniza, 2006].

Data A co-registered average across 3 to 4 individual MRI scans with 1mm resolution
of 299 non-demented subjects from the OASIS database [Marcus et al., 2007] has the
advantage of a high image quality and will thus be used. The subjects’ ages this chapter
range from 18 to 94 with an average of 45 years consisting of 113 men and 186 women.

Cross-validation To avoid over-fitting and evaluate generalization performance of the
procedure, we will conduct a leave-one-out cross-validation over subjects. Hereby, we
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first extract average head and principal components from 317 subjects and then used
the linear least squares reconstruction (LLS) on the left out.

5.3.1.1 Average Head Extraction and Projective Representation

In order to obtain an easy and close-to-linear representation of every single head of
the database, an average head is produced and every single head is represented as a
linear projection of the points of this average head. The extraction of the tissue in-
terfaces/surfaces as triangular meshes is advantageous for this subsequent linear vector
projection because the points lied more or less on single lines from the origin for anal-
ogously extracted meshes. The average head is built by averaging all single points over
all subjects. The resulting average head can be seen in Figure 5.4 together with a
visualization of the vector projection used.

5.3.1.2 PCA Extraction & LLS Reconstruction

Principal Component Analysis (PCA) was designed for identifying linearly uncorrelated
principal directions in a set of correlated variables and can thus be used as a dimension-
ality reduction. The centering around the average head and the projective description
ensures the variables for PCA to be average-free and to consist of linearly correlated
variables, both prerequisites for it to work well. In order to investigate the necessary
complexity of the model but also for possible applications, different approaches for ex-
traction and reconstruction are performed. For individual head geometries, the different
PCA based representations were then fitted individually by a linear least squares (LLS)
fit of the euclidean-distance between model and reconstruction involving different num-
bers of PCA components.

5.3.2 Lower Dimensional Head Approximations
5.3.2.1 Shell-Wise Approach

In the shell-wise extraction of the individual geometries, PCA is applied to every single
tissue surface (scalp, skull, CSF, brain) individually, leading to 4 individual dimension-
ality reductions of 1922 variables. Also the LLS reconstruction is done individually for
every single shell.

The shell-wise extraction as the most detailed leads to the lowest errors compared to
the other approaches, see Figure 5.5. It represents every tissue surface by a separate
principle component decomposition. Already with 2 principal components (PCs) per
surface (leading to 8 PCs for the 4 surfaces in total), the average geometric errors
per head are mostly below centimeters and above 10 PCs used for reconstruction the
approximation increasingly approaches mm-precision (50 PCs).
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Figure 5.5: The average per subject geometric error of the PCA based approximation to
the real head geometry depending on the number of components used. On
the left, one PCA per boundary is used so the actual number of components
is four times higher. A clear decline can be seen reaching a sub-millimeter for
most boundary points at around 50 components per surface (200 in total).
On the right, PCA is performed over all boundaries at once. Also, a clear
decline can be seen but errors are in general higher than for the shell-wise
approximation.
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Figure 5.6: The per subject source localization error in mm of the PCA based approxi-
mation to the real head geometry depending on the number of components
used. On the left, one PCA per boundary is used so the actual number
of components is four times higher. While for the one PCA per boundary,
many head model creations failed due to intersecting meshes in the BEM,
low errors can be reached quickly. For the PCA over boundaries on the right,
the models are more stable and errors are lowest already with 5 components.
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Figure 5.7: The first 12 PCA components sorted by explained variance each from two
different geometric directions for the shell-wise extraction: one PCA per
boundary was applied but they are plotted as an overlay here.

Figure 5.8: The reconstruction of an exemplary subject (OAS1_0408_MR1) for the
shell-wise extraction: one PCA per boundary was applied.
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If we look at the first 12 PCs per surface (48 in total) explaining most geometric
variance in Figure 5.7, we can see that the different surfaces can strongly vary in shape
and size. From the 5𝑡ℎ PC on the shapes are getting more abstract and less comparable
to actual head geometries.

For single subjects (here OASIS1_0153), we can find in Figure 5.8 that from 2 PCs
per boundary (8 in total) on, a meaningful head geometry was obtained. Using more
components constantly brings the approximation closer to the original head and from
around 25 components per boundary most important details like local tissue thicknesses
and overall shape appear well approximated.

5.3.2.2 Multi-shell Approach

In the multi-shell extraction of the individual geometries, PCA is applied to all tissue
surfaces at once (scalp, skull, CSF, brain), leading to one single dimensionality reduction
on the 4 × 1922 = 7688 variables. The LLS reconstruction is done for all shells at once.

The multi-shell PCA approach leads to a very similar picture in Figure 5.5, although,
error levels appear slightly higher in general.

Investigating the components (not shown), we can see that already the first two PCs
look like real head geometries and overall the PCs look more concentric concerning the
layers than with the single-layer approach. Also, PCs are more abstract from the 8𝑡ℎ
component on, later than with the single-layer PCA approach. The first component is
very similar to the average head. From around 5-10 PCs on, the most important details
like skull and CSF seem well approximated.

5.3.2.3 Headshape Reconstruction

In this approach, PCA was applied analogously to the multi-shell extraction, but the
LLS reconstruction is done based on the outermost shell only - representing the head
shape. This is done to have an application scenario similar to common headshape-based
warps [Darvas et al., 2006; Acar and Makeig, 2010]. The shape based reconstruction is
as such only applicable to the multi-shell approach as we need a linked set of components
for all surfaces.

For basic evaluation of a possible application of the low-dimensional approach, we
can examine in Figure 5.9 how well the heads are approximated if we only adjusted the
headshape. The first two components lead to a very similar error distribution as the
multi-shell approach but with more components the decrease in error is lower.

5.3.3 Remarks on Lower Dimensional Head Models
The approach to dimensionality reduction in individual head geometry modeling is suc-
cessful, leading to low source reconstruction errors for a representation with around 5-10
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Figure 5.9: The average per subject geometric error and the per subject source localiza-
tion error of the PCA based approximation using the headshape only: the
PCA extraction is based on all boundaries at once but the approximation is
done based on the most outer boundary only - depicting the headshape. Also
here, an improvement in geometric error can be found but sub-millimeter
ranges are not reached. The source reconstruction error is with very low
number of components relatively higher compared to the other approaches,
but also quickly decreases. Reconstructions are less stable as with more
components, meshes mostly intersect.

parameters. Compared to the 4*1922 = 7688 boundary points this is a very low number
of parameters and thus a strong dimensionality reduction. The median errors remain
below centimeters for all approaches and already with one component. This is an effect
of the anatomical similarity of human heads in general. While applying one PCA per
boundary has the potential to represent more anatomical detail and thus lower errors,
the PCA over all boundaries might avoid other errors like interfering surfaces and is
likely to be more suitable for applications in head geometry optimization. Also, the
source reconstruction error for the four subjects is lower after fewer iterations. Fitting
only the headshape works but has the inherent problem of not knowing the inner tis-
sue distributions and thus leads to higher geometric errors for the inner structure (skull,
CSF, brain), but the source reconstruction is less affected and leads to acceptable values.

5.4 Linear Leadfields
In order to overcome the weaknesses of generic head models, mostly individual magnetic
resonance images (MRIs) are taken, segmented and a head model is built based on
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the individual anatomy. This is very intense in cost and labor. In this section, we
will investigate existing approaches including a leadfield average and, additionally, a
new method that involves only the information of impedance measurements from the
individual subject to create an individual headmodel as a linear approximation from a
database.

The linear approximation approach uses a database of leadfields and EIT gain matrices
to approximate an individual head model based on electrical impedance measurements
only. We have introduced the different methods used for anatomical extractions from
MRI and head model generation in chapter Chapter 3. We will use the extraction based
on [Huang et al., 2013] described in Section 3.2.1.1 and the models in Section 3.2.1.3.

The findings of [Valdés-Hernández et al., 2009] that the average leadfield works com-
parably to a non-linearly warped MRI in combination with the success of EIT based
approaches for conductivity estimation has lead to the idea of adopting an average
leadfield through EIT. The novel linear approach refines an average head model by an
optimal linear combination of precalculated spatially aligned leadfields - weighted by the
optimal weights over the subjects from a linear least-squares optimization for EIT mea-
surements. It stems from the group of approximate head models but involves impedance
measurements similar to EIT for the head model individualization.

This approach is different to common EIT approaches that mostly directly solve the
inverse problem by Thikonov regularized least-squares approaches for the individual
compartment (mostly voxel-wise) conductivities [Holder, 2005].

We will also compare the approximation to other common methods, namely the New
York Head ICBMny [Huang et al., 2015], a non-linearly warped template BEM [Tadel
et al., 2011; Acar and Makeig, 2010, 2013], constant skull thickness 3-shell BEM [Oost-
enveld et al., 2011; Tadel et al., 2011], realistic 3-shell BEM [Akalin-Acar and Gençer,
2004] and realistic 4-shell BEM [Acar and Makeig, 2013].

