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Abstract

The prediction of system outcomes like strains or displacement �elds in real technical systems
is demanding due to the presence of unavoidable uncertainties. These uncertainties should be
considered, for example by di�erent uncertainty models either based on probabilistic, possibilistic
or other approaches. In this contribution, a non-linear stability analysis of a three-dimensional
carbon �ber reinforced plastic (CFRP) considering aleatory and epistemic uncertainties is con-
ducted. For the realistic incorporation of the uncertainties in the �nite element model, thickness
variations and geometrical inaccuracies have been detected in advance by non-destructive testing
on a real structure made of CFRP. Additionally, the material parameters have been de�ned as
stochastic variables based on reference studies in the literature. If the underlying deterministic
model itself is also time-consuming, it can be useful to surrogate the overall numerical simula-
tion. Strains and displacement �elds have been measured in a symmetric three-point bending
test and compared to the numerical predictions produced by arti�cial neural networks (ANN).
A sensitivity analysis is �nally conducted which clari�es the strong dependence of the outcomes
on the �ber volume content, the structural thicknesses and the sti�ness in �ber direction.

Keywords aleatory uncertainty; epistemic uncertainty; arti�cial neural networks (ANN);
carbon �ber reinforced plastic (CFRP); global stability failure

1 Introduction

The failure analysis of real structures is a challenge which can be conducted in two ways: ex-
perimentally or numerically. Real experiments are mostly displacement-controlled and for each
measurement step, the applied load, displacements and strains can be recorded by appropriate
technical devices. Load-displacement or load-strain curves can exemplarily be extracted from the
experimental values. In the numerical way, a non-linear analysis using the incremental-iterative
Newton-Raphson method [2] is usual obtaining load-dependent system outcomes. A non-linear
simulation can be time-consuming, especially in the presence of uncertainties which should be
considered in the input variables. The analysis on a real structure should clarify the use of sur-
rogating the numerical simulation by comparing the achieved results also to the experimentally
determined ones.

Therefore, the focus in this study is on the global stability failure of structural components
made of carbon �ber reinforced plastic (CFRP). This failure mechanism can occur of thin-
walled spatial structures, e.g. of rotor blade components of wind turbines in operation for
which special investigations are mandatory in the design process [3]. On a representative thin-
walled structure, experimental and numerical studies have been conducted like in [17, 31]. It is
assumed that the stability failure is mainly a�ected by material imperfections and geometrical
inaccuracies [10]. Both are unavoidable due to partly hand-made manufacturing processes and
have to be incorporated in the underlying �nite element model. The scattering of material
parameters a�ects the structural sti�ness and consequently the system outcomes like strains and
stresses [30]. The in�uence of geometrical inaccuracies on the stability failure of thin-walled
structures has been numerically evaluated in [5]. As a drawback, the non-linear analysis in the
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presence of the mentioned uncertainties is highly time-consuming. Therefore, Arti�cial Neural
Networks (ANNs) [12] can e�ciently work as a forecast surrogate to predict spatial-temporal
system outcomes [4, 35]. The successful application of ANNs as surrogate forecast model and
its variants like Convolutional Neural Networks for image classi�cation and Recurrent Neural
Networks for audio recognition has been demonstrated extensively, e.g. in [12, 19]. Among the
vast of literature, a systematic introduction is given in [26]. Especially regarding engineering
applications, the conference proceedings [24] and the book [1] present current trends for the
solution of complex engineering problems. In the �eld of uncertainty quanti�cation, neural
networks have been used with fuzzy data in [14] and with polymorphic uncertain data in [13, 11].

The remainder of this paper is organized as follows: The structure, called omega shell sup-
ported by steel pro�les and by a plate made of glass �ber reinforced plastic (GFRP), is described
in detail in Section 2. Section 3 provides �rst the measurements of the geometrical inaccuracies in
advance of and, secondly, the experimental setup during the symmetric three-point bending test.
Due to di�erent uncertainty sources and knowledge about the present uncertainties, a distinc-
tion in aleatory and epistemic uncertainties [18] with di�erent uncertainty models is suggested
as described in Section 4. The numerical results, their comparison with experimental results and
a sensitivity analysis are presented in Section 5. Finally, some concluding remarks are given in
Section 6.

