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Abstract

The engineering of artificial gauge fields for ultracold atoms in optical lattices opens a new
chapter for the quantum simulation of quantum Hall physics. Motivated by recent advances and
refined techniques in controlling quantum gases in optical lattices, this thesis explores how the
spatio-temporal control of optical lattice systems can be exploited for the engineering of artificial
gauge fields, rapid state preparation, and for controlling and probing integer and fractional
Chern insulator states and their excitations.

The first example is about the implementation of local magnetic fluxes piercing single lattice
plaquettes (analogous to those created by a thin solenoid), which plays an important role in
Laughlin’s gedankenexperiment of quantum Hall physics. By combining Floquet engineering of
artificial magnetic fields with the ability of single-site addressing in quantum gas microscopes,
we propose a scheme for the realization of such local solenoid-type magnetic fields in optical
lattices. We show that it can be employed to manipulate and probe elementary excitations of
a topological Chern insulator, including the quantized charge pumping along tailored paths
inside the bulk, as well as the controlled population of edge modes. This possibility is due to the
fact that it is the artificial vector potentials (in the form of Peierls phases) that are controlled
experimentally, i.e. both the artificial magnetic and electric fields associated with it, rather than
the artificial magnetic field alone.
Based on such an observation, then we investigate protocols for adiabatic state preparation

via ramping artificial gauge potentials in the form of Peierls phases. Taking an interacting
bosonic flux ladder as a minimal model, we find that the time required for adiabatic state
preparation dramatically depends on which pattern of Peierls phases is implemented. This can
be understood intuitively by noting that different patterns of time-dependent Peierls phases that
all give rise to the same magnetic field ramp, generally lead to different artificial electric fields
during the ramp. As an intriguing result, we find that an optimal choice allows for preparing
the ground state almost instantaneously in the non-interacting system. We show that this effect
can be related to the concept of counterdiabatic driving. Remarkably, we find extremely short
preparation time also in the strongly-interacting regime. This finding opens new possibilities for
robust state preparation in atomic quantum simulators.

The recent progress in engineering topological band structures in optical-lattice systems makes
it promising to study fractional Chern insulator states in these systems. In the rest of the
thesis, we consider a realistic finite system of a few repulsively interacting bosons on a square
lattice with magnetic flux and sharp edges, as it can be realized in quantum-gas microscopes.
We investigate under which conditions a fractional Chern insulator state corresponding to the
Laughlin-like state at filling ν = 1/2 can be stabilized and its fractional excitations probed.
Using numerical simulations, we find an incompressible bulk density at the expected filling for
systems, whose linear extent is as small as 6-8 sites. This is a promising result, since such small
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systems are favorable with respect to the required adiabatic state preparation. Moreover, we
also see very clear signatures of excitations with fractional charge in response both to static
pinning potentials and dynamical flux insertion. These observations are robust against changes
in various system parameters. Our results suggest that signatures of both a fractional Chern
insulator state and its fractional excitations can be found under realistic experimental conditions.
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Zusammenfassung

Die Entwicklung künstlicher Eichfelder in optischen Gittern eröffnet ein neues Kapitel der
Quantensimulation von Quanten-Hall-Zuständen mit ultrakalten Atomen. Motiviert durch die
jüngsten Fortschritte und verfeinerten Techniken bei der Kontrolle von Quantengasen in optischen
Gittern, berichtet diese Arbeit darüber, wie die raum-zeitliche Kontrolle optischer Gitter genutzt
werden kann, um künstliche Eichender zu kontrollieren, schnelle Zustandspräparationen zu
ermöglichen und um (ganz- und gebrochenzahlige) Hall-Zustände und ihre Anregungen zu
kontrollieren und zu messen.

Das erste Beispiel betrifft die Implementierung eines lokalen magnetischen Flusses durch eine
einzelne Gitterplquette, ähnlich jenem wie er von einem dünnen Solenoid erzeugt wird, welches
eine wichtige Rolle im Laughlinschen Gedankenexperiment der Quanten-Hall-Physik spielt.
Durch eine Kombination von Floquet-Engineering künstlicher Magnetfelder und der Fähigkeit
der Einzelplatzadressierung in Quantengasmikroskopen wird ein Schema für die Realisierung
solcher lokaler solenoidartiger Magnetfelder in optischen Gittern vorgelegt. Es wird gezeigt, dass
damit elementare Anregungen eines topologischen Chern-Isolators manipuliert und untersucht
werden können. Dies beinhaltet sowohl quantisiertes Ladungspumpen entlang vorgegebener
Pfade im Inneren des Systems, als auch die kontrollierte Population von Randmoden. Diese
Möglichkeit ergibt sich aus der Tatsache, dass in Experimenten mit kalten Atomen direkt
das künstliche Vektorpotential (in Form von Peierls-Phasen) kontrolliert wird, und damit
sowohl die daraus resultierenden künstlichen magnetischen und elektrischen Felder, anstelle von
Magnetfeldern allein.
Ausgehend von dieser Beobachtung untersuchen wir im Anschluss Protokolle für die adia-

batische zustandspräparation durch das Hochfahren künstlicher Eichpotentiale in Form von
Peierls-Phasen. Hierbei dient eine wechselwirkende bosonische Flussleiter als Minimalmodell.
Dabei wird festgestellt, dass die für die adiabatische zustandspräparation benötigte Zeit drastisch
davon abhängt, welches Muster von Peierls-Phasen verwendet wird. Dies lässt sich intuitiv
verstehen, wenn man bedenkt, dass unterschiedliche Protokolle zeitabhängiger Peierls-Phasen,
die alle zu derselben Magnetfeldrampe führen, im Allgemeinen unterschiedliche künstliche
elektrische Felder während der Rampe induzieren. Ein faszinierendes Ergebnis ist, dass eine
optimale Wahl die Präparation des Grundzustands im nicht-wechselwirkenden System fast
instantan ermöglicht. Wir zeigen, dass dieser Effekt mit dem Konzept des gegendiabatischen
Antriebs in Verbindung gebracht werden kann. Bemerkenswerterweise finden wir extrem kurze
Präparationszeiten auch im stark wechselwirkenden System. Diese Erkenntnis eröffnet neue
Möglichkeiten für eine robuste Zustandspräparation in atomaren Quantensimulatoren.
Die jüngsten Fortschritte bei der Entwicklung topologischer Bandstrukturen in optischen

Gittersystemen sind vielversprechend dafür, auch fraktionale Chern-Isolator-Zustände in diesen
Systemen untersuchen zu können. Im weiteren Verlauf der Arbeit wird ein realistisches endliches
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System aus einigen repulsiv wechselwirkenden Bosonen in einem quadratischen Gitter mit
magnetischem Fluss und scharfen Kanten, wie es in Quantengasmikroskopen realisiert werden
kann, betrachtet. Es wird untersucht, unter welchen Bedingungen ein fraktionaler Chern-Isolator
Zustand, der dem Laughlin-ähnlichen Zustand bei Füllung ν = 1/2 entspricht, stabilisiert und
seine fraktionalen Anregungen untersucht werden können. Mit Hilfe numerischer Simulationen
finden wir eine inkompressible Volumendichte bei der erwarteten Füllung für Systeme, für
Systeme mit linearen Ausdehnungen von nur 6-8 Gitterplätzen. Dies ist ein vielversprechendes
Ergebnis, da solch kleine Systeme für die erforderliche adiabatische Zustandspräparation günstig
sind. Darüber hinaus werden auch sehr deutliche Anzeichen von Anregungen mit fraktionaler
Ladung als Reaktion sowohl auf statische Pinning-Potentiale als auch auf eine dynamische
Flusseinführung beobachtet. Diese Beobachtungen sind robust genübel der Änderung gegenüber
Änderungen verschiedener Systemparameter. Unsere Ergebnisse deuten darauf hin, dass unter
realistischen experimentellen Bedingungen sowohl Signaturen eines fraktionalen Chern-Isolator-
Zustands als auch dessen fraktionale Anregungen gefunden werden können.

vi



Publications

• Botao Wang, F. Nur Ünal, and André Eckardt, Floquet Engineering of Optical Solenoids
and Quantized Charge Pumping along Tailored Paths in Two-Dimensional Chern Insulators,
Phys. Rev. Lett. 120, 243602 (2018).

• Botao Wang, Xiaoyu Dong, F. Nur Ünal, and André Eckardt, Robust and Ultrafast State
Preparation by Ramping Artificial Gauge Potentials, New J. Phys. 23, 063017 (2021).

• Botao Wang, Xiaoyu Dong, and André Eckardt, Measurable signatures of bosonic fractional
Chern insulator states and their fractional excitations in a quantum-gas microscope, SciPost
Phys. 12, 095 (2022).

vii





Contents

Abstract iii

Zusammenfassung v

Publications vii

1 Introduction 1
1.1 Topology in condensed matter physics . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quantum simulation with ultracold atoms . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9
2.1 Berry phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Chern number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Berry phase in Bloch bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Harper-Hofstadter model and its topology . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Magnetic translation symmetry . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Energy spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Chern number of Hofstadter bands . . . . . . . . . . . . . . . . . . . . . 27
2.4.4 Symmetry consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Floquet engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.2 Application to tight-binding models . . . . . . . . . . . . . . . . . . . . 38

3 Floquet engineering of solenoid-type fluxes 45
3.1 Laughlin’s Gedankenexperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Flux insertion in 2D lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Engineering a tunable local flux . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Uniform flux in staggered potentials . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Tunable local flux via additional driving . . . . . . . . . . . . . . . . . . 57
3.3.3 Dynamics from effective Hamiltonian . . . . . . . . . . . . . . . . . . . . 62
3.3.4 Full time dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Controlled charge pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.1 Tailored charge pumping in the bulk . . . . . . . . . . . . . . . . . . . . 68
3.4.2 Edge mode population . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

ix



Contents

3.5 Application in bosonic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 State preparation via ramping artificial gauge potentials 74
4.1 Two-leg flux ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Phase diagram in the non-interacting ladder . . . . . . . . . . . . . . . . 76
4.1.2 Chiral currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 State preparation in non-interacting system . . . . . . . . . . . . . . . . . . . . 80
4.3 Counterdiabatic driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Previous formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2 Comparison with our protocol . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Role of interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.1 Ground state properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.2 State preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Leaving the Meissner regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Bosonic fractional Chern insulators and their fractional excitations 91
5.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Ground state properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Ground-state density and probability current . . . . . . . . . . . . . . . 93
5.2.2 Crossover to charge-density waves . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Probing fractional excitations via pinning potentials . . . . . . . . . . . . . . . 98
5.3.1 Fractional charges and screening . . . . . . . . . . . . . . . . . . . . . . 99
5.3.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.3 Effect of finite interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Fractional charge pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Conclusion and outlook 108

Bibliography 117

Acknowledgments 143

x



1 Introduction

1.1 Topology in condensed matter physics

In the article More is Different published in 1972, the late P. W. Anderson emphasized that
with increasing complexity of a system (e.g. by adding more and more particles) entirely new
properties appear, and the understanding of the new behavior at each level of complexity requires
its own fundamental laws [1]. Because of such emergent phenomena, it is how the particles
are organized, instead of its consisting components, that mainly determines the properties of a
material. Different ways of organizing particles are formally called different order.
Various phases of matter exhibit different properties because they possess different order.

With a deep physical insight, L. D. Landau pointed out that different phases/order are associated
with corresponding symmetries in the organization of the constituent particles, and a phase
transition is associated by a change of symmetry [2]. For instance, while a liquid has a continuous
translation symmetry, only discrete translation symmetry exists in a crystal. The phase transition
from a liquid to a crystal spontaneously reduces the continuous symmetry to the discrete one.
Such a change in symmetry is called spontaneous symmetry breaking. By introducing order
parameters, Ginzburg and Landau developed a standard theory to describe phase transition [3].
The so-called Ginzburg-Landau theory turns out to be a universal description of various states
of matter, and has been a cornerstone of condensed matter theory.

However, several great discoveries in the 1980s go beyond the paradigm of Landau’s symmetry
breaking theory. In the pioneering experiment performed by K. von Klitzing in 1980, based on
the sample prepared by G. Dorda and M. Pepper [4], the Hall resistance of a two-dimensional
(2D) electronic system became precisely quantized when it was measured under strong magnetic
field and at low temperature, i.e.

ρxy =
h

e2

1

ν
, (1.1)

with ν being integers, h Planck’s constant and e the elementary charge. Regardless of various
disorder and defects, the extraordinary accuracy of ν (around one part in 109) came as a
surprise 1. Even more strikingly, fractional values of ν can also exist, as first discovered in
1982 by D. C. Tsui and H. L. Stormer using samples prepared by A. C. Gossard [5]. Later
on, quantized plateaus were observed at different values of ν. Depending on whether they are
integer or fractional, the corresponding phenomena are called integer quantum Hall (IQH) and
fractional quantum Hall (FQH) effects, respectively. It turns out both the IQH and FQH states
cannot be described within the framework of Landau’s symmetry breaking theory. Therefore,
their understanding calls for new ideas. This is where topology comes to play a role.

1This precision is exploited in the new international system of units based on the definition of fundamental
constants as introduced in 2019.
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1 Introduction

In order to understand the IQH effect, within one year after von Klitzing’s discovery, R.
Laughlin firstly derived the quantized Hall conductance according to the principle of gauge
invariance, by performing a gedankenexperiment where the two-dimensional (2D) electronic
system was bent into a cylinder with a long solenoid placed along its axis [6]. In 1982, D.
J. Thouless and co-workers obtained an explicit expression for the integer values of the Hall
conductance in the famous TKNN (D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M.
den Nijs) paper [7]. The interpretation of these integers as topological invariants (i.e. the Chern
number of the first class), was soon made by B. Simon [8], who applied Berry’s idea of geometric
phase in quantum systems [9]. Thus, Simon not only made a connection between Berry’s work
with the TKNN paper, but also connected topology and the IQH effect.

When it comes to the FQH effect, the explanation is highly non-trivial because the many-
body interaction should be taken into account, which is often notoriously complicated. In his
1983 paper, R. Laughlin explained the fractional quantum Hall (FQH) effect by proposing a
many-body wave function ansatz and predicted a sequence of incompressible ground states
(now known as Laughlin states) with fractionally-charged excitations [10]. Laughlin’s proposal
has achieved a big success and has stimulated many new ideas [11]. However, a complete
understanding of various FQH states and their origin remains challenging. This may require
novel physical concepts and even new theories.
The theory of topological order introduced by X. G. Wen opens a new chapter in that

direction [12, 13]. Historically, after chiral spin liquids were introduced in an attempt to explain
the high-temperature superconductivity [14, 15], Wen realized that many different chiral spin
liquids share exactly the same symmetry [16]. Therefore, symmetry alone is not enough and
Landau’s symmetry breaking theory would fail in characterizing different chiral spin liquids. This
indicates the existence of a novel kind of order that is beyond the usual symmetry description.
It is called topological order [12, 13]. After that, it was proposed that FQH states also contain
topological order [17], since there are many different FQH states sharing the same symmetry.
In other words, various FQH states are different because they have different topological order.
Topological order can be macroscopically characterized via measurable quantities, which

correspond to topological invariants [12]. The early found topological invariants that reveal the
essence of FQH states include (i) topological ground-state degeneracies2 on closed spaces (e.g.
a torus) [17, 19], (ii) non-Abelian geometric phases of those degenerate ground states (which
determine possible fractional statistics of the topological excitations) [19], and (iii) gapless
edge modes [20, 21]. All these properties are robust against local perturbations [13]. Since
any symmetry could be broken by local perturbations, the robust properties mentioned above
represent a remarkable phenomenon that is beyond symmetry-based descriptions, and thus give
rise to a new kind of order – the topological order.
While topological invariants give the macroscopic characteristics of topological order, it has

also been attributed to a microscopic origin. It is known that many quantum systems can
be described by product states, i.e. the tensor product of individual states belonging to local
subspace (e.g. local quantum states on each site). However, the topologically ordered states can

2Note that the topological degeneracy is exact when the system size is infinite and small energy splitting
appears for finite system [18].
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1 Introduction

be defined as gapped ground states that cannot be continuously deformed into a product state
without gap-closing phase transitions [12, 13]. Such quantum states are said to have long-range
entanglement [22–24], and the topological entanglement entropy is another symmetry-irrelevant
quantity that is used to characterize topological order. Remark that there is another important
class of gapped ground states called symmetry-protected topological (SPT) states. Although the
SPT phases do not have ground state degeneracy or fractional statistics, they can have gapless
edge excitations that are symmetry-protected. The well-known quantum spin Hall states and
the topological insulators (which preserve time-reveral symmetry) [25–29] belong to different
SPT phases [12, 13].
Note that the term ‘topology’ was first introduced in the 19th century by Johann Benedict

Listing3, in order to classify the geometric objects of different shapes. Mathematically, the
Gauss-Bonnet theorem states that the integral of the Gaussian curvature over a closed surface
gives rise to a quantized topological invariant called Euler characteristic χ, and its value is
related to the genus g (which is the number of holes of a surface, χ = 2 − 2g). For instance,
a sphere has g = 0, but a torus has g = 1. This type of topology can be called classical
topology. By combining the related concepts with the framework of the band theory of solids,
gapped band structures can be topologically classified in terms of some topological invariants,
which are analogous to genus [28]. The Chern number which determines the quantized Hall
conductivity in IQH states, and the Z2 index in topological insulators and superconductors
can all be understood in terms of this type of (classic) topology [12]. However, the topology
in topological order mentioned above (e.g. the one associated to the FQH states or chiral spin
liquids) has a totally different meaning. The given name topological order was motivated by the
theory that has been used – a U(1) Chern-Simons theory – which is a topological quantum field
theory [12]. Topological order simply represents long-range entangled order in gapped ground
states, and the topology in topological order is referred to as quantum topology [12].
Understanding different states of matter is not only of theoretically fundamental interest,

the special properties inherent to these states could also have important impacts on practical
applications including spintronics and quantum computation. For example, certain topological
states with non-Abelian anyonic excitations can be used for topological quantum computation [30,
31]. Even though FQH states are well-known examples that host topological excitations (anyons)
satisfying fractional (both Abelian and non-Abelian) statistics [32–35] and carrying fractional
charges (for the system with particle-number conservation [12]), clear experimental observations
of fractional statistics remains elusive. Therefore, it would be exciting to see further experimental
systems allowing for the creation and manipulation of those topological excitations in a highly
controllable manner. Among various well-controlled synthetic systems, optical lattices with
ultracold atoms provide a promising platform for that purpose [36–41].

3Listing also independently discovered the properties of the so-called Möbius strip (a two-dimensional surface
with only one side), even a few months earlier than August Ferdinand Möbius.
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1 Introduction

1.2 Quantum simulation with ultracold atoms

Solving quantum many-body problems in condensed matter physics is usually not easy. The
idea of quantum simulation provides a promising approach to circumvent such difficulties. The
great vision of quantum simulation given by Richard Feynman4 can be found in the article
published in 1982, which is about building a computer from quantum mechanical elements which
obey quantum mechanical laws [42]. Such quantum machines in the end could be used to imitate
(complex) quantum systems which are difficult simulate with classical computers. Nowadays,
the spirit of quantum simulation has been fulfilled in various synthetic platforms, including
photonic systems [43–45], superconductor circuits [46], trapped ions [47, 48], as well as ultracold
atoms in optical lattices [40, 41].
The interest in ultracold atoms was first motivated by the idea of realizing Bose-Einstein

condensation. In 1924, when Albert Einstein firstly saw Satyendra Nath Bose’s paper about
some novel ideas on photon statistics, he immediately realized the importance of Bose’s work
(which pioneers the field of quantum statistics) [49]. The extension of Bose’s idea makes Einstein
predict that cooling particles obeying Bose’s statistics to low enough temperatures would cause
them to macroscopically occupy one single quantum state, which thus form a new state of matter
now known as Bose–Einstein condensates (BECs)5. It took 70 years for the first experimental
demonstration. In 1995, the team of Eric Cornell and Carl Wieman from Colorado reported the
condensate of rubidium-87 atoms [50]; the group lead by Wolfgang Ketterle at MIT produced
the BEC of sodium-23 atoms [51]; Randall G. Hulet’s group reported evidence for BEC of
spin-polarized lithium-7 gases [52]. Their achievements have founded the field of ultracold atoms,
and have attracted intense interests of physicists from different areas [53].

Loading BECs into optical lattices opens a new chapter in the quantum simulation of condensed
matter physics (especially complex quantum many-body systems) with ultracold atoms [40, 41].
Optical lattices are periodic potentials formed by the interference of superimposing counter-
propagating laser beams. Due to the light-induced dipole moment of the atom, its interaction
with light field causes a shift in the potential energy (i.e. the ac-Stark shift) which is proportional
to the light intensity [54]. Thus the interference pattern with periodic intensity behaves like a
periodic lattice potential for atoms [55]. In the influential theoretical proposal given by Jaksch
and collaborators in 1998, it was predicted that ultracold atoms in periodic lattice potentials
can undergo a quantum phase transition from a superfluid (SF) to a Mott-insulating (MI)
state [56]. As discussed in the seminal work by Matthew P. A. Fisher and collaborators in
1989 [57], such a SF-MI quantum phase transition is an important property of the so-called
Bose-Hubbard (BH) model that describes interacting bosons on a lattice. Specifically, due
to the competition between the tunneling strength J and the repulsive on-site interaction U ,
the ground state exhibits either a SF phase (with long-range phase coherence but fluctuations
of atom number on each site for J � U) or a MI phase (with equal number of atoms per
site but uncertain phase of the matter wave for U � J). In 2002, the team from Garching
led by Immanuel Bloch and Theodor Wolfgang Hänsch put such theoretical prediction and
proposal into experimental realization by imposing an optical lattice on 87Rb BECs [58]. With

4Feynman’s entire interest in simulating physics with computers has been inspired by Edward Fredkin [42].
5BEC is also called the fifth state of matter, different from solid, liquid, gas and plasma.
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1 Introduction

the technique of time-of-flight (TOF) images, the measured matter wave interference patterns
clearly reveal the signature of SF-MI phase transition by simply varying lattice potential depth.
This was a remarkable result, since it opened the possibility of introducing strong interactions
to a system of ultracold atoms. The seminal theoretical proposal together with the beautiful
follow-up experimental realization of loading BECs into optical lattices marks a milestone in
simulating strongly-correlated phenomena with ultracold atoms, and thus nicely bridges two
seemingly different fields of research, namely quantum optics and condensed matter physics [40].
It turns out that optical lattice with ultracold atoms manifest themselves as very flexible

platforms with perfect control of system parameters. For instance, the tunneling strength can
be precisely tuned by lattice depth (i.e. the intensity of optical standing waves), and the on-site
(short-range) interaction can be further controlled by Feshbach resonances [59]. Long-range and
anisotropic interaction effects can also be addressed by using atomic species (e.g. Cr, Dy, Er
et al.) with large magnetic moments [60, 61], polar molecules which exhibit electric dipole
moments [62, 63] or Rydberg atoms (atoms of excited states with large principal quantum
numbers) [64]. By properly arranging the configuration of laser beams, optical lattices of
different dimensions or various geometries can be achieved [41]. While the TOF images reveal
the momentum distribution and coherence properties, the advent of quantum gas microscopes
allows for imaging and controlling atoms with single lattice site resolution [65–69]. The atoms can
be bosons, fermions, or their mixtures. The lattice potentials can be accompanied with harmonic
traps, box trapping potentials with sharp edges [70], as well as (quasi-)disordered potentials [41].
Moreover, except for various equilibrium quantum simulations, non-equilibrium situations
can also be investigated in a well controllable manner, including sudden parameter changes
(quenches), periodical driving [71], and the realization of dissipative Hubbard models [72–75],
Because of the high controllability mentioned above, optical lattices with cold atoms not only
become a promising platform for quantum simulation (which are especially ideal to simulate
various discrete Hamiltonians including Hubbard, Heisenberg models), but also provide a path
to regimes which have never been accessed in condensed matter system [41, 55].

In order to simulate quantum Hall physics, however, one important ingredient is the interaction
with electromagnetic fields. Due to the charge neutrality of cold atoms, they cannot react
like electrons under the effect of magnetic fields. This stimulates the interest of simulating
artificial gauge fields (magnetic fields or spin-orbit coupling [76–78]) with charge neutral cold
atoms, which can be used to mimic the behaviour of charged electrons [36–41, 71, 79–81]. The
early stage of engineering artificial gauge potentials is to use rotating atomic gases, in which
case the Coriolis force plays the role of the Lorentz force so that an artificial magnetic field is
created in the rotating frame [82, 83]. However, the confining potential usually needs to be
rotationally invariant and strong magnetic field effects were difficult to be achieved [79]. By
coupling atomic internal states with Raman laser beams, strong artificial gauge fields can be
created in the laboratory frame [79, 84]. However, one drawback is that spontaneous emission
can cause unwanted heating. It was proposed that topological flat bands for ultracold atoms
can be realized in the so-called optical flux lattices, where only a few set of laser beams are used
to produce a spatially-periodic atom-laser coupling. This would give rise to periodic effective
magnetic fields with high flux density in shallow optical lattices [85–87]. Subsequently, it has
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been shown that the optical flux lattices can actually be viewed as tight-binding models (which
can be engineered to exhibit topologically non-trivial bands) in reciprocal space [88].

Note that while quantum Hall physics was originally observed in 2D spatial space, available
dimensions do not have to be the spatial ones. By exploiting internal degrees of freedom, as
has been pioneered by the proposal of using Zeeman states [89, 90], synthetic dimension now
becomes a well-established routine to imitate topological quantum matter [91]. Because of the
sharp boundaries in the synthetic dimensions, topologically protected chiral edge transports have
been successfully observed [92–94]. While previous experiments were limited to narrow ribbons
(with 2− 5 sites), more recently, a synthetic dimension encoded in 17 magnetic sublevels has
been realized by using ultracold dysprosium atoms, where both chiral dynamics along the edge
and quantized Hall drift inside the bulk have been clearly observed [95]. Meanwhile, by coupling
discrete momentum states, lattices in momentum space have been used to study chiral currents
and magnetic reflection [96], or the interplay of disorder and artificial gauge fields [97]. Note
that measurements of strong interaction effects (although in the absence of gauge fields) have
been performed for the first time in such synthetic lattices [98]. Last but not least, extending 2D
space in terms of 1D lattice and time, Thouless (quantized) charge pump has been theoretically
proposed [99, 100] and experimentally realized [101–104], which leads to the recent experimental
investigation of higher-dimensional (4D) quantum Hall physics [105].

Alternatively, Floquet engineering has established as a powerful tool to create strong artificial
magnetic fields for ultracold atoms. A Floquet system is described by a time-periodic Hamiltonian.
It can often be well approximated by a time-independent effective Hamiltonian within the
framework of Floquet theory [71, 80, 106]. Thus, by properly designing periodic driving
protocols, various interesting phenomena and desired models can be engineered in the lab. One
type of periodic driving is realized by lattice shaking. It has been shown that non-sinusoidal
driving forces can give rise to artificial magnetic fields [107–109]. As originally proposed for
graphene [110], circular lattice shaking can also be used to engineer topologically nontrivial
band structures. Such a shaking scheme has been successfully implemented in optical lattices
with fermions, leading to the realization of the famous Haldane model (a typical topological
Chern insulator with vanishing net magnetic flux, corresponding to quantum anomalous Hall
effect) [111, 112], as well as the measurement of nontrivial Chern number [113] or quantized
circular dichroism [114].
Another type of periodic driving protocol corresponds to applying far-detuned running

laser beams, which can be employed to restore tunneling initially suppressed by large on-site
energy offsets [115–117]. Such laser/‘photon’ assisted tunneling would be accompanied by some
complex phases (the so-called Peierls phases) for hopping from one site to another. In this
case, atoms hopping around one single lattice unit cell would accumulate a net phase, which is
analogous to the Aharonov–Bohm phase obtained by electrons moving in magnetic fields along
a closed path. Thus the Peierls phases play the role of vector potentials, and the accumulated
net phase emulates artificial magnetic fluxes. This approach has been used to create either
staggered or uniform artificial magnetic fluxes in a square lattice, the latter corresponding to the
paradigmatic Harper-Hofstadter model [118, 119], which has been successfully realized in various
experiments [120–125]. Note that (i) the protocols for laser assisted tunneling do not depend
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on internal states of atoms, and thus make the heating due to spontaneous emission become
negligible; (ii) the engineered artificial magnetic fluxes are extremely strong (in the order of
one flux quantum per lattice plaquette), corresponding to magnetic fields with magnitudes of
∼ 104 Tesla for electrons in graphene (due to the small lattice constant therein). This represents
one typical advantage of using ultracold atoms to simulate interesting quantum phenomena
within/beyond condensed matter physics.

Despite a lot of success in applying Floquet engineering, one big drawback is that a driven many-
body system may suffer from the problem of heating in a large time scale [71]. Nevertheless,
the time-independent effective Hamiltonian can still describe the driven system to a good
approximation on a finite time scale. This becomes realistic provided that the driving frequency
is large compared to the typical energy scales in the system (like the tunneling parameter or
the Hubbard interaction). As theoretically proposed [126] and experimentally observed [127], a
dynamical control of SF-MI phase transition has been realized by lattice shaking, which suggests
that it is possible to combine Floquet engineering with the strong interaction required for a
strongly-correlated state. More recently, Floquet engineering has also been employed to make
progress towards creating dynamical gauge fields (that would include feedback from atoms),
which are crucial ingredients in both high energy physics and condensed matter systems [128–
132].

It is fascinating to see so many impressive progresses on quantum simulation of quantum Hall
physics by using optical lattices with ultracold atoms. Nevertheless, as one of the most exotic
phenomena, the counterpart of FQH states in lattices, known as fractional Chern insulators
(FCIs) [133, 134], and the corresponding topological excitations (with fractional charges and
statistics) have so far been elusive in cold atom experiments. Quantum simulation with cold
atoms is thus still a rapidly growing field which keeps drawing intensive attention. Based on
recently refined advances and techniques, it would be useful to have more ideas or practical
protocols for preparing and probing quantum Hall states and their exotic excitations in optical
lattice systems, which is the theme of this thesis.

1.3 Outline

Systems with periodic lattice potentials are known to exhibit Bloch bands. The topological
properties encoded in the band structures can be characterized by the topological invariant
called Chern number, which has a deep relation to the Berry phase. Chapter 2 starts with
the introduction of all these basic concepts, followed by their application in a paradigmatic
topological model – the Harper-Hofstadter (HH) model. After that, a brief overview of the
Floquet formalism, together with its direct application for implementing the HH model with
cold atoms is presented.
Inserting quanta of magnetic flux by using a thin solenoid, known as the famous Laughlin

Gedankenexperiment, plays an important role in quantum Hall physics. Inspired by recent
advances in controlling atomic quantum gases in optical lattices, a protocol for Floquet engi-
neering such solenoid-type local fluxes in an optical lattice is presented Chapter 3. It is found
that it can be employed to create quantized charge pumping along tailored paths in 2D Chern
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insulators. This effect can be exploited, e.g. for the controlled population of the topologically
protected chiral edge modes. Its extension to a bosonic system is also discussed.
It is interesting to observe that the tailored paths for the above-mentioned charge pumping

are determined by the way of arranging the time-dependent artificial vector potentials (in the
form of Peierls phases), which induce artificial electric fields during the ramp. It is discussed in
Chapter 4 that such artificial electric fields can also be exploited to optimize adiabatic state
preparation. Taking an interacting bosonic flux ladder as a minimal model, we will see that the
time required for adiabatic state preparation dramatically depends on the chosen pattern of
Peierls phases. It may open a new path for the robust state preparation in interacting quantum
systems with artificial gauge fields.
All the discussions mentioned above would contribute to the ultimate goal of realizing and

probing fractional Chern insulator states, as well as their anyonic excitations with ultracold
atoms in optical lattices. In Chapter 5, a systematic investigation of the stability of fractional
Chern insulators in finite lattices is presented. It will be shown that the fractional Chern
insulator ground states can be stabilized in a wide parameter regime, which will be of particular
interest for future experimental implementations. Moreover, clear signatures of excitations with
fractional charge in response to both static pinning potentials and dynamical flux insertion will
also be presented.

A conclusion and future directions are presented in Chapter 6.
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2 Preliminaries

Lying at the heart of quantum Hall physics, Berry phase is perhaps the simplest demonstration
of how geometry and topology can emerge from quantum mechanics. We start with several basic
concepts including Berry phase, Chern number etc., and then apply them to the paradigmatic
Harper-Hofstadter (HH) model that describes charged particles moving in a lattice with strong
magnetic fields. Last but not least, we discuss the framework of Floquet engineering that has
been demonstrated as a powerful tool in cold atom experiments, and see how it can be employed
to realize the desired HH model in optical lattices.

2.1 Berry phase

Generally speaking, any parallel-transported vector6 may acquire an angle with respect to its
original orientation after completing a closed path on a surface. Such a rotation angle is called
a geometric phase as it is of geometrical origin [135]. In classical mechanics, the Foucault
pendulum, which was conceived to demonstrate the rotation of the Earth, is one of the earliest
examples that can be used to illustrate the geometric phase. In quantum mechanics, one typical
geometric phase was formulated by Michael Berry in 1984, and now is known as Berry phase [9].
Berry’s elementary yet profound observation provides a unified description of a wide range of
phenomena in quantum physics [136]. Here, we start with deriving the general formula of Berry
phase based on his seminal paper [9].