We will first inspect the main ideas of the linear approximations through impedance
measurements which are characterized in Section 5.4.1, then describe the anatomical
data used for the approximations in Section 5.4.2.1 and four separate MRIs used for
evaluation in Section 5.4.2.2. After this, the source and EIT simulations used for vali-
dation will be introduced in Section D.3.

5.4.1 Theory on Linear Approximations of Leadfields
Up to now we have only described the EEG and the EIT approaches in parallel and
their correspondence. We will bring them together to follow the idea of avoiding costly
MRI and build an individual head model on the basis of impedance measurements only.
The relationship between EIT gain matrix and EEG leadfield matrix is highly non-
dimensional and complex. Although they both form linear relationships between cur-
rents and the sensor voltage, their currents originate in different structures: one from
within the brain (EEG) and one from scalp current injections (EIT). Additionally, the
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dependence on the underlying hidden geometric parameters is strongly non-linear. E.g.,
to estimate a leadfield matrix L directly from the corresponding gain matrix K, we could
solve the corresponding inverse EIT problem first to estimate the geometry and conduc-
tivity for the individual subject after which we could solve a BEM or FEM model for
the EEG sources to obtain the leadfield matrix L. This solution is, however, tedious and
error-prone.

The presented approach to finding the leadfield corresponding best to our EIT mea-
surements is based on a simpler, linear approximation. The fact that the average leadfield
of a population of 142 subjects was found to provide a good approximation [Valdés-
Hernández et al., 2009] for individual heads however leads to the expectation that a
weighted average may even improve upon that.

The volume conduction modeling involving the Boundary Element Method (BEM)
was described in Section 3.2.1.3. Note, however, that the procedure can be used with
any common head modeling approach representable in this linear form as it acts solely
on the gain matrices.

The EIT gain matrix K (Equation (3.6)) and the leadfield (or EEG gain) matrix L
(Equation (3.7)) were introduced in Section 3.2.1.5, which have been built from the
BEM head models.

By modeling the head for every single subject in our database, we get a database of
matrices as solutions for EEG and EIT case:

𝒦 = {K𝑖}
ℒ = {L𝑖}

K𝑖 has dimensions NoElec×NoElec and L𝑖 NoElec×NoDipoles×NoGeometricalDimensions.
First, we need to solve a (regularized) linear least squares problem to approximate the

measured EIT voltages (with known currents) by a linear combination of gain matrices
𝒦 from the database.

ŵ = arg min
w

𝑁∑︁
𝑘=1

(︃
𝑉𝑘 −

(︃
𝑀∑︁

𝑖=1
𝑤𝑖Ki

)︃
· ik

)︃2

(5.9)

Here, w is the vector spanned by the space of all individual weights 𝑤𝑖 and ŵ denotes
the optimal vector. 𝑁 is the number of measurements and 𝑀 is the number of models
in the database. The individual injection current pattern of measurement 𝑘 is given by
the current pattern vector i𝑘 and the voltage elicited by this injection is measured as a
scalp pattern 𝑉𝑘. In general, we can measure all of the entries of K by injecting currents
through different electrodes. If we inject through a pair (one source and one sink) of
electrodes at a time only, we can successively measure the scalp voltage on all sensors 𝑉𝑘

for all or a subset of possible pairs {𝑘} of injection sites. But also more complex injection
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5.4 Linear Leadfields

patterns are possible, e.g. to reduce measurement time or to improve the measurements
[Holder, 2005].

To approximate the matrix K from the measurements, we seek the weight vector ŵ
that is the minimizer of the linear least squares problem in Equation (5.9). This has a
unique and analytical solution.

The approximation �̂� is then obtained as

K̂ =
𝑀∑︁

𝑖=1
𝑤𝑖K𝑖

Having an estimate of the EIT gain matrix K, we are still left with the task of
estimating the leadfield L which is required for EEG source imaging and tCS targeting.
In general, we have to assume a non-linear relationship between K and L:

L̂ = 𝑓
(︁
K̂
)︁

In the linear leadfield approach, we now consider a linear approximation for simplifi-
cation, under which L̂ is obtained as a linear combination of the lead fields {L𝑖} from the
database, where the optimal weights are given by the ŵ previously optimized through
electrical impedance tomography:

L̂ = 𝑓
(︁

K̂
)︁

= 𝑓

(︃
𝑀∑︁

𝑖=1
𝑤𝑖Ki

)︃
≈

𝑀∑︁
𝑖=1

𝑤𝑖𝑓𝑖 (Ki) =
𝑀∑︁

𝑖=1
𝑤𝑖Li.

Negative weights on gain matrices (lead fields) flip the polarity of the scalp potentials
and therefore amount to subtracting gain matrices (and lead fields) from another in or-
der to potentially achieve better approximations of the EIT measurement. However, as
all anatomies in the database were spatially aligned to the same template, corresponding
gain matrices and lead fields are expected to be roughly similar in particular in polar-
ity. We must therefore assume that sign flips occurring due to negative optimization
weights are more likely results of over-fitting than of genuine anatomical differences.
As a consequence, we will constrain all weights to be non-negative. The details of the
non-negative linear least squares algorithm can be found in [Lawson and Hanson, 1995].
It solves Equation (5.9) with the constraint that 𝑤𝑖 ≥ 0. A comparison of the perfor-
mance of unconstrained and non-negative weights based approximations is provided in
Section 5.4.3.1.

5.4.2 Anatomical Data Extraction
The realistic head models for validation are built with another pipeline and method than
BEM in order to avoid inverse crimes using the exactly same model for validation as
for modeling. Different types of head model approximations for the evaluation subjects
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Figure 5.10: left The 4 different electrode sets from the external validation subjects
warped onto one of the heads from the database (OAS1_0001) right The
first electrode set on OAS1_0001 with the different electrode subsets.

were also constructed, in order to have the results directly comparable to other common
approaches within the same experimental settings. The non-linear warp, estimated for
segmentation between the individual and the template, is the basis of source locations
for all head models, as this is guarantees brain-topological correspondence. For all of the
other common approximations except for the ICBMny head (see below), also electrode
locations are based on this warp. The ICBMny as a template based procedure does
not know the individual MRI, similar to the average and linear leadfields. In practice,
these usually rely on a label match criterion and, as a consequence for the experiments,
the effect of knowing the electrodes (similar to [Valdés-Hernández et al., 2009]) and not
knowing them for the average and linear approximations is investigated. As measuring
the ground truth (the true fields within the head) is infeasible in healthy humans, a highly
detailed FEM model is expected to be the closest possible to reality, but is expensive
to calculate. Another set of 4 heads for an external validation with an FEM model and
the 4-shell BEM modeling approach for the linear and average leadfield approximations
is used to avoid the calculations of FEM head models for the whole database and due
to the favorable format for the approximation.

Hereby, we first compare the resulting leadfields directly with different error measures,
after which we compare the simulated outcome of EEG source localization for pseudo-
EEG and a simulated tCS targeting application.

The details of the anatomical extractions can be found in the Appendix D of which
follows an overview, here.

Source Locations Only in the investigations about the necessary size of the database
and conductivity, we will use the BEM as a comparison. The location of neuronal sources,
is extracted from the gray-white matter boundary as described in Section 3.2.1.4. Con-
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tributions from all over the brain might be generally found in the EEG and, thus, we will
investigate the behavior of the leadfields in the whole brain but the analysis will also be
carried out on source locations limited to the cerebrum close to the cortical surface. By
this, of the original 3990 locations extracted from the gray-white boundary 149 locations
were excluded because they ended up out of the brain structure for some of the subjects
in the database. From the resulting, 2173 source locations are used as locations for the
closer analysis limited to the neocortical surface (see yellow dots in Figure 3.5).

Electrode Positions In EEG, electrodes are the sensors in contact with the biological
tissue and their geometric position determines the amplitude of the signals from different
areas of the brain. This is the basis of EEG source localization: if we record at different
locations simultaneously, we can reconstruct where in the brain the signal originated.
In EIT and tCS targeting the sensors are not limited to measuring voltages but are also
the location of current injection. Also in these cases, the locations of the electrode are
an important factor.

In order to obtain an optimal correspondence over the subjects’ sensor positions,
warped electrode locations from an aligned electrode set in the template space to the
individual head in a similar process as the source locations are used. This warp is
based on the same non-linear warp used in the source position warp that stems from
the segmentation. By this, all electrode positions are in good correspondence with the
whole head segmentation and the source grid in particular as the warp is by definition
smooth over the whole head. Projections of source and electrode locations onto the head
surface end up in a similar topology before and after the warp. The approach is similar
to [Valdés-Hernández et al., 2009].

In Figure 5.10 on the right we can observe the positions of the different electrode
subsets used for evaluation, which are:

• 10/20 A set of 19 standard electrode positions, displayed in black dots.

• 10/10 A set of 57 standard electrode positions, the union of black dos and blue
squares.

