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ABSTRACT (EN)
(English)

Advances in signal processing push forward the Neurotechnology domain along with the

Brain-Computer Interface (BCI) research which deals with the analysis of brain activity.
Heading for a future that will most probably happen, where either healthy persons or people
with disabilities communicate and control external devices without muscle control, a
symbiotic relationship between humans and machines needs to be created. Moreover, the
research direction should be guided to the users’ side by evaluating users’ interests and needs.

The main goal of this thesis is to provide suggestions and solutions to ease and
facilitate the Brain-Computer Interaction, by the following: 1) stimuli and tasks that refer to
users’ mental states and interests are optimized; ii) an interpretable system is created to reveal
the neural information that can further determine a controlled BCI system to act; iii) and the
most important aspect that make the first two key points possible: advanced and improved
methodological approaches are developed to efficiently extract and interpret human neural
activity from the Electroencephalogram (EEG).

The investigation is performed through two experimental studies, where the first one
proposes improved stimuli and tasks regarding users’ interests and preferences in a motor-
imagery-based BCI. The second study considers users’ cognitive mental states with the
purpose to better control BClIs and investigates not only what the user has received from the
external information, but also how and to which level of processing is the information
encoded within the brain. The paradigms investigate the brain fluctuations induced by
different stimuli and tasks, in order to provide the means to silently detect the meaningful
neural information from the brain activity, which is critical for a BCI application. While the
first paradigm considers Sensorimotor Rhythms (SMRs), the second paradigm is based on
Event Related Potentials (ERPs). Most BCI paradigms consider either the temporal or the
spectral information of the generated brain activity, but infrequently the investigation is
performed in ensemble considering both domains. As it will be observed in this work, the
analysis pipeline that considers only one domain might be suboptimal, while brain activity
manifests additional information which is visible in both temporal and spectral domains.
Therefore, this thesis deals with the methodological improvements that include
complementary information, yielding to more accurate data analysis that outperforms most of
the available methods.
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ZUSAMMENFASSUNG (GE)

(German)

Fortschritte auf dem Gebiet der Signalverarbeitung beeinflussen auch die Entwicklungen (in

der Neurotechnologie und somit auch die Erforschung) der Gehirn-Computer Schnittstellen
(BCIs). Um Menschen mit korperlichen Einschrdnkungen, wie auch gesunden Menschen, die
Moglichkeit zu geben ohne muskuldre Kontrolle iiber externe Gerédte zu kommunizieren oder
diese zu kontrollieren, muss eine symbiotische Beziehung zwischen Mensch und Maschine
geschaffen werden. Hierfiir sollte in der Forschung insbesondere ein groferer Fokus auf die
Interessen und Bediirfnisse der Nutzer:innen gelegt werden.

Das Ziel dieser Arbeit ist es Losungsvorschlige fiir eine verbesserte Gehirn-
Computer-Interaktion zu untersuchen. Dabei werden: i) Stimuli und Aufgabenstellungen die
sich auf den mentalen Zustand der Nutzer:innen beziehen optimiert, ii) ein interpretierbares
BCI geschaffen, um die entscheidenden neuronalen Informationen zu bestimmen, iii) die
beiden ersten Punkte werden vor allem durch verbesserte methodische Ansitze ermdglicht
welche effizient neuronale Aktivitdten vom Elektroenzephalogramm (EEG) extrahieren und
interpretieren.

Hierfiir werden zwei EEG Studien analysiert. Erstere untersucht verbesserte Stimuli
und Aufgabenstellungen beziiglich der Nutzerinteressen in einem motor-imagery basierten
BCI. Die zweite Studie analysiert kognitive Zustinde um herauszufinden wie externe
Informationen im Gehirn ankommen und wie diese verarbeitet werden. Die beiden Studien
untersuchen die Fluktuationen im Gehirn welche durch unterschiedliche Stimuli und
Aufgabenstellungen induziert werden, um aussagekréftige neuronale Informationen, welche
fiir die Anwendung des BCI wichtig sind, zu bestimmen. Wahrend das erste Paradigma die
sensormotorischen Rhythmen (SMRs) betrachtet, basiert das zweite Paradigma auf
ereigniskorrelierten Potentialen (ERPs). Die meisten BCI Paradigmen betrachten entweder
die zeitliche oder die spektrale Domidne der Gehirnaktivitét, eher selten werden beide im
ensemble analysiert. In dieser Dissertation kommen wir zu dem Schluss, dass die Analyse die
sich nur auf eine der beiden Dominen stiitzt nicht optimal ist, da wichtige Informationen in
beiden Dominen enthalten ist. Deshalb analysieren wir erweiterte Methoden die
komplementére Informationen aus beiden Doménen kombinieren, was zu einer genaueren
Datenanalyse fiihrt, die die Ergebnisse der bisherigen Methoden iibertrifft.






REZUMAT (RO)

(Romanian)

Progresele in analiza semnalelor impulsioneazd domeniul neuro-tehnologiei impreuna cu

cercetarea Interfetelor Creier-Calculator (en., Brain-Computes Interfaces - BCI) care se ocupa
cu analiza activititii cerebrale. Indreptandu-ne citre un viitor care cel mai probabil se va
intampla cat de curind, 1n care fie persoane sandtoase, fie persoane cu handicap comunica si
controleaza dispozitive externe fara intermediul controlului muscular, o relatie simbiotica
intre oameni si masini trebuie sa fie creatd. Mai mult, directia de cercetare ar trebui sa fie
ghidata catre utilizatori, prin evaluarea intereselor si nevoilor utilizatorilor.

Scopul principal al acestei lucrari este de a oferi sugestii si solutii pentru a usura si
facilita interactiunea creier-calculator, prin urmatoarele: 1) stimulii si activitatile care se refera
la starile mentale si interesele utilizatorilor, sunt optimizate; ii) un sistem interpretabil este
creat pentru a dezvalui informatia neuronala ce poate determina in continuare un sistem de tip
BCI pe baza de control sa actioneze; iii) si cel mai important aspect care face posibile primele
doua puncte cheie: abordari metodologice avansate si Iimbunatatite sunt dezvoltate pentru a
extrage si interpreta, in mod eficient, activitatea neuronald umand relevatda de
Electroencefalograma (EEQG).

Investigarea se realizeaza prin doua studii experimentale, in care primul propune
stimuli si sarcini imbunatatite privind interesele si preferintele utilizatorilor in cadrul unei
Interfete Creier-Calculator bazate pe imaginare motorie. Al doilea studiu considerd starile
mentale cognitive ale utilizatorilor vizdnd imbunatatirea ulterioard a controlului in cadrul
Interfetelor Creier-Calculator si investigheazd nu numai ceea ce utilizatorul a prelucrat din
informatiile externe, ci si modul si nivelul de prelucrare al informatiei codificate in creier.
Paradigmele investigheaza fluctuatiile creierului induse de diferiti stimuli si activitati, pentru
a oferi mijloacele de a detecta informatia neuronala semnificativa din activitatea creierulut,
care este criticd pentru o aplicatie de tip BCI. In timp ce prima paradigma considera ritmurile
sensori-motrice (SMRs), a doua paradigmd se bazeazd pe potentiale legate de evenimente
(en., Event-Related Potentials - ERPs). Majoritatea paradigmelor BCI considera fie
informatiile temporale, fieinformatiile spectrale ale activitatii generate de cétre creier, insa
rareori cercetarea se realizeaza in ansamblu, considerand ambele domenii, timp si frecventa.
Asa cum se va observa in aceasta lucrare, analiza care considera un singur domeniu ar putea
fi suboptimald, deoarece activitatea creierului prezintd informatii suplimentare ce sunt
vizibile atat in domeniul temporal, cat si in cel spectral. Prin urmare, aceasta teza se ocupd cu
imbunatatirile metodologice ce includ informatiile complementare, obtinand o analiza mai
precisa a datelor ce depdseste performantele majoritatii metodelor disponibile.
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Chapter 1

Introduction

Non-invasive Brain-Computer Interfaces (BCIs) research benefits from a significant
evolution in the last decades considering neural activity analysis. The vast majority of
endeavors focus on identifying ascertained voluntary control commands, imposing strict
activities to the user side, in order to control distinct devices or for communication purposes.
On the other hand, the user state estimation from the ongoing brain signals was not granted
much attention (Blankertz et al., 2010b,c; 2016).

1.1 The field of doctoral study

The enhancement of technology gives us today more and more opportunities and utility to
ease and improve our daily activities. In this regard, neurotechnology helps further by
enhancing the connectivity between humans and technology. It involves the participation of
different fields such as Computer Science, Neuroscience or Psychology, and many others.
The applicability ranges from augmenting human capability by controlling external devices
such as computer applications, wheelchair or any other electronic devices only with the brain
signals; towards the restoration of a lost motor or cognitive function by neuro-rehabilitation
or even to the replacement of a lost body part (mainly limbs), with the aid of neural
prosthesis.

The first advancements in this field began to develop with the discovery of human
brain signals, in 1924, by the German researcher and psychiatrist, Hans Berger (Berger,
1929). After this time, multiple researches have been conducted and the field of
Neurotechnology evolved for nearly half a century but only in the last twenty years has
reached maturity. In general, it includes technologies that are designed to improve, repair and
replace brain functions and allow researchers and clinicians to visualize the brain.

The neurotechnology research enhances step by step, mostly related to BCI systems
(Dornhege et al., 2007; Wolpaw and Wolpaw, 2012), providing enhancements of signal
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acquisition (Nicolas-Alonso and Gomez-Gil, 2012), signal processing and machine learning
techniques (Miiller and Blankertz, 2006; Blankertz et al., 2008b;). Furthermore, new
applications are developed each day and new discoveries are being reported (Wolpaw, 2007).

Although the main focus of the BCI research initially targeted clinical applications
relating to lost brain functions replacement, involving for example, patients who lost their
motor control, where the BCI provides a different option to communication (Birbaumer et al.,
1999; Birbaumer and Cohen, 2007; Millan et al., 2010) or an alternative to movement
execution by means of BCI prosthesis (Birbaumer, 2006; Mcfarland and Wolpaw, 2010),
various experimental paradigms that targets alleviating daily activities have been also
proposed. They are aiming to enhance the human capabilities of a normal and healthy
individuals, for example as in the case of controlling a computer application with own brain
signals (Bayliss and Ballard, 2000; Miiller et al., 2008; Blankertz et al., 2010c; Zander and
Kothe, 2011) and replacing the conventional peripheral input (e.g. mouse, keyboard) or in
industrial settings by targeting workload reduction based on mental state detection (Venthur
et al., 2010).

While primary research involves the use of motor imagery related brain activity for
BCI control, activity which is hard to be controlled by the users, mostly because not everyone
is capable of producing this specific type of brain signals (Guger et al., 2003; Blankertz et al.,
2010a; Vidaurre et al., 2011b), a new interest arises in the BCI community which focuses on
the user mental state detection, bringing many advantages and decision possibilities for the
BCI system (Blankertz et al., 2016).

Another aspect that need to be taken into consideration when developing a BCI
system, considers the analysis and decisions involved, that have to be properly checked in
order to refer to the corresponding neural activity related to the BCI task and not to the non-
cortical origins of activity such as eye, muscle movements and other types of noise activity.
In this regard, a BCI system depends on advanced methods of signal processing and
classification. By means of these machine learning techniques, the corresponding neural
activity of interest is detected among a mixture of neural signals, problem always referred to
as the ‘cocktail party’ problem (for example, detecting and understanding one person's speech
from the amount of discussions, music and background noise which happen on a party
environment).

Despite significant advances in BCI research, there is still no standard valid BCI
system available on the market, but hopefully this is about to change in the decades to come,
thanks to the involvement of the BCI research groups through the entire globe (Birbaumer
and Cohen, 2007; Dornhege et al., 2007; Kohlmorgen et al., 2007; Wolpaw, 2007; Daly and
Wolpaw, 2008; Galén et al., 2008; Mak and Wolpaw, 2009; Miiller et al., 2008; Ariely and
Berns, 2010; Haufe et al., 2011; Zander and Kothe, 2011; Wolpaw and Wolpaw, 2012;
Collinger et al., 2013; Hwang et al., 2013; Borghini et al., 2014; Arico et al., 2016a,b;
Blankertz et al., 2016; Schultze-Kraft et al., 2016a,b; Naumann et al., 2017), and recently also
the involvement of the industry sector (Neuralink Corp - https://www.neuralink.com/;
Facebook, Inc. - Constine, (2017, Apr 19) and many more.
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1.2 Purpose of the thesis

1.2 Purpose of the thesis

The most complex system in the universe - the brain, has fascinated researchers for a
long time. The ability to control external devices only with the power of the mind is still a
futuristic approach, yet many studies have proven this possibility and the most important
aspect is that it is beneficial for the persons with disabilities, providing them the means for
communication in case of loss of the ability to speech, the ability to control a wheelchair or
any other external device, which offers them a significant aid in their daily activities.