2 Omega shell

In order to observe the in�uence of material and geometrical uncertainties on a numerically
demanding problem, a structural component, a measurement procedure and an experimental
routine have been designed and implemented. Elastic buckling of a CFRP structure has been
chosen, since it is strongly dependent on various uncertainties, especially the geometrical imper-
fections (e.g. wall thickness). In order to design an appropriate setup, ful�lling certain condi-
tions is important, for example an easy and cost-e�ective manufacturing incorporating CFRP
materials, the possibility to observe buckling with optical measurement devices and creating a
designated area for the buckles to form. The proposed structure, see Fig. 1, is a folded structure
with an Ω-shaped cross-section and thin-walled, tilted webs (referred to as A and B). It is 1.20 m
long, 0.88 m wide, 0.40 m high and designed to ensure that the �rst buckling modes occur dom-
inantly within the tilted webs. These are about half as thin as the remaining �anges (buckling
strength is proportional to the third power of the wall thickness [10]) and dominantly undergo
compressive stress in a symmetric three-point bending test. In a �rst iteration, a quasi-isotropic
laminate layering with a �ber volume content of ϕdes = 55 % has been chosen, consisting of
a [0°/45°/90°/−45°]S set-up for the webs and twice the amount for the �anges, yielding a web
thickness of tw = 3.33 mm and a �ange thickness of tf = 6.66 mm. The design has been made
in cooperation with IPF Dresden (https://www.ipfdd.de). As a local partner, they also friendly
undertook the manufacturing. The calculated mass for the whole CFRP structure (without
GFRP plate and edge reinforcements) is mdes = 9.49 kg. The mean values (•̄) of the relevant
mechanical properties of the carbon �bers (Tenax STS40 F13 F24K 1600tex from Teijin Carbon
Europe GmbH [29]) and of the matrix material (EPL 20 epoxy resin and EPH 161 hardener from
R&G Faserverbundwerksto�e GmbH [25]) are presented in Table 1.

The �nished composite shell structure is presented in Fig. 2a. To prevent premature buckling
of the whole structure due to the free edges of the tilted webs, they are strengthened using
specially designed edge supports made of steel U-pro�les, see Fig. 2b for reference. They can
seamlessly slide onto the free edges.

The open cross-section tends to spread wide open in x-direction during the load application
in the test setup. A GFRP plate with high in-plane sti�ness is glued in advance to the bottom
of the structure to eliminate this problem.

https://www.ipfdd.de
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Table 1: Mechanical properties of �bers (f) and matrix (m) material

Fibers (f) Matrix (m)

Ē‖f = 238 000 MPa
Ēm = 3150 MPa

Ē⊥f = 16 000 MPa
Ḡ⊥‖f = 50 000 MPa Ḡm = 1150 MPa

ν̄⊥‖f = 0.270 ν̄m = Ēm/
(
2Ḡm

)
− 1 = 0.370

%̄f = 1770 kg m−3 %̄m = 1190 kg m−3
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Figure 1: CFRP structure with load and support

(a) Assembled CFRP structure with
GFRP plate

(b) Steel reinforcements to support both free edges against pre-
mature buckling

Figure 2: Omega shell and edge reinforcement

3 Measurements and experimental setup

After �nishing the manufacturing process, an initial inspection of the omega shell has been
carried out. Particularly noteworthy is the rather smooth and even surface on the outside, while
the inside one is more uneven and bumpy. The true weight of the structure (without GFRP
plate and edge reinforcements) is mtrue = 10.78 kg. Since the mass of �bers within the matrix is
�xed one can recalculate the true �ber volume content to ϕtrue = 47 %.