• extended 10/10 A set of 93 standard electrode positions, all the colored symbols
together.

The ICBMny is evaluated for corresponding and known electrode locations and the
realistic setting of a simple electrode label match. For the corresponding setting, the
closest electrodes in the template head model compared to the ones after the warp from
individual MRI to the ICBMny template were chosen according to a geometric nearest
neighbor criterion.
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EIT Simulations The following procedure is done to simulate the scalp potentials pro-
duced by external current injection through the electrodes: All possible pairs of the
electrode set are combined by setting a positive current of 100𝜇𝐴 at one electrode and
a negative return current of the same amount at another. Because the whole model
is based on a linear current-voltage relationship (Ohm’s law), the current amplitude
actually introduces relative effects and the absolute value is not important for the sim-
ulations. Different noise levels are simulated including a much stronger noise level of
Gaussian noise on the measurements than is to be expected leading to an SNR of 20dB
(10:1) to evaluate the maximally expected influence. Expected is around 60dB (see Sec-
tion 3.1.2.4). The simulated EIT measurements of the highly detailed FEM head model
are used to construct a both linear least-squares and non-negative linear least-squares
approximations, while the database is built involving BEM models.

5.4.2.1 Approximation Subjects

An open-source MRI database for the creation of a database of head models is used
which is the same as in section Section 5.3.1. Only 142 single MRI sessions of the first
5 discs are used. There are 58 male and 84 female subjects of age range 18-90.

The size of the head model database is chosen to be big enough to be a representable
collection of different head geometries and to keep memory usage low enough for com-
putation. In order to determine the necessary amount of subjects, the amount of head
models used for the linear approximation was varied and error measures observed in an
internal validation within the database. These error measures saturated at the inclusion
of around 100-150 subjects as you can find in the results Section 5.4.3.4. 41 subjects
with a Clinical Dementia Rating (CDR) higher than 0 were excluded to avoid demented
subjects in the data because demented subjects were found to have a alternation in
gray and white matter distributions (e.g. [Brun and Englund, 1986; Schmahmann et al.,
2008]). Additionally, the MRI of subject OAS1_0121 was corrupted which lead to an
additional exclusion of this subject.

5.4.2.2 Validation Subjects

MRIs (1𝑚𝑚3 isotropic resolution, T1-weighted, 3T magnetic field) of four healthy indi-
viduals, all Caucasian male, age range 27–45) were acquired. From these MRIs individual
FEM models were built and then used for neuronal source and EIT simulation. The de-
tails of this modeling are described in Section D.3. Note that this is a different pipeline
than the head modeling used for the approximations.

From the external 4 MRIs individual FEM models are built after a manually refined
semi-automatic segmentation procedure. The EEG leadfields and EIT gain matrices
are solved using commercially available Abaqus software with a 1𝑚𝑚3 resolution. The
details of this model extraction can be found in [Huang et al., 2015]. For this model,
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specific conductivities are 𝜎1 = 0.465 𝑆
𝑚 for the scalp, 𝜎2 = 0.01 𝑆

𝑚 for the skull, 𝜎3 =
1.65 𝑆

𝑚 for the CSF 𝜎4 = 0.126 𝑆
𝑚 for the gray matter and 𝜎4 = 0.276 𝑆

𝑚 for the white
matter.

5.4.3 Analysis of Results
5.4.3.1 Comparison To Other Approximations

For the validation of the method, different error measures are analyzed based on the
similarity to realistic FEM head models obtained from individual MRIs. The common
error measures Relative Difference Measure (RDM) [Meijs et al., 1989] and the Loga-
rithmic Magnitude Difference Measure (lnMAG) [Güllmar et al., 2010] of the linearly
approximated leadfields and other common methods are compared to a highly detailed
FEM leadfield. RDM measures the relative difference and is commonly related to source
localization error, while the lnMAG give information about the similarity in amplitudes
two signals.

To show the relevance in application, exemplary source localization is carried out and
compared over the different methods, within and between subjects. The error measures
are described in detail in Appendix Section C.

The following different head modeling approaches will be performed:

• ICBMny High detail FEM model based on the ICBM152 anatomical template (a
non-linear average of the MRI of 152 adult human brains) with six tissue types
(scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5𝑚𝑚3 resolution.
[Fonov et al., 2009, 2011; Huang et al., 2015]. The electrode positions were not
adjusted but only assigned through a label match criterion, as this is the common
case.

• warp4 Similar to [Tadel et al., 2011; Acar and Makeig, 2013], a non-linearly mor-
phed MRI of the Colin27 head is produced within brainstorm [Tadel et al., 2011]
from the positions of a standard 10/5 electrode set with 343 electrodes and then
applied the 4-shell BEM modeling approach (described in Section 3.2.1.3) to cre-
ate a head model based on this. The reason for the assumption of known electrode
locations, here, is that they were measured to obtain the morphed template MRI.
The specific conductivities are the same as in any of the 4-shell BEM: 𝜎1 = 0.465 𝑆

𝑚
for the scalp, 𝜎2 = 0.01 𝑆

𝑚 for the skull, 𝜎3 = 1.65 𝑆
𝑚 for the CSF and 𝜎4 = 0.33 𝑆

𝑚
for the brain.

• const3 In this model, we use straight standard function from fieldtrip [Oostenveld
and Praamstra, 2001] to produce a constant skull thickness 3-shell head model
with a skull thickness of 4𝑚𝑚. The specific conductivities are 𝜎1 = 0.465 𝑆

𝑚 for the
scalp and 𝜎2 = 0.01 𝑆

𝑚 for the skull, 𝜎3 = 0.33 𝑆
𝑚 for the brain.
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• real3 This head model simulates the absence of CSF in the geometry by simply
taking the same boundaries for scalp and skull as the realistic 4-shell model and
using the outer CSF boundary as a brain boundary. The specific conductivities
are the same as for the const3 constant skull thickness approximation.

• real4 4-shell BEM model involving the realistic segmentations described in the
methods section, 1922 vertexes per surface triangulation.

• average4 Average leadfield of the database.

• linear4 Linear leadfield from the database with non-negative constrains, the EIT
measurements are simulated using the FEM head model.

• linear4nc Linear leadfield from the database without constraints in the approxi-
mations, the EIT measurements are simulated using the FEM head model.

We will now introduce the different experiments we have investigated:

Corresponding Electrode Locations In these simulations, the error made by imprecise
correspondence of electrode locations, head model and source locations was out of fo-
cus: leadfields and EIT gain matrices are constructed for every subject of the database
involving the 4 different electrode sets of the validation subjects. The geometrical trans-
formation from the template to the individual head is based on the non-linear warp used
in the segmentation. This leads to corresponding segmentations, electrode and source
locations for and between the heads of the database and the subject.

With exactly known electrode locations - transferred to every single head from the
database - the non-negative linear approximation leadfield (linear4) performs compa-
rable in source localization to the individual realistic 4-shell BEM (real4) over all but
one subjects. The unconstrained linear approach (linear4nc) leads to the least reliable
approximations. It has more errors than the warped template head model (warp4). The
non-negative weight vectors has sparse solution with about 10% of non-zero entries, while
the unconstrained least squares weights are almost fully non-zero (94%). The ICBMny
head model has lowest amplitude error and is closest to the BEM4 in RDM but produces
higher error distributions in source localization.

The ICBMny performed best concerning magnitude (lnMAG) followed by the non-
negatively constrained linear lead fields. There are least bias in the amplitudes of the
ICBMny leadfields (see Figure 5.11) and lowest overall quantiles measured from the
median. The next lowest overall errors are produced by the real4, followed very close by
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Figure 5.11: The lnMAG and RDM in different head model approximations over 4 sub-
jects. The different abbreviations for the approximations are explained on
page 105.

the linear4. The average leadfield attains mostly smaller amplitude values (lnMAG<0)
then the FEM, while the values attained by the unconstrained linear approach tend to
be too big.

In RDM, real4 and ICBMny lead to very similar results. The next smallest values are
produced by average and linear non-constrained leadfield, while the differences between
the two are not very pronounced but visible. The bias of both of the linear4 is smaller
but the quartiles are very similar. This time the const3 is further off than the linear4nc
followed by the warp4. Again, ICBMny is the closest to the real4 head model.

We can also see behavior very similar to the individual 4-shell BEM in the source
localization for the non-negative linear approximation (figures Figure 5.12). The average
has the next lowest overall distribution of source localization errors after which the real3
is followed by similar results of the const3 and ICBMny.

At a single subject level (Figure 5.13), the source localization error is very similar for
the average leadfield for all the subjects, and in the non-negative linear approximation
for all but one subject. The non-negative linear approximation is slightly worse than the
average leadfield for subject 4, while it improves the source localization for the others.
Still all the approximations are better than 3-shell individual head models across subjects
(compare to Figure 5.12).

