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Abstract

A new version release (4.0) of the molecular simulation tool ms2 (Deublein
et al., 2011; Glass et al., 2014; Rutkai et al., 2017) is presented. Version 4.0
of ms2 features two additional potential functions to address the repulsive
and dispersive interactions in a more versatile way, i.e. the Mie potential and
the Tang-Toennies potential. This version further introduces Kirkwood-Buff
integrals based on radial distribution functions, which allow the sampling of
the thermodynamic factor of mixtures with up to four components, orien-
tational distribution functions to elucidate mutual configurations of neigh-
boring molecules, thermal diffusion coefficients of binary mixtures for heat,
mass as well as coupled heat and mass transport, Einstein relations to sample
transport properties with an alternative to the Green-Kubo formalism, dielec-
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New version programm summary
Program Title: ms2
Program Files doi: http://dx.doi.org/10.17632/nsfj67wydx.3
Licensing provisions: CC by NC 3.0
Programming language: Fortran95
Supplemental material: A detailed description of the parameter setup for the in-
troduced methods, properties, functionalities etc. is given in the supplemental
material. Furthermore, all molecular force field models developed by our group
are provided by the MolMod Database: Stephan et al., Mol. Sim. 45 (2019) 806
Journal reference of previous version: Deublein et al., Comput. Phys. Commun.
182 (2011) 2350 and Glass et al., Comput. Phys. Commun. 185 (2014) 3302 and
Rutkai et al., Comput. Phys. Commun. 221 (2017) 343
Does the new version supersede the previous version?: Yes
Reasons for the new version: Introduction of new features as well as enhancement
of computational efficiency
Summary of revisions: Two new potential functions to address repulsive and dis-
persive interactions (Mie and Tang-Toennies potential), new properties (Helmholtz
energy, Kirkwood-Buff integrals, thermodynamic factor, thermal diffusion coeffi-
cients, dielectric constant, mean-squared displacement and non-Gaussian param-
eter), new functionalities (Kirkwood-Buff integration with extrapolation to the
thermodynamic limit, van der Vegt correction for the radial distribution function,
orientational distribution function, Einstein relations, vapor-liquid equilibria esti-
mations, cluster criteria to identify nucleation).
Nature of problem: Calculation of application-oriented thermodynamic proper-
ties: vapor-liquid equilibria of pure fluids and multi-component mixtures, thermal,
caloric and entropic data as well as transport properties and data on microscopic
structure
Solution method: Molecular dynamics, Monte Carlo, various ensembles, Grand
equilibrium method, Green-Kubo formalism, Einstein formalism, Lustig formal-
ism, OPAS method, Smooth-particle mesh Ewald summation

1. Introduction

Significant increases in computing power have led to a broader usage of molec-
ular modeling and simulation, which simultaneously widens the ability to tackle
challenges in physics, chemistry and engineering in a sound and detailed man-
ner. Over the last decades, it has often been shown that these computer-based
methods may predict physical reality very successfully. Thus, the long-standing
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obstacle of sparse or lacking experimental information on thermophysical data can
be overcome by trustworthy and rapid predictions with massively-parallel high
performance computing (HPC) hardware and scalable codes.

The program ms2 (molecular simulation 2) was developed to compute ther-
mophysical equilibrium properties of pure fluids and mixtures with Monte Carlo
(MC) or molecular dynamics (MD) simulations that are both implemented in a
single source code. Licenses are freely available for all purposes which concern
academic research and teaching under www.ms-2.de together with a substantial
set of molecular force field models [1]. ms2 [2, 3, 4] supports the microcanonical
(NV E), canonical (NV T ), isobaric-isenthalpic (NpH), isobaric-isothermal (NpT )
and grand canonical (µV T ) ensembles as well as the simulation of vapor-liquid
equilibria (VLE) with the Grand equilibrium method. Moreover, ms2 facilitates
the sampling of numerous thermodynamic bulk properties, including transport
data, like Maxwell-Stefan (MS) and Fick diffusion coefficients, for molecular mod-
els consisting of Lennard-Jones (LJ) interaction sites, point charges, point dipoles
and point quadrupoles. It allows for the sampling of the chemical potential with
Widom’s particle insertion and thermodynamic integration as well as osmotic pres-
sure, hydrogen bond statistics and other features. Next to these thermophysical
properties, it was focused on an efficient parallelization of ms2 using the message
passing interface (MPI), open multi-processing (OpenMP) and its hybrid form
(MPI+OpenMP).

There is a series of molecular simulation tools, such as CHARMM, DL POLY,
ESPResSo, GIBBS, GROMACS, IMD, LAMMPS, ls1 mardyn, NAMD, TINKER
or Towhee, that is being developed for a range of communities. Both industrial
and academic users are addressed by ms2 with a focus on applications of molecular
modeling and simulation in process and energy engineering. In contrast to most
of the tools listed above, ms2 is limited to rigid force field models which are
appropriate for small molecular species only. However, the implementation of the
internal degrees of freedom into ms2 is underway for some time in an unpublished
version of ms2 [5].

Aiming at high accuracy and short response time, ms2 is characterized by
the large variety of properties that are sampled on the fly. This user-friendly
design was extended by the ability to concurrently sample an arbitrary number
of state points in one program execution. Concurrent sampling was optimized in
the present ms2 version such that communication between ensembles was removed
entirely. Combining this with its dedication to generate large sets of Helmholtz
energy derivative data for the development of equations of state [6], ms2 is very
much suited to be executed on HPC infrastructure.

A more versatile molecular model development was prioritized in this version
release 4.0 such that the traditional LJ 12-6 potential was generalized to the Mie
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potential and the more complex Tang-Toennies potential [7] was introduced. Con-
sequently, the basis of molecular modeling and simulation may be improved by a
more accurate description of the repulsive and dispersive interactions. Moreover,
ms2 is now able to yield the Fick diffusion coefficient of mixtures constituted by up
to four components due to the concurrent sampling of the MS diffusion coefficient
and Kirkwood-Buff integrals (KBI) [8] that give access to the thermodynamic fac-
tor [9, 10, 11]. Additionally, with this release, more rapid VLE estimations can
be made by carrying out a single NpT ensemble simulation sampling the chemical
potential of the liquid and using the second virial coefficient for the vapor. These
and further new features were implemented in the source code and the toolset
provided at www.ms-2.de. The present work discusses the fourth major release
of ms2 and its most important innovations, which are presented in the following
sections.

2. Mie potential

Addressing repulsive and dispersive interactions in a more versatile way with
ms2, the standard LJ 12-6 potential function was generalized with the Mie po-
tential function [12]. The pairwise interaction between different sites i and j in a
distance rij is modeled by

uij(rij) =
n

n−m
( n
m

)m/(n−m)
· ε
[(

σ

rij

)n
−
(
σ

rij

)m]
, (1)

where σ and ε are the Mie size and energy parameters, respectively, and n, m are
the repulsive and dispersive exponents.

In ms2, the interactions between two different Mie sites are described by the
Lorentz-Berthelot combining rules for pure components, while for mixtures the
modified Lorentz-Berthelot rules are applied [2]. The unlike repulsive and disper-
sive exponents are determined according to Lafitte et al. [13] by

kij = 3 +
√

(ki − 3)(kj − 3) for k = n,m . (2)

Long-range interactions beyond the cutoff radius rc are considered analytically
with the angle averaging formalism derived for the Mie potential by Lustig [14].

The generalization from LJ 12-6 to Mie was introduced throughout the entire
code so that all properties and functionalities are accessible with it.

3. Tang-Toennies potential

To describe the intermolecular interactions, an additional potential function
based on the work of Tang and Toennies (TT) [7] was introduced into ms2. Con-
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siderations for its use are outlined in the following, whereas proceedings which are
the same as for the Mie potential are not discussed in detail.

The pairwise interaction between different sites i and j in a distance rij is
modeled by

uij(rij) = Aij exp(−αijrij)− f6(rij)
C6, ij

r6
ij

− f8(rij)
C8, ij

r8
ij

, (3)

where fn(rij) denotes a damping function of the form

fn(rij) = 1− exp(−bijrij)
n∑
k=0

(bijrij)
k

k!
for n = 6, 8. (4)

At first glance, the reader might have the impression that this functional form
entails high computational costs, but this is not the case. In fact, despite its
greater complexity, the TT potential is computed equally fast as the Mie potential
and scales very well for larger ensembles, cf. Fig. 1.

The TT potential contains five parameters Aij , αij , bij , C6, ij , C8, ij . In case
of mixtures or pure fluid molecular models constituted by different TT sites, the
parameters of the interactions between unlike sites are determined by the following
combination rules [15, 16]

αij = 2
αi · αj
αi + αj

, (5)

Aij =
1

αij

(
(Aiαi)

1/αi · (Ajαj)1/αj

)αij/2
, (6)

bij = 2
bi · bj
bi + bj

, (7)

Cn, ij =
(
C

1/bi
n, i · C

1/bj
n, j

)bij/2
for n = 6, 8, (8)

sij =
si + sj

2
. (9)

Subscripts i and j denote the parameters for the like interactions, whereas ij
indicates the unlike interactions. In the remainder of this section, the indices ij
will be omitted for brevity. The parameter s refers to the shielding for the short
range correction that is discussed below.