Consider a quantum system whose Hamiltonian Ĥ(R) depends on parametersR = (R1, R2, ...).
The eigenstates

∣∣n(R)
〉
and eigenvalues E(R) satisfy

Ĥ(R)
∣∣n(R)

〉
= E(R)

∣∣n(R)
〉
. (2.1)

Here, the eigenstates are assumed to be non-degenerate.
Now let the Hamiltonian ˆH(R(t)) be changed by varying parameters R(t) from time t = 0

until t = T . The state of the system
∣∣ψ(t)

〉
evolves according to the Schrödinger equation

i~|ψ̇(t)〉 = Ĥ(R(t))
∣∣ψ(t)

〉
, (2.2)

with i the imaginary unit, ~ the reduced Planck constant and the dot ẋ denotes time derivative
of x.
If the system is initially placed in a non-degenerate eigenstate

∣∣n(R(0))
〉
and Ĥ(R(t)) is

varied infinitely slow along a path P in parameter space, the adiabatic theorem states that at

6For a vector moving on a surface, the parallel transport means that the vector moves without a change in its
magnitude, and without rotation about the instantaneous normal to the surface as well.
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any instant t, the system will essentially stay in the eigenstate
∣∣n(R(t))

〉
. The evolved state

can be written as

∣∣ψ(t)
〉

= exp

{
−i
~

ˆ t

0
dt′En(R(t′))

}
exp(iγn(t))

∣∣n(R(t))
〉
. (2.3)

Apart from the well-known dynamical phase shown in the first exponential, it can also be
assigned an additional term exp(iγn(t)). The function γn(t) is determined by the fact that
Eq. (2.3) satisfies the Schrödinger equation. Thus plugging Eq. (2.3) into Eq. (2.2) gives

γ̇n(t) = i〈n|ṅ〉 = i〈n(R(t))|∇Rn(R(t))〉Ṙ(t). (2.4)

Here ∇R represents the gradient with respect to the parameters R, and the second equality in
Eq. (2.4) is due to

ḟ =
df(R(t))

dt
=

∂f

∂R1(t)

dR1(t)

dt
+

∂f

∂R2(t)

dR2(t)

dt
+ · · · = (∇Rf)

dR(t)

dt
, (2.5)

with f = f(R(t)) being a general function of parameters R = (R1, R2, · · · ).
It is indicated in Eq. (2.4) that γn can be expressed as a line integral in the parameter space

γn =

ˆ
P
An · dR, (2.6)

An(R) = i
〈
n(R)

∣∣∇Rn(R)
〉
, (2.7)

where the vector-valued function An has been introduced and is called the Berry connection7.
For an open path, i.e. R(0) 6= R(T ), it can be shown that the phase γn is trivial as it can be

easily gauged out. To be specific, by making a gauge transformation

|n(R)〉 → eiξ(R)|n(R)〉, (2.8)

where ξ(R) is an arbitrary smooth function, the Berry connection is modified as

An → An −∇Rξ(R). (2.9)

Consequently, combining Eqs. (2.6) with (2.9) gives that the phase γn will be changed by
∆γn = ξ(R(0))− ξ(R(T )) after the gauge transformation. In this case, one can always choose a
suitable ξ(R) such that γn accumulated along the path is cancelled out and only the dynamical
phase is left. Due to this, the phase γn has been considered as unimportant for many years and
was usually neglected [137].

This situation has not been challenged until Berry reconsidered the cyclic evolution along a
closed path in the parameter space i.e. R(0) = R(T ). The path is henceforth called a circuit
and is denoted by C. Since the phase factor eiξ(R) in the gauge transformation is single-valued,
it implies that the phase difference ∆γn reads

∆γn = 2π × integer. (2.10)
7The j-th component of An is written as Aj

n = i〈n(R) ∂
∂Rj
|n(R)〉.
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Namely, γn can only be changed by an integer multiple of 2π under the gauge transformation
and it cannot be removed. Thus for a closed path, γn becomes a gauge-invariant physical
quantity (modulo 2π). Note that all gauge-invariant quantities are – at least in principle –
measurable [138].
To keep the information of such an unusual phase difference, after completing the circuit C,

i.e. when the Hamiltonian returned to its original form Ĥ(R(T )) = Ĥ(R(0)), the system will
return to its original state with additional phase factors according to Eq. (2.3),

∣∣ψ(T )
〉

= exp

{
−i
~

ˆ T

0
dtEn(R(t))

}
exp(iγn(C))

∣∣n(0)
〉
, (2.11)

where the net geometrical phase γn(C) is

γn(C) =

˛
C
An · dR. (2.12)

The phase γn(C) was first obtained by Berry in 1984 and is now called Berry phase. This
line integral around the closed path C in parameter space shows its geometrical origin, and
γn(C) does not depend on the rate at which the path is travelled (as long as the adiabatic
approximation holds). Note that the normalization of |n(R)〉 indicates that 〈n(R)|∇Rn(R)〉
is imaginary, i.e. ∇R · 1 = ∇R

(
〈n(R)|n(R)〉

)
= 〈∇Rn(R)|n(R)〉+ 〈n(R)|∇Rn(R)〉 = 0, and

thus γn(C) is real (i.e. the Berry connection An(R) = i
〈
n(R)

∣∣∇Rn(R)
〉
is real).

Sometimes it can be awkward to directly evaluate |∇Rn(R)〉 because it requires a locally
single-valued basis for |n(R)〉. Such difficulties are avoided by transforming the circuit integral
in Eq. (2.12) into a surface integral over any surface S with boundary C in parameter space. By
applying Stoke’s theorem8, the Berry phase can be rewritten as

γn(C) =

¨
S

Ωn · dS, Ωn = ∇R ×An, (2.13)

where dS is the surface element and Ωn is called the Berry curvature. Although Eq. (2.9)
shows that An is not unique and it depends on the choice of the phase of the eigenstate |n(R)〉,
the Berry curvature Ωn is independent on this gauge choice as ∇×∇Rξ(R) = 0. The Berry
curvature Ωn is analogous to a ‘magnetic field’ (in parameter space), whose ‘vector potential’ is
the Berry connection An, and the Berry phase can be interpreted as the ‘magnetic flux’ piercing
the surface with boundary C.
More generally (and more usefully in many cases), the gauge-field tensor form of the Berry

8To apply vector calculus, the parameter space has been considered as three-dimension where Stoke’s theorem
applies. However, the results can also be generalized to higher dimensions [9, 137].
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curvature can be written as [137]

Ωn
µν(R) = ∂RµAν

n(R)− ∂RνAµ
n(R)

= i
[
∂Rµ〈n|∂Rνn〉 − ∂Rν 〈n|∂Rµn〉

]
= i
[
〈∂Rµn|∂Rνn〉(((((

(((+〈n|∂Rµ∂Rνn〉 − 〈∂Rνn|∂Rµn〉(((((
(((−〈n|∂Rν∂Rµn〉

]
= i
[
〈∂Rµn|∂Rνn〉 − 〈∂Rνn|∂Rµn〉

]
(2.14)

= i
∑
n′

[
〈∂Rµn|n′〉〈n′|∂Rνn〉 − (ν ↔ µ)

]
,
∑
n′

|n′〉〈n′| = 1

= i
∑
n′ 6=n

[
〈n|∂RµĤ|n′〉〈n′|∂Rν Ĥ|n〉

(En − En′)2 − (ν ↔ µ)

]
, (2.15)

where we have used ∂
∂Rµ = ∂Rµ , |n(R)〉 = |n〉 for short, and ν ↔ µ means exchanging ν and µ

in the expression before. To arrive at Eq. (2.15) in the last step, (i) For n′ = n, one can use
∂R(〈n|n〉) = 〈∂Rn|n〉+ 〈n|∂Rn〉 = 0, such that

〈∂Rµn|n〉〈n|∂Rνn〉 − (ν ↔ µ) =
[
−〈n|∂Rµn〉

]
·
[
−〈∂Rνn|n〉

]
− 〈∂Rνn|n〉〈n|∂Rµn〉 = 0. (2.16)

(ii) For n′ 6= n, we have employed 〈n|∂RĤ|n′〉 = (En − En′) 〈∂Rn|n′〉, which can be derived as
below,

∂R〈n|Ĥ|n′〉 = ∂REn 〈n|n′〉︸ ︷︷ ︸
=0

= 0

∂R〈n|Ĥ|n′〉 = 〈∂Rn|Ĥ|n′〉+ 〈n|∂RĤ|n′〉+ 〈n|H|∂Rn′〉
= En′〈∂Rn|n′〉+ 〈n|∂RĤ|n′〉+ En〈n|∂Rn′〉
↓ 0 = ∂R〈n|n′〉 = 〈∂Rn|n′〉+ 〈n|∂Rn′〉
= (En′ − En) 〈∂Rn|n′〉+ 〈n|∂RĤ|n′〉

⇒ 〈n|∂RĤ|n′〉 = (En − En′) 〈∂Rn|n′〉. (2.17)

Note that this alternative form Eq. (2.15) has the advantage that no differentiation on the
eigenstate is involved, therefore it will be particularly useful for numerical calculations (e.g. in
Section 2.4.3), where a smooth phase choice of the eigenstates is not usually guaranteed [137].
Also, no assumption about the dimensionality of the state space is made.

For a physical interpretation, one can see that the dynamical phase factor represents that
the system’s internal clock will register the passage of time, and the Berry phase means that
the system also records its history in a deeply geometrical way [9]. Especially, Eq. (2.15)
shows that the Berry curvature, and thus the Berry phase, involves the contributions hidden in
parameter-space regions which the system has not visited (i.e. the contributions from all the
other states |n′〉 6= |n〉). While the adiabatic approximation is essentially a projection operation
which restricts the dynamics of the system to the n-th energy level, the Berry curvature can be
regarded as the result of the ‘residual’ interaction of those projected-out energy levels [137]. To
include the contributions from all the energy levels, Eq. (2.15) implies that for each value of R,
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the summation of Ωn
µν(R) over n vanishes, i.e.∑

n

Ωn
µν(R) = 0, (2.18)

which represents the local conservation law for the Berry curvature.
Note that the above deduction is based on the assumption of a separated single energy

level. When the state becomes N -fold degenerate over the full course of its evolution, the
accumulated ‘phase’ actually becomes non-Abelian and can be described by a U(N) matrix [136,
139]. Moreover, the concept of geometric phase can also be extended to the case of non-adiabatic
evolution, which thus underlines its purely geometrical nature [140, 141].

An alternative geometrical view

While the mathematical interpretation of the Berry phase can be made in terms of holonomy [8],
another intuitive picture to view the geometrical nature of Berry phase is to directly consider
the phase difference between two states [138]. For any two eigenstates with parameters, say R1

and R2 respectively, their phase difference ∆ϕ12 is naturally defined as

e−i∆ϕ12 =
〈n(R1)|n(R2)〉∣∣〈n(R1)|n(R2)〉

∣∣ , (2.19)

∆ϕ12 = −Im

log〈n(R1)|n(R2)〉 −
((((

((((
((

log
∣∣〈n(R1)|n(R2)〉

∣∣︸ ︷︷ ︸
Real number


= −Im log〈n(R1)|n(R2)〉. (2.20)

Note that only the imaginary part on the r.h.s. of the above equations contributes to the phase.
Obviously, by choosing an arbitrary phase of a quantum state (which is referred to as the

choice of the gauge), the phase difference between two states is gauge-dependent and cannot
have, by itself, any physical meaning. However, when it comes to a closed path in the parameter
space, all these gauge-arbitrary phases cancel with each other and thus a gauge-independent
quantity can be obtained. To see this specifically, we take four states as an example. By using
Eq. (2.20), we get the total phase differences

γ = ∆ϕ12 + ∆ϕ23 + ∆ϕ34 + ∆ϕ41

= −Im log〈n(R1)|n(R2)〉〈n(R2)|n(R3)〉〈n(R3)|n(R4)〉〈n(R4)|n(R1)〉. (2.21)

It is clear that the arbitrary phase in the bra vector cancels with its conjugate in the ket vector,
so that the overall phase γ is gauge-invariant.

Now, consider a smooth circuit C in the parameter space and discretize it with a set of points
on it. According to Eq. (2.20), the phase difference between any two contiguous points is

e−i∆ϕ =
〈n(R)|n(R+ ∆R)〉∣∣〈n(R)|n(R+ ∆R)〉

∣∣ . (2.22)
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Assume the arbitrarily chosen phase varies in a differentiable way along the path, and to the
leading order in ∆R in Eq. (2.22), one can have [138]

− i∆ϕ = 〈n(R)|∇Rn(R)〉 ·∆R, (2.23)

where e−i∆ϕ ' 1− i∆ϕ and |n(R+ ∆R)〉 = |n(R)〉+ |∇Rn(R)〉 ·∆R have been used. In the
limit where the discretized points become dense on the continuous path, the summation of the
phase difference converge to a circuit integral,

γ =
L∑
l=1

∆ϕl,l+1 −→
˛
C
i〈n(R)|∇Rn(R)〉︸ ︷︷ ︸

An

·dR. (2.24)

Thus the expression of Berry phase Eq. (2.12) is reproduced.
One can also gain more intuitive understanding of the geometrical nature of Berry phase from

the concept of classical parallel transport in differential geometry (see Fig. 2.1). If a vector is
parallel transported around a closed curve on the plane, it comes back unchanged. However, if
it is parallel-transported around a closed path on a curved surface, the vector gets rotated by
an angle α [135]

α =

¨
S
K · dS. (2.25)

Here K = dα/dS is the Gaussian curvature, dα is the angle by which the vector rotates, when it
is parallel-transported around an infinitesimal closed curve with area dS. As a simple example,
consider a vector moving along a closed curve on a sphere with radius r [Fig. 2.1(a)]. After
completing the closed path, the vector obtains a rotated angle equal to the solid angle subtended
by the loop at the sphere’s centre, namely, α = S/r2, where S is the area enclosed by the loop
and the Gaussian curvature of a sphere is K = 1/r2.
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Figure 2.1: Illustration of geometrical phases generated along a closed curve. (a) The geometric
phase of a vector moving on a sphere. Initially at the north pole, the vector is
parallel-transported along the longitude AB → the equator BC → the longitude
CA. Even though the vector has not been rotated relative to the surface of the
sphere at any point along its route, it gets rotated by an angle α after returning the
north pole. The angle α is given by the solid angle α = S/r2 with S being the area
of the enclosed surface, and r is the radius of the shpere. (b) The geometric phase
of a vector parallel transported on an arbitrary curved surface. After completing a
closed path on the surface, a vector is rotated by an angle α =

˜
S K · dS, where K

is the Guassian curvature. (c) The adiabatic evolution of a quantum state |n(R〉)
along a smooth circuit in the parameter space. The quantum parallel transport of a
state |n〉 means that 〈n| ddt |n〉 = 0. Namely, the change of a state cannot be along its
own direction. After returning to the starting point, the state’s phase is ‘rotated’ by
the Berry phase γn(C) =

˜
S Ωn · dS, with Ωn being the Berry curvature. The Berry

phase can also be interpreted as the accumulation of the phase difference between
the nearest neighbouring quantum states, as is defined in Eq. (2.20).

Manifestation in the Aharonov-Bohm effect

As a modern cornerstone of quantum mechanics, the Aharonov-Bohm (AB) effect, describes
a phenomenon where a charged particle is affected by the vector potential A, even though
the particle is confined to a region in which both the electric field E and magnetic field B
vanish [142]. One of the most common examples is to consider a double-slit experiment, in
which a beam of electrons is split into two and then the two beams are made to interfere after
passing along two different paths [see Fig. 2.2(a)]. The interference fringes can be observed in
the intensity of the combined beams, and thus it demonstrates the fundamentally probabilistic
nature of quantum mechanical phenomena. Now, what if an infinitely long thin solenoid (with
magnetic field B only inside) is placed between the two paths? One might expect that the
electron is unaffected, since outside the solenoid, both the electric field E and magnetic field B
are zero and thus the Lorentz force also vanishes. However, in their original paper published in
1959, Aharonov and Bohm predicted that9 the interference fringes will be shifted by altering

9Historically, Werner Ehrenberg and Raymond E. Siday first predicted the AB effect in a semi-classical way
in 1949 [143]. After the publication of the 1959 paper, Bohm was informed of Ehrenberg and Siday’s work,
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the magnetic flux inside the long solenoid [145]. Such an effect was soon observed in laboratory
by Chambers in 1960 [146], and further excellently confirmed10 in an experiment by the group
led by Tonomura in 1986 [147].

It turns out that the AB effect can be interpreted as a special case of the geometrical phase
factor [9]. While the magnetic fields vanish outside the solenoid, the vector potentials A do
not. According to the Stokes’s theorem, the line integral of A around any loop C enclosing the
solenoid equals to the magnetic flux Φ inside, i.e.

¸
CA · dR = Φ, which also indicates that A

falls off like 1/r with distance r from centre of the solenoid. Consider two electrons respectively
travelling around the solenoid along two paths forming a closed loop, as shown in Fig. 2.2.
The electron will interact with the solenoid in the way that its wavefunction accumulates a
phase shift ϕ = −e/~

´
A · dR. Thus, when the two electrons meet on the screen, they have

accumulated a phase difference

∆ϕ = − e
~

˛
C
A · dR = − e

~
Φ = γn(C). (2.26)

This phase difference equals to the Berry phase shown in Eq. (2.12), which also implies the
analogy between the Berry connection and the vector potentials.
To have an intuitive picture, the AB effect can be made analogous to the classical parallel

transport on a cone [135]. A cone may be formed by joining two straight edges at angle θ of
a flat piece of paper [see Fig 2.2(b)]. As the paper is not stretched or compressed during this
process, the cone has vanishing curvature except at the tip. Thus, away from the tip, a vector
will move on the cone just like that on the flat paper. However, if the vector moves around a
closed path that encloses the tip, it will accumulate a net rotation by the angle θ. Connecting
to the AB effect, the curvature at the tip can be regarded as the magnetic field in the solenoid.
The zero intrinsic curvature everywhere else corresponds to the vanishing B outside the solenoid.
Thus, the rotated angle θ is analogous to the phase difference between the two wavefunctions of
electrons, i.e. the Berry phase.

which was acknowledged in Bohm and Aharonov’s subsequent paper in 1961 [144].
10Because of its non-obvious nature, the AB effect initially endured considerable scrutiny. By using a tiny toroidal

magnet, the 1986 experiment showed excellent agreement with the theoretical prediction and answered all
objections about stray fields and unphysical geometries [142].
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Figure 2.2: (a) Schematic illustration of the Aharonov-Bohm effect in a double-slit experiment.
The electron beams are coherently split into two beams, which take path 1 and 2

respectively. These two paths form a closed circuit which encloses a solenoid with
magnetic field B only inside. After meeting on the screen, the electrons accumulate
a phase difference which equals to the geometrical phase. The magnetic flux enclosed
by the closed circuit determines the phase difference and thus shifts the interference
pattern on the screen. (b) The parallel transport of a vector on a cone as a classical
analogy of the AB effect. The cone is formed by joining two edges OM and OM′ of a
flat sheet of paper. After completing the closed path, the parallel transported vector
is rotated by the angle θ on the cone. This angle is analogous to the Aharonov-Bohm
phase shift and the apex of the cone corresponds to the magnetic filed (the Berry
curvature) inside the solenoid.

2.2 Chern number

As shown in Eq. (2.13), the Berry phase can be expressed as the surface integral of the Berry
curvature, namely the ‘flux’ of the Berry curvature. It turns out that such a flux remains
meaningful even on a closed surface, such as a sphere or a torus. Importantly, the integral over
a closed surface gives a quantized value, i.e.

"
S

Ω · dS = 2πC. (2.27)

Here the integer C is called Chern number of the first class, or the first Chern number. As
the Berry curvature is analogous to the magnetic field, the Chern number corresponds to the
number of magnetic monopoles enclosed by the surface S.
The proof of Eq. (2.27) is similar to that in Dirac’s theory of the quantized magnetic

monopole [148]. Assume the Berry curvature Ω(R) is regular and divergence-free on the closed
surface S. For simplicity, suppose S is a spherical surface centred at the origin and Ω(R) is
singular at R = 0. By cutting the surface along the equator, the integral over the whole closed
surface in Eq. (2.27) is now divided into the fluxes through two open surfaces. These two
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surfaces S+ and S− share the same boundary C, but have opposite normals ~n. Using Stokes
theorem, one gets

"
S

Ω · dS =

¨
S+

Ω · ~ndS +

¨
S−

Ω · ~ndS

=

‰
C
A+ · dR−

‰
C
A− · dR

=γ+(C)− γ−(C) = 2π × integer. (2.28)

Here, A± are the Berry connections on the same circuit and they may differ by a gauge
transformation. The above equations prove that the surface integral in Eq. (2.27) are expressed
as the difference between two Berry phases on the same closed path, which necessarily give rise
to an integer multiple of 2π, as has also been shown in Eq. (2.10).
As a robust topological invariant, the first Chern number turns out to lay behind the the

quantized Hall conductance in the integer quantum Hall effect. Historically, before Berry’s
publication in 1984, D. J. Thouless and co-workers have published the famous TKNN paper in
1982, where they obtained the explicit expressions for the quantized Hall conductance in integer
quantum Hall effect [7]. It was B. Simon who applied Berry’s idea to interpret the integers in
the TKNN paper and made a connection between these two works [8]. Nowadays, the geometric
and topological ideas laying behind the quantum Hall effect have drawn intensive attention
and have had a significant impact on modern condensed-matter physics [137]. In the following
sections we will see how topology enters into a crystalline system with periodic potentials.

2.3 Berry phase in Bloch bands

It is well know from solid state physics that a band structure of a periodic potential is specified
by its energy. Nevertheless, sometimes the bands can also exhibit geometrical and topological
features, which are related to how the wave functions change with the quasi-momentum across
the Brillouin zone (BZ).

Consider the following Hamiltonian that describes a single particle moving in d-dimensional
lattice potentials V (r) = V (r + ai), with ai being primitive lattice vectors (i = 1, 2, · · · , d),

Ĥ = − ~2

2m
∇2 + V (r), (2.29)

where the momentum operator has been expressed in the position representation as p̂ = −i~∇.
While in free space the energy of an atom is p2/2m with p the magnitude of momentum and
atom mass m, this quadratic dispersion relation is fundamentally modified as forbidden energy
regions appear as a consequence of the diffraction of the quantum mechanical waves in the
periodic potentials. This gives rise to energy bands called Bloch bands. Due to the translational
symmetry, the band structure can be derived from Bloch’s theorem, which states that the
eigenstates taking the form of a plane wave multiplied by a periodic function, i.e.

ψnq(r) = eiq·runq(r). (2.30)
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They satisfy the following boundary condition,

ψnq(r + ai) = eiq·aiψnq(r), (2.31)

for all the primitive lattice vectors ai, where n is the band index and the wave vector q is
associated with the translational symmetry of the periodic potential. As ~q plays a role similar
to momentum in free space, it is called the quasi-momentum (or crystal momentum). The
periodic functions

unq(r + ai) = unq(r) (2.32)

have the same periodicity as the lattice.
Plugging Eq. (2.30) into the Schrödinger equation Ĥψnq(r) = Enqψnq(r), one can straight-

forwardly find that unq(r) satisfies[
− ~2

2m
(∇+ iq)2 + V (r)

]
︸ ︷︷ ︸

Ĥq

unq(r) = Enqunq(r). (2.33)

This is equivalent to perform the unitary transformation unq(r) = e−iq·rψnq(r), so that unq(r)

become the eigenstates of the q-dependent Hamiltonian Ĥq = e−iq·rĤeiq·r. Different from the
original Hamiltonian Eq. (2.29), which is q-independent, now both the transformed Hamiltonian
Ĥq and functions unq(r) are explicitly q-dependent. What has been achieved here is that,
different from ψnq(r) which live in different state spaces defined by the q-dependent twisted
boundary condition (2.31) in each unit cell of the lattice, all functions unq(r) obey the same
boundary condition (2.32) and can thus be viewed as elements of the same state space.
Now, by identifying the q-space (i.e. the Brillouin zone) as the parameter space of the

Hamiltonian Ĥq with the eigenstates denoted by |unq〉, the formalism of the Berry phase can
be applied. Namely, if q is forced to vary along a closed path in the quasi-momentum space,
the Bloch state |unq〉 will pick up a geometric phase

γn = i

˛
C
dq · 〈unq|∇qunq〉. (2.34)

This phase γn is called the Berry phase in the n-th Bloch band.
To generate a closed path in momentum space, generally there are two ways. One way is

to apply a magnetic field, that is able to induce a cyclotron motion along a closed path in
q-space [137]. Note that such a closed path is only possible in two- and three-dimensional
(2D and 3D) systems. The other way is to apply an electric field (or a time-dependent vector
potential), which can cause a linear variation in q. Due to the periodicity of the Brillouin zone
under the addition of the reciprocal lattice vector G, a trajectory from q to q +G thus forms a
closed loop. Recall that the reciprocal lattice is constructed from the basis vectors {Gi} defined
by Gi · aj = 2πδij . Usually, q is chosen to be restricted to the first Brillouin zone which is a
defined primitive cell in reciprocal space.
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The geometrical phase along a trajectory connecting points q and q +G across the Brillouin
zone, was obtained by Zak in 1989 as a way to characterize the energy bands and is now known
as the Zak phase [149]:

γZakn = i

ˆ q+G

q
dq · 〈unq|∇qunq〉. (2.35)

The Zak phase can only be defined because of the torus topology of the Brillouin zone (i.e. the
two points q and q +G are identical), otherwise it would not be possible to complete a closed
path. Due to the same reason, a non-trivial Zak phase can appear even in a one-dimensional
(1D) parameter space. Especially, as a consequence of some symmetry, the Zak phase can be
quantized. For example, γZakn is 0 or π in 1D crystals with inversion symmetry [149]. Generally,
a non-trivial Zak phase characterizes various topological properties in 1D solids [137]. More
recently, the Zak phase has also been measured by using ultracold atoms in a 1D optical
lattice [122].
In dimensions higher than one, generally a rich structure of Berry phases appear [149]. In

order to characterize the topological property of a given (non-degenerate) Bloch band with index
n in 2D, the topological invariant, i.e. the first Chern number Cn (often and henceforth just
called Chern number) is commonly employed. It is given by the integral of the Berry curvature
Ωnq over the closed surface of the first Brillouin zone (being a torus)

2πCn =

¨
BZ

Ωnq · d2q, (2.36)

where the Berry curvature can be calculated according to Eq.(2.15). As argued before (see
Eq. (2.27)), the Chern number in Eq. (2.36) is a gauge-invariant integer and represents the
number of flux quanta of Berry curvature through the Brillouin zone. A Bloch band with
non-vanishing Chern number is usually called a Chern band. It follows from the conservation
law for the Berry curvature Eq. (2.18) that the total Chern number of all the Bloch bands
vanish, i.e. ∑

n

Cn = 0. (2.37)

Notice that for systems with time-reversal symmetry11, the Chern number of each Bloch band
always vanishes because under time reversal transformation, the eigenstates un,q(r) 7→ u∗n,−q(r)

lead to the Berry curvatures Ωn,q = −Ωn,−q as indicated in Eq. (2.14). Therefore, the realization
of Chern bands requires a time-reversal symmetry breaking. In the following section 2.4, we
introduce one paradigmatic topological model, namely the Harper-Hofstadter model, which
breaks the TR symmetry via complex tunnelling matrix elements and thus host non-zero Chern
numbers.

11The time reversal transformation indicates that time t 7→ −t, momentum k 7→ −k, magnetic fields B 7→ −B,
position wavefunctions ψ(x) 7→ ψ∗(x), while position x 7→ x and electric fields E 7→ E remain unchanged [150].
To justify the conjugate of wavefunction, one can see that while the wavefunction ψ(t) = e−itĤ/~ψ(t = 0)

satisfies the Schrödinger equation i~∂tψ(t) = Ĥψ(t), the transformed one ψ∗(−t) also does.
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2.4 Harper-Hofstadter model and its topology

The Harper-Hofstadter Hamiltonian is an iconic topological model from condensed matter
theory, which describes charged particles moving in a 2D lattice with the presence of strong
magnetic fields [118, 119]. The interplay between the underlying periodic potential and a
uniform magnetic field B (which defines a magnetic length `B ∝ B−1/2 that breaks the lattice
symmetry) gives rise to a complex fractal energy spectrum known as Hofstadter’s butterfly [119].
Of particular interest is the case where the magnetic field splits the original Bloch bands into
topologically nontrivial ones characterized by finite Chern numbers. These are directly related
to quantized Hall conductivity in IQH effect.
To arrive at the Harper-Hosftadter model, one can start with the following tight-binding

Hamiltonian that describes a single particle in a 2D square lattice,

Ĥ0 = −
∑
〈`,`′〉

Jâ†`′ â`, (2.38)

where â` (â
†
`) are the annihilation (creation) operators on site `. The positive J is the tunnelling

strength. Here the sum runs over all ordered pairs of nearest-neighbouring sites, so that the
Hamiltonian is hermitian.
As has been discussed in section 2.3, the single particle eigenstates in the presence of a

lattice potential are Bloch waves Eq. (2.30). It turns out that the periodic part unq(r) of
low-energy bands possess pronounced maxima at the lattice potential minima. For deep lattices,
the confinement on each single site is approximately harmonic and particles are tightly confined
at lattice sites with separated vibrational energy levels. At low temperatures, particles are
restricted to the lowest vibrational level and their kinetic energy is then frozen, except for
tunnelling with small amplitudes to neighbouring sites [55]. The tunnelling matrix elements in
Eq. (2.38) can be derived from Eq. (2.29) by expressing the Bloch functions in an alternative
basis formed by orthonormal Wannier orbitals, which are exponentially localized at the lattice
sites [151].
By assigning phases to the tunnelling matrix elements, the single-particle Hamiltonian with

complex tunnelling parameters can be expressed as

Ĥ ′0 = −
∑
〈`,`′〉

Jeiθ`′` â†`′ â`, (2.39)

where the phases θ`′` are known as Peierls phases [152, 153]. In this case, a particle will
accumulate the phases after hopping around the borders of each lattice plaquette denoted by P ,
as depicted in Fig. 2.3(a),

ΦP =
∑
P

θ`′` ≡ 2πα. (2.40)

The accumulated phase ΦP is analogous to the Aharonov-Bohm phase experienced by an electron
moving in a magnetic field, as has been shown in Eq. (2.26),

ΦAB = − e
~

˛
C
A · dR ≡ −2πΦB/Φ0, (2.41)
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Figure 2.3: (a) Schematic illustration of the effective magnetic flux obtained from complex
tunnelling amplitudes . (b) Illustration of the Aharonov-Bohm phase obtained
by an electron moving along a closed path C with the presence of magnetic field
B = ∇ ×A. This comparison shows that the Peierls phases θ`′` play the role of
vector potentials and ΦP represents the effective magnetic flux per plaquette.

where ΦB is the flux of applied magnetic field B and Φ0 = h/e is the magnetic flux quantum,
with h being the Planck constant, e the electron charge. Therefore, the Peierls phases θ`′` play
the role of vector potentials, and the flux ΦP in Eq. (2.40) represents the effective magnetic flux
per plaquette. Accordingly, α = ΦP /2π is the effective flux in units of the magnetic flux quantum.
Note that for electrons in real magnetic fields, the Peierls phases can be expressed as the line
integral of the vector potentials A between neighbouring sites, i.e. θ`′` = − e

~
´ r`′
r`

A(r) · dr.
However, for charge neutral atoms, they are engineered differently, as will be shown below (see
section 2.5.2).
Of particular interest, a 2D lattice with homogenous magnetic flux ΦP ≡ φ per plaquette is

described by the famous Harper-Hofstadter Hamiltonian [118, 119]

Ĥ = −J
∑
m,n

(
eiθ

x
m,n â†m+1,nâm,n + eiθ

y
m,n â†m,n+1âm,n + h.c.

)
(2.42)

= −J
∑
m,n

(
e−iφnâ†m+1,nâm,n + â†m,n+1âm,n + h.c.

)
, (2.43)

where âm,n are the annihilation operators on the sites labelled by (m,n), with m and n being the
site indices along x and y, respectively. The uniform flux φ, defined modulo 2π, is determined by
the Peierls phases θim,n, i = x, y. While different choices of Peierls phase pattern (which reflects
a gauge choice) affect the form of Hamiltonian and eigenstates, all physical observables (e.g.
energy spectrum, density distribution et al.) are gauge-independent. The above Hamiltonian
Eq. (2.43) has been written in the so-called Landau gauge (θxm,n, θ

y
m,n) = (−φn, 0) for simplicity.

One can easily check that after hopping around each single plaquette, the particle picks up the
phase φ corresponding to the magnetic flux, as can be seen in Fig. 2.4(a).
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2.4.1 Magnetic translation symmetry

The existence of Bloch states, whose energies form Bloch bands, is a consequence of the discrete
translational symmetry of the lattice. In a lattice with the presence of magnetic flux, however,
the incommensurate magnetic length scale changes the symmetry of the system. The new
symmetry can be revealed by the so-called magnetic translation operators (MTOs) denoted by
T̂Mx , T̂My , which can be defined as [154, 155]

T̂Mx =
∑
m,n

eiχ
x
m,n |m+ 1, n〉〈m,n|, T̂My =

∑
m,n

eiχ
y
m,n |m,n+ 1〉〈m,n|, (2.44)

where we employ the lattice basis {|m,n〉} with |m,n〉 = â†m,n|0〉 and |0〉 being the vacuum
state. The phases χx,ym,n are determined by imposing the commutation [T̂Mx,y, Ĥ] = 0 and take
the following form,

χxm,n = θxm,n + φn, χym,n = θym,n − φm, (2.45)

with φ = θxm,n + θym+1,n − θxm,n+1 − θ
y
m,n being the flux per plaquette.