Examining the spatial distribution of source localization errors for the non-negative
constrained linear leadfield in Figure 5.14 of Chapter 3, we can see that locations close
to the cortex surface had lowest error while deeper structures had bigger errors. Mostly
due to the smoothed boundaries, the model errors in the 4-shell BEM we used were
biggest in lower skull regions and facial areas, which also lead to biggest mismatches in
source location estimation.
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Figure 5.12: The performance of source localization in different head model approxima-
tions over 4 subjects (57 electrodes 10/10 system) for the whole brain (left)
and the cortex surface only (right): we can see a decrease in source local-
ization error for increased anatomical realism in the individual head models.
Interestingly, the ICBMny is very realistic but not individualized and it still
produces lower errors than warp4. Looking only at the cortex surface, the
overall errors decreased. The different abbreviations for the approximations
are explained in in the box on page 105.
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Figure 5.13: The performance of source localization in different head model approxima-
tions involving the corresponding electrode sets for the 4 subjects individu-
ally in the cortex surface (57 electrodes 10/10 system): the linear4 approach
decreases most errors compared to the average except for subject 4.
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Figure 5.14: The topographies of source localization error on the white-gray matter
boundary for the different approximations as an average over 4 subjects (57
electrodes 10/10 system). Note that the values are clipped above 20𝑚𝑚 for
visualization.

The procedure of creating corresponding source and electrode locations through a
common template provides similar leadfields and EIT gain matrices in head modeling
across all approximations. All median errors in source localization lie around 10mm,
RDM are around 0 and stay within the same scale except for the constant skull thick-
ness 3-shell BEM. It leads to the strongest amplitude errors. A 4-shell BEM approach
performs best - compared to the other common approximations avoiding highly detailed
FEM simulation - in source localization and other error measures.

Imprecise or Partial Correspondence of Electrode Locations In general, the exact
electrode location for the future subjects is not known when we create the leadfields for
the database. In the last section, we had assumed known and corresponding electrode
locations between the subject and the head models in the database. The correspondence,
which is also present between the electrode positions and the source locations, is based
on the same known non-linear warp that is applied to co-register anatomies. This is
done in order to measure the quality of the lead field approximation. The map however
requires knowledge of the individual electrode locations and MR images, which is exactly
what we seek to avoid in practice.

In a more realistic setting within this section, we will assume electrode locations on
the individual head that are set under the same standard 10/5 policy for every subject.
Every electrode set from one of the evaluation subjects is warped to the individual
database head. This results in 4 different leadfields per database subject.

For the ICBMny, we will test a similar setting, where only the electrodes assigned by a
label match between the template and the individual electrodes are used and compared
to a nearest neighbor criterion.

In the following figures, we compare:
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Figure 5.15: left The performance of cortical surface restricted source localization in
different head model approximations and electrode sets over 4 subjects (57
electrodes 10/10 system). right The results for the ICBMny generic head
model with geometric nearest neighbor (NN) and with label electrode match
over 4 subjects (57 electrodes 10/10 system). The correspondence of elec-
trodes is essential for precise source localization.

known locations - 142 heads with corresponding electrode set
whole database - All 4 electrode sets within the database (4x142=568 leadfields)
electrode set CV - 3 of 4 electrode sets: the test head excluded (3x142=426
leadfields).

Source localization was affected by the different databases. For the approximation
whole database based on all 4 electrode sets (so including the corresponding one) average4
and linear4 were less precise but the linear approximation still improved results compared
to the average. With the corresponding set excluded (electrode set CV ), the errors in
source localization got even bigger and the errors increased with linear approximation.
Again, the simple linear approximation lead to the biggest errors in source localization
also in this context of a bigger database. For the ICBMny generic FEM head model,
the results show a similar behavior concerning the exact position of the electrodes. If
the exact correspondence is gone, lnMAG and RDM are not among the lowest anymore
and source localization accuracies decreases as well. It is interesting as well that the low
RDM and lnMAG with very little bias we have experienced in the section before seems
to be not a result solely of the FEM head model. This implies that the correspondence
of the electrode positions with source positions is essential.
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Figure 5.16: The performance of source localization in the cortex surface of different head
model approximations over 4 subjects for different electrode set sizes: the
electrode set including the neck area (93) increases error in the estimation
of the leadfields but not in source localization.

5.4.3.2 Number and Subset of Electrodes
Investigating the effect of different electrode set sizes used for linear leadfield estimation
and source localization, we find a strong influence. The scalp locations of the different
sets can be found in Figure 5.10. As we see in Figure 5.16, using only the 57 electrodes
from superior locations heavily improves the source localization results compared to the
extended 93 positions, while only 19 electrodes seem not a good choice for approximation.

The question is, whether the reason for the dependence of the results on the electrode
set is in the number of electrodes in the linear approximation or source localization or
both and we investigated by using different numbers of electrodes for approximation and
reconstruction.

Figure 5.16 reveals an answer to this question: both, the specific electrode set used in
the linear approximation and in the source localization matters: for the linear approxi-
mation it seemed to be that excluding the extended electrode positions in neck and face
helps improving the head model (compare 57/57 with 93/57) and this works also in an
extrapolation to these electrode positions for source localization (57/93).

In source localization we have a different picture, as the whole set of electrodes lead
to a better reconstruction (93/93), while less electrodes of the same leadfield produced
worse results (93/58).

5.4.3.3 Conductivity Investigations
We will now investigate how the different head model approximations perform if they
are built with wrong conductivities. In reality, the conductivities of the tissues are often
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Figure 5.17: Median source localization errors for different head model approximations
and conductivities: the optimal value depends on the type of model. Inter-
estingly, for exactly the same geometry the optimum was lower for a 3-shell
than a 4-shell model which corresponds to necessary higher skull-scalp ratio
for proper 3-shell modeling.

not known and can vary between participants and situations.

A 4-shell BEM head model with varying scalp-to-skull conductivity ratio from 29 to
116 is used as a validation tool. Usual standard conductivity ratio assumptions lie in
between 40 and 80 and this ratio is often named to be the most dominant factor in the
propagation from inner fields of the head onto the scalp [Goncalves et al., 2003; Clerc
et al., 2005a]. So in this case the ’ground-truth’ is approximated by a 4-shell BEM head
model equivalent to the one used as an approximation due to the favorable computation
speed.

The results show the advantage of building an individual head model through impedance
measurements if - as in reality - the individual tissue conductivities are not known. The
linear non-negative approximation has the lowest variance and is, hence, the most adap-
tive to the individual tissue conductivity ratio of skull to scalp. If we take the same
BEM head model for validation used for approximation in real4, average4 and warp4,
we can see that the average lead to overall lower errors in source localization than the
linear approximation.

Interestingly, 3-shell head models performed better in source localization with too high
skull-to-scalp conductivity ratio (remember that the reference head models conductiv-
ities are changed and those of the approximations are kept constant). This implies a
dependence of the optimal ratio on the type of head model.
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5.4 Linear Leadfields
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Figure 5.18: left Average RDM and lnMAG for non-negative linear impedance based
approximation compared to the size of the database in use: we can see
a smooth decrease slowly saturating at about over 100 subjects in the
database. right Mean source localization error over relative noise level
in impedance measurements: noise notably increases the error in the un-
constrained (linear4uc) while not in the non-negative case (linear4).

5.4.3.4 Size of the Database & Internal Validation

There are two opposing requisites for the model: quality of reconstruction on the one
hand and computational factors on the other hand. In an internal validation within the
database smaller subset of subjects are randomly chosen in order to determine a useful
size for the database. Each of these experiments was repeated 20 times to minimize
sampling effects. The resulting leadfields are compared to the 4-shell BEM leadfield
extracted from the individual MRI by calculating absolute RDM and lnMAG.

We can see that a minimum of about 125 heads leads to sufficient precision. The size
of the database is not limited in general, but additional work in segmentation and head
modeling per subject as well as memory size are of concern. Absolute values of RDM
and lnMAG monotonically decrease in the simulations. While with the 142 subjects,
theses error measures have not fully converged to a minimum value, we seem close to
convergence.

5.4.3.5 Noise Effects

In order to receive a basic intuition on the effect of EIT measurement noise on the linear
leadfields, EIT measurements with uncorrelated Gaussian white noise were simulated.
The results in Figure 5.18 suggest on average almost no change over subjects, although a
relatively strong measurement noise corresponding to 20dB SNR is added. Only for the
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linear (unconstrained) leadfields, there is a noticeable degradation in source localization
performance.

5.4.4 Approximations by Impedance
This section shows why and when the average and linear leadfields work well: if the
corresponding electrode locations and grid locations are perfectly aligned. Within the
average and linear leadfields, a non-linearly warped electrode and source position align-
ment is applied. A small shift of the electrode positions strongly increases the error,
because this precise alignment is lost. The electrode location is crucial for an average
leadfield as well as the linear approximations.