Long-range interactions beyond the specified cutoff radius rc are not calcu-
lated explicitly. Instead, analytical correction terms are used, which result in the
necessity to compute ∫ ∞

rc

r2u(r)dr. (10)
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1Figure 1: Performance of the TT and Mie potentials for 5000 MD simulation steps with
varying particle number N using MPI parallelization.
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To this end, the application of angle averaging according to Lustig [14] is desired,
which reduces the computational effort to one logical operation per pair of inter-
acting molecules to verify whether r < rc. Hence, the potential function needs to
be expressed in terms of r2m. Note that m < −3/2 must be satisfied to guaran-
tee convergence of Eq. (10). For simplicity, the repulsive term A exp(−αr) was
neglected. Further, since fn(r)→ 1 as r →∞, it is reasonable to assume

fn(r)
Cn
rn
≈ fn(rc)

Cn
rn

for n = 6, 8. (11)

Numerical experiments suggest that this is a suitable approximation as long as rc
exceeds three to four times the distance of the potential well minimum.

Widom’s test particle insertion and thermodynamic integration [2, 4] are meth-
ods to determine the chemical potential of a given component. However, in com-
bination with the TT potential, both techniques require some caution. For the
application of Widom’s insertion method, a short range correction has to be ap-
plied. Numerical inaccuracies associated with the calculation of the exponential
terms on computer hardware via Taylor series expansion cause the damping func-
tions to exhibit oscillations in their entire domain. Their amplitude is negligible,
except for small values of r. In case of r → 0 the oscillations may lead to a change
of sign of the otherwise strictly positive functions, which in turn produces erratic
results for the chemical potential.

This can be prevented by choosing a representation of the dispersive interac-
tions which avoids the exponential term

fn(r)
Cn
rn

= −Cnbn
∞∑

k=n+1

ηn,k(br)
k−n for n = 6, 8, (12)

where the coefficients ηn,k are given by

ηn,k =
1

k!

n∑
m=0

(−1)k+m

(
k

m

)
for n = 6, 8; k > n. (13)

In ms2, series (12) is computed up to k = 18. With regard to the decreasing
absolute value of the summands and therefore fading contribution of higher order
terms, this proved to be an appropriate and sufficiently accurate choice.

To determine which representation of the dispersive terms is used, the addi-
tional parameter shielding was introduced into ms2. It denotes a lower bound of r
up to which the usual form of the TT potential (3) is used. Note that the required
shielding depends solely on parameter b.

Thermodynamic integration [4] is another technique to compute the chemical
potential. In ms2, a non-linear scaling was implemented, i.e. u(λ) = λdu for

7



λ ∈ [0 , 1], with d being an input parameter. The default value is set to d = 4 in
order to prevent the occurrence of singularities at λ = 0 or 1 when the LJ potential
is used [17].

However, d has to be chosen under consideration of the shape of the repulsive
interaction. Clearly, the slope of the repulsive term exp(−αr) of the TT potential
(3) depends on α. A comparison to the slope of r−12 as used in the LJ potential,
yields ∣∣∣∣d exp(−αr)

dr

∣∣∣∣ = α exp(−αr)� 12r−13 =

∣∣∣∣dr−12

dr

∣∣∣∣, (14)

for α < 5 and sufficiently small values of r, where each potential function is domi-
nated by its repulsive part. Hence, it is recommended to adjust d accordingly, since
the statistical uncertainty of the obtained chemical potential rises as d increases.

4. Thermodynamic factor through Kirkwood-Buff integration

Both the Fick diffusion coefficient D and the MS diffusion coefficient D matri-
ces are of central importance when describing mass transport in liquid mixtures.
While the former can be measured in the lab due to its composition dependence,
the latter cannot be acquired by experiments because it is related to the chem-
ical potential. The thermodynamic factor Γ connects these diffusion coefficient
matrices and is given for a multi-component mixture by

Γij =
xi
kBT

(
∂µi
∂xj

)
T,p,Σ

, (15)

where µi is the chemical potential of component i, xj the mole fraction of compo-
nent j, T the temperature and kB the Boltzmann constant. This equation applies
at constant temperature and pressure as well as

∑n
i=1 xi = 1, with number of

components n [18].
For mixtures containing three or more components, D = B−1Γ, where matrix

B is determined by the MS diffusion coefficient matrix D [18]. Describing mix-
tures constituted of many components, matrix D asymptotically requires about
twice as much information than matrix D, i.e. Γ connects nine Fick with six MS
diffusion coefficient elements in case of a quaternary mixture [10]. This is an im-
portant advantage of MS theory, but when mass transport needs to be accessed
experimentally, the Fick approach can be applied directly. Taking advantage of
both, the thermodynamic factor Γ is indispensable. Since it is a derivative of the
chemical potential, Γ cannot be measured experimentally. Instead, excess Gibbs
energy models or equations of state are usually employed to extract Γ from phase
equilibrium data. As an alternative route, molecular simulation combined with
KBI [8] allows for the sampling of Γij [9, 10, 18].
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KBI based on molecules’ center of mass radial distribution functions (RDF)
was implemented in the NV T ensemble both for MC or MD simulations. In ms2,
RDF are sampled in the entire cubic simulation volume L3 up to

√
3L/2, i.e.

beyond the cutoff radius that is independently specified for explicitly evaluating
the intermolecular interactions. Thus, extended schemes may be applied [19]. In
the context of KBI, RDF corrections are required. The correction proposed by
Ganguly and van der Vegt [20], referred to as vdV, was implemented into ms2
because it was found to be the most adequate [9]. It takes the excess or depletion
of molecular species j around a given molecule i at the distance r into account such
that the asymptotic behavior of the RDF should yield an improved convergence
to unity. The vdV correction is given by Ganguly and van der Vegt [20]

gvdV
ij (r) = gij(r)

Nj(1− V (r)/L3)

Nj(1− V (r)/L3)−∆Nij(r)− δij
, (16)

where gij(r) is the RDF between components i and j, Nj is the number of molecules
j, δij the Kronecker delta and V (r) = 4πr3/3. Excess or depletion is determined
by ∆Nij(r) =

∫ r
0 4πr′2ρj [gij(r′)− 1]dr′ with the partial density ρj .

KBI are strictly defined in the µV T ensemble only, which is challenging to
impose for dense liquid states. In order to apply KBI to NV T ensemble simulation
data, an integral truncation and correction by Krüger et al. [21] was implemented,
such that KBI are calculated by

Gij(R) =

∫ 2R

0
4πr2(1− 3x/2 + x3/2)[gij(r)− 1]dr , (17)

with x = r/2R. Its success for finite system sizes was discussed recently [9]. How-
ever, the extrapolation to the thermodynamic limit V → ∞, where all ensemble
types converge, is essential [9, 19]. Thus, for V → ∞ the following KBI approxi-
mation [19] was implemented

G∞ij (R) ≈
∫ 2R

0
4πr2(1− 23x3/8 + 3x4/4 + 9x5/8)[gij(r)− 1]dr . (18)

Eqs. (17) and (18) were implemented for both standard and vdV corrected RDF
in ms2. Fig. 2 exemplarily shows Gij over inverse radius R−1 for a binary LJ
mixture. An almost linear behavior is produced by Eq. (17) and extrapolations to
the thermodynamic limit are well presented by Eq. (18), whereas standard KBI is
of little use for extrapolation purposes.

Expressions of the (n−1)× (n−1) matrix Γ based on KBI Gij can be found in
the literature [8, 18, 22] for binary and ternary mixtures. Ben-Naim [22] outlined
a general formalism to obtain chemical potential derivatives from KBI. Employing
these, Γ expressions for quaternary mixtures were recently derived and evaluated
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Figure 2: Gij and G∞ij over inverse radius R−1 for a liquid binary LJ mixture (σj/σi = 1.5,
εj/εi = 0.75). RDF were sampled by MD every time step over a production period of
1.5 · 107 time steps in the NV T ensemble containing N = 4000 molecules; dashed lines:

standard Gij = 4π
∫ R

0
[gij(r) − 1]r2dr; solid lines: Gij from Eq. (17); squares: G∞ij from

Eq. (18); black: standard RDF; red: vdV corrected RDF.

by our group [10]. Fig. 3 shows results for Γ for a quaternary state point. Taking
into consideration that there are no other standard simulation methods available
for the direct sampling of Γ and due to the satisfactory performance shown in [11],
Γ expressions for mixtures with up to four components were implemented into
ms2 such that cumbersome post-processing is omitted. Invoking KBI leads to an
increase of execution time by about 4 % only for realistic molecules because of
efficient coding and parallelization [9].
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Figure 3: Thermodynamic factor Γ of a liquid-like supercritical quaternary LJ mixture.
Black circles: Γ based on numerical chemical potential derivatives sampled with Widom’s
test particle insertion; red circles/triangles: Γ calculated with the expressions for quater-
nary mixtures based on vdV corrected RDF and Eq. (18)/Eq. (17) (statistical uncertainties
are within symbol size).

