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Abstract

We show how the software COMSOL MULTIPHYSICS can be used to solve PDE-constrained
optimal control problems. We give a general formulation for such kind of problems and derive
the adjoint equation and optimality system. Then these preliminaries are specified for the
stationary Navier-Stokes equations with distributed and boundary control. The main steps
to define and solve a PDE with CoMsOL MULTIPHYSICS are described. We describe how the
adjoint system can be implemented, and how the optimality system can be used by COMSOL
MuLTIPHYSICS’s built-in functions. Special crucial topics concerning efficiency are discussed.
Examples with distributed and boundary control for different type of cost functionals in 2
and 3 space dimensions are presented.
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1 Introduction

The effective numerical solution of PDE-constrained control problems requires expertise in several
disciplines of applied mathematics: Knowledge in the theory of the underlying PDE (e.g. existence
and uniqueness results) has to be combined with the choice and analysis of an appropriate control
strategy, specifically when adjoint-based algorithms are used. From the numerical point of view,
effective discretization schemes and linear or nonlinear solvers for the state equation have to be
combined with a suitable optimization method.

Any of these tasks alone may be rather challenging, even more when real-world applications
are considered. In many cases, industrial problems are solved numerically by using commercial
or legacy software. Its development has incorporated huge amounts of both work and knowledge,
and thus it cannot be discarded when proceeding from the pure simulation to mathematical opti-
mization and control. The alternative of plugging in the state equation solver in an off-the-shelve
optimization routine — the simplest way of the so-called "first discretize then optimize” approach
— is often not very successful, too.

A remedy would be to take advantage of the available state equation (PDE) solver, and combine
it with a solver for the analytically derived adjoint equation. This solver has to be implemented.
Even though the adjoint equation is always linear, the original PDE solver can not be used in
most cases, specifically if the state equation is nonlinear.

In this paper we show how this strategy can be implemented when using the commercial
software COMSOL MULTIPHYSICS ®[2]. Somehow CoMSOL MULTIPHYSICS is a successor of the
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PDE toolbox in MATLAB ®)]8], and it is also widely used in education and university research. On
the other hand it offers many typical features of commercial solvers: A graphical user interface,
geometry import functions and grid generators for 1,2, and 3 space dimensions, and post-processing
facilities. As MATLAB, also COMSOL MULTIPHYSICS is more and more used in real industrial
application, at least according to the web site of the distributors. The chances that its application
will increase in the future are quite good, since COMSOL MULTIPHYSICS offers a lot of predefined
equations and ”application modes” (for example for fluid and structural mechanics), variable
Finite Element ansatz spaces, and state-of-the-art numerical algorithms for the solution of linear
and non-linear systems.

Its main advantage, and the reason why we use COMSOL MULTIPHYSICS here, is that it also
allows a more mathematical equation-based modeling, i.e. the opportunity to define a PDE by
its coefficients or even in weak form, and the chance to invoke commands it from the MATLAB
prompt. In this paper we show how these features can be used to design a complete control
framework that solves the optimality system of a PDE-constrained control problem as a coupled
equation system by the built-in nonlinear solver. Due to the high-level functions provided by the
software, the complete control program or script is comparably short. The possibility to call the
functions from the command line also allows the use of optimization routines written in MATLAB.
We show the structure of a control script for the cases of distributed and boundary control for
the stationary incompressible Navier-Stokes equations. Due to the general applicability of the
CoMsoL MULTIPHYSICS software it is possible to transfer the presented approach to other state
equations as well.

The structure of the paper is as follows: In the next section we continue with a general
description of PDE constrained control problems with distributed and boundary control. We
describe the form of the optimality system including the derivation of the adjoint equation. In
Sec. 6 we specialize these results for the test application that we used, the stationary Navier-Stokes
equations (NSE). Then we present COMSOL MULTIPHYSICS’s solution procedure for the NSE, and
describe the basic data, PDE definition and solver structures, as far as they are important for
our purpose. We show how the optimality system can be realized in COMSOL MULTIPHYSICS.
Afterwards we present efficient model scripts to solve the control problems. We emphasize the
crucial points to obtain a really flexible and effective framework that may be extended to other
state equations as well. We end the paper by showing numerical results and a short summary.

2 PDE-constrained control problems

In this section we present the form of a general PDE-constrained control problem, including the
adjoint equation, the optimality system, and a representation of the gradient of the cost. The
general form can then be specialized for the given type of state equation. We emphasize that
the following computations are formal, and thus for a mathematically correct setting further
theoretical investigations are necessary. For details see e.g. [7].

The general form of a PDE-constrained control problem is the following. Let U,Y be Hilbert
spaces. The aim is to minimize a functional

J:YxU—=R
under the constraint
e(y,u) = 0, e: Y xU— Z, (1)

where y € Y denotes the state and w € U the control. Clearly y thus depends on u and we will
also sometimes write y = y(u) and define J as J(u) := J(y(u),u). Additional constraints of the
form y € Yoa C Y,u € Uyqg C U (i.e. state and control constraints) may be given as well. The
constraint (1) represents a PDE given on a domain  with corresponding boundary conditions.
We consider only stationary problems here, otherwise there would be an initial condition, too.



A typical example for the cost J is the tracking type functional
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with regularization parameter o > 0. Here the control volume 2. is a subset of the domain 2. The
functional measures the distance between the solution y = y(u) of the state equation (1) to a given
target or desired state y4;. Moreover it takes into account the control cost by the regularization
term. In a similar way one may consider a functional that measures this distance only on the
boundary 99 or a part of it. The state equation (1) consists of the PDE and boundary conditions,
for distributed control u appears in the PDE, for boundary control in the boundary conditions.

