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SYSTEMATIC DISCRETIZATION OF INPUT-OUTPUT MAPS OF
LINEAR INFINITE-DIMENSIONAL SYSTEMS

MICHAEL SCHMIDT∗

Abstract. Many model reduction techniques take a semi-discretization of a PDE model as start-
ing point and aim then at an accurate approximation of its input/output map. In this contribution,
we discuss the direct discretization of the i/o map of the infinite-dimensional system for a general
class of linear time-invariant systems with distributed inputs and outputs.

First, the input and output signals are discretized in space and time, resulting in the matrix
representation of an approximated i/o-map. In a generalized sense, the matrix contains the Markov
parameters of a corresponding time-discrete multi-input-multi-output system. Second, the system
dynamics is approximated in form of the underlying evolution operator, in order to calculate the
matrix representation numerically. The discretization framework, corresponding error estimates, a
SVD-based system reduction method and a numerical application in an optimization problem are
presented, and illustrated for a heat control system.

Key words. input-output map, discretization, infinite-dimensional control system, time-discrete
MIMO system, model reduction, optimization, feedback control
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1. Introduction.

1.1. Motivation. The control of complex physical systems is a big challenge
in many engineering applications as well as in mathematical research. Frequently,
these control systems are modeled by infinite-dimensional state space systems on the
basis of (instationary and nonlinear) partial differential equations (PDEs). On the
one hand, space-discretizations resolving most of the state information typically lead
to very large semi-discrete systems, on the other hand, popular design techniques for
real-time controllers like robust control require linear models of very moderate size
[13, 39].

Numerous approaches to bridge this gap are proposed in the literature, see e.g.
[3, 12, 28] and the references therein. In some applications one is interested in low-
order models capturing essential state dynamics. Then e.g. low-order modeling on
the basis of physical insight [27, 36, 40] and models reduced by means of mathematical
methods like Proper Orthogonal Decomposition (POD) [14] can be very useful. In this
paper we focus on the frequent situation that models merely describing accurately the
system’s input/output (i/o) map are sufficient to realize efficient controls. Empirical
or simulation-based black-box system identification [7, 30], and mathematical model
reduction techniques like balanced truncation [28], moment matching [26] and recent
variants of POD [42, 48] are tools to extract appropriate models.

Empirically and physically motivated approaches usually lack analytical estimates
for the accuracy of the i/o map, for some mathematical model reduction techniques
like balanced truncation such estimates exist. Most mathematical methods take,
however, the space-discretized PDE as starting point, some of them even a time-
invariant linearization. The preceding PDE space discretizations are often neglected
by assuming that they are ’sufficiently accurate’. Thereby, the PDE discretizations
rarely take the efficient approximation of the i/o map into account. On the one hand,
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the state space discretization typically aims at a reduction of the global state space
error and is thus still oriented at a state simulation problem. On the other hand,
the i/o error due to the discretization of spatially distributed inputs and outputs is
rarely considered rigorously. Aiming at a low-dimensional model of the i/o behavior
in the end, starting with a space-discretization of the original state space model can
be considered as a conceptual detour.

1.2. An integral approach to derive i/o models with error estimates.
In this paper we investigate a new and integral approach to derive low-order models
with error estimates for the i/o behavior. We focus directly on the i/o map of the
original infinite-dimensional system, in the following denoted by

G : U → Y , u = u(t, θ) 7→ y = y(t, ξ),

and suggest the following framework for its direct discretization for a general class
of linear time-invariant systems (introduced in Section 2). Here u and y are input
and output signals from Hilbert spaces U and Y , respectively, which may vary in
time t and space θ ∈ Θ and ξ ∈ Ξ, with appropriate spatial domains Θ and Ξ. The
framework consists of two steps.

1. Approximation of signals (cf. Section 3). We choose finite-dimensional sub-
spaces Ū ⊂ U and Ȳ ⊂ Y with bases {u1, . . . , up̄} ⊂ Ū and {y1, . . . , yq̄} ⊂ Ȳ ,
and denote the corresponding orthogonal projections by PŪ and PȲ , respec-
tively. Then, the approximation

GS = PȲGPŪ

has a matrix representation G ∈ Rq̄×p̄, for instance with elements Gij =
(yi,Guj)Y if orthonormal bases are chosen in Ū and Ȳ.

2. Approximation of system dynamics (cf. Section 4). Frequently, G arises from
a linear PDE state space model. Then the components Gij = (yi,Guj)Y
can be approximated by numerically simulating the state space model suc-
cessively for inputs uj , j = 1, . . . , p̄ and by testing the resulting outputs
against all y1, . . . , yq̄. The result is an approximation GDS of GS . Consid-
ering time-invariant systems and choosing basis functions with a space-time
tensor structure, like

ui(j,l)(t; θ) = φj(t)µl(θ), yj(i,k)(t; ξ) = ψi(t)νk(ξ),

this task reduces to the approximation of observations (νk, Czl(t))Y , with
states zl(t) = S(t)Bµl. Here S(t), B and C are the system’s evolution semi-
group, input and output operator, respectively. Hence, Czl(t) can be consid-
ered as the system’s impulse response corresponding to an initial value µl,
and zl(t) can be approximated by numerically solving a homogeneous PDE.

We discuss some prospects of this framework.
Error estimation (cf. Section 5). The total error εDS can be estimated by the

signal approximation error εS and the dynamical approximation error εD, i.e.

||G − GDS ||
︸ ︷︷ ︸

=:εDS

≤ ||G − GS ||
︸ ︷︷ ︸

=:εS

+ ||GS − GDS ||
︸ ︷︷ ︸

=:εD

, (1.1)

where the norms still have to be specified. As main result of this paper, Thm. 5.1
shows how to choose Ū and Ȳ in the first step and the accuracy tolerances for the
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numerical solutions of the underlying PDEs in the second step such that εS and εD
balance and that εS + εD < tol for a given tolerance tol.

Progressive reduction of the signal error. Choosing hierarchical bases in Ū and Ȳ ,
the error εS can be progressively reduced by adding further basis functions up̄+1, up̄+2, . . .
and yq̄+1, yq̄+2, . . . resulting in additional columns and rows of the matrix represen-
tation.

Matrix reduction via multilinear SVDs (cf. Section 6). The matrix representation
of GDS allows for low rank approximations with error estimates on the basis of so-
called higher order singular value decompositions (HOSVDs) [19], respecting the time-
space tensor structure of the basis functions. The corresponding singular vectors
represent the most relevant input and output signals.

Actuators and sensors for distributed inputs and outputs. Thinking of practical
applications, input signals u(t; θ) and output signals y(t; ξ) are often generated and
measured by actuators and sensors with limited spatial and temporal resolutions, such
that ’realizable’ input and output signals naturally belong to finite dimensional sub-
spaces Ū and Ȳ, respectively. Error estimates of the form (1.1) and the extraction of
relevant input and output signals on the basis of HOSVDs may thus provide useful
information for efficient sensor and actuator design, see Section 6. Note that classical
approaches (where the control system is first discretized in space and then model re-
duction is applied) rarely take the error due to input and output space-discretizations
into account.

Control Design (cf. Section 6). The matrix representation G = [Gij ] may directly
be used in control design, or a state realization of the i/o model GDS can be used as
basis for many classical control design algorithms.

1.3. Relation to numerical analysis, control theory and optimal control.
From the point of view of numerical analysis, the presented approach is a Galerkin
approximation of the i/o map, which is a Volterra integral operator arising from the
semigroup representation of the evolution system. The corresponding error estimates
are based on standard interpolation theory in Sobolev spaces and on error results for
the numerical solution of evolution equations.

From the point of view of control theory, the linear time-continuous infinite-
dimensional system with distributed controls and observations is first approximated
by a time-discrete multi-input-multi-output system, the corresponding Markov pa-
rameters are then approximated by numerically calculating impulse responses.

Using the approximated i/o map in optimal control applications corresponds to
a pronounced form of the concept ’first discretize, then optimize’ since the original
system is discretized in space and time. On the one hand, this entails the risk of loosing
essential structural features of the original control problem, which may lead e.g. to
instabilities or simply failing of the calculated controls. The analytical investigation
of the behavior of the approximated i/o map in control applications is an important
future task. On the other hand, the algebraic representation of the i/o-map enables
the use of very fast methods for model reduction and control design, and the error
results for the full discretization may help to take effects of digitizing inputs and
outputs for processing by discrete controllers into account.

Finally, we aim to mention some other approaches which directly focus on the
original infinite-dimensional system or control problem. Balanced Truncation and
POD have been formulated in infinite-dimensional function spaces, see e.g. [14, 18,
43]. In sophisticated simulations and optimal control applications, state and control
discretization errors and even modeling errors are adaptively controlled with respect
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to their effect on quantities of interest, see e.g. [11, 15].