5. Orientational distribution function

The sampling of the orientational distribution function (ODF) of dipolar fluids
with MD simulation was implemented as a new feature in ms2. The ODF quantifies
how neighboring molecules are mutually oriented. Such information on the fluid
structure is useful for the parametrization of equations of state that give access to
the relative permittivity [23, 24].

The ODF Oij for molecules of species j around central molecules of species i
can be defined implicitly by the two particle density

nij(r, ϕi, ϕj , γ) = ρiρjgij(r)Oij(r, ϕi, ϕj , γ), (19)

which quantifies how many molecules of species i and j at a distance r have a
mutual orientation given by the angles ϕi, ϕj and γ. nij can be separated into the
bulk partial densities ρi and ρj , the RDF gij and the ODF Oij , which considers
mutual orientation. The distance and the three angles characterizing the ODF are
depicted in Fig. 4.
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Figure 4: Distance r and angles of the coordinate system for ODF calculation. µi and
µj denote the effective dipole vectors of molecules i and j, which may arise either from
point dipoles, a distribution of charges or a combination of the two. ϕi and ϕj are their
inclination angles with respect to the intermolecular distance vector r. The torsion angle γ
describes the angle difference between the molecules’ orientation around the intermolecular
distance vector.

These three angles fully describe the mutual orientation of two molecules with
two rotational degrees of freedom, such as hydrogen chloride or Stockmayer mod-
els, which do not rotate around their main axis. The characterization of the mu-
tual orientation of two molecules with three rotational degrees of freedom would
necessitate the introduction of two additional angles to describe each molecule’s
orientation around their main axis, which is not yet supported by ms2. The ODF
may nonetheless be sampled for molecules with three rotational degrees of freedom,
but only the three angles depicted in Fig. 4 will be evaluated.

The ODF is sampled as an average quantity by discretizing the distance and
orientation space with a classic binning scheme. The cosines of the three angles can
be computed directly from the direction vectors of the dipoles through algebraic
operations. When sampling the ODF, cos(ϕi), cos(ϕj), γ and r are discretized
into bins of constant size. Sampling ϕi and ϕj in terms of their respective cosines
avoids two numerically costly arccosine operations per molecular pair. It also
homogenizes the quality of the data across the orientation space, as the volumes
around the molecules spanned by the discrete angular elements are equally large
when a constant angular increment ∆cos(ϕi) is chosen instead of constant ∆ϕi.
The increment size may be specified by the user. The total number of sampling
points is the product of the number of grid points in the four relevant dimensions.

Langenbach [23] used 40 grid points for cos(ϕi) and cos(ϕj) and 36 grid points
for the torsion angle γ, while sampling the ODF within the first coordination
shell without applying further discretization to the intermolecular distance, which
resulted in a total of 57,600 sampling points. This led to a satisfactory resolution of
the ODF, while keeping memory demand and data output within reasonable limits.
The present implementation always samples the ODF within the cutoff radius. It
is recommended to specify the element size ∆r on the same order of magnitude
as the size of the molecular models under investigation. For spherical molecular
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models, it thus makes sense to choose ∆r to be the molecular radius. In this case,
the first radial element corresponds to the volume occupied by the central molecule,
which carries little information. Beyond the first radial element, then each two
consecutive radial elements cover one spherical shell that roughly corresponds to
one of the central molecule’s coordination shells. With post-processing, data for
two radial elements can be merged to characterize the respective coordination shell.
The ODF is normalized by ms2 so that the average of all sampling points within
the same radial sampling element is unity. The normalization value of each shell
is provided in the output.

The present implementation samples mutual orientations on the basis of the
total dipole moment vectors of the molecules and works for both point dipoles
and dipole moments arising from a distribution of partial point charges. The
implementation is compatible with Ewald summation and the reaction field method
for treating electrostatic long-range interactions. Any number of components may
be chosen as long as at least one dipolar species is present (which may have a
vanishing dipole moment). In this case, ODF are recorded for every like and unlike
pair of dipolar species. In case of a binary mixture of the dipolar components
i and j, this entails four ODF: the two like ones Oii and Ojj , which describe
mutual orientations between molecules of the same species, Oij , which describes
how molecules of species j orient themselves around central molecules of species i
and Oji describing the reverse case. The unlike ODF are not identical, but adhere
to symmetry conditions. Thus, Oji is not sampled directly by ms2. Instead, it is
computed upon output from the data for Oij .

The ODF can be visualized in terms of isosurfaces that represent equal prob-
abilities within orientation space. Fig. 5 exemplarily shows the ODF of a pure
Stockmayer fluid sampled with MD simulation in the NV T ensemble.
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Figure 5: Isosurfaces of the ODF within the first coordination shell 0.5 < r/σ < 1.5
of the Stockmayer fluid with a dipole moment µ/(4πε0εσ

3)1/2 = 1.5 at kBT/ε = 3 and
ρσ3 = 1. Red surfaces represent states with a probability that is 40 % higher than
random orientation, green surfaces indicate random orientation and blue surfaces depict
a probability that is 40 % lower than random orientation.

6. Thermal diffusion in binary mixtures

The phenomenological coefficients for heat, mass as well as coupled heat and
mass transport, as defined by the framework of irreversible thermodynamics [25],
can be sampled with equilibrium MD simulation employing the Green-Kubo for-
malism. Considering the Soret and Dufour effects, the equations for heat flux JQ
and mass flux of component 1 Jm1 in a binary mixture are [25]

JQ = −LQQ
∇T
T 2
− LQ1

(
∂µ1

∂w1

)
T,p

∇w1

(1− w1)T
, (20)

Jm1 = −L1Q
∇T
T 2
− L11

(
∂µ1

∂w1

)
T,p

∇w1

(1− w1)T
, (21)

where Lab are the so-called phenomenological Onsager coefficients, describing the
proportionality between the thermodynamic forces and the fluxes that they induce.
µ1 and w1 stand for the chemical potential and mass fraction of component 1,
respectively. The coupled phenomenological transport coefficients follow Onsager’s
reciprocity relations (ORR), i.e. L1Q = LQ1.

The phenomenological coefficient for mass transport L11 is
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L11 =
V

3kB

∫ ∞
0
〈Jm1 (0)Jm1 (t)〉dt, (22)

with the mass flux Jmi

Jmi (t) =
1

V

Ni∑
k=1

mi(v
k
i (t)− 〈v〉). (23)

Therein, V is the volume, mi the molecular mass of component i, vki (t) the center
of mass velocity vector of molecule k of component i at some time t and Ni the
number of molecules of component i. The brackets 〈...〉 denote the NV T ensemble
average. If initialized accordingly, 〈v〉 deviates from zero during simulation only
within machine error so that Jm1 = −Jm2 .

The phenomenological coefficient for heat transport LQQ is

LQQ =
V

3kB

∫ ∞
0
〈JQ(0)JQ(t)〉dt. (24)

However, in equilibrium MD simulation, only the internal energy flux JE and
not the heat flux JQ can be accessed directly, but both quantities are related by
Perronace et al. [26]

JQ = JE −
(
h1

m1
− h2

m2

)
Jm1 , (25)

where hi is the partial molar enthalpy of component i and

JE
V

=
1

2

2∑
i=1

Ni∑
k=1

mk
i

(
vki

)2
· vki −

1

2

2∑
i=1

2∑
j=1

Ni∑
k=1

Nj∑
l 6=k

[
rklij :

∂uklij

∂rklij
− I · uklij

]
· vki . (26)

Therein, uklij is the intermolecular potential energy, rklij the distance vector between
molecules k and l, while the indices i and j denote the molecular species. The
second term in the brackets is a dyadic product (denoted by a colon) with the
unitary tensor I.

The phenomenological coefficient for internal energy transport LEE is

LEE =
V

3kB

∫ ∞
0
〈JE(0)JE(t)〉dt, (27)

and is related to LQQ by [27]

LQQ = LEE − 2L1E

(
h1

m1
− h2

m2

)
+ L11

(
h1

m1
− h2

m2

)2

. (28)
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The phenomenological coefficient for coupled heat and mass transport L1Q is

L1Q =
V

3kB

∫ ∞
0
〈Jm1 (0)JQ(t)〉dt, (29)

and the phenomenological coefficient for coupled internal energy and mass trans-
port L1E is

L1E =
V

3kB

∫ ∞
0
〈Jm1 (0)JE(t)〉dt. (30)

Because of the ORR, phenomenological cross-coefficients are symmetric, i.e. L1E =
LE1 and L1Q = LQ1, but statistically independent. Exemplarly, Fig. 6 shows
the cross-correlation functions underlying to the phenomenological coefficients for
coupled heat and mass transport L1Q and LQ1 of the mixture of argon + krypton
in its liquid state. As can be seen, both functions oscillate around the same values
and can therefore be averaged to improve statistics. The resulting averaged cross-
correlation function is then integrated to obtain the coupled phenomenological
coefficient, cf. Fig. 6.