2.1 Adjoint equations and optimality systems

In this subsection we show the general process to get the optimality system or a representation of
the gradient of J. We introduce the Lagrange functional associated with the constrained problem

mi(I]l J(y,u) subject to (1). (3)
ue
It is defined as

L:Y xUxZ", Ly, u, A) := J(y,u) + (A e(y,u)) z- z

where (-,-)z+ z denotes the pairing between Z and its dual Z*. Since in the case of a PDE-
constrained problem e is vector-valued (at least due to boundary conditions) we have Z = Z; x
... X Zy,. Thus Z* is isometrically isomorph to the Cartesian product of the duals Z}, i.e. Z* =
Z7 x ... x Z}, and the dual pairing is given as

n

(ANely,u))z-z = Z<>‘iaei(yvu)>Z;“,Zr

=1

The necessary optimality condition for saddle point of L and a minimum of (3) are then computed
by setting the directional derivatives of L with respect to (y,u,A) equal to zero in all admissible
directions. We get

Ly(y7ua )\)Zj = Jy(y,u)gj—i— <)\7€y(yyu)§>z*,z = 0 VZ? ey
Lu(yaua A)?’ = Ju(yau)a+ <Aa€u(y7u)ﬂ>2*,z =0 Vi} eU (4)
Ly(y,u, VA = Nely,u))z«z = 0 YreZ

where the subscript denotes the corresponding partial derivative. The first equation is called the
adjoint equation, the second gives a relation between Lagrange multiplier z and the control u, and
the third one is just the state equation (1). The adjoint may also be written as

ey (Y, u)"A

where A* denotes the adjoint operator of A. The optimality system (4) may be solved directly in
the so-called one-shot approach. Another alternative is to use a gradient-based iterative algorithm
to solve (3). Then the directional derivative of .J is needed. By the chain rule it is given as

—Jy(y,u) in Z*,

Jwa = J,(y,w)y (w)a + Ju(y, w)a.
In a similar way the total derivative of (1) with respect to w is
ey(y, 0y (Wu+e,(y,u)u = 0 YaelU.
Adding the duality pairing of this expression with the Lagrange multiplier A gives

J(wa = Jy(y,wy (wi+ (A e, (y, w)y (w)i)z- z
+Ju(y7 u)ﬂ + <)‘7 eu(y7 u)a>Z*7Z'



The first two terms equal zero due to the adjoint equation (with § = y/(u)@). Thus J’ can be
characterized without explicitly knowing y'(u). After solution of both state and adjoint equation

j/(u)a = Ju (y7 u)ﬂ + <>‘a eu(y7 u)a>Z*,Z (5)

can be evaluated and used in an iterative optimization algorithm.

3 Application on the Navier-Stokes equations

Now we specialize the results of the last section for distributed and boundary control for the
stationary NSE. The equations describe the flow of an incompressible Newtonian fluid in a domain
Q) C R4 with d € {2,3}. Unknowns are velocity vector v = (v;)%_, and pressure p. Control problem
for the NSE are frequently studied, since they have a wide range of applications. Here we refer
to [6],[1],[4][10],[3]. For the theory and numerics of the equations themselves see [5] and [12]. The
stationary NSE read

—div(vVv)+v-Vo+Vp = f+up in Q
—divy = 0 in
v = g on 3y (6)
v = up on Y.
voyv—pn = 0 on X,

The first vector-valued equation represents the balance of momentum, the second one the balance
of mass in the fluid. Here f is a given volume force vector, v the viscosity of the fluid or in
dimensionless form the inverse of the Reynolds number. The functions up and up are the controls.
The gradient of v and the nonlinear convective term are defined as

d
R

Here the dot denotes the scalar product where the sum is taken over the two adjacent indices of
the components of the operands. The boundary conditions are formulated in a general way with

e a part X4 with Dirichlet boundary conditions for the velocity. These may be inhomogeneous
which refers to an prescribed in- or outflow, or homogeneous which refers to rigid walls with
a no-slip condition.

e a part X, with Dirichlet boundary conditions for the velocity, when this is used as control.
This refers to blowing/sucking or applying a tangential force on the fluid. For distributed
control we set 3. = 0.

e a part Y, with a natural boundary conditions. These are incorporated implicitly in the weak
formulation, as we will show later. For the NSE this is a mixed condition for the normal
derivative 0, := 7 -V of the velocity and the pressure. This condition represents a free
outflow region and is sometimes also referred to as a ”do nothing” condition.

Here 1 denotes the outer normal vector on the boundary 99 = ;U X, U>,. The weak form
of the equations is derived in the standard way. We do not include any homogeneous boundary
condition in the definition of the ansatz space which would also be possible, e.g. choose H(£2)¢
in the case 9Q = X3 and g = 0. We denote by V := H!(Q)? the Sobolev space of vector-valued
functions with values and first derivatives in L?(Q). As test space we use

W o= {weV=HQ)*: ws,us, =0}

The pressure is uniquely defined in P := L?(Q), except for 3,, = () where this is the case only in

P:=L}(Q) := {pELQ(Q):/ﬂpdx:O},



which is isometrically isomorph to L?(€2)/R. In computations uniqueness of the pressure is usually
realized by fixing the value to zero in one node. The velocity is unique only if v is big enough
in relation to the norm of f, compare [5, Theorem IV.2.4]. The outflow condition is the natural
boundary condition when applying Green’s formula to the Laplace operator for v and the gradient
of p, compare [5, 1.(2.17),(2.18)]. Then we obtain the weak formulation: Find (v,p) € V x P as
solution of

v(Vu,Vw)g + (v-Vo,w)q — (p,divw)g — (f +up,w)g = 0 YweW
—(divu,q)o = 0 VgeP )
v—g = 0 ondy
v—up = 0 on2,

Here (-,-)q is the L? inner product, where we do not distinguish in the notation between scalar-,
vector-, and tensor- or matrix-valued functions. For vector-valued functions v, w we use (v, w)gq :=
Z?Zl(vi, w;)q, for matrix-valued functions (v, w)q := szzl(vij, Wij)a-

To fit the equations in the framework of the last section the two remaining boundary conditions
are formulated in weak form in L?(X4)¢ and L?(X.)%, respectively. Then (7) has the form (1)
where e has four components. We thus get a Lagrange multiplier (A1, A2, A3, \y) € Z* = (W x
P x L2(X9)? x L2(Z)D)* 2 W x P x L?(24)4 x L?(2.)?%. The fourth component is only needed
for boundary control. Note that P* = P in both cases.