In advance of the symmetric three-point bending test, the geometrical imperfections, namely
web thicknesses (Section 3.1) and dimensional deviations of the overall geometry (Section 3.2),
have been measured since they have a signi�cant in�uence on the buckling behavior [10]. Other
imperfections, like material or physical imperfections (for example air voids within the matrix,
initial cracks, variation of material parameters) have not been measured. Nonetheless, they also
tend to have an impact on the buckling behavior, see Section 5.

During the test, an experimental setup enables the continuous measurement of loads, strains
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and displacements, see Section 3.3.

3.1 Web thickness measurement using pulse-echo method

As previously mentioned, the inside surface of the omega shell is not smooth and rather uneven
up to a certain degree due to the manufacturing process. Since the web thickness is only a few
millimeters, even small variations can have a meaningful in�uence on the buckling behavior.
The actual thickness measurements have been performed using the ultrasonic pulse-echo system
MUSE Z-400. Both web areas have been scanned with a minimum resolution of 150 µm resulting
in over 44 million data points per square meter. The overall results are displayed in Fig. 3, where

(a) Measured web thickness on web A
and B ampli�ed by a factor of 50
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(b) Thickness distribution of web A in millimeters

Figure 3: Ultrasonic measurement of the web thickness

the thickness of the webs is ampli�ed by a factor of 50. Due to some mounting limitations of the
measurement device, it has not been possible to cover the remaining 10 cm in front of every web
edge. The mean thickness of both webs µtrue ≈ 3.61 mm is about 8 % larger than the designed
thickness tdes = 3.33 mm.

3.2 Global geometry measurement using fringe projection method

An optical measurement using the fringe projection method has been used to get information
about the actual shape of the structure. Here, a speci�c pattern of di�erent fringes is projected
onto an object and measured using a calibrated camera. After applying data processing tech-
niques, the results are presented as triangular mesh of the geometry. This data can be analyzed
further or compared to the designed geometry. The deviation of the real geometry from the
design is presented in Fig. 4. The numbers indicate the deviation from the perfect geometry in
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Figure 4: Deviations from design geometry in millimeters

millimeters, where positive numbers represent an outward shift, whereas negative numbers repre-
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sent an inward shift. First of all, the overall deviation from the perfect geometry is comparatively
small with a maximum positive shift of 1.3 mm and a minimum negative shift of 1.1 mm based
on the overall dimensions of the structure. It implies that the manufacturing did not introduce
major geometry deviations. Nonetheless, there still are deviations, especially within the webs
which may in�uence the buckling behavior to a certain degree.

3.3 Experimental setup

The main objective of the experimental setup is to induce structural buckling and to observe
corresponding deformations/strains on the surface of both webs, while also recording the applied
displacement and the associated load. Three strain gauges have been applied to measure the
strains on web B, see Fig. 5a. The strain gauges 1 and 2 have been attached in the middle of
web B to measure horizontal and vertical strains and strain gauge 3 has been attached at the
bottom �ange to measure horizontal strains. Web A has been prepared with a black and white
random pattern to use a stereo optic camera system for non-contact deformation and strain
measurement of the whole web area over the entire time. The test setup is displayed in Fig. 5b.

The experiment has been conducted displacement-controlled with a constant rate of 500 µm/min.
This way it is possible to observe the post-buckling behavior of the structure, in case the struc-
ture is loosing sti�ness on a certain path. The whole test has lasted about 30 min including
some short interruptions. The structure has violently failed at a vertical load of 45.36 kN and a
vertical displacement of 11.62 mm with an abrupt crack formation on the inside of the bottom
of the upper �ange. It has clearly been visible during the test that the structure has buckled
almost symmetrically with major deformations on both webs.