It interesting to note that the magnetic translation operators satisfy

T̂Mx T̂My = eiφT̂My T̂Mx . (2.46)

The above equation indicates that the action of magnetic translation operators around the
borders of one lattice unit cell simply picks up the pierced flux, see Fig. 2.4(b). This suggests a
way to construct commuting operators by successive application of T̂x, T̂y, so that a super-cell
with integer multiples of 2π can be enclosed. From Eq. (2.46) one immediately gets(

T̂Mx

)k (
T̂My

)l
=
(
T̂Mx

)k−1
eiφ·l

(
T̂My

)l
T̂Mx = eiφ·kl

(
T̂My

)l (
T̂Mx

)k
, (2.47)

where (T̂Mx )k represents a translation by k lattice constants along x and (T̂My )l corresponds to
a translation by l lattice constants along y. Therefore, in the case of rational values of flux per
plaquette α = φ/2π ≡ p/q, where p, q are relatively prime, the commutation [(T̂Mx )k, (T̂My )l] = 0

is achieved for kl = q × integers, and the smallest super-cell given by kl = q is called magnetic
unit cell, that is q times larger than the lattice unit cell, see Fig. 2.4(c).

Now, the new operators (T̂Mx )k, (T̂My )l and the Hamiltonian Ĥ (2.43) form a complete set of
commuting operators and they share the simultaneous eigenstates. Based on these new magnetic
translation symmetries, the eigenstate wave-functions Ψm,n can be found by formulating the
following generalized Bloch theorem,

(T̂Mx )kΨm,n = Ψm+k,n = eikxkaΨm,n

(T̂My )lΨm,n = Ψm,n+l = eikylaΨm,n (2.48)

where a denotes the lattice constant and kx, ky are defined within the first magnetic Brillouin
zone, −π/(ka) ≤ kx < π/(ka),−π/(la) ≤ ky < π/(la).
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Figure 2.4: (a) Sketch of the Harper-Hofstadter model in Landau gauge. Each arrow represents
the Peierls phase of one φ. For α = 1/4, the magnetic unit cell oriented along y is
indicated by the shadow region, which is four times larger than the usual lattice unit
cell. (b) Applications of magnetic translation operators around one lattice unit cell.
After completing one the unit cell, the ground state accumulate a phase of φ, i.e.(
T̂My

)† (
T̂Mx

)†
T̂My T̂Mx |ψm,n〉 = eiφ|ψm,n〉. (c) Successive applications of magnetic

translation operators around one super-cell of size kl. The accumulated phases after
completing this super-cell becomes klφ.
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2.4.2 Energy spectrum

To solve the Schrödinger equation, we first apply th expressions of magnetic translation operators
shown in Eqs. (2.44) and (2.45) for the Hamiltonian (2.43) written in Landau gauge (θxm,n, θ

y
m,n) =

(−φn, 0),

T̂Mx =
∑
m,n

|m+ 1, n〉〈m,n|, T̂My =
∑
m,n

e−iφm|m,n+ 1〉〈m,n|. (2.49)

For flux α = p/q, the magnetic unit cell of size kl = q can be chosen to be oriented along
the y-direction with dimensions (1× q). The corresponding commuting magnetic translation
operators are given by

T̂Mx =
∑
m,n

|m+ 1, n〉〈m,n|,(
T̂My

)q
=
∑
m,n

e−iφmq|m,n+ q〉〈m,n| =
∑
m,n

|m,n+ q〉〈m,n|, (2.50)

where φ = 2πp/q indicates the phases φmq = 2πmp.
To fulfill the generalized Bloch theorem (2.48),

T̂Mx Ψm,n = Ψm+1,n = eikxaΨm,n,

(T̂My )qΨm,n = Ψm,n+q = eikyqaΨm,n, (2.51)

one can make the following ansatz for the wave-functions

Ψm,n = eikxmaeikynaψn, ψn+q = ψn, (2.52)

where kx, ky are defined in the first magnetic Brillouin zone as −π/a ≤ kx < π/a,−π/(qa) ≤
ky < π/(qa).

The eigenstates can be expressed in the lattice basis as

|Ψ〉 =
∑
m,n

Ψm,n|m,n〉. (2.53)

Thus |Ψm,n|2 represents the probability density of a particle occupying site (m,n). Inserting
the above expression into the time-independent Schrödinger equation Ĥ|Ψ〉 = E|Ψ〉 associated
with Hamiltonian (2.43), one gets

Ĥ|Ψ〉 = −J
∑
m,n

(
e−iφnΨm,n|m+ 1, n〉+ eiφnΨm+1,n|m,n〉+ Ψm,n|m,n+ 1〉+ Ψm,n+1|m,n〉

)
.

(2.54)

Multiplying the above equation with a bra 〈m,n| gives

EΨm,n = 〈m,n|E|Ψ〉

= 〈m,n|Ĥ|Ψ〉 = −J
(
e−iφnΨm−1,n + eiφnΨm+1,n + Ψm,n−1 + Ψm,n+1

)
(2.55)
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By applying the ansatz Eq. (2.52) one arrives at

Eψn = −J
(

2 cos(φn+ kxa)ψn + e−ikyaψn−1 + eikyaψn+1

)
. (2.56)

Due to the magnetic translational invariance, considering only one magnetic unit cell (with size
1 × q) is enough. Therefore, the problem reduces to solve the eigenvalue equation of a q × q
matrix,

E(k)


ψ0

ψ1
...

ψq−1

 = Ĥ(k)


ψ0

ψ1
...

ψq−1

 , (2.57)

with the matrix expressed as

Ĥ(k) = −J



h0 eikya 0 · · · 0 e−ikya

e−ikya h1 eikya 0 · · · 0

0 e−ikya h2 eikya · · · 0

0 0 e−ikya h3 · · · 0
...

...
...

...
. . .

...
eikya 0 · · · 0 e−ikya hq−1


, (2.58)

where hn = 2 cos(φn+ kxa) has been introduced for simplicity, and the two terms e±ikya at the
corners are due to the periodic boundary condition ψ−1 = ψq−1, ψq = ψ0 according to Eq. (2.52).
For vanishing magnetic fields (thus ψn−1 = ψn = ψn+1), as indicated in Eq. (2.56), the

system shows a single energy band with dispersion relation E(k) = −2J(cos(kxa) + cos(kya)).
In the presence of a rational flux φ = 2πα = 2πp/q per plaquette, the single band fragments
into q bands, with the dispersion relations Eµ(k) (µ = 1, · · · , q) determined from solving the
eigenvalues of Eq. (2.58). By plotting the energy versus rational values of α, one obtains
the fractal structure of the so-called Hofstadter butterfly 12, as shown in Fig. 2.5(a). Taking
α = 1/4 as an example, the complete energy bands are plotted in Fig. 2.5(b), which shows q = 4

sub-bands.

12Interesting self-repeated structures also appear in other lattice geometries with magnetic fields, including
hexagonal lattice, kagome lattice, Penrose tiling lattice et al. [156].
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(b)(a)

Figure 2.5: (a) Hofstadter butterfly. The vertical red line indicate α = 1/4. The plot is obtained
by numerically solving Eq. (2.58) with q = 400 and p = 1, 2, · · · , q − 1. Note that
the values of kx and ky do not change the fractal structure. (b) The single-particle
energy spectrum at α = 1/4. The lowest band and the top band share the same
Chern number −1 and the sum of Chern numbers of the middle two bands is 2.

2.4.3 Chern number of Hofstadter bands

The topological properties of the energy bands can be characterized by the Chern number.
After solving the eigenvalue equation (2.57), the Chern number of j-th band is determined by
applying Eq. (2.36),

2πCj =

¨
BZ

Ωjk · dkxdky, (2.59)

Ωjk ≡ Ωj(kx, ky) = i
[
〈∂kxj|∂kyj〉 − 〈∂kyj|∂kxj〉

]
(2.60)

= i

∑
j′ 6=j

〈j|∂kxĤ|j′〉〈j′|∂kyĤ|j〉(
Ej − Ej′

)2 − (kx ↔ ky)

 , (2.61)

where we have used |j〉 ≡ |j(kx, ky)〉 to denote the eigenstates and |∂kj〉 ≡ ∂|j〉/∂k for short.
Note that as it can not be guaranteed to define the phase of eigenstates smoothly over the
entire Brillouin zone. Instead of calculating the differentiation on the eigenstates in Eq. (2.60),
applying Eq. (2.61) with ∂kĤ ≡ Ĥ(k + dk) − Ĥ(k) is thus particularly useful for numerical
calculations. The derivation of Eq. (2.61) can be found in Eq. (2.15).

After the following discretization,

kx = 2π
nx
Nx

, nx = 0, 1, · · · , Nx − 1,

ky =
2π

q

ny
Ny

, ny = 0, 1, · · · , Ny − 1, (2.62)

the Chern number can be obtained from summing over the discretized quasi-momenta for
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(b)(a)

Figure 2.6: Chern number of the lowest band C1 of the system with (a) α = 1/4, (b) α = 4/9.
We have used the same number Nx = Ny = N for discretization.

sufficiently large values of Nx, Ny. As shown in Fig. 2.6, taking α = 1/4, 4/9 for example, the
corresponding Chern number of the lowest band are found to saturate at C1 = −1, 2 respectively.
The same procedure can be applied for each band separately. However, for the two middle

bands with touching points, e.g. as shown in Fig. 2.5(b), the above formula cannot be directly
applied. According to the conservation of Chern number mentioned in Eq. (2.37), the sum of
Chern numbers of the two middle bands can be estimated as Cmid = C2 + C3 = −C1 − C4 = 2,
with the Chern number of top band C4 = C1 = −1. This result can be further confirmed
by either analytical solutions 13 based on a Diophantine equation [155, 157], or numerical
calculation according to Ref. [158].

2.4.4 Symmetry consideration

We have shown that the broken time-reversal symmetry allows for non-zero Chern numbers; the
magnetic translational symmetry guarantees a generalized Bloch theorem. As another important
property of the HH model, the particle-hole symmetry gives rise to both an energy spectrum
and Chern numbers that are symmetric with respect to zero energy E = 0.
Consider the transformation Ψm,n → Ψ̃m,n = (−1)m+nΨm,n and apply it in Eq. (2.55), one

gets [155]

− EΨ̃m,n = −J
(
e−iφnΨ̃m−1,n + eiφnΨ̃m+1,n + Ψ̃m,n−1 + Ψ̃m,n+1

)
. (2.63)

Comparing the above equation with Eq. (2.55), one can find that it simply modifies the energy
as E → −E. Therefore, the existence of a state Ψm,n with energy E indicates that there also
exists a state Ψ̃m,n with opposite energy −E.

According to the generalized Bloch theorem (2.48), one can make a similar ansatz as Eq. (2.52)

13The total Chern number of bands with touching points read Cmid = q − 2 for r even and Cmid = q − 1 for r
odd, where r denotes the r-th energy gap of the Hofstadter spectrum [155, 157]. Thus, the sum of Chern
numbers of the two middle bands corresponding to α = 1/4 is Cmid = C2 + C3 = q − 2 = 2.

28



2 Preliminaries

for the new state Ψ̃m,n = eikxmaeikynaψ̃n, ψ̃n+q = ψ̃n. After applying it to Eq. (2.63), one finds

Eψ̃n = −J
(

2 cos(φn+ kxa+ π)ψ̃n + e−i(kya+π)ψ̃n−1 + ei(kya+π)ψ̃n+1

)
, (2.64)

where the minus sign in energy has been absorbed in the coefficients on the right-hand side of the
equation by a π shift in the quasi-momenta. Therefore, the similarity between Eqs. (2.56) and
(2.64) implies that the eigenstates associated with positive energies are related to corresponding
states with negative ones according to

ψn(kx, ky) = ψ̃n(kx + π/a, ky + π/a). (2.65)

Consequently, the Berry curvature of the n-th band with positive energies is related to the Berry
curvature of the ñ-th band with negative energies via

Ωn(kx, ky) = Ωñ(kx + π/a, ky + π/a). (2.66)

Therefore, after integrating the Berry curvatures over first BZ, the resulting Chern number of
the bands with opposite energies are identical. That is, the Chern numbers have a symmetric
distribution with respect to E = 0, as has been exemplified for α = 1/4 with C1 = C4 = −1.

2.5 Floquet engineering

In order to measure the topological properties in the HH model, a prerequisite is to realize the
model in a real experiment, which has been a challenging task. This is mainly because extremely
strong magnetic fields are needed for electrons in solid-state lattices. Namely, to achieve the
order of one flux quantum per plaquette in real solid state systems, where the lattice constants
are rather small (on the order of a few angstroms), the magnetic fields need to be up to 104

Tesla which are unfeasible in present-day laboratory. Considering, in turn, ultracold atoms in
optical lattices, extremely strong artificial magnetic fields can be achieved by using Floquet
engineering. After the first realization of the HH model by using ultracold atoms [120, 121],
the Chern number of the lowest band has also been measured recently [124]. In this section,
we shall briefly review the formalism of Floquet engineering by following Refs. [71, 159], after
which we will see how it can be applied to engineer the desired HH model14.

2.5.1 General properties

Consider a Floquet system, namely a periodically driven quantum system that is described by a
time-periodic Hamiltonian

Ĥ(t) = Ĥ(t+ T ), (2.67)

with T = 2π/ω being the driving period.

14Note that the Floquet engineering has also been employed to realize the Haldane model [112–114].
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Floquet states

Similar to the existence of Bloch states (2.30) in spatially periodic systems, there exist generalized
stationary states in a time-periodic system, which are called Floquet states |ψn(t)〉. They have
the following form

|ψn(t)〉 = e−iεnt/~|un(t)〉, |un(t)〉 = |un(t+ T )〉 (2.68)

with real quasienergy εn that determines the linear phase evolution and the time-periodic Floquet
mode |un(t)〉 that represents the so-called micromotion. The Floquet states are solutions of the
time-dependent Schrödinger equation

i~dt|ψ(t)〉 = Ĥ(t)|ψ(t)〉, (2.69)

where dt denotes the time derivative.
Using Û(t2, t1) to denote the time evolution operator from time t1 to t2, it turns out that the

Floquet states are eigenstates of the time-evolution operator over one driving period,

Û(t+ T, t)|ψn(t)〉 = |ψn(t+ T )〉 = e−iεnT/~|ψn(t)〉, (2.70)

with e−iεnT/~ being the eigenvalues. Thus at any fix time t, the Floquet states can be chosen to
form a complete orthonormal basis. The time evolution operator can thus be written as

Û(t2, t1) =
∑
n

|ψn(t2)〉〈ψn(t1)| =
∑
n

e−iεn(t2−t1)/~|un(t2)〉〈un(t1)|. (2.71)

Accordingly, the time evolution of a state |ψ(t)〉 can be expressed as

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉 =
∑
n

cne
−iεnt/~|un(t)〉, (2.72)

where we have applied Eq. (2.71) in the second equation and cn = eiεnt0/~〈un(t0)|ψ(t0)〉 are
time-independent coefficients. The above equation implies that (i) if the system is initially
prepared in a single Floquet state n = n0, its time evolution will be periodic and be dermined
by the single Floquet mode |un0(t)〉 (apart from an irrelevant overall phase factor e−iεn0 t/~); (ii)
if the system is prepared in a coherent superposition of several Floquet states, the evolution
will not be periodic any more. Besides the contribution from the (periodic) time dependence
of Floquet modes |un(t)〉, namely the micromotion, the evolution will also be affected by the
dephasing factors e−iεnt/~. Thus the deviations from a periodic evolution are governed by
the quasienergies εn, in a fashion like the time evolution of an autonomous system (with
time-independent Hamiltonian) is governed by the energies of the stationary states.

Floquet Hamiltonian and micromotion operator

A nice property of the Floquet formalism is that the behaviour of a periodically driven system
can be effectively captured by a time-independent Hamiltonian. By treating the dynamics in a
stroboscopic fashion, i.e. in steps of the driving period T , the time evolution can be described
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by the so-called Floquet Hamiltonian ĤF
t0 , which is defined to generate the time evolution over

one period,

Û(t0 + T, t0) = exp

(
− i
~
TĤF

t0

)
, (2.73)

where t0 denotes initial time. Comparing the above definition with Eq. (2.70), one can immedi-
ately see that the Floquet modes |un(t0)〉 and quasienergies εn are respectively the eigenstates
and eigenvalues of the Floquet Hamiltonian, i.e.

ĤF
t0 |un(t0)〉 = εn|un(t0)〉. (2.74)

Thus the Floquet Hamiltonian can also be expressed as

ĤF
t0 =

∑
n

εn|un(t0)〉〈un(t0)|. (2.75)

While the Floquet modes |un(t0)〉 at initial time t0 can be obtained from the diagonalization
of ĤF

t0 via Eq. (2.74), the (periodic) time dependence of the Floquet modes, i.e. the micromotion,
can be conveniently described by defining a two-point micromotion operator

ÛF (t2, t1) =
∑
n

|un(t2)〉〈un(t1)|. (2.76)

Apparently, it evolves the Floquet modes in time,

|un(t2)〉 = ÛF (t2, t1)|un(t1)〉, (2.77)

and it is periodic in both arguments ÛF (t2, t1) = ÛF (t2, t1 + T ) = ÛF (t2 + T, t1) individually.
Note that in terms of the Floquet Hamiltonian and the micromotion operator, the time

evolution operator can be expressed as

Û(t2, t1) = e−i(t2−t1)ĤF
t2
/~ÛF (t2, t1) = ÛF (t2, t1)e−i(t2−t1)ĤF

t1
/~. (2.78)

This can be easily checked. For instance, one has

ÛF (t2, t1)e−i(t2−t1)ĤF
t1
/~|ψ(t1)〉 = ÛF (t2, t1)e−i(t2−t1)ĤF

t1
/~e−iεt1/~|u(t1)〉

= e−i(t2−t1)ε/~e−iεt1/~︸ ︷︷ ︸
e−iεt2/~

ÛF (t2, t1)|u(t1)〉︸ ︷︷ ︸
|u(t2)〉

= |ψ(t2)〉 = Û(t2, t1)|ψ(t1)〉. (2.79)

Extended Hilbert space

According to Eq. (2.70), the Floquet states and their quasienergies could be obtained by solving
the eigenvalue problem of the time evolution operator over one period. However, what is
uniquely determined from this calculation are the Flqouet states |ψn(t)〉 and the phase factors
e−iεnT/~, rather than the quasienergies εn. Note that the phase factors remain unchanged after
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adding integer multiples of ~ω to the quasienergy. Thus, starting from a possible value εn one
can denote all choices for the quasienergies as

εnm = εn +m~ω. (2.80)

Due to this, the corresponding Floquet modes |un(t)〉 = eiεnt/~|ψn(t)〉 and the Floquet Hamilto-
nian (2.75) are not uniquely defined as well. Since the Floquet states are unique,

|ψn(t)〉 = e−iεnt/~|un(t)〉 = e−iεnmt/~ eimωt|un(t)〉︸ ︷︷ ︸
|unm(t)〉

, (2.81)

the Floquet modes are accordingly modified as

|un(t)〉 → |unm(t)〉 = eimωt|un(t)〉. (2.82)

Applying the modified form of Floquet states Eq. (2.81) into the Schrödinger equation
Eq. (2.69), one has [

Ĥ(t)− i~dt
]
|unm(t)〉 = εnm|unm(t)〉. (2.83)

This equation can now be interpreted as an eigenvalue problem in an extended Hilbert space
F = H⊗LT , where H is the Hilbert space of a quantum system (with the quasienergies lying
within the interval of width ~ω), and LT represents the space of T -periodically time-dependent
functions. A complete set of orthonormal basis states of F thus can be chosen as

|αm(t)〉 = |α〉eimωt, (2.84)

where {|α〉} is an orthonormal basis ofH and the indicesm label the complete set of time-periodic
functions eimωt.
To make a distinction, for states |u(t)〉 at time t in H, a double ket notation |u〉〉 is used for

elements in F , where time t is treated as another intrinsic coordinate. Accordingly, the scalar
product in F is defined as

〈〈u|v〉〉 =
1

T

ˆ T

0
dt〈u(t)|v(t)〉, (2.85)

which combines the scalar product in H with time average over driving period T .
Meanwhile, an operator acting in F will be marked by an overbar. For instance, in H the

operator Q̂ introduced as
Q̂ = Ĥ(t)− i~dt, (2.86)

is correspondingly denoted as Q̄ in F . Now Eq. (2.83) becomes an eigenvalue problem of Q̄,

Q̄|unm〉〉 = εnm|unm〉〉. (2.87)

The operator Q̄ is called quasienergy operator and is hermitian in F .
The above equation (2.87) actually represents one of the advantages of going to the extended

space F (via treating time t as an intrinsic coordinate), since the time-dependent Schrödinger
equation (2.83) is now converted to a ‘time-independent’ one. In this case, methods or intuition
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from the physics of systems described by time-independent Hamiltonian can be employed to
diagonalize the quasienergy operator Q̄, from which the Floquet modes and quasienergies can be
straightforwardly computed. However, the cost is that the Hilbert space is drastically increased.
To see this, one can now write down the matrix elements of the quasienergy operator Q̄ in the
basis |αm〉〉 of F ,

〈〈α′m′|Q̄|αm〉〉 =
1

T

ˆ T

0
dte−im

′ωt〈α′|
(
Ĥ(t)− i~dt

)
|α〉eimωt

=
1

T

ˆ T

0
dt

[
e−im

′ωt〈α′|Ĥ(t)|α〉eimωt − e−im′ωt〈α′|α〉
(
i~dteimωt

)]
= 〈α′| 1

T

ˆ T

0
dte−i(m

′−m)ωtĤ(t)︸ ︷︷ ︸
Ĥm′−m

|α〉 − δα′αi~(imω)
1

T

ˆ T

0
dtei(m−m

′)ωt︸ ︷︷ ︸
δm′m

= 〈α′|Ĥm′−m|α〉+m~ωδα′αδm′m, (2.88)

where the Fourier transform of the Hamiltonian Ĥ(t) has been introduced as

Ĥm =
1

T

ˆ T

0
dte−imωtĤ(t) = Ĥ†−m, (2.89)

Ĥ(t) = Ĥ(t+ T ) =

∞∑
m=−∞

eimωtĤm. (2.90)

According to Eq. (2.88), the matrix form of the quasienergy operator Q̄ with respect to
m can be depicted as in Fig. 2.7(a), where each block corresponds to an operator Q̂m′m =

Ĥm′−m +m~ωδm′m acting in H. Solutions of such a matrix of ‘infinite’ dimension contain a lot
of redundant information, since different solutions with m′ 6= m are related to each other via
Eqs. (2.80), (2.82), but the corresponding Floquet states (2.81) are unique. It is thus possible
to construct all Floquet states from the solutions with the quasienergies lying within the same
interval of width ~ω. Each interval is often called a single Brillouin zone of the quasienergy
spectrum, which is analogous to Bloch’s theory of spatially periodic system.
To diagonalize the quasienergy operator Q̄, one can construct a unitary operator ŪD which

transform the Floquet modes to be a new basis |αm〉〉 = Ū †D|uαm〉〉, such that

〈〈uαm|Q̄|uαm〉〉 = εαm = εα +m~ω

⇔〈〈α′m′| Ū †DQ̄ŪD︸ ︷︷ ︸
Q̄′

|αm〉〉 = δm′mδα′α

(
〈α|ĤD|α〉+m~ω

)
, (2.91)

where ĤD is a time-independent gauge-transformed Hamiltonian,

ĤD = Û †D(t)
(
Ĥ(t)− i~dt

)
ÛD(t), (2.92)

which is diagonal in the basis |α〉,

〈α′|ĤD|α〉 = δα′αεα. (2.93)
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Figure 2.7: (a) Matrix form of the quasienergy operator Q̄ with respect to indices m. Each
block represents the matrix form of operator Q̂m′m = Ĥm′−m + m~ωδm′m acting
in the H space (i.e. with respect to indices α). (b) Block diagonalization of the
quasienergy operator Q̄ with respect to indices m. Each diagonal block corresponds
to the matrix form of the effective Hamiltonian ĤF represented in H, which does
not have to be diagonal. Cited from Ref. [159].

By applying the transformation |uαm(t)〉 = ÛD(t)|α〉eimωt (which corresponds to |uαm〉〉 =

ŪD|αm〉〉) with m = 0 in Eq. (2.75), the Floquet Hamiltonian ĤF
t0 can be expressed as

ĤF
t0 =

∑
α

εα|uα0(t0)〉〈uα0(t0)|

=
∑
α

εαÛD(t0)|α〉〈α|Û †D(t0) = ÛD(t0)
∑
α

εα|α〉〈α|︸ ︷︷ ︸
ĤD

Û †D(t0)

= ÛD(t0)ĤDÛ
†
D(t0). (2.94)

Namely, the Floquet Hamiltonian ĤF
t0 is a unitary transformation of ĤD. Similarly, the

micromotion operator ÛF (t2, t1) defined in Eq. (2.76) becomes

ÛF (t2, t1) =
∑
α

|uα0(t2)〉〈uα0(t1)|

=
∑
α

ÛD(t2)|α〉〈α|Û †D(t1) = ÛD(t2)Û †D(t1). (2.95)

Effective Hamiltonian

The above equations (2.94) and (2.95) provides a different approach to calculate the Floquet
Hamiltonian and the micromotion operator, alternative to using Eqs. (2.75) and (2.76) that
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require the calculation of the Floquet states and the quasienergies from diagonalizing the time
evolution operator over one driving period. Actually, for this purpose one does not have to fully
diagonalize the quasienergy operator Q̄. It would be sufficient to find a unitary operator ŪF so
that it block diagonalizes Q̄ with respect to indices m,

〈〈α′m′|Ū †F Q̄ŪF |αm〉〉 = δm′m

(
〈α′|ĤF |α〉+ δα′αm~ω

)
, (2.96)

with ĤF being a time-independent gauge transformed Hamiltonian,

ĤF = Û †F (t)
(
Ĥ(t)− i~dt

)
ÛF (t). (2.97)

Such a time-independent Hamiltonian ĤF is called effective Hamiltonian. The block diagonal-
ization of Q̄ is illustrated in Fig. 2.7(b). Note that ŪF is not unique, as multiplying ŪF with any
time-independent unitary operator from the right only modifies the matrix form of each block
(by causing a mixing of states within each block), leaving the overall block diagonal structure
unchanged.
Each of the diagonal blocks of Ū †F Q̄ŪF offers a possible choice for the Floquet Hamiltonian.

Applying δαα′εαm = 〈〈uα′m|Q̄|uαm〉〉 according to Eq. (2.87) and taking the m = m′ = 0 block
as an example, the Floquet Hamiltonian in Eq. (2.75) can be expressed as

ĤF
t0 =

∑
α

εα|uα0(t0)〉〈uα0(t0)|

=
∑
αα′

|uα′0(t0)〉δαα′εα〈uα0(t0)|

=
∑
αα′

|uα′0(t0)〉〈〈uα′0|Q̄|uα0〉〉〈uα0(t0)|

=
∑
αα′

ÛF (t0)|α′〉〈〈α′0|Ū †F Q̄ŪF |α0〉〉〈α|Û †F (t0) (2.98)

=
∑
αα′

ÛF (t0)|α′〉〈α′|ĤF |α〉〈α|Û †F (t0) (2.99)

= ÛF (t0)ĤF Û
†
F (t0), (2.100)

where the transformation |uαm〉〉 = ŪF |αm〉〉 (corresponding to |uαm(t)〉 = ÛF (t)|α〉eimωt) has
been used to arrive at Eq. (2.98), and Eq. (2.96) has been applied for Eq. (2.99). It is clear
that the effective Hamiltonian ĤF is related to the Floquet Hamiltonian ĤF

t0 via a unitary
transformation.

Similar to Eq. (2.95), the two-point micromotion operator can also be written as

ÛF (t2, t1) = ÛF (t2)Û †F (t1), (2.101)

where ÛF (t) are usually called one-point micromotion operator. Now, with Eqs. (2.100) and
(2.101), the time-evolution operator Û(t2, t1) in Eq. (2.78) can be directly expressed in terms of
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ĤF and ÛF (t), without calculating ĤF
t0 and ÛF (t2, t1) beforehand, i.e.

Û(t2, t1) =ÛF (t2, t1)e−i(t2−t1)ĤF
t1
/~

=ÛF (t2, t1)
∑
n

1

n!

(
−i(t2 − t1)

~
ĤF
t1

)n
=ÛF (t2)Û †F (t1)

∑
n

1

n!

(
−i(t2 − t1)

~

)n (
ÛF (t1)ĤF Û

†
F (t1)

)n
=ÛF (t2)Û †F (t1)

[
1 +

(
−i(t2, t1)

~

)
ÛF (t1)ĤF Û

†
F (t1)

+
1

2!

(
−i(t2 − t1)

~

)2

ÛF (t1)ĤF ĤF Û
†
F (t1) + · · ·

]

=ÛF (t2)Û †F (t1)ÛF (t1)
∑
n

1

n!

(
−i(t2 − t1)

~

)n (
ĤF

)n
Û †F (t1)

=ÛF (t2)e−i(t2−t1)ĤF /~Û †F (t1). (2.102)

As the micromotion operator ÛF is not unique and it can be multiplied by any time-independent
unitary operator from the right, choosing ÛF (t0 +T ) = ÛF (t0) = 1 is allowed15. In this case, for
t1 = t0, t2 = t0 + T , both Eqs. (2.100) and (2.102) confirm that ĤF goes back to the ĤF

t0 . This
implies that the Floquet Hamiltonian is a special choice of the effective Hamiltonian, which
generates the stroboscopic time evolution in steps of driving period T . Therefore, directly
computing the effective Hamiltonian offers an efficient way to study the long-time dynamics
when the detailed dynamics within each driving period can be neglected.

Nevertheless, the effective Hamiltonian ĤF can also be used to address the short-time dynamics
within one driving period. By diagonalizing ĤF ,

ĤF |ũn〉 = εn|ũn〉, (2.103)

the Floquet modes and the quasienergies can be expressed as

|unm(t)〉 = ÛF (t)|ũn〉eimωt, εnm = εn +m~ω. (2.104)

Now the short-time dynamics within one driving period, i.e. the micromotion, can be described
by the Floquet mode |un(t)〉 ≡ |un0(t)〉 in the following way,

|un(t)〉 = ÛF (t)|ũn〉 =
∑
α

ÛF (t)|α〉︸ ︷︷ ︸ 〈α|ũn〉︸ ︷︷ ︸ =
∑
α

γαn|α(t)〉F , (2.105)

where we have introduced the coefficients γαn = 〈α|ũn〉 and the time-dependent basis states
|α(t)〉F = ÛF (t)|α〉. Note that the micromotion operator ÛF can also be expressed as

ÛF (t) = eĜ(t), Ĝ(t) = −iK̂(t), (2.106)
15For example, for a given ÛF (t), it can be replaced by Û ′F (t) = ÛF (t)Û

†
F (t0) such that Û ′F (t0) = 1.
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where the Hermitian K̂(t) is called a kick operator [160], which describes an abrupt switch-on
of the periodic forcing.

