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Zusammenfassung

Die vorliegende Arbeit untersucht Übertragungsstrategien für den Zwei-Wege Relais-Kanal.

Für diesen Kanal werden neue erreichbare Ratenregionen gezeigt, und es werden Kodierungs-

strategien erörtert, mit denen diese Raten erreichbar sind. In der Arbeit werden mehrere Pro-

tokolle für die Datenübertragung über einen Zwei-Wege Relais-Kanal vorgestellt und analy-

siert. Diese basieren auf den bekannten Strategien: Decode-and-Forward und Compress-and-

Forward. Im Decode-and-Forward-Protokoll nimmt man an, dass das Relais in der Lage ist, die

gesendeten Daten zu dekodieren. Die Arbeit untersucht verschiedene Szenarien für dieses Pro-

tokoll, die sich darin unterscheiden, wie die Daten an das Relais übertragen werden. Zu diesem

Zweck wird die gesamte Kommunikation in zwei, drei oder vier Phasen unterteilt, in denen je-

weils unterschiedliche Knoten senden und empfangen. Für jedes dieser Szenarien kann eine er-

reichbare Ratenregion angegeben und bewiesen werden. Die Beweise hierfür verwenden zufälli-

ge Codes. Dennoch ist es möglich, ein Kodierschema abzuleiten, das für reale Systeme relevant

sein könnte. Das Schema ist optimal für Kanäle, die gewisse Symmetrie-Eigenschaften aufwei-

sen. Für allgemeine Kanäle ist die vorgeschlagene Kodierung suboptimal; die Arbeit gewährt je-

doch Einsichten, worauf beim Design eines Kodierschemas zu achten ist und durch welche Me-

chanismen Gewinne bei der Übertragung erzielt werden können. Wenn das Relais nicht deko-

dieren kann, so besteht die Möglichkeit, den Empfängern eine hinreichend gute Repräsentation

des Kanalausgangs am Relais zu übermitteln. Dieser Ansatz, genannt Compress-and-Forward,

ermöglicht neue Ratenregionen. Für einige Kanäle ist die so erreichbare Ratenregion größer als

die, welche durch Decode-and-Forward erzielt werden kann. In der Arbeit wird eine einfache

Compress-and-Forward Strategie in mehreren Schritten erweitert. Im ersten dieser Schritt wird

eine komplexere Dekodierstrategie entworfen. Diese Strategie berücksichtigt alle im System

auftretenden Abhängigkeiten. Dadurch kann eine größere erreichbare Ratenregion bewiesen

werden. Der nächste Schritt zur Erweiterung der Ratenregion berücksichtigt die verschiede-

nen Informationsflüsse, die im System auftreten können. Dadurch kann die Strategie des Relais

flexibel an eine unterschiedliche Qualität der Übertragungskanäle angepasst werden. Dank die-

ser Anpassungsfähigkeit erreicht dieses Übertragungsprotokoll für allgemeine Kanäle größere

Raten im Vergleich zu den bis dahin untersuchten Protokollen. In der Arbeit wird zudem ei-

ne Überlagerung von Decode-and-Forward- und Compress-and-Forward-Techniken diskutiert.

Durch die Überlagerung kann das Relais einen Teil der gesendeten Nachrichten dekodieren. Die

nicht dekodierbare Information wird den Empfängern ähnlich wie im Compress-and-Forward-
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Fall übermittelt. Durch die Überlagerung von Decode-and-Forward und Compress-and-Forward

wird ein Abtausch der Vor- und Nachteile beider Verfahren ermöglicht. Die erreichbaren Raten-

regionen für alle vorgestellten Übertragungsstrategien werden in der Arbeit durch ausführliche

Beweise hergeleitet. Die Beweise lassen die Mechanismen erkennen, die zu möglichen Gewin-

nen bei der Kodierung im Zwei-Wege Relais-Kanal führen. In der Arbeit werden diese Mecha-

nismen ausführlich diskutiert; in der Diskussion werden Design-Kriterien abgeleitet, die bei der

Entwicklung von Codes zu berücksichtigen sein werden, um hohe Raten über einen Zwei-Wege

Relais-Kanal zu erreichen.



Abstract

This thesis analyzes transmission strategies for the two-way relay channel. New achievable rate

regions for this channel are proved and coding strategies are proposed to achieve these new rate

regions. We consider several protocols for the two-way relay channel with half duplex nodes

which are based on the well known strategies: namely decode-and-forward and compress-and-

forward. The decode-and-forward protocol assumes that the relay is able to decode the mes-

sages from both terminal nodes. For this protocol several scenarios are considered, which differ

in the way the messages are transmitted to the relay. Therefore the overall communication is

split into two, three or four phases respectively. For each of these scenarios an achievable rate

region is given. The information theoretical proof uses random coding. Nevertheless, a practical

coding scheme for the two-phase setup can be derived, which is optimal for certain channels.