With known electrode locations an impedance-based linear leadfield approximation of
a database with corresponding anatomical locations performs comparably to the indi-
vidual realistic 4-shell head model. It is robust to noise. Also, the average leadfield is
a better approximation than the warp-based equivalent, a finding that is even stronger
than the similar findings by [Valdés-Hernández et al., 2009]. The linear leadfield is able
to adopt to individual conductivities as it shows less effect of wrong conductivity values
than any other approach. This is a definite advantage as usually individual conduc-
tivities are not known and assumed to be standard although they are not expected to
be.

In a more realistic setting (electrode-set CV), the performance of the average leadfield
drops drastically and also the linear leadfield does not bring much of a difference. Only if
we include the correctly mapped electrodes into the database, the linear approximation
improves results in most cases (3 out of 4 subjects).

This also implies that a simple knowledge of the electrode positions does not necessarily
help with source localization. Known electrode locations imply an estimate of where the
sources lie relative to the electrodes. How the brain is folded and in particular the
structure of CSF and skull is hidden implicitly in the non-linear warp, which is warped
accordingly with the electrodes. In this abstract scenario, everything works perfectly,
but errors are strongly underestimated in terms of the sources’ real brain area compared
to a setting where we do not know this warp. If we know the warp, we know the MRI
and have normalized it and thus an individual head model is not difficult to obtain and
possibly the better solution.

On the other hand, the linear approach seems to work if the individual head is rep-
resentative for the database. This means that head models with correct electrode lo-
cations have to be in the database and the individual head must not be an outlier for
the procedure to work. This could imply that for the linear leadfield approach, a huge
database with a large number of heads and many different electrode positions could
make it work. As our database is already in the range of Gigabytes, it will be a matter
of memory rather then calculation time. In combination with the linear reconstruction,
the extended (lower) electrode positions seem to increase error, while for the consecutive
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source localization they improve the results. The results that a linear leadfield based
only on superior electrode positions is better in later source localization can be inter-
preted in an effect of the head model errors of a 4-shell BEM head models in the lower
head areas.

The unconstrained linear approximation is among the least reliable in almost all cases
and is more affected by noise then the non-negative. An unconstrained linear interpola-
tion might compensate too much for these systematic errors between our type of BEM
and a highly detailed FEM (or a real head). This leads to artificial combinations not
based so much on the geometry but on the modeling errors. The stronger effect of noise
on the reconstruction quality can also be interpreted as an over-fitting towards modeling
errors.

The warp based only on the outer headshape, however, is not worth its tedious con-
struction: the average leadfield performs comparably even if exact electrode positions
were unknown. The ICBMny produces source reconstruction errors on the same scale
as the average leadfield, but amplitude errors might be lower in reality, which makes it
favorable for applications like tCS targeting, where they are important.

Also, a different regularization term in the least squares fit could improve results. The
fact that non-negative linear least squares produces sparser and better solutions than the
unconstrained regular linear least squares points into this direction. The regular linear
least squares is more affected by measurement noise and the choice of the database
electrode sets which could be interpreted as an over-fitting problem towards model and
measurements errors.

The calculation of the linear approximations is quick and takes about 90s on a 64
bit Windows 8.1 PC with Quad-Core 2.4 GHz CPU and 16 GB RAM. The average
is calculated even faster and it is computation is only necessary once for all possible
subjects, except if we want to incorporate the individual electrode positions.

5.5 Chapter Summary
As expected, increased realism improves the quality of head modeling and thus source
localization. Whether the individual anatomy is known or not, the individual tissue con-
ductivities, the electrode and source locations are essential factors. All can be estimated
in a convenient way using impedance measurements.

As a result of the linear leadfields approach, not all common approaches seem to
justify their tedious generation process. For the novel linear approach in Section 5.4,
the generation of an individual model for electrical volume conduction of the human
head through impedance measurements is successful, leading to results of similar quality
as an individual head model of the same type, see Section 5.4.3.1. It is based on a
simple linear superposition of leadfields based on the individual impedances. The linear
approximation improves performance compared to an average head model and leads
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to similarly low errors as the individual 4-shell head model. Compared to an FEM
head model in section Section 5.4.3.1, this is a good estimation for the generalization
performance on real heads. However, the section also shows that correspondence of
electrode and source locations between database and individual are of main effect or,
more precisely, the basis of linear or average leadfields to perform well.

A warped template MRI through electrode locations is also a reasonable but not
necessarily the best approximation. Average leadfields are good approximations, given
a good correspondence of electrode and source locations.

The more realistic the geometry for approximate or average headmodels is the better
the source localization. This implies that common 3-shell average head models are not
the best choice. Adding the CSF improves performance in any case since it is essential
for the realism of the model as also underlined in Chapter 2.

For all approaches, electrode and source location correspondence are essential for the
error to remain low. Also, the conductivity has to be appropriate for the type of model.
The optimal conductivity depends on the model as it is dependent on the geometric errors
made by the simplifications of the approach. Hence, it is not surprising that different
values for the scalp/skull conductivity ratio have been found in the past, depending
on the model and the method of estimation. An individual fit based on impedance
measurement does not neccessarily increase performance as it might counteract geometric
errors in a way favorable for scalp current injection. Most of the current flows within
the scalp and inner tissue conductivity are used to minimize the scalp error without
considering the error made inside the head.

The appropriate optimization methods improve the estimation process and geometric
dimensionality reduction is highly successful. Combining these two approaches in the
future with an alternating optimization scheme as a basis for joint shape and conductivity
optimizations can prevent both processes from balancing the error made by the other.
This could additionally include an electrode position estimation.

For the experimental practice, it is mainly necessary that the source and sensor lo-
cations correspond topographically, which can be either succeeded by detailed measure-
ments or estimations of all parameters or by highly standardized protocols that guarantee
their correspondence. The flexible caps or similar positioning approaches guarantee a
basic correspondence but for better results, they should be at least measured and rel-
ative position of the sources in the brain estimated. Otherwise, source localization,
reconstruction and the assessment of functional connectivity remain imprecise.
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Chapter 6
Discussion and Outlook

In this thesis, the importance of theoretical considerations for improving application was
shown. Machine learning as a statistical, data-driven approach gains widely from the
inclusion of prior knowledge in particular with relatively little training data as in the
case of EEG.

The details of volume conduction imply a variety of factors that have to be obeyed not
only for proper modeling of the forward field of EEG but also in its analysis. Electro-
statics lead to linearity in the propagation from sources to sensors, which in turn defines
linear spatial filtering as optimal for the detection of distributed sources over the brain.
The choice of model is important, as a minimum for appropriate source localization is
the inclusion of the CSF in a 4-shell BEM head model. While, in general, the more
realistic the underlying geometric representation is the better the approximation, also
parameters like tissue conductivities and electrode and source locations have to be well
estimated in order for the outcome to be satisfactory. Impedance measurements can be
used to optimize the forward model of EEG where it is used and is beneficial to the
quality of the results.

The linearity in field propagation leads to a very comfortable situation: the princi-
ple of superposition. This implies the theoretical possibility to uniquely and linearly
unmix all present sources of a signal: linear spatial filtering is optimal. Blind source
separation techniques only based on the statistics of the signal can help but often lead
to implausible or mixed components due to the low number of independent sensors and
the limited number of samples. Some unsupervised algorithms like SSD that incorporate
prior knowledge on the underlying processes help to identify neural sources. Supervised
approaches that incorporate the experimental design into the filter like CSP select only
the relevant sources and a combination of SSD and CSP is helpful. Sequentially applying
the two algorithms leads to a first selection of neural oscillations that is followed by the
extraction of the relevant ones.

A main issue remains: the non-stationarity of EEG data in combination with its high
autocorrelation due to spatial smearing and slow-scale temporal behavior. This non-
stationarity is based on various parameters like the electrode impedance, the activity
of the sweat cells, artefact levels but also the fluctuating brain state. We can find the
non-stationarity directly in the PSD as the 1

𝑓𝛼 structure of the whole spectrum, of sub-
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bands and in the amplitudes of bandpass-filtered data or single peaks which are actually
related. This leads to the fact that extracting stationarity components as with sCSP
can decrease performance in a motor-imagery experiment as discriminative information
is reduced. This might be partly related to discriminative artefacts, but rather also
non-stationary brain signals were dismissed.

Another factor is that while it is common in the neuroscience community to talk
about distinct sub-bands of the EEG spectrum - like alpha, beta and gamma - their
independence is not neccessarily given. They do not describe distinct mechanisms but
form an interrelated continuum of dynamic brain activity. We have seen that they can
even be simple spectral harmonics of single frequency brain oscillations. This can be
explained by the non-linearity in firing rate of single neurons in combination with the
feedback on many levels of the neural network. Also, we should never forget that we
measure predominantly the PSPs as the input to a certain area in the lower frequencies.
The actual amplitude change occurs elsewhere and has a non-linear effect. This also has
implications for assessing functional connectivity: a linear relationship as often assumed
is very unlikely. We should rather incorporate the non-linearity into the methods of
estimation and the fact that we measure the activity neural arriving from other areas.