One crucial part of Floquet theory is to compute the effective Hamiltonian and the micromotion
operator. For the driving frequency large compared to other system parameters like tunnelling
matrix elements of Ĥ(t), one can treat −i~dt as an unperturbed part with 〈〈α′m′|− i~dt|αm〉〉 =

δm′mδα′αm~ω , and V̂ = Ĥ(t) as a perturbation. In this case, degenerate perturbation theory
can be used to systematically block diagonalize the quasienergy operator [159], which leads to a
high-frequency expansion of the effective Hamiltonian and the micromotion operator,

ĤF ≈
µcut∑
µ=1

Ĥ
(µ)
F , ÛF ≈ exp

µcut∑
µ=1

Ĝ(µ)(t)

 , (2.107)

with Ĥ
(µ)
F = Ĥ

(µ)†
F , [Ĝ(µ)(t)]† = −Ĝ(µ)(t). The integer µcut determines the cut-off of the

considered orders. The leading terms read,

Ĥ
(1)
F = Ĥ0, (2.108)

Ĥ
(2)
F =

∑
m 6=0

ĤmĤ−m
m~ω

, (2.109)

Ĥ
(3)
F =

∑
m 6=0

[Ĥ−m, [Ĥ0, Ĥm]]

2(m~ω)2
+

∑
m′ 6=0,m

[Ĥ−m′ , [Ĥm′−m, Ĥm]]

3mm′(~ω)2
, (2.110)

and

Ĝ(1)(t) = −
∑
m 6=0

eimωtĤm

m~ω
, (2.111)

Ĝ(2)(t) = −
∑
m 6=0

eimωt[Ĥ0, Ĥm]

(m~ω)2
+

∑
m′ 6=0,m

ei(m−m
′)ωt[Ĥ−m′ , Ĥm]

2m(m−m′)(~ω)2
. (2.112)

where Ĥm is the Fourier transform of Ĥ(t) defined in Eq. (2.89).
Note that the high-frequency expansion of the effective Hamiltonian ĤF can be related to

the frequently-employed Floquet-Magnus expansion of the Floquet Hamiltonian ĤF
t0 [159]. By

plugging ĤF = Ĥ
(1)
F + Ĥ

(2)
F + · · · , ÛF (t0) = 1 + Û

(1)
F (t0) + Û

(2)
F (t0) + · · · into Eq. (2.100), one

arrives at ĤF
t0 =

∑
µ Ĥ

F (µ)
t0

with the leading order,

Ĥ
F (1)
t0

= Ĥ
(1)
F = Ĥ0, (2.113)

Ĥ
F (2)
t0

= Ĥ
(2)
F + Ĥ

(1)
F Û

(1)†
F (t0) + Û

(1)
F (t0)Ĥ

(1)
F

=
∑
m 6=0

ĤmĤ−m + eimωt0 [Ĥ0, Ĥm]

m~ω
, (2.114)

where Û (1)
F (t0) = Ĝ(1)(t) = −[Ĝ(1)(t)]† has been used. Nevertheless, for order µ ≥ 2, the

t0-dependence of the second term in the above equation indicates that the spectrum of the
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approximated Floquet Hamiltonian will possess an artifactual dependence on the initial time
t0, and thus equivalently on the driving phase. This is inconsistent with the exact Floquet
Hamiltonian whose spectrum is independent of driving phase. Even though the high-order terms
with t0-dependence is small in high-frequency regime, they could induce a spurious breaking of
the rotational symmetry of the quasienergy dispersion relation, which thus changes the system
properties [159]. This indicates that the Floquet-Magnus approximation should be used with
care. Note that such a t0-dependence issue can be avoided by using the high-frequency expansion
of the effective Hamiltonian Eq. (2.107).
At first glance, it seems that the Floquet formalism is only about finding some effective

time-independent Hamiltonians to describe a periodically driven quantum system. However, in
many situations one tries to engineer a target model as the effective Hamiltonian in a certain low
order (µcut = 1 or 2) by designing time-periodic driving properly [71]. This approach is called
Floquet engineering and has been successfully applied in synthetic platforms by using ultracold
atoms [38, 39] or photons [91]. Topics include dynamic localization, ‘photon’/laser-assisted
tunneling, dynamical control of superfluid to Mott insulator phase transition, kinetic frustration,
coherent resonant band coupling and so on (see Ref.[71] and references therein). Of our particular
interest, the artificial gauge fields have been widely engineered in synthetic platforms [81]. In
the following section, we will see how to apply the Floquet engineering in a tight-binding model,
such that the artificial gauge fields and the HH model can be engineered in the laboratory.

2.5.2 Application to tight-binding models

Optical lattices with ultracold atoms have been a promising candidate for quantum simulation.
At first glance, an important ingredient – the effect of magnetic fields – is missing since the
particles in the system are charge-neutral atoms. However, with the help of the Floquet
engineering technique (among other schemes like relying on laser dressing of internal degrees
of freedom in atoms [79, 80]), complex tunneling matrix elements can be achieved by, e.g.
by moving-secondary-lattice or asymmetric-shaking schemes. Here, effective tunneling phases
(Peierls phases) play the role of vector potentials [71, 81]. Particularly, after hopping around a
single plaquette, the accumulated Peierls phase describes an effective magnetic flux.

A general consideration

Consider non-interacting particles in deep lattices described by the following tight-binding
Hamiltonian

Ĥ(t) = −
∑
〈``′〉

J`′`â
†
`′ â` +

∑
`

w`(t)n̂`, (2.115)

where â`, â
†
` denote the annihilation and creation operators on lattice site `, and n̂` = â†`â` is

the number operator. J`′` is the strength of the bare tunneling between two nearest-neighbour
sites denoted by

〈
``′
〉
. The periodic driving is represented by a time-periodic on-site modulation

w`(t) = w`(t+ T ).
By performing a gauge transformation

|ψ′(t)〉 = Û †(t)|ψ(t)〉, (2.116)
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the Schrödinger equation i~dt|ψ(t)〉 = Ĥ(t)|ψ(t)〉 becomes

i~dt|ψ′(t)〉 = Ĥ ′(t)|ψ′(t)〉, (2.117)

with
Ĥ ′(t) = Û †(t)Ĥ(t)Û(t)− i~Û †(t)[dtÛ(t)]. (2.118)

Namely the dynamics of |ψ′(t)〉 is governed by a gauge-transformed Hamiltonian Ĥ ′(t). The
time-periodic unitary operator can be defined as

Û(t) = exp

i∑
`

χ`(t)n̂`

 (2.119)

with

χ`(t) = −
ˆ t

t0

dt′
w`(t

′)

~
− χ0`. (2.120)

Here the free gauge parameter χ0` is chosen to remove t0-dependent terms, which corresponds
to

´ T
0 dtχ`(t) = 0.

Now, by employing â`n̂` = (n̂` + 1)â` one can straightforwardly arrive at

â`Û(t) = exp

i∑
`

χ`(t) (n̂` + 1)

 â` = Û(t)eiχ`(t)â`. (2.121)

Plugging Eq. (2.115) and the above equation (2.121) into the transformed Hamiltonian Eq. (2.118),
one gets

Ĥ ′(t) = −
∑
〈``′〉

J`′` Û
†â†`′︸ ︷︷ ︸ â`Û︸︷︷︸+Û †

∑
`

w`(t)n̂`Û − i~Û †[dtÛ ]

= −
∑
〈``′〉

J`′`â
†
`′e
−iχ`′ (t)��

�
Û †Ûeiχ`(t)â` +

∑
`

w`(t)n̂`�
��Û †Û

− i~���Û †Û
∑
`

in̂`
(
dtχ`(t)

)
= −

∑
〈``′〉

J`′`e
−iχ`′ (t)eiχ`(t)â†`′ â` +

((((
(((

((((
((((

∑
`

w`(t)n̂` + i~
∑
`

in̂`w`(t)/~

= −
∑
〈``′〉

J`′`e
iθ`′`(t)â†`′ â`, (2.122)

where the time-dependent Peierls phases θ`′`(t) have been introduced as

θ`′`(t) = χ`(t)− χ`′(t). (2.123)

In the high-frequency regime, i.e. ~ω is large compared to the system’s characteristic energy
scales (~ω � J`′`), the above Hamiltonian can be approximated by its cycle average,

Ĥ(t)→ Ĥeff =
1

T

ˆ T

0
dtĤ ′(t) = −

∑
〈``′〉

Jeff
`′`â
†
`′ â`, (2.124)

J`′` → Jeff
`′` = J`′`

1

T

ˆ T

0
dteiθ`′`(t), (2.125)
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where Jeff
`′` is the modified effective tunneling matrix element. As the rapidly oscillating terms

are absorbed into the tunneling matrix elements, it can be treated as a rotating-wave-type
approximation. This corresponds to the leading order of the high-frequency expansion in the
rotating frame. The time-independent Hamiltonian Ĥeff approximates the effective Hamiltonian
ĤF , and the unitary operator Û(t) defined in Eq. (2.119) is an approximation of the micromotion
operator ÛF (t), i.e.

ĤF ≈ Ĥeff, ÛF (t) ≈ Û(t). (2.126)

This can be seen clearly by noticing that the Hamiltonian Ĥeff defined in Eq. (2.124) is the
m = 0 component in the Fourier transformation of Ĥ ′(t) [see Eq. (2.89)], and thus it corresponds
to the lowest-order of the high-frequency expansion (2.107) applied to Ĥ ′(t), i.e.

Ĥeff =
1

T

ˆ T

0
dtĤ ′(t) = Ĥ ′m=0 = Ĥ

′(1)
F . (2.127)

Note that the time-average has been performed for the gauge-transformed Hamiltonian Ĥ ′(t),
instead of the original one Ĥ(t). This is because a desired modification of the tunneling usually
requires strong driving with amplitudes of the order of ~ω, which would spoil the high-frequency
approximation.

Engineering artificial gauge fields and the HH model

Regarding experimental implementations, the periodic driving potentials w`(t) have been widely
realized by lattice shaking, which gives rise to periodic linear, circular, elliptical, and even
non-sinusoidal forcing etc [71]. Alternatively, w`(t) can also be given by on-site modulations
induced by a secondary lattice moving with respect to the host lattice.

To be general, suppose the on-site modulations take the form,

w`(t) = wdr
` (t) + ν`∆, (2.128)

where wdr
` (t) = wdr

` (t+ T ) represents time-periodic driving of zero average
´ T

0 dtwdr
` (t) = 0,

and ∆ corresponds to a static potential with integers ν`. In the case, where driving is absent
but the potential difference between two neighbouring sites is large enough compared to the
bandwidth (∆ ≥ J), tunneling process between these two sites will be significantly suppressed.
However, coherent tunneling can be induced by periodic driving under the resonance condition
∆ = integer×~ω. This phenomenon is known as ‘photon’-assisted, or laser-assisted tunneling [71].
In the following, we will focus on sinusoidal forcing and adopt ∆ = ~ω.

Since a tunneling process depends on the potentials of both neighbouring sites, it is convenient
to write down the relative modulations w`′`(t) ≡ w`′(t)− w`(t) between two neighbouring sites
as

w`′`(t) = −K`′` cos (ωt− ϕ`′`) + ν`′`~ω, (2.129)

with ν`′` = ν ′` − ν`, leaving K`′` and ϕ`′` determined from the specific form of wdr
` (t). For
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instance, a sinusoidal forcing wdr
` (t) = K sin(ωt− ϕ`) gives

wdr
`′ (t)− wdr

` (t) = K sin(ωt− ϕ`′)−K sin(ωt− ϕ`)

= K sin

(
ωt− ϕ` + ϕ`′

2
+
ϕ` − ϕ`′

2

)
−K sin

(
ωt− ϕ` + ϕ`′

2
− ϕ` − ϕ`′

2

)
= 2K sin

ϕ` − ϕ`′
2

cos

(
ωt− ϕ`′ + ϕ`

2

)
. (2.130)

Thus one gets

K`′` = 2K sin

(
ϕ`′ − ϕ`

2

)
, ϕ`′` =

ϕ`′ + ϕ`
2

. (2.131)

With the form of w`′`(t) in (2.129), the time-dependent Peierls phases θ`′`(t) can be now
expressed as

θ`′`(t) = χ`(t)− χ`′(t)

=

ˆ t

t0

dt′
w`′`(t

′)

~
+ χ0`′ − χ0`

=
1

~

ˆ t

t0

dt′
[
−K`′` cos

(
ωt′ − ϕ`′`

)
+ ν`′`~ω

]
+ χ0`′ − χ0`

=
−K`′`

~ω
sin (ωt− ϕ`′`) + ν`′`ωt. (2.132)

Accordingly, the effective tunneling matrix element now becomes,

Jeff
`′` =J`′`

1

T

ˆ T

0
dteiθ`′`(t)

=J`′`
1

T

ˆ T

0
dt exp

[
i
−K`′`

~ω
sin (ωt− ϕ`′`)

]
exp (iν`′`ωt)

⇓ −τ ≡ ωt− ϕ`′`,−dτ = ωdt

=J`′`
1

T

ˆ ϕ`′`

−2π+ϕ`′`

dτ

ω
exp

(
i
K`′`

~ω
sin τ

)
exp

[
iν`′`(−τ + ϕ`′`)

]
=J`′`

1

2π

ˆ ϕ`′`

−2π+ϕ`′`

dτ exp

[
i

(
K`′`

~ω
sin τ − ν`′`τ

)]
exp(iν`′`ϕ`′`)

=J`′`Jν`′`

(
K`′`

~ω

)
eiν`′`ϕ`′` , (2.133)

where the Bessel function of the first kind Jn(x) = 1
2π

´ π
−π dτe

i(x sin τ−nτ) has been used for the
equation with underline. It is interesting to notice the correspondence between the relative
modulations (2.129) and the effective tunneling matrix element (2.133). Namely the amplitude
of the effective tunneling is a function of the relative modulation strength, while the effective
tunneling phase can be controlled by the relative driving phase along with the static potential
offsets.
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By properly tuning laser beams, for instance, a pair of far-detuned running waves ∝ exp(ik1,2 ·
r − ω1,2t) can be used to create a secondary moving lattice, which gives rise to the sinusoidal
on-site potentials

wdr
` (t) = V0 cos(ωt+ q · r` + ϕ0), (2.134)

where we have introduced q = k1−k2 = k1ex−k2ey, ω = ω1−ω2, and r` = maex +naey with
(m, n) being the lattice indices along x and y-direction to label site `. ϕ0 is a possible phase
difference between these two running waves. For a two-dimensional square lattice with a strong
static potential gradient along x direction, i.e. ν`∆ = m~ω, the driven system is described by
the following time-periodic Hamiltonian

Ĥ(t) =
∑
m,n

(
−Jxâ†m+1,nâm,n − Jyâ

†
m,n+1âm,n + h.c.

)
+
∑
m,n

(
V0 sin(ωt− ϕm,n) +m~ω

)
n̂m,n, (2.135)

with
ϕm,n = −(q · r` + ϕ0 + π/2) = −

(
k1am− k2an+ ϕ0 + π/2

)
. (2.136)

In this case, the above equations (2.131) and (2.133) can be directly applied, leading to the
following time-independent Hamiltonian,

Ĥeff =
∑
m,n

(
−Jeff

x â
†
m+1,nâm,n − J

eff
y â
†
m,n+1âm,n + h.c.

)
, (2.137)

with

Jeff
x = JxJ1

(
Kx

~ω

)
eiφm,n , Kx = 2V0 sin

(
k1a

2

)
, φm,n = k2an+ ηm, (2.138)

Jeff
y = JyJ0

(
Ky

~ω

)
, Ky = 2V0 sin

(
k2a

2

)
. (2.139)

Note that Jn(−x) = J−n(x) = (−1)nJn(x) has been applied and ηm contains all the constant
and m-dependent terms, which have no contribution to the flux per plaquette. It is easy to
check that, after hopping around each plaquette, the accumulated phase reads

φ = ak2 ≡
πλ

λR
. (2.140)

By using k1 = k2 ≡ kR and choosing the wavelength of the running waves to be twice as large
as that of the host lattice, i.e. λR = 2π/kR = 2λ, the HH model with uniform flux of φ = π/2

becomes realized, leaving the tunneling amplitude modified by Jeff
x ∝ JxJ1

(√
2V0
~ω

)
eiφn, Jeff

y =

JyJ0

(√
2V0
~ω

)
. Note that the horizontal running laser beam, i.e. k1 6= 0 is also required. Otherwise,

Kx and thus the effective tunnelling amplitude Jeff
x would vanish, as indicated in Eq. (2.138).

Historically, using laser-assisted tunneling to create artificial magnetic fields was first theoreti-
cally proposed based on Raman transitions between internal atomic states [115, 116, 161, 162].
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Figure 2.8: (a) Sketch of the lattices described by the full time dependent Hamiltonian (2.135).
The tunneling process along x-direction is initially inhibited because of the strong
potential gradient ∆ � Jx in that direction. It is restored by applying a pair
of far-detuned (ω = ω1 − ω2) running wave laser beams (orange arrows) under
the resonant condition ∆ = ~ω. (b) Sketch of the lattice model described by
the time independent effective Hamiltonian (2.137). The restored tunneling along
the direction with static potential offsets is modified by complex tunneling matrix
elements Jx → JxJ1

(√
2V0
~ω

)
eiφm,n , while the y-tunneling matrix element remains

to be real. The arrow pattern corresponds to φm,n = φ(n −m) with each arrow
to the right and left representing tunneling phase of φ and −φ respectively. After
hopping around each plaquette, a uniform flux of φ is obtained and thus the HH
model is realized.
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Alternatively, the scheme of combining periodic driving with static potential offsets described
above was later on proposed for cold atoms [117, 163] and trapped ions [164]. Inspired by
these ideas, the first experimental realization of large uniform artificial magnetic fields has
been achieved in both I. Bloch’s group in Munich [121] and W. Ketterle’s group at MIT [120].
Apart from the observation of cyclotron-type dynamics of a single charge-neutral cold atom [121,
165], the Munich group has also performed the measurement of chiral current in a two-leg
optical ladder with uniform flux of π/2, which is analogous to the Meissner effect in type-II
superconductors [122]. Remarkably, by combining two pair of running laser beams with static
superlattice staggered potentials, the same group has been able to populate the Hofstadter
bands homogeneously with incoherent bosons, which enables the first determination of the
Chern number of two-dimensional Bloch bands using ultracold atoms [124]. Meanwhile, the
MIT group reports the first observation of Bose–Einstein condensation in the optical lattice
system with uniform artificial magnetic flux, and an adiabatic many-body state preparation of
superfluid ground state via the Mott insulating phase has also been explored. More recently,
the interacting HH model has also been realized and the chiral motion of two interacting bosons
studied in M. Greiner’s group at Harvard [125]. All these advances provide promising steps
toward the realization of strongly-correlated fractional quantum Hall states in optical lattices
with cold atoms in the near future.
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As has been introduced in Chapter 1, the quantum Hall effect (QHE) – one of the most
significant discoveries in the last century – opens up a whole new world of topological quantum
effects. However, before using topology terminologies like geometric phase or Chern number, R.
Laughlin has explained the quantized Hall conductance by performing a Gedankenexperiment,
where the flux insertion created by a thin solenoid constitutes an important ingredient [6].
Nowadays, insertion of flux quanta has been a hallmark to characterize quantum Hall states.
It thus becomes interesting to see whether it is possible to realize such a local flux insertion
scenario in highly-controllable synthetic systems, such as optical lattices. To insert flux quanta
through one single lattice plaquette has not been easy. Inspired by the recent experimental
progress in controlling atomic quantum gases, here we propose and simulate a realistic scheme
for the Floquet engineering of such strong solenoid-type local fluxes, for the first time, in a
two-dimensional (2D) optical lattice. By combining with the ability of single-site addressing
enabled by quantum gas microscopes, we show that it can be employed to manipulate and probe
elementary excitations of a Chern insulator. This includes quantized adiabatic charge pumping
along tailored paths inside the bulk, as well as the controlled population of edge modes [166].
Most results of Section 3.2 – 3.4 have been published in Ref. [166]. The rest parts in this

chapter are unpublished, which serve as supplementary materials for an extension and better
understanding.

3.1 Laughlin’s Gedankenexperiment

In order to explain the quantization of the quantum Hall conductivity, in his seminal paper
published in 1981, Laughlin considered a 2D electronic system which is bent into a cylinder [6].
As shown in Fig. 3.1, we consider a cylinder with radius R and length L, and choose the
coordinates with x-axis parallel to the cylinder axis, y-axis having periodic boundary condition
along the circumstance, and z pointing in radial direction, i.e. ex = ex, ey = eϕ, ez = er. Apart
form the uniform magnetic field B piercing through the cylinder surface, an additional flux Φ

generated by a thin solenoid is placed along the cylinder axis. Suppose the solenoid is long
enough so that its magnetic field exist only within the solenoid, and the corresponding vector
potential on the cylinder surface read

AΦ =
(
0,−Φ/(2πR), 0

)
. (3.1)

Meanwhile, the vector potentials of the radial magnetic field B can be written as,

A = (0, Bx, 0), (3.2)
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Figure 3.1: (a) Laughlin’s Gedankenexperiment on a cylinder. The surface is pierced by a
uniform magnetic field B, and a long solenoid carrying a flux Φ is placed inside. Two
electrodes with an electric potential difference V are connected to the two ends. (b)
Flux insertion in a Corbino ring structure. This geometry is topologically equivalent
to the cylinder shown in (a).

thus the total vector potentials are

A+AΦ =
(

0, B
(
x− Φ/(2πRB)

)
, 0
)
. (3.3)

Now, consider the solenoid flux which is changed by ∆Φ, i.e.

Φ→ Φ + ∆Φ. (3.4)

As the change of flux in the solenoid affects the vector potentials on the cylinder surface (where
the magnetic field B is independent of Φ), it leads to a gauge transformation of the electron
wavefunction ψ(x, y),

ψ(x, y)→ ψ(x, y)eieχ(x,y)/~, χ(x, y) =
∆Φ

2πR
y. (3.5)

For localized states, the above gauge transformation applies for arbitrary values of Φ and
thus a continuous gauge transformation is allowed. However, when the electron states are
extended/delocalized along the y direction, due to the periodic boundary condition along y, a
continuous gauge transformation is ‘illegal’ [6, 167]. Specifically, for the states that are extended
along y, the wavefunctions satisfy

ψ(x, y) = ψ(x, y + 2πR). (3.6)

Applying the gauge transformation (3.5) on the above equation, one gets

ψ(x, y + 2πR)→ ψ(x, y + 2πR)eieχ(x,y+2πR)/~

= ψ(x, y)eieχ(x,y)/~eie∆Φ/~. (3.7)
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Due to the periodic boundary condition (3.6), comparing Eq. (3.5) and (3.7) immediately gives

eie∆Φ/~ = 1⇒ ∆Φ =
h

e
× integer, (3.8)

i.e., a ‘legal’ gauge transformations corresponds to a quantized change of flux in units of the
flux quantum Φ0 = h/e.
Now we discuss the effects of this quantized flux insertion on the charge transport in the

cylinder with two electrodes placed at the edges. From Eq. (3.3), one can see that the change of
∆Φ is equivalent to a translation in the wave functions by ∆x = ∆Φ/(2πRB) in x direction.
Recall that the IQHE is observed when the Fermi level lies above the occupied Landau levels,
and extended states always exist at the center of each Landau level. Hence, with the increase of
flux ∆Φ, electrons in the extended states below the Fermi energy will move adiabatically along
x, and the number N of the transported electrons are determined by the number of Landau
levels below the Fermi energy [167]. For a electric potential difference V between two electrodes,
the electron transport costs an energy of ∆E = NeV , which is the same as that required to
change the solenoid flux. This energy cost originates from the fact that the magnetic field
induced by the current along the y-direction interacts with the magnetic field inside the solenoid.
In this case, the insertion of one flux quantum, ∆Φ = h/e, the density of currents along y can
be expressed as

iy =
1

L

∆E

∆Φ
=

1

L

NeV
h
e

= N
e2

h

V

L
= N

e2

h
Ex. (3.9)

Therefore, the quantized Hall conductance σxy = −Ne2/h is obtained.
Note that while this cylinder scenario is difficult to realize in real experiments, its topological

equivalence, namely a Corbino ring geometry [see Fig. 3.1(b)] offers the opportunity to perform
this Gedankenexperiment in the laboratory. Indeed, such a ring geometry has been realized,
for example, in a 2D electronic system where well-quantized Hall resistances have been mea-
sured [168]. However, when it comes to a 2D lattice, it is a nontrivial task to do a local flux
insertion experiment. In the following, we will discuss how to insert a local flux though a single
plaquette of the lattice, so that the insertion of integer quanta of flux gives rise to the creation
of a quantized charge (corresponding to a localized quasiparticle or quasihole).

3.2 Flux insertion in 2D lattices

In the previous chapter we have seen that the HH model with uniform flux of α = 1/4 possesses
a lowest band with Chern number C = −1. Such a topologically nontrivial band structure can
be used to mimic the physics of IQHE. For instance, by occupying the lowest Hofstadter band
with free fermions, a quantum of flux insertion is expected to create quasiparticle/quasihole with
charge ±1. Namely, the flux insertion would give rise to quantized charge pumping. For this
purpose, the basic idea is to modify the HH model with background flux φ = 2πα by putting
additional tunneling phases δφ in a selective manner, such that the fluxes of only two plaquettes
are modified to be φ± δφ. As shown in Fig. 3.2, for instance, by putting identical additional
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Figure 3.2: Sketch of a 2D lattice with uniform background flux φ as well as a solenoid-type
local flux δφ. Identical additional phases are accompanied by the hopping on the
links labelled by horizontal arrows. The fluxes of plaquettes denoted by � and ⊗
becomes φ± δφ. d represents the distance of these two modified plaquettes.

phases on the links labelled by arrows, the flux of plaquette denoted by ⊗ (�) becomes φ− δφ
(φ+ δφ). For the plaquettes with two modified links the identical additional phases cancel each
other, leaving the flux of those plaquettes unchanged. Therefore, by implementing and varying
δφ, a solenoid-type local flux insertion in a 2D lattice could be simulated. To check whether
a quantized charge pumping will be induced, we start with an introduction to the numerical
simulation of the HH model, and then study its time evolution.

3.2.1 Eigenvalue problem

Consider the following HH model,

Ĥ =
∑
m,n

(
−Je−iφnâ†m+1,nâm,n − Jyâ

†
m,n+1âm,n + h.c.

)
, (3.10)

where the Peierls phases have been chosen to be along the x direction. As discussed in
Section 2.4.2, after expressing a single-particle state |Ψ〉 in the lattice basis {|m,n〉} with
|m,n〉 ≡ â†m,n|vac〉 and |vac〉 being the vacuum state, i.e. |Ψ〉 =

∑
m,n Ψm,n|m,n〉, the eigenvalue

problem of the Hamiltonian in the single-particle subspace reads

EΨm,n = −
(
Jxe
−iφnΨm−1,n + Jxe

iφnΨm+1,n + JyΨm,n−1 + JyΨm,n+1

)
. (3.11)

Apparently, the r.h.s. of the above equation corresponds to the hopping process from the
nearest-neighbouring sites of site (m,n).
For a system of M × N sites, in order to solve the problem numerically, we map the

double indices (m,n) with m ∈ {0, 1, · · · ,M − 1}, n ∈ {0, 1, · · · , N − 1} to a single one
` = m+Mn ∈ {0, 1, · · · ,MN−1}, i.e. |`〉 = |m,n〉. As an example, we present the Hamiltonian
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matrix with elements H`′` = 〈`′|Ĥ|`〉 of a 3× 3 lattice in Fig. 3.3. The meaning of the matrix
elements H`+k,` = 〈`+ k|Ĥ|`〉 is presented in Table 3.1. In the following, we set Jx = 1 so that
all the energies will be in the unit of Jx and the Hamiltonian becomes dimensionless. We will
focus on the case with Jy = Jx and α = 1/4.

(a) (b)
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Figure 3.3: (a) Sketch of a lattice with size 3× 3. Each blue thin arrow represents a tunneling
phase of φ, and each orange thick arrow denotes the additional phase of δφ. Overall,
only the flux of the plaquette denoted by � is modified to be φ+ δφ, leaving the
fluxes of all other plaquettes unchanged. (b) The matrix form of −Ĥ describing
a 3 × 3 lattice with uniform flux φ. The k-values label the (off-)diagonals in the
matrix. The lower triangular part corresponds to the hermitian conjugate of the
upper one.

Table 3.1: Illustration of the Hamiltonian matrix elements

k H`+k,` Meaning
0 0 on-site potentials
±1 −Jxe±iφ·n x-tunneling
±M −Jy y-tunneling

±(M − 1) −Jxe∓iφ·n periodic boundary condition along x
±(D −M) −Jy periodic boundary condition along y

After having the matrix form of the Hamiltonian according to the above-mentioned procedure,
the ground state properties can be investigated by diagonalizing the matrix, e.g. via Numpy
library in Python. For a system of size M ×N with open boundary condition (OBC), identical
additional phases δφ are assigned from the link labelled by the left sites (m0, n0) until (m0, n0+d),
with d being the distance of two modified plaquettes, as depicted in Fig. 3.2. The Hamiltonian
then takes the form

Ĥideal =
∑
m,n

(
−Je−i(φn−µm,nδφ)â†m+1,nâm,n − Jyâ

†
m,n+1âm,n + h.c.

)
, (3.12)
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Figure 3.4: (a) Energy spectrum as a function of state index n for a torus of size 16 × 24 at
δφ = 0. (b) Energy spectrum as a function of δφ in a lattice of size 16× 24 with
open boundary condition. The spectrum is symmetric with respect to zero energy
due to the particle-hole symmetry. (c) Zoom-in region near δφ = π in the spectrum
shown in (b). n is the eigenstate index counted from 0. (d-i) Snapshots of the
spatial density distributions of different eigenstates at different values of δφ. The
state indices and values of δφ are written in the title of each plot. Other parameters
are Jy = Jx and α = 1/4.

where µm,n = 1 for m = m0, n = {n0, n0 + 1, · · · , n0 + d}, which label the links with arrows in
Fig. 3.2, otherwise µm,n = 0. Taking M = 16, N = 24 for example, we choose m0 = 7, d = 10.
The energy spectrum as a function of δφ is plotted in Fig. 3.4(b). Note that the positive
spectrum is symmetric with respect to zero energy E = 0 due to the particle-hole symmetry of
the HH model. Clearly, a spectral flow appears, which indicates an adiabatic charge pumping
could be induced by ramping δφ.
As a reference, we first plot the eigenvalues of the Hamiltonian describing a torus (i.e. with

periodic boundary conditions along both directions) at δφ = 0 in Fig. 3.4(a). Clearly, there is
a large energy gap above the lowest band, which indicates the topological robustness as will
be discussed below. For the system with open boundary condition, we plot the eigenvalues
as a function of δφ in Fig. 3.4(b). While the (extended) bulk states exist within the lowest
band, the larger level spacing, inverse to the density of states, indicates edge states in the gap.
Typical spatial density distributions of the bulk and edge states are plotted in Figs. 3.4(d) and
(e) respectively. Meanwhile, it is also interesting to notice that the slope in the spectrum (which
enables the spectral flow) corresponds to the states localized around the modified plaquettes.
Specifically, the eigenstates in the positive (negative) slope have a localized density distribution
around the upper (lower) plaquette with modified flux φ+ δφ (φ− δφ). It is because of this type
of spectrum, that ramping δφ from 0 to 2π corresponding to the insertion of one flux quantum,
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that would lead to quantized charge pump from one modified plaquette to the other, as will be
shown in the following.

3.2.2 Time evolution

For the time-dependent Hamiltonian Ĥ(t) = Ĥ[δφ(t)], the dynamics of the system is governed
by the time-dependent Schrödinger equation,

i~dt|ψ(t)〉 = Ĥ(t)|ψ(t)〉. (3.13)

The time evolution operator Û(t, t0) defined by |ψ(t)〉 = Û(t, t0)|ψ(t0)〉 is generally expressed as

Û(t, t0) = T exp

(
1

i~

ˆ t

t0

Ĥ(t′)dt′

)
, (3.14)

with T indicating time ordering operator. While there are many integrated algorithms (for
example in Python) for solving the evolution problem, in the following we adopt an alternative
approach. The idea is based on that for small enough time interval dt� 1, Û(t+ dt, t) can be
approximated by its Tylor expansion up to the leading order,

Û(t+ dt, t) = e−iĤ(t)dt ≈ 1− iĤ(t)dt, (3.15)

where we have used dimensionless quantities by doing the replacement

Ĥ ←→ Ĥ/Jx, t←→ tJx/~. (3.16)

However, the problem is that the approximated time evolution operator (3.15) is not unitary
any more. This issue can be circumvented by the following trick,

|ψ(t+ dt/2)〉 =
[
1− iĤ(t)dt/2

]
|ψ(t)〉

|ψ(t+ dt/2)〉 =
[
1− iĤ(t)(−dt)/2

]
|ψ(t+ dt)〉

⇒ |ψ(t+ dt)〉 =
[
1 + iĤ(t)dt/2

]−1 [
1− iĤ(t)dt/2

]
︸ ︷︷ ︸

Û ′(t+dt,t)

|ψ(t)〉. (3.17)

One can easily check the newly constructed evolution operator Û ′(t+ dt, t) is unitary, and for
small enough dt, the simulation of time evolution can be efficiently performed.
Along this line, we numerically solve the time-dependent Schrödinger equation by linearly

increasing δφ from 0 to 2π within total ramping time τ , i.e. δφ (t) = (2π/τ)t. In the following,
we focus on a square lattice of size 16×25 with uniform background flux φ; the two plaquettes
with modified fluxes φ± δφ are separated by d = 10 lattice constants in the center.

To mimic the IQH-type physics in our HH model, for now we consider non-interacting spinless
(namely spin-polarized) fermions. Putting the Fermi energy above the lowest Landau level
is equivalent to occupy all the states belonging to the lowest Hofstadter band. Due to the
non-trivial Chern number C = −1 for the lowest band at α = 1/4, a quasiparticle (quasihole) of
‘charge’ +1 (-1) is expected to be created after one quantum of flux insertion.
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Results

Each eigenstate |Ψj〉 can be expressed in the lattice basis as |Ψj〉 =
∑

` ψ
j
` |`〉 with the state

index j and the coefficient ψj` ≡ 〈`|Ψj〉. For non-interacting fermions occupying the lowest
Hofstadter band, the initial state reads

|ΨF (t = 0)〉 =

NF−1∏
j=0

â†j |vac〉, with â
†
j =

∑
`

ψj` â
†
`, (3.18)

where NF = MN/4 is the number of occupied states below the Fermi energy. During the time
evolution, the evolved state becomes

|ΨF (t)〉 =

NF−1∏
j=0

â†j(t)|vac〉, with â
†
j(t) =

∑
`

ψj` (t)â
†
`, (3.19)

where the time-dependent coefficients are determined according to

ψj` (t) = 〈`|Û(t, 0)|Ψj〉. (3.20)

In this case, the particle density on site ` can be expressed as

n`(t) = 〈ΨF (t)|n̂`|ΨF (t)〉 =

NF−1∑
j=0

∣∣∣ψj` (t)∣∣∣2 . (3.21)

Thus the total particle number in a specific region R ∈ {A,B,C} in the lattice is

NR(t) =
∑
`∈R

n`(t). (3.22)

We define that the region A (B) is a square-shaped region of size 10×10, centered at the
plaquette with additional flux δφ (−δφ), and C is the area between A and B, as depicted in
Fig. 3.5(b). To observe a possible signature of quantized charge pumping, we track the particle
number differences (or ‘charges’) at time t

∆NR(t) = NR(t)−NR(t = 0). (3.23)

As shown in Fig. 3.5(a), the values ∆NA,B near ±1 at δφ(τ) = 2π suggest the creation of a
quasiparticle (quasihole) around the plaquette where the additional flux δφ(−δφ) is inserted.
This charge pumping result can also be clearly visualized in Fig. 3.5(b), which shows the charge
distribution N`(t)−N`(0) at the end of flux insertion.