(a) Strain gauge arrangement (1: web B horizon-
tal, 2: web B vertical, 3: �ange horizontal)

Measuring
surface (web A)

Load cell

Stereo optic
camera system

Edge
reinforcement

Test machine
facility

Support

(b) Operational test setup with stereo optic camera
system for deformation/strain measurement on web
A

Figure 5: Strain gauge arrangement and test setup overview

4 Uncertainty models

Various uncertainties in the material and geometrical properties are present and have to be
considered in the numerical investigations. Some of them are irreducible due to randomness and
natural variability. Statistical information are at disposal in the literature or from conducted
non-destructive testing. These uncertainties are called aleatory [18] and are quanti�ed by random
variables. In this study, lognormal distributions LN (µ, σ) with µ as mean value of logarithmic
values and σ as standard deviation of logarithmic values are used for all random variables, see
Fig. 6a. Some uncertain parameters are based on limited amount of data, subjectivity or expert
knowledge and no statistical information is given which could reduce the uncertainty. These
uncertainties are called epistemic [18] and can be quanti�ed by non-stochastic variables [22].
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In this study, fuzzy variables with a triangular membership function, called triangular fuzzy
numbers TFN〈a, b, c〉, with support [a, c] and core value b are used, see Fig. 6b [15].

5 10

x1

PDF(x1)

(a) Lognormal distribution:
x1 ∼ LN (µ = 5, σ = 1)

0 1 2 3

1

x2

µ(x2)

(b) Triangular fuzzy number:
x2 = TFN〈a = 0, b = 1, c = 3〉

Figure 6: Uncertainty models

In Section 4.1, uncertainty models for the material parameters are de�ned. In Section 4.2
and 4.3, the measurement data from Section 3.1 and 3.2, respectively, are used to de�ne further
uncertain variables. Finally, a large uncertainty is given for the edge support area, which is
discussed in Section 4.4.

4.1 Material parameters

The omega shell is made of carbon �ber reinforced plastic (CFRP) which is a multilayer composite
consisting of individual unidirectional �ber layers. For each of them, transverse isotropy is
assumed. The material parameters depends on the �ber (f) [29] and matrix (m) [25] properties
which have been experimentally determined [33]. The mean values from Table 1 are used,
together with a coe�cient of variation (COV) of 5 % [34], see Table 2.

Table 2: Uncertain material parameters of �bers (f) and matrix (m) material

Fibers (f) Matrix (m)

E‖f ∼ LN (238000, 11900) MPa
Em ∼ LN (3150, 157.5) MPa

E⊥f ∼ LN (16000, 800) MPa
G⊥‖f ∼ LN (50000, 2500) MPa Gm ∼ LN (1150, 57.5) MPa

ν⊥‖f ∼ LN (0.270, 0.0135)

%f∼ LN (1770, 88.5) kg m−3 %m∼ LN (1190, 59.5) kg m−3

Based on [28], the material parameters E‖, E⊥, ν⊥‖ and G⊥‖ and further dependent material
parameters ν‖⊥, ν⊥⊥ and G⊥⊥ of the unidirectional layer can be calculated in dependence of
the �ber volume content ϕ. The in�uence of a reduction of E⊥ and G⊥‖ on the results caused
by material non-linear e�ects [16, 7] has been investigated. Only small deviations have been
observed, so the material non-linearity is negligible and has been excluded in the following.

Inaccuracies in the manufacturing lead to imperfect undulated unidirectional layers. The
undulation is considered by reducing the sti�ness in longitudinal direction E‖ for which a factor
r‖ ≈ 90 % is usual [33]. In the following, the fuzzy variable r‖ = TFN〈80, 90, 95〉% is de�ned.