If the partial molar enthalpy hi of all components is known, the according set of
values should be specified in the *.par file and ms2 will calculate the phenomeno-
logical coefficients LQQ and L1Q. If this is not the case, the phenomenological
coefficients LEE and L1E will be calculated instead. L1Q and L1E are related
by [27]

L1Q = L1E −
(
h1

m1
− h2

m2

)
L11. (31)

An example of how to obtain partial molar enthalpy values is given in the
supplemental material. Finally, the thermal diffusion coefficient DT can be ac-
cessed by comparing the phenomenological Eqs. (20) and (21) with the equations
for the heat and mass fluxes according to Fourier and Fick considering the Soret
and Dufour effects

JQ = −λ∇T −
(
∂µ1

∂w1

)
T,p

ρw1TD
D
T ∇w1, (32)

J1 = −ρw1w2D
S
T∇T − ρD∇w1, (33)

(34)

where ρ is the density, λ the thermal conductivity and D the Fick diffusion coeffi-
cient. DS

T and DD
T are the thermal diffusion coefficients of Soret- and Dufour-type,

respectively [26]
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Figure 6: Cross-correlation functions (top) 〈J1(0)JQ(t)〉 (black line) and 〈JQ(0)J1(t)〉
(blue line) are shown together with the integral of their average (bottom) as a function of
time for the liquid mixture argon + krypton at T = 95.2 K, p = 0.1 MPa and x1 = 0.6759
mol·mol−1 sampled with N = 1000 molecules.

DS
T =

L1Q

ρw1w2T 2
, DD

T =
LQ1

ρw1w2T 2
. (35)

It thus also follows from the ORR that DS
T = DD

T = DT . ms2 calculates the
thermal diffusion coefficient DT on the basis of the average of the sampled phe-
nomenological cross-coefficients for coupled heat and mass transport L1Q and LQ1.
The thermal diffusion coefficient DT is strongly dependent on the enthalpic contri-
bution to the heat flow so that it is only calculated if the partial molar enthalpy of
all components is specified in the *.par file. Note that Eq. (35) is valid for binary
mixtures only.
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7. Einstein relations

The Green-Kubo formalism was adopted in previous versions of ms2 to sample
transport properties, such as diffusion coefficients, viscosity or thermal conductiv-
ity. An alternative is offered by the Einstein relations, which can be understood
as an integral form for determining these properties. For diffusion coefficients,
the Einstein relations deal with molecular displacements, while the Green-Kubo
formalism operates with correlation functions of velocities. Both approaches are
equivalent, but they show different statistics in practice. For example, long time
tails may be encountered with the Green-Kubo formalism, while the Einstein re-
lations do not suffer from this problem.

The expressions for self-diffusion or intra-diffusion Di and Onsager coefficients
Λij take the form [28]

Di =
1

6Ni
lim

∆t→∞
1

∆t

〈 Ni∑
k=1

[rki (t+ ∆t)− rki (t)]2
〉
, (36)

Λij =
1

6N
lim

∆t→∞
1

∆t

〈 Ni∑
k=1

[rki (t+ ∆t)− rki (t)]

Nj∑
l=1

[rlj(t+ ∆t)− rlj(t)]
〉
. (37)

Therein, Ni and Nj stand for the number of molecules of components i and j,
N is the total number of molecules, rki denotes the Cartesian coordinate vector
of molecule k belonging to component i and the brackets 〈...〉 indicate ensemble
averaging. These relations are analogous to those of the Green-Kubo formalism,
except that molecular displacements are considered instead of correlation functions
of velocities. Onsager coefficients from both approaches are associated with MS
diffusion coefficients in the same way [2, 3, 4].

The Einstein relation for the shear viscosity has the form

η =
1

2V kBT
lim

∆t→∞

〈
[G(t+ ∆t)−G(t)]2

〉
, (38)

where

G(t) =
N∑
i=1

mi r
α
i (t) vβi (t). (39)

Eq. (38) cannot be directly applied because G(t) is not continuous and introduces
unphysical behavior under periodic boundary conditions [29]. However, this prob-
lem can be avoided by substituting the difference in Eq. (38) with the integral
[30]
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∆G = G(t+ ∆t)−G(t) =

t+∆t∫
t

Jαβp (τ)dτ. (40)

Consequently, the expression for shear viscosity reads

η =
1

2V kBT
lim

∆t→∞

〈( t+∆t∫
t

Jαβp (τ)dτ

)2〉
, (41)

where Jαβp is a stress tensor element, which is exactly the same as that in the
Green-Kubo formalism (see Eq. (11) in Ref. [2] for details)

Jαβp =
N∑
l=1

miv
α
i v

β
i −

N−1∑
i=1

N∑
j=i+1

n∑
k=1

n∑
l=1

rαij
∂uij

∂rβkl
. (42)

Therein, α, β = x, y, z are Cartesian coordinates, mi and vαi are mass and velocity
of molecule i, k and l are the indices of the n interaction sites constituting a
molecular model, rαij is the site-site distance and uij the potential energy of the site-
site interaction. The present implementation averages over the three off-diagonal
elements Jxyp , Jxzp , Jyzp of the stress tensor (42).

Procedures for sampling the transport properties can be employed concurrently
with both approaches. Invoking the Einstein formalism leads to little additional
computational effort. On average, switching on the Einstein procedure increases
the total execution time by less than 2%.

Fig. 7 shows a comparison between data sampled with the Green-Kubo for-
malism and the Einstein relations. For all considered transport properties, an
excellent agreement between both approaches was reached.

Based on Eq. (36) it is straightforward to analyze system dynamics, e.g. solid-
fluid phase transitions by the mean-squared displacement (MSD) 〈∆r2(t)〉 [31]. In
this context, the closely related Non-Gaussian parameter is given by [32]

α2(t) =
3〈∆r4(t)〉
5〈∆r2(t)〉2 − 1 . (43)

This property can be applied to study dynamic heterogeneity in terms of mobile
and immobile particles [31]. Both MSD and α2 were implemented into ms2 and
can be sampled independently of the other transport properties.
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Figure 7: Intra-diffusion coefficient of argon (top), Onsager coefficient Λ11 (center) and
shear viscosity (bottom) determined with the Green-Kubo formalism (blue) and the Ein-
stein relations (black) for the liquid mixture argon (1) + krypton (2) at T = 95.25 K,
p = 0.1 MPa and x1 = 0.6759 mol·mol−1 sampled with N = 1000 molecules.
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8. Dielectric constant

The sampling of the static dielectric constant ε of non-polarizable fluid mod-
els, also known as relative permittivity, was implemented in ms2. In the NV T
ensemble, it is computed from Kirkwood’s fluctuation formula [33]

ε− 1 =
4π

3kBTV

(
〈M2〉 − 〈M〉2

)
, (44)

where all symbols have their usual meaning and M is the total dipole moment of
the simulation volume

M =

N∑
i=1

µi, (45)

that is constituted by the sum of the dipole moment vectors µi of all molecules i.
In the NpT ensemble, the volume V in Eq. (44) has to be replaced by the ensemble
average 〈V 〉. In case of isotropic and non-ferroelectric fluids, the second term 〈M〉2
should vanish when sufficiently long sampling is carried out. Nevertheless, that
term is preserved in the present implementation to allow for convergence checks.

In ms2, Eq. (44) can be sampled both with MC and MD simulations. How-
ever, MD simulations are recommended as long individual series of samples are
needed for the term 〈M2〉 to converge (see below). The present implementation is
compatible with both the reaction field method and Ewald summation for treat-
ing the long-range electrostatic interactions. For molecular models containing a
distribution of partial charges, in case of the reaction field method, their dipole
moment vectors µi are readily available. In case of Ewald summation, the sum-
mation of partial charges to a molecular dipole moment µi is carried out for each
molecule. If a mixture contains ions, which carry a permanent charge, they affect
the dielectric constant only through their interactions that alter the orientation of
solvent molecules [34].
Fig. 8 shows the running averages of the two terms involved in Eq. (44) from MD
simulations of SPC/E water. The reaction field method with conducting bound-
ary conditions was used to treat long-range electrostatics. It can be seen that the
second term 〈M〉2 indeed quickly vanishes, but a long simulation is needed for the
first term 〈M2〉 to converge.