This type of interaction, namely Human-Computer Interaction, could benefit if the
attention of the scientific research and development will be more focused on the user itself.

The majority of present and past research is focusing on methods to achieve best
performance in a HCI system by proposing tasks that can trigger a more powerful effect in
the human brain, without driving the attention to the user needs and desires. In order to
improve this interaction, the attention should be focused on the user, by searching for tasks
related to user preferences, or by focusing on user decisions or on the current user state in
order to control the respective application or an external device.

The key concept behind this enhanced BCI mental state detection technology, is the
type of interaction, also called a symbiotic interaction, which derives from the well-known
natural symbiotic relationship, where two different and conflicting organisms coexist together
in a mutual relation. Each organism benefits from the other and the antagonistic condition
that was present before is automatically cancelled out. As an example, the sea anemone and
the clownfish coexist in a mutual intrinsic relationship by protecting from predators and
nourishing each other. The anemone does not strike the clownfish with her stingers and the
clownfish does not eat the nutrient tentacles of the anemone. Rather, the clownfish feeds
itself with the leftovers from other fishes, cleans the anemone, and chases away anemone’s
fish predators, like the butterfly fish. In return, the anemone protects the clownfish with its
toxic tentacles and receives nutrients in form of waste from the clownfish. In a similar way, a
HCI should integrate this symbiotic relationship by carefully inspecting the desires and needs
of the user and fulfilling them, in accordance.

Therefore, the long-term goal of this research is to infer implicit user variables in real-
time and silently adapt the user interface within the Brain-Computer Interface or the Human-
Computer Interaction systems. Firstly, user’s interest and needs have to be taken into
consideration; secondly, the current user’s state and finally the interface has to be adaptated
accordingly.

The present thesis aims to establish experimental designs that focus on the user, in
order to create an improved and more natural human-computer interaction. In this case, the
potential applications of a system that allows real-time estimation of the current user state
include enhanced human-computer interaction, such as information seeking application or
operator assistance systems in industrial workplaces (as discussed in Venthur et al., 2010).
Furthermore, we envision the use in any control BCI application involving healthy
participants.

In view of the target scenario, the goal is to:

e Develop optimized stimulus and tasks to create user-friendly BCI paradigms;
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e Relate to the user state — the BCI should focus on the user;

e Create interpretable BCI systems;

e Improve the signal processing methods to detect more accurately the processes
originating from brain sources or to assist for a better reconstruction of the signals;

e Investigate deeper the information contained in the brain in order to increase our
understanding of human brain processes;

e Take a step further towards a user-friendly BCI interaction system that can be further
used for control or communication for healthy people or people with disabilities

Aiming reducing the complexity and interaction at the user side and also creating
interpretable BCls, the complexity has to be switched to the BCI system. Therefore, the
objectives of this thesis relate to the development of improved BCI paradigms, tasks and
scenarios that ease the interaction and to the development of advanced and improved
methodological approaches for extracting and interpreting user neural activity from the
electrophysiological signals recorded with EEG, while discarding the non-related cortical
activity. As a reference, the neurophysiological interpretations will be compared to
behavioral measurements.

The majority of current BCI systems recognize different mental states in rapport with
preliminary training data. In this matter of classification, the general issue of BCls is that they
act as an unseen process, being hard for a researcher to verify and interpret what the system
actually learns from the data. Recently, various researchers expressed the necessity to
develop appropriate signal processing and classification techniques for BCI in order to gain
knowledge and insights into the dynamics of the brain and the corresponding mental states
(McFarland et al., 2006; Kiibler and Miiller, 2007; Miiller et al., 2008; Blankertz et al., 2010;
Blankertz et al., 2011; Vidaurre et al., 2015). This approach should become a necessity for a
researcher or developer to correct a BCI to detect the corresponding neural processes.

Moreover, if the BCI will facilitate an asynchronous interaction (Mason and Birch,
2000), such as when the user can communicate with the interface at their own will or if the
BCI will silently analyze user mental state, the human-computer interaction will become
more natural, efficient and user-friendly.

Another issue that needs to be addressed relates to the number of classes generally
used in BCI systems. Most BCI systems are constrained only to two classes, being hard for a
user to control a BCI system especially when more degrees of freedom are requested.
Therefore, a solution is clearly needed in this aspect by designing algorithms and BCls that
can efficiently identify a greather number of mental states and tasks (Dornhege et al., 2004a;
Kronegg et al., 2007; Venthur et al., 2010).

1.3 Outline of the thesis

User mental state Brain-Computer Interfaces will break the ice of the interaction between a
user or patient and an external machine, if the signals are silently recorded and the decisions
are performed in real-time. Aiming this long-time purpose, we investigate via special
designed BCI scenarios, the user-related tasks that could bring us closer towards this goal. In
this topic, the thesis evaluates the signal processing and machine learning methods that could
help investigating and discriminating the brain activity, while meantime leaning towards the
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development of an interpretable BCI. The brain activity investigated in this research work,
was non-invasive recordings via Electroencephalography.

Firstly, the neurophysiological concepts and basic principles that underlies a BCI
system along with the key components of which it is composed, are primarily described in
Chapter 2. Further, the signals types investigated in this thesis that can be used to drive a BCI
system are detailed, namely the Event-Related Potentials (ERPs) and the oscillatory
modulations given by cognitive activity and Sensorimotor Rhythms (SMRs). In addition, a
standard notation for the mathematical concepts used in this thesis is detailed.

Further, a brief overview of the existing analysis methods within the scientific
research is presented in Chapter 3, including the current BCI designs and applications
(Chapter 3.5). The description of the existing signal processing and machine learning
approaches, focusing more on those that are further used in this thesis, spans from the brain
activity measurement (3.1), preprocessing of the EEG signals along with filtering and
artifactual removal techniques (3.2), and continuing with the feature extraction and selection
mechanisms (3.3) towards the classification (3.4).

To accomplish the purpose of this thesis described earlier, first user specific tasks
were investigated in the well-used type of BCI, namely motor-imagery based BCI. The idea,
described in more detail in Chapter 4, analyzes attractive and efficient tasks for the user in
order to attract user’s interest and therefore improve the interaction with the BCI. The brain
responses elicited by the internal motor imagery event that generates changes in the
oscillatory activity, namely sensori-motor rhythms (SMRs), are inspected considering the
temporal, spatial and spectral information of the EEG activity. Specifically, the attenuations
or increases in the alpha rhythm are closer investigated by the Event-Related
(De)Synchronization (ERD/ERS) phenomena. The respective modulations changes can be
easily observed by the event related brain dynamic responses in the power spectrum,
therefore by studying the time-frequency representation given by the Event Related Spectral
Perturbations measure (ERSP). Aiming a faster user reaction and a stronger brain response,
two different types of stimuli, visual and auditory are evaluated in the experimental study.
After appropriate preprocessing that clears the signal from unwanted artifacts and increases
the signal to noise ratio of the signal, an enhanced classifier based on multi-modal features
provides a very good discrimination of the motor imagery mental tasks. Further, the section
4.5 describes possible future developments and optimizations of this study. The work
comprised in this chapter was performed at the Department of Applied Electronics and
Information Engineering, Faculty of Electronics, Telecommunications and Information
Technology, University Politehnica of Bucharest and was published in four scientific papers
[5, 10, 11, 12] and a scientific report [13].

Furthermore, an innovative interface is investigated in Chapter 5, where the user
mental state is taken into consideration, based on the depth of cognitive processing the
external visual information. Implicit information about the current user’s cognitive state,
among different levels of cognitive state, could be later used in a Human Computer
Interaction, for example in an information seeking application or an industrial operator
monitoring setting, with the appropriate machine learning adaptations for online detection.
The concept of differentiating between different levels of cognition, could be used to
automatically adapt the application interface by reducing or increasing the amount of
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information presented or the activities requested to be performed by the user. This will be a
benefit for the interaction, making it more efficient, by firstly replacing or supplementing
explicit input with the BCI’s automatic brain state detection, and secondly by automatically
adapting the interface according to user’s needs and current state, without the need for
additional setup. The feasibility of using BCI in such new contexts is investigated in this
work by inducing different levels of cognitive processing, in order to: identify and study the
corresponding neural correlates, investigate the related EEG features, and to adapt the
necessary signal processing and machine learning techniques. The amount of cognitive
processing is triggered by task instructions in a specific designed experimental paradigm,
analogous to an odd-ball paradigm with visual stimulus presentation, in which the user takes
decisions in accordance to the corresponding type of cognitive process (memory, language
and visual imagination) and the level of processing (no-processing, shallow and deep
processing). The brain responses investigated here are the Event Related Potentials (ERPs)
and modulations of the oscillatory activity (Event Related De/Synchronizations), generated
by the cognitive events. Considering data analysis, advanced signal processing methods were
applied in order to reject non-neural components and keep only the brain activity related to
the investigated user’s state. Different spatial filtering methods are applied in order to reduce
the effect of volume conduction and enhanced feature extraction methods are applied to
detect the optimal neural components. Classification is applied in multi-modal form, by
integrating the information extracted from the spatial, temporal and oscillatory domains. In
addition, different classification techniques are evaluated for obtaining best performances.
Firstly, binary classification is evaluated, and then multi-class discrimination is implemented
to bring the classifier closer to a real application implementation, where the classifier has to
automatically detect between different user states. Next, future developments are pointed out
considering the signal processing and machine learning techniques that could be further
improved and the directions that need to be taken further when switching towards real life
applications. The research was performed at the Neurotechnology Group, Institute of
Software Engineering and Theoretical Computer Science, Faculty of Electrical Engineering
and Computer Science, Technical University of Berlin and a big part of the work presented in
this chapter has been published in six scientific papers [2, 3, 6, 7, 8, 9], one in progress [1],
and one database [4].

In the last chapter (Chapter 6), overall conclusions (section 6.1) are drawn for the
work in this thesis, referring to the findings and the impact of this work on the scientific
research. Further, the future developments and directions that could be taken starting from
this research are discussed in section 6.2.

Supplementary figures and description considering single participant graphs, various
electrodes and additional analysis are comprised in the Appendix section.

1.4 Scientific contribution

The thesis aims to contribute to the field of EEG analysis by considering advanced and
adapted signal processing techniques for the corresponding paradigms and by proposing and
evaluating specific BCI tasks and mechanisms towards mental state detection that could
improve the brain-computer interaction. After careful evaluation of the existing methods and
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practices and their short-comings, specific analysis scenarios were selected and proposed that

better detect the corresponding neural activity and user related effective tasks are proposed

that could drive more interest from the user’s side and could ease the communication with a

future BCI application. The proposed approaches are evaluated in two experimental studies

with laboratory settings (Chapter 4 and 5) and published in [5, 10, 11, 12, 13] and [1, 2, 3, 4,

6,7, 8, 9], respectively.

The core parts of this research are described hereunder:

e Concerning the user interest and his tendency of losing enthusiasm and becoming tired
and disinterested in interacting with the BCI, specific user tasks are firstly investigated in
a motor-imagery experiment that triggers interest, attention and forces continuous
interaction with the corresponding BCI.

e The second main interest refers specifically to the user’s side, by making use of the user’s
cognitive state, expressed in the corresponding neural correlates, triggered when
cognitively processing the visual external information.

e The novel approaches are investigated in experimental studies on healthy participants, in
order to test the applicability of these concepts to a more realistic scenario.

e For investigating and extracting the corresponding neural correlates that relate to the
corresponding activities, powerful signal processing and machine learning approaches
have been integrated for the neurophysiological and behavioral data analysis. Different
data techniques were evaluated and combined to obtain highest performances,
considering multi-variate analysis, by combining the spatial, temporal, and spectral
domains.

The experimental studies focus on EEG, which is widely used due to its dramatically
lower costs and better portability. The analysis discussed in this thesis refers primarily to
EEG analysis, although the methods may be adapted and tested to other types of acquisition,
but this aspect was not evaluated in this research.