7 M. Drieschner, C. Wolf, F. Sei�arth, Y. Petryna

4.2 Web thickness

The design thickness is tdes = 3.33 mm for both webs (A and B). It could be measured by
ultrasonic scanning, see Fig. 3, that the real thickness is spatially varying and about 8 % larger.
All measured thicknesses are displayed in a histogram, see Fig. 7. The mean value for both webs
is µtrue ≈ 3.61 mm and the COV is around 1 %. Based on that, a lognormal distribution for
the web thickness tw ∼ LN (3.61, 0.0361) mm has been de�ned. It is worth mentioning that the
increase of the mean value is more important for the stability analysis of the webs than the small
spatial deviations. Thus, a spatially constant thickness tw has been de�ned in this study. An
extension to a (fuzzy-)random �eld de�nition [27] is possible and can be considered in ongoing
studies.

3.4 3.45 3.5 3.55 3.6 3.65 3.7 3.75 3.8 3.85

0

0.5

1

·106

Thickness intervals [mm]

C
ou
n
ts

[−
]

Web A
Web B

Figure 7: Web thickness: histogram of measurement data using a measurement resolution of
150 µm

4.3 Global geometry deviation

In addition to the web thickness, the global geometry has been measured and deviations from the
original design could been determined, see Fig. 4. The deviations are considered in two di�erent
ways.

On the one hand, triangular fuzzy numbers are de�ned for the o�sets of the web edges
and the upper �ange which are probably caused by "spring-in e�ects" in the manufacturing
process [33]. Two opposite web edges have an o�set of ≈ 1.3 mm, the other ones of ≈ 0.7 mm
and the upper �ange of ≈ 1.1 mm. To investigate the in�uence of the o�sets, triangular fuzzy
numbers ∆wA = TFN〈0, 0, 1.50〉mm, ∆wB = TFN〈0, 0, 0.75〉mm and ∆uf = TFN〈−1.50, 0, 0〉mm
are de�ned with no o�set on the core and maximum o�set on the support.

On the other hand, the initial deformation of the web surfaces has been considered by an
imperfect pre-deformed geometry according to the symmetrical buckling mode. No value for the
maximum de�ection uimp can explicitly be given, so a case study has been conducted in a range
of uimp ∈ [0.00, 10.00] mm.

4.4 Edge support area

The omega shell has been reinforced on both longitudinal edges by steel U-pro�les, see Section 2.
For both webs (A and B) and the upper �ange, the length of the support area is uncertain. It is
assumed, that the reinforcement has an e�ect at least between 30 % and 70 % of the length. The
maximum range has been speci�ed between 5 % and 95 %. Each of the procentual start values
awA, awB and auf is quanti�ed by a• = TFN〈5, 30, 30〉% and each of the procentual end values
bwA, bwB and buf is quanti�ed by b• = TFN〈70, 70, 95〉%.
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fuzzy space (F)

(((((((((hhhhhhhhhinterval space (I)

stochastic space (S)

deterministic model
(

D→ D̃
)

Figure 8: General scheme of a nested fuzzy-stochastic analysis

5 Results

De�ning stochastic variables for aleatory uncertainties and fuzzy variables for epistemic uncer-
tainties simultaneously leads to a nested fuzzy-stochastic analysis. The deterministic �nite ele-
ment model (D) is embedded in the uncertainty space, which generally consists of the stochastic
space (S), the interval space (I) and the fuzzy space (F), see Fig. 8. In this approach, the interval
space is empty and has not to be considered. It is usual that the stochastic space is embedded
in the fuzzy space. The computational costs can be calculated as ttot = ntot · tD = nF · nS · tD
with the number of samples in the fuzzy space nF, the number of samples in the stochastic space
nS and the duration tD of the non-linear stability analysis of the deterministic model. Since the
deterministic model (D), created in the �nite element program ANSYS, is very time-consuming

(tD ≈ 3.5 min), it is replaced by a surrogate model
(

D→ D̃
)
by using arti�cial neural networks

(ANNs).
Individual ANNs have been realized with the open source software Keras [6, 23] for each of

the following outcomes: Strain ε1,z, strain ε2,x, strain ε3,z, each measured by a strain gauge, and
the displacement normal to the web surface in the center uM,norm. 10000 di�erent samples of

p =
(
ϕ,E‖f , E⊥f , G⊥‖f , ν⊥‖f , %f , Em, Gm, %m, r‖, . . .

