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Abstract
Criticality has been conjectured as an integral part of neuronal network dynamics. Operating at a
critical threshold requires precise parameter tuning and a corresponding mechanism remains an
open question. Recent studies have suggested that topological features observed in brain networks
give rise to a Griffiths phase, leading to power-law scaling in brain activity dynamics and the
operational benefits of criticality in an extended parameter region. Motivated by growing evidence
of neural correlates of different states of consciousness, we investigate how topological changes
affect the expression of a Griffiths phase. We analyze the activity decay in modular networks using a
susceptible-infected-susceptible propagation model and find that we can control the extension of
the Griffiths phase by altering intra- and intermodular connectivity. We find that by adjusting
system parameters, we can counteract changes in critical behavior and maintain a stable critical
region despite changes in network topology. Our results give insight into how structural network
properties affect the emergence of a Griffiths phase and how its features are linked to established
topological network metrics. We discuss how those findings could contribute to an understanding
of the changes in functional brain networks.

1. Introduction

The criticality hypothesis states that biological neuronal networks are poised to operate at the critical threshold
of a phase transition [1–4]. It offers an explanation to characteristic scaling of power-law activity dynamics
observed in such networks [5–8]. This sheds light on the brain’s information processing capabilities, as critical
operation has been conjectured to optimize computational capability [9, 10], information transmission and
storage [11–13], and signal sensitivity and range [14, 15]. While evidence for critical neuronal dynamics has
been increasing [7, 16, 17], an explanation of how the brain could self-regulate at a precise critical point remains
an open question [18, 19].

It has been shown that certain topological structures present in neuronal networks can cause the emergence
of a critical region [20, 21], substituting a single critical point, which would relax the necessity for fine-tuning
parameters. Quenched disorder in networks can induce rare-region effects, resulting in critical behavior in
an entire parameter region below the critical point, i.e. a Griffiths phase [22, 23]. Griffiths phases have been
observed in synthetic hierarchical modular networks as well as in empirical and biologically inspired networks
[21, 24, 25]. Thereafter, it has been shown that sufficiently heterogeneous modular networks can support a
Griffiths phase without hierarchy [26].

This study is driven by the following question: given a self-regulating system poised at criticality, how would
changes in its network topology affect its dynamics? Topological changes have been observed in functional
brain networks of individuals in diverse states of consciousness, such as induced by psychedelics or anesthetics,
in sleep or in coma [27–34]. The critical properties of a network are strongly determined by its topology
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Figure 1. Schematic modular networks, showing two levels of distinct topological structure; M = 20 modules of size N = 103

are drawn from a power-law degree distribution with exponent γ = 2.7 and connected via a regular intermodular network with
(a) kinter = 3, (b) kinter = 10, and (c) kinter = 32 intermodular links per module. Increasing intermodular connectivity leads to a
non-modular, power-law structure.

[35, 36], and changes in topology can lead to an altered critical point. If the topology of a self-regulating system
that only operates at criticality is changed, it will be forced to adapt. Maintaining critical operation could be
achieved by either adjusting its parameters to the altered critical region, e.g. the rate of activity spread in brain
networks, or by modifying its structure to revert the critical region to its previous parameter range.

In this paper, we investigate how topological properties influence dynamical processes in modular networks
featuring a Griffiths phase. We study which network features are responsible for the emergence of a Griffiths
phase and how one can manipulate its properties. We find a connection between the Griffiths phase width, i.e.
the range of system parameter values that lead to power-law decay, and the network’s topological properties.
In short, we observe that the Griffiths phase can persist in a changing topology and that its width can be
controlled via both intra- and intermodular connectivity. Alterations in the critical region that stem from a
change in either connectivity can be counteracted by tuning the opposing structure. We argue that this could
provide a mechanism of self-regulation in modular systems that operate at criticality and add to the functional
benefits of modularity.