For general channels, the proposed scheme is suboptimal. Nevertheless, the results provide in-

sight into the question how to design codes and what mechanisms facilitate the gains achievable

by using a two-way relay channel. Dropping the assumption that the relay is able to decode the

data leads to a new achievable rate region. For the compress-and-forward protocol the output

at the relay is compressed and transmitted to the receivers. It turns out that for some channels

higher rates can be achieved with a compress-and-forward strategy at the relay as compared

to the decode-and-forward approach. A simple compress-and-forward protocol is improved

in several steps. First, the achievable rate region is enlarged by a more elaborated decoding

procedure. This decoding procedure uses all the known statistical dependencies in the system.

Finally the different flows of information occurring in the system are used to propose a protocol

which allows to adapt the relaying function more flexible to the channel conditions. Hence for

general channels, this strategy can achieve a higher rate compared to the protocols proposed

before. Throughout the thesis, all the compress-and-forward protocols are superimposed on a

decode-and-forward protocol. As a result, the relay can decode one part of the message. The

complementary part of the message is transmitted using the compress-and-forward mechanism.

The superposition of decode-and-forward and compress-and-forward allows to balance the ad-

vantages and disadvantages of both these protocols. For all the stated achievable rate regions

detailed proofs are provided. These proofs give insight into mechanisms that allow for higher

rates in the two-way relay channel. The thesis discusses these mechanisms for the proposed

protocols and gives insight how a code needs to be designed to achieve the gains.
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3.2.2 The Cardinality of Ŷ in Theorem 3.1 . . . . . . . . . . . . . . . . . . 86

3.3 A Partial-Decode-and-Forward Coding Theorem . . . . . . . . . . . . . . . . 88

3.3.1 Coding Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.2 Proof of the Coding Theorem . . . . . . . . . . . . . . . . . . . . . . 90

3.3.3 Asymmetric Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 The Two-Way Relay Channel with Joint Decoding 107

4.1 An Achievable Rate Region with Joint Decoding . . . . . . . . . . . . . . . . 108

4.1.1 Coding Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1.2 Proof of the Coding Theorem . . . . . . . . . . . . . . . . . . . . . . 111

4.1.3 A Note on Coding Mechanisms for Joint Decoding . . . . . . . . . . . 114

4.1.4 Example and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Partial Decode-and-Forward with Joint Decoding at the Receiver . . . . . . . . 118

4.2.1 Coding Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.2 Proof of the Coding Theorem . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Using More than one Representation for Compress-and-Forward 123

5.1 Extending the Region by using Three Data Streams . . . . . . . . . . . . . . . 124

5.1.1 Coding Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Conclusion and Outlook 137

6.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A Appendix — Bounding of the Cardinalities 141

A.1 Cardinalities of Auxiliary Random Variables . . . . . . . . . . . . . . . . . . . 141

A.1.1 The Cardinality of the Auxiliary Variables in Theorem 3.5 . . . . . . . 141
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Chapter 1

Introduction: The Two-Way Relay

Channel

Wireless communication is present everywhere in everyday life today. Cellular voice networks

as information medium are commonplace in most people’s live; and the number of subscribers

is still rapidly increasing. New services such as mobile Internet, office software on handhelds,

video transmission to mobile phones or mobile computers via a wireless interface or mobile

Internet are emerging into mass markets. The keyword “ubiquitous computing” states the desire

to have information accessible everywhere — wherever it is needed and on all devices. All

these evolutions create the need for communication techniques which are capable to satisfy the

associated demands for connectivity everywhere and high data rates to facilitate the services in

a convenient quality.

For communication engineers these trends in todays communication pose a challenge as

current technology is not capable to satisfy the demands for connectivity and high data rates

as the number of subscribers increases. The network bandwidth in favorable frequency bands

is finite since the low frequencies which are technically usable at present are limited. Future

systems will operate at higher frequencies. But at these higher frequencies wireless transmission

is more sensitive to radio propagation issues; the radio wave propagation becomes akin to the

propagation of light. As a consequence classical cellular systems will have coverage problems.