The present thesis advances the BCI and Neurotechnology research field in various
directions. While one one side, recent state-of-the art machine learning techniques can
expand the usability of BCI technology, on the other side, the research should focus towards
BCI users. Therefore, two innovative BCI paradigms are proposed in order to inspect the
neural correlates of specific user tasks or cognitive user’s state. It was shown that such
paradigms could improve the communication with BCI and could make it more practical and
accessible compared to earlier approaches. The state-to-the-art analysis techniques were
tested for the corresponding investigated neural correlates and combined when revealed
shortcomings. Thus, novel approaches are constructed to improve the classification
performance of brain data, particularly for EEG.

Shortly, the personal scientific contributions of me, the researcher in question, can be
described by the following main developments:

e Two studies were carried out, both focusing on the user’s side for the benefit of human-
computer interaction. The studies show the applicability of the user related concepts to
future Brain-Computer Interface applications (Section 4.1 and 5.1)

e The experimental designs and stimuli presentations necessary for the two studies were
carefully planned and developed (based on the supervisors’ proposals and under their
guidance) in order to elicit the desired brain responses. Therefore, the graphical design of
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the stimuli, the software setup for the presentations and the hardware setup for brain
signal acquisition were entirely performed by the researcher in question (sections 4.2.1
and 5.2.1)

e For the first time, the context of levels of cognitive processing encountered in
neuroscience and psychology are evaluated in a BCI scenario, in terms of a possible
human-computer interaction application (Chapter 5)

e Specific schemes and investigations for effective analysis of the neural activity are
proposed, tested and entirely developed for both studies (Section 4.2.3 and 5.2.3)

e Specific artifact removal techniques have been investigated and applied in order to reduce
head, muscle and eye movements that are also present in more realistic scenarios (Section
4.2.3.1,523.2,5.2.3.3)

e Discriminative measures are applied in order to investigate into more detail the neural
activity (Section 4.3.2, 5.2.3.4). Single-participant representations, as well as grand-
average representations are carefully investigated (Section 4.3.3, 5.3.2, Appendix A.2.1,
A.3.2, A.3.3). Special attention is given to the trial-by-trail and among participants’
variability of the EEG data. Different feature extraction methods are implemented and
optimized in order to extract the most relevant brain activity (Section 5.2.3.4).

e In addition, careful verification of the signals has been performed in order to assure that
the extracted components which will be given to the classifier, highly reflect the cortical
activity and not some artifacts (Section 4.3.3.3, 5.2.2.3)

e An improved ensemble classification approach is developed based on multi-modal
analysis, taken advantage by the temporal, spatial and the spectral characteristics of EEG,
in order to overcome the limitation of single domain analysis (Section 4.2.3.2 and 5.2.3.5)

e Appropriate multi-classification approach is implemented, necessary for further online
classification (Section 4.3.4 and 5.3.3.2)

e New neurophysiological findings related to different levels of cognitive processing are
detected and investigated (Section 5.3.2)

e Corresponding Matlab code was developed for each processing scenario and some
adaptations to existing methods in order fit the corresponding processing pipelines are
public available in the BBCI Toolbox (for example: ssd-bank) (Section A.1.4, A.2.2)

e Scientific research papers and articles that describe the corresponding approaches are
published, further described in Section 1.5 [1 - 13].
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Chapter 2

Fundamentals of neurophysiology

Foreword

When we think about the brain, we can think of the giant universe spread across billions of
light-years, with constellations of information having billions of connections between them.
Only size makes a difference with billions of light-years for the cosmos and only micrometers
for the brain. Glancing through the microscope, the brain contains around 100 billion neurons
with 100 trillion connections (synapses), which mean 700 billion times less than the
estimated number of stars in the observable universe (The Australian National University,
2003). Howsoever, this tiny brain can ,, contemplate even the vastness of interstellar space”
(Ramachandran, 2009). Now, as you probably visualized, we can barely scratch the surface
of this huge amount of information. As telescopes investigates planets activity, so
Electroencephalography (EEQG) records the brain signals, getting closer to touch the unseen.
By this means, you will feel like you almost hold petabytes of brain information with
thousands of thoughts, memories and knowledge in the palm of your hand.

Now, how we can grab information from the brain, it will be described in this chapter.
Starting from the theoretical aspects of the human brain and continuing with the measures
and methods that helps decipher and better understand the neural information.

2.1 Neurophysiological background

The neural activity generates changes of electrical fields (Buzsaki et al., 2012). The ionic
current produced by the neurons within the brain that generates action potentials
(postsynaptic potentials — PSPs, given by depolarizations of the neuronal membrane),
propagates through the cortex until it reaches the surface of the scalp (Niedermeyer and Silva,
2005; Buzsaki et al., 2012). For this reason, the electrical activity arrived at the surface of the
scalp will be weaker than the original activity, from millivolts (m}) down to microvolts (uV).
The original electrical potentials from one source of the brain propagate differently within the
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cortex due to different electrical conductivity of the brain and therefore, on the surface of the
scalp the electrical potential could arrive at a distance from the original region of the brain.
The effect is known as volume conduction (Rutkove, 2007).

2.2 Electroencephalography

The first attempt to record electrophysiological brain signals dating from 1875 belongs to
Richard Caton who presented his findings about the electrical phenomena of cerebral
hemispheres of animals (Caton, 1875). Later on, in 1924, after extensive experiments, Hans
Berger (Berger, 1929), a German neurologist, discovered that besides animals, also the
activity of the human brain can be gripped by placing an electrode on the surface of the scalp.
Next, the signal is amplified and visualized as changes in voltage over time. This technique
of brain signals recording (Niedermeyer and Silva, 2005) will be later called
Electroencephalography (EEG). Over the decades, EEG proved to be very useful in scientific
research and clinical applications, mainly due to its high temporal resolutions, not found by
the other hemodynamic measures, such as: positron emission tomography - PET, functional
near-infrared spectroscopy - fNIRS, functional magnetic resonance imaging - fMRIL.
Moreover, it is widely used due to its affordability, portability and non-invasive
characteristics. Although, there is one drawback of EEG, namely low spatial resolution. To
put it simply, EEG is similar to a symphony, composed by a complex mixture of sounds that
change in time and space with varying phase, pitch, tone, volume (amplitude) and frequency.
In EEG, there is mixture of brain signals coming from different sources of neural activity due
to the volume conduction effect described earlier. However, this effect can be reduced to
some extend based on advanced source separation techniques.

Apart from EEG, other brain measurement techniques may be used (briefly described
later in Section 3.1), which do not constitute the purpose of this work.

2.3 Brain-Computer Interface

After almost 50 years from the discovering of human brain signals, a new type of interface
dramatically developed, namely Brain-Computer Interface (BCI). The system unifies the
interaction between a brain and a computer by measuring the neural activity and translating it
into an action that could also be extended to an external device (Dornhege et al., 2007). The
first records of the name BCI state from Jacques Vidal (Vidal, 1973) who first relied on
visual evoked potentials to perform screen cursor control. As Wolpaw and Wolpaw (2012)
describes, a BCI system aims to replace, restore, enhance, supplement or improve human
sensory-motor or cognitive brain functions.

A real-time BCI system requires two main phases to be fulfilled: an offline training
used to calibrate the system and an online phase where the BCI detects and interprets user’s
brain activity or user’s current mental state and translates it in real-time into a command for a
computer, which can be transferred to an external device. The online part of the BCI refers to
a closed-loop process and is usually composed of six steps: neural activity recording, pre-
processing, feature selection and extraction, classification, translation into a command and
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providing feedback for the user (Mason and Birch, 2003). When the feedback is not provided,
the BCI is considered an open-loop BCI. These steps are described in the following:

1) Neural activity recording: consists in recording the brain signals of a user reflecting
the brain activity, by using different types of sensors or measurement techniques (Wolpaw et
al., 2006). This signals acquisition step usually involves also a preliminary on-line cleaning
of the signals to reduce the noise caused by electronic devices, cables, etc. In this research,
we focus on the scalp electrical potential measurement technology, namely EEG.

2) Pre-processing: performs detailed cleaning and denoising of the brain data in order to
improve the quality of the signals and increase the detection of relevant information
incorporated in the signals (Bashashati et al., 2007).

3) Feature extraction and selection: detects the most relevant characteristics of the
signals, named features that best describe the brain activity (Bashashati et al., 2007).

4) Classification: discriminates the group of features detected from the brain data by
assigned them to a corresponding class, referring to the type of brain activity or mental state
identified (Lotte et al., 2007a).

5) Translation into a command to a computer application or to an external device: After
the specific mental state is identified, a command is associated to this brain activity or
corresponding mental state that controls the given application. An example is an avatar in a
virtual reality environment (Lécuyer et al., 2008), or a robot or prosthesis (Kiibler et al.,
20006).

6) Feedback/Neurofeedback/Biofeedback: the last and the most important step provides
information (visual, auditory, tactile) to the user about the BCI decision (it can also be the
actual output of the BCI application, e.g. the movement of a robotic arm). This closes the BCI
loop and is useful for the user in order to control his brain activity and therefore the BCI
(Wolpaw et al.,, 2002). The feedback is mostly given to the user in form of visual
representations of the changes in the ongoing EEG (Neuper and Pfurtscheller, 2009),
although it can comprise also auditory (Hinterberger et al., 2004; Hwang et al., 2009) or
tactile (Chatterjee et al., 2007) feedback.

In this research, we refer to the offline part of the BCI, with the purpose of
preliminary detecting the corresponding brain features for silently investigating the user’s
brain activity and mental state in a future feasible BCI application. This offline BCI consist in
the following steps: measurement, pre-processing, feature extraction and classification, with
no real-time feedback given to the user. Here, also a behavioral measure feedback is showed
to the user, related to its performance, but is important not to confuse with the actual
feedback of a BCI system as described above. Further in this thesis, when we refer to the BCI
system, we mean the off-line BCI system.

2.4 Neurophysiological signals that enable BCI control

Different types of brain potentials have been studied by the BCI community and most of
them are relatively easy to be identified by a computer, but a bit more cumbersome for a user
to control his own potentials. Based on the type of the signal generator, two types of signals
are investigated (Wolpaw et al., 2002; Curran and Stokes, 2003): Event-Related Potentials
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(ERPs) as well as spontaneous brain signals. The Event-Related Potentials are unconsciously
generated by the human brain when the user perceives an external stimulus, as a result of a
sensory, cognitive or motor event. Here, we remind the commonly used potential, usually
known as the P300 potential. The main advantage of ERPs, in comparison to spontaneous
signals, is that they do not require user training, because they are naturaly produced by the
brain as response to a stimulus. This advantage makes it easier for the user to control a BCI
system (Wolpaw et al., 2002; Curran and Stokes, 2003). Nevertheless, they require constant
focus and repetitious stimuli, which can become exhausting and uncomfortable for the user.
On the opposite, spontaneous signals are voluntarily generated by the user, following
an internal motor or cognitive process, without being triggered by an external stimulation.
The widely used spontaneous signals are the sensorimotor rthythms (SMRs) and less used are
the non-motor cognitive signals. Compared to the ERPs, the sensorimotor rhythms can be
voluntarily controlled in amplitude by the user after intensive training (Wolpaw et al., 1991;
Wolpaw and McFarland, 2004; Vaughan et al., 2006; Wolpaw et al., 2007). The spontaneous
signals are observed as modulations of spontaneous brain rhythms, namely Event-Related
Desynchronisation (ERD) in case of a decrease in spectral power of the corresponding
frequency band (Pfurtscheller and Aranibar, 1977) or an Event-Related Synchronization
(ERS) when an increase in power appears (Pfurtscheller and Silva, 1999; Lemm et al., 2009).

2.4.1 Event Related Potentials

As Donchin et al. (1973) describe, Event-Related Potentials, ERP (Vaughan, 1969) are spikes
in the signal voltage caused by the occurrence of rare events. Triggered by an exogenous
event, the ERPs signify the presence of cognitive processing the external information through
our sensory systems, e.g. visual, auditory, tactile, etc. In the present time, they are usually
investigated as a response to a sequence of stimuli divided in target and non-target, provided
by a BCI, called an ‘odd-ball’ paradigm. This potential consists of a succession of positive
deviations in amplitude (e.g. P100, P300) and negative deflections (e.g. N200, N400). In the
case of a rare event (target), it will elicit a higher P300 potential (Handy, 2004; Luck, 2005)
about 300 - 500 ms after the stimulus onset, compared to a lower peak in case of a frequent,
un-attentive stimulus (non-target). The ERP shows huge variability between participants
probably due to different folding of the cortex which influences the propagation of the signal
through the scalp (Luck, 2005). Variability is observed also regarding one participant on
different moments of the days, different participant state, or the level of tiredness (Polich and
Kok, 1995). However, the analysis of ERP has different advantages: first compared to the
behavioral measures it provides more information about the variations of a specific cognitive
process, rather than the reaction time and accuracy, for example. Secondly, it provides a
continuous measure of processing between a stimulus and a response, making it possible to
determine which stage of processing is enlightened by a specific stimulus. Another advantage
of ERP is that it can provide an on-line measure of the processing of stimuli (covert
attention), even when there is no behavioral response. In addition, the user requires no
training in order to use the system, because the effect is automatically generated in response
to an external stimulus. A disadvantage is that it requires continuous attention and multiple
repetitions of the stimuli.
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Cognitive activity

The ERPs earlier described, also represent different components which are associated
with several cognitive processes (Regan, 1989; Luck, 2014). In addition, the cognitive
activities investigated in the oddball paradigms modify the amplitude and latency of the ERPs
in relation to task difficulty (Ullsperger et al., 1987; Polich, 2007, Kim et al., 2008). The
effect is observed by an increased P300 and longer latencies, influenced by complex
processes and stronger attentional demand. This cognitive potential is characterized by a peak
around 300 - 500 ms after the stimuli in the centro-parietal cortex (Polich, 2007).