tw,∆wA,∆wB,∆uf , uimp, awA, awB, auf , bwA, bwB, buf)
(1)

have been created in advance, using 52 values for the vertical load Fz = Fz(t) between 0 kN
and 60 kN. 15% of them have been used for testing the network. The remaining 85% have
been divided in 80% for training and 20% for validating the network [32]. For all ANNs, the
Huber loss function with varying values for δHuber serves as objective function. The hyperband
algorithm [21] and a following grid search [9] leads to "optimal" ANN parameters, some of them
are given in Table 3. The quality of the individual predictions by ANN can be quanti�ed by

the training loss and validation loss values, also listed in Table 3. The surrogate
(

D→ D̃
)
is

assessed as reasonable.
The numerical prediction of the displacement �eld, measured by a stereo optic camera system,

increases the ANN complexity by the spatial component x. Two di�erent approaches are pursued
in the following:

idea 1 creating an ANN for a multidimensional output: (p, Fz (t)) 7→ unorm (x)

idea 2 de�ning the spatial component as ANN input: (p, Fz (t) ,x) 7→ unorm (x)

In the present case, idea 1 leads to an easier ANN architecture with less necessary neurons.
Furthermore, the evaluation of the ANN based surrogate model for the overall displacement �eld
is faster due to the de�nition of a multidimensional output unorm (x). In contrast to idea 1, the
spatial component x is part of the ANN input in idea 2. Consequently, the architecture and the
evaluation is more complex and more costly. But an advantage lies in the higher �exibility for
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Table 3: Some determined "optimal" ANN parameters and ANN quality values

parameter ε1,z ε2,x ε3,z uM,norm

δHuber 0.01 0.01 0.01 0.01
layers 2 2 4 3

neurons per layer 2048→ 512 1024→ 1024 256→ 1024→ 2048→ 2048 1024→ 256→ 512
activation function swish relu relu swish

dropoutrate 0.5 0.5 0.3 0.0
optimizer adam nadam adam adam

training loss 5.51 · 10−3 5.24 · 10−3 7.62 · 10−3 9.06 · 10−6

validation loss 2.23 · 10−3 4.71 · 10−3 5.65 · 10−3 6.55 · 10−4

the evaluation in the spatial component x. The deviation between both ideas is quite small, see
Section 5.2.

Finally, the complete numerical analysis is conducted in MATLAB, mainly by using the
framework PolyUQ [8]. In the fuzzy space, the reduced transformation method [15] by using a
priori fuzzy input dependencies and additional 100 free samples on each of eleven equidistantly
distributed α-levels are used. In the stochastic space, the classical Monte-Carlo method with
nS = 1000 samples on each fuzzy sample is conducted.

In Section 5.1 and 5.2, the experimental and numerical results for the horizontal strain ε1,z at
position 1 and for the displacement normal to the web unorm (x) are presented. For the numerical
investigations, three cases have been considered �rst:

case 1 ϕdes = 55 %, perfect geometry

case 2 ϕtrue = 47 %, perfect geometry

case 3 ϕtrue = 47 %, pre-deformed geometry according to the symmetrical buckling mode with
maximum de�ection of uimp = µtrue = 3.61 mm outward on both webs A and B

For all three cases, the mean value µ (•) and the standard deviation σ (•) have been calculated
in the stochastic space. For both, the membership functions µ (µ (•)) and µ (σ (•)) can be shown
and the center of gravity (COG) has been selected as defuzzi�ed value [20] in the fuzzy space.

To visualize the most in�uential input parameters on the system outcomes, a sensitivity
analysis is �nally conducted in Section 5.3.