A good analogy is that of partial and homogeneous solutions in solving differential
equations like the volume conduction in chapter 2: if no or little input as an external
driver (partial solution) is fed into the network, the harmonic solutions dominate the
field. This homogeneous solution is found in resting state data and linked to the eigen-
values of the Laplace operator of the dispersion relation - another differential equation.
It is constructed by brain connectivity in combination with transmission delays and de-
fines the basic modes of oscillations within the brain. These are dependent on the size
of the sub-network but also the properties of the connections due to the limited and
variable transmission speed of axons.

We can actually set up a differential equations that incorporates both, the linear vol-
ume conduction Equation (2.3) and the non-linear neural transmission Equation (2.15):

∇ · (𝜎∇Φ) = 𝑓(𝑥, 𝑡) = 𝑔(ΔΨ(𝑥, 𝑡)) (6.1)

A similar approach is performed in [Nunez and Srinivasan, 2006]. If we incorporate all
dependencies of the local current dipole from the neural activities at location 𝑥 and
time 𝑡 into the function 𝑔(Ψ(𝑥, 𝑡)), we have an appropriate basis for the description and
estimation of functional connectivity. The key part is to include the sigmoid relationship
into the dependency of Ψ on neural activity as in [Jirsa and Haken, 1997].

This harmonic non-linear dynamic system is distorted by event related activity. An
event can also be memory consolidation, sleep or similar intrinsic events. This ’external’
driver can be a single event but also incorporates further oscillations. Steady-state
visually evoked potentials (SSVEPs) for example drive the brain to oscillate in the
frequency of stimulation. Visual and auditory input is generally oscillatory in space
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and time while for auditory perception the temporal and for visual the spatial domain
dominate.

Due to the fact that inhibition is a rather fast local phenomenon within cortical areas,
we can investigate slow large-scale and fast small-scale activity separately to some extent.
The large-scale and small-scale description actually accounts for spatial and electrical
amplitude scale, as larger synchrony and spatial spread leads to larger signals. Within
the slow large-scale investigations, a similar distinction can be further conducted.

Let us now look at the large-scale first: if the network is disturbed, this can have
various effects including the general increase in excitation and the increase in a certain
frequency range. It can be spatially broad or limited to sub-networks. For the sub-
network this implies a non-linear change in firing rate of which the amplitude of an
oscillation’s base frequency and harmonics is modulated in a non-linear way. The spectral
composition of the harmonics is also influenced by background processes not directly
related to the oscillation itself. As this output is relayed to other areas, it has an
influence on their behavior.

The networks consist of global and local oscillations and stochastic resonances. Both
actually form a continuum and I hereby propose that the faster and more local oscil-
lations are influenced by the harmonics of the base oscillation. This implies that an
amplitude change in the alpha oscillation of the Thalamus, that leads to an increase in
the beta peak due to the non-linear creation of harmonics, influences more local oscilla-
tions within the cortices. The preferred frequency of each oscillation or resonance makes
them lock-in to the harmonics of the driver within their range which is a basic physical
phenomenon.

The fact that - apart from gamma activity - we can mainly measure low-frequency
oscillations within the brain could mean that there are not many harmonics or they are
actually too small and local to be measured. The latter hypothesis is supported by the
basic principles described within this thesis.

Looking at the fast small-scale activity related to local inhibition, we find mainly a
structuring of broadband gamma activity that bundles temporally and topographically
related and inhibits unrelated activity. It thus enhances and suppresses ongoing activity
and sorts it into different phases of slower oscillations depending on the cortical location.
This is related to traveling waves of the slow oscillations due to the limited transmission
speed within the brain. Direct long-range connections link different areas of the brain
and thus activate the multimodal quality of associations.

Some researches proclaim an inhibition hypothesis that relates alpha band activity to
an active suppression mechanism and not an idling mechanism as assumed earlier. This
theory is mainly based on the fact that a local decrease in alpha can lead to an alpha
increase in the surround in a topographical center-surround pattern within the cortex.
While this is still a possible explanation, we have seen, that an increase in central alpha in
combination with a general increase of excitation level non-linearly introduces a decrease
in local alpha and an increase in the harmonics due to the soft-clipping effect of the non-
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linearity. If alpha increases more globally and the general excitation level increases more
locally, this could have a similar effect.

The brain plays its own harmonics and this is most probably related to the change of
brain state that music can elicit: simple sounds or music based on natural harmonics
can calm us down but can also be boring after a while. Also structured noise like the
waves of an ocean can calm us down. They act like meditation where the EEG spectrum
resembles that of resting state. It helps us think on larger scales and many insights that
transfer knowledge from one to another domain happen while relaxing or meditating.
More complex sounds or noise in particular in higher frequencies activate many different
mostly highly detailed perceptions and associations.
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Appendices

A 𝜒2 distributions
The 𝜒2 distribution with 𝑘 degrees of freedom is defined by its probability density func-
tion 𝑝𝑥(𝑥):

𝑋 ∼ 𝜒2
𝑘 : 𝑝𝑥(𝑥) = 1

2
𝑘
2 Γ
(︁

𝑘
2

)︁𝑥
𝑘
2 −1𝑒− 𝑥

2 (A.1)

for 𝑥 > 0 and 0 else for a random variable 𝑋 that is the sum of 𝑖 squared Normal
distributed variables 𝑍𝑖, so 𝑋 =

∑︀𝑛
𝑖=1 𝑍2

𝑖 . The first and second moments are simple:
the mean 𝜇𝑥 = 𝑘 and the variance 𝜎2

𝑥 = 2𝑘.

A.1 Generalized 𝜒2-distributions
Let us first introduce a general relationship between a random variable 𝑋 and a linearly
scaled version 𝑋 = 𝑎𝑌 of it [Bishop, 2006]:
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𝑧
. The scaling factor of
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comes from the fact that we are manipulating

the scale of a probability density and hence to still fulfill in particular the normalization
constraint

∫︀∞
−∞ 𝑝𝑦(𝑦)𝑑𝑦 = 1 we need this factor.

If 𝑍 is Normal distributed with zero mean and unit variance and we measure the
variance 𝜎2
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trick to receive a 𝜒2distributed variable. In other words, 𝑋 = 𝑎𝑌 ∼ 𝜒2
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The mean 𝜇𝑦 and variance 𝜎2
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To fit any measured distribution to a generalized 𝜒2 distribution by its mean and
variance, a virtual degree of freedom can be developed by measuring the variance �̂�2
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and the mean �̂�𝑦 of the variance data and then choosing �̂� and 𝑘 accordingly. This leads
to:
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A.2 Optimal 𝜒2 classifier
If we have variance data 𝑥 incorporating two classes with generalized 𝜒2 distributions
with parameters 𝑘
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𝑧
, we can calculate the class-wise distributions for each

channel by (compare Equation (A.3)):
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In the case of two-class CSP, the two classes are separated in an orthogonal manner
by the algorithm, leading to two different distributions with the 𝑑𝑖 for class 1 and 1 − 𝑑𝑖

for class two. The resulting distribution for each channel over both classes is the simple
sum of the distributions of each class.

We can now set up the modified 𝜒2 function for both classes 𝑝𝑦(𝑦1, 𝑦2, ...𝑦𝑛) with
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The optimal separating hyperfunction between the two classes is where the probability
of belonging to class 1 is equal to the probability of belonging to class 2, hence, where
the difference is zero:

𝑝𝑦(𝑦1, 𝑦2, ...𝑦𝑛) = 𝑝𝑧(𝑧1, 𝑧2, ...𝑧𝑛)
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This is equivalent to setting the likelihood ratio to 1 from a Bayesian perspective of the
discrimination task. Logarithmizing yields:
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and so:
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𝑛∑︁
𝑖=1

[︃
log
(︃

𝑘
(1)
𝑖 (1 − 𝑑𝑖)

𝑘
(2)
𝑖 𝑑𝑖

)︃
− 𝑘

(1)
𝑖 − 𝑘

(2)
𝑖

2 log 2 + log

⎛⎜⎜⎝Γ
(︂

𝑘
(2)
𝑖

2

)︂
Γ
(︂

𝑘
(1)
𝑖

2

)︂
⎞⎟⎟⎠+ ...