2.4.2 Oscillatory brain activity

Complementary to the observed effects of the neural activity over time, oscillations in the
spectrum given by the Event Related De/Synchronization (ERD/ERS) of the Sensorimotor
Rhythm (SMR) provides also necessary information of the neural processes. These
electrophysiological rhythmic activities (Buzsaki, 2006), are generated by the firing of groups
of neurons in different frequency bands. A change in the mental state of a healthy hominid
generates a change in a frequency band over the entire brain. The corresponding frequency
ranges vary between participants, due to different anatomical structure. Additionally, the
location of the brain activity sources provides information about the corresponding brain
function involved. In continuation, a description of the frequency bands (Groppe, 2013) along
with the functional behavior that is associated to, are detailed hereunder.

Brain waves

e Delta rhythm (3, 0.5-4 Hz of 20 to 100pnV): The functional description of the delta
frequency band relates to a sleep stage, mostly for adults. (Armitage, 1995)

e Theta rhythm (0, 4-8 Hz with >10nV): Theta signifies drowsiness or arousal in
teenagers and adults. In addition, changes in amplitude related to cognition and workload
have also been observed (Gundel and Wilson, 1992; Gevins et al., 1997; Klimesch, 1999).

e Alpha rhythm (o, 8-13 Hz of 20-100pV): The alpha frequency band is mostly
generated by visual activity originating from the occipital cortex (e.g. Vanni et al., 1997).
Alpha waves could refer also to attention in the frontal area (Niedermeyer, 1997) or a relaxed
state (Hughes and Crunelli, 2005). Opening and closing the eyelids also activates or suppress
in the generation of the alpha frequency band. In general, experimenters take advantage of
this effect in order to verify the quality of the EEG signals.

e Mu rhythm (p, 8-10 Hz): A special case of oscillations which involves the same
frequency range as the alpha band (Feshchenko, 2001) is represented by the mu rhythm,
except that is generated by a motor or sensorimotor event which modulates the rhythm
amplitude (Wolpaw and Wolpaw, 2012). More exactly suppression in the p-rhythm (8-10Hz)
is encountered in the motor cortex regions and is generated by motor or motor-imagery
activities (Pfurtscheller and Silva, 1999).

e Beta rhythm (B, 13-30 Hz with 5-30nV): A higher frequency, named as beta band,
relates to more active processes like motor activity (Pfurtscheller and Silva, 1999;
Pfurtscheller and Neuper, 2001), concentration, actively thinking (mental effort) (Lachaux et
al., 2005).
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e Gamma rhythm (y, 30-100 Hz, <10pV): The gamma frequency band appears in
higher cognitive functions, e.g. in learning processes, or motor functions (Niedermeyer and
Silva, 2005).

While most of the EEG research focuses on the spectrum analysis from 1Hz to 50Hz
(Cohen, 2014), the EEG comprises prominent relevant information also in higher frequency
ranges (Curio, 1999; Gotz et al., 2009; Scheer et al., 2009; Nikulin et al., 2011; Telenczuk et
al., 2011; Buzséaki and Silva, 2012; Fedele, 2014).

% Note: The frequency bands intervals are not fixed and might slightly exceed the
specified ranges, especially between individuals (see below).

Variability between and within participants

When aiming the development of a general functional online BCI system, it is important to
consider the variability between and within participants. Variability in the temporal, spatial or
spectral distribution of the neural information, termed non-stationarity is often encountered in
the EEG. Changes can be generated by a series of factors such as: anatomical and biological
(e.g. age, neurological diseases, brain structure), non-related neural signals (e.g. muscle
artifacts or other physiological artifacts, mental state, mood, tiredness), technical (e.g.
electrode conductivity or electrode position changes), task-related changes (e.g. different task
involvement, memory performance), and so on. Explicitly, changes in amplitude, spectral
power and spatial patterns between participants arise, that can drastically influence the
performance of a SMR BCI system (Blankertz et al., 2010a). Moreover, the variability is
encountered as well within participants (Dédhne et al., 2011). Several studies show these
variabilities while trying to solve this issue (Lemm et al., 2005; Blankertz et al., 2008a;
Sannelli et al., 2011; Vidaurre et al., 2011a,c; Christensen et al., 2012; Samek et al., 2012,
2014; Déhne et al., 2014a,b). Two approaches are identified that aim a robust BCI: (1)
detecting signal representations invariant to nonstationarities (Biinau et al., 2009) or (2)
detecting and alleviating them (Kohlmorgen and Lemm, 2001; Schlogl et al., 2010; Vidaurre
and Blankertz, 2010; Blythe et al., 2011; Vidaurre et al., 2011b; ). The second suitable
solution invariant to fluctuations that can increase the performance of a BCI system
(Blankertz et al., 2002, 2008a; Miiller et al., 2004, 2008) considers a participant-dependent
classifier based on a preliminary BCI training, in which the individual frequency ranges are
detected and the corresponding features are set to the classifier.

2.4.2.1  Modulations of spontaneous brain rhythms

The decrease in amplitude of spontaneous brain rhythms is well-known as Event
Related-Desynchronization (ERD) (Pfurtscheller and Aranibar, 1977). In general, the ERD is
followed by an increase in amplitude called Event-Related Synchronization (ERS)
(Pfurtscheller and Silva, 1999; Lemm et al., 2009). These modulations of the amplitude (hull
curves) can span in the alpha and beta bands (Pfurtscheller and Klimesch, 1992; Nikulin et
al., 2007) and can be time-locked to the external stimuli or triggered by internal functions
(such as voluntary movements, or cognitive processes). Uncommon activities tend to produce
higher modulations than frequent activities, effect known and demonstrated in many studies
within the scientific community. For example, left hand movement execution for right-
handed individuals, produces increased activity as compared to the usual right-hand
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execution (Kloppel et al., 2007), or the observation of uncommon activities for infancy
produces stronger motor activation, represented by a pronounced desynchronization in the mu
frequency band, as compared to ordinary actions. (Stapel, 2010).

As applications, these EEG band power modulations are used to control electronic
devices, either via motor imagery or cognitive processes (Section 3.5).

Non-motor cognitive activity

Besides the use of motor imagery tasks, cognitive processes are also used to drive a BCI
system, for instance: memory, language, visual imagination, mental numerical calculations,
mental imagery rotation of geometric shapes, etc. (Keirn and Aunon, 1990; Anderson et al.,
1998; Millan et al., 2000; Curran and Stokes, 2003). Each of them generate specific
variations in the respective band power and cortical regions, such as: enhanced ERD in the
alpha band for memory processes (Mecklinger et al., 1992; Klimesch et al., 1994; Klimesch,
1999; Stipacek, 2003; Jensen and Colgin., 2007; Pesonen et al., 2007), or in the processing
and production of words (Klimesch et al., 1997).

On the other side, the cognitive perception of external stimuli produces in particularly
a short ERS followed by a sustained ERD arising in the a band (Klimesch et al., 1992;
Klimesch et al., 1993), after the P300 potential (Yordanova et al., 2001). The alpha band is
known to desynchronize concurrently with mental activity, namely to decrease in amplitude
with cognitive difficulty, visible in the centro-parietal area (Gevins et al., 1997; Venthur et
al., 2010). For more complex cognitive activities, oscillations in the beta band are also
encountered (Pesonen et al., 2007; Okazaki et al., 2008; Sheth et al., 2009), as
desynchronizations for complex reasoning (Basile et al., 2013), decision making (Nakata et
al., 2013) or in the transition between different cognitive states (Sheth et al., 2009). On the
opposite, synchronizations are observed in the theta band according to task difficulty
(Klimesch, 1999), for example in higher memory load (Gundel and Wilson, 1992; Gevins et
al., 1997) or the encoding of new information.

In addition, cognitive phenomena, have been also shown to correlate with band-power
modulations (Varela et al., 2001; Buzsdki and Draguhn, 2004), for example: perceptual
encoding and attentional process (Sergeant et al., 1987; Basar et al., 1997; Debener et al.,
2003; Klimesch, 2003; Schack et al., 2005; Bauer et al., 2006; Polich, 2007), vigilance in
operational environments (Gevins et al., 1995; Holm et al., 2009), perception (Plourde et al.,
1991; Makeig and Jung, 1996; Thut et al., 2006) and decision making (Haegens et al.,
2011a,b).

2.4.2.2  Sensorimotor rhythms

When motor or motor-imagery actions are intended and executed, for example the real or
imagined movement of a body part (Pfurtscheller and Neuper, 2001; Pfurtscheller et al.,
2006), the motor cortex is characterized by an oscillatory idle rhythm, called sensorimotor
rhythm (SMR), in the ¢ (= 8-13 Hz) and S (= 13-30 Hz) frequency bands. Specifically, the
movements of the upper body parts, such as hands, generate a decrease in power called Event
Related Desynchronisation (ERD), in the u rhythm, over the contra-lateral motor cortex area
(the opposite hemisphere) and an increase in band power called Event Related
Synchronisation (ERS) in the ipsi-lateral hemisphere (Pfurtscheller and Silva, 1999). For the
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inferior body parts, for example feet, the oscillations are observed in the central motor cortex.
As for the beta frequency (Pfurtscheller et al., 2005), the SMR’s amplitude shows a
de/sychronization during motor execution which precedes a short synchronization that
appears after the movement, termed as the 'beta rebound'.

Comparing the type of movement: real or imagery execution, many similarities are
encountered starting with resembling ERDs (McFarland et al., 2000; Neuper et al., 2005) in
the contralateral site according to the respective movement (left or right) and ERSs present in
the ipsilateral cortex modulated in the mu and beta bands.

The drawback of using SMRs for driving a BCI is that the control commands options
are constrained by the number of body parts. Moreover, a subject which has lost a body part
in an accident, might find it hard to imagine its movement, firstly due to the emotional
connection and secondly, due to the lack of movement execution for a long period of time.
Also, when aiming prosthesis control, the system’s decision is constrained by the amount of
body parts, which will involve a higher complexity to the user side when performing multiple
body parts movements. Generally, in a BCI based on sensorimotor rhythms, the user has to
modify the amplitude of his SMRs for the purpose of controlling the BCI system (Wolpaw
and McFarland, 2004; Wolpaw et al., 2007). Based on this fact, not all users are capable of
controlling the system (Guger et al., 2003; Blankertz et al., 2010a; Vidaurre and Blankertz,
2010). Another disadvantageous factor is that it requires prolonged training time for the user
to learn to control the BCI system. However, using advanced signal processing and machine
learning algorithms, the amount of training is increasingly reduced to zero (Blankertz et al.,
2006a).

These ERD/ERS modulations can be investigated by analyzing the Event-Related
Spectral Perturbations, ERSP (Section 3.3.4.1) or the envelope of the signal filtered in the mu
band (Appendix A.1.3.2).
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2.5 Notation

In this section, the concepts and notations used in this thesis are further detailed. Firstly, as
stated before in Section 2.3, a ‘BCI system’ term will refer to the off-line part of a BCI
system, if not specified otherwise. Another notion used here refers to a mental state, meaning
at the same time a brain activity pattern.

The detailed notation used in this manuscript for equations is presented in the table
below (Tab. 2.1). Matrices are denoted with boldface uppercase letters, vectors as boldface
lowercase letters, scalar values as Roman uppercase letters or small Greek letters and indices
of vector or matrices as lowercase italic letters.