To overcome the coverage problem one could try to increase the transmission power. Besides

the problems that arise from acceptance by the residents living near the base-stations as well

as constraints given by laws and regulations, the increase of transmission power comes along

with an increase of interference to other wireless connections. The number of users that can be

operated can decrease due to the increased interference; furthermore, interference will diminish

the data rate of the system. Therefore other solutions are favorable. Last but not least a larger

transmission power leads to a higher energy consumption and therefore diminishes the battery

lifetime of the mobile devices. One solution for the sketched problem might be to dramatically

increase the number of base-stations. But this leads to a notable increase in infrastructure costs.

Beside cellular networks, wireless networks without infrastructure attract interest in the re-
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2 Chapter 1. Introduction: The Two-Way Relay Channel

cent past and are already in use for smaller wireless networks. One example is the well known

bluetooth technology, that allows devices to form ad-hoc networks without fixed infrastructure.

In the research community wireless ad-hoc networks are discussed also for large networks,

which consist of several hundred nodes. Possible applications for these networks are car-to-car-

communication where nodes form a dynamic network to share data e.g. data for vehicle telem-

atics. Another example is a sensor network, which consists of several hundred autonomous

sensor nodes. These sensor nodes form a network with the task to monitor or measure certain

data within an area of interest. Most of these ad-hoc networks use multi-hop protocols to com-

municate, i.e. the data is not transmitted directly to the receiver, but relayed via one or several

intermediate nodes. The nodes in the network cooperate to achieve the best possible perfor-

mance in the network. The advantage of ad-hoc multi-hop networks is that they have the ability

to form a network dynamically, i.e. these networks can react if some nodes enter or leave the

system. Furthermore, these networks are capable to compensate the failure of some entities in

the networks, e.g. due to bad channel conditions or low battery capacity. Some other node will

be used to establish the needed connection between source and sink. This redundancy of nodes

makes ad-hoc networks highly robust. Also ad-hoc networks do not need any infrastructure, the

nodes are usually configured and maintained by the individual users; from a provider point of

view they are cheap.

These advantages of ad-hoc multihop networks could be used to overcome the coverage

problem of cellular networks with only limited further infrastructure costs. Instead of a direct

transmission from the base-station to the mobile device, other devices could be used to relay

the transmission. The relays might either be other mobile terminals that cooperate to increase

the connectivity as well as the data rate. Alternatively fixed relays can be alloted over the cells;

compared to base-stations these relays can be technically less complex and need no connection

to the backbone network of base-stations and access points. The advantages of ad-hoc net-

works, namely self configuration and robustness against link failure, could be incorporated in

the protocol and would be available for the cellular network. Furthermore, a relay that is used

to increase the coverage of a cellular network splits up the distance between base-station and

receiver. Since the path-loss is super-linear over the distance this might lead to a decrease in

transmission power and hence to a decrease of interference and less energy consumption for the

mobile terminals.

The above discussion shows that we might gain from using multi-hop and relay transmission

techniques for the communication in wireless networks. By using relays the need rises for new

transmission techniques for this kind of channel. Of course, single user technology might be

used as a first shot, but to achieve all the gain offered by relays we need to understand the

channel and the mechanisms which can increase the end-to-end throughput. Even though relay

channels are used in practice in many wireless communication links, the understanding of the

channel is far from complete. Furthermore, if a relay channel is used in a network as in the

discussion above, usually the communication will be bi-directional, i.e. we have a two-way
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communication, as two network entities exchange messages via a relay. Therefore the channel

of interest for the above communication task is a two-way relay channel. Recently, the two-way

relay channel became a hot topic in the research of communication systems. Until today, it is

unknown what rates can be achieved.

This thesis analyzes this two-way relay channel. New achievable rate regions are given

and coding strategies are proposed. In particular the work considers several protocols for the

two-way relay channel with half duplex nodes. Details on the protocols as well as the system

setup will be given in the subsequent sections. The decode-and-forward protocol assumes that

the relay is able to decode the messages from both terminal nodes. For this protocol achievable

rate regions are given for the case that the communication is split in two, three or four phases

respectively. The information theoretical proof uses random coding. Nevertheless, a practical

coding scheme for the two-phase setup can be derived which is optimal for certain channels.

For general channels, the work provides insight in how to design codes and what mechanisms

facilitate the gains achievable by using a two-way relay channel. Dropping the assumption that

the relay is able to decode the data leads to a new achievable rate region. It turns out that

for some channels higher rates can be achieved without decoding at the relay as compared to

the decode-and-forward approach. The protocol, which compresses the relay’s channel output

and forwards it to the terminals is improved in several steps: First the achievable rate region

is enlarged by a more involved decoding procedure. Finally, the different flows of information

occurring in the system are used to propose a protocol, which allows a more flexible adap-

tion of the relaying function to the channel conditions, and therefore for general channels, this

strategy can achieve a higher rate compared to the protocols proposed before. For all the stated

achievable rate regions detailed proofs are provided. These proofs give insight into mechanisms

that offer the gain in the two-way relay channel. The work discusses these mechanisms for all

proposed protocols and analyses how a code needs to be designed to facilitate the gains.