(︃
𝑘

(1)
𝑖

2 − 1
)︃

log 𝑦𝑖 −

(︃
𝑘

(2)
𝑖

2 − 1
)︃

log 𝑧𝑖 − 𝑦𝑖

2 + 𝑧

2

]︃
= 0

Inserting 𝑦𝑖 = 𝑘
(1)
𝑖

𝑑𝑖
𝑥𝑖 and 𝑧𝑖 = 𝑘

(2)
𝑖

1−𝑑𝑖
𝑥𝑖 results in:

𝑛∑︁
𝑖=1

[︃
log
(︃

𝑘
(1)
𝑖 (1 − 𝑑𝑖)

𝑘
(2)
𝑖 𝑑𝑖

)︃
+ 𝑘

(2)
𝑖 − 𝑘

(1)
𝑖

2 log 2 + log

⎛⎜⎜⎝Γ
(︂

𝑘
(2)
𝑖

2

)︂
Γ
(︂

𝑘
(1)
𝑖

2

)︂
⎞⎟⎟⎠+ ...

log

⎛⎜⎜⎜⎜⎜⎝
(︂

𝑘
(1)
𝑖

𝑑𝑖

)︂ 𝑘
(1)
𝑖
2 −1

(︂
𝑘

(2)
𝑖

1−𝑑𝑖

)︂ 𝑘
(2)
𝑖
2 −1

⎞⎟⎟⎟⎟⎟⎠+ log

⎛⎜⎝𝑥
𝑘

(1)
𝑖
2 −1

𝑖

𝑥
𝑘

(2)
𝑖
2 −1

𝑖

⎞⎟⎠− 𝑥𝑖𝑘
(1)
𝑖

2𝑑𝑖
+ 𝑥𝑖𝑘

(2)
𝑖

2 (1 − 𝑑𝑖)

]︃
= 0
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𝑛∑︁
𝑖=1

[︃
log
(︃

𝑘
(1)
𝑖 (1 − 𝑑𝑖)

𝑘
(2)
𝑖 𝑑𝑖

)︃
+𝑘

(2)
𝑖 − 𝑘

(1)
𝑖

2 log 2 + log

⎛⎜⎜⎝Γ
(︂

𝑘
(2)
𝑖

2

)︂
Γ
(︂

𝑘
(1)
𝑖

2

)︂
⎞⎟⎟⎠+ ...

log

⎛⎜⎜⎜⎜⎜⎝
(︂

𝑘
(1)
𝑖

𝑑𝑖

)︂ 𝑘
(1)
𝑖
2 −1

(︂
𝑘

(2)
𝑖

1−𝑑𝑖

)︂ 𝑘
(2)
𝑖
2 −1

⎞⎟⎟⎟⎟⎟⎠+ 𝑘
(1)
𝑖 − 𝑘

(2)
𝑖

2 log 𝑥𝑖 + 1
2

(︃
𝑘

(2)
𝑖

1 − 𝑑𝑖
− 𝑘

(1)
𝑖

𝑑𝑖

)︃
𝑥𝑖

]︃
= 0

(A.4)
which resembles a non-linear (probabilistic) classifier:

𝑦 =
𝑛∑︁

𝑖=1
(𝑎𝑖 + 𝑏𝑖 log 𝑥𝑖 + 𝑐𝑖𝑥𝑖) (A.5)

If the (virtual) degrees of freedom of both classes are equal 𝑘
(1)
𝑖 = 𝑘

(2)
𝑖 = 𝑘𝑖, this

simplifies to:

1
2

𝑛∑︁
𝑖=1

[︂
𝑘𝑖

(︂ 1
1 − 𝑑𝑖

− 1
𝑑𝑖

)︂
𝑥𝑖

]︂
+

𝑛∑︁
𝑖=1

[︂(︂
𝑘𝑖

2 − 1
)︂

log 1 − 𝑑𝑖

𝑑𝑖

]︂
= 0

This actually resembles a linear classifier in the variance space:

𝑦 = w𝑇 x + 𝑏 (A.6)

with 𝑤𝑖 = 𝑘𝑖
2

(︁
1

1−𝑑𝑖
− 1

𝑑𝑖

)︁
and 𝑏 =

∑︀𝑛
𝑖=1

(︁
𝑘𝑖
2 − 1

)︁
log 1−𝑑𝑖

𝑑𝑖
.

We can also linearize Equation (A.5) in any point q using its Taylor series to receive
a linear classifier:

𝑦 ≈ 𝑓(q) + ∇𝑓(q) · (x − q) =: w𝑇 x + 𝑏 (A.7)

using 𝑑𝑓(q)
𝑑𝑞𝑖

=
(︁

𝑏𝑖
𝑞𝑖

+ 𝑐𝑖

)︁
.

The classifier output 𝑦 in all cases directly relates to the probabilities. 𝑦 is the differ-
ence in logarithmic probability between the two classes. This can be translated into a
likelihood ratio 𝑡 by

𝑡 = 𝑒𝑦.
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B Conductivity Derivatives for the 4-shell Boundary
Element Method

Here, it is convenient to first compute the derivatives w. r. t. A, and then to build the
inverse through the rules:

𝑑A−1

𝑑𝜃𝑖
= −A−1 𝑑A

𝑑𝜃𝑖
A−1 (B.1)

and
𝑑2A−1

𝑑𝜃𝑖𝑑𝜃𝑗
= −𝑑A−1

𝑑𝜃𝑖

𝑑A
𝑑𝜃𝑗

A−1 − A−1 𝑑2A
𝑑𝜃𝑖𝑑𝜃𝑗

A−1 − 𝑑A−1

𝑑𝜃𝑗

𝑑A
𝑑𝜃𝑖

A−1.

Note the advantage that the symmetric BEM leads to a symmetric matrix which is in
general regular or close to it.

Taking the first derivative of equation (5.2) towards 𝜃𝑖 leads to:

𝑑v̂ (𝜃𝑖)
𝑑𝜃𝑖

= W
(︃

𝑑A−1

𝑑𝜃𝑖
b + A−1 𝑑b

𝑑𝜃𝑖

)︃
(B.2)

and the second is:

𝑑2v̂ (𝜃𝑖)
𝑑𝜃𝑖𝑑𝜃𝑗

= W
(︃

𝑑2A−1

𝑑𝜃𝑖𝑑𝜃𝑗
b + 𝑑A−1

𝑑𝜃𝑖

𝑑b
𝑑𝜃𝑗

+ 𝑑A−1

𝑑𝜃𝑗

𝑑b
𝑑𝜃𝑖

+ A−1 𝑑2b
𝑑𝜃𝑖𝑑𝜃𝑗

)︃
. (B.3)

We based our BEM model on the set of linear equations defined in [Clerc et al., 2005b].
The symmetric BEM models interface potentials and currents simultaneously. For the
system

A𝜃[x1, y1, x2, y2, x3, y3, x4]⊤ = b , (B.4)
where the vectors xk, 𝑘 = 1, . . . , 4 correspond to the potential on the interfaces 𝑆𝑘 of
the different compartments (scalp, skull, CSF and brain), and where the vectors yk
correspond to its derivative (normal currents), we get

A (𝜃) =⎡⎢⎢⎢⎢⎣
(𝜎1 + 𝜎2) N11 −2D*

11 −𝜎2N12 D*
12 0 0 0

−2D11
(︀

𝜎−1
1 + 𝜎−1

2

)︀
S11 D12 −𝜎−1

2 S12 0 0 0
−𝜎2N21 D*

21 (𝜎2 + 𝜎3) N22 −2D*
22 −𝜎3N23 D*

23 0
D21 −𝜎−1

2 S21 −2D22
(︀

𝜎−1
2 + 𝜎−1

3

)︀
S22 D23 −𝜎−1

3 S23 0
0 0 −𝜎3N23 D*

32 (𝜎2 + 𝜎3) N33 −2D*
33 −𝜎4N34

0 0 D23 −𝜎−1
3 S32 −2D33

(︀
𝜎−1

3 + 𝜎−1
4

)︀
S3 D34

0 0 0 0 −𝜎3N34 D*
43 𝜎4N44

⎤⎥⎥⎥⎥⎦ ,

while for the EIT case we obtain

b (𝜃) =
[︁
0, 0, 0, 0, −D*

34z, 𝜎−1
4 S34z,

(︁
−1

2 I44 + D*
44

)︁
z
]︁⊤

. (B.5)

Here, z is the discretization of the normal currents on the scalp so assembling our injected
currents and generally 𝜃 = (𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝒮1, 𝒮2, 𝒮3, 𝒮4) involving the conductivities 𝜎𝑖

125



Chapter 6 Discussion and Outlook

and the shapes of the interfaces 𝒮𝑖. The matrix elements N𝑖𝑗 ,S𝑖𝑗 ,D𝑖𝑗 and D*
𝑖𝑗 are block

matrices assembling discretized versions of the integral operators of classical (Newtonian)
potential theory between layers 𝑖 and 𝑗. I𝑖𝑗 is an identity operator.