Our results give insight into how the structural properties of modular networks lead to the emergence of
a Griffiths phase and connect it to established topological metrics. We highlight the importance of low global
efficiency and propose that it is a central feature in this context. We suggest further inquiry into other artificial
modular networks or empirical networks, such as brain networks.

Finally, we hypothesize how an altered Griffiths phase could be connected to the topological changes
observed in functional brain networks during altered states of consciousness. If consciousness relates to crit-
ical operation, could an increase in Griffiths phase width be connected to the reported changes in conscious
quality under the influence of mind altering substances?

This paper is structured as follows: in the Methods section we introduce the modular networks, the epi-
demiological model and our approach to analyze the Griffiths phase. In the Results section we visualize the
topological disorder in the modular networks. We show how a change in inter- and intramodular connectivity
affects the Griffiths phase and topological network metrics. Finally, we discuss our results.

2. Methods

We explore how topological changes influence the Griffiths phase by simulating the susceptible-infectious-
susceptible (SIS) propagation model [37, 38] on synthetic modular networks. We choose the modular topology
introduced in reference [26] because, to our knowledge, it is the simplest modular structure reported in the
literature that induces extensive Griffiths phase effects with different propagation models. The modular net-
works consist of a loosely connected ensemble of modules and offer a direct way to manipulate intra- and
intermodular connectivity individually. An illustration of the networks can be seen in figure 1 for different
numbers of intermodular links. With increasing intermodular connectivity the modular networks converge to
a non-modular power-law structure.

2.1. Constructing the modular networks
We construct the networks by generating and randomly interconnecting M modules of size N, each module
drawn from the same power-law degree distribution Pintra(k) ∼ k−γ . For simplicity, we generate the networks
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with modules of equal size and intermodular connections, leading to a random regular intermodular structure
of degree kinter. This architecture is referred to as a monodisperse modular network [26]. Detailed instructions
to generate the networks are given in appendix A.1.

We consider networks with M = 1000 modules consisting of N = 1000 nodes each. The minimum degree
in each module is kmin = 3, and the cut-off is set to kmax, corresponding to the average maximal degree

〈kmax (N)〉 ∼ N
1

γ−1 of a power-law network generated by the configuration model [39]. This cut-off leads
to a distribution of critical points in individual module realizations, creating topological disorder within the
modular networks. A discussion of how the cut-off choice impacts SIS dynamics in power-law networks is
given in reference [40].

2.2. Dynamical spreading process
For the activity density decay analysis, we utilize the SIS spreading process. It was originally introduced as an
epidemiological model for diseases that do not confer any immunity [41]. A population is compartmentalized
into susceptible and infectious members. Infectious members spread a disease to susceptible members with
rate λ and recover with rate μ, which is set to unity without loss of generality. After recovery an infectious
member is again susceptible to reinfection. The SIS model features an absorbing state phase transition: a critical
spreading rate λc separates a stationary from an absorbing phase. Above λc, the system converges to a stable
density of infected/active members ρ. Below λc, the disease/activity eventually dies out. Due to its minimal
assumptions, the SIS process is readily applicable in contexts that go beyond epidemiology and serves us as a
simple dynamical model to evaluate how topology influences critical behavior.

In a network model each node represents a member of the population and infected nodes spread activity
to every susceptible neighbor node, which results in a high susceptibility to degree variations. The SIS process
is a continuous-time Markov chain and its dynamics in a network can be simulated with the statistically exact
Gillespie algorithm [42]. In the present study, we use an optimized version of the algorithm that reduces the
computational load of the simulation [43]. Our implementation follows the description in [26] and is detailed
in appendix A.2.

2.3. Susceptibility
An important quantity in the analysis of complex, coupled systems is the susceptibility. It diverges when a
system undergoes a phase transition in dynamical spreading processes and can be utilized to calculate the
critical threshold. We consider the susceptibility defined as follows [44, 45]:

χ = N
〈ρ2〉 − 〈ρ〉2

〈ρ〉 . (1)

The average activity density 〈ρ〉 was computed via the quasistationary (QS) method, where the system is kept
in a QS state by returning it to a previous state whenever the activity dies out [46]. During the initial m time
steps of a simulation the state of the system is saved. At each subsequent time step, a randomly chosen saved
system state is overwritten by the current state with probability pQS. If the process reaches the absorbing state
without any infected left, Ninf = 0, the system is returned to a randomly chosen saved state.