1.4. Notation. For Ω ⊂ Rd, d ∈ N, L2(Ω) denotes the usual Lebesgue space of
square-integrable functions, and Hα(Ω), α ∈ N0 denotes the corresponding Sobolev
spaces of α-times weakly differentiable functions. We interpret functions v, which
vary in space and time, optionally as classical functions v : [0, T ]×Ω → R with values
v(t;x) ∈ R, or as abstract functions v : [0, T ] → R with values in a function space X
such as X = Hα(Ω). Correspondingly, Hα(0, T ;Hβ(Ω)), with α, β ∈ N0, denotes the
space of equivalence classes of functions v : [0, T ] → Hβ(Ω) with t 7→ ||v||Hβ(Ω) being
α-times weakly differentiable, for details see e.g. [22]. We introduce Hilbert spaces

Hα,β((0, T ) × Ω) := Hα(0, T ;L2(Ω)) ∩ L2(0, T ;Hβ(Ω)),

||v||Hα,β((0,T )×Ω) := ||v||Hα(0,T ;L2(Ω)) + ||v||L2(0,T ;Hβ(Ω)),

see e.g. [37]. By C([0, T ];X) and Cα([0, T ];X) we denote the space of functions
v : [0, T ] → X which are continuous respectively α-times continuously differentiable.
For two normed spaces X and Y , L (X,Y ) denotes the set of bounded linear operators
X → Y , and we abbreviate L (X) := L (X,X). For α ∈ N, Lα(0, T ; L (X,Y ))
denotes the space of operator-valued functions K : [0, T ] → L (X,Y ) with t 7→
||K(t)||L (X,Y ) = supx6=0 ||K(t)x||Y /||x||X lying in Lα(0, T ). Vectors, often representing
a discretization of a function v, are written in corresponding small bold letters v,
whereas matrices, often representing a discrete version of an operator like G or G, are
written in bold capital letters G. Rα×β stands for the set of real α× β matrices, and
A ⊗ B denotes the Kronecker tensor product of two matrices A and B.

2. I/o maps of ∞-dimensional LTI state space systems. We consider
infinite-dimensional linear time-invariant systems of first order

∂tz(t) = Az(t) +Bu(t), t ∈ (0, T ], (2.1a)

z(0) = z0, (2.1b)

y(t) = Cz(t), t ∈ [0, T ]. (2.1c)

Here for every time t ∈ [0, T ], the state z(t) is supposed to belong to a Hilbert space
Z like Z = L2(Ω), where Ω is a subset of RdΩ with dΩ ∈ N. A is a densely defined
unbounded operator A : Z ⊃ D(A) → Z, generating a C0-semigroup (S(t))t≥0 on
Z. The control operator B belongs to L (U,Z) and the observation operator C to
L (Z, Y ), where U = L2(Θ) and Y = L2(Ξ) with subsets Θ ⊂ Rd1 and Ξ ⊂ Rd2 ,
d1, d2 ∈ N.

We recall how a linear bounded i/o-map G ∈ L (U ,Y) with

U = L2(0, T ;U) and Y = L2(0, T ;Y )

can be associated to (2.1), for details see e.g. [41, Ch. 4]. It is well-known that for
initial values z0 ∈ D(A) and controls u ∈ C1([0, T ];Z), a unique classical solution
z ∈ C([0, T ];Z)∩C1((0, T );Z) of (2.1) exists. For z0 ∈ Z and u ∈ U , the well-defined
function

z(t) = S(t)z0 +

∫ t

0

S(t− s)Bu(s) ds, t ∈ [0, T ], (2.2)

is called a mild solution of (2.1). A mild solution of (2.1) is unique, belongs to
C([0, T ];Z) and is the uniform limit of classical solutions [41]. Hence, the output
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signal y(t) = Cz(t) is well-defined and belongs to Y ∩ C([0, T ];Y ). In particular, the
ouput signals y(u) ∈ Y arising from input signals u ∈ U and zero initial conditions
z0 ≡ 0 allow to define the linear i/o-map G : U → Y of the system (2.1) by u 7→
y(u). It is possible to represent G as a convolution with the kernel function K ∈
L2(−T, T ; L (U, Y )),

K(t) =

{

CS(t)B, t ≥ 0

0, t < 0
. (2.3)

Lemma 2.1. The i/o-map G of (2.1) has the representation

(Gu)(t) =

∫ T

0

K(t− s)u(s) ds, t ∈ [0, T ], (2.4)

belongs to L (U ,Y) ∩ L (U , C([0, T ],Y)) and satisfies

||G||L (U ,Y) ≤
√
T ||K||L2(0,T ;L (U,Y )). (2.5)

Proof. Since C is bounded, the representation of y = Cz based on (2.2) can
be reformulated as in (2.4), see e.g. [22] for the theory of Bochner integrals. For
general K ∈ L2(−T, T ; L (U, Y )), a generalized Hölder’s inequality yields that for
fixed t ∈ [0, T ], the function s→ K(t− s)u(s) belongs to L1(0, T ; L (U, Y )) with

||(Gu)(t)||Y ≤ ||u||U ||K(t− ·)||L2(0,T ;L (U,Y ),

and by integrating over [0, T ] we obtain (2.5).
Remark 1. The i/o-map G is causal in the sense that y(t) only depends on

u|[0,t) for all t ∈ [0, T ], and G is time-invariant in the sense that if y = Gu then
στy = G(στu) for all τ ∈ [0, T ]. Here στ is a shift operator with (στu)(t) = u(t− τ)
for t ∈ [τ, T ] and (στu)(t) = 0 for t ∈ [0, τ).

Example 1. As prototype for a parabolic system, we consider the heat equa-
tion with homogeneous Dirichlet boundary conditions and assume that Ω has a C2-
boundary. In this case, Z = L2(Ω) and the operator A in (2.1) coincides with the
Laplace operator

A = 4 : D(A) = H2(Ω) ∩H1
0 (Ω) ⊂ Z → Z. (2.6)

Since A is the infinitesimal generator of an analytic C0-semigroup of contractions
(S(t))t≥0, the mild solution z of (2.1) exhibits the following stability and regularity
properties, see e.g. [41, Ch. 7] and [25].

(i) If z0 = 0 and u ∈ U , then z ∈ H1,2((0, T ) × Ω) with

||z||H1,2((0,T )×Ω) ≤ c||u||U . (2.7)

(ii) Assume that u ≡ 0. For z0 ∈ D(A) we have z ∈ C1([0, T ];D(A)), but for
z0 ∈ Z we only have z ∈ C1((0, T ];D(A)).

We will consider concrete choices of Ω, B and C in Section 6. We note that if the
observation preserves the inherent state regularity in the sense that

C|H2(Ω) ∈ L (H2(Ω), H2(Ξ)), (2.8)
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then G ∈ L (U ,Ys) and also

G|Us
∈ L (Us,Ys), with Us = H1,2((0, T ) × Θ), Ys = H1,2((0, T ) × Ξ). (2.9)

In fact, for u ∈ Us, we have ||u||U ≤ ||u||Us
, and for u ∈ U , we have ||Gu||Ys

≤
c′||z||H1,2((0,T )×Ω) ≤ c c′||u||U , where c′ = max{||C||L (L2(Ω),L2(Ξ)), ||C||L (H2(Ω),H2(Ξ))}
and c is the constant in (2.7).

Remark 2. Many other linear time-invariant systems with distributed controls
and observations admit a representation of the i/o map via (2.4) and exhibit properties
similar to (2.9). This is, for instance, the case for the heat equation with homogeneous
Neumann boundary conditions, and also for more general parabolic equations, see [37]
and [38]. For Stokes systems, results similar to (2.4) and (2.9) are obtained by working
with appropriate subspaces of divergence-free functions, see [44]. Wave equations with
second order time derivatives can be represented in form of (2.1) and (2.4) by means
of an order reduction. Though hyperbolic systems do not have the smoothing property
of parabolic systems, they preserve the regularity of the data and results similar to
(2.9) can be obtained due to the restriction to input signals of higher regularity in
time, see [37, p. 95]. Note, however, that systems with boundary control or pointwise
observation do not fit directly into the setting (2.1).