3.1 Lagrange functional and adjoint equation
With y := (v,p) € V. x P=:Y,u := (up,up) the Lagrangian has the form
L(y7 u, )‘) = J(U7pa u) + V(VU7 V/\l)ﬂ + (U : VU, )‘1)9 - (pa div )\1)9
—(f+up,\)a — (dive, \2)o + (v — g, A3)s, + (v — up, A1)z,

The adjoint system is obtained by computing the derivative in direction § = (w, ¢), compare the
first equation in (4), as

v(Vw,VA)g + (v- Vw4 w- Vo, \)g -
—(divw, A2)a + (w, A3)s, + (w, Ad)s, Jo(v,pu)w Vw eV
—(divAi, Qo = —Jp(v,p,u)g VYge€P

(8)

Using Green’s formula we obtain (with Ay € W and thus A;|x,us, = 0):

v(Vw,VAi)g = —(div(rVA),w)q + v(0p 1, w)s,us,us,
—(diV w, )\2)9 = (V)\Q; w)Q - ()‘277a w)EnUZdUEC
(v-Vw,A)o = —(v-VAjw)a+ ((v )i, w)s,

see [5, 1.(2.17-18), Lemma IV.2.2] and [11, Lemma 6.3]. Moreover
(w-Vu,A\)a = /Zw%/\ dr = (Vo) - A, w)
yNAL)Q — 0 — jaxj 14 - 1, Q,

which corresponds to our convention for the dot product. Some authors use the notation (Vv)T A\
here. Testing the first equation of (8) with w € Hg(Q2)? all boundary terms vanish and we get the
equation

—div(rVA1) —v-VAL + (Vv) - A\ + Vs = —Jy(v,p,u) in Q.
Using this and testing (8) with w € V,w|x,us, = 0 gives

vO M —Aan+(v-mA = 0 onX,,



which is the condition for the Lagrange multipliers A1, A2 on the outflow boundary. Choosing
w € V,w|x,us, = 0 we get the representation

A = —(@OhAi —Aam) on X,

which is used in the boundary control case. A similar relation holds for A3, but this multiplier has
no relevance here. Re-formulated as PDE and with A := A1, 4 := Ao the adjoint system reads

—div(wVA) —v-VA+ (Vv) - A+Vu = —J,(v,p,u) inQ
—divA = —Jy(v,p,u) inQ ()
A =0 on g U2,
v A—pn+ (v-mA = 0 on X,.

For distributed control we set ug = 0,%. = ), and U = L?(Q)? as control space. The second
equation in (4) gives

Ju(y,up) —A = 0 inQ
and thus
up = M« (10)

if the regularization term is chosen as in (2). Inserting this in the first equation of (7) this system
together with (8) forms a coupled optimality system that can be solved in the one shot approach.
For an iterative approach the derivative of J is computed from (5) as

J'(up) = July,up)— A (11)

For boundary control we set up = 0, and as control space U = Héé2 (£.)%. The second equation
in (4) gives

Ju(y,up) — Ay = 0 onX,
and thus
up = —(vOyA—pun)/a on X, (12)

if the regularization term is chosen as in (2). In an iterative scheme one may use

J'(up) = Ju(y,up) — A\ (13)

4 Solving the Navier-Stokes equations in CoMsOL MULTI-
PHYSICS

ComsoL MULTIPHYSICS is a software that solves PDEs using the finite element method in one
to three space dimensions, using elements of arbitrary oder (up to four). It has a graphical user
interface and several built-in application modes. With them the user can solve a lot of application
problems without defining the PDE itself, just by defining the geometry, adding problem-specific
coeflicients, choosing the boundary conditions and so on. These are features that most industrial
codes offer. What is usually not predefined are the adjoint equations that are necessary when
doing PDE-constrained control, and not using finite difference approximations or algorithmic
differentiation to compute the derivatives of the cost functional. But since COMSOL MULTIPHYSICS
allows the user to define an almost arbitrary PDE, all its solution, post-processing features can
be used also to solve them. The modeling of the adjoint equation is possible using the graphical
interface as well. In addition COMSOL MULTIPHYSICS routines can be called from the MATLAB
command line (after typing comsol matlab in a shell) and thus can be coupled with all MATLAB



1 fem.geom = rect2(0,1,0,1);

2 fem.mesh = meshinit(fem, ’hauto’,5);

3 fem.dim = {’v1’ ’v2’ ’p’};

4 fem.shape = [2 2 1];

5 fem.pnt.constr = {{0 0 ’-p’} 0};

6 fem.pnt.shape = [1,2,3];

7 fem.pnt.ind = [1 2 2 2];

8 fem.form = ’general’;

9 fem.const.nu = 1;

10 fem.equ.expr = {’F1’ 0’ ’F2’ ’0°};

11 fem.equ.ga={{{’p-nu*vix’ ’-nu*vly’}{’-nuxv2x’ ’p-nuxv2y’}{0 0}}};
12 fem.equ.f = {{’Fl-vi*vix-v2*vly’ ’F2-v1*v2x+v2*v2y’ ’vix+v2y’}};
13 fem.bnd.ind = [2 2 1 2];

14 fem.bnd.expr = {’gl’ ’1.0’};

15 fem.bnd.r = { {’vi-gi’ ’v2’} {’v1’ ’v2’} };

16 fem = femdiff (fem);

17 fem.xmesh = meshextend(fem);

18 fem.sol = femnlin(fem,’Ntol’,le-4);

19 postflow(fem,{’vl’ ’v2’})

Figure 1: CoMsoL MULTIPHYSICS script for the solution of a driven cavity flow in 2-D. Line
numbers are not part of the code.

routines, for example optimization functions. This special feature shall be exploited, and we thus
will describe here how state and adjoint equations can be defined and solved using the commands
on the MATLAB prompt.