We used m = 70 saved states and an overwriting probability of pQS = 0.01, for which the system converges
to a QS state. Then, the nth moment of activity density is estimated by taking the respective temporal average
of the steady state

〈ρ(t)n〉 = 1

T

T∑
t=t′

ρ(t)n, (2)

where T denotes the observation period, and t′ is set large enough to discard the initial dynamical transient
before the QS state is reached.

2.4. Activity density decay analysis
We study the Griffiths phase by performing an activity density decay analysis, as described in the following.
Starting with a fully active network, we monitor the density of active nodes ρ over time, averaged over multiple
runs and network realizations. We use the spreading rate λ as a control parameter and ρ serves as the order
parameter. By exploring a range of λ values we observe an extended region showing power-law decay of ρ(t) in
the transition from subcritical absorbing states—characterized by exponential decay—to supercritical steady
states. This extended region of slow decay is the signature of a present Griffiths phase [21, 26].

The range ΔGP of the power-law decay region is determined by the margin between the critical point λc,
defined as the highest value of λ that does not lead to a steady state, and the lowest spreading rate that shows
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power-law decay λlow, determined by the topological properties of the modules:

ΔGP = λc − λlow. (3)

Increasing the intramodular connectivity of a modular network to the limit at which it becomes non-modular,
its critical point converges to the lower boundary of the Griffiths phase λc ≈ λlow, annulling any Griffiths phase
effects. We therefore identify λlow as the critical point of this non-modular network that has the same structure
as a single module, but the size of all modules combined.

2.5. Determining λc and λlow

Susceptibility diverges when a system undergoes phase transition in dynamical spreading processes and can be
utilized to calculate the critical threshold [45]. A Griffiths phase is accompanied by an extended region of high
susceptibility, which makes this approach challenging. We therefore measure λc by increasing λ in the density
decay simulations until a value is reached that shows a steady state, and is therefore above the critical point. λc

is then taken as the value midway between the first value above the critical point and the last value below it.
The range between these rates is taken as the error. It should be noted that the error is not a standard deviation,
since the likelihood of finding the true critical point within the error region does not have a Gaussian profile.

At the lower end of the Griffiths phase, the power-law decay transitions into exponential decay continu-
ously. To determine a distinct λlow that separates the regions within and below the Griffiths phase, we addi-
tionally take into account how the decay behavior is influenced by changes in intermodular connectivity. By
increasing the intermodular connectivity, we lower λc until we reach a non-modular structure that is equiv-
alent to a single module of size M · N and has a critical point λc′ . The decay behavior for any λ below λc′ is
not significantly affected by the change in intermodular connectivity (see supplementary material). However,
any λ above λc′ , that lies in the Griffiths phase at low kinter, will lead to a steady state when kinter is increased.
Therefore, λc′ = λlow is the natural lower limit of the Griffiths phase.

In short, to determine λlow, we generate non-modular networks of size M · N and determine their critical
point via susceptibility peaks. Note that the modular networks can be seen as diluted power-law networks,
similar to the diluted Ising lattice, in which the Griffiths phase was originally proposed [22]. λlow is the critical
point of the non-diluted network and λc is the heightened critical point of the diluted network. The Griffiths
phase lies in λlow < λ < λc. This dilution is systematically scanned via the number of intermodular links kinter.

2.6. Averaging over multiple networks
The intermodular links are assigned at random in each network realization, which leads to a slightly varying λc

and differing decay behavior, when kinter is increased. Above kinter = 10, it is necessary to average over multiple
networks to observe consistent power-law decay within the Griffiths phase. However, by increasing the num-
ber of modules to M = 104, we can observe a consistent Griffiths phase in single network realizations up to
kinter = 100. If we increase the intermodular connectivity beyond kinter = 100 the decay transitions into the
decay of a non-modular power-law network even for very large modular networks. Further details can be
found in figure A2 of the supplementary material (https://stacks.iop.org/JPCOMPLEX/02/035023/mmedia).