3. Discretization of signals.

3.1. Space-time discretization and matrix representation. In order to
discretize the input signals u ∈ U and y ∈ Y in space and time, we choose four families
{Uh1

}h1>0, {Yh2
}h2>0, {Rτ1}τ1>0 and {Sτ2}τ2>0 of subspaces Uh1

⊂ U , Yh2
⊂ Y ,

Rτ1 ⊂ L2(0, T ) and Sτ2 ⊂ L2(0, T ) of finite dimensions p(h1) = dim(Uh1
), q(h2) =

dim(Yh2
), r(τ1) = dim(Rτ1) and s(τ2) = dim(Sτ2). We then define

Uh1,τ1 = {u ∈ U : u(t; ·) ∈ Uh1
, u(·; θ) ∈ Rτ1 for almost every t ∈ [0, T ], θ ∈ Θ},

Yh2,τ2 = {y ∈ Y : y(t; ·) ∈ Yh2
, y(·; ξ) ∈ Sτ2 for almost every t ∈ [0, T ], ξ ∈ Ξ}.

We denote the orthogonal projections onto these subspaces by PU ,h1,τ1 ∈ L (U) and
PY,h2,τ2 ∈ L (Y). As first step of the approximation of G, we define

GS = GS(h1, τ1, h2, τ2) = PY,h2,τ2GPU ,h1,τ1 ∈ L (U ,Y). (3.1)

In order to obtain a matrix representation of GS , we introduce families of bases
{µ1, . . . , µp} of Uh1

, {ν1, . . . , νq} of Yh2
, {φ1, . . . , φr} of Rτ1 and {ψ1, . . . , ψs} of Sτ2

and corresponding mass matrices MU,h1
∈ Rp×p, MY,h2

∈ Rq×q, MR,τ1 ∈ Rr×r and
MS,τ2 ∈ R

s×s, for instance via

[MU,h1
]ij = (µj , µi)U , i, j = 1, . . . , p.

These mass matrices induce, for instance via

(v,w)p;w = vTMU,h1
w for all v,w ∈ R

p,

weighted scalar products and corresponding norms in the respective spaces, which we
indicate by a subscript w, like Rpw with (·, ·)p;w and || · ||p;w, in contrast to the canonical
spaces like Rp with (·, ·)p and || · ||p. We represent signals u ∈ Uh1,τ1 and y ∈ Yh2,τ2 as

u(t; θ) =

p
∑

k=1

r∑

i=1

uki φi(t)µk(θ), y(t; ξ) =

q
∑

l=1

s∑

j=1

yljψj(t)νk(ξ),
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where uki are the elements of a block-structured vector u ∈ Rpr with p blocks uk ∈ Rr,
and the vector y ∈ Rqs is defined similarly. Then

||u||U = ||u||pr;w, and ||y||Y = ||y||qs;w,
where ||·||pr;w and ||·||qs;w denote the weighted norms with respect to the mass matrices

MU ,h1,τ1 = MU,h1
⊗ MR,τ1 ∈ R

pr×pr, MY,h2,τ2 = MY,h2
⊗ MS,τ2 ∈ R

qs×qs,

i.e. the corresponding coordinate isomorphisms κU ,h1,τ1 ∈ L (Uh1,τ1 ,R
pr
w ) and κY,h2,τ2 ∈

L (Yh2,τ2 ,R
qs
w ) are unitary.

Finally, we obtain a matrix representation G of GS by setting

G = G(h1, τ1, h2, τ2) = κYPYGPUκ
−1
U ∈ R

qs×pr, (3.2)

where the dependencies on h1, τ1, h2, τ2 have been partially omitted. Considering

H = H(h1, τ1, h2, τ2) := MY,h2,τ2G ∈ R
qs×pr

as a block-structured matrix with q×p blocks Hkl ∈ Rs×r and block elements Hkl
ij ∈ R,

we obtain the element-wise representation

Hkl
ij = [MYκYPYG(µlφj)]

k
i = (νkψi,G(µlφj))Y . (3.3)

Remark 3. Alternatively, H can be considered as a fourth-order tensor in
Rs×r×q×p with elements Hijkl = Hkl

ij .
To have a discrete analogon of the L (U ,Y)-norm, we introduce for given Uh1,τ1

and Yh2,τ2 the weighted matrix norm

||G(h1, τ1, h2, τ2)||qs×pr;w := sup
u∈Rpr

||Gu||qs;w
||u||pr;w

= ||M1/2
Y,h2,τ2

GM
−1/2
U ,h1,τ1

||qs×pr, (3.4)

and we write (h′1, τ
′
1, h

′
2, τ

′
2) ≤ (h1, τ1, h2, τ2) if the inequality holds component-wise.

Lemma 3.1. For all (h1, τ1, h2, τ2) ∈ R4
+, we have

||G(h1, τ1, h2, τ2)||qs×pr;w = ||GS(h1, τ1, h2, τ2)||L (U ,Y) ≤ ||G||L (U ,Y). (3.5)

If the subspaces {Uh1,τ1}h1,τ1>0 and {Yh2,τ2}h2,τ2>0 are nested in the sense that

Uh1,τ1 ⊂ Uh′
1
,τ ′

1
, Yh2,τ2 ⊂ Yh′

2
,τ ′

2
for (h′1, τ

′
1, h

′
2, τ

′
2) ≤ (h1, τ1, h2, τ2), (3.6)

then ||G(h1, τ1, h2, τ2)||qs×pr;w monotonically increases for decreasing (h1, τ1, h2, τ2) ∈
R

4
+, and ||G(h1, τ1, h2, τ2)||qs×pr;w is convergent for (h1, τ1, h2, τ2) ↘ 0.

Proof. In order to show (3.5), we calculate

||GS ||L (U ,Y)= sup
u∈Uh1,τ1

||PY,h2,τ2Gu||Y
||u||U

≤ sup
u∈Uh1,τ1

||Gu||Y
||u||U

≤ ||G||L (U ,Y),

and observe that for u ∈ Uh1,τ1 and u = κU ,h1,τ1u ∈ R
pr, we have

||GSu||Y = ||κ−1
Y,h2,τ2

GκU ,h1,τ1PU ,h1,τ1u||Y = ||Gu||qs;w ≤ ||G||qs×pr;w||u||U ,
||Gu||qs;w ≤ ||κY,h2,τ2GSκ

−1
U ,h1,τ1

u||qs;w = ||GSu||Y ≤ ||GS ||L (U ,Y ||u||pr;w.
Assume that (3.6) holds. Since ||PY,h2,τ2y||Y ≤ ||PY,h′

2
,τ ′

2
y||Y for all y ∈ Y , we have

||GS(h1, τ1, h2, τ2)||qs×pr;w ≤ sup
u∈Uh′

1
,τ′

1

||PY,h′
2
,τ ′

2
Gu||Y

||u||U
= ||GS(h′1, τ

′
1, h

′
2, τ

′
2)||q′s′×p′r′;w.

Hence, (3.5) ensures the convergence of ||GS(h)||qs×pr;w.
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Fig. 3.1. Hierarchical basis for L2(0, 1)-subspaces of piecewise linear functions: (a) µ1 and µ2

(b) µ3 (c) µ4 and µ5 (d) µ6, . . . , µ9.

0 0.5 1
−2.5

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
2.5

(a)

t
0 0.5 1

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5
(b)

t
0 0.5 1

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5
(c)

t
0 0.5 1

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5
(d)

t

Fig. 3.2. Haar wavelet basis for L2(0, 1)-subspaces of piecewise constant functions: (a) φ1 (b)
φ2 (c) φ3 and φ4 (d) φ5, . . . , φ8.

3.2. An example for signal discretizations. As an example, consider the
case U = Y = L2(0, 1), and choose Uh1

and Yh2
as spaces of continuous piecewise

linear functions and Rτ1 and Sτ2 as spaces of piecewise constant functions, all with
respect to equidistant grids.