In this section we describe at first how the NSE themselves are solved. This will show the basic
data and function structure of CoMsOL MULTIPHYSICS. All relevant information is contained
in one MATLAB structure which we call fem here, analogously to the notation in the ComsoL
MULTIPHYSICS manual. Its name is arbitrary, whereas the names of the substructures are fixed.
The whole process of solving a PDE can be split up into the following steps, which can be seen in
Fig. 1 for our first test example, the driven cavity flow:

4.1 Geometry and mesh

Definition (or import) of the geometry is the first step, here we defined a square [0,1]? (line
1). The mesh initialization follows (line 2). The optional parameter hauto controls the mesh-
size (from 1: fine to 9: coarse). Further refinement is possible using the command fem.mesh =
meshrefine(fem).

4.2 Definition of the equation variables and their finite element type

The ansatz function type and order have to be specified (lines 3-7):

e We want the unknowns to be named as v1, v2, p instead of the default names ul, u2, u3
(line 3, optional).

e To satisfy the inf-sup or LBB condition, a stability condition that ensures solvability of a
discretized NSE scheme (see [5, Theorem I.1.1]) we choose second order elements for the
velocity and first order for the pressure (line 4). This element pair is known under the name
Taylor-Hood. Elements up to order four can be chosen here.

e Since for the cavity flow we set X,, = () we need to use L*(Q)/R as pressure space. Thus one
pressure value is fixed to zero, and this point constraint is set in lines 5-7.



4.3 Definition of the PDE

At first the form of the equation has to be set (line 9). CoOMSOL MULTIPHYSICS has three options:

e coefficient, the default, which is appropriate only for linear problems and corresponds to
a classical formulation of the PDE,

e general, which uses the classical formulation in divergence form and is appropriate for
nonlinear equations,

e weak, which allows (and requires) the user to write the equation in the weak form, i.e. using
the test functions w, ¢ from (7).

It is also possible to add weak terms to an equation defined in general form, a very convenient
feature for example when adding upwind stabilization, a technique that is required in particular
for small values of v. We use the general form which is suitable for both the NSE and the adjoint
equation. The PDE coefficients have to be defined in a substructure named equ of the main
structure fem.

In general form a PDE system with n equations for the vector of unknowns (uq,...,uy) in
CoMsOoL MULTIPHYSICS is written as

diVFl = Fl, lZl,...,N.

We present the settings for the two-dimensional case, the extension to d = 3 is straight-forward.
For simplicity and in accordance to COMSOL MULTIPHYSICS’s notation we set = (x,y) € R? for
the spatial coordinates. The unknowns are (u1,us,us) := (v1,vs,p). A subscript « or y denotes
the partial derivative of an unknown with respect to x,y, respectively. COMSOL MULTIPHYSICS
uses the notation vix for vy, etc. The vector-valued momentum equation and the continuity
equation of (6) together give N = 3 scalar equations:

l=1:
div [ —vVwv —&——p_ —E(—m} + )—l—g(—m} ) = f1 — (V114 + Vov1y)
1 _0_ = o le TP Ay 1y) = J1 1V1zx 2V1y

[=2:
div —VVv+-O- —ﬁ(—uv )+g(—uv +p) = fo — (v1v2z + Vav2y,)
2 | p | = 9z 2z By 2y TP) = J2 1V2z 2V2y

[=3:

0 = Ulm+vgy.

Thus we obtain

ro= (T, = {[ _V_Ujf]ljp ] : { ot } : [ X ]} (14)
fi — (v1v1z + vav1y)
F = (R)iLi=| fo— (vivs +v20g) (15)

Vig + V2y

Note that Vp = div(pI) where I is the (d x d) identity tensor or matrix. The definition of I" and
F' is not unique, it would also be possible to put the coefficients of the third equation in I's and
not in F3. COMSOL MULTIPHYSICS uses a weak formulation and performs an integration by parts
on the terms in I". Thus the above choice corresponds to the weak formulation (7).

Both I and F have to be defined in the substructures ga and £, respectively, of fem.equ as
cell arrays, indicated by the use of the brackets. The entries are defined as strings. The rows or
components I'; of I' have to be concatenated by extra pairs of brackets, see lines 11-12 in Fig. 1.



Note also that for both I' and F' there are two outer pairs of brackets. COMSOL MULTIPHYSICS
allows the user to define different regions in the computational domain with different PDE settings
in each region (so-called multi-physics). For each of these regions different coefficients I' and F'
may be defined, and they are concatenated in by the outmost pairs of brackets. Although we do
not use this feature here, still this additional pair of brackets is required.

The constant v that is used in I' has to be defined as element of the substructure fem.const
before (see line 9).

In line 10 we defined, again as cell array of strings, the right-hand side vector f = (f1, f2) to
be zero. For this purpose the expressions F1, F2 have been defined in the substructure expr of
the structure fem.equ, and they have been given the value 0’ as string. It is also possible to
insert the inhomogeneities directly in the array F', without using the substructure expr. Using
the spatial coordinates x,y and any of MATLAB’s built-in functions arbitrary inhomogeneities can
be defined. The definition of user-defined functions will be described later on.

4.4 Boundary conditions

The substructure fem.bnd defines the boundary conditions. Based on the initial geometry different
boundary sections can be defined (line 13): The cavity initially has four edges, on one of them
(edge 3, the upper one) we impose inhomogeneous Dirichlet conditions, on the other three we have
homogeneous Dirichlet conditions. The numbering of the edges has to be found by trial and error,
since it has no obvious order. The indices of the boundary parts of the edges have to be put in
the array fem.bnd. ind.

The boundary conditions on each boundary section are written as

L OR
—’I7-Fl = Gl-‘rz_:laiwum, lzl,...,N on 90. (16)

R, = 0, mzl,...,M

The p,, are artificially introduced Lagrange multipliers, i.e. additional free variables. Depend-
ing on the choice of the vectors R = (R,,)M_, and G = (G))Y, (implemented in fem.bnd.r
and fem.bnd.g, both zero by default) Dirichlet, natural and mixed boundary conditions can be
realized.