In addition to previous validations of the ms2 implementation [24, 34, 35] by
comparison to literature data, the dielectric constant of two water models and
two methanol models at ambient conditions was computed with ms2. Again, the
reaction field method with conducting boundary conditions was used to treat long-
range electrostatics. Good agreement with literature data was found, as Tab. 1
shows.
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Figure 8: Convergence of running averages of the total dipole moment of SPC/E water at
T = 298.15 K and p = 0.1 MPa. Top: NpT simulation, bottom: NV T simulation.

Table 1: Dielectric constant ε of four pure component models at T = 298.15 K and p =
0.1 MPa calculated with ms2 in comparison with benchmark values from the literature.
Uncertainties of the last specified digit of the ms2 results are given in parentheses. Un-
certainties of the literature values are not available.

Model ms2 Literature Ref.

Water SPC/E 71(1) 70 [36]
Water TIP4P/2005 57(1) 59 [36]
Methanol OPLS/2016 26.6(7) 26.4 [37]
Methanol Schnabel et al. 21.2(6) 21.2 [37]
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9. Vapor-liquid equilibria with the NpT plus second virial coeffi-
cient method

VLE of fluids constituted by any number of components can be calculated by
ms2 with the Grand equilibrium method [38] through two subsequent simulations
of the coexisting phases. However, the vapor simulation can often be substituted
with an equation of state, which shortens the process, saves computational ef-
fort and avoids the difficulty of sampling low density states. For instance, the
Haar-Shenker-Kohler equation has been applied in concert with the NpT plus test
particle method to pure fluids [39] and mixtures [40, 41].

An alternative route to VLE at low pressure is the NpT plus second virial
coefficient method (NpT + SVC). This approach was used for VLE calculations
of phenol, aniline and cyclohexylamine as well as their mixtures before [42] and
was fully described elsewhere [39].

One liquid phase simulation run in the NpT ensemble at specified temperature
T , composition x and some pressure p0 gives the chemical potential as a function of
pressure p of all components in the liquid as a first-order Taylor expansion around
p0

µli(T,x, p) = µli0(T,x, p0) + (∂µi/∂p)T,x · (p− p0) , (46)

where (∂µi/∂p)T,x = vli is the partial molar volume of component i. Sampling of
the liquid phase with Widom’s test particle method yields values for all coefficients
of Eq. (46) [38, 39]. The chemical potential of the vapor can be expressed on the
basis of the virial equation of state p = ρkBT (1 +Bρ) by

µvi (T,y, p) = kBT ln yi + kBT ln ρ+ 2kBTρ

n∑
j=1

yjBij , (47)

with the second virial coefficient B =
∑n

i=1

∑n
j=1 yiyjBij and the vapor density

ρ = (
√

4Bp/kBT + 1− 1)/(2B). The second virial coefficient is evaluated in ms2
by numerical integration of Mayer’s f -function. The phase equilibrium conditions
are then employed to identify the saturated vapor pressure p and the saturated
vapor composition y through the nonlinear system of equations

µli(T,x, p) = µvi (T,y, p) for i = 1, . . . , n. (48)

A modified Newton method was implemented into the present version of ms2 to
solve Eq. (48).

To evaluate the performance of the NpT + SVC method, the saturated vapor
density and compressibility factor of the pure LJ fluid are compared to the EOS
by Thol et al. [6] in Fig. 9. The NpT + SVC method excellently reproduces both
of these properties up to kBT/ε = 1.05, with maximum deviations of 0.6 %. In

23



fact, an evaluation of 45 different VLE data sets for the LJ fluid showed that the
systematic simulation errors of the saturated vapor density and the compressibility
factor are ± 1.0 % and ± 1.25 %, respectively [43]. Therefore, the NpT + SVC
method should not be used for the LJ fluid outside this systematic error span, i.e.
above kBT/ε = 1.05, cf. Fig. 9. Moreover, this method can be applied to all VLE
state points of the binary mixture N2 + O2 between 80 and 120 K, as shown in
Fig. 10. However, it fails for higher temperatures and thus higher vapor densities
due to the limitations of the virial expansion, while the Grand equilibrium method
also operates under such conditions.

The range of applicability and precision of the NpT + SVC method can be
estimated before the start of a VLE calculation, if data for the compressibility
factor, the SVC and the saturated vapor density are available. The vapor density
can only be positive, if

√
(4Bp/kBT + 1) < 1 and (4Bp/kBT + 1) ≥ 0, since the

SVC is negative up to the Boyle temperature. The combination of these terms
with z = p/(ρkBT ) yields the limiting compressibility factor zlim = −1/4Bρ.
Thus, Eq. (48) has real solutions only for z < zlim. The closer the ratio z/zlim is
to unity, the less accurate the NpT + SVC method becomes, cf. Tab. 2. However,
at low saturated vapor densities, where z/zlim < 0.7, the deviations for z and ρ′′

remain under 1.6 % for both the LJ fluid and the mixture N2 + O2.
The NpT + SVC method can replace simulations in the low density regime

and leads to lower statistical uncertainties of the VLE properties compared to
methods entirely based on simulations. However, it fails to yield VLE near the
critical point because the SVC is insufficient in this region. Consequently, the
Grand equilibrium method in its classic form with a vapor simulation run should
be used under such conditions.

Table 2: Ratio of the calculated to the limiting compressibility factor for the LJ fluid.
Results from the NpT + SVC method and the Grand equilibrium method are presented,
where the former does not converge above kBT/ε = 1.20 as indicated by an asterisk.

kBT/ε zGE zSVC zlim,GE zlim,SVC
zGE

zlim,GE

zSVC

zlim,SVC

1.05 0.81 0.80 1.27 1.26 0.63 0.64
1.15 0.71 0.68 0.83 0.77 0.86 0.88
1.25 0.58 * 0.52 * 1.10 *
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Figure 9: Relative error of saturated vapor density (top) and compressibility factor (bot-
tom) for the LJ fluid determined with the NpT + SVC method (red triangles) and the
Grand equilibrium method (blue triangles) in comparison to the EOS by Thol et al. [6].
The dotted lines represent the systematic error of the saturated vapor density (± 1%) and
the compressibility factor (± 1.25%) evaluated from 45 different VLE data sets for the LJ
fluid [43]. Statistical uncertainties are within symbol size.

Figure 10: VLE phase diagram of the binary mixture N2 + O2 from the NpT + SVC
method (red triangles) and the Grand equilibrium method (blue triangles) compared to
the Peng-Robinson EOS (black line) and experimental data (cross symbols) [44].
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10. Cluster criteria for nucleation

A method in the context of metastable states and homogeneous nucleation
[45] was implemented in ms2. Its focus lies on the identification of an ongoing
vapor-liquid transition, considering both droplet and bubble formation. The pri-
mary requirement of such methods is a definition of clusters and voids to identify
emerging phases, which typically translates into the evaluation of intermolecular
distances, as opposed to methods relying on the chemical potential or multiple
metrics.

Instead of comparing distances between molecules and constructing logical
structures that are similar to neighbor lists, the present method utilizes an in-
dependent grid. Distance checks between molecular positions and grid points of
a regular cubic lattice are performed. This route is robust, can be parallelized
efficiently and its feasibility has been tested for droplet and bubble nucleation
[46].

Phase transitions are associated with spontaneous and significant changes of
the local density [47]. However, when the interest lies in the sampling of thermody-
namic properties of metastable states, trajectories with an ongoing phase change
should be avoided [48]. A criterion has to be set up to consider microstates only
that are still consistent with the initial phase and eventually terminates sampling
if this is not wanted.

By introducing a regular cubic grid, the instantaneous local density is sampled
with ms2 by assigning every particle to its surrounding grid points. This opera-
tion has a complexity of O(N), where N is the number of particles and the spatial
density distribution is evaluated on that grid at user-specified time instances. This
evaluation should only be carried out when the molecular configuration had suffi-
cient time to significantly change its structure.

Processing is done directly as a molecule contribution to the according grid
points, avoiding expensive iterations over the entire grid. This contribution is
calculated by division of the molecular position by the grid constant ∆L. Fig. 11
provides an illustration of the inner workings of the method. For each molecule
a primary grid point is evaluated by indexx =INT(rx/∆L). All other grid points
surrounding that molecule are subsequently assigned with that molecule as well.
This simple design works straightforwardly for grids that fill the entire simulation
volume.

However, this principle was extended to grids that do not fill the entire simu-
lation volume. This is a mandatory requirement when the grid constant ∆L is an
input parameter and L/∆L is not an integer. The remaining tripod (in 3D) with
a thickness below ∆L was treated in a periodic boundary fashion to preserve same
surrounding volume of each grid point.
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Figure 11: Illustration of the regular grid example (in 2D) with associated values at the
grid points marked with +, the simulation volume is delimited by the dashed line, molecule
contributions to the grid points are denoted as arrows and grid constant ∆L.