For p ∈ N, p ≥ 2 and h1(p) = 1/(p−1), let Th1
= {Ik}1≤k≤p−1 be the equidistant

partition of (0, 1] into intervals Ik = ((k− 1)h1, kh1]. The corresponding space Uh1
of

continuous piecewise linear functions is, for instance, spanned by the nodal basis

{µ(h1)
1 , . . . , µ

(h1)
p(h1)

} ⊂ Uh1
, with µ

(h1)
l (kh1) = δl−1(k), k = 0, . . . , p,

i.e. the µ
(h1)
k are the well-known hat functions. The subspaces {Uh1

} are nested if
the choice is restricted to h1 ∈ {2−n}n∈N0

and p ∈ {2n + 1}n∈N0
. Since the nodal

bases of Uh1
and Uh′

1
do not have any common element for h1 6= h′1, one may prefer to

choose a hierarchical basis of finite element functions µ̂l, as in Fig. 3.1, see e.g. [49],
[50]. Then, Uh1

= span{µ̂1, . . . , µ̂p(h1)} for all h1 ∈ {2−n}n∈N0
with basis functions

µ̂k independent of h1.
For r ∈ N and τ1 = T/r, let Γτ1 = {Ij}1≤j≤r be the equidistant partition of (0, T ]

into intervals Ij = ((j−1)τ1, jτ1]. The corresponding space Rτ1 of piecewise constant
functions is, for instance, spanned by the nodal and orthogonal basis

{φ(τ1)
1 (t), . . . , φ(τ1)

r (t)}, with φ
(τ1)
j (t) = χIj

(t), j = 1, . . . , r. (3.7)

The spaces are nested by requiring τ1 ∈ {2−nT}n∈N0
. An orthonormal hierarchical

basis for Rτ1 is obtained by choosing φj as Haar-wavelets, cf. Fig. 3.2 and [17].
Denoting the orthogonal projections onto Uh1

and Rτ1 by PU,h1
and PR,τ1 , respec-

tively, the Poincaré-Friedrich’s inequality shows that there exist constants cU = 1/2
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and cR = 1/
√

2, independent of h1, τ1 and T , such that

||u− PUh1
u||L2(0,1) ≤ cUh

2
1||∂2

ξu||L2(0,1) for u ∈ H2(0, 1), (3.8a)

||v − PRτ1
v||L2(0,T ) ≤ cRτ1||∂tv||L2(0,T ) for v ∈ H1(0, T ), (3.8b)

see e.g. [16, 51]. By Fubini’s theorem, it follows that the corresponding projection
PU ,h1,τ1 onto Uh1,τ1 = {u ∈ U , u|Ij

≡ u(j), u(j) ∈ Uh1
, j = 1, . . . , r} satisfies

||u−PU ,h1,τ1u||U ≤ (cUh
2
1 + cRτ1)||u||Us

for all u ∈ Us = H1,2((0, T )× (0, 1)). (3.9)

We define Yh2
,Rτ2 and Yh2,τ2 accordingly and a corresponding estimate as (3.9) holds

for the projection PY,h2,τ2y of elements y ∈ Ys = Us.
Remark 4. Estimates similar to (3.9) also exist for domains Θ ⊂ Rd with d ≥ 1

and are classical results from the interpolation theory in Sobolev spaces, see e.g. [16].
Note that the interpolation constants then often have to be estimated numerically. Es-
timates with higher approximation orders can be obtained, if ansatz functions of higher
polynomial degree are used and if the input and output signals exhibit corresponding
higher regularity in space and time.

3.3. Interpretation as discrete-time multi-input-multi-output system.
GS can be considered as a generalization of a classical linear discrete-time multi-input-
multi-output (MIMO) system. Input signals u ∈ Uh1,τ1 and output signals y ∈ Yh2,τ2

can be uniquely represented by finite sequences

{u1, . . . ,ur} ⊂ R
p, {ỹ1, . . . , ỹs} ⊂ R

q,

with coefficient vectors ui = (u1
i , . . . ,u

p
i )
T and ỹi = (ỹ1

i , . . . , ỹ
q
i )
T , where u =

κU ,h1,τ1u and ỹ = MY,h2,τ2κY,h2,τ2y. Hence, y = GSu writes as

Σ : ỹi =
∑

j∈Z

Hijuj , i ∈ Z, (3.10)

where Hij = [Hkl
ij ]kl ∈ Rq×p for 1 ≤ i ≤ s and 1 ≤ j ≤ r, and we define Hij :=

0 ∈ Rq×p for other i, j ∈ Z. (3.10) is the external representation of a general linear
discrete-time system Σ with p input channels and q output channels, see e.g. [2].
In this context, uj (resp. ỹj) usually denotes the input value (resp. output value)
at the point of time tj = jτ with some fixed time step size τ . Σ is called causal if
Hij = 0 for j > i and Σ is called time-invariant if Hij = Hi−j . For a time-invariant
system, the sequence of q×p constant matrices hΣ = (. . . ,H−2,H−1,H0,H1,H2, . . . )
is called the impulse response of Σ because it is the output obtained to a unit impulse
uj = δ0(j). For a causal time-invariant system, the matrices H0,H1, . . . are often
referred to as the Markov parameters of Σ.

The causality and time-invariance of the i/o-map G (cf. Rem. 1) transfer to the
causality and time-invariance of Σ if the time basis functions φj and ψi are chosen
in an appropriate way. Choosing, for instance, φ1 = ψ1, . . . , φr = ψr as in (3.7) for
some r = s ∈ N and τ = τ1 = τ2 = 1/r, the matrices Hkl ∈ Rr×r are lower triangular
Toeplitz matrices and uj and ỹj can be interpreted as signal values at time tj = jτ ,
cf. Remark 7. Note that all φj and ψi satisfying φj = σ(j−1)τφ1 and ψi = σ(i−1)τψ1

will also ensure this property.
The problem of finding an internal or state space representation of Σ with minimal

state space dimension is referred to as minimal partial realization problem, and in
particular for causal time-invariant systems, many algorithms exist to solve it, see
e.g. [13, 21, 39].
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3.4. Signal approximation error estimates. We first consider the signal er-
ror εD with respect to the L (U ,Y)-norm.

Lemma 3.2. The signal approximation error εs := ||G − GS ||L (U ,Y) decomposes
into εs = εs,inp + εs,outp with

εs,inp := sup
u∈kerPU,h1,τ1

||Gu||Y
||u||U

, εs,outp := max
u∈Uh1,τ1

||(I − PY,h2,τ2)Gu)||Y
||u||U

.

Proof. We estimate

εs ≤ ||G(I − PU ,h1,τ1)||L (U ,Y) + ||(I − PY,h2,τ2)GPU ,h1,τ1 ||L (U ,Y) (3.11)

and observe that

εs,outp = ||(I − PY,h2,τ2)GPU ,h1,τ1 ||L (U ,Y), εs,inp = ||G(I − PU ,h1,τ1)||L (U ,Y).

We obtain the equality in (3.11) by considering a sequence uj = u∗ + u′j , where u∗

is the maximizer in the definition of εs,outp and (u′j)j ⊂ kerPU ,h1,τ1 is a supremal
sequence in the definition of εs,inp.

The next remarks show that we can only hope for a good approximation in
|| · ||L (U ,Y) if the subspaces Uh1,τ1 and Yh2,τ2 can be chosen specifically for G such
that output signals from input signals u ∈ Uh1,τ1 are well approximated in Yh2,τ2

and that neglected input signal components in kerPU ,h1,τ1 only lead to small output
signals.

Remark 5. A usual requirement for families of approximating subspaces Uh1,τ1

and Yh2,τ2 is that they become dense if h1, τ1, h2, τ2 → 0. We note that this condition
implies that ||(G − GS)u||Y → 0 for every u ∈ U , but does not guarantee the uniform
convergence ||G − GS ||L (U ,Y) → 0. Considering, for instance, the identity operator
G = Id ∈ L (U ,Y) in the case U = Y, εs,inp equals one for every finite-dimensional
Uh1,τ1 . Similar effects can be expected for operators with feedthrough components act-
ing between infinite-dimensional subspaces.

Remark 6. If G ∈ L (U ,Y) is a compact operator, then there exist orthonormal
systems {û1, û2 . . . } of U and {ŷ1, ŷ2, . . . } of Y and nonnegative numbers σ1 ≥ σ2 ≥ . . .
with σk → 0 such that Gu =

∑∞
k=1 σk(u, ûk)U ŷk for all u ∈ U , see e.g. [47]. Choosing

Uh1,τ1 and Yh2,τ2 as the span of û1, . . . , ûr and ŷ1, . . . , ŷs, respectively, with s = r and
r ∈ N, we obtain an efficient approximation GS of G with ||G − GS ||L (U ,Y) ≤ σr+1.

The case where less specific information about G is available and we only know
that G|Us

∈ L (Us,Ys) with spaces of higher regularity in space and time Us ⊂ U and
Ys ⊂ Y like in Example 1 will be considered in Theorem 5.1.

4. Approximation of system dynamics. We discuss the efficient approxima-
tion of GS respectively of its matrix representation G = M−1

Y H. For time-invariant
systems with distributed control and observation, this task reduces to the approxima-
tion of the convolution kernel K ∈ L2(0, T ; L (U, Y )).

4.1. Kernel function approximation. Inserting (2.4) in (3.3), by a change of
variables we obtain

Hkl
ij =

∫ T

0

∫ T

0

ψi(t)φj(s)(νk,K(t− s)µl)Y ds dt =

∫ T

0

Wij(t)Kkl(t) dt
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with matrix-valued functions W : [0, T ] → Rs×r and K : [0, T ] → Rq×p,

Wij(t) =

∫ T−t

0

ψi(t+ s)φj(s) ds, Kkl(t) = (νk,K(t)µl)Y ,

and thus

H = MYG =

∫ T

0

K(t) ⊗ W(t) dt. (4.2)

Remark 7. W(t) can be exactly calculated if piecewise polynomial ansatz func-
tions ψi(t) and φj(t) are chosen. For the special choice (3.7), we see in this way that
W(t) ∈ Rr×r is a lower triangular Toeplitz matrix for all t ∈ [0, T ], and hence the

matrices Hij =
∫ T

0
Wij(t)K(t) dt ∈ Rq×p satisfy Hij = Hi−j for 1 ≤ i, j ≤ r and

Hij = 0 for 1 ≤ i < j ≤ r. In view of Section 3.3, the Hij are thus the Markov
parameters of a discrete-time linear time-invariant causal MIMO system.