Before beginning the analysis, we introduce the two-way relay channel in the subsequent

section. This channel is analyzed in detail in the Chapters 2 to 5. First, we will give a general

overview of the system considered and relate the work of this thesis to other results in the

literature. We give a definition of the system model and introduce concepts as well as terms

and definitions that are used throughout the analysis in the next chapters. Thereafter, we define

the modes of operation for the channel under consideration that this thesis focuses on. Finally,

a summary of the results that are achieved in the thesis related to the two-way relay channel is

given together with a short discussion.

1.1 Notation

We use capital letters (X) to indicate random variables. Realizations of random variables are

denoted by lower case letters (x). An index is used to differentiate the variables occurring

at different terminals, e.g. XR is the random variable of the relay’s channel input while y1
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is a realization of the channel output at terminal 1. To mark a sequence or vector of such

variables we use a notation as Xn or yn for a vector of n random variables X and realizations

y respectively, yn
(i) is used to address the ith element of such a vector. We use pX(x) for the

probability distribution function (pdf) of the random variable X. The index X is skipped if the

variable is clear from the context or by the argument of the function. p1(·) and p2(·) are used for

the pdfs induced by the channels, which are fixed. p(n)(·) indicates a pdf of a vector of random

variables of length n. Pr[·] is the probability of an event according to the underlying pdf of the

random variables in the system. Ex{·} is the expectation operator taken over the statistics of x;

we skip the index if it is clear from the context. For alphabets we use a calligraphic font as X,

and for other sets such as codebooks we use the same notation. In the discussion on coding

schemes we use bold lower case letters as c to address codewords which are vectors in a certain

alphabet. For linear codes that are use in the discussion on coding schemes we use bold capital

letters as A to address matrices which are used as generator of parity check matrices.

1.2 Two-Way Communication with the Help of a Relay

Two-way communication is one of the fundamental communication scenarios in information

theory. In 1961, Shannon introduced the two-way communication channel and stated the prob-

lem of communicating as effectively as possible in both directions simultaneously [14]. While

single user communication considers the situation that one entity transmits a message to an-

other entity, in two-way communication the receiver has a message for the transmitter as well.

Looking at todays communication systems it is evident, that almost all communication links are

two-way communication links as even a simple acknowledgment establishes two-way commu-

nication. Unfortunately most of todays communication techniques allocate separated resources

— such as time or frequencies — for the two directions of communication. This is due to the

fact that the two-way communication problem is not easy to tackle. Until today, the question

of how much information can be transmitted via a general two-way communication channel

remains open.

In [14] the system is also analyzed in a simplified version where a strong restriction was

added: the encoders and the decoders at the nodes are separated. From this restriction it follows

that the nodes cannot cooperate explicitely but can only exploit the statistical opportunities

offered by the channel. Furthermore the use of feedback is prevented by this assumption. This

constraint setup is known as the “restricted two-way channel”. Shannon was able to state the

capacity of this restricted two-way channel. His work on two-way channels is regarded as the

first work on multi-user information theory. Compared to the knowledge of the single-user case,

we have just begun to understand multi-user information theory.

In this thesis, two-way communication is considered as we think that communication links

should make use of the gains offered by the opportunity to transmit information in two ways

at the same time. Furthermore, the single-user scenario is nothing but a special case of a two-
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way communication system, where the rate of one user is set to 0 and maybe restricted by

further means, e.g. a channel input alphabet restricted to only one letter. As already mentioned,

two-way communication is more the norm than the exception: Acknowledgments, feedback for

higher layers of the communication stack, establish two-way communication as well as a simple

telephone call, the popular peer-to-peer networks, some data exchange of two users and many

more examples.

Beside the two-way channel, another fundamental communication channel is used as a base

for the setup considered in this thesis: A relay channel is a communication link where a relay

supports the transmission of a message from one node to a third node. The relay channel was in-

troduced in [15] and was discussed in [16], or more recently in [17] and references therein. [16]

states upper bounds for the general relay channel and gives achievable rate regions. For certain

channels as the degraded relay channel, the reversely degraded relay channel or the relay chan-

nel with feedback the capacity regions were proven in [16]. Furthermore this article pointed out

two basic relaying strategies, namely decode-and-forward and compress-and-forward. Since

then, several special cases of relay channels where considered and some results could be ob-

tained. In the general case the capacity region of the relay channel remains unknown.