The present approach is rounded up with a decision procedure that evaluates
the grid data and terminates sampling, if a specified percentage of grid points sig-
nals a local density below or above a specified density threshold. Here, priority was
given to robustness across molecular species, investigated phase transition direc-
tion, number of molecules etc. The multi-ensemble feature of ms2 [4] requires two
levels of termination. Once a given ensemble has reached its termination criterion,
it is not further sampled. This approach easily extends into simultaneous simu-
lation of multiple ensembles. The entire multi-ensemble simulation is ended only
when all ensembles have either reached their termination criterion, the specified
number of time steps or wall time.

The desired outcome is to sample the properties of metastable systems before
the onset of a phase transition, which can be achieved by properly specifying
the parameters of the present approach. The criteria can also be used for other
purposes, such as explorations subsequent to nucleation processes and cluster/void
precursor evolution. An example for such an observation is presented in Fig. 12
for a bubble nucleation situation, depicting a system before the liquid-to-vapor
transition with emerging voids in the system volume. This simplified figure depicts
only grid points reporting low molecule neighbor counts, corresponding to emerging
voids at the beginning of the phase transition.
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Figure 12: Visualization of grid points that report less than three molecule neighbors in
a system with bubble formation. Grid points shown as + are color coded based on the
reported number of molecule neighbors. Figure axes correspond to the spatial placement
of the grid points within the simulation volume.
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1. Mie potential

In ms2, the potential model type for repulsive and dispersive interactions is selected

in the *.pm file that specifies the molecular model, cf. Listing 1. To select the Mie poten-

tial [1], the user has to set the keyword to SiteType = MIE which has to appear below

the keyword NSiteTypes. For each repulsive/dispersive site of the molecular model the

keywords MIE n = ’#mie parameter n ’ and MIE m = ’#mie parameter m ’ have to be

set to real (or integer) values #mie parameter n and #mie parameter m according to

the Mie potential parameters n and m. Both keywords have to appear above the coordi-

nates x, y, z of each according site, whereas the repulsion parameter n appears above

the dispersion parameter m.

Listing 1: Example file (*.pm) of a two site Mie potential model.

NSiteTypes = 1

SiteType = MIE

NSites = 2

MIE n = 12.25

MIE m = 6.0

x = 0 .0

y = 0 .0

z = 0 .0

sigma = 1 .0

ep s i l o n = 1 .0

mass = 1 .0

MIE n = 11 .9

MIE m = 6.0

x = 0 .8

y = 0 .0

z = 0 .0

sigma = 1 .0

ep s i l o n = 1 .0

mass = 1 .0

NRotAxes = auto
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2. Tang-Toennies potential

In ms2, the potential model type for repulsive and dispersive interactions is selected in

the *.pm file that specifies the molecular model. In case of the Tang-Toennies potential [2],

the user has to set the keyword to SiteType = TT68 which has to appear below the key-

word NSiteTypes, cf. Listing 2. For each repulsive/dispersive site of the molecular model,

the keywords A = ’#tt68 parameter A ’, b = ’#tt68 parameter b ’, alpha = ’#tt68

parameter alpha ’, C6 = ’#tt68 parameter C6 ’ and C8 = ’#tt68 parameter C8 ’

have to appear in the given order below the coordinates x, y, z of the site. They have

to be set to real values #tt68 parameter A , #tt68 parameter b , #tt68 parameter

alpha , #tt68 parameter C6 and #tt68 parameter C8 according to the Tang-Toennies

potential parameters A, b, α, C6 and C8. Further, the keyword shielding = ’#tt68

parameter shielding ’ has to be set to the real value #tt68 parameter shielding to

specify the minimal distance up to which the standard representation of the potential

is used. The keyword has to appear below the parameter mass of each repulsion and

dispersion site.

For the calculation of the chemical potential via thermodynamic integration [3], the

user has to set ChemPotMethod = ThermoInt in the ensemble section in the *.par file.

Next, the keyword LambdaExponent = ’#TI exponent of lambda’ has to be set to the

real (or integer) value #TI exponent of lambda. This value specifies the parameter d

for non-linear scaling, i.e. u(λ) = λdu for λ ∈ [0, 1].

Listing 2: Example file (*.pm) of a single site Tang-Toennies potential model.

NSiteTypes = 1

SiteType = TT68

NSites = 1

x = 0 .0

y = 0 .0

z = 0 .0

A = 4466710

b = 4.18

alpha = 2.48

C6 = 756300

C8 = 10000000

mass = 39.948

s h i e l d i n g = 0.02

NRotAxes = auto
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3. Thermodynamic factor through Kirkwood-Buff integration

Kirkwood-Buff integration (KBI) [4] as well as the calculation of the thermodynamic

factor matrix Γ [4, 5, 6, 7, 8] can be invoked by the keyword KBIFreq = ’#KBI frequency’

that has to appear under the simulation section in the *.par file, cf. Listing 3. The user

has to set #KBI frequency to an integer value. This value specifies the sampling frequency

for center of mass radial distribution functions (RDF) gij which are the essential input

for KBI. The computational effort for KBI is minor [9], sampling each step is thus rec-

ommended for highly accurate RDF. Next, the keyword KBIResetFreq = ’#KBI reset

frequency’ has to be set to the integer value #KBI reset frequency according to a

block length in simulation steps. In these blocks, RDF are independently sampled and

KBI Gij are determined with the approach given by Krüger et al. [10]. In this procedure,

KBI Gij are accumulated block-wise over simulation and their statistical uncertainties

are determined. For applying KBI G∞ij in the thermodynamic limit V →∞ according to

Krüger et al. [11], averaged RDF are required and calculated block-wise. The keyword

KBINumShells = ’#RDF number shells’ has to be set to the integer value #RDF number

shells according to the number of shells for the RDF. Invoking KBI, RDF are sampled

in the entire cubic simulation volume up to
√

3L/2, i.e. beyond the cutoff radius that is

independently specified for explicitly evaluating the intermolecular interactions. Half of

the edge length of the simulation volume L/2 is divided into the chosen number of RDF

shells so that the number of shells is extended automatically by a factor of
√

3.

The *.kbirdf output file contains the block-wise averaged RDF over the entire cubic

simulation volume. Therein, standard RDF as well as corrected RDF according to Gan-

guly and van der Vegt [12] are written with the #KBI reset frequency. The *.kbirav

output file contains the block-wise running averages of KBI Gij, G
∞
ij and their statis-

tical uncertainties for standard KBI as well as the expressions developed by Krüger et

al. [10, 11]. Moreover, each KBI is given for standard RDF and corrected RDF [12]. The

simulation result file *.res contains the thermodynamic factor matrix Γ [4, 5, 6, 7, 8]

for each RDF type and KBI type with statistical uncertainties according to the error

propagation law.
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Listing 3: Example simulation parameter file (*.par) of a binary Lennard-Jones mixture for executing

KBI.

Units = Reduced

LengthUnit = 1 .0

EnergyUnit = 1 .0

MassUnit = 1 .0

Simulat ion = MD

In t e g r a t o r = Gear

TimeStep = 3 .0E- 4

Ensemble = NVT

MCORSteps = 0

NVTSteps = 800000

RunSteps = 15000000

ResultFreq = 1000

ErrorsFreq = 5000

VisualFreq = 0

KBIFreq = 1

KBIResetFreq = 10000

KBINumShells = 500

CutoffMode = COM

NEnsembles = 1

Temperature = 0 .85

Pressure = 0.03

Density = 0.199734749

NPar t i c l e s = 4000

NComponents = 2

PotModel = LJA.pm

MoleFract = 0.05

ChemPotMethod= none

PotModel = LJB .pm

MoleFract = 0.95

ChemPotMethod= none

eta = 1 .0

x i = 1 .0

Cutof f = 5 .0

Eps i lon = 1 .0E10
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4. Orientational distribution function

Sampling of the orientational distribution function (ODF) [13] is enabled by enter-

ing the keyword ODFRecordingFreq = ’#ODF recording frequency’ in the ensemble

section of the *.par file, cf. Listing 4. By choosing #ODF recording frequency as an

integer value greater than zero, the user specifies the frequency with which the ODF is

sampled. Due to the high dimensionality of the ODF, it is recommended to sample it

every time step to achieve an adequate data quality within a reasonable time frame. The

frequency of output generation is specified with the keyword ODFOutputFreq = ’#ODF

output frequency’. A single output file is written for the ODF, which is updated with

a frequency specified by the value of #ODF output frequency. The output file does not

list the data for all sampling blocks individually and the ODF is not reset. Instead, when-

ever output is generated, the existing output file is overwritten with the data covering the

entire production run up until the last completed time step. The ODF is sampled with a

classic binning scheme. By specifying the value NShellsODF = ’#number of shells for

ODF sampling’ the user chooses into how many segments the sampling radius of the ODF

is divided. The sampling radius always equals the cutoff radius. The number of segments

for the cosines of the angles ϕi and ϕj is specified with the keywords nPhiODF = ’#number

of segments of cos(ϕi) and cos(ϕj) for ODF sampling’ and the number of segments

for the angle γ is specified with nGammaODF = ’#number of segments of γ for ODF

sampling’.