To define Dirichlet conditions G = 0 is set. Then the first equation in (16) imposes no condition
on the unknowns because of the free Lagrange multipliers. By defining R the Dirichlet conditions
are specified. For the example of the driven cavity we have

vy =g1, v2=0 Le. Ri=v1—g1, Ra=w3 on g1
v1 =0, Vg = 0 i.e. R1 = vV, R2 = V2 on ng

for some given function g;. This function (here set to the constant 1.0) and the vector R are
implemented in lines 14-15, where fem.bnd.r is a cell array with two components, one for every
boundary section defined in fem.bnd.ind.

For a boundary section with free outflow (or "do nothing”) condition R = 0 is set. The
Lagrange multipliers are meaningless, and since

-n-I't = —-n-|-vVu + '8 = voyv —pp = Gy,

0 17
—n-Ty = —n-—vVuy+ » = vOwwa—pn2 = G, (17)
-n-I's = 0 = Gs

in the NSE case the first equation in (16) gives the desired natural (here free outflow) condition if
G =0 is set. An example is given in Fig. 2.



1 fem.geom = rect2(0,3,0,0.5) - rect2(0,0.5,0,0.25);
13 fem.bnd.ind = [1 2 2 2 2 3];

14 fem.bnd.expr = {’gl’ ’1-64*(y-0.375)*(y-0.375)’};
15 fem.bnd.r = { {’vi-g1’ ’v1’} {’v1’ ’v2’} {0 0} };

Figure 2: Implementation of free outflow boundary conditions for a backward facing step in
2 :=]0, 3[x]0, 0.5[\[0, 0.5] x [0,0.25]. The remaining lines are as in Fig. 1, except lines 5-7 which
are not needed any more. The three boundary sections defined in line 13 are the inflow (1), the
wall (2), and the outflow (3) region. The expression g1 describes a parabolic inflow as a function
of the spatial coordinate y.

4.5 Assembly and solution of the discrete system

The femdiff command (line 16) symbolically computes a linearization of the nonlinear terms for
the solver. The routine meshextend (line 17) computes additional nodes if basis functions of order
higher than one are used. Then it assembles the discrete system.

The nonlinear solver (line 18) is a damped Newton method and has a lot of parameters, here
we only changed the default of the stopping criterion. As solver for the linear systems in every
Newton step the routine uses the sparse LU method UMFPACK, iterative schemes as GMRES are
available. Note that the linearized NSE system is indefinite and non-symmetric, such that many
Krylov methods are not applicable. The LU decomposition is the bottleneck of the method with
respect to storage requirements.

We show just a streamline plot (line 19, see Fig. 5) of the solution as example for the post
processing, more options are available. For more details on the used commands and further options
we refer to the CoMsoL MULTIPHYSICS documentation.

5 Implementation of the adjoint equation

The adjoint system (9) can be implemented in a rather similar way as the NSE themselves. Since
it is a linear equation it would be possible to use the coefficient from to define the PDE. But
this has no advantage, the linear solver can treat the general form as well.

Using the variables (uy,us, u3) := (A1, Ag, p) with A = (A1, \2) the coefficient " has the same
form as in (14), just with (vy, v, p) replaced by (A1, A2, pt). The form of F is derived using

_ v | Mz Aox | | vidig F Ay
veVA = { Vg } { Ay Agy ] - { V1 A2y + U2y ] )
Viz V2r AL Uiz A1 + Vag A2
VoA = : _ .
v [ Viy U2y } [ A2 } [ Uiy AL + U2y Ao ]

Thus we get

Ji 4+ 01 Az + v2A1y — (Viz A1 + v22A2)
F = Jo + v1 Aoy + v2/\2y - ('Uly)\l + ’Ugy>\2) R (18)
J3 + >\1z + )\Zy

where (J1,J2) = —Jy(v,p,u) and J3 = —Jp(v, p, u).

The boundary conditions are simple in the case of Dirichlet conditions, in the case of the free
outflow or natural condition the last equation in (9) can be implemented using the vector G in
(17), compare Fig. 3.

The main challenge is that we need the solution (v, p), i.e. the CoMmsOL MULTIPHYSICS vari-
ables v1, v2, p from the state equations as coefficients to compute the adjoint variables (X, ). It
is possible to store the values of v1, v2, p after the solution of the state equations in MATLAB
variables, but it is not possible to define such a variable as COMSOL MULTIPHYSICS expression
and use it as coefficient.
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15 fem.bnd.r
fem.bnd.g

{ {°1la1’ ’la2’} {’la1’ ’1a2’} {0 0} };
{ {0 00} {0 0 0} {’-vixlal’ -’vixla2’ 0} };

Figure 3: Implementation of the modified free outflow condition from (9) for the adjoint variables
(A1, A2, )=(1lal,1a2 mu). Here for the backward facing step flow (compare Fig. 2) the outer
normal vector on the outflow boundary is n = (1,0). Thus (v-n)A = v A in the last equation of

(9)-

20 global vig

21 vlg = posteval(fem,’vl’);

22 fcns{1}.type=’inline’; fcns{1}.name="vi1(x,y)’;

23 fem.functions = fcns;

24 fem.equ.expr = {’J1’ ’-vi(x,y)’ ’J2’ ’-v2(x,y)’ ’J3’ ’0°};

25 fem.equ.ga = { { {’mu-nu*xlaix’ ’-nuxlaly’} ...