Tab. 2.1 Notation
Symbol | Description

X | a matrix (bold capital letters), where I denote the identity matrix, W
the filtering matrix, A the patterns matrix

y | a vector (bold small letters), where y(t) denotes a temporal signal,
where specifically, b is the bias and z is the z-score

A or a | scalar values (capital Roman or small Greek letters), where a, 8, ¥,
0, & denote the EEG frequency bands
i, j, k | indices of vectors or matrices (small italic Roman letters), except p

which is the probability value (p-value)

E or Ne | number of epochs (trials) of a recorded signal

N or N¢ | number of EEG recorded channels

T or Te | number of samples of a measurement signal

II-lIl, || | absolute value of a scalar, vector or a complex norm

||.Il | Euclidean distance/L?-norm of a vector or a complex number

II. 115 | Squared Euclidian distance

||l-IlF | Frobenius-norm

<-> | inner product of two vectors

()T | matrix or vector transpose

()" | Inverse of a matrix

()" | (Moore Penrose) Pseudoinverse of a matrix

()" | complex conjugate of a matrix or vector

Y. | Covariance matrix, where e.g. Y'¥_, is used to represent the sum of
elements from k=1,...N

D estimated covariance matrix

P(f) | estimated power of the signal

F | Fourier transform

H | Entropy

E | Expected value
y(t) | Mother wavelet

¢(?) | Father wavelet
MI | Mutual Information
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frequency

mean

standard deviation

variance

multivariate random variable x, Gaussian (normal) distributed with
mean x and variance ¢°

eigenvalue, where A express the largest eigenvalue

sign function

signed and squared point biserial correlation coefficient (signed 1°)

Natural logarithm

decimal logarithm

hyperbolic tangent

Hertz — frequency unit in the International System of Units (SI)

Decibels — power measurement unit in the International System of
Units (SI)

Centimeter — distance unit in the International System of Units (SI)

Milliseconds — time unit in the International System of Units (SI)
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Chapter 3

Signal processing and machine
learning methods in BCI research

For more than a century, scientists investigated brain activity to gain insights into perceptual,
cognitive and motor functions.

This chapter provides a short description of the existing methods and techniques used
to accomplish each step of a BCI system, followed by an overview of the main BCI designs
and applications. The methods described here refer to off-line BClIs, but might be applicable
also for on-line systems, with corresponding adaptations. In more detail, the chapter will
cover the steps composing a BCI, starting with the measurement types of brain activity in
Section 3.1, followed by the pre-processing approaches in Section 3.2 and the feature
extraction methods in Section 3.3, and continuing with the classification techniques described
in Section 3.4, comprising linear methods overall. The last Section 3.5 presents the most used
BCI applications developed, by emphasizing the possible applications related to the
experimental designs proposed in this thesis.

3.1 Brain activity measurement

Various techniques have been developed that measure the brain activity (de Moor, 2003;
Wolpaw et al., 2006). Some of them require invasive methods, such as:
ElectroCorticoGraphy (ECoG) (Leuthardt et al., 2006) where a grid of electrodes is placed
over the dura-mater, or implanted electrodes placed under the skull (Lebedev and Nicolelis,
2006). As non-invasive techniques, we remind the hemodynamic measurements, such as
MagnetoEncephaloGraphy (MEG) (Mellinger et al., 2007; Besserve et al., 2008), functional
Magnetic Resonance Imaging (fMRI) (Weiskopf et al., 2004) or Near InfraRed Spectroscopy
(NIRS) (Coyle et al., 2007). Also non-invasive is ElectroEncephaloGraphy (EEG) (Wolpaw
et al., 2006), one of the most widely used acquisition technique due to its relatively accessible
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price, non-invasiveness, portability and a very good temporal resolution. In this thesis
research, we have restricted to EEG as an acquisition measure for the BCI designs, due to its
numerous advantages.

3.2 Preprocessing

3.2.1 Preliminary filtering and preprocessing

After the brain signals have been recorded using the measurement types (in this case, EEG),
the raw signals must be cleaned and denoised of unwanted perturbations. A preliminary
filtering of the raw signals is performed online by the hardware while the signals are
recorded. Usually, it consists of a combination of a high-pass filter (HP) of 0.1 Hz or less, a
low pass filter (LP) and a notch filter (LPN), in order to remove the interfering frequencies,
the DC ripple and cables movement artifacts.

Next, offline filtering of the input signals is needed to have a clearer signal and to
increase the Signal to Noise Ratio (SNR). This is done by temporal (Section 3.2.1.1) or
spatial filters (Section 3.2.2.2) or even the combination of both if the signal is noisy or
contains movement artifacts, for example. Regarding temporal filters, the idea is to perform
band pass filtering or a succession of high-pass and low-pass filtering in the frequency band
of interest, which are further described below.

3.2.1.1 Temporal filters

The temporal filters can remove various undesired effects such as slow variations in the EEG
signal, caused by electrodes polarization or by power-line interference (50 Hz in Europe). In
addition, they can reduce the influence of noisy frequencies that are outside the frequency
range of the brain activity investigated. Generally, the filtering can be achieved using
Discrete Fourier Transform (DFT) (Appendix A.1.3.1.1), Finite Impulse Response (FIR)
(Appendix A.1.3.1.3), Infinite Impulse Response (IIR) filters (Appendix A.1.3.1.4) and many
others. Because the filters may introduce artifacts and phase shifts, strongly altering the
neural signals, it 1s advisable to apply the filters in reverse in the offline scenario in order to
produce a zero-phase shift. This tactic is not applicable in the online case, therefore causal
filters must be considered (which do not depend on the future inputs) (Lemm et al., 2004).

3.2.1.2  Downsampling

In general, the EEG signals are recorded with a sampling rate of 1000 Hz for a higher signal
quality (given 500Hz maximum bandwidth according to the Nyquist frequency) and are
amplified with an order of 20000 from tiny nanovolts to microvolts, so they can be easily
investigated in the signal analysis on a bigger level. Further, because the human brain
generates frequencies between 0 and 100Hz (Niedermeyer and Silva, 2005), the signals are
usually downsampled to 100 Hz or more after filtering, in order to reduce the amount of data
and to keep only the necessary information.

3.2.1.3  Re-referencing

In order to reduce the perturbations in amplitude produced by the hardware (different
voltages and electrode conductivities between single channels recordings), the signals can be
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offline re-referenced to a baseline (Delorme et al., 2011). While for the EEG data acquisition,
the voltage is already measured with respect to a reference electrode, electrode measurement
which can be compromised due to artifacts or electrical activity, affecting therefore all the
other electrodes, re-referencing aims at mitigating this effect (Lepage et al., 2014). For
example, referencing to electrodes placed on the mastoids (linked mastoids), to forehead
reference electrodes, or even to an average channels signal (common average referencing)
can be performed. This can be achieved by linearly transforming the recorded data, namely
by subtracting the reference signal from each EEG channel (Tallon-Baudry et al., 2001; Luck,
2014; Staudigl et al., 2015).

3.2.1.4 Baseline correction

After the segmentation of the data (where each trial includes a pre-stimulus and a post-
stimulus interval), baseline correction (Kronegg et al., 2007) regarding the selected pre-
stimulus interval is performed for each trial. The reference interval, also referred to as
baseline interval, is usually selected from -200ms or -100ms to zero (where zero is the
stimulus onset). An averaged amplitude or spectrum value computed on this reference
interval is subtracted from each trial, aiming at diminishing the non-stationarity effects of
EEG signals and reducing the background noise activity.

3.2.2 Enhanced artifact removal

As mentioned in the aim of the thesis, one important aspect that need be considered when
developing a BCI system is related to its decision basis, such that it is not based on signals
that do not constitute cortical origins. In addition, the aim is to create a system that does not
act as a ‘black box’ system, but rather an interpretable BCI where researchers can visualize
and interpret what the BCI has detected. Pursuing this goal, the EEG artifact correction
(Section 3.2.2.1) and source localization functions (Section 3.2.2.2) are mandatory in a BCI
system.

Different types of artifacts (Fisch and Spehlmann, 1999) affect the task-related or
mental state brain activity, produced by electronic devices, e.g. loose electrodes, outer
electric fields, drifts; or by biopotentials generated by participant’s body such as: eye
movements, muscular activity, etc. Corresponding filters are applied depending on the type of
noise: FIR/IIR filters for removing electronic noise, and adaptive filters for rejecting the body
biopotential artifacts. These artifacts are characterized by high amplitudes and frequency
(>100uV and > 60 Hz) exceeding the neural activity (<50uV in adults; < 80 Hz)
(Muthukumaraswamy, 2013).

The data is primarily filtered in the necessary frequency range (below S50Hz)
corresponding to the investigated neural activity (Section 3.2.1.1). Therefore, a part of the
frequencies related to body biopotential artifacts (e.g. muscular activity) are automatically
excluded.

Further, a rough pre-cleaning of the data is necessary to be performed in order to
improve the quality of the data by rejecting the noisy epochs (trials) and channels while
keeping only the good quality ones. Secondly, projection methods are implemented to extract
the relevant brain activity and discard the noisy activity (artifactual sources). A further
description of these last two approaches follows below.
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3.2.2.1 Rejection Methods

The rejection methods (Muthukumaraswamy, 2013; Samek, et al., 2017) detect the artifactual
epochs or channels and remove them based on thresholds given by specific characteristics of
the artifacts, such as high amplitude or high frequency, depending on the type of artifacts; or
by analyzing the deviation of the signals. Two approaches used in this thesis are further
described below, namely max-min and variance criterions.

1. Max-min criterion

The max-min method rejects artifactual epochs by analyzing the features of an epoch
and detecting if it’s out of a normal threshold range. For example, for strong eye movement
artifacts which are considered greater than 100 pV in amplitude, it is implied a threshold of
maximal difference of about 150 uV between the maximum and the minimum amplitude
values for one epoch, searched within the electrodes providing information over vertical
(AF3, AF4, Fpl, Fp2 and EOG channels) and horizontal eye movements (F9 and F10). If the
maximal difference of the epoch in at least one channel exceedsthe threshold, then the epoch
is discarded from analysis.

2. Variance criterion

In addition to the frequency filtering described in Section 3.2.1.1, which removes a
portion of the artifacts with higher frequencies (> 50Hz), a further check over the signals has
to be performed for the artifacts (e.g. jaw clenching in the 20-40 Hz range (Khoshnam et al.,
2017) which are interleaved with the neural related frequency. The solution involves a
variance check over the broad band-power 5-40 Hz. The epochs are rejected when are
characterized by excessive variance in more than 20% of the channels. In addition, channels
dropping to zero (loose electrodes) represented by variance lower than 0.5uV? in more than
10% of the trials were also removed.

3.2.2.2 Projection Methods — spatial filters

In contrast to the rejection approach, projection methods do not remove artifactual epochs,
but the artifactual sources based on decomposition. This provides a spatial filtering of the
data, resulting in a cleaner EEG most likely composed by neural sources.

The recording of the electrical brain activity is strongly influenced by the eyes and
muscles movements (Fatourechi et al., 2007), especially that these artifacts have higher
amplitude and cover up the neural activity. Moreover, it is mandatory to neglect the
background brain activity that is not related to the neural activity of interest, procedure that is
not covered by the rejection methods. Removing the undesired noise, increases the signal to
noise ratio of the signals and reduces the effect of volume conduction. This is performed by
temporal, spatial (Parra et al., 2005) or spectral filters (McFarland et al., 1997; Ramoser et al.,
2000; Lemm et al., 2005; Dornhege et al., 2006; Tomioka et al., 2006), such as Independant
Component Analysis (Makeig et al., 1996; Makeig et al., 2000a; Naeem et al., 2006;
Kachenoura et al., 2008), blind source separation (Ziehe and Miiller, 1998), Common Spatial
Patterns (Ramoser et al., 2000; Dornhege et al., 2004a; Blankertz et al., 2008a,c; Grosse-
Wentrup and Bus, 2008), Spatio-Spectral Decomposition (Nikulin, et al., 2011), etc.
Moreover, the spatial filtering (CSP) contributes to the enhancement of the BCI performance
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(Dornhege et al., 2004b; Blankertz et al., 2006¢). Altogether, the application of spatial filters
is highly recommended for EEG analysis.

1. Independent component analysis (ICA) — Infomax

A well-used method that separates the signal into artifactual components and neuronal
activity assuming independently generated sources is Independent component analysis (ICA)
(Makeig et al., 1996; Hyvirinen et al., 2004). By separating the mixed signal into additive
subcomponents, it attempts therefore to solve the ‘cocktail party’ problem. The basic
assumption that the analysis is based on, considers non-Gaussian subcomponents and
statistically independent sources!. ICA considers two choices for independence (Haykin,
2009): minimizing Mutual Information (MI) (e.g. Infomax algorithm - Bell and Sejnowski,
1995; Amari et al., 1996) or maximizing non-Gaussianity (e.g. Maximum Likelihood
estimation — Stone, 2004; FastICA algorithm - Hyvérinen and Oja, 2000).