For systems of the form (2.1), the matrix-valued function K is given by

Kkl(t) = (νk, CS(t)Bµl)Y = (c∗k, S(t)bl)Z ,

where c∗k = C∗νk ∈ Z and bl = Bµl for k = 1, . . . , q and l = 1, . . . , p. Hence, K can
be calculated by solving p homogeneous systems

żl(t) = Azl(t), t ∈ (0, T ], (4.3a)

zl(0) = bl, (4.3b)

since (4.3) has the mild solution zl(t) = S(t)bl ∈ C([0, T ];L2(Ω)). We obtain an
approximation H̃ of H by replacing zl(t) by numerical approximations zl,tol(t), i.e.

H̃ =

∫ T

0

K̃(t) ⊗ W(t) dt, (4.4)

with K̃kl(t) = (νk, Czl,tol(t))Y = (c∗k, zl,tol(t))Z . Here the subscript tol indicates
that the error zl − zl,tol is assumed to satisfy some tolerance criterion which will be
specified later. The corresponding approximation GDS of GS is given by

GDS = κ−1
Y G̃κUPU , with G̃ = M−1

Y H̃ (4.5)

and depends on h1, h2, τ1, τ2 and tol.
Remark 8. The matrix function K is approximated column-wise. The kernel

may also be calculated row-wise by solving an adjoint autonomous system, which may
be preferable if q < p or if the output approximation is successively improved by adding
further basis functions νq+1, νq+2, . . . .

Remark 9. The calculation of H̃ can be parallelized in an obvious way by calcu-
lating the p solutions zl,tol in parallel and we note that no state trajectories have to

be stored. In general, the matrix H̃ is not sparse, such that the memory requirements
become significant if a high resolution of the signals in space and time is required, and
the question of a data-sparse representation arises. Recalling Remark 7, the blocks H̃kl

are lower triangular Toeplitz matrices for the special choice of time basis funtions (3.7)
and thus only q·p·r elements have to be stored. Another approach to obtain data-sparse
representations uses approximate factorizations Ǩkl(t−s) =

∑M
m,n=1 αmnLm(t)Ln(s)

for s, t ∈ [0, T ] with suitable ansatz functions Ln(t), see e.g. [29].
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4.2. Dynamics approximation error. The following proposition relates the
system dynamics error εD to the errors made in solving the PDE (4.3) for l = 1, . . . , p.

Proposition 4.1. The system dynamics error εD := ||GS−GDS||L (U ,Y) satisfies

εD ≤
√
T ||K − K̃||L2(0,T ;Rq×p

w ) ≤ p
√
T

√

λmax(MY,h2
)

λmin(MU,h1
)

max
1≤l≤p

||K:,l − K̃:,l||L2(0,T ;Rq).

(4.6)
Here K:,l and K̃:,l denote the l’th column of K(t) and K̃(t), respectively, λmax(MY,h2

)
is the largest eigenvalue of MY,h2

and λmin(MU,h1
) the smallest eigenvalue of MU,h1

.
R
q×p
w denotes the space of real q× p-matrices equipped with the weighted matrix norm

||M||q×p;w = supu6=0 ||Mu||q;w/||u||p;w.
Proof. K is the matrix function representation of the space-projected kernel

function Km : [−T, T ] → L (U, Y ) with Km(t) = PY,h2
K(t)PU,h1

, where PY,h2
and

PU,h1
are the orthogonal projections onto the subspaces Yh2

and Uh1
, respectively.

Introducing the corresponding i/o-map Gm = Gm(h1, h2),

(Gmu)(t) =

∫ T

0

Km(t− s)u(s) ds, t ∈ [0, T ]. (4.7)

we note that GS = PY,h2,τ2GmPU ,h1,τ1 . Similarly, we associate with K̃(t) the ker-

nel function K̃ : [−T, T ] → L (U, Y ) with K̃(t) = κ−1
Y,h2

K̃(t)κU,h1
PU,h1

, and with
corresponding i/o-map

(GDu)(t) =

∫ T

0

K̃(t− s)u(s) ds, t ∈ [0, T ]. (4.8)

We observe that GDS as defined in (4.5) satisfies GDS = PY,h2,τ2GDPU ,h1,τ1 by show-
ing according to (3.2)-(4.2) that the matrix representation of PY,h2,τ2GDPU ,h1,τ1 co-

incides with (4.4). We note that ||Km(t)||L (U,Y ) = ||K(t)||q×p;w and ||K̃(t)||L (U,Y ) =

||K̃(t)||q×p;w for all t ∈ [0, T ]. Lemma 2.1 yields

||Gm − GD||L (U ,Y) ≤
√
T ||Km − K̃||L2(0,T ;L (U,Y )) =

√
T ||K − K̃||L2(0,T ;Rq×p

w ).

Defining E(t) = K(t) − K̃(t), for u ∈ Rp with ||u||Rp = 1 and t ∈ [0, T ], by using the
equivalence of the 1−norm and 2-vector norms in R

p we have that

||E(t)u||Rq ≤
p
∑

l=1

|ul|||E:,l(t)||Rq ≤ √
p

(
p
∑

l=1

||E:,l(t)||2Rq

)1/2

and hence ||E||2L2(0,T ;Rq×p) ≤ p
∑p
l=1

∫ T

0
||E:,l(t)||2Rq dt ≤ p2 maxl=1,...,p

∫ T

0
||E:,l(t)||2Rq dt,

which concludes the proof.
Remark 10. Calculating directly the columns of K and estimating εD via (4.6),

the quotient of the eigenvalues of the mass matrices MU,h1
and MY,h2

has to be com-
pensated by the approximation accuracy of K:,l. This may be problematic if hierarchi-
cal basis functions are chosen, since the quotient grows unboundedly with decreasing
h1 and h2. One may circumvent this problem by calculating K with respect to different

bases. Approximating the columns of Kw(t) = M
1/2
Y K(t)M

−1/2
U via an adapted prob-

lem (4.3), we have εD ≤ p
√
T max1≤l≤p ||Kw

:,l−K̃w
:,l||L2(0,T ;Rq). Note that the necessary

back transformations have to be carried out with sufficient accuracy.
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4.3. Error estimation for the homogeneous PDE. In order to approximate
the system dynamics, the homogeneous PDE (4.3) has to be solved via a fully-discrete
numerical scheme for p different initial values. A first goal is to choose the time and
space grids (and possibly other discretization parameters) such that

||K:,l − K̃:,l||L2(0,T ;Rq) < tol resp. ||Kw
:,l − K̃w

:,l||L2(0,T ;Rq) < tol (4.9)

is guaranteed for a given tol > 0 by means of reliable error estimators. A second goal
is to achieve this accuracy in a cost-economic way. A special difficulty in solving (4.3)
numerically is the handling of initial values bl, which belong in general only to Z but
not necessarily to D(A). Considering the example heat equation, this means that the
space and time derivatives of the exact solution zl ∈ C1((0, T ], H2(Ω) ∩H1

0 (Ω)) may
become very large for small t, but decay quickly for t > 0. In fact, in general we only
have the analytical bound

||∂tz(t)||L2(Ω) = ||4z(t)||L2(Ω) ≤
c

t
||z0||L2(Ω) for all t ∈ (0, T ],

with some constant c > 0 independent of z0 and T , cf. [32, p. 148]. Adaptive space
and time discretizations on the basis of a posteriori error estimates are the method of
choice to match these requirements [23].

Discontinuous Galerkin time discretizations in combination with standard Galerkin
space discretizations provide an appropriate framework to derive corresponding (a pri-
ori and a posteriori) error estimates, also for the case of adaptively refined grids which
are in general no longer quasi-uniform [24, 32, 45]. We distinguish two types of error
estimates.