{> -nu*la2x’ ’mu-nu*la2y’} {0 0} } };

26 fem.equ.f={{ ’Ji+vi(x,y)*lalx+v2(x,y)*laly-vix(x,y)*lal-v2x(x,y)*la2’...
> J2+v1(x,y)*lalx+v2(x,y)*1la2y-vly(x,y)*lal-v2y(x,y)*1la2’...
> J3+lalx+la2y’} };

function f = vi(x,y)

global vig
f = griddata(vig.p(1,:),vlg.p(2,:),vig.d,x,y);

Figure 4: Storing the value of vy, i.e. vl in a global variable vig and using it in a CoMmSoL
MurTIPHYSICS function (line 22) for the derivative of the functional J = %||v||2L2(Q)2. The function
griddata interpolates the data given on the COMSOL MULTIPHYSICS mesh on the mesh point (x, y)
itself. This is responsible for the high computational effort when assembling the discrete systems.
The variable vig is a struct that contains grid points and values. We show only one function here,
the other coefficients in (18), compare line 26, have also be defined.

One remedy is to make the variable global, define a function that evaluates it, and declare and
use this as a COMSOL MULTIPHYSICS function. This has to be done for all needed coefficients in
I" and F for the adjoint system, thus also for the partial derivatives of v. This basic procedure
is depicted in Fig. 4. The problem is the immense temporal effort when assembling the system
matrices, since the function has to be evaluated and thus the state variable to be interpolated on
every grid point.

The situation gets even more complicated when a tracking type functional (2) is used. It needs
one or more given functions yg = (v14, v24), for example results from previous computations with
lower Reynolds number. Also these quantities have to be realized as COMSOL MULTIPHYSICS
functions. The effort to assemble the inhomogeneities thus grows even more.

The much more efficient and elegant solution is to build up a system consisting of both the
state and the adjoint equations. This system can then be solved in two different ways:

e as a fully coupled system, inserting the values for the controls as inhomogeneity and/or
boundary terms in the state equations and then solving for state and adjoints together (one
shot approach),

e sequentially by solving first only for the state variables and afterwards for the adjoints,
updating the controls and so forth (iterative approach).

Both approaches will be discussed in the next section.

6 Control using CoMsSOL MULTIPHYSICS

In this section we show how a control problem for the stationary NSE can be solved with CoMsoOL
MurripHysics. The two approaches mentioned above are presented. We show that the one
shot approach is quite effective, whereas an iterative approach does not fit very well to CoMsoOL
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Figure 5: Uncontrolled driven cavity flow for v = 1 (desired state, left), uncontrolled (middle) and
controlled for v = 101W' The cost (without regularization term) was reduced to 0.5 % compared
to the uncontrolled flow. 1625 pressure nodes.

MuLTiPHYSICS’s built-in PDE representation and data structures. Examples for distributed and
boundary control implementations are given.

6.1 One shot approach

The optimality system (4) summarizes the necessary conditions for a solution of the constrained
problem (3). Thus one may try to solve it directly. Then the second equation which gives the
relation between adjoint variable and control is inserted for the control in the state equation, and
a coupled system of state and adjoint equation is solved.

Following the idea to solve the whole optimality system and using the coupling information
between adjoints and control from (10) leads to rather short implementations that we present in
the following subsections.

If the state equation is non-linear an appropriate solver is Newton’s method (note that the
adjoint equation is always linear). The resulting optimization algorithm is a variant of the SQP
method, see for example [9]. In every step of the newton iteration a linear system has to be solved.
The one shot approach doubles the size of the whole system, and thus also of the linearized systems
to be solved in each Newton step. For an iterative solver storing issues may become crucial here.

6.1.1 Distributed control for driven cavity flow.

The first example that we consider is a typical test case for the NSE. The computational domain is
the unit square, where on the upper and sometimes also on the lower part of the boundary a velocity
field is prescribed. The two lateral boundaries are considered as wall, thus there homogeneous
Dirichlet boundary conditions are imposed. There is no outflow boundary, i.e. 3, = (. If a
constant positive horizontal velocity is imposed on the top and v is set to zero at the bottom, the
flow shows one big eddy turning clockwise. Depending on the Reynolds number the center of this
vortex moves to the right and its shape slightly changes.

The CoMsoL MULTIPHYSICS script is shown in Fig. 6 for distributed control, compare also
Fig. 1. Setting v = ﬁ we tried to achieve the flow for » = 1 by imposing distributed control on
the whole domain. Since we use a tracking type functional we add a third set of equations for the
desired state and solve for it firstly. The results are shown in Fig. 5 and 9.

In this example the one shot approach with CoMsoL MULTIPHYSICS’s damped Newton al-
gorithm worked very well, it converged in six steps for a regularization parameter of 0.01, and
produced a satisfying result, even without choosing a special initial value for the nonlinear itera-
tion.

6.1.2 Boundary control for backward facing step channel flow.

In this second example we try to minimize the region of back-flow in a channel with a backward
facing step. Free outflow conditions were imposed at the end of the channel. For low values of v
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3 fem.dim = {’vid’ ’v2d’ ’pd’ ’v1’ ’v2’ ’p’ ’lal’ ’la2’ ’mu’};
4 fem.shape = [2 212212 2 1];
5 fem.pnt.constr = { {0 0 >-pd’> 0 0 ’-p> 0 O ’-mu’} O};
10 fem.equ.expr = {’J1’ ’vid-u’ ’J2’ ’v2d-v’};
11 fem.equ.ga = { { {’pd-nuxvidx’ ’-nu*vidy’} ...
{ ’-nu*xv2dx’ ’pd-nu*v2dy’} {0 0} ...
{’p-nuxvix’ ’-nuxvly’} ...
{ ’-nuxv2x’ ’p-nu*xv2y’} {0 0} ...
{’mu-nu*lalx’ ’-nuxlaly’} ...