5.1 Strain gauge 1

The horizontal strain at position 1 has been measured experimentally with a maximum value
of 1.52 mm m−1, see Fig. 9a and 9b. The reduction of the �ber volume content φ and the
consideration of a pre-deformed geometry increase the fuzzy mean value of the horizontal strain
ε1,z. The COG of the fuzzy mean value in all three cases is lower with a maximum value of
1.30 mm m−1 in case 3. The COG at the maximum load of Fz (t) = −45.36 kN has been increased
compared to the COG of case 1 (≈ 0.77 mm m−1) by approximately 38 % for case 2 and 69 % for
case 3, respectively. Furthermore, case 3 with the pre-deformed geometry is more appropriated
to retrace the experimentally measured values. The experimental curve is completely inside the
support of the fuzzy mean value (e.g. 1.52 ∈ [1.13, 1.54] mm m−1 at Fz (t) = −45.36 kN), even
the experimental curve becomes steeper for higher load values. The calculated fuzzy standard
deviations of all three cases are comparable and are increasing by higher load values, see Fig. 9c.
The rapid increase of the strain values in case 1 from approximately Fz (t) = −17 kN and in case
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2 from approximately Fz (t) = −20 kN is also identi�able in the fuzzy standard deviation. The
COG at the maximum load of Fz (t) = −45.36 kN has been increased compared to the COG
of case 1 (≈ 0.07 mm m−1) by approximately 32 % for case 2 and 46 % for case 3, respectively.
A COV can �nally be calculated, e.g. of approximately 8 % at Fz (t) = −45.36 kN considering
Fig. 9b and 9d.

(a) fuzzy mean value of ε1,z (b) membership function at Fz = −45.36 kN

(c) fuzzy standard deviation of ε1,z (d) membership function at Fz = −45.36 kN

Figure 9: Fuzzy-stochastic output and experimental result for horizontal strain at position 1

5.2 Stereo optic camera system

The displacement �elds just before failure are depicted in Fig. 10a during the experiment, in
Fig. 10b for idea 1 and in Fig. 10c for idea 2. They are qualitatively quite similar. The maximum
de�ection is in the upper part of the web and the buckle is stretched in horizonal direction.
For the numerical results, the COG of the fuzzy mean value has been visualized for all x at
Fz (t) = −45.36 kN. The deviation of the two numerical results is shown in Fig. 10d. Generally,
the values of idea 2 are higher than those of idea 1 in the upper part of the web by a maximum
of 0.97 mm and lower in the lower part of the web by a maximum of 0.39 mm. Around the
maximum de�ection, the deviation between both ideas (compared to the displacement values) is
negligible. In the experiment, the structure has collapsed then with an abrupt crack formation
on the inside of the bottom of the upper �ange.

The evaluation of the displacement in the center of the web uM,norm is shown in Fig. 11a
and 11b. Also here, the experimental curve is steeper than the numerical curves of case 1 and
2 and of case 3 for higher load values. The adjustments in case 2 and case 3 increase also the
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(a) experimental result (b) case 3/idea 1: COG (µ (unorm (x))) [mm]

(c) case 3/idea 2: COG (µ (unorm (x))) [mm] (d) case 3: Deviation of idea 1 to idea 2 [mm]

Figure 10: Displacements normal to web unorm (x) just before failure at Fz = −45.36 kN

displacement values, see Fig. 11a. The e�ect on uM,norm of the pre-deformed geometry in case
3 is smaller than on ε1,z, so the experimental curve is partly outside of the support of the fuzzy
mean value for case 3, e.g. 19.51 /∈ [12.24, 17.38] mm at Fz (t) = −45.36 kN.

(a) fuzzy mean value of uM,norm (b) membership function at Fz = −45.36 kN

Figure 11: Fuzzy-stochastic output and experimental result for displacement normal to web
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5.3 Sensitivity analysis

The system outcomes

y (p, Fz (t) ,x) =


ε1,z (p, Fz (t))
ε2,x (p, Fz (t))
ε3,z (p, Fz (t))

unorm (p, Fz (t) ,x)

 (2)

depend on the uncertain parameters p and on spatial-temporal information. To understand the
sensitivity of y from p, a sensitivity analysis has been conducted resulting in the sensitivity
matrix

G =

(
∂yi
∂pj

)
i=1,...,m; j=1,...,n

=


∂y1
∂p1

∂y1
∂p2

. . . ∂y1
∂pn

...
...