Global state error estimates measure the error (zl−zl,tol) in some global norm. For
parabolic problems, a priori and a posteriori estimates for the error in L∞(0, T ;L2(Ω))
and L∞(0, T ;L∞(Ω)) can be found in [24]. Such results permit to guarantee (4.9) in
view of

||K:,l − K̃:,l||L2(0,T ;Rq) ≤ ||C||L (Z,Y )

(
q
∑

i=1

||νi||2Y

)1/2

||z − z
(l)
tol

||L2(0,T ;Z). (4.10)

Goal-oriented error estimates can be used to measure the error ||K:,l−K̃:,l||L2(0,T ;Rq)

directly. This may be advantageous, since (4.10) may be very conservative: the error
in the observations K:,l can be small even if some norm of the state error is large.
The core of these error estimation techniques is an exact error representation formula,
which can be evaluated if one knows the residual and the solution of an auxiliary dual
PDE. This so-called dual-weighted residuals (DWR) approach goes back to [4], sub-
stantial contributions have since then been made in [1], [6], [8], [9], [10], [31], [33],
[34] and the references therein. Note that the numerical examples presented later are
calculated using adaptive time and space grid refinements on the basis of DWR error
estimation techniques.

The previous discussion justifies the following assumption.
Assumption 1. Given a tolerance tol > 0, we can ensure (by using appropriate

error estimators and mesh refinements) that the solutions zl of (4.3) and the solutions
zl,tol calculated by means of an appropriate fully-discrete numerical scheme satisfy

||K:,l − K̃:,l||L2(0,T ;Rq) < tol, l = 1, . . . , p. (4.11)
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5. Total error estimates. We present estimates for the total error in the ap-
proximation of G and of its adjoint G

∗. Using general-purpose ansatz spaces Uh1,τ1

and Yh2,τ2 for the signal approximation, we only obtain error results in a weaker
L (Us,Y)-norm respectively L (Ys,U)-norm.

Theorem 5.1. Consider the i/o map G ∈ L (U ,Y) of the infinite-dimensional
linear time-invariant system (2.4) and assume that

(i) G|Us
∈ L (Us,Ys) with spaces of higher regularity in space and time

Us = Hα1,β1((0, T ) × Θ), Ys = Hα2,β2((0, T ) × Ξ), α1, β1, α2, β2 ∈ N.

(ii) The families of subspaces {Uh1,τ1}h1,τ1 and {Yh2,τ2}h2,τ2 satisfy

||u− PU ,h1,τ1u||U ≤ (cRτ
α1

1 + cUh
β1

1 )||u||Us
, u ∈ Us,

||y − PY,h2,τ2y||Y ≤ (cSτ
α2

2 + cY h
β2

2 )||y||Ys
, y ∈ Ys,

with positive constants cR, cS , cU and cY .
(iii) The error in solving for the state dynamics can be made arbitrarily small, i.e.

Assumption 1 holds.
Let δ > 0 be given. Then one can choose subspaces Uh∗

1
,τ∗

1
and Yh∗

2
,τ∗

2
such that

τ∗1 <

(
δ

8cR||G||L (U ,Y)

)1/α1

, h∗1 <

(
δ

8cU ||G||L (U ,Y)

)1/β1

, (5.1a)

τ∗2 <

(
δ

8cS ||G||L (Us,Ys)

)1/α2

, h∗2 <

(
δ

8cY ||G||L (Us,Ys)

)1/β2

, (5.1b)

and one can solve numerically the PDEs (4.3) for l = 1, . . . , p(h1) such that one of
the following conditions holds.

(i) ||Kw
:,l − K̃w

:,l||L2(0,T ;Rq) <
δ

2
√
Tp(h∗1)

, (5.2a)

(ii) ||K:,l − K̃:,l||L2(0,T ;Rq) <
δ

2
√
Tp(h∗1)

√

λmin(MU,h∗
1
)

λmax(MY,h∗
2
)
, (5.2b)

(iii) ||zl − zl,tol||L2(0,T ;Z) <
δ

2
√
Tp(h∗1)

√

λmin(MU,h∗
1
)

λmax(MY,h∗
2
)
||C||−1

L (Z,Y )





q(h∗

2
)

∑

i=1

||νi||2Y





−1/2

.

(5.2c)

In this case,

||G − GDS ||L (Us,Y) < δ.

Moreover, the signal error ε′S := ||G − GS ||L (Us,Y) and the system dynamics error
εD := ||GS − GDS ||L (U ,Y) are balanced in the sense that ε′S , εD < δ/2.

Proof. For u ∈ Us, we have

||Gu− GSu||Y ≤ ||Gu− PY,h2,τ2Gu||Y + ||PY,h2,τ2Gu− PY,h2,τ2GPU ,h1,τ1u||Y ,
≤ (cSτ

α2

2 + cY h
β2

2 )||Gu||Ys
+ (cRτ

α1

1 + cUh
β1

1 )||PY ||L (Y)||G||L (U ,Y)||u||Us
,

≤
{

(cSτ
α2

2 + cY h
β2

2 )||G||L (Urs,Ys) + (cRτ
α1

1 + cUh
β1

1 )||G||L (U ,Y)

}

||u||Us
,
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and thus (5.1) ensures that ε′S = ||G − GS ||L (Us,Y) < δ/2. Proposition 4.1 in combi-
nation with (5.2) and in view of (4.10) ensures that εD = ||GS − GDS||L (U ,Y) < δ/2,
which concludes the proof.

Remark 11. Condition (i) holds for many systems of practical relevance, cf.
Remark 2. Condition (ii) can be achieved by choosing Uh1

, Yh2
, Rτ1 and Sτ2 for

instance as spaces of piecewise polynomial functions of appropriate degrees, cf. (3.8)
and refer e.g. to [16] for interpolation theory in Sobolev spaces in the case of more
general settings.

Remark 12. Considering G in the L (Us,Y)-norm we restrict the input space to
input signals of higher regularity in space and time. This is not a strong limitation
if we think of Us as the space wherein we search for an approximate optimal control,
since exact optimal controls exhibit such higher regularity in many applications [46].
Note that we do not exclude the use of L2-controls, in fact, we can consider the spaces
Uh1,τ1 as spaces of controls which we are able to realize in technical applications.

In view of (2.9) and (3.9) we can apply Theorem 5.1 to Example 1.
Corollary 5.2. Consider the heat control system in Example 1 with U = Y =

L2(0, 1) and let δ > 0 be given. We assume that C|H2(Ω) ∈ L (H2(Ω), H2(0, 1)), i.e.
G|Us

∈ L (Us,Ys) with Us = Ys = H1,2((0, T ) × (0, 1))). We choose Uh1
and Yh2

as spaces of continuous piecewise linear functions with respect to equidistant grids
on [0, 1], and we choose Rτ1 and Sτ2 as spaces of piecewise constant functions with
respect to equidistant grids on [0, T ], with dimensions satisfying

p > 2

√

||G||L (U ,Y)

δ
+ 1, q > 2

√

||G||L (Us,Ys)

δ
+ 1, (5.3a)

r >

√
24||G||L (U ,Y)

δ
, s >

√
24||G||L (Us,Ys)

δ
. (5.3b)

If the homogeneous heat equations (4.3) are solved for l = 1, . . . , p such that one of
the conditions (i)-(iii) in (5.2) holds, then the i/o-maps G and GDS restricted to Us
satisfy

||G − GDS ||L (Us,Y) < δ.

The next result shows that (GDS)∗ ∈ L (Y ,U) automatically approximates the
adjoint G

∗ with ||G∗ − (GDS)∗||L (Ys,U) < c δ with a G-specific constant c, under the
assumption that G

∗
|Ys

∈ L (Ys,Us). Note that G
∗ ∈ L (Y ,U) is given by

(G∗y)(s) =

∫ T

0

K(s− t)∗y(t)dt.

Theorem 5.3. The adjoint (GDS)∗ ∈ L (Y ,U) of GDS ∈ L (U ,Y) has the
matrix representation

G̃∗ := M−1
U G̃TMY = M−1

U H̃T ∈ R
pr×qs (5.4)

For a given δ > 0, assume that all conditions in Theorem 5.1 hold, ensuring that
||G − GDS||L (Us,Y) < δ. If, in addition, G

∗
|Ys

∈ L (Ys,Us), then

||G∗ − (GDS)∗||L (Ys,U) < δ(
1

2
+ c∗) (5.5)
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with c∗ = 1
4 (||G∗||L (Ys,Us)/||G||L (Y,U) + ||G∗||L (Y,U)/||G||L (Ys,Us)).

Proof. We first observe that G̃∗ is the adjoint of G̃ : Rprw → Rqsw , since

(G̃u,y)qs;w = uT G̃TMYy = (u,M−1
U G̃TMYy)pr;w.