In general, the ICA algorithm can be described as follows. For a random variable
represented by the vector X = [x1, ..., Xm|' and the source components that we want to extract
as s = [s1,..., sn]', the generative forward model is expressed by x = A-s, with A being the
mixing matrix, where the independent components are detected by maximizing the cost
function. Considering zero-mean and uncorrelated Gaussian noise n ~ (0, 6°), the related
equation is: X = A s + n, where the component x is composed of the sum of independent
components X = ).}'_; a,S,. The original sources s can be recovered by multiplying the
observed signals x with the inverse of the mixing matrix W = A’!, also known as the
unmixing matrix. Therefore, this is performed by means of a linear transformation, s = WT x
+ n, termed the backward model.

Considering the Informax approach (Bell and Sejnowski, 1995; Amari et al., 1996),
ICA acts like a multivariate projection algorithm, extracting M multiple signals in parallel,
whereas the projection (W) extracts a succession of signals (y) from a set of M signal
mixtures. Starting from the set of signal mixtures x and a mutual independent set g given by
Cumulative Distribution Functions (CDFs), the aim is to detect the unmixing matrix W that
maximizes the joint entropy of the signals Y = g(y), where y = WT-x. Based on the optimal
unmixing matrix W, the signals Y are independent characterized by maximum entropy,
implying independency also in the extracted signals y = g"!(Y). When the source Probability
Density Function (PDF) of the source p(s) fits the PDF of the extracted signal p(y), then the
maximization of the joint entropy of Y also maximizes the mutual information M/ (x, Y).

Now, the entropy of the signals Y = g(y), can be assessed by:

! With respect to EEG, the signals generated from distinct sources propagate through the cortex and mix up
towards the surface of the scalp where they are recorded. Therefore, the EEG signals are considered as a linear
mixture of unknown sources that can be solved by blind source separation. Even though the signals correlate in
their flow of information (Makeig et al., 2004), the main assumption of ICA regarding spatially independent
sources holds for cortical areas while they are spatially and neuroanatomically differentiable. For this reason,
components such as eye movements can be separated from neural components. Furthermore, the ICA unmixing
process can be performed not only in the spatial domain (spatial ICA), but also in the temporal domain
(temporal ICA, Jung et al., 2000), where the assumptions consider temporally independent underlying
components with possible overlapping spatial topographies and is generally applied for discriminating ERP
components.
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HY) = = o1 In(p(Y)), (3.1)

where py is given by: p(Y) = p(y)/lJl, with [J| = [0Y/dy| = g'(y) = p(s,y) the
Jacobian matrix. This gives:

HY) = -3 I, In (22 (3:2)

When PDF(p(s)) fits PDF(p(y)), p(Y) has an uniform distribution and H(Y) is
maximized. Then, based on:

p(y) = p)/|0y/0x| = p(x)/|W| (3.3)
the entropy of Y is:
HY) =~ Zi In (GE25) =3 Ziey In(p(s,y) + In((WD) + H(). (3.4)

In the end, H(Y) is maximized to accomplish the independency of y. H (X) can be
ignored in this case, because it is not affected.

Now for M signal mixtures, p(s) can be expressed by a logistic function, usually
chosen as the hyperbolic tangent function, tanh: p(s) = (1 — tanh(s)?). The entropy of Y
is:

F(Y) = =3, TN In(1 - tanh(wWix(K)?) + In(IW]).  (3.5)
And the optimal unmixing W can be found using the gradient descent method:
Wm+l = Wm + }bm (I - tanh(Y)YT) Wm. (3.6)

After the ICA decomposition, a decision has to be made regarding the type of
component: neural or artifactual. This decision and selection of the neural components to be
kept is performed in two manners: manually or automatically. The manual selection inspects
the components by checking the spatial pattern and the power spectrum. While this approach
requires longer time as well as scientist expertise, an automatic approach suits better in this
context. One good approach in this sense is implemented by Winkler et al., (2011), algorithm
named as Multiple Artifact Rejection Algorithm (MARA).

2. ICA with automatic artifactual component selection (MARA)

The Multiple Artifact Rejection Algorithm (MARA) (Winkler et al., 2011) detects the
artifactual ICs (Independent Components) using a classifier based on six features. One
feature represents the ICs temporal evolution and targets outliers’ detection based on mean
local skewness. Three features relate to the power spectrum, in which two characterize the
distribution of the normal logarithmic decreased spectrum shape; and one detects the standard
alpha peak specific to neural components, based on the average logarithmic power of the
alpha band (8-13 Hz). Two features identify the spatial distribution of the ICs, in which one
indicates the source distribution and its type based on l-norm (neural source given by
minimal l>-norm and artifactual signal by maximal l>-norm); and one determines localized
spatial distributions which refer to loose electrodes or muscle artifacts, providing additional
information of source locations as compared to the ICA method which is computed by means
of the logarithmic difference between the maximum and minimum activation in a scalp map.

Overall, its application successfully cleans the EEG data of small eye movement
artifacts, muscular artifacts and loose electrodes.
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3. Spatio-Spectral Decomposition (SSD)

In most cases, the neural activity of interest overlaps with the background noise
activity, therefore enhanced separation techniques are requested. Based on the premise that
noise sources outspread over few Hz or even tens of Hz and knowing that are usually
modeled as white or 1/f noise, the noise interferences can be reduced or even canceled by
inhibiting the noise in the spectral neighborhood of the frequency range of interest that
characterize the investigated neural process. Mathematically, the Spatio-Spectral
Decomposition (SSD) method (Nikulin et al., 2011) represents a linear decomposition
algorithm that maximizes the signal variance of a desired frequency band, while
simultaneously diminishes it at the neighboring noise frequencies, enhancing therefore the
signal-to-noise ratio. SSD enhances the extraction of oscillatory activity, especially in the
alpha band characterized by the alpha peak and it has been shown that SSD performs better
than the ICA method (Nikulin et al., 2011; Winkler et al., 2015). Moreover, SSD could be
further used as a dimensionality reduction method. For more details on this aspect, please see
the heuristic dimensionality reduction approach proposed by Haufe et al., (2014a).

Given a set of recorded signals X of size ¢ % ¢, with # — the number of samples and ¢ —
the number of channels, the measured signal X is filtered in the frequency of interest f, giving
Xs and in the neighboring frequencies f+Af (with Af in the range 1-2 Hz) which will be
considered further as noise, resulting in Xn. Filtering in the frequency of interest is performed
by band-pass filtering of /' (e.g. 8-13 Hz) and the neighboring frequencies (the left and right
side bands) can be obtained by applying a band-pass filter on the entire range [f/~Af; f+Af]
and subsequently applying a band-stop filter for removing the band of interest and keeping
only the signals in the neighboring frequencies (e.g. 7-8 Hz and 13-14 Hz for Af = 1 Hz).
Now, denoting the covariance matrices of the filtered signal of interest and the filtered signal
noise, by Y's and ) n, the aim is to find the spatial filter w that maximize the signal to noise
ratio (SNR) between the variance of the frequency of interest and the variance of the noise
(the surrounding frequency bins). The maximization of the SNR of the projected signal can
be defined by maximizing the objective function:

_ O'Z(WTXS) _ WTZSW
SNR(W) - rrlvzvaX UZ(WTXN) - w WTZNW

(3.7)

Taking the derivative w and imposing the equality to zero, gives:
AYNW = YsW, (3.8)

which can be solved by the generalized eigenvalue decomposition (GEVD) (Francis, 1961;
Kublanovskaya, 1962), where A is the generalized eigenvalue related to the eigenvector w.

For neurophysiological investigation, the spatial patterns A, where each column of A
indicates component’s contributions (strength and polarity) in the measured channels, are
determined by transforming the backward models (the filters which can not be interpreted)
into forward models (the patterns which are neurophysiologically interpretable) (Haufe et al.,
2014b), considering the following transformation: A = YWY ! = SW(W'SW)! (Haufe et
al., 2014b), with ) being the data covariance matrix, W the spatial filter matrix and ) the
covariance matrix of the component.
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4. Common Spatial Patterns (CSP)

Another powerful technique for spatial filtering is the Common Spatial Patterns (CSP)
algorithm (Fukunaga, 1990; Koles, 1991; Ramoser et al., 2000; Lemm et al., 2005; Lotte et
al., 2007a; Blankertz et al., 2008a,c; Tomioka and Miiller, 2010; Sannelli et al., 2011; Samek
et al., 2012; Vidaurre et al., 2015). The method is further used as a feature extraction method
in which the common spatial filters (CSF) are applied to extract the neural sources specific
for class discrimination. Shortly, CSP facilitates the discrimination of different brain states by
spatial filtering, enhancing the signal of interest while suppressing the background activity.

a. Binary case
For spatial filtering and as a feature extraction process, CSP filters are frequently applied in
BCI in order to reduce the effect of volume conduction and extract the corresponding
oscillatory features. Moreover, CSP extracts class discrimination spatial patterns that relate to
neural sources. Standardly, the CSP approach functions for binary cases, detecting the
discriminative modulations between the two classes. Previously described by Fukunaga
(1990), Koles (1991), Miiller-Gerking et al. (1999), Ramoser et al. (2000), CSP detects the
spatial projection of the band-pass filtered data that maximizes the variance for one class
while minimizing the variance for the other class.

Considering >1 and > as the covariance matrices of the two classes for the band-
passed filtered data, one procedure consists in stimultaneously diagonalizing >’ and > such
that the eigenvalues sum to 1:

W'y,;W =D,
WTY,W =D,,st.D;+D,=1 3.9

The generalized eigevectors W are computed by:

22W = (21 +22)WD
where D is the diagonal matrix containing the generalized eigenvalues of ) > (with values
between 0 and 1) and w;, the column vectors of W represent the spatial filters.

The enhanced discriminative activity between the two classes can be obtained as a
ratio between the variance of one class and the variance of the joint activity > 1 + Y. Then,
the objective function for detecting the w filters that maximize the variance for the two
conditions is described by:

wlY,w
Weie WT (D1 +52)w
This can be resolved by computing the generalized eigenvalue problem:
22W =AY + X2)wW (3.11)
which yields a set of eigenvectors w; and 4; eigenvalues for i = 1,..,N with N — the number of
channels. The eigenvectors corresponding to the first largest eigenvalues maximizes the
variance for one condition and minimizes the variance for the other condition and vice-versa

(3.10)

for the last lowest eigenvalues. Hence, the spatial filters that best maximize the variance
between classes correspond toopposite eigenvalues. A good practice is to choose several
eigenvectors from both sides (e.g. up to 6, with three from each side - Blankertz et al., 2008c)
selected based on a score related to the ratio of the medians which is more robust to outliers,
as compared to the classical eigenvalue score.
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3.2 Preprocessing

After the decomposition and the corresponding common spatial filters have been
extracted and the signals were projected to the CSPs, the features are composed by
considering the band power of the detected sources, which is generally approximated in BCI
research based on the logarithm of the spatial filtered data (log-power of the band-pass
filtered signal, log(P(x))) (Blankertz et al., 2008c). An important step before CSP filtering
(before estimating the band-power of the projected signals) is represented by computing a
linear projection of the data, as detailed in (Déhne et al., 2014b; Haufe et al., 2014b).

Another important remark must be mentioned regarding the evaluation of the CSP
algorithms. Due to the fact that the CSP technique considers label information, the
computation of the filters is mandatory to be performed on the training data, with appropriate
application on the test data by linear derivation. Otherwise, it may lead to considerable
underestimation of the generalization error (Blankertz et al., 2008c¢).

Further, it is imperative to notice that the neurophysiological interpretation must focus
only on the spatial patterns, without considering the spatial filters which cannot be
interpretable due to their mosaic spatial structure, simultaneously relating to signal and noise
components (BieBmann et al., 2012; Haufe et al., 2014b). The spatial patterns can be easily
computed by inverse transformation in relation to the spatial filters: A = (WT)!. When the
spatial filter matrix W is not invertible, the pseudoinverse is computed: A = (WT)". However,
when W does not have full rank, the patterns do not coincide any more with the entries of the
pseudoinverse (Haufe et al., 2014b), therefore, respective transformation has to be performed,
as in Section 3.2.2.2.3.