The setup we consider in this thesis is motivated by wireless networks. In wireless networks

the entities of the network may use relays to communicate with each other. This can be for

example due to the setup of the network if relaying via a certain node is required by the com-

munication protocol. Another reason for relaying in wireless networks are channel conditions.

First, the channel without a relay between sender and receiver may be bad conditioned due to

shadowing, and second, relaying may decrease the power needed to transmit. This originates

from the fact that the path loss in wireless channel increases super-linear with the distance. As

a relay splits up the distance it follows that the cumulative path loss might be smaller than the

path loss of a direct transmission. A third reason to use relays in wireless networks is fading. If

the network allows more than one path from the transmitter to the receiver, then the information

can be routed via the relays such that the current channel conditions are best. This phenomenon

is known as multiuser diversity.

An example for the case of relaying due to the setup of the network is an infrastructure

based communication, where two wireless devices exchange information via some router or

base station. This is the case in a wireless local area network or some cellular networks. While

the classical cellular network is of course also a relay network if the terminal nodes of the

communication are in different cells, this setup is not of primary interest for this thesis. The

gains we obtain are caused by the non-orthogonality of the wireless channels between relay

and terminal nodes. Still the results apply also for this communication setup. An example for

relaying to increase throughput is the case where the relay is some normal terminal node, that

forwards data in a multi-hop fashion from one terminal to the other or to some base station.

Such scenarios may occur in ad-hoc networks and will occur in future cellular networks where

terminals are used to forward the data in a multi-hop fashion to increase coverage without
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further infrastructure costs. Another example is a sensor network. In sensor networks nodes

may exchange their measurements in some vicinity. Thereby they could establish some cluster

that can be used either for cooperate transmission to some far away sink [18, 19] [1, 2], or to

do some in-network calculation [20, 21]. Typically the data exchange within the cluster will

proceed via one or several relays. Furthermore the transmission to the sink is usually performed

in a multi-hop fashion.

If we consider wireless networks, we need to cope with some technical constraints. Most

wireless transceivers cannot transmit and receive at the same time and frequency. Because of

technical reasons it is difficult and often impossible to isolate the transmitted signal from the

received signal. Therefore the wireless nodes can be modeled as half-duplex nodes.

Following the above observations we combine two-way communication and relaying under

the constraint of half-duplex nodes and study the resulting system. We consider a three-node

network where one half-duplex node acts as a relay to enable two-way communication between

two other nodes. The half-duplex constraint seems to disable the gains obtainable by classical

two-way communication, as there is no simultaneous transmission between the terminal nodes

possible anymore. Anyhow, by using a relay it turns out that again some gains can be achieved.

Since most todays relaying protocols allocate exclusive resources for each link, they suffer from

an inherent loss in spectral efficiency. Instead of treating each link as a single-user channel,

one can make use of the properties of the wireless medium. Thereby the loss can be reduced

significantly.

Most proposals for two-way relaying separate the communication into multiple phases.

First, the information is transmitted to the relay node. Then the relay node forwards the in-

formation to its destinations. In [22], [23] Gaussian channels are considered, and the relay

performs superposition encoding in the second phase. The knowledge of the first phase allows

the receiving nodes to perform interference cancellation before decoding so that effectively we

achieve interference-free transmission in the second phase. Another interesting approach [24],

[25], [26] is based on the network coding principle [27], where the relay node performs an

XOR operation on the decoded bit streams. Since a network coding approach operates on the

decoded data, it does not deal with channel coding. [28] analyses the two-way relay channel

with full-duplex nodes and derives upper and lower bounds on the capacity region. The ref-

erence focuses on Gaussian channels and gives achievable rates for decode-and-forward and

compress-and-forward system as well as a partial decode-and-forward result.

In this thesis we apply time-division to separate the communication. A division in two

phases is assumed for most of the analysis. Details on the system model will be given in the

subsequent section. We consider channel coding aspects of the system at hand. In particular,

we do an information theoretical analysis for the two fundamental relaying strategies decode-

and-forward and compress-and-forward. It turns out that the network coding approach is only

a special case of a more general decode-and-forward strategy. Furthermore we give interpreta-

tions and shed light on the coding mechanism that facilitate the gains in the system. In partic-
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ular, for the decode-and-forward strategy we propose a coding framework for certain channels

applicable to real systems.

The key focus in this thesis is on the broadcast phase, as this broadcast phase and especially

the decoding of the received signal is the origin for the cooperative gains. It turns out that the

mechanisms active in the two-way relay channel are closely related to distributed source coding.