In order to prevent the created excitations from dispersing, static pinning potentials V/Jx = ±1

can be applied [169] on each of the four sites around the plaquette with additional flux ∓δφ. As
demonstrated in Figs. 3.5(c,d), the presence of pinning potentials ∓V efficiently localizes the
quasi-particle/hole. The origin of this dispersing behaviour can be attributed to the fact that,
unlike the Landau levels of a continuous system, the energy bands of the Harper-Hofstadter
model are not perfectly flat. Note that as a result of the incompressibility in the bulk of the
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Figure 3.5: (a) The particle number difference ∆NR = NR(t) − NR(t = 0) in regions
R = {A,B,C} [defined in (b)] as a function of δφ(t). The solid and dashed
lines corresponds to the situation without and with pinning potential V = ±1,
respectively. (b, c) Snapshots of the charge distribution at t/τ = 1 for V = 0 and
V = 1. (d) The final charge values in region A (upper panel) and B (lower panel)
as a function of the total ramping time τ . While too short ramping times are not
sufficient for adiabatic charge pumping, for too long times the pumped charge will
disperse. The latter can be efficiently suppressed by introducing on-site pinning
potentials. (e) Population of single-particle energy eigenstates before and after the
flux insertion with V = 1. In (a-c) and (e), δφ is linearly ramped from 0 to 2π

within time τ = 10. We use M = 16, N = 25, α = 1/4, Jy = 1. The energy and time
are in the unit of Jx and ~/Jx respectively.
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Chern insualtr, small V will cause only tiny local density disturbances in the ground state.
Since the pinning potentials are present before the flux insertion, they do not contribute to the
relative density change.

Last but not least, one can also locate the quasiparticle and quasihole in the energy spectrum
Ej by calculating the mean occupation ρj of the state with index j. For an initial eigenstate
|Ψj′〉, at the end of ramping, the evolved state can be expressed in the eigenstate basis as
|Ψj′(τ)〉 =

∑
j〈Ψj |Ψj′(τ)〉|Ψj〉. With this, the mean occupation ρj of state |Ψj〉 is defined as

ρj =

NF−1∑
j′=0

∣∣〈Ψj |Ψj′(τ)〉
∣∣2 . (3.24)

In Fig. 3.5(e), we plot ρj at the beginning (δφ = 0) and the end (δφ = 2π) of the flux insertion
in the case with V/Jx = ±1. Clearly, the states below the Fermi energy EF are completely
filled initially. At the end of flux insertion, while a quasihole appears in the occupied lowest
band, a quasiparticle is created in the first excited band, which is broader than the lowest band.
Note that without pinning potentials, the quasiparticle and quasihole excitations are distributed
over several states. The presence of pinning potentials helps to pick certain dominant states, as
shown by the sharp peak/dip in Fig. 3.5(e), so that the quasi-particle/hole can be well localized.

3.3 Engineering a tunable local flux

After the demonstration of quantized charge pumping by using the ideal modified HH model,
in the following, we will see how to engineer this kind of solenoid-type local flux insertion by
applying periodic driving in optical lattice with cold atoms.

3.3.1 Uniform flux in staggered potentials

As has been mentioned, the HH model with homogeneous artificial magnetic flux based on
photon-assisted tunneling in a 2D optical square lattice has been realized in several experimental
groups [120, 121, 123–125]. Here, we focus on the scheme used in the Munich group, who
reported the first measurement of Chern number in optical lattices with cold atoms [124].
The experiment considers a sinusoidally driven superlattice with staggered potential offsets in
x-direction, which can be described by the following time-periodic Hamiltonian,

Ĥ(t) =
∑
m,n

(
−Jxâ†m+1,nâm,n − Jyâ

†
m,n+1âm,n + h.c.

)
+
∑
m,n

wm,n(t)n̂m,n, (3.25)

wm,n(t) = Vs cos

(
m
π

2
− π

4

)
cos

(
ωt− nπ

2
+ ϕr

)
+ Vs cos

(
m
π

2
+
π

4

)
cos

(
ωt+ n

π

2
− ϕb

)
+

1 + (−1)m

2
∆. (3.26)

Here, wm,n(t) represent the on-site modulation potentials. The superlattice staggered potentials
with offset ∆ � Jx suppress the bare hopping along x. Resonant tunneling are restored by
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two pairs of running-wave beams with amplitude Vs and frequency ω ≡ ωr = −ωb = ∆/~.
Note that each pair of running-wave beams consists of a standing wave along x and a running
wave along y [155]. In the high-frequency limit ~ω � Jx, Jy, using the formalism introduced in
Section 2.5.2, a uniform artificial magnetic flux can be realized, and the effective Hamiltonian is
expressed as

Ĥeff =−
∑
m,n

JxJ1

(√
2Vs
~ω

)
eiφm,n â†m+1,nâm,n

−
∑
m,n

JyJ0

(√
2Vs
~ω

)
â†m,n+1âm,n + h.c., (3.27)

where the tunneling strength is modified by the Bessel functions of the first kind Jν with ν = 0, 1.
In the following we consider isotropic tunneling, i.e.

J ≡ JxJ1

(√
2Vs
~ω

)
= JyJ0

(√
2Vs
~ω

)
. (3.28)

This can be achieved by tuning Jy/Jx via choosing different depth of the primary lattice in x
and y directions. The effective tunneling phases read

φm,n =
1− (−1)m

2

[
n
π

2
± (m− 1)

π

2
− ϕr

]
+

1 + (−1)m

2

[
n
π

2
± (m+ 2)

π

2
− ϕb

]
≡ nπ

2
+ ηm. (3.29)

Here we introduce ηm to describe the m-dependent terms, which have no contribution in the
value of flux per plaquette and thus represent a gauge freedom. It is the n-dependent phases
that determine the uniform background flux of φ = π/2 in the system, which is determined by
the wavelength of the running wave along y. In the following, we give a detailed derivation of
the above effective Hamiltonian by employing the formalism developed in Section 2.5.2.

Effective tunneling along x

From the on-site modulations wm,n ≡ w` in Eq. (3.26), the relative modulations along x can be
expressed as

wx`′`(t) =wm+1,n(t)− wm,n(t)

=Vs

(
−
√

2 sin
mπ

2

)
cos

(
ωt− nπ

2
+ ϕr

)
+ Vs

(
−
√

2 cos
mπ

2

)
cos

(
ωt+ n

π

2
− ϕb

)
+ (−1)m+1~ω (3.30)

=

−
√

2Vs cos
[
ωt−

(
nπ2 − ϕr ± (m− 1)π2

)]
+ ~ω, odd m

−
√

2Vs cos
[
ωt+

(
nπ2 − ϕb ±m

π
2

)]
− ~ω, even m

. (3.31)
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Based on the correspondence between the relative modulations Eq. (2.129) and the effective
tunneling matrix element Eq. (2.133), one can thus immediately write down the effective
tunneling parameters as

Jeff
x =

JxJ1

(√
2Vs
~ω

)
e
i
[
(nπ/2−ϕr±(m−1)π/2)

]
, odd m

JxJ−1

(√
2Vs
~ω

)
ei(nπ/2−ϕb±mπ/2), even m

. (3.32)

By using the relation J−n(x) = (−1)nJn(x) the effective tunneling amplitude in Eq. (3.27) and
phase (3.29) are obtained.

Effective tunneling along y

The relative modulations along y can be written as

wy`′`(t) =wm,n+1(t)− wm,n(t)

=
√

2Vs cos

(
m
π

2
− π

4

)
sin

(
ωt− nπ

2
+ ϕr −

π

4

)
+
√

2Vs cos

(
m
π

2
+
π

4

)
sin

(
−ωt− nπ

2
+ ϕb −

π

4

)
(3.33)

=
Vs√

2

[
− cos

(
m+ n

2
π + ωt− ϕb

)
− cos

(
m+ n

2
π + ωt+ ϕr − nπ

)]

+
Vs√

2

[
sin

(
m+ n

2
π − ωt+ ϕb − nπ

)
− sin

(
m+ n

2
π − ωt− ϕr

)]
(3.34)

≡


Vs√

2
cos
(
m+n

2 π
)
×A, even (m+ n)

Vs√
2

sin
(
m+n

2 π
)
×B, odd (m+ n)

. (3.35)

For convenience, in the last equation we introduce A and B to denote the terms related to even
or odd (m+ n). Specifically, for even (m+ n), the A-terms read

A = − cos(ωt− ϕb)− cos(ωt+ ϕr − nπ) + sin(−ωt+ ϕb − nπ) + sin(ωt+ ϕr)

=


√

2
[
sin(ωt+ ϕr − π/4)− sin(ωt− ϕb + π/4)

]
, even n

√
2
[
sin(ωt+ ϕr + π/4) + sin(ωt− ϕb − π/4)

]
, odd n

=

−2
√

2 cos
(
ωt+ ϕr−ϕb

2

)
sin
(
π
4 −

ϕr+ϕb
2

)
, even n

2
√

2 sin
(
ωt+ ϕr−ϕb

2

)
cos
(
π
4 + ϕr+ϕb

2

)
, odd n

= 2
√

2 sin

(
ϕr + ϕb

2
− π

4

)
cos

(
ωt+

ϕr − ϕb
2

+
π

2

1− (−1)n

2

)
. (3.36)
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After a similar calculation for the B-terms, the relative modulations can be expressed as

wy`′`(t) =

2Vs cos (m+n)π
2 sin

(
ϕr+ϕb

2 − π
4

)
cos
(
ωt+ ϕr−ϕb

2 + π
2

1−(−1)n

2

)
, even (m+ n)

−2Vs sin (m+n)π
2 cos

(
ϕr+ϕb

2 − π
4

)
cos
(
ωt+ ϕr−ϕb

2 + π
2

1+(−1)n

2

)
, odd (m+ n)

.

(3.37)

As there is no static offset along the y-direction, i.e. v`′` = 0, the y-tunneling parameter is
modified by the 0th order Bessel function which satisfies J0(−x) = J0(x). Based on this
observation, requiring that∣∣∣∣∣sin

(
ϕr + ϕb

2
− π

4

)∣∣∣∣∣ =

∣∣∣∣∣cos

(
ϕr + ϕb

2
− π

4

)∣∣∣∣∣ =

√
2

2
, (3.38)

i.e. ϕr + ϕb = π × integer, the effective tunneling matrix element Eq. (2.133) becomes

Jeff
y = JyJ0

(
Ky
`′`

~ω

)
= JyJ0

(√
2Vs
~ω

)
. (3.39)

Note that while the relative phase difference ϕr − ϕb can be controlled experimentally, the
value of a single ϕr or ϕb could take a different value for each experimental realization [155].
This would thus induce inhomogeneous tunneling along the y direction. Taking ϕr −ϕb = −π/2
for example, the y-tunneling amplitude is modified as

Jeff
y =

JyJ0

(
2Vs
~ω sinϕr

)
, even (m+ n)

JyJ0

(
2Vs
~ω cosϕr

)
, odd (m+ n)

. (3.40)

Nevertheless, due to the fact that J0(x) ≈ 1 − x2/4 changes slowly with small arguments
(Vs/~ω � 1), the effective coupling is well approximated by Jyeff ≈ Jy in high-frequency regime.

3.3.2 Tunable local flux via additional driving

We now describe how to engineer additional solenoid-type fluxes piercing two lattice plaquettes,
as depicted in Fig. 3.6(a). For this purpose, we consider additional sinusoidal driving potentials
(which can be induced by digital mirror devices) in the shaded subregion Rs of Fig. 3.6(a). Thus
the Hamiltonian consists of the original one Ĥ(t) (3.25) and the additional driving terms on
some sites `,

Ĥ ′(t) = Ĥ(t) +
∑
`∈Rs

K` sin (ωt− ϕ`) n̂`. (3.41)

The driven system is described by the modified effective time-independent Hamiltonian

Ĥ ′eff = −
∑
m,n

J ′xeffâ
†
m+1,nâm,n −

∑
m,n

J ′yeffâ
†
m,n+1âm,n + h.c., (3.42)
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Figure 3.6: (a) Scheme for realizing solenoid-type local plaquette fluxes in a 2D optical lattice.
The bonds labeled by colored arrows acquire an additional Peierls phase δφ as a
result of the modification of the driving potentials on the colored rows. The integer
d represents the distance between the plaquettes labeled by ⊗,� whose flux become
φ ± δφ, with homogeneous background flux φ. (b) Amplitude K`′0

/K and phase
∆ϕ`′0 ≡ (ϕ`′0−ϕ`′0`0)/2π of the additional driving versus the phase shift δφ according
to Eq. (3.44). (c) Modification of tunneling parameters transverse to the colored rows
at the background flux φ = π/2, for K = 0.15~ω (orange/solid) and K = 0.35~ω
(green/dashed).
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which shall approximate the ideal Hamiltonian (3.12). In the following, we first summarize
the basic idea of how to engineer the additional driving to obtain the desired properties of the
effective tunneling parameters, before a detailed derivation is given.

We first discuss the x-tunneling process. Within the rows labelled by the same color, identical
driving is imposed on every site. Thus the relative energies of the neighbouring sites of the
same color in Fig. 3.6(a) are not changed, so that between theses sites the effective tunneling
matrix elements are not modified. However, for hopping on the link connected by an unmodified
site and a modified one [denoted by arrows in Fig. 3.6(a)], their relative modulation is changed
and thus affects the hopping process. We choose the additional driving so that the strength of
tunneling remains the same, while the tunneling phase obtains a shift of δφ. The parameter for
hopping leftward along that link shall be modified to

J ′effx = Jeff
x e

iδφ = JxJ1

(√
2Vs
~ω

)
ei(φm,n+δφ). (3.43)

In the n0-th row, e.g., this can be achieved by applying additional driving potential K`′0
sin(ωt−

ϕ`′0) on site `′0 = (m0 + 1, n0) (and all other red sites), with

K`′0
= 2K sin

(
δφ/2

)
and ϕ`′0 = ϕx`′0`0

+ δφ/2, (3.44)

where ϕx`′0`0 are determined according to the expression of wx`′`(t) = K cos
(
ωt− ϕx`′`

)
+ v`′`~ω

with K ≡ −
√

2Vs in Eq. (3.31). In the case of odd m0, for example, one has ϕx`′0`0 =

(n0 ±m0)π/2 − ϕr. The values of δφ can be varied continuously from 0 to 2π by simul-
taneously tuning both the strength K`′0

and the phase ϕ`′0 of the additional driving as depicted
in Fig. 3.6(b). For the other rows in the shadowed area, the same strategy is applied and
the same δφ is implemented on each of the modified links [labeled by arrows in Fig. 3.6(a)].
This results in solenoid-type local fluxes φ± δφ for the plaquettes at the end of the modified
links [denoted by ⊗,� in Fig. 3.6(a)], while the other plaquettes remain to have the uniform
background flux φ.
According to Eq. (3.44), the additional driving phase ϕ`′ in the nth row depends on the

phase ϕ`′` of the relative modulation on the modified bond in that row. Such row-dependent
additional driving will modify the y-tunneling matrix elements involving coloured sites with
additional driving,

J ′effy = JyJ0

(
K ′y`′`
~ω

)
, (3.45)

where K ′y`′` is the amplitude of the relative modulation on the vertical links, which will be
modified by the additional driving on different rows. In the case of a background flux φ = π/2,
the tunneling matrix elements are modified in eight different ways (depending on their position)
that are plotted in Fig. 3.6(c) for two different values of K/(~ω). Notice that the so-induced
tunneling inhomogeneities can be efficiently reduced for small K/~ω due to J0(x) ' 1− x2/4.
Moreover, since we are interested in (topologically non-trivial) insulating states, which are
protected by a bulk gap, the system will be robust against small inhomogeneities. In the
following, we provide more details about the deviation of the above effective tunneling matrix
elements.
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Modified tunneling along x

Consider the modified link connected by the sites ` = (m0, n), `′ = (m0 + 1, n). Without
additional driving potential, the relative modulation (3.31) can be reformed as,

wx`′`(t) = K cos
(
ωt− ϕx`′`

)
+ v`′`~ω, (3.46)

with

ϕx`′` = n
π

2
+ η̃m0 , (3.47)

η̃m0 ≡
1− (−1)m0

2

(
±(m0 − 1)

π

2
− ϕr

)
+

1 + (−1)m0

2

(
±m0

π

2
− ϕb

)
, (3.48)

v`′` =
1− (−1)m0

2
− 1 + (−1)m0

2
=

1, odd m0

−1, even m0

. (3.49)

Due to the additional driving on site `′, the relative modulation is modified as

w′x`′`(t) = wx`′`(t) +K`′ sin (ωt− ϕ`′)
= K cos

(
ωt− ϕx`′`

)
+ v`′`~ω +K`′ sin (ωt− ϕ`′) . (3.50)

Again, based on the correspondence between Eq. (2.129) and Eq. (2.133), in order to fix the
hopping strength while giving a shift of δφ in the tunneling phase, i.e.

J ′xeff = JxJv`′`

(
−K
~ω

)
eiv`′`(ϕ`′`+δφ) = JxJ1

(
−K
~ω

)
ei(φm,n+δφ), (3.51)

the modified relative modulation should take the form of

w′x`′`(t) = K cos
[
ωt−

(
ϕx`′` + δφ

)]
+ v`′`~ω. (3.52)

Combining Eq. (3.50) with Eq. (3.52), one gets

K`′ sin (ωt− ϕ`′) = K cos
[
ωt−

(
ϕx`′` + δφ

)]
−K cos

(
ωt− ϕx`′`

)
≡ K cosA−K cosB

= K cos

(
A+B

2
+
A−B

2

)
−K cos

(
A+B

2
− A−B

2

)
= −2K sin

(
A−B

2

)
sin

(
A+B

2

)
= 2K sin

δφ

2
sin

(
ωt−

2ϕx`′` + δφ

2

)
, (3.53)

where we have introduced A = ωt−
(
ϕx`′` + δφ

)
, B = ωt− ϕx`′` for short. From the two sides

of the above equation (3.53), one immediately has

K`′ = 2K sin
δφ

2
, ϕ`′ = ϕx`′` +

δφ

2
. (3.54)

Thus Eq. (3.44) is reproduced. Combing the above equation with Eq. (3.47), the value of δφ can
be varied continuously from 0 to 2π by simultaneously tuning the additional driving amplitude
K ′` and phase ϕ′`, as shown in Fig. 3.6(b).
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Modified tunneling along y

The y-tunneling parameters will suffer even more complicated modifications, as the additional
driving generally varies for different rows. Consider a vertical hopping from site ` = (m,n) to
site `′ = (m,n+ 1). In the case without additional driving, the relative modulation (3.37) can
be rewritten as

wy`′`(t) = Ky
`′` cos

(
ωt− ϕy`′`

)
, (3.55)

with

Ky
`′` = K sin

(m+ n)π

2
−K cos

(m+ n)π

2
, (3.56)

ϕy`′` = −1 + (−1)m

2

ϕr − ϕb
2

− 1− (−1)m

2

ϕr − ϕb + π

2
, (3.57)

where we have chosen ϕr + ϕb = π in Eq. (3.37) for simplicity and ϕr − ϕb is a free parameter
that can be tuned experimentally.
In the presence of additional driving on both sites, according to Eqs. (3.47) and (3.54), the

amplitude of an additional driving is independent on any site index, and the phase ϕ` only
depends on indices n. Thus in the following we use the notation K ′ ≡ K` and ϕn ≡ ϕ`. Now
the relative modulations are modified as

w′y`′`(t) =wy`′`(t) +K ′ sin(ωt− ϕn+1)−K ′ sin(ωt− ϕn)

= cosωt
(
Ky
`′` cosϕy`′` −K

′ sinϕn+1 +K ′ sinϕn
)

+ sinωt
(
Ky
`′` sinϕy`′` +K ′ cosϕn+1 −K ′ cosϕn

)
. (3.58)

The modified y-tunneling matrix element (3.45) can be obtained by directly applying the
relation between Eq. (2.129) and Eq. (2.133), in which case it is convenient to generally write
w′y`′`(t) as

w′y`′`(t) = K ′y`′` cos
(
ωt− ϕ′y`′`

)
= K ′y`′` cosωt cosϕ′y`′` +K ′y`′` sinωt sinϕ′y`′`. (3.59)

Comparing the above two equations (3.58) and (3.59), one hasK ′y`′` cosϕ′y`′` = Ky
`′` cosϕy`′` −K

′ sinϕn+1 +K ′ sinϕn

K ′y`′` sinϕ′y`′` = Ky
`′` sinϕy`′` +K ′ cosϕn+1 −K ′ cosϕn

. (3.60)

Summing the square of both sides of the above equations leads to(
K ′y`′`

)2
=
(
Ky
`′`

)2
+ 2K ′2 + 2Ky

`′`K
′ sin

(
ϕy`′` − ϕn+1

)
− 2Ky

`′`K
′ sin

(
ϕy`′` − ϕn

)
− 2K ′2 cos (ϕn+1 − ϕn) . (3.61)

With this, the modified y-tunneling matrix element (3.45) can be determined.
As a summary, for both sites with additional driving, the effective y-tunneling parameter is

J ′effy = JyJ0

(
K ′`′`
~ω

)
, (3.62)
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with

K ′y`′` =

√(
Ky
`′`

)2
+ 2K ′2 + 2Ky

`′`K
′
(

sin
(
ϕy`′` − ϕn+1

)
− sin

(
ϕy`′` − ϕn

))
− 2K ′2 cos (ϕn+1 − ϕn),

Ky
`′` = K sin (m+n)π

2 −K cos (m+n)π
2 ,

K ′ = 2K sin δφ
2 ,

ϕn = ϕx`′` + δφ
2 = nπ2 + η̃m0 + δφ

2 ,

η̃m0 = 1−(−1)m0

2

(
±(m0 − 1)π2 − ϕr

)
+ 1+(−1)m0

2

(
±m0

π
2 − ϕb

)
,

ϕy`′` = −1+(−1)m

2
ϕr−ϕb

2 − 1−(−1)m

2
ϕr−ϕb+π

2 .

(3.63)
Similarly, for the vertical hopping on the links connected by a unmodified site and a modified one
(which corresponds to region Rupper, Rlower in Fig. 3.9), the effective tunneling matrix elements
can be obtained by slightly modifying the above K ′y`′`. Depending on hopping from or towards
the modified site, one has

w′y`′`(t) = wy`′`(t) +K ′ sin(ωt− ϕn+1), ` ∈ Rlower

⇒ K ′y`′` =
√(

Ky
`′`

)2
+K ′2 + 2Ky

`′`K
′ sin

(
ϕy`′` − ϕn+1

)
,

w′y`′`(t) = wy`′`(t)−K
′ sin(ωt− ϕn), ` ∈ Rupper

⇒ K ′y`′` =
√(

Ky
`′`

)2
+K ′2 − 2Ky

`′`K
′ sin

(
ϕy`′` − ϕn

)
.

(3.64)

Taking into account all these possibilities, the inhomogeneous y-tunneling matrix elements (3.45)
are plotted in Fig. 3.6(c).

3.3.3 Dynamics from effective Hamiltonian

To investigate the effect of the inhomogeneous tunneling induced by the additional driving,
we now follow the procedure shown in Section 3.2.2 and numerically solve the time-dependent
Schrödinger equation for the effective Hamiltonian (3.42). The corresponding results of accumu-
lated charges as a function of δφ are shown by the dotted line in Fig. 3.7(a). After comparing
with the results obtained for the ideal Hamiltonian (3.12), good agreement is observed. This
demonstrates the topological property of quantized charge pumping, which is robust against
finite y-tunneling inhomogeneities.

This observation is further confirmed by the snapshots of the evolution of the spatial density
distributions, as shown in Fig. 3.7(c). It shows that the tunneling inhomogeneity mainly induces
extra excitations at the edge. This is related to the fact that the edge modes are gapless and
thus not protected. However, it does not affect the creation of quasiparticles and quasiholes in
the bulk, which is protected by an energy gap.
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(a)
A

C

B

(b)

C

A

B

(c) (d)

Figure 3.7: (a) The particle number difference ∆Ni = Ni(t)−Ni(t = 0) in regions i = A, B and C
[defined in (b)] as a function of δφ(t), which is ramped linearly from 0 to 2π within the
time τ = 10~/J , for K/~ω = 0.35. The solid, dotted, and dashed lines are obtained
by solving the time-dependent Schrödinger equation for the ideal Hamiltonian
(3.12), the effective Hamiltonian (3.42), and the time-dependent Hamiltonian (3.66)
respectively. Snapshots of the respective changes in spatial densities are depicted in
(b), (c) and (d). The simulation of Hamiltonian (3.66) includes the preparation of
the Chern insulator before the ramp (see Fig. 3.8), and also imperfections as they
would arise from a limited spatial resolution of the additional driving potentials.
Note that in order to adapt to the previous experimental realization of the uniform
background flux, different from the discussion in Section 3.2.2, the flux per plaquette
is φ = −π/2 when defined via counter-clockwise hopping around one lattice unit
cell.

3.3.4 Full time dynamics

For the implementation of the above-mentioned local flux scheme, we consider the following
experimental protocol, which includes also the preparation of the Chern insulator state from
the ground state of the undriven lattice [Fig. 3.8(a)]. We start with a trivial band insulator in a
staggered potential with energy offsets ∆ + δ along x and δ along y direction [124]. Then the
driving amplitude K is ramped up linearly to its final value within time τ1. Subsequently the
detuning δ/J is ramped down between τ1 and τ2. During this ramp, the system undergoes a
topological phase transition into a Chern insulator state [124]. This topologically non-trivial
regime should be reached adiabatically by relying on the finite extent of the system. At the same
time, the pinning potentials (|V |/J = 1) are also switched on at the modified plaquettes. In the
last stage (τ2 → τ3), the additional flux δφ is ramped from 0 to 2π by tuning the amplitudes
K ′` and the phases ϕ′` according to Eq. (3.44). Overall, the full-time dependent Hamiltonian
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V

t0

(a)

(b)

K

Figure 3.8: (a) Experimental protocol for the preparation of the Chern insulator starting from
the ground state of the undriven lattice and the subsequent flux insertion (see main
text). (b) Spatial density distribution at different stages of the protocol from the
simulation of the time evolution of Eq. (3.66), for driving frequency of ~ω = 70J ,
initial superlattice strength δ = 4J , final driving amplitude K/~ω = 0.35, as well as
ramping times τ1 = 200~/J, τ2 − τ1 = 400~/J, τ = τ3 − τ2 = 10~/J . The effect of
the flux insertion (τ2 → τ3) is shown in Fig. 3.7(d).
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takes the following form,

Ĥfull(t) =
∑
m,n

(
−Jxâ†m+1,nâm,n − Jyâ

†
m,n+1âm,n + h.c.

)
+
∑
m,n

wm,n(t)n̂m,n

+
∑

m,n∈Rs

K ′ sin (ωt− ϕn) n̂m,n +
∑
m,n

[
(−1)m δ/2 + (−1)n δ/2

]
n̂m,n, (3.65)

where wm,n (3.26) represent the sinusoidally driven staggered superlattice potentials; the
additional driving terms are applied in the shadow region defined in Fig. 3.6(a); the additional
staggered potentials δ are used for adiabatic preparation from an insulator that hosts four
topologically trivial bands.

As discussed in Section 2.5.2, by going to a rotating frame via a gauge transformation (2.118),
the above Hamiltonian can be rewritten as

Ĥ ′full(t) =
∑
m,n

(
−Jxeiθ

′x
`′`(t)â†m+1,nâm,n − Jye

iθ′y
`′`(t)â†m,n+1âm,n + h.c.

)
+
∑
m,n

[
(−1)m δ/2 + (−1)n δ/2

]
n̂m,n. (3.66)

According to Eqs. (2.120)(2.123), the tunneling phases are expressed as,

θ′`′`(t) =

ˆ t

t0

dt′w′`′`(t
′)/~ + χ`(t0)− χ`′(t0), (3.67)

where w′`′`(t
′) is the relative modulation between two nearest neighbouring sites and χ(t0) are

gauge free parameter to get rid of the initial time dependence. Specifically, regarding the
leftward tunneling along the x-direction, for two sites without additional driving, the relative
modulation (3.30) leads to the following tunneling phase

wx`′`(t
′)⇒ θx`′`(t) =

ˆ t

t0

dt′wx`′`(t
′)/~ + χ`(t0)− χ`′(t0)

=
K

~ω
sin

mπ

2
sin

(
ωt− nπ

2
+ ϕr

)
+
K

~ω
cos

mπ

2
sin

(
ωt+ n

π

2
− ϕb

)
+ (−1)m+1ωt. (3.68)

It is then straightforward to get the modified tunneling phase due to the presence of additional
driving on the right site `′, i.e. w′x`′`(t

′) = wx`′`(t
′) +K ′ sin (ωt− ϕ`′). In this case, one obtains

θ′x`′`(t) =

θx`′`(t)− K′

~ω cos (ωt− ϕ`′) , ` ∈ Rarrow,

θx`′`(t), otherwise.
(3.69)

Here, Rarrow denotes the region of sites that label the links with arrows, as depicted in Fig. 3.9.
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For the upward hopping process, the bare relative modulation (3.33) gives rise to

wy`′`(t
′)⇒ θy`′`(t) =

ˆ t

t0

dt′wy`′`(t
′)/~ + χ`(t0)− χ`′(t0)

=
K

~ω
cos

(
m
π

2
− π

4

)
cos

(
ωt− nπ

2
+ ϕr −

π

4

)
− K

~ω
cos

(
m
π

2
+
π

4

)
cos

(
−ωt− nπ

2
+ ϕb −

π

4

)
. (3.70)

Due to the additional driving, the tunneling phases are accordingly modified as

θ′y`′`(t) =


θy`′`(t)−

K′

~ω cos (ωt− ϕ`′) , ` ∈ Rlower

θy`′`(t) + K′

~ω cos (ωt− ϕ`) , ` ∈ Rupper

θy`′`(t)−
K′

~ω cos (ωt− ϕ`′) + K′

~ω cos (ωt− ϕ`) , ` ∈ Rmid

θy`′`(t), otherwise

(3.71)

where R denote the regions defined in Fig. 3.9, where the y-tunneling matrix elements are
modified in an inhomogeneous fashion.
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Figure 3.9: Sketch of modified regions due to the presence of additional driving. Rarrow =

{(m0, n)} with n ∈ {n0, n0+1, · · · , n0+d} locates the links with modified x-tunneling
parameters. The other regions Rlower = {(m,n0 − 1)} and Rlower = {(m,n0 + d)}
with m ∈ {m0 + 1,m0 + 2, · · · ,M − 1} represent the link with additional driving
only on one site. M is the total number of sites along the horizontal direction.
The middle region Rmid = {(m,n)} with m ∈ {m0 + 1,m0 + 2, · · · ,M − 1} and
n ∈ {n0, n0 + 1, · · · , n0 + d − 1} corresponds to the links with both sites are
modified with additional driving. Note that the shadow area defined in Fig. 3.6(a)
is Rs = Rmid +Rupper.

In order to demonstrate the validity of our driving protocol, we have taken several practical
issues into account. First, we start from the ground state of the initial un-driven Hamiltonian,
i.e. a trivial band insulator. Thus possible driving induced interband transitions (i.e. Floquet
heating) [71, 170] are included. Second, to address any concern regarding the impact of a
possible limited optical resolution when creating additional light-shift potentials with the help
of digital mirror devices, we assume that the light field is spatially smeared out. Namely, we
consider only 80% of the proposed ideal additional driving on site ` to act on this site and the
remaining 20% to be distributed evenly among the four neighboring sites. The results obtained
from integrating the time evolution for this protocol using the time-dependent Hamiltonian
(3.66) are presented in Fig. 3.7(a) (dashed lines) and (d). We observe that the quantized charge
transport is spoiled neither by such interband excitations nor by the imperfect spatial resolution
[Fig. 3.8(a), (d)]. The accumulated pumped charge shows excellent agreement with the ideal
case [Fig. 3.7(a)], despite noticeable density modulations [Fig. 3.7(d)]. Note that not taking
into account interactions is well justified in systems of spin-polarized fermionic atoms, and
that the heating in Floquet systems has not been a major problem in experiments with such
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spin-polarized fermions [112].

3.4 Controlled charge pumping

While the quantized charge pumping induced by the local flux insertion can be expected and is
not surprising, we find an interesting unexpected effect. Namely, the path for a quantized charge
pumping can created in a controllable fashion. It is related to the fact that in our approach, we
directly engineer the vector potential rather than the magnetic field, so that during the pump
cycle artificial electric fields E ∝ d(δφ)/dt are present as well.