2.7. Topological metrics
The structural properties of the modular networks change when generated in different configurations. To
characterize these changes we utilize various topological metrics. Global efficiency [47] is defined as

E =
1

N(N − 1)

∑
i�=j∈G

1

d(i, j)
, (4)

with total number of nodes N and geodesic distance d(i, j) from node i to j in graph G. It measures how well
information can be exchanged within a network. It scales inversely to the characteristic path length and is high
in integrated networks with low diameter and low when a network is segregated.

We also calculate the geodesic entropy of the networks. Geodesic entropy [48] is a measure for how dis-
tributed the geodesic distances for a given node to all other nodes are. We calculate it by first determining
the probabilities pi(r) that a given node i ∈ G is of distance d(i, j) = r to a randomly chosen node j ∈ Ḡ with
Ḡ = {j|j ∈ G\{i}}

pi(r) =
1

N − 1

∑
j∈Ḡ

δd(i,j),r (5)

where r lies in the interval 1 � r � rmax with rmax = maxj∈ Ḡ[d(i, j)]. The geodesic entropy of the ith node is
then given by

si[pi] = −
rmax∑
r=1

pi(r) log pi(r) (6)
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Figure 2. Dynamic susceptibility χ (cf equation (1)) of 60 individual, disconnected modules of size N = 103 with γ = 2.7
(colored curves) and their average (black curve). The intramodular connectivity in panel (b) is reduced by subtracting 2 from the
degree of each node during the generation of the module. An extended region of high susceptibility is revealed by averaging the
susceptibility of an ensemble of modules. With increasing module size the height of the peaks increases and diverges in the
infinite-size limit (cf figure A2(a) in the supplementary material).

and the characteristic geodesic entropy by taking the average over all nodes in the network

Sgeo =
MN∑
i=1

si. (7)

The geodesic entropy allows us to quantify entropic changes due to structural properties, such as altering the
intermodular connectivity in the modular networks. This leaves the degree distribution unchanged and cannot
be measured in the entropy of the degree distribution.

To measure entropic changes connected to the intramodular connectivity, we use the degree entropy

Sdeg[P(k)] = −
kmax∑
k=1

P(k) log P(k). (8)

Another quantity we evaluate is the extended, local clustering coefficient [49]. It reveals neighbor relations that
go beyond direct connectivity and is defined as follows:

c(d)
i =

|{{u, v}; u, v ∈ Ni|dḠ(u, v) = d}|(
|Ni|

2

) (9)

with the set of neighbors Ni of node i. It measures the ratio between the number of pairs in Ni whose distance is
d in G(V\{i}) and the total number of pairs of neighbors. At d = 1 it returns the standard clustering coefficient.
We calculate the extended clustering coefficient with a function from the graph-tool library in Python [50].

3. Results

3.1. Module susceptibility
Figure 2 shows the susceptibility of individual, that is, disconnected, network modules. Individual module real-
izations have large variations in the number and connectivity of high-degree outlier nodes [40]. This leads to
varying critical points with the SIS, which can be seen in shifting peaks of dynamical susceptibility. Connecting
these modules sparsely leads to modular networks that are non-self-averaging and have locally varying dynam-
ics. For each λ in the Griffiths phase the system is globally subcritical, but has modules that have supercritical
dynamics. Activity within these modules persists for longer, leading to reactivation of dynamics in other mod-
ules and power-law decay of activity in the modular networks in an extended parameter region. This expresses
how locally varying dynamics, caused by topological disorder, build the basis of the Griffiths phase.