In particular we see an interesting connection to a joint source and channel coding approach for

the broadcast channel based on Slepian-Wolf coding [29].

1.2.1 The Two-Way Relay Channel in this Thesis — an Outline

The treatment of the two-way relay channel in the following chapters can be outlined as follows:

In Chapter 2 we consider a decode-and-forward strategy. This is the first intuitive approach to

the system at hand one would investigate. It is assumed that the relay receives both messages

and is able to decode all the information that is relayed. We are able to state an achievable

rate region and give some advises on how one can design codes for this kind of communication

system. Furthermore we analyze how the system will change if more than two phases are

allowed for the communication.

In Chapter 3 we discuss a new transmission protocol which facilitates a compress-and-

forward scheme [16] where the broadcast transmission is designed to make a good enough copy

of the channel output at the relay node available to both receivers. In effect, the side information

at the receiver can also be used to decode the multiple access channel (MAC). Again, we can

state an achievable rate region for the restricted half-duplex two-way relay channel with two

transmission phases.

This region is extended in several steps. First the new strategy is superimposed with the

decode-and-forward approach. The resulting coding scheme partially decodes the messages of

both users at the relay and forwards it to the receivers. The complement of the messages is

forwarded using the compressed MAC output as data which is superimposed upon the decode-

and-forward data in the broadcast channel (BC) phase. The coding scheme can be interpreted

as superposition coding in both phases. The resulting rate region contains the regions obtained

by compress-and-forward and decode-and-forward as special cases.

The second extension is a joint decoding mechanism. This is considered in Chapter 4. It

turns out, that decoding the relay’s transmission without considering the other users MAC trans-

mission might be suboptimal. In fact, a simple example shows that by focusing on the signal

transmitted to the receiver the decoding fails while a decoding that focuses on the intended sig-

nal using the relay’s transmission as just another side information for the decoding succeeds.

In this approach the relay’s transmission and thereby the compressed MAC output is decoded

correctly only as a by-product; the correct decoding is neither required nor forced by the coding

or the proof. As a result one could say, that neither the relay nor the receiver care about the data

transmitted to them in a direct transmission. This interpretation confirms once again, that cod-
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ing in networks is not primarily about getting encoded messages through a network but about

getting information to the receivers. More concrete, the relay’s job changes from making a

compressed MAC output available at the receivers to enabling the receiver to decode a message

intended for it.

This approach of a joint decoding compress-and-forward coding scheme is superimposed

with a decode-and-forward scheme. The superposition yields a region which is a superset of all

other regions presented up to that point in this thesis.

Finally in Chapter 5 we consider in detail the different flows of information in the system.

As a result we propose a protocol, where the relay generates three different descriptions of its

channel output. These are forwarded to the receivers and allow them to decode the message

intended for them.

During the analysis we will point out how the coding mechanisms work that facilitate the

gains obtained by the protocols. These comments lead the way of a code design for real systems.

In Chapter 2 we propose in detail a simple though optimal coding framework for a certain

class of channels and the decode-and-forward protocol. For the other protocols we restrict the

discussion to mechanisms and point out where difficulties arise and what opportunities are there

for a practical code design. A detailed coding framework is beyond the scope of this thesis.

We cannot give a converse for any of the regions. Quite the contrary, during the analysis we

will give some remarks on how one could further enlarge the achievable rate region. This leads

to a more elaborated coding in the BC phase but its analysis is beyond the scope of this thesis.

1.3 System Model

A two-way relay channel consists of one relay node (labeled by R) and two terminal nodes

(referred to as node 1 and node 2). The terminal nodes want to exchange messages with the help

of the relay R. We assume a restricted two-way communication [14] so that the transmissions

of the terminal nodes in different phases do not depend on any received signal. This constraint

simplifies the analysis as its rules out the effect of a feedback and the ability of cooperation by

exchange of information. Furthermore it is assumed that all nodes are constrained to operate in

half-duplex, meaning that they cannot receive and transmit at the same time.

The goal of communication is to transmit a message w1 from node 1 to node 2 and w2 from

node 2 to node 1 using the channel between the two nodes and the relay in total n ∈ N times.

The focus of the analysis is on a two-phase protocol consisting of a MAC phase and a BC

phase. The system setup for this two-phase protocol is given here. In Chapter 2 we take a look

at protocols with more phases. The adapted system setups needed for these protocols are given

in that chapter.