The output file first lists the normalization values for each radial shell of each component

pair. Subsequently, the ODF values for each component pair and each bin are listed in a

table. Each bin is referred to by its coordinate values at the center of the segment. I.e.,

if a cutoff radius of 4.5 σ is chosen and divided into three radial segments, the length of

each segment is 1.5 σ. The values for the intermolecular radius r listed in the output file

are then 0.75 σ, 2.25 σ and 3.75 σ, referring to the value of r in the center of the first,

second and third radial segment, respectively.
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Listing 4: Example simulation parameter file (*.par) of the pure fluid R32 for sampling ODF.

Units = SI

LengthUnit = 3 .5

EnergyUnit = 100 .0

MassUnit = 40 .0

Simulat ion = MD

TimeStep = 5E- 4

Ensemble = NVT

NVTSteps = 50000

RunSteps = 1000000

ResultFreq = 1000

ErrorsFreq = 5000

VisualFreq = 0

CutoffMode = COM

NEnsembles = 1

Temperature = 300

Density = 20

PistonMass = 1 .0E- 4

NPar t i c l e s = 1000

NComponents = 1

PotModel = R32 .pm

MolarFract = 1 .0

ODFRecordingFreq= 1

ODFOutputFreq = 1000000

NShellsODF = 3

nPhiODF = 40

nGammaODF = 36

Cutof f = 4 .5

Eps i lon = 1 .0E10
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5. Thermal diffusion in binary mixtures

In ms2, the thermal diffusion coefficient is calculated with the Green-Kubo formalism,

which requires the same input parameters in the *.par file from the user as required for

other transport properties in the previous implementation, e.g. diffusion coefficients, shear

viscosity, thermal and electrical conductivity. Therefore, the keyword CorrfunMode= YES

has to appear under the simulation section in the *.par file and the ensemble-specific key-

words StepsCorrfun, Corrlength, SpanCorrfun, ViewCorrfun and ResultFreqCF as

implemented in previous versions of ms2. Additionally, the user has to specify the partial

molar enthalpy for each component in reduced units employing the keyword PartMolEnt=

’#partial molar enthalpy’ in the *.par file, cf. Listing 5. Note that if the keyword

PartMolEnt is not given in the *.par file or its value is set to zero, ms2 will not calculate

the thermal diffusion coefficient. However, the values of the phenomenological cross-

coefficients L1E and LE1 as well as the thermal conductivity will be calculated, neglecting

the effect of the partial molar enthalpy, and the resulting values will be written into the

*.res file with the corresponding remark for the users.

The *.rtr output file, containing the averaged correlation functions and their in-

tegrals, was extended with the corresponding values for the phenomenological cross-

coefficients. It should be noted that, unlike other transport properties, these correlation

functions are not normalized with their initial value, therefore they do not start at unity.

In the following, an example of how to obtain the partial molar enthalpy is given.

In the case of binary mixtures, it is determined in two steps. First, the residual molar

enthalpy of the mixture hres is calculated in the isobaric-isothermal (NpT ) ensemble over

a wide composition range around the required state point. Thereupon, the total enthalpy

h is calculated by adding the ideal part hid to the residual enthalpy hres. An appropriate

function h = f(xi) is fitted by a least square optimization to the resulting data for the

composition dependence of the total molar enthalpy. The partial molar enthalpy is then

calculated by

hi = h+ xj

(
∂h

∂xi

)
.

In case of that hid is the same for both mixture components, the partial molar enthalpy can

directly be determined from the values of the residual enthalpy. For mixtures consisting

of more than two components, more simulations are required to obtain the appropriate

function for the total enthalpy.
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Listing 5: Example simulation parameter file (*.par) of the binary mixture argon + krypton for sampling

the thermal diffusion coefficient.

Units = SI

LengthUnit = 3.405

EnergyUnit = 119 .8

MassUnit = 39.944

Simulat ion = MD

In t e g r a t o r = Gear

TimeStep = 6.95658E- 4

Ensemble = NVT

MCORSteps = 100

NVTSteps = 6000000

NPTSteps = 100000

RunSteps = 12000000

ResultFreq = 1000

ErrorsFreq = 5000

VisualFreq = 0

CutoffMode = COM

NEnsembles = 1

CorrfunMode = yes

Temperature = 95 .2

Pressure = 0 .1

Density = 31.069649165

NPar t i c l e s = 1000

NComponents = 2

StepsCorr fun = 2

Corr length = 4000

SpanCorrfun = 200

ViewCorrfun = 10

ResultFreqCF = 1

PotModel = Ar .pm

MoleFract = 0.6759

PartMolEnt = - 3.823787458

ChemPotMethod= none

PotModel = Kr .pm

MoleFract = 0.3241

PartMolEnt = - 6.979858886

ChemPotMethod= none

eta = 1 .0

x i = 1 .0

Cutof f = 4 .0

Eps i lon = 1 .0E10
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6. Einstein relations

The procedure for sampling transport properties with the Einstein relations, as well

as with the Green-Kubo formalism, requires the compiler flag TRANS=1. To select the em-

ployed calculation procedure, the keyword TransMethod = ’#Einstein/GKEinstein/GK’

was introduced with following options:

- Einstein: Einstein procedure is switched on (Green-Kubo off),

- GKEinstein: Both, Green-Kubo and Einstein procedure are switched on,

- GK: Green-Kubo procedure is switched on (Einstein off), which is the default setting,

cf. *.par file (Listing 6). No other options are needed because the Einstein procedure

uses the same parameters as the Green-Kubo formalism, i.e. Corrlength, SpanCorrfun

and StepsCorrfun.

The meaning of these parameters is outlined in the following. Simultaneously, av-

eraging over several correlation function samples is performed, cf. Fig. S1. The first

correlation function is sampled when the equilibration process has terminated. After

SpanCorrfun time steps, a new correlation function is started. Each correlation function

has the length Corrlength (in time steps) and after the end of the averaging length, a

new correlation function is sampled. Averaging is made over all samples of correlation

functions. The parameter StepsCorrfun stands for the frequency, which determines

how often correlation functions are called. As an example, these parameters could be

set as Corrlength = 30000, SpanCorrfun = 1000 and StepsCorrfun = 2. It is rec-

ommended to set them as multiples of each other.

The result of averaging transport properties over time is written to the file with the

extension *.ecoef (in analogy to the *.rtr files of the Green-Kubo formalism). The final

results are written to the *.res file.
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Figure S1: An arbitrary quantity F as a function of time.

Listing 6: Example simulation parameter file (*.par) of the binary mixture argon + krypton for applying

the Einstein relations.

Units = SI

LengthUnit = 3.405

EnergyUnit = 119 .8

MassUnit = 39.944

Simulat ion = MD

In t e g r a t o r = Gear

TimeStep = 6.95658E- 4

Ensemble = NVT

MCORSteps = 200

NVTSteps = 1000000

NPTSteps = 100000

RunSteps = 20000000

ResultFreq = 1000

ErrorsFreq = 5000

VisualFreq = 0

CutoffMode = COM

NEnsembles = 1

CorrfunMode = yes

TransMethod = Eins t e in

Temperature = 95 .2

Pressure = 0 .1

Density = 31.069649165

NPar t i c l e s = 1000

NComponents = 2

StepsCorr fun = 1

Corr length = 20000

SpanCorrfun = 200

ViewCorrfun = 100

ResultFreqCF = 1
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PotModel = Ar .pm

MoleFract = 0.6759

PartMolEnt = - 3.823787458

ChemPotMethod = none

PotModel = Kr .pm

MoleFract = 0.3241

PartMolEnt = - 6.979858886

ChemPotMethod = none

eta = 1 .0

x i = 1 .0

Cutof f = 4 .0

Eps i lon = 1 .0E10
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The mean-squared displacement (MSD) 〈∆r2(t)〉 and the Non-Gaussion parameter

α2(t) can be invoked in MD simulations with the keyword ALPHA2Freq = ’#Alpha2

frequency’ that has to appear under the simulation section in the *.par file, cf. List-

ing 7. The user has to set #Alpha2 frequency to an integer value which specifies the

sampling frequency of both time correlation functions. Next, the keyword ALPHA2Length

= ’#Alpha2 length’ has to be set to the integer value #Alpha2 length according to

the chosen time correlation function length in simulation steps. Moreover, the keyword

ALPHA2Span = ’#Alpha2 span’ has to be set to the integer value #Alpha2 span in sim-

ulation steps. Time correlation functions are subsequently started when #Alpha2 span

is reached.