3.2. Changing the intermodular connectivity
Figure 3(a) shows how the Griffiths phase width ΔGP depends on intermodular connectivity. We randomly
distribute a fixed number kinter of new intermodular connections per module, while keeping the degree distri-
bution and intramodular connectivity unchanged. The number of added intermodular links is small enough
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Figure 3. (a) The increase in kinter leads to a decline in λc and ΔGP, as the power-law decay below λc remains unchanged, with
λlow = 0.1. (b)–(d) Activity density decay simulations in modular power-law networks with exponent γ = 2.7 with
M = N = 103 modules and nodes with equal intra- and increasing intermodular connectivity, averaged over 7–350 runs in 10
networks each. The lowest decay lines correspond to λlow. λc is located between the two highest decay lines.

to not significantly change the networks modularity. The increase in kinter leads to a reduction of the Griffiths
phase width ΔGP.

Figures 3(b)–(d) display detailed activity density decay simulations for modular networks with different
numbers of intermodular connections (cf orange bars in figure 3(a)). The reduction of ΔGP stems from the
reduction of λc, since λlow remains constant.

3.3. Changing the intramodular connectivity
Introducing or removing intermodular links has a consistent influence on dynamic behavior, because of the
regular intermodular structure. The influence of intramodular links depends on where the links are attached
to: high-degree nodes have a stronger individual influence on the SIS dynamics than low-degree nodes. We
therefore lower intramodular connectivity via two approaches: the first one is to reduce each node degree
k > 3 by a constant value, maintaining the minimal degree of kmin = 3, which creates a shift in the degree
distribution. We named this approach the offset method. This method affects every node in the network and
since most nodes are of low degree, it changes the intramodular connectivity via the low-degree nodes.

The reduction of intramodular connectivity via the offset method increases λc, such that the whole curve
λc versus kinter moves upwards (cf figure 4). λlow is also increased, but less than λc which leads to an increase
in ΔGP with lowered intramodular connectivity. One can observe that at low intermodular connectivity, λc

and ΔGP are more susceptible to changes in inter-than intramodular links. This behavior can be better under-
stood by considering how topological metrics are affected by the changes in connectivity, in particular global
efficiency.

Our second approach (exponent method) to lower the intramodular connectivity is to increase the power-
law exponent of the degree distribution γ. This leads to a lower chance to draw high-degree nodes, which
reduces connectivity via the outlier nodes of the modules. This method leads to an increase in λc and λlow at
the same rate, which moves the Griffiths phase to a different parameter region (cf figure 5(b)).

Both the offset and exponent methods increase λc and reduce the average degree 〈k〉. However, since a
higher γ-value reduces the average degree 〈k〉 via fewer, predominantly high-degree nodes, it has a stronger
influence on λc per removed link, as we can see by comparing figures 5(a) and (b).
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Figure 4. (a) Griffiths phase widths ΔGP and (b) critical transmission rate λc reduction in modular, power-law networks with
exponent γ = 2.7 with M = N = 103 modules and nodes with increasing intermodular connectivity at different levels of
intramodular connectivity reduction. Introducing a degree offset shifts the decline of ΔGP and λc into a different parameter
region. Each line in (a) converges to zero, each line in (b) to the respective λlow. Density decay simulations for equal λc along the
black line are shown in figure 6.

Figure 5. Upper (λc) and lower (λlow) limit of the Griffiths phase width ΔGP in modular power-law networks with
M = N = 103 modules and nodes at (a) kinter = 3 (blue/top), 10 (orange/middle), and 32 (green/bottom) and (b) kinter = 10
with decreasing intramodular connectivity. (a) Reducing the degree of each node leads to an increase in ΔGP as λc increases
steeper than λlow (red). The black, horizontal line marks equal critical point with dynamics showcased in figure 6. (b) Increasing
the power-law exponent γ of the degree distribution reduces the degree of outlier nodes. It keeps ΔGP constant and moves the
Griffiths phase to a different parameter region. λc scales as ∼ 1/

√
kmax, in accordance with quenched mean-field theory [51].