For u ∈ U and y ∈ Y and omitting the dependencies on h1, h2, τ1, τ2 and tol, we
have

(GDSu, y)Y = (PYκ
−1
Y G̃κUPUu, y)Y = (G̃κUPUu, κYPYy)qs;w,

= (κUPUu, G̃
∗κYPYy)qs;w = (u,PUκ

−1
U G̃∗κYPYy)U ,

= (u, (GDS)∗y)U ,

where we have used that PU = P
∗
U , PY = P

∗
Y , κ∗U = κ−1

U and κ∗Y = κ−1
Y . To show

(5.5), we estimate

||G∗ − (GDS)∗||L (Ys,U) ≤ ||G∗ − (GS)∗||L (Ys,U) + ||G∗
S − (GDS)∗||L (Y,U),

where (GS)∗ = PUG
∗
PY is the adjoint of GS ∈ L (U ,Y). In analogy to Thm. 5.1,

one shows that

ε∗S := ||G∗ − (GS)∗||L (Ys,U) ≤ c′′Rτ
α1

1 + c′′Uh
β1

1 + c′′Sτ
α2

2 + c′′Y h
β2

2 ,

with c′′U = ||G∗||L (YS ,US)cU , c′′Y = ||G∗||L (Y,U)cY , c′′R = ||G∗||L (Ys,Us)cR and c′′S =
||G∗||L (Y,U)cS . Hence, (5.1) implies

ε∗S ≤ δ

8

(
c′′U
cU

+
c′′R
cR

+
c′′Y
cY

+
c′′S
cS

)

=
δ

4

( ||G∗||L (Ys,Us)

||G||L (Y,U)
+

||G∗||L (Y,U)

||G||L (Ys,Us)

)

.

In order to estimate ε∗D := ||G∗
S − (GDS)∗||L (Y,U), we recall the definition of Gm in

(4.7) and of GD in (4.8) and obtain

ε∗D ≤ ||PU ||L (U)||(Gm)∗ − (GD)∗||L (Y,U)||PY ||L (Y),

≤
√
T (

∫ T

0

||Km(t)∗ − K̃(t)∗||2
L (Y,U) dt)

1/2.
(5.6)

We observe that

Km(t) = PUκ
−1
U K(t)∗κY PY and K̃(t)∗PUκ

−1
U K̃κY PY (5.7)

with K(t)∗ = M−1
U K(t)TMY and K̃(t)∗ = M−1

U K̃(t)TMY , and that

||K(t)∗ − K̃(t)∗||Rp,q
w

= ||K(t) − K̃(t)||
R

q×p
w

for t ∈ [0, T ]. (5.8)

Since each of the conditions in (5.2) ensures ||K−K̃||
R

q×p
w

< δ/2
√
T , we have by means

of (5.6) - (5.8) that ε∗D < δ/2, which concludes the proof.

Remark 13. It remains to investigate the accuracy of the respective approxima-
tion of the (possibly regularized) pseudo-inverses (G∗

G + αI)−1G
∗ with α ≥ 0, which

play an important role e.g. in optimal control problems.
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6. Applications and numerical results.

6.1. Test problems. As test cases, we consider two heat equations on domains
Ω ⊂ R

2 as depicted in Fig. 6.1 and with control and observation operators of the
following form. Let Ωc = (ac,1, ac,2)× (bc,1, bc,2) and Ωm = (am,1, am,2) × (bm,1, bm,2)
be rectangular subsets of Ω where the control is active and the observation takes place,
respectively, with 4 appropriate points ac, bc, am, bm ∈ Ω̄. Setting U = Y = L2(0, 1),
we define C ∈ L (L2(Ω), Y ) and B ∈ L (U,L2(Ω)) for test case 1 by

(Cz)(ξ) =

∫ bm,1

am,1

z(x1, x2(ξ))

bm,1 − am,1
dx1, (Bu)(x1, x2) =

{

u(θ(x1))ωc(x2) , (x1, x2) ∈ Ωc

0 , (x1, x2) /∈ Ωc
,

where ωc ∈ L2(ac,2, bc,2) is a weight function and θ : [ac,1, bc,1] → [0, 1] and x1 :
[0, 1] → [am,1, bm,1] are affine-linear transformations. For test case 2, we just invert
the roles of x1 and x2 in the definition of C. Note that C preserves an inherent spatial
state regularity, i.e. C|H2(Ω) ∈ L (H2(Ω), H2(0, 1)).

Test case 1. We consider a heat equation with homogeneous Dirichlet boundary
conditions on (0, T ] × Ω with T = 1 and Ω = (0, 1)2. We choose Ωc = Ω, Ωm =
(0.1, 0.2) × (0.1, 0.9) and ωc(x2) = sin(πx2). In this case, the output to inputs of the
special form u(t; θ) = sin(ωTπt) sin(mπθ) with ωT ,m ∈ N can be explicitely formulated
in terms of the eigenfunctions of the Laplace operator.

As test case 2, we consider two infinitely long plates of width 5 and height 0.2
which are connected by two rectangular bars as shown in the cross section in Fig. 6.1.
We assume that the plates are surrounded by an insulating material and that we can
heat the bottom plate and measure the temperature distribution in the upper plate.

Test case 2. We consider a heat equation with homogeneous Neumann bound-
ary conditions on (0, T ] × Ω with T = 1 and Ω as in Fig. 6.1, and choose Ωc =
(0.05, 4.95) × (0.05, 0.15), Ωm = (0.05, 4.95) × (0.85, 0.95) and ωc(x2) = sin(π(x2 −
0.05)/0.1).

The matrix approximations G̃ of the i/o-maps G corresponding to the test cases
have been calculated by means of a heat equation solver, which is based on the C++

FEM software library deal.ii[5]. It realizes a discontinuous Galerkin scheme with
adaptive space and time grids and applies goal-oriented DWR-based error control to
ensure (4.9), see [35] for details.

y(
t, 

. )

B

C Ωm

θ
u(t, . )

ξ

Ω

x2

x11

1

(a) Test case 1

y(t, . )

C

θ

u(t, . )

Ω

x

x
1

B 1

2
ξ

5

(b) Test case 2

Fig. 6.1. Test cases heat equation: (a) with homogeneous Dirichlet boundary conditions, (b)
with homogeneous Neumann boundary conditions.
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6.2. Tests of convergence. The following numerical convergence tests have
all been carried out with approximations GDS(h1, τ1, h2, τ2, tol) of the i/o-map G

corresponding to Test case 1. Hierarchical linear finite elements in Uh1
and Yh2

and
Haar wavelets in Rτ1 and Sτ2 have been chosen. The tolerance tol refers to the
estimate (4.11).

Convergence of single outputs. Considering Test case 1 with inputs u(t; θ) =
sin(ωTπt) sin(mπθ), and exactly known outputs y = Gu, we investigate the relative
error ||y − ỹ||Y/||u||Us

, with ỹ = GDS(h1, τ1, h2, τ2, tol)u, for varying discretization
parameters h1, τ1, h2, τ2 and tol. Choosing e.g. m = 5 and ωT = 10, we observe a
quadratic convergence in h1 = h2 (cf. Fig. 6.2-a) and a linear convergence in τ1 = τ2
(cf. Fig. 6.2-b) in correspondence to Thm. 5.1. However, the error does not converge
to zero but to a positive plateau value, which is due to the system dynamics error
and which becomes smaller for lower tolerances tol. For input signals with m > 5
and ωT > 10 the convergence order can only be observed for smaller discretization
parameters h1, h2, τ1 and τ2.
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Fig. 6.2. (a) Relative output errors for input u(t; θ) = sin(10πt) sin(5πθ), varying h1 = h2

and fixed τ1 = τ2 = 1/64. (b) Relative output errors for input u(t; θ) = sin(10πt) sin(5πθ), varying
τ1 = τ2 and fixed h1 = h2 = 1/17. (c) Norm ||GDS(h)||L (U,Y) for synchronously increasing
approximation space dimensions p = q = r + 1 = s + 1 and fixed tolerance tol = 4.0e − 5.

Convergence of the norm ||GS(h1, τ1, h2, τ2)||L (U ,Y) for nested subspaces. Suc-
cessively improving the signal approximation by adding additional basis functions,
the norm ||GS(h1, τ1, h2, τ2)||L (U ,Y) converges, cf. Lemma 3.1. We approximate
||GS ||L (U ,Y) by ||GDS||L (U ,Y), where GDS has been calculated with tol = 4.0e− 5. In

Fig. 6.2-c, the approximations ||GS(h1, τ1, h2, τ2)||L (U ,Y) = ||GS( 1
p−1 ,

1
r ,

1
q−1 ,

1
s )||L (U ,Y)

are plotted for increasing subspace dimensions p = q = r + 1 = s+ 1 = 2, 3, . . . , 65.