{ ’-nu*la2x’ ’mu-nu*la2y’} {0 0} } };
{ {’-vid*vidx-v2d*vidy’
’-v1d*v2dx-v2d*v2dy’ ’vidx+v2dy’
’lal/alpha-vi*vix-v2xvly’
’la2/alpha-v1*v2x-v2xv2y’ ’vix+v2y’
?J1+vi*lalx+v2*laly-vix*lal-v2x*1a2’
?J2+v1*la2x+v2+la2y-viy*lal-v2y*la2’ ’lalx+la2y’}};
{ {’vid-g1’ ’v24’ ’vi-gl’ ’v2’ ’lal’ ’la2’} ...
{’via’ ‘v2d’ ’v1’ ’y2’ ’lal’ ’la2’} };
18 fem.sol = femnlin(fem,’solcomp’,{’vid’ ’v2d’ ’pd’});
19 fem.const = {’nu’ ’0.001’ ’alpha’ ’0.01’};
21 fem.xmesh = meshextend(fem);
22 fem.sol = femnlin(fem,
’solcomp’,{’v1’ ’v2’ ’p’ ’lal’ ’la2’ ’mu’},’u’,fem.sol);
23 J = postint(fem,’ (vi-vid)*(vi-vid)+(v2-v2d)*(v2-v2d)’)/2 ...
+ postint(fem,’ (lal*lal+la2xla2)/alpha’)/2;

12 fem.equ.f

15 fem.bnd.r

Figure 6: Script for distributed control of a driven cavity flow in 2-D. Lines 1-2, 6-9, 13-14, and
16-17 as in Fig. 1. The desired state is computed in line 18. The optimality system is set up and
solved in lines 19-22. Note the repetition of the meshextend command. In line 22 the last two
additional parameters passed to the solver ensure that the solution component u from the fem.sol
substructure is used in the current computation. The output of a solver is stored in the variable
fem.sol.u, no matter what names were given to the unknowns in line 3. Here fem.sol.u contains
the output v1d, v2d, pd from the computation in line 19. Line 23 evaluates the cost functional.
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Figure 7: Uncontrolled (top) and controlled (middle: @ = 1, bottom: « = 0.1) backward facing
step flow, v = TIOO' The cost was reduced to 37% and 5.9%, respectively. 3427 pressure nodes,
computations with a finer grid (13469 nodes) were also possible on a machine with 1 GByte RAM,
and produced similar results.

there is a long separation bubble behind the step. Aim was to reduce this bubble, compare Fig 7.
For this purpose we used the cost functional (compare [4])

J(v,ug) = ;H{ r;?;?@;Qog}}

2

«Q
+ EH'UBH%?(ZC)Q' (19)
L2(Q)2

The velocity on the vertical boundary ¥, := {0.5}x]0,0.25] was used as control parameter. The
crucial point is to get access to the normal derivative of the adjoint variable (see (12)) that becomes
the boundary condition in the state equations of the optimality system. From (12) and (17) we
get
L[ —v(Mamn + Ayne) + pm
ug = —(VOA—pun)/a = — v Y .
B (VO A = pm)/ « [ —v(AagM + Agyn2) + une

Conveniently CoMsoL MULTIPHYSICS allows to access the components 71,12 of the outer normal
vector via the variables nx and ny such that up can be implemented as boundary condition.
The CoMSOL MULTIPHYSICS script is shown in Fig. 8. Here no desired state was used, so the
corresponding variables and equations are skipped. Fig. 7 shows that the optimization was quite
successful for & = 1 and 0.1, the computed control is shown in Fig. 9. The convergence was slower
than for the driven cavity example, the damped Newton method took 41 iterations from the start
(with zero as initial value) for « = 1 and additional 17 ones in a restart with o = 0.1. It is also
possible to increase the stopping criterion for the first iteration (e.g. ’ntol’,le-2 for a = 1), and

restart from there. Note that v = ﬁ is quite low for control in this configuration.

6.2 Sequential or iterative approach

As contrast to the one shot approach it is possible to solve the state equation firstly, then the
adjoint equation with the just computed state, and perform an update of the control using the
Lagrange multiplier and formula (5). This procedure is then iterated until convergence is reached.
To avoid the implementation of the optimization algorithm one may use a library, or in the
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10
11

12

15

17

19
20
21
22
23
24
25
26

fem.dim = {’v1’ ’v2’ ’p’ ’lal’ ’la2’ ’mu’};
fem.shape = [2 2 1 2 2 1];
fem.equ.expr = {’J1° ’-min(v1,0)’ ’J2’ ’min(-v2,0)’};
fem.equ.ga = { { {’p-nu*vix’ ’-nu*xviy’} ...
{ ’-nuxv2x’ ’p-nu*xv2y’} {0 0} ...
{’mu-nu*laix’ ’-nuxlaly’} ...

{ ’-nu*la2x’ ’mu-nu*la2y’} {0 0} } };
fem.equ.f = { {’-vixvix-v2*vly’ °’-v1i*xv2x-v2*v2y’ ’vix+v2y’
?J1+vi*lalx+v2*laly-vix*lal-v2x*1a2’
?J2+v1*la2x+v2+la2y-viy*lal-v2y*la2’ ’lalx+la2y’}};

fem.bnd.r = { {’vi-gl’ ’v2’ ’lal’ ’la2’} {’v1’ ’v2’ ’lal’ ’la2’} {0 0 O O} ...
{’v1+(nu*x (lalx*nx+laly*ny)-mu*nx)/alpha’
’v2+(nu* (la2x*nx+la2y*ny) -mu*ny) /alpha’ ’lal’ ’la2’} };
fem.bnd.g = { {0 00000} {00000 0} ...
{0 0 0 ’-vixlal’ ’-vixla2’ 0} {0 0 0 O O O} };
fem.const.nu = 0.001;

fem.const.alpha = 1;

fem.xmesh = meshextend(fem);

fem.sol = femnlin(fem, ’maxiter’,50, ’ntol’,1le-4);

fem.const.alpha = 0.1;

fem.xmesh = meshextend(fem);

fem.sol = femnlin(fem,’init’,fem.sol, ’minstep’,1e-8,’ntol’,1le-4);

J = postint(fem, ’min(u,0)*min(u,0)+min(-v,0)*min(-v,0)’)/2 ...