3.4.1 Tailored charge pumping in the bulk

One can observe in Fig. 3.7(b) that the path along which a quantum of charge is transported
corresponds to the sequence of bonds with the additional Peierls phase δφ. This phenomenon
can be understood by noting that artificial electric fields are created by the time-dependent
artificial vector potentials in the form of additional Peierls phases δφ(t). Let us investigate
whether this scenario holds also for more complicated choices of Peierls phases that lead to the
same time dependent magnetic fluxes, but different electric fields.

As shown in Figs. 3.10 (a,c), one can arrange the links with additional phases δφ in different
ways, but guarantee that there are only two plaquettes with modified fluxes φ ± δφ. In this
case, after a quantum of flux insertion, as shown in Figs. 3.10(b,d) where we plot the snapshots
of charge distributions at different time instant, one can clearly see that the charge is pumped
along the tailored path.
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ff

ff

=f+df =f-df(a) (b)

(d)(c)

Figure 3.10: (a) Sketch of putting the additional phases δφ (denoted by green arrows) along
a given path. Overall, only the fluxes of the plaquettes denoted by � and ⊗ are
modified to be φ ± δφ, leaving the fluxes of all other plaquettes unchanged. (b)
Snapshots of the charge distribution at different time instant during the ramp. (c,
d) Same plots as (a,b) but using a different pattern for the path. All the simulations
are performed for a system of size 20 × 20, with Jy = 1, α = 1/4. δφ is linearly
ramped from 0 to 2π within time τ = 10. To prevent the quasi-particle from
dispersing, small pinning potentials V = −1 have been placed on each of the four
sites around the plaquette (�) with flux φ+ δφ. The energy and time are in the
unit of Jx and ~/Jx respectively.

3.4.2 Edge mode population

As an interesting application, the paths can be tailored so as to populate edge mode coherently.
As shown in Fig. 3.11(a), by adding phases δφ on the bonds starting from the target plaquettes
to the edge instead of between them, a different particle transport is induced. Apart from the
bulk excitations [as has been shown in Fig. 3.7(b)], a quasiparticle and a quasihole appear at
the edges, see Fig. 3.11(b). Again quanta of charge are transported along the path defined by
the modified Peierls phases. After being created, such edge excitations follow a chiral motion,
until their densities annihilate each other after some time.
Alternatively, by introducing the additional flux through one single plaquette [Fig. 3.11(c)],

a long-lived edge mode can also be populated. The time-evolving density distributions are
shown in Fig. 3.11(d). In order to see the robustness against external perturbations, we have
put strong impurity potentials of strength 10Jx in the edge during the time evolution. The
absence of scattering at both the corners and the impurity indicates the topologically-protected
property of the edge mode. Thus this mechanism can be a useful tool to probe robust chiral
edge transport.
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(a)

(c)

(b)

(d)

f

f

Figure 3.11: (a) Local flux configuration by modifying the links between the modified plaquette
and the edge. (b) Snapshots of corresponding spatial density distributions during
ramp. (c) and (d) for additional flux in a single plaquette. The chiral edge transport
visible in (d) is robust at the corners and against an impurity potential of 10Jx at
the lower edge. The results are obtained from time evolution with δφ(t) = 2πt/τ

for t < τ and δφ(t) = 2π for t ≥ τ , where τ = 10~/Jx.
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3.5 Application in bosonic systems

So far we have been considering fermionic systems with the Fermi energy set above the lowest
band. However, in the cold atom experiment where the Chern number was measured, it was a
bosonic system that was implemented [124]. It is thus interesting to see a possible application
of the local-flux insertion protocol also in such bosonic systems.

As has been validated experimentally, an incoherent distribution of bosons with homogeneous
population within each band can be achieved by using a band-mapping technique [124]. To
include the effects of populations in all Hofstadter bands, one firstly define the filling of particles
in each band as

ηµ = Nµ/Ntot, (3.72)

with Nµ being the particle number in the band labelled by µ ∈ {1, 2, 3} and Ntot =
∑

µNµ

being the total atom number. Note that for the HH model with a quarter flux α = 1/4, the
system exhibit only three well separated bands with the middle two touching sub-bands forming
a ‘super’ band (labelled by µ = 2), as indicated in Fig. 3.12(a). Assuming all bands being
populated homogeneously and considering negligible inter-band transitions (which is justified at
least within short time [124]), the charges that are pumped after one quantum of flux insertion
can be expressed as

∆N =
∑
µ=1

ηµCµ, (3.73)

where Cµ are the Chern numbers of the µ-th band and read −1, 2,−1 for µ = 1, 2, 3 respectively.
To confirm the above prediction, one can now perform the simulation of flux insertion again,

but calculate the charges (3.23) according to a slightly-modified form

∆NR(t) =
∑
`∈R

Ncount−1∑
j=0

ηµ,j(|ψj` (t)|
2 − |ψj` (0)|2), (3.74)

where the number NF of states below the Fermi energy in Eq. (3.21) is now replaced by Ncount,
which counts the states that have been populated by bosons. ηµ,j = ηµ for the states labelled
by j belonging to the band µ. Meanwhile, to better quantify the values of pumped charges, we
define the relative differences of charges in region B and A, i.e.

∆N(t) = [∆NB(t)−∆NA(t)]/2. (3.75)

Focusing on the local flux configuration with middle links modified, as described in Section
3.2, we consider three examples with different band populations. (i) Only the lowest band
is populated, i.e. ηµ = {1, 0, 0} and Ncount = MN/4. At the end of flux insertion t = τ ,
the pumped charge reads ∆N(τ) = −0.97 ' C1 = −1, which, as expected, has no difference
with the fermionic case with the Fermi energy above the lowest band. (ii) When the bands
µ = 1, 2 are both homogeneously populated, as the middle band µ = 2 contains twice as many
states as that in the lowest band, one has ηµ = {1/3, 2/3, 0} and Ncount = 3MN/4. Now
the pumped charge calculated from Eq. (3.75) becomes ∆N(τ) = 0.97 which is in agreement
with the prediction ∆N = −1 · 1/3 + 2 · 2/3 = 1 given by Eq. (3.73). The reverse charge
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Figure 3.12: (a) Eigenvalues as function of state indices for a system of size 16× 25 at α = 1/4.
The vertical dashed lines distinguish states belonging to three well-separated
bands. (b) The particle number difference ∆NR = NR(t) − NR(0) in regions
R = {A,B,C} as a function of ramping time for different band populations ηµ =

{1, 0, 0}, {1/3, 2/3, 0}, {0.7, 0.2, 0.1}, corresponding to γ = 1,−1, 0.4 respectively.
While the orange colours illustrate the charges in Region A, the blue lines/dots
represent charges in B. The black dotted lines are the results in Region C (the
undisturbed background). (c-e) Snapshots of charge distributions at the end of flux
insertion for γ = 1,−1, 0.4, respectively. The regions A,B,C are defined in (c). In
all cases, we have used the total ramping time τ = 10~/Jx.
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pumping can be visualized in Fig. 3.12(d). (iii) For a typical population that close to the
experimental realization, i.e. ηµ = {0.7, 0.2, 0.1}, the pumped charges include contributions from
all the populated bands and one has to consider all the states Ncount = MN . The numerical
calculation gives the value of ∆N(τ) = −0.39 , which also agrees with the expected value
∆N = −1 · 0.7 + 2 · 0.2− 1 · 0.1 = −0.4.

Based on the above observation, one can see that the protocol of local flux insertion provides
an alternative way of measuring Chern number even in bosonic system. To be specific, now
making use of the relation of the Chern numbers C1 = C3 = −C2/2 in the specific case of
α = 1/4, Eq. (3.73) indicates that the Chern number C1 can be expressed as

C1 = ∆N/γ, γ ≡ η1 − 2η2 + η3, (3.76)

where the filling factor γ has been introduced for convenience. In case (iii) with γ = 0.4, for
instance, the Chern number of the lowest band is found to be C1 = ∆N(τ)/γ = −0.39/0.4 =

−0.975. A better result can be obtained by considering larger system sizes or by introducing
tiny on-site pinning potentials to prevent the created charges from dispersing. For example,
the Chern number is found to be C1 = −0.989 for the system size 16 × 37 with V = 0, and
C1 = −0.996 for 16× 25 with V/Jx = 1.
To sum up, we have seen that the Chern number can be extracted from the pumped

charges (which can be measured from in-situ images of atomic clouds) combined with the
band populations (which can be determined from a band-mapping technique). It would thus
complement the measurement of Chern number from transverse displacement in the previous
cold atom experiment [124]. Meanwhile, such a robust way of quantized charge pumping via local
flux insertion in bosonic systems would also be of interest for future experimental realization by
using photons [43].
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4 State preparation via ramping artificial
gauge potentials

The engineering of artificial magnetic fields for charge-neutral atoms in optical lattices has been
a powerful tool to simulate lattice models with exotic phases including quantum Hall states
and topological insulators [36, 38, 71, 76, 79, 80]. More precisely, in these experiments a static
artificial gauge potential (in the form of Peierls phases) is engineered in a particular choice
of gauge (relative to the plain lattice without magnetic field). Typically, this choice is made
based on experimental convenience. For a dynamic process, however, where these artificial
gauge potentials are varied in time, this choice does not simply correspond to a gauge freedom
anymore. This is because their temporal change generates an artificial electric field. After initial
confirmation in a trapped quantum gas [171], such artificial electric forces were observed also
in optical lattices [108, 172] and predicted to lead to ‘gauge-dependent’ time-of-flight images
of Bose Einstein condensates [123, 173, 174]. In the previous chapter, we have shown that
the engineering of time-dependent artificial gauge potentials can be employed for quantized
charge pumping along tailored paths in two dimensional Chern insulators [166]. This effect can
also be generalized to fractionalized charge pumping in fractional Chern insulators [175, 176]
(see Chapter 5). Other applications include the control of the dynamics of a wave packet in
synthetic dimensions [177] and nonlinear systems [178]. With the recent advances in quantum
gas microscope techniques [65, 68, 69, 125, 179–182], it becomes more and more important to
explore the possibilities of controlling artificial gauge potentials in both space and time. Since
robust adiabatic state preparation is a prerequisite for the experimental investigation (quantum
simulation) of interesting states of matter with atomic quantum gases, in this chapter, we will
see how this technique can be exploited for the optimization of a state preparation.
As minimal lattice systems with artificial magnetic fields, flux ladders have recently drawn

tremendous attention, including the experimental observation of chiral edge currents [92, 93, 96,
122, 125, 183], the theoretical exploration of rich phase diagrams [184–207], the investigation of
Laughlin-like states [208–213], the study of the Hall effect [214–218] and other aspects [219–225].
In this chapter, we investigate the adiabatic preparation of the ground state in such ladder
systems via continuously ramping up the corresponding Peierls phases. Comparing results for
different patterns of Peierls phases, all giving rise to the same magnetic flux but to different
synthetic electric fields during the ramp, we find that the degree of adiabaticity dramatically
depends on this choice. As an intriguing result, the optimal choice of Peierls phases allows for an
almost instantaneous preparation of the ground state. We show that for vanishing interactions,
this effect can be related to counterdiabatic driving [24, 226–230]. Remarkably, our approach
works also for very strong interactions, where a simple explanation in terms of counterdiabatic
driving is not possible.
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The results of Section 4.2 – 4.5 have been published in Ref. [231]. Section 4.1 is added as a
preliminary introduction of the two-leg ladder system.

4.1 Two-leg flux ladder

We consider interacting bosons in a two-leg ladder described by the Bose-Hubbard model

Ĥ = −
∑
〈`,`′〉

J`′`e
iθ`′` â†`′ â` +

U

2

∑
`

n̂`(n̂` − 1), (4.1)

with bosonic creation operator â†` and number operator n̂` = â†`â` on site `. The nearest-neighbor
tunneling amplitude J`′` equals J along legs and J⊥ along rungs, and it is accompanied by the
Peierls phase θ`′`. U is the on-site repulsive interaction energy. In the following, we use J , ~/J
and lattice constant a as units for energy, time and lengths, respectively.

(a)

f

f

(b)

h

Meissner

Vortex

(c)

(      )

Figure 4.1: Bose-Hubbard ladder, with interaction parameter U , tunneling amplitudes J (J⊥)
along the legs (rungs) as well as Peierls phases θ``′ either along rungs (a) or legs (b).
θ``′ are symbolized by arrows and describe a uniform plaquette flux φ. (c) Phase
diagram for non-interacting system. Upper inset shows the lowest Bloch band with
single minimum in the Meissner phase, for J⊥ = 2 and Peierls phases θ‖`′`(φ = π/2, η)

with η = 0 (solid orange line) and η = π/2 (dashed green line). Lower inset shows
double minima of the lowest band in the vortex phase with φ = 4π/5 and η = 0. The
horizontal arrows indicate the paths for our state preparation via ramping artificial
magnetic flux.

As has mentioned in the chapter 2, the accumulated net phase around one lattice plaquette is
analogous to the Aharonov-Bohm phase experienced by a charged particle in a real magnetic
field, and the Peierls phase θ`′` plays the role of a vector potential. Each set of time-independent
Peierls phases {θ`′`} that gives the same plaquette flux reflects a gauge choice. A uniform
flux φ can be realized by using gauge potentials along rungs, θ⊥`′`(φ) [Fig. 4.1(a)], or along
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legs, θ‖`′`(φ, η) [Fig. 4.1(b)], with the phase η describing a continuous family of Peierls phases.
However, when φ and η vary in time, the time-dependent artificial gauge potentials θ⊥`′`(φ) and
θ
‖
`′`(φ, η) no longer describe gauge choices, but different artificial electric fields. This difference
lies at the heart of the discussion of this chapter.

4.1.1 Phase diagram in the non-interacting ladder

Let us start with the non-interacting limit (U = 0). To analytically obtain the ground state
properties, we rewrite the Hamiltonian in the following form,

Ĥ =
∑
m

(
−Jeiθ0 â†m+1,0âm,0 − Je

iθ1 â†m+1,1âm,1 − J⊥â
†
m,1âm,0 + h.c

)
, (4.2)

where m = 0, 1, · · · ,M − 1 are the site indices along the legs (specified by the second index, 0
or 1) and M is the total number of rungs. We use θ0 = φ/2− η, θ1 = −φ/2− η to generalize
different ways of arranging Peierls phases θ‖`′`(φ, η) along the legs.
As the system possesses translational invariance along the leg, one can use the following

ansatz for the wavefunctions
Ψm,n = eikamψn, (4.3)

where n = 0, 1 denotes the lower and upper leg respectively. The quasimomentum k is within
the first Brillouin zone −π ≤ ka < π and we set the lattice constant a = 1 in the following.
Similar to the calculation in Section 2.4.2, for a general state |Ψ〉 =

∑
m,n Ψm,n|m,n〉, one has

EΨm,n = 〈m,n|Ĥ|Ψ〉 = −JeiθnΨm−1,n − Je−iθnΨm+1,n − J⊥Ψm,n−1 − J⊥Ψm,n+1. (4.4)

Combining Eqs. (4.3) and (4.4), one has

Eψn = −2J cos(θn − k)ψn − J⊥ψn+1 − J⊥ψn−1. (4.5)

The above equation gives rise to the following matrix form of the Hamiltonian,

Ĥ =

(
−2J cos(φ/2− η − k) −J⊥

−J⊥ −2J cos(φ/2 + η + k)

)
≡ h0(k) + h(k) · σ, (4.6)

with 
h0(k) = −2J cos(φ/2) cos(k + η),

hz(k) = −2J sin(φ/2) sin(k + η),

hx(k) = −J⊥,
hy(k) = 0,

(4.7)

where the vector of Pauli matrices σ acts on the sublattice degree of freedom given by the upper
and lower leg. Now the eigenstates and energy spectrum can be straightforwardly expressed as

|ψ±(k)〉 = N±

(
hx

E± − h0 − hz

)
, (4.8)

E± = h0(k)± |h(k)|

= −2J cos(φ/2) cos(k + η)±
√
J2
⊥ + 4J2 sin2(φ/2) sin2(k + η), (4.9)
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with N± being the normalization factors.
For weak magnetic flux, the dispersion relation of the lowest band possesses a unique minimum

for k = 0 and the ground state exhibits currents along the leg (see the following section),
resembling the screening currents of the Meissner phase (MP) of a superconductor. With the
increase of φ, the minimum of the dispersion relation eventually splits into two minima and
rung-currents appear in the ground state, allowing the formation of vortices, analoguous to the
vortex phase (VP) of a type-II superconductor [122, 189]. The phase boundary between the MP
and the VP, as shown in Fig. 4.1(c), can be determined by

∂E−
∂k

= 2J sin(k + η)

cos
φ

2
− 2J sin2(φ/2) cos(k + η)√

J2
⊥ + 4J2 sin2(φ/2) sin2(k + η)

 = 0,

⇒

k + η = 0,

cos2(k + η) =
J2
⊥

4J2 cot2 φ
2 + cos2 φ

2 ,
(4.10)

⇒ (J⊥)c = 2J sin
φc
2

tan
φc
2
. (4.11)

Namely, for J⊥ > (J⊥)c, the spectrum has a single minimum at k + η = 0 [upper inset in
Fig. 4.1(c)]. If J⊥ < (J⊥)c, however, as shown in the lower inset in Fig. 4.1(c), the spectrum
has double minima at k = −η ± k0, with

k0 = arccos

√
J2
⊥

4J2
cot2 φ

2
+ cos2

φ

2
. (4.12)

4.1.2 Chiral currents

The ground state chiral current plays a key role in charactering different phases in a ladder
system [122, 189, 192, 232]. Based on the continuity relation, the local current operators on legs
and rungs are respectively defined as [122, 189, 192, 232],

ĵ‖m,n = −ia
~

(
Jeiθn â†m+1,nâm,n − h.c.

)
(4.13)

ĵ⊥m = −ia
~

(
J⊥â

†
m,1âm,0 − h.c.

)
, (4.14)

with θn = φ
(
1/2− n

)
− η, n = 0, 1. In this case, the global chiral current is defined as

jc =
1

M

∑
m

〈
ĵ
‖
m,0 − ĵ

‖
m,1

〉
. (4.15)

For a single particle state |Ψ〉 =
∑

m,n Ψm,nâ
†
m,n|0〉, the currents expectation values can be

expressed as

j‖m,n =
〈
ĵ‖m,n

〉
= 2Im

(
eiθn〈Ψ|â†m+1,nâm,n|Ψ〉

)
= 2Im

(
eiθnΨ∗m+1,nΨm,n

)
, (4.16)

j⊥m =
〈
ĵ⊥m

〉
= 2Im

(
J⊥〈Ψ|â†m,1âm,0|Ψ〉

)
= 2Im

(
J⊥Ψ∗m,1Ψm,0

)
, (4.17)

77



4 State preparation via ramping artificial gauge potentials

where Im denotes the imaginary part, J⊥ is in the unit of J and the currents are calculated in
the units of aJ/~.
Now we apply the above formulas in the Meissner and vortex regimes respectively. To be

brief, we firstly rewrite the ground state (4.8) for the unit cell labelled by m = 0 as

|ψ−(k)〉 ≡

(
ψ0(k)

ψ1(k)

)
= ψ0(k)â†0,0|0〉+ ψ1(k)â†0,1|0〉. (4.18)

By using the condition (4.3), the ground state for the whole ladder can be constructed as

|Ψ−(k)〉 =
∑
m

(
Ψm,0â

†
m,0|0〉+ Ψm,1â

†
m,1|0〉

)
=
∑
m

(
eikamψ0(k)â†m,0|0〉+ eikamψ1(k)â†m,1|0〉

)
. (4.19)

For φ < φc, the single ground state exhibiting a Meissner phase reads

|Ψ〉M = |Ψ−(k = 0)〉 =
∑
m

(
ψ0â

†
m,0|0〉+ ψ1â

†
m,1|0〉

)
. (4.20)

By applying Eqs. (4.16)(4.17), the currents along legs and rungs are respectively expressed as

j‖m,n = 2Im
(
eiθn |ψn|2

)
= 2|ψn|2 sin

(
φ/2− nφ

)
, (4.21)

j⊥m = 0. (4.22)

Therefore the chiral current (4.15) in the Meissner phase is

jMc = j
‖
m,0 − j

‖
m,1 = 2 sin

φ

2
, (4.23)

where the normalization condition |ψ0|2 + |ψ1|2 = 1 has been applied. The above equations
(4.21) and (4.22) indicate that within the Meissner phase (i.e. k = 0), ramping up the flux from
zero to a finite value will induce currents along the legs.
For φ > φc, the system enters into the vortex phase. For convenience, here we consider

η = 0 so that the spectrum has double minima at k = ±k0 [see Eq. (4.12)], giving rise to two
degenerate ground states |Ψ−(±k0)〉. Due to the inversion symmetry between these two legs
(i.e. same population on both legs of the ladder) , the vortex ground state can be written as the
superposition of the components |Ψ−(±k0)〉 with the same weight [122, 194],

|Ψ〉V =
(
|Ψ−(k0)〉+ eiξ|Ψ−(−k0)〉

)
/
√

2 ≡
∑
m

(
Ψ′m,0â

†
m,0|0〉+ Ψ′m,1â

†
m,1|0〉

)
, (4.24)

with Ψ′m,0 =
(
eik0amψ0(k0) + ei(ξ−k0am)ψ0(−k0)

)
/
√

2,

Ψ′m,1 =
(
eik0amψ1(k0) + ei(ξ−k0am)ψ1(−k0)

)
/
√

2.
(4.25)
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Here ξ is a possible relative phase. In this case, the expectation values of currents (4.16) and
(4.17) become

j‖m,n =2Im
(
eiθnΨ′∗m+1,nΨ′m,n

)
=|ψn(k0)|2 sin(θn − k0a) + |ψn(−k0)|2 sin(θn + k0a),

+ 2ψn(k0)ψn(−k0) cos
[
k0a(2m+ 1)− ξ

]
sin θn (4.26)

j⊥m =2Im
(
J⊥Ψ′∗m,1Ψ′m,0

)
=2J⊥

[
ψ1(k0)ψ0(−k0)− ψ1(−k0)ψ0(k0)

]
sin(ξ − 2k0am). (4.27)

Therefore, by combining with the above equations, the chiral current (4.15) in the vortex phase
becomes

jVc = j
‖
m,0 − j

‖
m,1 = 2

[
|ψ0(k0)|2 sin(

φ

2
− k0a) + |ψ0(−k0)|2 sin(

φ

2
+ k0a)

]
, (4.28)

where the terms proportional to cos
[
k0a(2m+ 1)− ξ

]
are neglected because they vanish when

averaging the whole system, and we have used the relations |ψ0(k0)| = |ψ1(−k0)|, |ψ0(−k0)| =
|ψ1(k0)|. It is indicated in the above formula that the phase ξ simply shifts the positions of
currents globally, leaving the chiral current (4.28) unaffected.
The dependence of chiral currents (4.23) and (4.28) on flux φ is plotted in Fig. 4.2(a), and

the current and particle density distributions are exemplified in Fig. 4.2(b). At small fluxes,
probability currents exist only along the legs and behave like screening currents, and the low-flux
phase is thus identified as a Meissner phase, in analogy to that in a type-II superconductor. For
large values of the flux, the system enters into a vortex phase, where finite rung currents emerge
and form vortex structures. Such a MP-VP phase transition has been confirmed in cold atom
experiments by measuring the chiral currents of the system [122].

(a) (b)

0

Max.

Figure 4.2: (a) Chiral currents as a function of flux φ for different values of tunneling parameter
J⊥. (b) Current and particle density distributions at J⊥ = 2 for different values of
φ. Note that the MP-VP transition occurs at φc/π = 0.576 for J⊥ = 2 according to
Eq. (4.11). The arrows denote the currents, which are normalized by the maximum
values in each case.
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4.2 State preparation in non-interacting system

In order to study adiabatic state preparation, we take our initial state and target state as the
ground states of the Hamiltonian with flux φ = 0 and φ = π/2, denoted as |ψ0〉 and

∣∣∣ψπ/2〉,
respectively. The tunneling amplitude along rungs is fixed at J⊥ = 2 so that the target state
lies in the MP, as is marked by the star in Fig. 4.1(c). By linearly ramping the Peierls phases
from zero to final values given by either θ⊥`′`(φ) or θ‖`′`(φ, η), the flux is continuously increased
from 0 to π/2 within the ramping time τ . The evolved state

∣∣ψ(τ)
〉
is obtained by numerically

solving the Schrödinger equation of the Hamiltonian for a finite system with M = 24 rungs
under open boundary condition.

To quantify the degree of adiabaticity, we define the fidelity as the squared overlap between
the evolved state and the target state,

F =

∣∣∣∣〈ψπ/2|ψ(τ)
〉∣∣∣∣2 . (4.29)

Fig. 4.3(a) shows the fidelities calculated by choosing artificial gauge potentials θ⊥`′`(φ) and
θ
‖
`′`(φ, η) with η = {0, π/4, 3π/4} [cf. legend in Fig. 4.3(c)]. For gauge potentials on the rungs,

we find fidelities close to 1 for ramping times on the order of τ = 300. For gauge potentials on
the legs, this time scale strongly depends on η. Remarkably, it vanishes in the limit of η = 0,
so that the ground state can be prepared by switching on the gauge potentials abruptly. This
picture is confirmed also by looking at two other quantities characterizing the evolved state.
One is the chiral current jc(τ) defined in Eq. (4.15) scaled by its target value jtargetc [Fig. 4.3(b)],
which can be readily measured in experiment [92, 93, 122]. The other quantity is the excitation
energy ∆E [Fig. 4.3(c)], defined as

∆E = 〈ψ(τ)|Ĥ|ψ(τ)〉 − Eg, (4.30)

where Eg is the ground state energy for the final Hamiltonian. Both measures reflect the degree
of adiabaticity observed in the fidelity.
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Figure 4.3: (a) Fidelity, (b) scaled chiral current and (c) excitation energy as functions of total
ramping time τ for different choices of Peierls phase configurations. The legends in
(a) and (b) are the same as those in (c). (d) The overlap Ok(φ) for different values of
φ for η = 0. (e) Ground state overlap O(π/2) and minimal ramping time τ∗ required
to reach F = 0.9 as a function of η for open (solid) and periodic (dashed) boundary
conditions. Distributions of spatial density and local currents of (f) the target state,
and the evolved states for (g) θ⊥`′`(φ), τ = 15, (h) θ‖`′`(φ, η = π/4), τ = 200 and
(i) θ‖`′`(φ, η = 0), τ = 1. The darker color indicate higher densities and the size of
the orange arrows along the bonds is proportional to the amplitude of probability
currents. The dashed arrows F indicate directions of the average artificial electric
forces.

The ultrafast adiabatic state preparation can be explained by the fact that the ground state
does not depend on the flux for the choice θ‖`′`(φ, η = 0). For the translationally invariant ladder,
the Bloch states |ψ±(k; η, φ)〉 in Eq. (4.8) of both bands E±(k) are described by k dependent
vectors ±h(k)/|h(k)| on the Bloch sphere. In the MP the ground state lies at k = −η/a with
hz = 0. We define the overlap Ok(φ) to quantify the similarity between lowest-band eigenstates
with and without magnetic flux φ, i.e.

Ok(φ) = |〈ψ−(k; 0, 0)|ψ−(k; η, φ)〉|2. (4.31)

Remarkably, in the case of η = 0, the ground state wave function (k = 0) does not depend
on the magnetic flux φ, as hz = hy = 0 for all φ so that Ok=0(φ) = 1 [Fig. 4.3(d)]. For a
system of M rungs with periodic boundary condition, the quasimomentum k takes discrete
values given by integer multiples of 2π/M . As the spectrum is shifted by η, the squared overlap

O
(
π/2

)
=

∣∣∣∣〈ψπ/2|ψ0

〉∣∣∣∣2 between the initial and the target states drops suddenly from 1 to 0

when the shift η becomes larger than π/M , as shown by the dashed line in Fig. 4.3(e). Since k
is not a good quantum number anymore in the finite system with open boundary conditions, we
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observe a smooth decay of O(π/2) as a function of η, starting from a value close to 1 for η = 0

[O(π/2)|η=0 = 0.995 for M = 24 rungs, and O(π/2)|η=0 gets closer to 1 for larger M .]. This
behaviour explains that the minimal ramping time τ∗ required to reach F = 0.9 approaches
zero when η drops to zero.
Note that each point in Fig. 4.3(a-c) corresponds to the result at the end of a parameter

ramp. To interpret the oscillation behavior, we plot the fidelity F =
∣∣∣〈ψφ|ψ(t)

〉∣∣∣2 and center of
mass 〈X〉 during a single ramping process in Fig. 4.4. It shows that when the center of mass
gets closer to the middle of the ladder, the fidelity always has a large value. It turns out that
the oscillation of F is related to the Bloch oscillations of the atomic cloud, which are triggered
by the finite synthetic electric fields that are generated during the ramp for non-zero η.

A

C

B

(a) (b)

(c)
A

B

C

0

Max.

Figure 4.4: Fidelity F (upper panel) and center of mass 〈X〉 (lower panel) as a function of time
within (a) τ = 200 and (b) τ = 700. The origin 〈X〉 = 0 is defined to lie at the
middle of the ladder. (c) Spatial density and probability current distributions at
t/τ = 0.6 with τ = 200. A-C correspond to η/φ = 0, 0.5, 1.5 respectively. It shows
that the closer is the center-of-mass to the middle of ladder, the larger fidelity is
obtained. Other parameters are chosen as U = 0, J⊥ = 2, φ(t) = (π/2)t/τ and
M = 24.
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4.3 Counterdiabatic driving

Counterdiabatic (CD) driving has been an important protocol to realize shortcuts to adiabaticity
(STA), i.e. to speed up adiabatic processes which are usually very slow [230]. The basic idea is
to apply auxiliary terms to the original system described by Ĥ0, so that the evolved state of the
system follows exactly the eigenstates of Ĥ0 within arbitrarily short time. The counterdiabatic
driving formalism dates back to Demirplak and Rice [226, 227], and was then rediscovered by
Berry in a different but equivalent way [228]. After it was employed to cool down atoms in a
harmonic trap [24], where the so-called shortcuts to adiabaticity was coined, the past decade
has witnessed rapid development in the applications of shortcuts to adiabaticity [230]. In this
section, we will briefly review the original formulation, followed by a comparison with our
protocol.

4.3.1 Previous formalism

Berry’s formulation

Considering its simplicity, we firstly recap the Berry’s formulation [228, 230]. We start with a
reference Hamiltonian Ĥ0(t) with instantaneous eigenstates |n(t)〉 and eigenenergies En(t),

Ĥ0(t) =
∑
n

En(t)|n(t)〉〈n(t)|. (4.32)

By designing a proper scheme, one requires that the evolved state |ψn(t)〉 of the system exactly
follows the eigenstate of Ĥ0, except for a global phase ξn(t), i.e.

|ψn(t)〉 = eiξn(t)|n(t)〉 = Û(t)|n(0)〉, (4.33)

with the time evolution operator Û(t) expressed as

Û(t) =
∑
n

eiξn(t)|n(t)〉〈n(0)|. (4.34)

For this purpose, we need to construct a new Hamiltonian Ĥ(t) which governs the dynamics
according to the Schrödinger equation,

i~∂t|ψn(t)〉 = Ĥ(t)|ψn(t)〉. (4.35)

By plugging Eq (4.33) into Eq. (4.35) one has

Ĥ(t) = i~
[
∂tÛ(t)

]
Û †(t) ≡ Ĥ0(t) + ĤCD(t), (4.36)

where the additional term ĤCD(t) represents the CD driving and is determined by inserting
Eq. (4.34) into the above equation,

ĤCD(t) = i~
∑
n

[
|∂tn(t)〉〈n(t)| − 〈n(t)|∂tn(t)〉|n(t)〉〈n(t)|

]
. (4.37)

Therefore, by introducing the auxiliary term ĤCD(t) into the original system, the dynamics is
expected to follows the adiabatic evolution driven by Ĥ0.
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Demirplak and Rice‘s formulation

Historically, Demirplak and Rice have formulated the counterdiabatic driving protocol already
earlier than Berry. The idea is to consider two frames. In the laboratory frame (denoted by lower
index 0), the system Hamiltonian Ĥ0 and the dynamical solution |ψ0(t)〉 satisfy the Schrödinger
equation,

i~∂t|ψ0(t)〉 = Ĥ0(t)|ψ0(t)〉. (4.38)

Note that the phases of the eigenstates |n0(t)〉 of Ĥ0 can be chosen to satisfy the parallel
transport condition [230], i.e.