. . .
...

∂ym
∂p1

∂ym
∂p2

. . . ∂ym
∂pn

 (3)

For simpli�cation purposes, the uncertainty has been excluded from p using and varying
only the mean or core values, respectively. The evaluation of y has been conducted at Fz (t) =
−45.36 kN. In Fig. 12, the normalized output variables (ε1,z, uM,norm) are exemplarily depicted
for varying �ber volume content ϕ, web thickness tw, sti�ness in �ber direction E‖f and o�set of
the upper �ange ∆uf .

(a) sensitivity from �ber volume content ϕ (b) sensitivity from web thickness tw

(c) sensitivity from sti�ness in �ber direction E‖f (d) sensitivity from o�set of the upper �ange ∆uf

Figure 12: sensitivity of (ε1,z, uM,norm) at Fz = −45.36 kN from certain input variables

It has been determined that the system outcomes y are especially sensitive from the following
parameters: ϕ, tw, E‖f , r‖ and uimp. All of these parameters are in�uencing mainly the sti�ness
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of the tilted webs and the buckling behavior due to the applied vertical load Fz (t). The structural
sti�ness in �ber direction (‖) is more important than the sti�ness in perpendicular direction (⊥).
That means, that the material uncertainty in parameters like E⊥f , G⊥‖f , ν⊥‖f , Em and Gm is less
important in this application. Furthermore, the geometrical deviations (see Fig. 12d for ∆uf) and
the uncertainties concerning the edge support area are present, but practically negligible. In the
de�ned support with minimum and maximum values (see Section 4.3 and 4.4), the investigated
system outcomes (ε1,z, uM,norm) at Fz (t) = −45.36 kN are only varying with ±5% around the
value determined by using the mean or core values, respectively.

6 Conclusions

In the present study, the global stability failure of a three-dimensional composite structure in
the presence of unavoidable polymorphic uncertainties is investigated numerically as well as
experimentally. The structure is a thin-walled carbon �ber reinforced shell with an omega cross-
section. The shell has been manufactured, measured and loaded until failure in a symmetric
three-point bending test. The measured uncertainties are incorporated in the numerical model
by stochastic variables. Other uncertainties are only vaguely given for which fuzzy variables have
been used. To overcome the computational costs, a surrogate modeling is essential. Individual
ANNs could be founded by the use of the hyperband algorithm and a following grid search for
various system outcomes like strains and displacements. Small training and validation loss values
con�rm the application of ANNs for the numerical spatial-temporal prediction.

The experimental results could be re�ected qualitatively, but quantitative deviations are still
present. The experimental curves are mostly steeper than the numerical ones. For all three
numerically investigated cases, the output fuzzy standard deviations are approximately 8 % of
the output fuzzy mean values by what the in�uence of the stochastic input parameters becomes
visible. The in�uence of the fuzzy input parameters can be seen for example in the support
intervals of the output fuzzy mean values, which are approximately −13 %/+18 % around the
associated COGs. The reduction of the �ber volume content from 55 % to 47 % in case 2 decreases
the sti�ness of the structure and decreases the deviation to the experimentally determined strains
and displacements. In addition, the pre-deformation according to the symmetrical buckling mode
in case 3 decreases the deviation once more and the experimental curve can be better retraced,
especially for smaller load values.

The �nally conducted sensitivity analysis shows that the �ber volume content, the structural
thicknesses and the sti�ness in �ber direction in�uence the investigated system outcomes the
most. Uncertainties in other parameters, especially the material densities, the sti�ness param-
eters perpendicular to the �ber direction or the global geometrical deviations can be neglected
for the investigated system outcomes.
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