For the bulk of the analysis we assume two phases where α > 0 and β > 0 with α + β = 1

indicate the timesharing variables between the phases: In the first phase, node 1 transmits the

codeword X
n1

1 and node 2 transmits the codeword X
n1

2 each of length n1 to the relay using a
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channel p1(yR|x1, x2) n1 := n1(n) ∈ N times with n1

n
→ α as n → ∞. The relay node will

receive the signal Y
n1

R
. In the second phase the relay node transmits X

n2

R
to node 1 and node 2

using a channel p2(y1, y2|xR) n2 := n2(n) ∈ N times with n2

n
→ β as n → ∞. These nodes will

receive the signals Y
n2

1 and Y
n2

2 , respectively. Furthermore we have n1+n2 = n. All alphabets are

discrete and of finite cardinality. All channels are assumed to be memoryless and the channels

in the two different phases are assumed to be statistically independent. Therefore, we have a

joint probability distribution p(yR, y1, y2|x1, x2, xR) = p1(yR|x1, x2)p2(y1, y2|xR) which defines the

relay channel considered as follows:

Definition 1.1. A discrete memoryless two-phase two-way relay channel is defined by a family
{

p(n) : Xn1

1 × X
n1

2 × X
n2
R
→ Yn1

R
× Yn2

2 × Y
n2

1

}

n1∈N,n2∈N, n1 + n2 = n of probability transition func-

tions given by p(n)
(

y
n1

R
, y

n2

1 , y
n2

2 |x
n1

1 , x
n1

2 , x
n2

R

)

:=
∏n1

i=1 p1

(

y
n1

R,(i)|x
n1

1,(i), x
n1

2,(i)

)

∏n2

i=1 p2

(

y
n2

1,(i), y
n2

2,(i)|x
n2

R,(i)

)

for probability functions p1 : X1 × X2 → YR and p2 : XR → Y1 × Y2.

1.3.1 An Outer Bound on the Capacity Region

An outer bound on the capacity region of the restricted two-phase two-way relay channel can be

obtained by applying a cut set bound [30]. For some simple channels (e.g. bit pipes) this bound

is tight and can be achieved with some of the coding techniques proposed in this thesis. We

state the bound here without proof. It can be used to see where improvements to the achievable

rate regions obtained in this thesis might be possible.

Lemma 1.1. All pairs of achievable rates [R1,R2] for the restricted two-phase two-way relay

channel satisfy

R1 ≤ min{αI(X1; YR|X2,Q), βI(XR; Y2)}

R2 ≤ min{αI(X2; YR|X1,Q), βI(XR; Y1)}

for some joint probability distribution p(q)p(x1|q)p(x2|q)p1(yR|x1, x2)p(xR)p2(y1, y2|xR) and some

α, β ≥ 0 with α + β = 1.

1.4 General Concepts

In this section we specify terms and definitions reused throughout the thesis. These are given

here to prevent redundancy and to provide an overview and a clear distinction what will be

covered in which of the following chapters, and how the different strategies relate to each other.

1.4.1 Modes of Operation

The channel defined in the previous section can be operated in different modes. In what follows

we introduce the modes of operation considered in this thesis. In general there are two different

concepts, namely decode-and-forward and compress-and-forward. The compress-and-forward
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strategy can be applied in different ways involving a different level of complexity. Furthermore

the two concepts decode-and-forward and compress-and-forward can be superimposed. The

superposition is termed partial decode-and-forward; it is possible to build partial decode-and-

forward protocols with all the different compress-and-forward strategies.

1.4.1.1 Decode-and-Forward

For the decode-and-forward protocol we impose the constraint that the relay is able to decode

the messages of both receivers. We will see later that this is in fact a restriction, as for the

general case the relay could forward a part of the messages without decoding. It follows that

in general the relay need not be able to decode the messages. If the relay can decode the

messages, then the system can be seen as a sequence of two individual systems: First a MAC

transmission is used to transmit the messages to the relay, thereafter a BC transmission enables

the receivers to decode the message intended for them. Due to the restriction, that the nodes

cannot use the already received signals, the first phase is a classical MAC; the interesting part of

the transmission is BC, as here we have side information available. This is due to the fact that

both receivers know the message intended for the other receiver. The analysis for this system is

given in Section 2.1.

Decode-and-Forward with More than Two Phases In Section 2.3 we allow more than two

phases. First we consider a system, which consists of a sequence of three BC transmissions.

The first two BC transmissions initiated by the two terminal nodes are used to allow the relay to

decode the messages. Furthermore these transmissions allow the other respective terminal node

to gather some information, that can be used in the decoding of the message in the concluding

BC transmission from the relay. As a consequence, the system now has a direct link between

the terminal nodes; this may increase the system performance. In addition to this three-phase

protocol we consider a four-phase setup, where a MAC phase is added to transmit the messages

to the relay.