From this we find the block-elements of the Jacobian towards the conductivities 𝜎
(keeping the geometry constant) as:

𝑑A
𝑑𝜎1

=

⎡⎢⎢⎣
N11 0 0 0 0 0 0

0 −𝜎−2
1 S11 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎦ ,
𝑑A
𝑑𝜎2

=

⎡⎢⎢⎣
N11 0 −N12 0 0 0 0

0 −𝜎−2
2 S11 0 𝜎−2

2 S12 0 0 0
−N21 0 N22 0 0 0 0

0 𝜎−2
2 S21 0 −𝜎−2

2 S22 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎦ ,

𝑑A
𝑑𝜎3

=

⎡⎢⎢⎣
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 N22 0 −N23 0 0
0 0 0 −𝜎−2

3 S22 0 𝜎−2
3 S23 0

0 0 −N32 0 N33 0 0
0 0 0 𝜎−2

3 S32 0 −𝜎−2
3 S33 0

0 0 0 0 0 0 0

⎤⎥⎥⎦ ,
𝑑A
𝑑𝜎4

=

⎡⎢⎢⎣
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 N33 0 −N34
0 0 0 0 0 −𝜎−2

4 S33 0
0 0 0 0 −N43 0 N44

⎤⎥⎥⎦ ,

whereas all 𝑑b
𝑑𝜎𝑖

are zero except for :
𝑑b
𝑑𝜎4

=
[︁
0, 0, 0, 0, 0, −𝜎−2

4 S34𝑧, 0
]︁⊤

.

For the derivatives necessary for the Hessian blocks, we get:

𝑑2A
𝑑𝜎2

1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 2𝜎−3

1 S11 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

𝑑2A
𝑑𝜎2

2
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 2𝜎−3

2 S11 0 −2𝜎−3
2 S12 0 0 0

0 0 0 0 0 0 0
0 −2𝜎−3

2 S21 0 2𝜎−3
2 S22 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

𝑑2A
𝑑𝜎2

3
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 2𝜎−3

3 S22 0 −2𝜎−3
3 S23 0

0 0 0 0 0 0 0
0 0 0 −2𝜎−3

3 S32 0 2𝜎−3
3 S33 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

𝑑2A
𝑑𝜎2

4
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 2𝜎−3

4 S33 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and all off-diagonals 𝑑2A
𝑑𝜎𝑖𝑑𝜎𝑗

are zero.
All 𝑑2b

𝑑𝜎𝑖𝜎𝑗
are also zero, except for :

𝑑2b
𝑑𝜎2

4
=
[︁
0, 0, 0, 0, 0, 2𝜎−3

4 S34𝑧, 0
]︁⊤

.

Note also that the values of the block matrix elements in A are known and simple
multiplications by functions of the conductivity values 𝜎𝑖 lead to the resulting values of
the derivatives.
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C Error Measures
In order to estimate how well the approaches work in realistic settings, we need to take
measures to compare them to each other. Within the experiments, we used the following
measure to evaluate the performance of the approaches:

Logarithmic Magnitude Difference Measure To evaluate the quality of the obtained
leadfield magnitudes, we employ the logarithmic magnitude difference measure (lnMAG)
[Güllmar et al., 2010].

lnMAG = log

⃦⃦⃦
�̂�
⃦⃦⃦

2
‖𝐿‖2

The absolute magnitudes are not important in EEG source localization, as only the
location of the best fitting dipole is of interest. In electrical current stimulation, however,
the strength of the field induced by a current injection highly matters. This is represented
by the lnMAG which we employ separately for every single source location here (the norm
is over scalp potentials). We used the natural logarithm. An lnMAG of 0 means perfect
amplitude correspondence.

Relative Difference Measure The relative difference measure (RDM) [Meijs et al.,
1989] is often used as a measure to compare leadfields. It focuses on the scalp patterns
created by leadfields regardless of amplitude. These pattern are important in source
localization and low RDMs are related to better source localization [Dannhauer et al.,
2011]. We calculated it for every source location and sensor combination 𝑖 and looked
at the distribution:

RDM = 𝐿𝑖

‖|𝐿‖ |2
− �̂�𝑖⃦⃦⃦

|�̂�
⃦⃦⃦

|2

where 𝐿𝑖 is the leadfield amplitude at location and sensor combination 𝑖 and �̂�𝑖 the
corresponding estimate.

⃦⃦⃦
|�̂�
⃦⃦⃦

|2 and
⃦⃦⃦
|�̂�
⃦⃦⃦

|2 are the 𝐿2-norms over all source and sensor
locations. An RDM of 0 means no error made.

source localization Error For the source localization error 𝐸loc, we use the Euclidean
distance between the estimated and the simulated source location within the individual
head. We used the subspace based linear-least squares dipole fitting method MUSIC
algorithm [Mosher et al., 1992] to estimate the sources and calculated the error for every
source 𝑖 by:

𝐸loc =
√︁

‖|𝑟𝑖 − 𝑟𝑖‖ |2
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where 𝑟𝑖 is the source location estimated by the MUSIC algorithm and 𝑟𝑖 is the initially
simulated source location. A source localization error 𝐸loc of 0 means perfect detection.

D Technical Details on Anatomical parameters

D.1 Sensor Positions
The basis of the electrode morph were sets of 93 electrode that were placed manually
under equal policies on the 4 heads we used for validation. These coordinates were then
warped non-linearly to the template head and then again to every single head of the
database. This lead to 4 leadfields per subject in the approximation database. The
correspondence of electrode locations between subjects have an important influence on
the source localization accuracies. As can be seen in Figure 5.10 on the left, the positions
of the electrode sets varied depending on which of the evaluation subjects they originated
from, even though they were originally all set in standard 10/10 locations [Chatrian et al.,
1985] on the original (evaluation subject’s) head. Subject 3 had shifted positions towards
the neck and Subject 4 was slightly shifted towards the left front, compared to Subject
1 and 2 which were closer to each other and rather in standard positions. Note again
that Figure 5.10 is displayed on a database head. On the individual subject head, the
electrodes were in the standard 10/10 positions and this distortion stemmed from the
non-linear warp. The median difference between the electrode position for each channel
was 8.8𝑚𝑚 between the sets. We will discuss the effect of knowing or not knowing the
exact map by comparing the results of a leave-one-out cross-validation over electrode
sets, of all sets simultaneously in the training data and the directly corresponding set
for each validation head only.

D.2 Source Simulation
At first, 149 locations were excluded because they ended up out of the brain structure
for some of the subjects in the database. This is due to the error made by the coarse and
smoothed approximation of the surface shapes we have used: Even within subjects the
surfaces do not fully correspond to each other for discretizations extracted from different
MRIs of the same person. Excluding dipoles out of this surface minimizes the effect of
these modeling errors.

We simulated an EEG leadfield for the remaining 3841 sources and the 93 electrodes
described in the sensors Section D.1 with the FEM head models obtained from the
4 external MRIs of Section 5.4.2.2. This pseudo EEG will then be compared to the
approximation solely based on impedances and to others approaches through the error
measures and a MUSIC based source localization described in Appendix C.
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Equivalently to the BEM leadfields of the database, the resulting FEM leadfields were
referenced to Iz, which was then excluded from the data. The source locations were the
set on the gray-white border orthogonal to it’s surface, which gave us leadfields with
92x3841 dimensions.

The restriction was based on distance from the origin of the head model in the template
mid-brain (|𝑟| > 39𝑚𝑚), and a y/z-plane below the temporal lobe(𝑦 > −12𝑚𝑚,𝑧 >
−16𝑚𝑚,) where 𝑥 is from the left towards the right ear, 𝑦 from the center of x towards
the nose and 𝑧 the orthogonal direction to the former two towards superior positions).

D.3 EIT Simulation
The following procedure was done to simulate the scalp potentials produced by external
current injection through the electrodes: All possible pairs of the electrode set were
combined by setting a positive current of 100𝜇𝐴 at one electrode and a negative return
current of the same value at another. Because the whole model was based on a lin-
ear current-voltage relationship (Ohm’s law), the current amplitude actually introduces
relative effects and the absolute value is not important for the simulations.

Theoretically, we could measure voltage measurements also at the injecting electrodes,
if we incorporated the electrode (contact) impedance. This value is very unsure, variable
and adds only little information, as we have strongly statistical dependent sensors in
proximity. Therefore, to minimize the effect of electrode impedances, currents are only
injected on a small number of electrodes while resulting scalp potentials are measured
at all remaining channels [Holder, 2005].

Consequently, the voltages on the injecting electrodes were excluded for the measure-
ments. This is done for the database as well as for the external MRIs. For the external
MRIs we used the same head model as for the EEG simulations. The resulting EIT gain
matrices were referenced to Iz, leading to a dimensionality of 92x92.

For a basic estimation of the influence of noise, uncorrelated Gaussian noise was added
to the simulated measurement amplitudes in an additional analysis. In the process
of obtaining real EIT measurements there are two main sources of noise: the current
injection and the voltage measurements. The produced scalp voltage is luckily in the
range of 𝑚𝑉 so measuring with EEG amplifiers which are designed to work in the 𝜇𝑉
range results in comparably small measurement noise. The noise in the scalp current
depends on the current synthesis and the 2 different error sources are superimposed due
to the linear relationship.

We have simulated different noise levels including a much stronger noise level of Gaus-
sian noise on the measurements than is to be expected leading to an SNR of 20dB
(10:1) to evaluate the maximally expected influence. Expected is around 60dB (see
Section 3.1.2.4).
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