6.3. Matrix reduction on the basis of SVDs. In order to resolve the input
and output signal spaces accurately by means of general purpose basis functions, a
large number of basis functions is needed in general. In order to reduce the large size
of the resulting i/o-matrices G̃, we apply a reduction method known as Tucker decom-
position or higher order singular value decomposition (HOSVD) [19]. It is based on
singular value decompositions (SVDs) and preserves the space-time tensor structure
of the input and output signal bases.

Considering G̃ ∈ Rqs×pr as a fourth-order tensor G̃ ∈ Rs×r×q×p with G̃ijkl = G̃kl
ij ,
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it is shown in [19] that there exists a HOSVD

G̃ = S ×1 U(ψ) ×2 U(φ) ×3 U(ν) ×4 U(µ). (6.1)

Here S ∈ R
s×r×q×p is a so-called core tensor, satisfying some orthogonality proper-

ties, U(ψ) ∈ Rs×s, U(φ) ∈ Rr×r, U(ν) ∈ Rq×q, U(µ) ∈ Rp×p are unitary matrices
and ×1, . . . ,×4 denote tensor-matrix multiplications. We define a so-called matrix
unfolding G̃(ψ) ∈ Rs×rqp of the tensor G̃ by

G̃
(ψ)
im = Gijkl, m = (k − 1)ps+ (l − 1)s+ i,

i.e. we put all elements belonging to ψ1, ψ2, . . . , ψs into one respective row, and we
define the unfoldings G̃(φ) ∈ Rr×qps, G̃(ν) ∈ Rq×psr and G̃(µ) ∈ Rp×srq in a similar
cyclic way. Then, U(ψ), U(φ), U(ν) and U(µ) in (6.1) can be calculated by means of
four SVDs of the respective form

G̃(ψ) = U(ψ)Σ(ψ)(V(ψ))T ,

where Σ(ψ) is diagonal with entries σ
(ψ)
1 ≥ σ

(ψ)
2 ≥ . . . σ

(ψ)
s ≥ 0 and V(ψ) is column-

wise orthonormal. The σ
(ψ)
i are so-called n-mode singular values (or in our case

ψ-mode singular values) of the tensor G̃ and correspond to the Frobenius norms of
certain subtensors of the core tensor S.

On the basis of (6.1) we can define an approximation Ĝ ∈ R
s×r×q×p of G̃ by

discarding the smallest n-mode singular values {σ(ψ)
ŝ+1, . . . , σ

(ψ)
s }, {σ(φ)

r̂+1, . . . , σ
(ψ)
r },

{σ(ν)
q̂+1, . . . , σ

(ν)
q } and {σ(µ)

p̂+1, . . . , σ
(µ)
p }, i.e. we set the corresponding parts of S to

zero. Then we have

||G̃ − Ĝ||2F ≤
s∑

i=ŝ+1

σ
(ψ)
i +

r∑

j=r̂+1

σ
(φ)
j +

q
∑

k=q̂+1

σ
(ν)
k +

p
∑

l=p̂+1

σ
(µ)
l ,

see [19]. Note that, in contrast to matrix SVDs, this approximation is not necessarily
optimal in a least square sense. For best-rank approximations, see e.g. [20].

The truncation of Ĝ ∈ Rqr×ps after a basis transformation corresponding to U(ψ),
U(φ), U(ν) and U(µ) yields a low-dimensional representation Ḡ ∈ Rq̂r̂×p̂ŝ.

In Figure 6.3 the HOSVD has been applied to a matrix G̃ ∈ R
qs×pr for the Test

case 2 with p = 17, q = 65 and r = s = 64. The first row shows the respective n-mode
singular values. Underneath the first and most relevant two transformed/new basis

functions µ̂i, ν̂i, φ̂i and ψ̂i, are plotted. It is not surprising that the positions of the
connections between the plates can be recovered as large values of the corresponding
spatial input and output basis functions.

Remark 14. The application of a HOSVD can be useful in two ways. First, in
order to obtain a low-dimensional matrix-representation of the system, which is small
enough to be used for real-time feedback control design. Second, in order to identify
relevant input and output signals, which may be instructive for actuator and sensor
design, i.e. they might help to answer where actuators and sensors have to be placed
and which resolution in time and space they should have.

6.4. Application in optimization problems. We investigate the use of the
i/o-map approximation in optimization problems

min J(u, y) subject to y = Gu, u ∈ Uad. (6.2)
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Fig. 6.3. HOSVD applied to the i/o map of Test case 2. First row: n-mode singular values in
semilogarithmic scales. 2nd and 3rd row: Respective two most relevant basis functions.

Here Uad ⊂ U is the subset of admissible controls, J : U × Y → R is the quadratic
cost functional J(u, y) = 1

2 ||y − yD||2Y + α||u||2U , yD ∈ Y is an aspired system’s output
signal, and α > 0 is a regularization parameter. We define the discrete cost functional

J̄h : R
pr × R

qs → R, J̄h(u,y) =
1

2
||y − yD||2qs;w + α||u||2pr;w, (6.3)

with yD = κY,h2,τ2PY,h2,τ2yD, and instead of (6.2) we solve

min J̄h(u,y) subject to y = G̃u, u ∈ Ūad (6.4)

with Ūad = {u ∈ Rpr : u = κU ,h1,τ1PU ,h1,τ1u, u ∈ Uad}. Considering optimization
problems without control constraints, i.e. Uad = U and Ūad = R

pr, the solution ū of
(6.4) is characterized by

(G̃TMYG̃ + αMU )ū = G̃TMYyD. (6.5)

As concrete example, we consider Test case 2 and choose yD = Gu0 to be the
output for an input u0 ≡ 1 which is equal to 1 on all of [0, T ] × (0, 1). We then try
to find an optimized input u∗ of less energy, such that Gu∗ ≈ yD, or more exactly, u∗
that minimizes the cost functional (6.2).

First we solve (6.5) with an approximated i/o map G̃ ∈ R
17·64×65·64 and α = 10−4,

yielding an approximation ū ≈ u∗. The solution takes 0.33 seconds on a normal
desktop PC. The u-norm is reduced by 27.9% and the relative deviation of Gū from
yD is 9.4%. In Fig. 6.4 the same calculations have been carried out with Ĝ ∈ R3·5×3·5,
where Ĝ arises from a HOSVD-based matrix reduction of G̃ ∈ R

17·64×65·64, where all
but the 3 most relevant spatial and the 5 most relevant temporal input and output
basis functions have been truncated. Using this approximation, the norm of u is
reduced by 27.4%, whereas the relative deviation of Gū from yD is 9.5%. The cost
functional has been reduced by 44.5%, and the calculation of ū took less than 0.0004
seconds. The outputs resulting from u0 and ū have been calculated in simulations
independent from the calculation of the i/o-matrix.
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Fig. 6.4. Application of the SVD-reduced approximated i/o map Ĝ ∈ R3·5×3·5 in an optimiza-
tion problem. From left to right: optimized control ū, original output yD = Gu0, optimized output
Gū and their difference.

Remark 15. Aiming to realize the optimal control via a feedback control, we may
look for feedback operators F ∈ L (Y ,U) satisfying u∗ = Fy∗ for y∗ = Gu∗. On the
discrete level, we search for a matrix F ∈ Rpr×qs satisfying

ū = Fȳ, where ȳ = G̃ū (6.6)

and ū is the solution of (6.4). We note that for ȳ 6= 0, such a matrix F always exists.
Requiring however, that F has extra structure like time-invariance and causality, (6.6)
may only be solvable in a least square sense.

7. Final remarks and outlook. We have presented a systematic framework
for the discretization of i/o-maps of linear infinite-dimensional control systems with
spatially distributed inputs and outputs. Global error estimates have been provided,
which allow to choose the involved discretization parameters in such a way that a
desired overall accuracy is achieved and that the signal and the system dynamics ap-
proximation errors are balanced. Moreover, the error results are capable to take many
practical and technical restrictions in sensor and actuator design like limited spatial
and temporal resolutions or the use of piece-wise constant controls and observations
due to digital devices directly into account.

The numerical costs of the approach are primarily governed by the numerical
calculation of p underlying homogeneous PDEs, where p is the number of input basis
functions in space, which can become problematic when the spatial resolution of the
input signal space has to be accurate. In this case, code-optimization, e.g. due to
parallelization and appropriate updating of mass and stiffness matrices from prior
calculations, promises to have a large potential for speed-up which has not yet been
investigated.

The SVD-based dimension reduction for the matrix representation can be consid-
ered as an alternative model reduction approach, and the resulting reduced i/o-models
prove to be useful in first numerical optimization applications. Moreover, the SVD-
based reduction may be able to provide useful insight for efficient actuator and sensor
design by filtering out relevant input and output signals.

Acknowledgement. The author would like to thank Christian Kamm for his
assistance in the development of the heat equation solver with DWR error estimation.
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