3.4. Maintaining a stable critical region
As observed in figure 4, network configurations with different connectivity can have equal values of either
λc or ΔGP, if kinter and offset are tuned accordingly. In figure 6, we see the density decay of three networks
with varying topology tuned to equal λc. The networks at higher offsets have an increased λlow, and therefore
reduced ΔGP. The three networks still have a significant overlap in power-law decay region, despite highly
varying global efficiency and both geodesic and degree entropy (cf figures 7 and 8).

3.5. Measuring the topological changes
Increasing intermodular connectivity leads to a decrease in the average shortest path length between nodes and
an increase in global efficiency. Figure 7 depicts the relation between global efficiency, intermodular connec-
tivity and the Griffiths phase. The increase of global efficiency due to the increase in intermodular connectivity
is particularly strong at low intermodular connectivity, when the modular networks are close to segregation.

At kinter = 2 the networks consist of disconnected rings of modules. The networks scale as large-worlds and
global efficiency quickly goes to zero when system size is increased via the number of modules. For kinter � 3
the networks are a connected small-world, due to the random regular intermodular structure, which leads
to a drastic reduction in average path length. Global efficiency scales inversely to average path length and
jumps from zero to a finite value. This is caused by the presence of a percolation phase transition [52] between
kinter = 2 and 3 and global efficiency can serve as its order parameter. Close to the transition, global efficiency
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Figure 6. Activity density decay around the critical (λc) and lower (λlow) limit of the Griffiths phase in modular power-law
networks with exponent γ = 2.7 with M = N = 103 modules and nodes and intra- and intermodular connectivity as marked by
the black lines in figures 4 and 5(a). The networks have intra- and intermodular connectivity tuned contrary to each other and
have the same λc and similar power-law decay regions. A higher offset leads to an increased λlow and decreased ΔGP, a higher
kinter leads to faster decay to steady states above λc and shorter lifetimes below. From left to right the networks global efficiency
increases and entropy decreases, as shown in figures 7 and 8(a).

Figure 7. Global efficiency E (cf equation (4)) in modular power-law networks with exponent γ = 2.7 with M = N = 103

modules and nodes, with increasing intermodular connectivity. From kinter = 2 to kinter = 3 the networks undergo both a
percolation phase transition and a transition from large-world to small-world networks. The coloring distinguishes the values at
which extended power-law decay was observed (blue) and where it transitions into exponential decay (green). The density decay
at the orange triangles in is shown in figure 6. The inset shows λc and ΔGP scale linearly with global efficiency.

is therefore highly sensitive to changes in kinter. The inset in figure 7 shows that this sensitivity extends to λc and
ΔGP, as they scale linearly with global efficiency. Note that kinter is a discrete quantity, but could be translated
into a continuous chance of intermodular connection to explore at what average 2 < 〈kinter〉 � 3 the transition
takes place.

Geodesic entropy is also connected to the average path length and decreases with increasing intermodular
connectivity, as the variability of shortest paths decreases (cf figure 8(a)). In the inset plot we can see that in
modular networks a higher geodesic entropy correlates with a larger Griffiths phase width. Degree entropy on
the other hand is higher with larger intramodular connectivity (cf figure 8(b)).

Despite a reduction in average degree, when intramodular connectivity is reduced, local clustering and local
efficiency remain unchanged. This indicates that local clustering is not responsible for the changes observed in
the Griffiths phase. We therefore evaluate the extended clustering coefficient [49], which is a generalization of
the traditional local clustering coefficient. While the local clustering coefficient measures connectivity in the
direct neighborhood of a node, the extended clustering coefficient can additionally detect clusters of greater
distance. Figure 9 shows that the reduction of intramodular connectivity increases the distance of extended
clustering and therefore leads to a less clustered structure. A change in intermodular connectivity does not
affect extended clustering. On the other hand, intramodular connectivity does not affect global efficiency.
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Figure 8. (a) Characteristic geodesic entropy Sgeo (cf equation (7)) at γ = 2.7 with increasing intermodular connectivity and
(b) degree entropy Sdeg (8) with decreasing intramodular connectivity in modular power-law networks with M = N = 103

modules and nodes. Geodesic entropy is not significantly affected by changes in intramodular connectivity and degree entropy is
independent of intermodular connectivity. The density decay at the orange triangles in panel (a) is shown in figure 6. The inset
show the correlation between the geodesic entropy λc and ΔGP.