+ postint(fem,’ ((nu* (lalx*nx+laly*ny)-mu*nx)* (nu* (lalx*nx+laly*ny)-mu*nx)

+(nu* (la2x*nx+la2y*ny) -mu*ny) * (nu* (la2x*nx+la2y*ny) -mu*ny)) /alpha’, ...
’edim’,1,’d1’,4)/2;

Figure 8: Script for boundary control of a backward facing step. Lines 1, 13-14 are as in Fig. 2,
lines 2, 8, 16 as in Fig. 1. Lines 23-25 show a restart with smaller regularization parameter. The
option init indicates that the previous solution in fem.sol is taken as initial guess, minstep is
the minimal damping factor for Newton’s method, maxiter the maximum number of steps. Line

26

shows the evaluation of the cost.

Figure 9: Control for driven cavity (left, « = 0.01) and backward facing step (a = 0.1), v =
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global uglob nodes n

fcns{1}.type=’inline’; fcns{1}.name=’ul(x,y)’;
fcns{2}.type=’inline’; fcns{2}.name=’u2(x,y)’;
fem.functions = fcns;

fem.sol = femnlin(fem,’solcomp’,{’vl’ ’v2’ ’p’});

u = posteval(fem,’vl’); nodes = u.p; n = length(u.d);
options = optimset(’GradObj’,’on’);

u = fminunc(@cost,u,options,fem);

0 N o O WN -

9 function [f,df] = cost(u,fem)

10  global uglob

11 uglob = u;

12  fem.xmesh = meshextend(fem);

13 fem.sol = femnlin(fem,’solcomp’,{’vl’ ’v2’ ’p’});

14  f=postint(fem, ’min(v1,0)*min(v1,0)+min(-v2,0)*min(-v2,0)’)/2...
+postint (fem,’ (ul(x,y)*ul(x,y)+u2(x,y)*u2(x,y))/alpha’)72;

15 fem.sol = femlin(fem,’solcomp’,{’lal’ ’la2’ ’mu’},’u’,fem.sol);

16 lal = posteval(fem,’lal’); la2 = posteval(fem,’la2’);

17 df = fem.const.alpha*u-[lal.d,la2.d];

18 function f = ul(x,y)
19  global uglob nodes n
20 f = griddata(nodes(1,:),nodes(2,:),uglob(1:n),x,y);

Figure 10: Part of a script for an iterative solution for distributed control. The global copy uglob
and the storing of the coordinates and number of grid points (line 6) is needed for the functions
ul, u2 that realize the control.

MATLAB case, a toolbox routine. Then J and J'(u) have to be implemented, where the former
incorporates the solution of the state, the latter in addition the solution of the adjoint equation.
The advantage is that the systems to be solved have ”only” the size of the state equation, whereas
in the one-shot approach the coupled system of double size has to be solved. Moreover different
optimization routines may be used, and additional constraints may also be incorporated without
changing the underlying COMSOL MULTIPHYSICS setting. We assume that we use an optimization
routine that needs the implementation of the cost in a function that takes the current control (say
u) as parameter, and returns the value of the cost and the gradient (say J and DJ) as output.
This is for example the case for optimization routines in MATLAB’s optimization toolbox. An
unconstrained minimization using a quasi-Newton method is performed in the script which is
partially shown in Fig. 10. Line 7 specifies that the user-defined function cost also returns the
gradient. The last parameter fem for the optimization routine in line 8 is passed to the function
cost as second parameter. The update formulas (11) or (13) for the control (implemented in line
17 in Fig. 10), it is inevitable to realize the control as a CoOMSOL MULTIPHYSICS function (see
lines 2-4,14,18-20). The efficiency problems that result from this fact have already been discussed
in Section 5. For the adjoint equation they could be avoided. This is the main reason that the
one shot approach is superior when working with CoMSOL MULTIPHYSICS.

6.3 A 3-D example

At the end we briefly show how the 2-D examples can be extended to three space dimensions.
The basic proceeding should be clear, and the implementation of the equations for the additional
variables v3, 1a3 is straight forward. An geometry initialization is shown in Fig. 11.

A crucial point in 3-D computations is the necessary storage. We thus just show an example
with a rather coarse mesh (864 pressure nodes) and v = 0.01,« = 1 in Fig. 12. Here boundary
control an the vertical wall of the step was used to reduce the cost from (19), with v, replaced by
V3.
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fem.geom = block3(3,1,1,’base’,’corner’,’pos’,[0 -0.5 -0.5])

- block3(0.5,1,0.5,’base’, ’corner’,’pos’, [0 -0.5 -0.5]);
fem.bnd.expr = {’gl’ ’(1-4*y*y)*(1-16%(z-0.25)*(z-0.25))°};
fem.bnd.ind = [1 2 2 2 2 4 3];

Figure 11: Geometry initialization for a backward facing step in 3-D.

uncontrolied

Figure 12: Uncontrolled (left) and controlled backward facing step flow in 3-D for v = z5. The
results are similar to the 2-D case for high Reynolds number, compare Fig. 7. Only a coarse grid
with 470 pressure nodes was used. The cost was reduced to 6.4%.

7 Summary and Outlook

The CoMsoL MULTIPHYSICS programming environment is offers the flexibility to solve state and
adjoint equations, and thus whole optimality systems for stationary PDE-constrained control
problems. The implementation of the adjoint equation can be done with reasonable effort and
knowledge of the internal CoMSOL MULTIPHYSICS data structure. The effort for this, compared
to a complete implementation in another language or environment (as MATLAB), is quite small.
The built-in damped Newton solver is rather effective also to solve optimality systems. Due to
the internal representation of equations in COMSOL MULTIPHYSICS it turned out to be more
appropriate for the control problems than using other optimization routines and coupling them
with CoMsoL MuLTIPHYSICS. The successful application to stationary NSE encourages us to
assume that also other nonlinear equations could be considered. Three dimensional problems can
be handled, the bottleneck is the needed storage for the direct sparse linear solvers. In 3-D a
switch to iterative solvers that are also provided in CoOMSOL MULTIPHYSICS has to be considered.
In principle time-dependent applications are also possible, but they are beyond the scope of this

paper.
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