〈n0(t)|∂tn0(t)〉 = 0. (4.39)

To find the counterdiabatic driving term, one express the dynamics in an adiabatic frame
(denoted by lower index 1) via the following transformation,

|ψ1(t)〉 = Â†0(t)|ψ0(t)〉, (4.40)

with

Â0(t) =
∑
n

|n0(t)〉〈n0(0)|. (4.41)

Plugging the transformation (4.40) into the Schrödinger equation (4.38), one obtains

i~∂t|ψ0(t)〉 = i~
(
∂tÂ0(t)

)
|ψ1(t)〉+ i~Â0(t)∂t|ψ1(t)〉,

⇒ i~∂t|ψ1(t)〉 = Â†0(t)

[
i~∂t|ψ0(t)〉 − i~

(
∂tÂ0(t)

)
|ψ1(t)〉

]
=

[
Â†0(t)Ĥ0Â0(t)− i~Â†0(t)

(
∂tÂ0(t)

)]
|ψ1(t)〉

≡ Â†0(t)(Ĥ0 − K̂0)Â0(t)|ψ1(t)〉, (4.42)

with K̂0 = i~
(
∂tÂ0(t)

)
Â†0(t). Since the first term Â†0(t)Ĥ0Â0(t) is, by construction, time-

independent, it represents an adiabatic evolution. The presence of the second term −i~Â†0(t)(∂tÂ0(t))

spoils the adiabaticity and thus it represents the ‘diabatic’ contribution. In order to counter-
balance this diabatic term, one can apply additional term Â†0(t)K̂0Â0 in the adiabatic frame,
which is equivalent to use Ĥ0 + K̂0 in the laboratory frame.

The above K̂0 can be alternatively written as

K̂0 = i~
∑
n

dP̂ (t)

dt
P̂ (t), (4.43)

with P̂ (t) = |n0(t)〉〈n0(t)|. Nevertheless, K̂0 can also be expressed in arbitrary basis of time
evolved basis states |n(t)〉. By applying P̂ (t) = |n(t)〉〈n(t)| in the above equation, one has

K̂0 = i~
∑
n

[
|ṅ(t)〉〈n(t| − 〈n(t)|ṅ(t)〉|n(t)〉〈n(t)|

]
, (4.44)

where the dot ẋ represents time derivative of x. Thus K̂0 exactly corresponds to the counter-
diabatic driving term expressed in Eq. (4.37), which demonstrates the equivalence of Berry’s
formulation and that of Demirplak and Rice.
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4.3.2 Comparison with our protocol

Now we will show that the idea of choosing an optimal vector potential for adiabatic state
preparation can be related to the above-mentioned counterdiabatic driving. To make the
discussion more general, let Hp be a Hamiltonian depending on a parameter p and |ψp〉 the
corresponding ground state. Starting from the ground state at p = 0, we wish to rapidly prepare
the ground state of the target Hamiltonian Hp=f . The idea of counterdiabatic driving is to
consider a family of unitaries Up(t) labelled by p(t), so that the evolved state exactly follows
|ψp(t)〉 when being driven by the new Hamiltonian H(t) = Hp(t) +i~(dtUp(t))U

†
p(t). Our approach,

in turn, corresponds to directly working in the rotating frame of reference with instantaneous
eigenstate |ψ′p〉 = U †p |ψp〉 governed by the Hamiltonian H ′p = U †pHpUp. For an ideal choice of
Up (e.g. the optimal choice of Peierls phases with η = 0), one can find a p-independent ground
state |ψ′p〉 = |ψ0〉, and thus it allows for the parameter ramp within arbitrarily short time. Note
that the preparation protocol we have considered here works only for the ground state but not
for excited states, which is different from the typical counterdiabatic driving protocol described
in Section 4.3.1 that work for all the eigenstates. Nevertheless, the advantage of our approach is
that there will be no need for applying external terms to the system. Meanwhile, our protocol
can be easily extended to the many-body system, as will be shown in Sections 4.4 and 4.5.

The optimal choice (η = 0) of Peierls phases can also be understood intuitively by noting that
the artificial electric fields generated during the ramp correspond to those dictated by Faraday’s
law of induction [see also Fig. 4.3(i)]. In turn, for non-optimal choices with η 6= 0, additional
electric fields are created as well during the ramp [causing the drift shown in Figs. 4.3(g,h)]
that are not related to the time-dependence of the magnetic field via Faraday’s law of induction.
These non-Faraday electric fields could be compensated by a time-dependent scalar potential.
The freedom of choosing η is a consequence of the fact that the experimentalist directly engineers
the artificial gauge potential (via Peierls phases) rather than the artificial magnetic field. The
counterdiabatic driving terms required for rapid state preparation for the non-optimal choices
of Peierls phases would simply correspond to time-dependent scalar potentials subtracting
the non-Faraday forces generated by η(t) 6= 0. Note, however, that the choice of η = 0 and
the absence of non-Faraday forces is not always optimal, as will be seen in Section 4.5 when
discussing parameter ramps leaving the Meissner phase.

4.4 Role of interactions

4.4.1 Ground state properties

Let us now investigate the interacting system at filling n = 1/2 per site by using the TeNPy
library [233–236] and a matrix product operator based time evolution method [237, 238]. The

squared overlap O
(
π/2

)
=

∣∣∣∣〈ψπ/2|ψ0

〉∣∣∣∣2 between the initial and the target states as a function of

interaction strength U is plotted in Fig. 4.5(a). In the case of η = 0, the overlap O(π/2) exhibits
non-monotonic behavior, reflecting a complex competition between many-body interactions and
artificial magnetic fluxes, as will be specified in the following.
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(a)

III

II

I

»
¥

(c)(b)

(d)

(g)(e)

(f)
I: U < Uc1
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Figure 4.5: (a) Squared overlap of initial state |ψ0〉 and target state
∣∣∣ψπ/2〉 as a function of U for

different values of η. The two vertical dashed lines Uc1 = 4.2 and Uc2 = 10.4 locate
the BKT-transition points for φ = π/2 and φ = 0 respectively. Quasimomentum
distribution for (b) U = 1 and (c) U = 10. In the legend different η refer to φ = π/2.
Fidelity as a function of total ramping time τ with interaction (d) U/J = 5 and
(e) hard-core limit.The simulations in (a-e) are performed in the system with the
number of rungs M = 24. (f) Single-particle fidelity F1/N as a function of total
ramping time τ for different numbers of rungs M at η = 0 and U = 20. (g) Minimal
ramping time τ ′ required to reach F1/N = 0.995 as a function of M at η = 0. For
all cases we use J⊥ = 2 at 1/2 filling. (Dashed lines are guides to the eye.)

While the system features a Meissner-like superfluid (SF) ground state for weak interactions,
(in the thermodynamic limit) it undergoes a Berezinskii-Kosterlitz-Thouless (BKT) transition
to a Mott-insulator (MI) state with single particles localised on the rungs as U is increased [186,
192, 239]. This picture can be confirmed by extracting from the finite-size scaling of peaks in
quasimomentum distribution nmax

k M−3/4 [186, 192, 239], where nk is defined as

nk =
1

M

∑
n=0,1

∑
m,m′

eik(m−m′)〈â†m′,nâm,n〉. (4.45)

As plotted in Fig. 4.6, the crossing determines the BKT-transition points at Uc1 ≈ 10.4 for
φ = 0 and Uc2 ≈ 4.2 for φ = π/2. Accordingly, they defined three regions (I: U < Uc1, II:
Uc1 < U < Uc2, and III: Uc2 < U) shown in Fig. 4.5(a).
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(a) (b)

Figure 4.6: Scaling quasimomentum peak nmax
k M−3/4 as a function of U for different M at (a)

φ = 0 and (b) φ = π/2. The crossing corresponds to BKT-transition points, which
can be further confirmed by the mass gap shown in the inset.

Regardless of whether the system is non-interacting, superfluid, or in a Mott insulator phase,
the system always possesses the ‘screening’ currents, just like in the Meissner phase (see Fig. 4.7).
Thus to be more precise, the ground states can be called the Meissner superfluid (M-SF) phase
for weak interaction and the Meissner-Mott insulator (M-MI) phase in strongly interacting
regime [192].
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Figure 4.7: Probability current patterns for different U at J⊥ = 2, φ = π/2, n = 1/2,M = 24.
The arrow size is proportional to the expectations values of the local currents.

In the weakly interacting region I, the overlap in Fig. 4.5(a) first decreases rapidly, before
it slightly increases again. This behaviour is qualitatively reproduced by Bogoliubov theory
(red dashed line) [see Appendix A]. It can be related to the fact that the interaction-induced
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population of finite momentum modes initially occurs much faster in the presence of magnetic
flux (giving rise to an enlarged effective mass due to a frustration of the kinetics). However,
for a bit stronger interactions the resulting momentum mismatch becomes smaller again [see
Appendix A]. For Uc1 < U < Uc2, while the ground state with zero flux remains superfluid, the
ground state with flux φ = π/2 already becomes a Mott insulator, and therefore the overlap
decreases once more. After U > Uc2, the fact that both ground states present Mott-insulating
phases gives rise to an increase again.

4.4.2 State preparation

Despite this non-monotonic behavior, O(π/2) takes comparably large values for η = 0 in a finite
system. This leads to rather short adiabatic preparation times also in the strongly interacting
regime. In Figs. 4.5(d) and (e), we plot the fidelity F versus the ramping time for U = 5 and
the hard-core limit U → ∞, respectively. Remarkably, for hard-core bosons (and η = 0), we
find fidelities close to one already for very short ramping times on the order of 1 (in units
of the tunnelling time). The fact that such rapid state preparation is found for the strongly
interacting system cannot be fully explained by the single-particle analysis presented in the
previous sections. This short ramping time may be related to the fact that the larger overlap of
quasimomentum distribution occurs for stronger interaction, as indicated in Figs 4.5(b) and (c).

In Figs. 4.5(f) and (g), we investigate the finite size effect for the optimal choice of η = 0. The
fact that a many-body fidelity drops with the system size can be attributed to two effects. On
the one hand, a finite-size gap (as present in the superfluid regime) separating the ground state
from the first excited state decreases with ladder length M , leading to a reduction of adiabaticity.
On the other hand, a decrease of the many-body fidelity with system size is expected already
from the very fact that (at least for product states) the N -particle fidelity is given by the Nth
power of the single-particle fidelity. In order to compensate for the latter effect, when comparing
results for different system sizes, we use the single-particle fidelity F1/N . In Fig. 3(f), we plot
F1/N versus the ramping time τ for η = 0 and U = 20 for different ladder length M . In Fig.
3(g), we extract the ramping time τ ′ above which a fidelity F1/N ≥ 0.995 is achieved and plot
it versus M for various interaction strengths U . Remarkably, we find that the ramping time
increases very slowly both in the superfluid and the Mott-insulating regions (i.e. I and III). A
noticeable increase is only visible in regime II, where the Mott transition occurs during the
ramp.
For finite values of η, taking η = π/4, 3π/4 as examples shown in Fig. 4.5(a), O(π/2) takes

small values until deep in the Mott regime, where the correlations between individual rungs
are suppressed by interactions for both φ = 0 and φ = π/2. This can also be understood from
the quasi-momentum distribution defined in Eq. (4.45). From Fig. 4.5(b,c) we can see that
the distribution is centered around k = 0 for the initial state (φ = 0), and at k = −η for the
target state (φ = π/2). Although the shift of quasi-momentum (for η 6= 0) causes difficulties
in state preparations, the increase of interaction broadens the quasimomentum distributions,
which results in gradually increasing overlap and a shorter adiabatic ramping time as indicated
in Fig. 4.5(d,e).
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4.5 Leaving the Meissner regime

So far, we have considered parameter ramps within the Meissner-type phase. Increasing φ
further gives rise to various phases [190, 192, 193, 197], including the biased ladder phase (BLP)
in the weakly and intermediately interacting regime [190, 192–196], which is characterized by
vanishing rung currents and the spontaneous Z2 reflection symmetry breaking in the form of a
density imbalance between both legs. In the following, we show that the biased ladder phase
can also be efficiently prepared by choosing proper Peierls phase patterns (determined by η).

Let us start with the non-interaction limit, where beyond a critical flux φc, the system enters
the vortex phase and the dispersion relation develops two degenerate minima [Fig. 4.8(a)]. Since
each minimum predominantly corresponds to the occupation of one of the legs, the degeneracy
can be lifted by introducing a small bias potential (0.01J) between both legs, so that the ground
state resembles that of the biased ladder phase. Despite the fact that the small bias softens
the sharp transition at φc ≈ 0.667π into a narrow crossover, we observe a sudden drop of the
fidelity at φc when linearly ramping up the Peierls phases with η = 0 [Fig. 4.8(c)]. Here the
dashed line represents the fidelity between the evolved state and the instantaneous eigenstate.
As a remedy, one can vary η during the ramp in such a fashion that the overlap O(φ) remains
maximal during the ramp. (For an infinitely large system without bias, this can be achieved by
choosing η̃(t) = arccos

√
J2
⊥/4 cot2(φ/2) + cos2(φ/2) for φ > φc, so that the right minimum of

the dispersion relation always remains at k = 0 [Fig. 4.8(b)].) In this case, the evolved state
successfully follows the instantaneous eigenstate even after the critical point, as indicated by the
horizontal blue line in Fig. 4.8(c). Thus, different from the previously discussed case, now the
optimal choice of Peierls phases does not correspond to the situation where all the non-Faraday
forces were absent during the ramp. Instead, the forces induced by η 6= 0 are actively employed
for state preparation, as they induce shifts in quasimomentum that keep the system state at the
minimum of the dispersion relation.

The scheme can also be applied to the interacting system. For instance, the transition to the
biased ladder phase occurs at critical flux φ′c ≈ 0.8π for a 0.8-filling ladder at U = 2.0, J⊥ =

3 [192]. As shown by the dashed lines in Fig. 4.8(d), using η = 0 leads to an essentially vanishing
fidelity after the critical point, as the biased ladder phase has imbalanced distribution between
positive and negative quasimomenta due to the broken reflection symmetry [193, 194]. To
compensate the quasimomentum differences between initial and final states during the ramp,
the protocol η̃′(t) [shown in the inset of Fig. 4.8(d)] can be determined by maximizing the
ground state overlap, and the corresponding F assumes rather large values as shown by solid
lines in Fig. 4.8(d). Note that the finite value F = 0.78 found for τ = 100 indicates a near
unity single-particle fidelity (0.78 ≈ 0.994N ) for the system with number of particle N = 40

considered here. Higher fidelities can be achieved for longer ramping times.
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Figure 4.8: (a) Spectrum of the non-interacting ladder with θ‖`′`(η = 0) at J⊥ = 3. (b) Spectrum
of the non-interacting ladder with θ‖`′`(η = η̃), where η̃ shifts the spectrum so that
the right minimum is always located at k = 0. (c) The fidelity as a function of
time-dependent flux φ(t) at U = 0. The flux is ramped from φi = 0.5π to φf = 0.8π

within a ramping time τ = 30 in a ladder with M = 50 rungs at J⊥ = 3. The inset
depicts η̃ as a function of φ, where the blue dots come from maximizing the ground
state overlap O(φ) and the red dashed line represents the analytical results. (d)
The total fidelity as a function of φ(t) at U = 2.0, J⊥ = 3 with particle number of
N = 40 in the ladder with M = 25 rungs. The flux is ramped from φ′i = 0.68π to
φ′f = 0.82π within time τ = 40 and 100. The inset depicts η̃′ as a function of φ
which maximizes the ground state overlap.
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5 Bosonic fractional Chern insulators and
their fractional excitations

While we have discussed some topological properties of 2D Chern insulators in Chapters 2 and 3,
in this chapter we shall investigate measurable signatures of fractional Chern insulators (FCIs, i.e.
the lattice analogues of fractional quantum Hall states) in systems of optical lattice with ultracold
atoms. Indeed, realizing fractional quantum Hall states [5, 10, 12, 240] and manipulating their
anyonic excitations [31, 241, 242] in highly controllable systems is a long-standing interest and
challenge. As has been mentioned in chapter 1 and chapter 4, there has been tremendous
progress in realizing topologically non-trivial band structures in systems of ultracold atoms
[36, 38, 39, 64, 91]. This includes, the realization of artificial magnetic fields [79–81, 243] and
spin-orbit coupling [76, 77], the measurement of the quantum anomalous Hall effect [112] and
topological invariants [94, 113, 114, 124, 244–247], as well as the observation of chiral edge
currents [92, 93, 95, 96, 122, 125, 183, 248, 249]. Since atomic quantum gases in optical lattices
are highly controllable, especially allowing for the ability to manipulate and observe the system
with single-lattice-site resolution in the so-called quantum-gas microscopes [65, 66, 68, 250], it is
an intriguing perspective to combine the realization of topologically non-trivial band structures
with strong interactions in these systems, for the purpose of stabilizing fractional Chern insulator
states [133, 134], as well as to probe and manipulate individually their anyonic excitations.

The results of this chapter have been published in the preprint Ref. [251]. Small changes have
been made in order to fit the style of this thesis. Minor additions (i.e. Section 5.1 and Fig. 5.6)
have been given for completeness.

5.1 State of the art

From chapter 2, we already know that the paradigmatic Harper-Hofstadter model exhibits
topologically non-trivial bands [38, 118, 119]. In the presence of strong interactions (i.e. the
Harper-Hofstadter-Hubbard model), up to the limit of hard-core bosons, this system has been
predicted to host Laughlin-type fractional Chern insulator states [252–254]. Theoretically, the
fractional Chern insulator state in such a model can be characterized from the overlap with
Laughlin wave-function [252], ground state degeneracy [12, 255], many-body Chern number [256–
258], topological entanglement entropy [22, 23], and particle entanglement spectra [259, 260].
Moreover, various realistic protocols have been proposed for the detection of their topologically-
nontrivial properties, such as edge excitations [261, 262], interferometric measurements [263],
adiabatic charge pumps [175, 264, 265], anyonic statistic from time-of-flight images [266] or
spatial density depletions [267], as well as many body Chern number from circular dichroism [268,
269] or statistical correlations of randomized measurements [258]. More recently, the Hall drift
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has been proposed as a useful tool to detect the fractional Chern insulator states in a finite
optical lattice, even with a small atomic ensemble [270, 271]. Of particular interest, excitations
in the fractional Chern insulators can be anyons that possess fractional charges and satisfy
fractional statistics. It is thus desirable to investigate to which extent such anyoic excitations
could also be stabilized and probed in such a small/intermediate setting.

Experimentally, apart from the realization of the non-interacting Harper-Hofstadter model by
using ultracold atoms [120, 121, 124], the dynamics of two interacting particles in such a model
has recently been investigated in a two-leg ladder geometry [125], without encountering driving
induced heating (see e.g. [71]) on the experimental time scale. Considering these achievements,
along with various practical schemes for the adiabatic preparation of the fractional Chern
insulator states [208, 258, 264, 265, 272–279], it becomes possible soon to stabilize and probe
fractional Chern insulator states of (at least a few) interacting bosons on a lattice in a quantum-
gas microscope.

In this chapter, we consider realistic system geometries with open boundary conditions with
a quarter of a flux quantum per plaquette. We focus on the regime, where a Laughlin-like state
at a filling of ν = 1/2 particles per flux quantum is expected. Using numerical simulations
based on density matrix renormalization group (DMRG) approach [233, 234, 236–238], we
compute experimentally accessible quantities and explore in which parameter regimes they show
signatures of a FCI state. In particular, we (i) investigate the minimal system sizes required to
show homogeneous bulk behavior at the filling factor expected for the FCI state, (ii) find that
the edges serve as a reservoir for particles allowing for variations of the total particle number,
(iii) show that both static local pinning potentials and dynamical flux insertion can be employed
to probe charge fractionalization, and (iv) point out that FCI behavior is robust against various
parameter variations.

5.2 Ground state properties

We consider strongly-interacting/hard-core bosons in a two-dimensional (2D) square lattice,
described by the Harper-Hofstadter-Hubbard model in Landau gauge:

Ĥ =
∑
m,n

(
−Jxe−iφnâ†m+1,nâm,n − Jyâ

†
m,n+1âm,n + h.c.

)
+
U

2

∑
m,n

n̂m,n(n̂m,n − 1) +
∑
m,n

Wm,nn̂m,n. (5.1)

Here â†m,n(âm,n) are the bosonic creation (annihilation) operators and n̂m,n = â†m,nâm,n are
the number operators on sites (m,n), with integer site indices m = 0, 1, . . . , Lx − 1 and
n = 0, 1, . . . , Ly − 1 along the directions x and y, respectively. They define a rectangular system
of Lx×Ly sites with open boundary conditions, as it can be realized in quantum gas microscopes.
The hopping terms between nearest neighbors have the strength Jx (Jy) in the x (y) direction.
The Peierls phase factors for the hoppings in x-direction give rise to a magnetic flux of φ = 2πα

per plaquette. We mainly focus on α = 1/4 since the Harper-Hofstadter model with this value
has been readily realized in cold atom experiments [121, 122, 124, 125]. Here h.c. refers to the
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Hermtian conjugate. The Hubbard parameter U quantifies the on-site interactions between the
particles. In the following we assume hard-core bosons, where an infinitely large positive value of
U suppresses doubly occupied lattice sites completely (We have also checked that qualitatively
similar results are found for large values of U , as will be exemplified in Section 5.3.3). Finally,
we also consider different on-site potentials Wm,n that will be specified later. The energies and
angular frequencies will be measured in unit of Jx, i.e. ~ = 1 and Jx = 1.

While the Harper-Hofstadter model for single particles exhibits topological non-trivial bands
characterized by non-zero Chern numbers [38], by introducing strong interactions and partially
filling the lowest band, the ground state is predicted to be a fractional Chern insulator state
analogous to a Laughlin state [175, 252–255, 257, 258, 262, 264–267, 269–271, 280]. In this
section, we explore signatures of ν = 1/2 FCI state which could be the ground state with flux
α = 1/4 in open boundary conditions and Wm,n = 0. For this purpose, we employ the DMRG
algorithm from the TenPy library [236].

5.2.1 Ground-state density and probability current

As a first experimentally observable quantity, we study the ground-state density

nm,n = 〈n̂m,n〉. (5.2)

We choose the particle number N which satisfies the half filling condition

N/Nφ = ν = 1/2, (5.3)

where Nφ is the number of flux quanta piercing the lattice

Nφ = α(Lx − 1)(Ly − 1). (5.4)

Note that for a finite system with open boundary conditions, Nφ is noticeably different from
the value

N ′φ = αLxLy, (5.5)

which is found for periodic boundary conditions. The corresponding incompressible FCI ground
state is expected to feature a uniform density distribution in the bulk, with an average density
per site

ρ = αν = 1/8. (5.6)

In Fig. 5.1(a) we plot the density distribution of a system with N = Nφ/2 = 14 particles on
17× 8 sites. We can observe that this finite system features already a flat density distribution
at the expected bulk density ρ = 1/8 in its center. This can be seen more clearly also in the
upper panel of Fig. 5.1(b), where we plot the density nm,3 along the central row (n = 3) versus
the x-coordinate m. This is a first indication of the expected incompressible behavior of the
FCI state. Further evidence for incompressibility is gathered when plotting the density also for
different total particle numbers in Fig. 5.1(b): While the density increases close to the boundary,
the bulk remains at ρ = 1/8 for up to N = 16 particles. Thus, compressible boundaries serve
as a reservoir for the incompressible center of the system. For N ≥ 17 or N ≤ 10, we find
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noticeable density oscillations also in the center, suggesting a break-down of the FCI state. This
observation also confirms that we should, indeed, consider particle numbers N that are close to
Nφ/2 = 14, rather than ones close to N ′φ/2 = 17.

y

x

(a)

(b) (d)

(c)

Figure 5.1: (a) Spatial density and current distributions of the ground state of hard-core bosons
in a lattice of size 17 × 8 with N = 14, α = 1/4 and Jy = 1. The magnitudes of
current in the white circle are zoomed in by a factor of 3 for a clear visualization.
(b) Densities (upper panel) of the middle row n = 3 and vertical currents (lower
panel) on the middle links connected by n = 3 and n = 4. The horizontal dashed
lines locates the expected ρ = 1/8 and j = 0. (c) Horizontal currents on the middle
bonds connected by m = 8 and m = 9. The legend is the same as that in (b). The
black circle is used to highlight that the currents with opposite chirality are almost
independent of N . (d) Imbalance in the n-th row In as a function of evolution time.

A second observable that we study is the particle current between neighboring sites. As has
been discussed in Chapter 4, the current leaving site (m,n) in positive x and y direction is
given by the operators

ĵxm,n = iJx

(
e−iφnâ†m,nâm+1,n − h.c.

)
, (5.7)

ĵym,n = iJy

(
â†m,nâm,n+1 − h.c.

)
. (5.8)

respectively, as can be confirmed by writing out the time derivative of nm,n [232]. We denote
their mean by

jηm,n = 〈ĵηm,n〉, (5.9)
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with η = x, y. Such currents have been measured recently in systems of ultracold atoms in
optical lattices [122]. The ν = 1/2 FCI state is expected to feature chiral edge currents in
the presence of open boundary conditions. This behavior is also confirmed in Fig. 5.1(a),
where the currents are indicated by orange arrows, whose direction and size indicate direction
and magnitude of the current, respectively. In the lower panel of Fig. 5.1(b), we plot the y
current in the center (n = 3), jym,3, as a function of the x-coordinate m. We can see that to a
good approximation it vanishes in the center of the system, where we also found signatures of
incompressibility in the density distribution.

An interesting observation is that when moving inwards from the boundary to the bulk, the
chiral current not only decays in magnitude, but also reverses its sign in an oscillatory fashion.
In order to make this effect more visible, we have enlarged the size of the current arrows by
a factor of 3 inside the white ring in Fig. 5.1(a). It can also be seen in Fig. 5.1(c), where the
typical currents jx8,n in center horizontal links (between the sites m = 8 and m = 9) are plotted
versus the y-coordinate n. For various particle numbers, it is a robust observation that the
current at the second row (n = 2) away from the boundary (n = 0) is opposite to the current at
the boundary. Another feature, which seems to be related to these edge current oscillations, is
the formation of current vortices around the plaquettes close to the corner.
The current can be measured in various ways [122, 218, 281–287], for example, by suddenly

isolating two neighboring sites and subsequently observing the change of the density imbalance
in linear order with respect to time. As is shown now, it can also be inferred from the spatial
density imbalance In in the n-th row of the system [262],

In(t) =
∑

m<Lx/2

nm,n(t)−
∑

m>Lx/2

nm,n(t), (5.10)

as it builds up with time after releasing a single particle from the center of that row. Such an
extra particle can be created by preparing the ground state of the system in the presence of
a large potential dip (V = −20) at site (m = 8, n), which is then suddenly switched off. The
time evolution of In for this scenario is plotted in Fig. 5.1(d). The change of the imbalance
that builds up for short times directly after the quench is consistent with the computed ground
state currents.

To further confirm the existence of robust counter-propagating probability currents, here we
provide more data obtained from simulating a larger system of size 21× 10. In Figs. 5.2(a-d),
we plot the distributions of both density and currents of the ground states for different particle
numbers N . The densities of the middle row n = 4 and the vertical currents on the middle links
connected by n = 4 and n = 5 are plotted in Figs. 5.2(e) and (f), respectively, which represent
more pronounced signatures of FCI ground states in the larger system considered here. While
the currents in row n = 1 change their directions with increasing N , the direction of currents
in row n = 2 remains fixed, and they are always in opposite direction with the currents in
the outermost edges. From Fig. 5.2(g), one can see the amplitude of the counter-propagating
currents are almost independent of N , which indicate their robustness. By initially trapping
extra one [Fig. 5.2(h)] or three [Fig. 5.2(i)] particles in the centre of given row, the density
imbalances formed after the quench of on-site trapping present clear negative imbalance on the
row n = 2 which could be readily measured in experiments.
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(a) (b)

(c) (d)

(e) (f)

(g) (i)(h)

y

x

Figure 5.2: (a-d) Spatial density and current distributions of the ground state of hard-core bosons
in a lattice of size 21× 10 with N = 22, 23, 24, 25 respectively. The magnitudes of
currents in the white circle are zoomed in for a clear visualization. (e) Density of the
middle row n = 4 and (f) vertical currents on the middle links connected by n = 4

and n = 5. The horizontal dashed lines locates the expected n = 1/8 and j = 0. (g)
Horizontal currents on the middle bonds connected by m = 10 and m = 11. (e-g)
share the same legend. The black circles are used to highlight that the currents
with opposite chirality are almost independent of N . Imbalance in the n-th row In
as a function of evolution time with (h) one and (i) three extra particles initially
trapped in the centre of given rows. Consistent negative I2 appear after roughly
three tunneling time. Other parameters are α = 1/4 and Jy = 1.
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5.2.2 Crossover to charge-density waves

For the adiabatic preparation of FCI insulator states, it will be favorable to consider small
systems [264, 265, 288]. In order to estimate the minimal linear extent permitting the observations
of FCI signatures, we compute the ground state for systems of different widths Ly. Keeping
Lx = 17 and α = 1/4 fixed and targeting the ν = 1/2 state, the particle number is always
chosen as

N = νNφ = 2(Ly − 1). (5.11)

For small Ly the system can be viewed as a flux ladder, as they were investigated recently
in various experiments [92–96, 125, 183, 248, 249]. In this quasi-1D limit the FCI states are
predicted to be adiabatically connected to charge density waves (CDW) [208, 288–293].

The spatial density and probability current distributions are plotted in Fig. 5.3(a). One can
observe density oscillations are consistent with CDW behavior in the ‘bulk’ (i.e. the inner sites)
for Ly smaller than 5. When Ly & 6, a homogeneous bulk density is formed at the filling of
ρ = 1/8 particles per site expected for the FCI state. In order to quantify this statement we
plot the mean [Fig. 5.3(b)] and standard deviation [Fig. 5.3(c)] of the density nm,n, averaged
over the central sites (m = 4, . . . 8) of the middle row (e.g. n = 2 for Ly = 5). One can clearly
see that the filling approaches 1/8 for Ly & 6 and the standard deviation becomes (very) small
for Ly & 6 (8). This suggests that a linear extent of 6 to 8 lattice sites should be sufficient to
observe FCI bulk behaviour.
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(a)

(b) (c)

Figure 5.3: (a) Density and current patterns in the ground state for increasing values of the
vertical extent Ly show a crossover from CDW to FCI behavior. The mean (b) and
the standard deviation (c) of the particle number density on the middle row with
m from 4 to 12. Other parameters are ν = 1/2, α = 1/4, Jy = 1, Lx = 17 and
N = 2(Ly − 1) in the hard-core limit.

5.3 Probing fractional excitations via pinning potentials

In this section, we investigate signatures of charge fractionalization. In order to probe the
fractional ‘charge’ of 1/2 and −1/2 of the anyonic quasiparticle (QP) and quasihole (QH)
excitations of the ν = 1/2 FCI, we compute the ground state of the system in the presence of
local potential dips and bumps of strength −V and V (to be specified below) by setting the
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corresponding local potential terms Wm,n. These lower the energy of localized quasiparticle and
quasihole excitations, respectively, so that above a threshold value of V , we expect an excited
state with such an excitation to become the new ground state of the system. Such pinned
excitations have been used to estimate the spatial extent of QHs in various FCI models [169, 294,
295] and also for extracting their anyonic statistics [267, 296–300]. For probing the fractional
charge of the excitations, we will compare the ground-state density distribution of the system
with and without such pinning potentials. As a signature of the formation of the FCI, we
expect the particle number in the vicinity of these local defects to change in steps of the
fractional charge 1/2. In fact, such a scenario has been studied in an earlier study based on
exact diagonalization [175]. Due to the limited simulation ability, however, rather small systems
of only 4 particles were considered, and the signatures of fractional charge were not very clear.
The results presented here extend the earlier study to larger systems based on the DMRG
approach [236–238], which is able to transform a 2D lattice into a 1D chain, thus allowing
for the numerical study of a system with intermediate size. We will see that not only the
expected fractional charges can be clearly observed in an intermediate lattice, but also that this
behaviour is robust against the variation of various system parameters, like the magnetic flux,
the particle number, or a tunneling anisotropy. These results are very promising regarding a
possible experimental observation of charge fractionalization in optical lattices with ultracold
atoms.

5.3.1 Fractional charges and screening

In the first set of simulations, we consider systems with α = 1/4 and a horizontal extent of
Lx = 21. We vary the vertical extent Ly and the particle number N , so that N takes integer
values close to αν(Lx − 1)(Ly − 1) = (Ly − 1)5/2. In the center of the left and right half of the
system, respectively, we place a potential bump and a potential dip [as sketched in Fig. 5.4(c)
and (f)]. Namely, on 2 × 2 or 3 × 1 neighboring sites, the potential is changed by ±V/4 or
±V/3 In all later plots, we choose the 2× 2 configuration. The choice of such a pair of defects
is motivated by the desire to keep the average filling away from the defects constant. We will
see below, however, that the effect can also be observed for single defects, since the edge can
provide/absorb the required charge. For every value of V , we then compute the ground state
and compare how the particle number in the vicinity of the pinning potentials changes with
respect to the ground state with a homogenous bulk (V = 0). We define the accumulated charge
as

Q±V =
∑

`∈D±(r)

[
〈n`〉±V − 〈n`〉V=0

]
. (5.12)

Here, the region D±(r) includes all the sites ` = (m,n) within a disc of radius r that is co-centred
with the local impurity. The radius r has to be chosen big enough so that the regions D+(r) and
D−(r) essentially contain the whole pinned QH and QP excitation, respectively. In sufficiently
large systems the precise choice of r should not matter, as long as this condition is fulfilled.
This is indeed, what we observe [see Figs. 5.4(b) and (e) and the discussion below]. In the
following we choose r = 4.
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(b)

(f)

(a)

(d)

(c)

Figure 5.4: (a) Charges of QP/QH induced by negative/positive four-site pinning potentials as
a function of pinning strength V . We have fixed ν = 1/2, Lx = 21, α = 1/4, Jy = 1

and adapted N = (Lx − 1)(Ly − 1)αν ≈ 13, 15, 18, 20, 23, 25 for Ly = 6, 7, 8, 9, 10, 11

respectively. (b) Integrated charges in the vicinity of negative/positive pinning
potentials |V | = 5 as a function of the radius r of the counted disc. The black
hexagon dots correspond to Ly = 5, which shows a small system fails to give expected
fractional charges. The legend in (b) is the same as that in (a) and lines are guide for
the eye. (c) Distribution of the density and current differences between the ground
states with V = 5 and V = 0 in a system of 21× 10 with N = 23. The impurities
of strength ±V/4 are distributed over four sites of a plaquette, as indicated by the
solid and empty green circles respectively. The red circles are used to locate the
counting region D(r) with radius r. The dashed circles with r = 2 and 3 capture
the currents of opposite chirality. (d-f) Same plots as (a-c), but using a three-site
pinning. The shaded area in (a) and (c) indicate the regime of pinning strength that
is able to pin the expected fractional charges.