Despite the major advantages of the classic CSP algorithm, such as: producing high
signal-to-noise ratio, its computational efficiency and easy implementation, an important
challenge arise referring to artifacts and non-stationarity. Various modifications and
extensions to the CSP algorithm have been proposed to tackle this problem (Lemm et al.,
2005, 2011, Dornhege et al., 2006, Lotte et al., 2007a; Sannelli et al., 2011; Samek et al.,
2014). Some of them focus on invariance and robustness to noise and artifacts (Blankertz et
al., 2008a; Kawanabe et al., 2014) and others to non-stationarities in the data (Samek et al.,
2012, 2014).

b. Multi-class approach
First, we need to understand why a multi-class approach is necessary to be performed. While
targeting multiple decisions choices to be inferred in the BCI adaptation, the answer comes
from the primary goal of a BCI application which requires online implementation and real-
time classification of the brain signals. Towards this goal, a multi-class approach suits better
compared to multiple binary discriminations.

While generally suited for binary cases, some CSP extensions have been developed
for the multi-class approach (Miiller-Gerking et al., 1999; Dornhege et al., 2004a; Dornhege
et al., 2004b), namely the IN approach (Miiller-Gerking et al., 1999, Allwein et al., 2000),
One Versus the Rest approach (OVR) (Wu et al., 2005) and Simultaneous Diagonalization
(SIM) (Grosse-Wentrup and Bus, 2008). While the IN approach considers reducing the multi-
class problem to several binary decisions (Miiller-Gerking et al., 1999, Allwein et al., 2000)
and requires longer time to be performed. an appropriate multi-class approach is necessary to
distinguish faster the corresponding class membership. An appropriate extension of the CSP
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to the multi-class problem has been previously considered by (Dornhege et al., 2004a) and
involves computing the CSPs for each class in relation to the other classes. This method is
referred to as one over rest (OVR) strategy. Furthermore, a Simultaneous Diagonalization
(SIM) method or Joint Approximate Diagonalization (JAD) method (Cardoso and
Souloumiac, 1996; Ziche and Miiller, 1998; Ziehe et al., 2000, Pham, 2001; Ziche et al.,
2004; Grosse-Wentrup and Bus, 2008), considers estimating the CSPs for each of the multi-
classes. In the presented thesis, the last enhanced approach is further investigated.

One Versus the Rest CSP approach (OVR)

An improvement to the IN approach is represented by the OVR approach (Dornhege
et al., 2004a). While IN does binary classification on all binary pairs and assigns the trials to
the class membership based on the highest voting out of the three classifiers, OVR performs
multi-classification on all one versus rest binary CSP patterns. The EEG data is of course
projected onto the CSPs and all the variances, log-band power of the CSP features, are fed to
the classifier.

Joint Approximate Diagonalization (JAD)

While in a binary case (IN or OVR), the CSP filters are computed based on a
simultaneous diagonalization of the two covariance matrices with their eigenvalues sum to
one (Eq. 3.9), the multi-class JAD approach (Grosse-Wentrup and Bus, 2008) finds a matrix
that follows the same rule for decomposition but related to multi covariance matrices. When
in the binary case the solution can be easily found, in the multi-class approach an
approximation of the solution is computed based e.g. on approximate simultaneous
diagonalization. Meaning that for the covariance matrix ) of each k class (k= 1,..,N, where N
is the number of classes), the decomposition finds an approximation solution for the W
matrix that satisfies W'Y, W = D, where D is a diagonal matrix fulfilling Y¥_; D, =1,
with I being the identity matrix. In our implementation, this joint diagonalization problem is
computed with the FFDiag (Fast Frobenius Diagonalization) algorithm (Ziehe et al., 2004).
The algorithm is based on the Frobenius-norm formulation and computes the diagonalization
using non-orthogonal transformation and a recursivity computation based on a multiplicative
iteration, assuring the invertibility of W.

In more detail, it finds an approximate solution of the following optimization
problem, by minimizing the Frobenius norm of the off-diagonal elements of Dy:

min Y¥_; X i (WTEW),)? (3.12)

wWeRMxM
While the above cost function can converge to zero, the invertibility of the matrix W

prevents this effect from happening: W;ryq) = (I +V(it))W(it), where it is the current
iteration and V(;) is the iteration matrix.

Further, after the approximate diagonalization has found a solution, the relevant
activity sources have to be considered. Because there is no canonical way to choose the
relevant CSP patterns, the selection is performed by considering the first m eigenvalues with
highest mutual information (out of maximum M sources). This selection is similar to ICA,
where these m sources denote the brain activity related to the corresponding information on
the decisions and intentions of the BCI user, and the other brain sources that do not relate to
the BCI task, are considered as noise sources. This spatial filtering composed by ICA and
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derived approximation of mutual information to identify the signal subspace is termed as
Information Theoretic Feature Extraction (ITFE):

MI(c,wi'x) = — YN, p(cr)log /W,'TZij - % (T ip(c) (W 'DEw;)? — 1))2,

where MI(c, ijx) is the mutual information of the class label ¢ and the linear transformation
w;'x, calculated based on negentropy for each eigenvector w; (column j= 1,..M) of W, with
ijkaj = 1; and p(cy) is the class probability. For more details, see Grosse-Wentrup and
Bus, (2008).

In the end, a set of optimal linear spatial filters can be interpreted as the m columns of
W with the highest mutual information.: Ml(c, WTx) = Y7, MI(c, ijx). Therefore,
according to the ICA model, all the important information on the classes is contained in the
first m sources (the first m ICs).

3.3 Feature extraction

The purpose of the feature extraction step for data analysis is to detect the specific values and
characteristics of the neural signals in the temporal, spatial and spectral domain that best
characterize the investigated neural activity, whilst discarding the artifacts and background
noise of the EEG. These values, termed ‘features’ are then stored in a ‘feature vector’ which
is further used for classification.

While some researchers focus more on the classification step of a BCI, granting more
attention to the preprocessing and feature extraction steps is more important in a BCI system
in order to identify and select the optimal neural features, which will automatically lead to a
correct and enhanced classification performance (Pfurtscheller et al., 2003; Hammon and de
Sa, 2007). These features should relate to the neurophysiological signals that describe the
corresponding mental state or brain activity, and not to other activities or body potential
artifacts.

In the following, a description of the extraction methods used through this thesis is
further presented, considering the temporal (Section 3.3.2), spatial and spectral (Section
3.3.3) signals characteristics.

A good improvement for the brain analysis and for the classification performance of a
BCI is represented by combined feature approaches such as spatio-temporal, spatio-spectral,
tempo-spectral methods and so on (Dornhege et al., 2004a; Gysels and Celka, 2004; Boostani
et al., 2007).

In this case of multi-modal features, especially in case of features with different type
of units, normalization should be performed on the combined feature vector. The feature
types have to be centered around zero with a standard deviation of one, in order to have the
features on the same scale which will ease the classifier decision. A common approach is to
use z-score normalization which is computed by subtracting the mean and dividing by the
standard deviation for each feature type: z= (x - p)/c.
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3.3.1 Feature selection and dimensionality reduction

An often-encountered problem in the BCI refers to high feature vectors dimensions,
especially for multi-modal analysis which combine different types of features such as spatial,
temporal, or spectral, leading in the end to an increase in the computation time of the system
or an overestimation of the data considering classification. In order to treat this problem, the
feature vector should be reduced to an adequate number that in general will improve
performances. Therefore, feature selection and dimensionality reduction become a preferable
approach (Millan et al., 2002; Garret et al., 2003; Schroder et al., 2003; Subasi 2010; Nikulin
et al., 2011; Haufe et al., 2014a). When reducing the number of features, it is also important
to relate the number of features to the amount of data, such that the dimensionality of the
training data in one class exceeds the number of features with a couple of factors. Otherwise,
the classification will overfit, issue caused by the ‘course of dimensionality’ phenomena
(Friedman, 1997; Jain et al., 2000).

Throughout this thesis, feature selection methods, manually or heuristically
implemented, have been used to reduce the feature vector dimensionality, and are described
in the corresponding feature extraction or spatial filtering method, e.g. ICA, SSD, CSP.

3.3.2 Temporal methods

Considering ERP based BCI paradigms, the relevant ERP amplitudes may be considered for
the feature extraction step. The amplitude evolutions of the signals within each epoch are
carefully investigated. Preliminarily, the baseline correction is applied (Section 3.2.1.4). For a
closer inspection and overview of the ERPs, a visual representation is usually carried out
referring to average trials for all trial repetitions. In this sense, averaged single-participant
ERP representations can be analyzed or Grand Averages (GA) considering all participants.
Next, relevant time intervals are manually or automatically detected, and the corresponding
temporal amplitudes are considered as features. While the manual procedure requires
additional involvement from the researcher side, automatic methods (e.g. based on
discriminability measures) are more efficient regarding feature extraction.

3.3.2.1  Spatio-temporal feature detection based on signed v’ discriminability
measurement

Spatio-temporal features are extracted considering a heuristic selection of the intervals with
maximum discriminability and a constant spatial pattern between the two classes, based on
the method presented in Blankertz et al. (2011). Relevant time intervals are selected with high
signed and squared point biserial correlation coefficient (signed r°) values.

1. The signed 1’ discriminability measure

For binary discrimination between classes, the signed r’ measure can be applied. Considering
two signals x1 and x2, and their class membership label y1 and y- that relate to two different
classes (class 1 and class 2), the signed r* measure detects the high differences between the
signals based on the point biserial correlation coefficient, » (x1, x2). The signed and squared r
value is given by:

signed r2(x1,X;) = sgn(r(xy,X;)) - 7(x4,%3)?, (3.13)
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where the point biserial correlation coefficient is computed by considering the signal and the
class label information:

vN1N; e ] (314)

r(x’y) - N1+N2 O'(X)

with N1 and N> — the numbers of samples in class 1 and 2, and pi, p2 — the mean of class 1 or

2, respectively.

This discriminability measure can be also applied in the frequency domain, in order to
detect relevant frequency bands with high class differentiation of the oscillatory signals
(Blankertz et al., 2006b, 2007, 2009).

2. Discriminability matrix visualization of signed 1’

For visualization purposes, the temporal and spatial discriminability can be graphically
visualized as time evolution and scalp plots. For a more complete overview of the temporal
distribution within each channel, which is not observed in the scalp plots that presents
information only for a short time interval (e.g. Fig. 5.7 upper plots) and neither in the
temporal evolution plots that shows the information only for one or few channels (e.g. Fig.
5.7 bottom plots), a more detailed representation is given by the discriminability matrix (e.g.
Fig. A.3.7), where the signed r° information of each time point is graphically represented
with a colormap for all channels, a time versus channels representation.

3.3.3 Spectral methods

Besides the temporal domain, the spectral information also provides valuable information,
which may be complementary to the temporal features depending on the type of brain
information investigated. An overview of the extracted spectral feature is presented in the
following.

3.3.3.1  Band power features

A good characterization of the neural oscillations can be expresses by the power of
representative frequency bands. The signal is therefore band-pass filtered in the relevant
frequency band and the band power features are computed by squaring the resulted signal or
extracting the logarithm of the band-power of the signals or components as specified in
(Blankertz et al., 2008c), in order to obtain an approximate normal distribution of the features
(Pfurtscheller and Neuper, 2001). Different frequency bands may be considered for feature
extraction, depending on the analyzed BCI task or mental state, for example the p frequency
band for motor imagery tasks (Pfurtscheller and Neuper, 2001; Scherer et al., 2008; Zhong et
al., 2008; Nicolae et al., 2016b) and a various range of frequency bands such as theta, alpha,
beta for cognitive processing tasks (Palaniappan, 2005; Lotte et al., 2007a,b; Nicolae et al.,
2016a, 2017a).

3.3.3.2  Power spectral density features

In order to obtain more information over brain oscillations, the power spectrum also referred
to as the Power Spectral Density (PSD) is often analyzed in the BCI research (Keirn and
Aunon, 1990; Millan et al., 2002; Millan and Mourifio, 2003). It shows the distribution of the
signal power over different frequencies and can be computed with the Fourier transform
(Appendix A.1.3.1.2), periodogram (Appendix A.1.3.3.1), or any other time to frequency
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transformation. The PSD features are then obtained, for example, by taking the filtered
signals or the square of the filtered signals (Lalor et al., 2005).

3.3.4 Time-frequency measures

The neurophysiological signals present different characteristics in the time and also
frequency domains, therefore another feature extraction method relates to a combined
temporal and spectral approach, named time-frequency decomposition. The approach allows
the simultaneous analysis in both time and frequency domains via time—frequency
representations (TFR) (Cohen, 1995; Sejdi¢ et al., 2009), like Short-time Fourier Transform
(STFT) (Appendix A.1.3.4.2), Wavelet Transform (WT) (Appendix A.1.3.4.3), or
representations based on Power Spectral Density (PSD) (Appendix A.1.3.4.1).