The *.a2rav output file contains ensemble averaged time correlation functions 〈∆r2(t)〉
and α2(t) over the chosen time correlation function length #Alpha2 length. Time is given

in reduced units and SI units (in fs) according to the chosen time step ∆t in the *.par and

the sampling frequency #Alpha2 frequency. Moreover, the number of averaged functions

is given in this output file and is written with the frequency of the result file *.res.
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Listing 7: Example simulation parameter file (*.par) of a pure LJ fcc solid for sampling time correlation

functions 〈∆r2(t)〉 and α2(t).

Units = Reduced

LengthUnit = 1 .0

EnergyUnit = 1 .0

MassUnit = 1 .0

Simulat ion = MD

In t e g r a t o r = Gear

TimeStep = 0.001

Ensemble = NVT

MCORSteps = 0

NVTSteps = 200000

RunSteps = 1000000

ResultFreq = 1000

ErrorsFreq = 5000

VisualFreq = 0

ALPHA2Freq = 1

ALPHA2Length = 10000

ALPHA2Span = 100

CutoffMode = COM

NEnsembles = 1

Temperature = 1 .0

Density = 1 .8

NPar t i c l e s = 10976

NComponents = 1

PotModel = LJ126 .pm

MolarFract = 1 .0

ChemPotMethod= none

NTest = 2000

Cutof f = 9 .1

Eps i lon = 1 .0E10
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7. Vapor-liquid equilibria with the NpT plus second virial coefficient method

The more rapid calculation of vapor-liquid equilibria taking advantage of the second

virial coefficient (NpT + SVC method) is specified in the *.par file under the ensemble

section, cf. Listing 8. Specifically, the user has to define Ensemble = NPTSVC. Note that

this method only works if the chemical potential calculation is turned on in the *.par

file, i.e. ChemPotMethod 6= None.

The simulation result file *.res contains results of the liquid simulation run in the

NpT ensemble, the second virial coefficient and all vapor-liquid equilibrium properties.

Furthermore, the compressibility factor ratio for the assessment of the accuracy of the

NpT + SVC method is also written to the *.res file.

Listing 8: Example simulation parameter file (*.par) of the binary mixture nitrogen + oxygen with the

NpT + SVC method.

Units = SI

LengthUnit = 3 .0

EnergyUnit = 100 .0

MassUnit = 50 .0

Simulat ion = MC

Acceptance = 0 .5

Ensemble = NPTSVC

NVTSteps = 20000

NPTSteps = 20000

RunSteps = 500000

ResultFreq = 1000

ErrorsFreq = 5000

VisualFreq = 0

CutoffMode = COM

NEnsembles = 1

Temperature = 80.00

Pressure = 0.033

Density = 35.00

NPar t i c l e s = 864

NComponents = 2

PotModel = N2 .pm

MolarFract = 0.050

ChemPotMethod= Widom

NTest = 3456

PotModel = O2 .pm

MolarFract = 0.950

ChemPotMethod= Widom

NTest = 3456

eta = 1 .0

x i = 1.007

Cutof f = 4 .0

Eps i lon = 1 .0E10
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8. Cluster criteria for nucleation

The identification of clusters/voids is enabled with the option ClusterIsCriteria=yes

in the simulation section of the *.par file, cf. Listing 9. Although it can be applied to

MC and MD simulations, it is recommended to use MD only to sample the thermody-

namic properties of metastable states. The identification should be carried out in suf-

ficiently spaced time intervals that can be specified for each ensemble individually with

ClusterCriteriaFreq. Reasonable values are multiples of 100 time steps. The identifica-

tion operates in two directions, i.e. in vapor→liquid or in liquid→vapor, which are selected

with the option ClusterCriteriaType=’#gridvap / gridliq’. This determines how

ClusterMoleculeCount is utilized. In the vapor→liquid case, where clusters may emerge,

the grid points are checked for greater than or equal to ClusterMoleculeCount. Al-

ternatively, in the liquid→vapor case, grid points are checked for voids with less than

or equal to ClusterMoleculeCount.

The parameter ClusterCriteriaDistance specifies the grid constant ∆L (in σref)

and thus the volume attributed to each grid point Vgridpoint = (2∆L)3. Of course, ∆L

implicitly places an upper limit on the maximum count of molecules that may be assigned

to a grid point. It is not required that the edge length of the simulation volume has to

be an integer multiple of the grid constant ∆L as the algorithm can deal with this case.

To account for small clusters/voids that can temporarily emerge even in stable systems,

the parameter ClusterMaximumAllowed was included. It is a threshold percentage of grid

points of the entire grid and determines how many grid points have to report a density

fluctuation for the ensemble to be terminated. Experience shows that 5 to 10% is a good

choice for smaller systems with < 2000 grid points.

The identification procedure generates two file types. A file with the extension *.grid

contains the positions of the grid points and additional grid properties in human readable

format. A second file with the extension *.clust contains neighbor counts for all grid

points that were sampled, assigning one time instance to a line. Depending on the grid

size, this file can become large. Files are created for all ensembles individually and are

updated with the frequency ClusterCriteriaFreq.

Fig. S2 explains the parameters ClusterMoleculeCount and ClusterMaximumAllowed.

A multi-ensemble simulation was carried out for many densities along one isotherm with

non-terminating criteria settings, while returning grid point neighbor data. Fig. S2 shows

the results after 106 time steps.

A percentage of grid points is specified with ClusterMaximumAllowed that termi-

nates the sampling of the ensemble, when the corresponding number of grid points

signals that the threshold ClusterMoleculeCount was reached. If the parameter pair

ClusterMaximumAllowed=2.0% and ClusterMoleculeCount=4 would have been specified

for the vapor states depicted in Fig. S2, only the stable and first two metastable ensembles
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Figure S2: Percentage of grid points reporting a specified number of neighboring molecules for multiple
densities along one isotherm, sampled over 106 time steps without termination. For orientation, the
corresponding regions of the phase diagram are color-coded.

would have been sampled over 106 time steps, while the other metastable vapor ensem-

bles would have been terminated earlier. Similar considerations apply to the liquid side.

With the parameter pair ClusterMaximumAllowed=2.0% and ClusterMoleculeCount=1,

the two most supersaturated ensembles in Fig. S2 would have been terminated before

reaching 106 time steps.

The present approach was designed to be simple and provide insight into the metastable

region, while ensuring that phase identity of the system is preserved. The current imple-

mentation considers only pure component systems, but can be extended to mixtures.
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Listing 9: Example simulation parameter file (*.par) of the single ensemble simulation of the Lennard-

Jones fluid with cluster criteria enabled. The simulation in this configuration is stopped after 100 time

steps.

Units = Reduced

LengthUnit = 1 .0

EnergyUnit = 1 .0

MassUnit = 1 .0

Simulat ion = MD

In t e g r a t o r = Gear

TimeStep = 0.0025

Ensemble = NVT

MCORSteps = 10

NVTSteps = 100

RunSteps = 1000

ResultFreq = 100

ErrorsFreq = 100

CutoffMode = COM

NEnsembles = 1

C l u s t e r I sC r i t e r i a = Yes

Temperature = 1.219677

Density = 0.142332

NPar t i c l e s = 1372

NComponents = 1

C lu s t e rCr i t e r i aF r eq = 100

Clus te rCr i t e r i aType = gridvap

C lu s t e rC r i t e r i aD i s t an c e= 1 .0

ClusterMoleculeCount = 5

ClusterMaximumAllowed = 0 .0

ClusterIsCvim = No

PotModel = LJ126 .pm

MolarFract = 1 .0

ChemPotMethod = none

NTest = 10

Cutof f = 5 .0

Eps i lon = 1 .0E10
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9. Minor changes with version release 4.0

Pressure calculation with Monte Carlo simulations

MC simulations require potential energy calculations for the translation and rotation

acceptance criteria. Thus, force calculations are not necessary in contrast to MD. How-

ever, these intense force computations must be invoked when pressure is sampled with

MC. Therefore, the keyword OptPressure = ’#yes/no’ under the ensemble section in

the *.par file was set to logicals #yes or #no when pressure sampling was turned on or

off. Due to structural changes and optimizations in the MC code, the force computations

are done most efficiently now. Thus, such as with MD, pressure is throughout sampled

with MC up from this version release and the keyword OptPressure = ’#yes/no’ was

removed.

Helmholtz energy A00 calculation with NV T and NV E ensemble simulations

Residual Helmholtz energy derivatives Ar
mn are determined on the fly with the Lustig

formalism [14] when applying NV T or NV E ensemble simulations in ms2 [15]. Addi-

tionally, for these ensemble types the residual Helmholtz energy Ar
00 is determined by

Ar
00 = −Ar

01 +
n∑

i=1

xiµ
r
i , (1)

if the chemical potential is set to ChemPotMethod 6= None in the *.par file. It was

implemented for pure fluids and mixtures. Results for Ar
00 and its statistical uncertainty

are given in the *.res file.
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Wafai, M. Horsch, M. Bernreuther, T. Windmann, H. Hasse, J. Vrabec, Comput.
Phys. Commun. 185 (2014) 3302–3306.

20