Figure 9. Averaged, extended clustering coefficient C(d) = 1
MN

∑MN
i=1 c(d)

i (cf equation (9)) in modular power-law networks with
exponent γ = 2.7 with M = N = 103 modules and nodes at kinter = 3 and decreasing intramodular connectivity. The standard
averaged local clustering coefficient (d = 1) implies no clustering and remains unchanged with rising degree offset. Yet deeper
measures (d = 3, 4) reveal a clustered structure that shifts to a more distant clustering (d = 5, 6) with rising degree offset.

4. Discussion

The detection of a Griffiths phase in complex networks could be an important step towards understand-
ing critical behavior in biological systems [21]. An extended critical region in brain-like networks supports
the hypothesis that the brain operates at criticality [1] and relaxes the necessity for fine-tuning parameters
around a precise critical point. Previous work has demonstrated that structural heterogeneity and modular-
ity—both features of human brain networks [53–56]—are sufficient conditions to enable a Griffiths phase
[26]. Functional brain networks have been shown to change significantly in different states of awareness, such
as sleep, coma, anesthesia, or under the influence of psychedelics [28, 32–34, 48]. Studies indicate a neural
correlate between brain network integration and consciousness states [29, 30, 57–59], which can be quantified
using topological network metrics such as the clustering coefficient, local and global efficiency and entropy
[27, 31, 48]. We argue that the observed changes in topological metrics, especially during psychedelic states,
can influence critical behavior by altering the expression of an existing Griffiths phase.

We construct modular networks with varying intra- and intermodular connectivity and explore numeri-
cally how the connectivity structure affects the critical behavior of a spreading process and evaluate the link
between the observed changes and topological network metrics. We show that an increase in either connectiv-
ity leads to a decline of the networks critical point, hence a reduction of the Griffiths phase width. In addition,
a decrease in intramodular connectivity leads to a slight increase in the lower limit of the Griffiths phase.
Intra- and intermodular connectivity therefore offer two independent ways of controlling critical dynamics
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and can be used as a tuning mechanism for criticality. If one connectivity structure is changed, we can adapt
the opposing structure, leading to networks with differing topology, but identical critical points and similar
Griffiths phase regions.

We observe that global efficiency is a central measure in the emergence of a Griffiths phase. The Griffiths
phase width scales linearly with global efficiency in the modular networks. Global efficiency captures the overall
reduced information exchange, in the sense defined by Latora and Marchiori [60], at low intermodular con-
nectivity which enables rare regions effects. The linear relation between global efficiency and Griffiths phase
width could play an important role in the study of real networks. Evaluating critical behavior using dynamical
models can be computationally demanding and often involves large networks or multiple samples. In con-
trast, global efficiency is directly accessible in a single network, regardless of its size. Our results suggest that
one could use global efficiency as a preliminary step in the investigation of dynamic critical behavior. Never-
theless, it is important to emphasize that we show the linear relationship between global efficiency and Griffiths
phase only for modular networks. This conclusion would need to be corroborated for other types of network
topology in further studies. Global efficiency is also dependent on network size, and one should be careful in
comparing networks with different size.

We find that the increase of Griffiths phase width in the modular networks is correlated with an increase in
entropy. Recent research suggests that psychedelics disrupt the hierarchy of brain network topology [61, 62],
increase entropy in functional brain networks [27, 48, 57, 63] and increase network segregation, indicated by
increased shortest path length [27, 59] and decreased global efficiency [27].

If the brain features a Griffiths phase, would the increase in functional brain network segregation be
reflected by an increase in Griffiths phase width in the biological network, similarly to the synthetic networks
we present here? An increased Griffiths phase width via a heightened critical point moves activity rates that
were previously supercritical to the critical region. This extended region gains the heightened sensitivity to
stimuli that is associated with a Griffiths phase [21].