One measure that helps describing and visualizing the changes in the power spectrum
related to an event is the Event-Related Spectral Perturbation (ERSP) method (Makeig, 1993)
computed based on a spectrogram (more details in Section 3.3.4.1).

Another frequency measure that is commonly used in BCI for measuring the
interactions between signals, for example the phase synchronization or coherence between
channels or epochs at different time points is given by the Inter-Trial Coherence (Gysels and
Celka, 2004) measure, further described in Section 3.3.4.2).

3.3.4.1 Event-Related Spectral Perturbations (ERSP)

The Event Related Spectral Perturbation (ERSP) method, introduced by Makeig (1993),
quantifies amplitude dynamic changes of the EEG frequency spectrum in time, triggered by
an external or internal event. As well known in the scientific literature, the oscillations vary
with multiple frequency bands and the ERSP method allows the simultaneous investigation of
the full spectrum, as compared to the narrow-band ERD/ERS curves, for example. It shows
valuable applications in practice (Makeig, 1993; Makeig et al., 2004; Fuentemilla et al., 2006;
Huang et al., 2007a,b; Li et al., 2011; Nicolae, 2013; Nicolae et al., 2015c).

The computation of ERSP starts from generating the power spectrum of an epoch (the
time which follows an event) or a continuous signal using Short-Time Fourier Transform
(STFT) or Wavelet Transform. In more detail, a signal (or epoch) is split into overlapping
segments of a given window length and the average amplitude spectra of these windows is
computed. From each time point of the spectrum, the average baseline spectrum computed on
the baseline interval (the time that precedes the event) is then subtracted in order to reduce
the signal background perturbation. In this sense, a similar and preferred approach is to
normalize the signal (or epoch) spectrum by division with the average baseline spectra.
Finally, the logarithmic spectral amplitude 10*logio (power) dB is represented in a time by
frequency plane, called spectrogram. For a general overview of the perturbations for one
class, the ERSP of the corresponding epochs are then averaged. The time-frequency
representation provides then a larger overview of the Event-Related (De)Synchronization
(ERD/ERS) phenomena (Pfurtscheller and Aranibar, 1979) in multiple frequency bands and
their durations and latencies, simultaneously.

The mathematical formulation of the ERSP (Delorme and Makeig, 2004) is given by:

1
ERSP(f't) :FZ£=1|Pk(f't)|29 (315)
where Py is the spectrum of epoch k = 1,..,T for the frequency f'and time ¢.
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3.3.4.2 Inter-Trial Coherence (ITC)

The ERD and ERS phenomena are time locked to a stimulus, not phase locked to an event,
therefore a good measure investigates the local phase coherence across consecutive trials,
namely Inter-Trial Coherence (ITC) or ,phase-locking factor’ (Tallon-Baudry et al., 1996;
Delorme and Makeig, 2004; Makeig et al., 2004). In contrast to the ERSP method (Section
3.3.4.1), the ITC calculates the EEG phase coherence between trials for a specific
Independent Component, channel, time point or frequency interval and may indicate the
timing of firing of neurons groups. ITC is a frequency measure of the neural activity
synchronization for a given time point and frequency for different time locked EEG epochs.
Mathematically, ITC is defined by the power spectrum, normalized by the Root Mean Square
(RMS) power of single trial estimation:

1 Pr(f.t
ITC(f,0) = 1 X ks iy (3.16)

where | |, in this case, is the complex norm. For a specific time-point, ITC measure ranges

from zero to one, explicitly from no synchronization between the EEG epochs to strong
synchronization. For a given frequency range, it provides the magnitude and phase of the
spectral estimation. Moreover, phase coherence between trials can be also estimated by Inter-
Trial Phase Coherence (ITPC) showing the event-related phase representation.

3.4 Classification and Regression

Based on the optimal feature set detected on the feature extraction and selection processes,
the class discrimination is performed by means of a classifier in order to decode the
corresponding user mental state or task. For example, in the ERP-based BCIs (Chapter 2.4.1),
the classifier discriminates between target and non-target neural responses, while for motor-
imagery based BCIs (Chapter 2.4.2.2) it discriminates between different motor imagery tasks
(e.g. left/right hand movement). On a closer look into the classifier process, the data is split
into a labeled training set and a non-labeled test set of feature vectors; and the classifier will
assign the class memberships for the test set considering what it learned on the training set.
Although, various methods have been developed for classification (Miiller et al.,
2003; Lotte et al., 2007a; Bishop, 2007; Lemm et al., 2011) or regression (Duda et al., 2001;
McFarland, and Wolpaw, 2005), for example supervised learning methods such as Linear
Discriminant Analysis (LDA) (Friedman, 1989; Blankertz et al., 2011), Quadratic
Discriminant Analysis (QDA) (McLachlan, 2004), Logistic Regression (LR) (Tomioka et al.,
2007), Ridge Regression (RR) (Hoerl and Kennard, 1970) few of them provide high
performing results for EEG data (Bashashati et al., 2007, Lotte et al., 2007a). As the
complexity of a classifier is increased, so is the generalization error and the classifier
performance will degrade. Therefore, simple linear algorithms, such as Linear Discriminant
Analysis (LDA), are better suited in this context (see also results in Section 5.3.3.3). Further,
referring to the high number of features that could characterize a BCI system, for example a
large set of temporal features in the case of an ERP-based BCI, the classifier must be
regularized by shrinking the estimated covariance matrix (Tomioka and Miiller, 2010;
Blankertz et al., 2011; Bartz and Miiller, 2013). The regularization will help preventing
overtraining and is more robust with respect to outliers, due to the reduction of the
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generalization error (Jain et al., 2000; Duda et al., 2001). In addition, classifiers can be
applied for binary decisions or even more for multi-class discrimination. While some of them
needs some tuning in order to be applied, e.g. Logistic Regression (LR) adapted to
Multinomial Logistic Regression (MLR) (B6hning, 1992; Greene, 2012), others can easily
work in both cases, e.g. LDA. Multi-class classification is necessary when aiming to decode
multiple user states, and obtaining faster performance as compared to the use of multiple
binary discrimination (Dornhege et al., 2004a).

3.4.1 Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) is a simple classification method due to its linearity,
facile use and easy implementation, and a powerful method providing high performances. It
is well suited for EEG data, because it starts from the assumptions that: i) the data is Gaussian
distributed; ii) all classes have equal covariances; and iii) the true distributions of the classes,
means L, and covariance matrix ), are known. While the characteristics of the EEG data
type approximately fulfills already the first two points, the true distributions: the means pi,
and covariance matrix ) still have to be estimated. The decision boundary for separating
between classes consists of a hyperplane, described by: w'x + b = y(x) with y(x) = 0, where
w! is the weight vector that describes the orientation of the hyperplane and b is the bias
representing the location of the hyperplane. The class belonging is defined by the position in
relation to the hyperplane: negative for one class (y(x) < 0) and positive for the second class
(y(x) > 0). Referring to two classes discrimination, the weight matrix is given by w =
S*71(fi, — fi;) and the bias is given by: b = wT({, + fi;)/2. Moreover, LDA seeks the linear
projection w that best separates the classes: such as minimizes the within-class variance ow
while maximizes the variance between classes g, mathematically defined by maximizing the
ratio of the distributions:
2 T —77.))2 T

= T S = T G.17)
with ), and > w denoting the corresponding between-class and within-class covariance. For
multi class discrimination, the between class variability can be defined by the covariance of

the class means u: By = 1/N¢ X, (A — ) (@ — D"
3.4.1.1  Regularization with Shrinkage of the Covariance Estimation (rLDA shrink)

max
w

As described earlier, regularization is mandatory in order to avoid overfitting. One common
approach to reduce the distortions for the estimated covariance that appear due to the curse of
dimensionality effect, is to perform shrinkage of the covariance matrix (Friedman, 1989).
Therefore, the estimated covariance ¥, is shrunk by a regularization parameter ¥ € [0, 1] and a
scaling parameter v:
T =0 -y +yvl (3.18)
While v is computed as the average eigenvalue of the estimated covariance, the
computation of the optimal regularization parameter y requires more effort and is comprised
between zero (no shrinkage) and one (spherical covariance). Since earlier approaches of
estimating y in the cross-validation step is computationally intensive (Friedman, 1989),
analytical approaches that minimize the Mean Squared Error are more efficient (Ledoit and
Wolf, 2004; Schifer and Strimmer 2005).
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For N feature vectors: Xy, ..., Xy € Ry, Zn = (Xu — A)(x» — )" is defined for each trial n,
with [ = %Zﬁﬂ Xy, the empirical mean. The optimal shrinkage parameter y*, can be

analytically computed by:

« _ N Zgj:1‘72n=1,-.,N(Zn)iJ
(N-12 3 (E-vD);j)?

14 (3.19)

.....

the element of (¥ — vI) at position row i and column j; and ' is the standard estimator of the
true covariance matrix Y, namely the empirical covariance matrix: 3 =

1 A A
EZ%:l(Xn - U)(xn - .u)T-
3.4.1.2 Sliding LDA

An LDA based approach useful to discriminant ERP potentials without aligning them, relates
to a sliding window approach. Mainly, the LDA classifier is trained for a particular temporal
interval in sliding manner. The features are considered as different time delays from the onset
of the event. In addition, the method can help for the feature selection process by detecting
the most relevant time intervals for classification by estimating the highest classification
performance among all slides.

3.4.1.3 Quadratic Discriminant Analysis (QDA)

The Quadratic Discriminant Analysis (QDA) uses quadratic boundaries to separate between
classes (e.g. circle, ellipse, parabola, hyperbola or can also be linear), as compared to only
linear separation performed by LDA. QDA requires also Gaussian distributed data as LDA,
except the constraint regarding the equality of the class covariance matrices which is not
required (Hastie et al., 2008). Therefore, because the class covariance matrices are not
identical, the covariance matrix X has to be estimated separately for each class k=1, ..., N,
which gives quadratic terms in the discriminant function:

1 1 _

§(x) = = (log X)) =5 (x — ) X (X — ) + log (3.20)

Then, the classification rule is similar, finding the class & that maximizes the
discriminant function: G(x) = arg max &r(%).

Due to its flexibility regarding the covariance matrix, QDA inclines towards a better
estimate of the data as compared to LDA, although it’s also more complex, with more
parameters to be estimated. Moreover, if the data is almost linearly distributed, QDA might
have higher model variance and so leaning to overfitting. Moreover, for limited data, the
computed covariance matrix of the training data might be inaccurate. Therefore, it might be
better to reduce the complexity of the model in this case and refer to a common covariance
matrix assumption as in LDA.

When choosing a classifier model, it is important to select the best compromise
between fitting the data in a better way while having a complex model that can induce more
errors or using a simpler classifier, but which does not fit the data accurately. In any case, a
perfect classifier model is almost impossible to be achieved, especially for complex and
mixed data distributions. In addition, the performance of the classifier on the unseen data
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might be higher in case of a simpler model, because it is more robust to outliers and
variability in the data.

3.4.2 Binomial Logistic Regression (LR)

In case of a Logistic regression (LR) model (Cox, 1958; Long 1997; Tomioka et al., 2007;
Greene, 2012), the outcome (the dependent variable) is categorical, expressed in binary
format (0 and 1). The binary logistic model estimates the percentage that a risk factor affects
the probability of a specific response.

Considering a set of n observations represented by the vectors xk, aggregated in the
data matrix X of size n X k, with y the outcome and ¢ the vector of disturbances, the model
can be described by:

y=X101+ -+ Xk t &, (3.21)
equivalent with the form: y = Xf + .

The goal is therefore to estimate . After appropriate transformation, the linear model
can be expressed in the form: y = Ax# + e#, which can be unfolded to:

Iny=p,+B,Inx, + -+ L Inx, + €. (3.22)

For multiple outcome categories, the discrimination is analyzed by multinomial
logistic regression, described in the following subsection.

3.4.3 Multinomial Logistic Regression (MLR)

Multinomial Logistic Regression (MLR) extends the binomial Logistic Regression (LR) by
predicting a nominal dependent variable with more than two categories. The multinomial
logistic function (Bohning, 1992; Greene, 2012) that describes the response probabilities of a
nominal model (Bock, 1997) in relation to the linear combination of predictors Xp, is
described by:

In (%) = Bio + I, ByXyy (3.23)
with i=1, ..., k-1, where k is the 