In Figs. 5.4(a) and (d) we plot Q± for various Ly ≥ 6 as a function of V for 2× 2 and 3× 1

pinning potentials, respectively. We can clearly observe two effects. Firstly, the density is hardly
affected by a small pinning potential. This is another confirmation of the bulk incompressibility
expected for the FCI state. Secondly, once V is raised above a threshold, the accumulated charge
quickly changes to values close to ±1/2 at which it stays to form an extended plateau with
respect to V . This confirms the fractional charges of the elementary QP and QH excitations
of the system. Moreover, the results not only show that it is a robust way to create QP and
QH excitations by using pinning potentials, but also indicate that the shape of topological
excitations could be tailored by designing the pinning potentials. While we can identify plateaus
already for Ly = 6, Q± remains closer to ±1/2 for larger system sizes. Choosing V = 5 as a
value in the middle of the plateau, we compare results for different radii r in Figs. 5.4(b) and
(e) and find that they saturate close to ±1/2 for r ≥ 3.

A typical density and current distribution, as it is found for V = 5 (in the middle of the
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plateau) is presented in Figs. 5.4(c) and (f) for Ly = 10. The extent of the QP is larger than
that of the QH, which can be most clearly seen in the probability currents surrounding these
localized excitations. When moving away from the center of the QP or QH, we observe that
both the excess density and the chiral currents oscillate and change sign. These oscillations are
more prominent for the QP excitation on the right hand side.

(a) (b)

(c) (d) (e)

Figure 5.5: (a) Charges integrated in the vicinity of negative four-site pinning potentials at r = 4

as a function of V . The discrete points correspond to the case of a single potential
dip, while the solid lines are obtained by applying both potential dips and bumps
as in Fig. 5.4. The inset shows the charges at V = 5 as a function of the radius r,
and the circles and squares respectively represent the charges in the left and right
regions as defined in Fig. 5.4(a). We have used N = 23 in a system of 21× 10. (b)
A typical charge and current distributions at V = 5. The currents within the circle
are zoomed in by a factor of 6 for clear visualization. (c) Charges as a function of V
for different systems with negative 2 × 2 pinning potentials. The numbers N are
given by 10, 18, 22 for system size 10× 10, 17× 10, 17× 12, respectively, to achieve
ν = 1/2 particle per flux quantum. (d) Charges as a function of radius r at V = 5.
Note that the drop at r = 5 for Ly = 10 is due to extra excitations appearing in
the edge. (e) A typical charge distribution at V = 5 in system of size 10× 10 with
N = 10. Other parameters are α = 1/4, Jy = 1.

As discussed in the previous section, where we investigated ground-state properties without
pinning potential, the edge of the system can serve as a reservoir for excess particles. Thus, we
can expect that it is also possible to create not only charge-neutral pairs of QP and QH, but
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also individual excitations in the bulk. This scenario is investigated in Fig. 5.5. By applying
only one potential dip in a system that otherwise agrees with the one studied in Fig. 5.4(c),
we find the same signatures of incompressibility and charge fractionalization in the response
of the ground-state density as before. The additional charge required for the creation of a QP
by the potential dip is provided by the compressible edges. Note that this implies as well that
the reservoir given by the compressible edges can host (and thus exchange with the system)
fractional charges in units of ν = 1/2. This would be experimentally favourable, since in this way
one might allow for a smaller extent of the system also in x-direction. As shown in Fig. 5.5(c-e),
clear signatures of fractional charges can still be observed in a smaller system of 10× 10 sites.
Considering a more experimentally-realistic single potential bump, we find similar behavior

for the creation of a single quasi-hole excitation within the bulk. In order to benchmark the
appearance of a quasi-hole excitation, we firstly consider a large lattice of size 17 × 12 with
particle number N = 22. As shown by the black dots in Fig. 5.6(a), the charge nicely saturates
at −1/2 with the increase of radius of the counted disk [see e.g. Fig. 5.6(f)]. This result shall be
used as a reference for the following discussion. By plotting the charges as a function of radius r
for different system sizes, one can see that for the size larger than 6× 6, the excitations exhibit
very similar behaviour near the pinning potentials (r≤2). For 6 × 6, the charges at r = 2 as
a function of impurity V [blue dots in Fig. 5.6(b)] behave similarly as that in the early study
of a lattice size 5 × 9 [175], where a relatively-large deviation from −1/2 was also observed.
As shown here, in order to observe clearer signatures of quasi-hole excitations, a system larger
than 8 × 8 would be needed. Typical charge distributions of system with different sizes are
shown in Fig. 5.6(c-f). Note that the values of charges close to −1/2 at r = 1 [Fig. 5.6(a)] can
be misleading, as the density per site is 1/8 and the sum of depletions on the four sites with
pinning potentials would certainly go to −1/2 for large pinning.
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(a) (b)

(c) (d) (e) (f)

Figure 5.6: (a) Charges as a function of radius r at V = 5. (b) Charges integrated in the
vicinity of positive four-site pinning potentials at r = 3 as a function of pinning
strength V . Note that r = 2 is taken for the smallest size 6 × 6. (c-f) Charge
distributions at V = 5 in a system of size 6 × 6, 8 × 8, 10 × 10 and 12 × 12,
respectively. Other parameters are α = 1/4, Jy = Jx. We adapt the total particle
number N = (Ly − 1)2/8, so that a Laughlin-like state at ν = 1/2 is expected.

5.3.2 Robustness

We will now investigate the robustness of the fractionalized ground-state response to pinning
potentials, when changing various system parameters. Starting from a scenario like the one
investigated in Fig. 5.4, with a pair of 2× 2 pinning potentials of opposite sign and a system size
of 21× 10 sites, in Fig. 5.7 we show results for different total particle numbers, plaquette fluxes,
and anisotropic tunneling matrix elements. In panel (a), we plot the accumulated charges Q±V
as a function of V for different particle numbers. Again the precise choice of r = 4 does not
significantly influence the results, as can be inferred from (b), where r is varied for fixed V = 5.
Optimal particle numbers are expected to lie close to να(Lx − 1)(Ly − 1) = 22.5. And, indeed,
we can see very clear signatures of charge fractionalization for a range of particle numbers
N = 21, 22, 23. However, when the particle number becomes too small (large), the threshold
value of V at which a QH (QP) is created shifts to smaller values. Moreover, for the smallest
particle number considered, N = 20, we even find the creation of a second QH excitation at a
second threshold value of V .
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Figure 5.7: (a) Charges integrated at radius r = 4 as a function of pinning strength V for
different particle numbers N . (b) Charges as a function of r at V = 5 for different
N . We use the same legend in (a) and (b) and α = 1/4, Jy = 1. (c) Charges as
a function of V for different α and (d) charges as a function of α for different V
with N = 23, Jy = 1. (e) Charges as a function of V for different Jy and (f) charges
as a function of Jy for different V with N = 23, α = 1/4. In all cases we have
simultaneously applied both negative and positive four-site pinning potentials in a
system of size 21× 10.

The fact that the charge fractionalization expected for the FCI state breaks down when the
global filling N/Nφ = N/[α(Lx − 1)(Ly − 1)] deviates too much from the bulk value ν = 1/2 of
the FCI, can also be observed by varying the plaquette flux quantified by the number of flux
quanta per plaquette α. This is investigated in Figs. 5.7(c) and (d). In panel (c) we observe that
the threshold for the creation of a QH (QP) is shifted to smaller values of V , when α increases
(decreases). Moreover, for the value of α = 0.23, no QP of fractionalized charge 1/2 can be
observed. In panel (d), we plot the pinned charges versus α (comparing different values of V )
and find that the fractionalization of both QH and QP can be observed for α between 0.25 and
0.27. The quantization of QH (QP) alone can, moreover, be observed for values of α as small
(large) as 0.24(0.29).

Finally, we investigate the effect of a tunneling anisotropy. The robustness of charge fraction-
alization with respect to a variation of Jy relative to Jx = 1 is investigated in Figs. 5.7(e) and
(f) 16. We find charge fractionalization for values of Jy between 0.7 and 1.5. All in all, we can
see that signatures of charge fractionalization can be observed in an extended parameter regime,

16We consider values of Jy that are both smaller and larger than 1. In systems with boundaries and defect
positions that are symmetric with respect to both lattice directions, it would be sufficient to increase Jy
relative to Jx = 1. However, since we are working in a rectangular system that is elongated in x direction
and possesses two defects that are separated in x direction, increasing and decreasing Jy from 1 can lead to
different results.
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which is good news for a possible experimental observation of charge fractionalization in small
bosonic FCIs.

5.3.3 Effect of finite interactions

So far, we have focused on the hard-core limit. However, similar behaviour is found also
for sufficiently strong, but finite interactions U . In order to test the robustness of charge
fractionalization with respect to different interaction strengths, we have considered a system
of 17× 8 sites with 14 particles (like the one studied in Fig. 5.1) and calculated the response
to two local defect potentials of oppositie sign [like the ones depicted in Fig. 5.4(c)]. For the
calculation we truncated the maximum possible occupation of each lattice site to four particles.
In Fig. 5.8, one can observe clear signatures of charge fractionalization for interaction strengths
U/J & 15.

(a) (b) (c)

Figure 5.8: (a) Change of charge induced by a pair of 2 × 2 pinning potentials of opposite
strength ±V , measured in two circular regions of radius r centered around the
pinning potentials. (b) Same as (a), but for fixed V = 5 and different radii r.
We use the same legend for interaction U in (a) and (b). Other parameters are
Lx × Ly = 17 × 8, α = 1/4, Jy = 1, and N = (Lx − 1)(Ly − 1)αν = 14. (c) A
typical charge distributions at V = 5 for U = 20. The particle number per site was
truncated to a maximum value of 4 (allowing for larger occupations did not change
the results).

5.4 Fractional charge pumping

As another hallmark of quantum Hall states, quantized charge pumping can be induced by
the adiabatic insertion of magnetic flux quanta [6, 166, 301]. In chapter 3, we have discussed
in detail a possible protocol for the realization of the famous Laughlin Gedankenexperiment
in 2D optical lattices. While its application in interacting systems of small size has also been
addressed [175], in this section, we extend the study to the systems of intermediate size by using
a time evolution method based on matrix product operators [236–238]. We will see that the
fractional charge pumping within the bulk, as well as the edge mode population can be induced
by such a local-flux insertion in a finite 2D fractional Chern insulator.

After applying additional phases δφ on the links between a target plaquette and the system
boundary, as sketched in Fig. 5.9(a), only the flux of the target plaquette is modified to be
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φ+ δφ. After linearly ramping δφ from 0 to 2π within time τ , as expected, a fractional charge of
1/2 is populated from the bulk to the edge of the system with ν = 1/2 particle per flux quantum
[Figs. 5.9(c,d)]. After the flux insertion, the created edge excitation follows a chiral motion,
which is robust against the corner defects [Figs. 5.9(e-g)]. Note that all these signatures survive
even for a system of 12× 10 with 12 particles, which is a promising setup within the reach of
present-day’s experiments [125]. Last but not least, by modifying the fluxes of two plaquettes
to be φ ± δφ, as depicted in Fig. 5.9(b) and shown in Fig. 5.9(h-k), QP and QH excitations
with charges ±1/2 can be created in the bulk. Interestingly, we observe fluctuating densities
(like a ring structure) in the vicinity of modified plaquettes during the ramp [Fig. 5.9(j)], which
is different from the quantized charge pumping in integer Chern insulators [see e.g. Fig. 3.7 in
chapter 3].

106



5 Bosonic fractional Chern insulators and their fractional excitations

(a)

(b)

(c) (d)
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(h) (i)

(j) (k)

Figure 5.9: Sketch of modifying the flux in one single plaquette (a) and two plaquettes (b) in
the bulk. The arrows denote additional tunnelling phases δφ, and the fluxes of
the plaquettes labelled by �,⊗ are modified to be φ ± δφ respectively. (c) The
particle number difference (‘charge’) ∆N(t) = N(t) −N(t = 0) integrated in the
disc r = 3 centred at the modified plaquette as a function of δφ(t). The inset shows
∆N(τ) as a function of integrated radius r. (d) Snapshots of the respective changes
in spatial densities at the end of ramp with t = τ = 30 (d), and after the flux
insertion at (e) t = 46, (f) t = 71, (g) t = 90. The red arrows are used to indicate
the chiral motion. Simulations of (c-g) are performed for a system of size 12× 10

with N = 12, α = 1/4, Jy = 1 and ν = N/Nφ ' 1/2. Tiny pinning potentials of
strength V = 1/4 have been distributed over the four sites of the modified plaquette
to prevent the bulk excitations from dispersing. (h) Particle number difference ∆N

integrated in the disc with r = 4 centred at the modified plaquettes as a function
of δφ(t). The dependence of charges as a function of r are shown in the inset.
Snapshots of the respective density changes within the ramp at (i) t = 4, (j) t = 20,
(k) t = τ = 40. Simulations of (h-k) are performed for a system of size 21× 10 with
N = 23, α = 1/4, Jy = 1 and ν = N/Nφ ' 1/2.
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This thesis has been about tailoring artificial gauge fields and probing signatures of quantum
Hall physics in optical lattices with ultracold atoms. By considering the paradigmatic Harper-
Hofstadter model, we first introduced basic concepts (e.g. Berry phase, Chern number) that
are used to describe its topological properties, followed by its experimental implementation by
using Floquet engineering in chapter 2.
In chapter 3, we have proposed a scheme for the realization of tunable solenoid-type local

magnetic fluxes in 2D optical lattices. Such an optical solenoid allow for quantized charge
pumping in a topological Chern insulator along tailored paths. This effect can, for example, be
employed for the coherent population of chiral edge modes to probe their robust chiral transport
properties. Its application to a bosonic optical lattice system has also been discussed.

Motivated by the above-mentioned work, in chapter 4 we point out that the time-dependent
artificial vector potentials (in the form of Peierls phases) can be designed for rapid adiabatic
state preparation in optical lattice systems. This observation is based on the fact that in
such systems experimentalists directly control artificial vector potentials rather than magnetic
fields, in which case the flux insertion is accompanied by the creation of artificial electric fields.
We demonstrated that for a ladder with flux, this approach allows for an almost immediate
state preparation for non-interacting bosons. Remarkably, this can be attained with very short
ramping time also for strongly interacting bosons. While the abrupt adiabatic preparation in
the ladder is an extreme example, it highlights that tuning Peierls phases can be a very powerful
tool for state preparation.

Last but not least, we have numerically investigated the fate of FCI states as the ground state
of the strongly-interacting bosonic Harper-Hofstadter model in realistic finite system geometries
with open boundary conditions, which can be realized in quantum-gas microscopes. Already
for small system sizes starting from linear extents of about 6-8 lattice sites, we find robust
measurable signatures that are consistent with the expected behavior of a Laughlin-like FCI
state at filling ν = 1/2. In particular, we find chiral edge transport, an incompressible bulk
at the expected filling, as well as fractionally charged quasiparticle and quasihole excitations
that can be created either by pinning potentials or via local flux insertion. These features are
rather robust against modifications of system parameters. Our results provide a guide for future
experiments with interacting atoms in optical lattices with artificial magnetic flux.

Outlook

While we have shown that the fractional Chern insulating states and fractionalized charges
can be stabilized in a finite lattice of intermediate size with a few particles, an efficient way of
preparing such exotic states is still a highly non-trivial task. There have been several proposals
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for preparation protocols in lattice models, including starting from a topologically trivial Mott
insulator [257, 258, 264], or coupling individual chains [265, 278]. Nevertheless, how to ramp up
the desired values of flux in an efficient way is an important question. It will be interesting to see,
whether the scheme for rapid state preparation via magnetic flux ramps from Chapter 4 can be
extended to the preparation of (fractional) Chern insulator states in 2D. Especially, combining
state preparation protocols with realistic periodic driving schemes will be of particular interest
and importance.
As has been discussed in chapter 4, the chiral current in quasi-1D (two-leg ladders) is a

crucial quantity to characterize the ground state phases. Its extension to 2D (fractional) Chern
insulators, together with its connection to the topologically non-trivial edge modes therein, is also
a very interesting direction to go. Such kind of theoretical investigations could also be addressed
in future experiments by measuring the detailed current patterns based on refined quantum
gas microscope techniques [68, 69, 282]. Note that although many cold atom experiments
need harmonic traps, sharp boundaries are now also possible by using, for example, synthetic
dimensions [91] or box trapping potentials [70], which offer ideal platforms to study edge physics.

Meanwhile, box traps provide other exciting opportunities as well [70]. For sure it is interesting
to experimentally create and probe fractionalized charges in a finite lattice. Then a follow-
up question would be what can we do with the created fractional excitations? One exotic
phenomenon is the so-called Andreev reflection, which originally describes scattering behaviour
at interfaces between a superconductor and a normal state material [302, 303]. Similarly,
considering an interface between the fractional ν = 1/3 and integer quantum Hall states, two
incoming quasiparticles with charge e/3 can be reflected as a quasihole with charge −e/3, leaving
a normal electron with charge e transmitted. Such an Andreev reflection of fractionally-charged
quasiparticles has been predicted more than two decades ago [304], and has been very recently
observed in a 2D electronic system [305]. Since box traps in optical lattices offer the possibilities
to study interfaces between different phases of matter, it will be an exciting future task to create
an interface (e.g. by using quantum gas microscopes) between a fractional Chern insulating
state and a trivial one, by means of which to investigate the fate of the fractional charges by
using ultracold atoms.

As Laughlin’s Gedankenexperiment of flux insertion provides a powerful tool to characterize
quantum Hall states, it is desirable to see the proposed protocol to be implemented in cold atom
experiments. At the same time, its application in bosonic system posts an interesting question
about its possible realization in other synthetic platforms, such as photonic waveguides [43–45].
As another paradigmatic Chern insulator, the Haldane model, has been implemented by using
photons [306], it becomes also interesting to work out realistic driving protocols for a local flux
insertion in the Haldane model.
More recently, the study of topology in quasicrystals [307] or fractals [308] is drawing more

and more attentions. As a hallmark of quantum Hall state and a promising experimental probe,
how to realize the above-mentioned Laughlin’s gedankenexperiment of flux insertion in such
systems will be also of interest. Moreover, motivated by recent experimental realization of fractal
photonic lattices [309], it is interesting to investigate whether chiral edge currents show up in
fractal dimension with time-reversal symmetry breaking (e.g. by applying periodic driving).
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Appendix

A. Bogoliubov theory in a two-leg ladder

The Hamiltonian of the interacting two-leg ladder is rewritten as

Ĥ =ĤS + ĤI , (A1)

ĤS =− J
∑
r

(
eiθ1 â†1,r+1â1,r + eiθ2 â†2,r+1â2,r + h.c.

)
− J⊥

∑
r

(
â†2,râ1,r + â†1,râ2,r

)
, (A2)

ĤI =
U

2

∑
r

(
â†1,râ

†
1,râ1,râ1,r + â†2,râ

†
2,râ2,râ2,r

)
. (A3)

Here â†1,r (â1,r) and â
†
2,r (â2,r) are the creation (annihilation) operators on the rung r in the

lower and upper leg respectively, J denotes the amplitude of nearest-neighbor tunneling along
the legs, with θ1,2 = −η ± φ/2 being the corresponding Peierls phases, so that the flux in each
plaquette is φ and we consider φ = π/2 here.
For a two-leg ladder with M rungs, under periodic boundary conditions along the legs, the

quasimomentum takes discrete value k = 2π
Mam with m = −M/2,−M/2 + 1, · · · ,M/2− 1 (for

even M) and a being the lattice constant. By performing the Fourier transformation

âl,r =
1√
M

∑
k

eikarâl,k, l = 1, 2 (A4)

the above Hamiltonians can be expressed in quasi-momentum representation as

ĤS =
∑
k

(
ε1,kâ

†
1,kâ1,k + ε2,kâ

†
2,kâ2,k

)
− J⊥

∑
k

(
â†2,kâ1,k + â†1,kâ2,k

)
, (A5)

ĤI =
U

2M

∑
{ki}

(
â†1,k1 â

†
1,k2

â1,k3 â1,k4 + â†2,k1 â
†
2,k2

â2,k3 â2,k4

)
δ̃k1+k2,k3+k4 , (A6)

with

ε1,k = −2J cos
(
ka+ η − φ/2

)
, (A7)

ε2,k = −2J cos
(
ka+ η + φ/2

)
, (A8)

and periodic Kronecker symbol δ̃k,q vanishing unless k = q modulo reciprocal lattice constants
2π/a.
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Diagonal basis

The single-particle Hamiltonian (A5) can be diagonalized by choosing a different basis, i.e.(
â1,k

â2,k

)
=

(
ζk −ηk
ηk ζk

)(
b̂1,k
b̂2,k

)
. (A9)

The canonical commutation
[
b̂i,k, b̂

†
j,k′

]
= δi,jδk,k′ requires that

ζ2
k + η2

k = 1. (A10)

Substituting Eq. (A9) to Eq.(A5), and imposing all the off-diagonal terms to vanish, the single
particle Hamiltonian is diagonalized as

ĤS = E1b̂
†
1,k b̂1,k + E2b̂

†
2,k b̂2,k, (A11)

with

E1 =
1

2

(
ε1,k + ε2,k +

√
4J2
⊥ +

(
ε1,k − ε2,k

)2)
, (A12)

E2 =
1

2

(
ε1,k + ε2,k −

√
4J2
⊥ +

(
ε1,k − ε2,k

)2)
, (A13)

ζ2
k =

1

2

1−
ε2,k − ε1,k√

4J2
⊥ +

(
ε1,k − ε2,k

)2
 . (A14)

Truncation to the lowest band

The terms related to b̂2,k (b̂1,k) correspond to the lower (upper) band. Since the system possesses
a large band gap for the parameters used (J⊥ = 2J), for weak interaction we are allowed to
truncate our Hamiltonian to the lowest band. To do this, we plug Eq. (A9) into the Hamiltonian
and neglect the b̂1,k terms. In this case, the full Hamiltonian is truncated to the lowest band
[194],

Ĥ =
∑
k

E (k) b̂†k b̂k +
U

2M

∑
{ki}

Γk1,k2,k3,k4 b̂
†
k1
b̂†k2 b̂k3 b̂k4 δ̃k1+k2,k3+k4 , (A15)

where b̂k ≡ b̂2,k, Ek ≡ E2(k) and we have defined Γk1,k2,k3,k4 = ζk1ζk2ζk3ζk4 + ηk1ηk2ηk3ηk4 .

Bogoliubov approximation

For weak interactions and at low temperature, the number N0 of particles occupying the single-
particle ground state with quasi momentum k0 remains of the order of total particle number N
in a system of finite extent. Thus one can make the approximation

b̂†k0 b̂k0 = N̂0 ' N̂0 + 1 = b̂k0 b̂
†
k0
, (A16)
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which leads to

b̂k0 ' b̂
†
k0

=
√
N0, (A17)

b̂k =
√
N0δk,k0 + b̂k

(
1− δk,k0

)
. (A18)

Keeping all the terms up to second order in b̂k 6=k0 , the Hamiltonian (A15) becomes

Ĥ =E (k0)N0 +
U

2M
Γ0UN

2
0 +

∑
k 6=0

E (k + k0) b̂†k b̂k

+
UN0

2M

∑
k 6=0

[
Γ1

(
b̂k b̂−k + b̂†k b̂

†
−k

)
+ 4Γ2b̂

†
k b̂k

]
, (A19)

with the coefficients

Γ0 = η4
k0 + ζ4

k0 = 1/2, (A20)

Γ1 =
(
ηk+k0ηk0−k + ζk+k0ζk0−k

)
/2, (A21)

Γ2 = η2
k0η

2
k+k0 + ζ2

k0ζ
2
k+k0 = 1/2, (A22)

where we have used η2
k0

= 1/2 = ζ2
k0

according to Eqs. (A7), (A8) and (A14).
Substituting N0 = N −

∑
k 6=0 b̂

†
k b̂k and keeping the terms up to second order in b̂k, we arrive

at

Ĥ =E0 −
∑
k>0

C−k +
∑
k>0

Ĥk

Ĥk =
(
b̂†k b̂−k

)( Ck 2Dk

2Dk C−k

)(
b̂k
b̂†−k

)
, (A23)

with

E0 =
(
E (k0) + UnΓ0

)
N, (A24)

Ck = E (k + k0)− E (k0) + Un (4Γ2 − 2Γ0) , (A25)

Dk = UnΓ1 = D−k ≡ D. (A26)

Here we have introduced the total particle number per site n = N
2M , and the additional term

−
∑

k>0C−k comes from the commutation relation b̂†−k b̂−k = b̂−k b̂
†
−k − 1.

Diagonalization

To diagonalize the Hamiltonian (A23), we perform the Bogoliubov transformation(
b̂k
b̂†−k

)
=

(
µ ν

ν µ

)(
ρ̂k
ρ̂†−k

)
, (A27)
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with quasiparticle annihilation (creation) operators ρ̂k (ρ̂†k). Requiring bosonic commutation
relations for the quasiparticle operators, we have

µ2 − ν2 = 1. (A28)

To get the expressions for µ, ν, we plug Eq. (A27) into Eq. (A23) and impose that

Ĥk =
(
ρ̂†k ρ̂−k

)( γ1 0

0 γ2

)(
ρ̂k
ρ̂†−k

)
. (A29)

Thus we have (
γ1 0

0 γ2

)
=

(
µ ν

ν µ

)(
Ck 2Dk

2Dk C−k

)(
µ ν

ν µ

)
(A30)

which leads to the solutions:

γ1 =
1

2

(
Ck − C−k +

√
(C−k + Ck)

2 − 16D2

)
, (A31)

γ2 =
1

2

(
−Ck + C−k +

√
(C−k + Ck)

2 − 16D2

)
, (A32)

µ2 =
1

2

1 +
C−k + Ck√

(C−k + Ck)
2 − 16D2

 . (A33)

Bogoliubov ground state

In the following, we follow Ref. [310] and construct the Bogoliubov ground state
∣∣∣ΨB

0

〉
, which is

defined as the state with no quasi-particle, i.e.

ρ̂k

∣∣∣ΨB
0

〉
= 0, ∀k 6= k0. (A34)

As the Bogoliubov transformation (A27) connects the states with k and −k, the Bogoliubov
ground state can be expressed as the states where nk particles are present in k states and n−k
particles are in the −k states [310], i.e.

∣∣∣ΨB
0

〉
=
∏
k

∑
n,n−k

Cknk,n−k
(b̂†k)

nk

√
nk!

(b̂†−k)
n−k√

n−k!
|0〉, (A35)

where |0〉 denotes the vacuum state. Substituting Eq. (A35) into Eq. (A34) and using the
expression of ρ̂k = µb̂k − νb̂†−k according to Eq. (A27), we have

∏
k

∞∑
nk,n−k=0

(
Cknk+1,n−k

µ
√
nk + 1 + Cknk,n−k−1 − ν

√
n−k |nk, n−k〉

)
= 0, (A36)
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where we define Cknk,−1 = 0. Since the basis
{
|nk, n−k〉

}
are orthogonal, we get

√
nk + 1Cknk+1,n−k

+ αk
√
n−kC

k
nk,n−k−1 = 0 (A37)

with αk = −ν/µ for short.
By setting n−k = 0 in the above equation Eq. (A37), we have Cknk+1,0 = 0 (nk ≥ 0). A similar

procedure for b̂1,−k
∣∣∣ΨB

0

〉
= 0 gives us Ck0,n−k+1 = 0 (n−k ≥ 0). Based on these observations, it

turns out that all the ‘off-diagonal’ components vanish, i.e. Cknk+1,n−k
= 0 (n−k 6= nk + 1). In

the case of n−k = nk + 1, Eq. (A37) gives us the following expression of the diagonal terms

Cknk,nk = (−αk)nk Ck0,0, (A38)

where Ck0,0 is determined from the normalization of the wave-function. Therefore, the Bogoliubov
ground state is a state where pairs of particles with wave vector k and −k are excited.

We denote
∣∣n1,n2, · · ·

〉
as a state with n pairs of particles with non-zero quasi-momentum k

and −k, and |ψ0〉 as the state with k = 0. In this case the Bogoliubov ground state takes the
following form ∣∣∣ΨB

0

〉
= Z

∑
n1,n2

[(
−αk1

)n1
(
−αk2

)n2 · · ·
]
|n1, n2, · · · 〉 |ψ0〉 , (A39)

where Z =
∏
k>0

√
1− α2

k is the normalization factor.

The state |ψ0〉 for k = 0 is a coherent state b̂0 |ψ0〉 = ψ0 |ψ0〉 and reads

|ψ0〉 = Z0

∑
n0

ψn0
0√
n0!
|n0〉 , (A40)

where we have defined the vacuum state |vac〉 for the real particles operators b̂k, i.e. b̂k |vac〉 = 0.
The normalization factor is Z0 = exp

(
− |ψ0|2 /2

)
.

According to Eq. (A39) we have the overlap of two ground states

O =
〈

Ψ′B0

∣∣∣ΨB
0

〉
= ZZ ′

〈
ψ′0 |ψ0〉

∏
k>0

1

1− α′kαk
. (A41)

The overlap of coherent states Ocoh ≡
〈
ψ′0 |ψ0〉 is obtained by using Eq. (A40),

Ocoh = e

(
−|ψ′0|

2−|ψ0|2+2ψ′0ψ0

)
/2
, (A42)

which reads Ocoh ' 1 under Bogoliubov approximation ψ′0 =
√
N ′0/2 '

√
N/2 ' ψ0.
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(a)

(b)

(c)

(d)

M=24

M=40

M=60

M=24

M=40

M=60

Figure A1: (a) Semi-log plot of ground state overlaps O(π/2) from Bogoliubov theory as a
function of interaction U , for different number of rungs M . (b) Semi-log plot of
O(π/2) as a function of M for different U . (c,d) Same plot as (a,b), but for DMRG
simulations.

Occupation of finite momentum states

In the Bogoliubov ground state
∣∣∣ΨB

0

〉
, pairs of bosons are ‘virtually’ excited to states with k and

−k. The average number of the excited bosons with wave vector k due to such quantum fluctu-
ations is obtained from the Bogoliubov transformation (A27) and the definition of Bogoliubov
ground state (A34),

nk =
〈

ΨB
0

∣∣∣ b̂†k b̂k ∣∣∣ΨB
0

〉
= |ν|2 . (A43)

We denote Nk 6=0 as the number of virtually excited particles, i.e. the number of particles in the
state |k 6= 0〉,

Nk 6=0 = 2
∑
k>0

nk = 2
∑
k>0

|ν|2 . (A44)
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Results

Now we apply the above expressions in our ladder system at 1/2 filling with J⊥ = 2. We plot the
analytic result for the overlap Eq. (A41) for M -rung ladder with periodic boundary condition in
Fig. A1(a), which shows qualitative agreement with the dip behavior in the weakly interacting
regime from the DMRG simulations of finite system with open boundary conditions [Fig. A1(c)].
Note that the DMRG results for the interacting regime have been divided into three regions.
The beginning and the end of the grey shaded region are given by the BKT transition from a
superfluid to a Mott insulator for φ = π/2 and φ = 0, respectively (similar to Fig. 4.5). Overall,
both the analytic and numerical results show that the overlaps decay exponentially with the
system size for finite U , and approach 1 for the non-interacting case [Fig. A1(b,d)].

(a) (b)

Figure A2: (a) Number of particles with non-zero quasi-momentum for φ = 0 (solid line) and
φ = π/2 (dashed line), scaled with total particle number N . (b) Difference of
non-zero k mode occupation between φ = π/2 and φ = 0. Here we choose the
number of rungs M = 60, number of particles N = 60, and J⊥ = 2.

To understand the dip in the weakly interacting regime, we plot the average number of particles
with non-zero quasi momentum Nk 6=0 according to Eq. (A44), and the relative difference in the
occupation of non-zero k-modes ∆nk = nk(π/2)−nk(0)

nk(π/2)+nk(0) between φ = π/2 and φ = 0 in Fig. A2(a)
and (b), respectively. We can observe that when switching on the interactions, the excited
quasi momentum modes become occupied much faster in the presence of magnetic flux. This is
related to the fact that the single-particle dispersion relation E−(k) acquires a larger effective
mass with increasing flux. This is a consequence of a frustration induced into the kinetics by
the magnetic flux. As a result, the momentum modes become occupied rather differently for
both fluxes when U is switched on, as can be seen from Fig. A2(b). The slight increase of the
overlap for even larger U can then be explained by the fact that the relative differences in the
momentum distributions for both fluxes become smaller again.
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