To relate the presented study to functional brain connectivity under psychedelic influence, we have relied
on the assessment that its impact on local brain connectivity can be reflected in the observed functional net-
works [64], obtained from recording brain activity within a time window. Psychedelic substances modulate
anatomical brain connectivity [65–67] in a non-homogeneous way [68], and connections that are more likely
to be significantly active in a specific state may be reflected in the functional networks.

It is important to stress that this study intends to contribute to a basic understanding in how topological
features associated with altered states of awareness could influence dynamical processes on a network and to
create bridges between as of yet unconnected fields of study. For a detailed comparison with experimental
data a less simplistic model would be necessary. Future studies could be focused on such comparisons and on
shedding light on how changes in Griffiths phase features could influence information processing in the brain
and which features are central for optimal brain function, if the brain does indeed operate around criticality.

In the following, we highlight some limitations of our work. The networks are dynamically heterogeneous
with the SIS due to the power-law distribution within the modules. Different propagation models, such as the
contact process, would require a different intramodular structure to achieve a distribution of critical points
among the modules [26] and the structure manipulation would have to be adapted. We expect, however, that
the modulation of the critical point is reproducible in any network with distinct intra- and intermodular struc-
tures and a spreading process that can be separately affected by intramodular properties and changes in average
path length created through alterations in intermodular connectivity.

Intramodular connectivity can be altered via either low or high-degree nodes. Decreasing the degree of
each node by a chosen value affects predominantly low degree nodes and leads to an increase in the Griffiths
phase width. This method is only appropriate for small offsets because large values can distorts the power-
law distribution. By increasing the power-law exponent of the degree distribution we focus the connectivity
reduction to high degree nodes. This keeps the Griffiths phase width constant and moves the Griffiths phase
to a different parameter region. Further research could be focused on how both width and parameter region
of the Griffiths phase could be continuously controlled via the intramodular distribution.

Another interesting area for further research is to evaluate our results in the context of disease spreading.
Contact networks, especially in social communities and due to travel/commuting behavior, are heterogeneous
modular networks. The possible presence of a Griffiths phase could help elucidate long lifetimes of spreading
processes.

5. Conclusion

To conclude, we show that the extension of a critical region in modular networks can be controlled via both
intra- and intermodular connectivity individually. Changes in critical dynamics that stem from a change in
either connectivity can be counteracted by tuning the opposing structure. We find that low global efficiency is
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central in the emergence of a Griffiths phase and conjecture how our results could help elucidate the observed
changes in functional brain networks in non-ordinary states of consciousness.
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Appendix A. Computational details

A.1. Generating the modular networks
The networks considered in this paper are generated through the following steps:

(a) M connected modules containing N nodes are generated via the uncorrelated configuration model,
drawing from a degree distribution P(k).

(b) Multi- and self-edges are randomly rewired within the modules.

(c) kinter stubs are selected in each module during the generation process and preserved for linking to other
modules, so that the overall degree distribution remains unchanged.

(d) The preserved stubs are randomly linked to each other. Linking of stubs within the same module is
prohibited.

(e) The process is iterated until the whole network is fully connected.

A.2. SIS implementation
During the simulation we keep track of the infected/active nodes, their total number Ninf , and their degrees
kinf .

(a) With probability

p =
μ Ninf

μNinf + λkinf
(A.1)

a randomly selected active node becomes inactive. For simplicity, we fix the recovery rate at μ = 1.

(b) With probability 1 − p an active node is selected with a probability proportional to its degree k/kmax. A
randomly chosen neighbor of the node is selected and, if inactive, becomes active. If it is already active,
the simulation continues with (c).

(c) Time is incremented by

τ =
ln(u)

μNinf + λkinf
, (A.2)

where u is a pseudo random number, uniformly distributed in the interval (0, 1). The steps are repeated t
times or until Ninf = 0.
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