1.4.1.2 Compress-and-Forward

The general compress-and-forward protocol assumes that the relay does not try to decode the

messages. Its task is to forward a compressed representation of the MAC output to both re-

ceivers. In the first simple compress-and-forward protocol which is along the lines of [16], the

receivers use their own message as side information to decode the relay’s transmission. Thereby

the receivers can decode the compressed MAC output. Subsequently, the compressed MAC

output is used to decode the other node’s transmitted codeword. The compress-and-forward

protocol is analyzed in Section 3.1.
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1.4.1.3 Partial Decode-and-Forward

The partial decode-and-forward protocol is considered in Section 3.3. In this protocol the relay

decodes a part of the messages of the users. Furthermore the MAC output is compressed. The

information of both these steps is transmitted to the receives by a superposition code. The

receiver can first decode the part of the message which was previously decoded by the relay.

Thereafter using the own message as well as the decoded part, the compressed MAC output

is recovered. Finally this compressed representative is used to decide, which message was

transmitted by the other respective node.

1.4.1.4 Compress-and-Forward with Joint Decoding

In Section 4.1 the decoding at the terminal node is changed in comparison to the first considered

compress-and-forward strategy. In the new protocol the receiver does not focus on decoding

the relay’s transmission anymore. The receiver decodes the message transmitted by the other

terminal node directly. The compressed MAC output calculated at the relay can be decoded

as a by-product. Compared to the compress-and-forward approach, the receiver uses more

dependencies available in the system.

1.4.1.5 Partial Decode-and-Forward with Joint Decoding

Section 4.2 extends the protocol for compress-and-forward with joint decoding in the same way

as Section 3.3 extends Section 3.1. In this approach the relay decodes a part of the messages,

the complement information is transmitted via compress-and-forward. To decode the compress-

and-forward part of the message, the receiver uses a joint decoding mechanism.

1.4.1.6 Compress-and-Forward with Three Information Flows

The compression at the relay is performed jointly for both receivers in the protocols introduced

above. In Chapter 5 we extend this approach by using up to three compressed representatives,

that are forwarded to one or both of the receivers. Thereby the protocol gives better oppor-

tunities for asymmetric systems, where the channels for the different receivers are of different

quality. This approach is the most general compress-and-forward approach considered in this

thesis. The region of rate pairs achievable by this approach contains all the other rate regions

achievable by compress-and-forward protocols. By allowing up to three information flows we

gain the ability to balance interference like effects at the relay with interference in the BC.

1.4.2 Some Definitions

Some definitions are used throughout the theses. These definitions apply for the two-phase

protocol in all the different modes of operation. In Chapter 2 we take a look at protocols with
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more phases and we consider the BC of the two-way relay channel separated from the MAC.

The adapted definitions needed for these analyses are given in Chapter 2.

Definition 1.2. A
(

M
(n)
1 , M

(n)
2 , n1, n2

)

-code, n1 ∈ N, n2 ∈ N, n1 + n2 = n for the two-phase

two-way relay channel consists of an encoder at node k ∈ {1, 2},

x
n1

k
:Wk → X

n1

k

withWk = [1, 2, . . . , M
(n)
k

], an encoder at the relay node

x
n2

R
: Yn1

R
→ X

n2

R

and decoders at node 1 and node 2

g1 :Yn2

1 ×W1 →W2

g2 :Yn2

2 ×W2 →W1.

We use w1 ∈ W1 and w2 ∈ W2 for the messages transmitted by node 1 and node 2 re-

spectively. Furthermore w := w(w1,w2) = [w1,w2] ∈ W :=W1 ×W2 is used to indicate the

message pair. Note that we assume independent sources in all the theorems and proofs. Fur-

thermore, to make the definition of the average probability of error meaningful, we assume the

transmitted messages are drawn independent and identically distributed (i.i.d.) from a uniform

distribution over the sets of messagesW1 andW2.

Definition 1.3. When w := w(w1,w2) = [w1,w2] ∈ W :=W1 ×W2 is the message pair trans-

mitted by the two terminal nodes, the receiver 1 is in error if g1(yn2

1 ,w1) , w2. The probability

of this error event is denoted by

λ1(w) := Pr[g1(Yn2

1 ,w1) , w2|w(w1,w2) has been sent].

Accordingly the corresponding error event for the receiver 2 is denoted by

λ2(w) := Pr[g2(Yn2

2 ,w2) , w1|w(w1,w2) has been sent].

Definition 1.4. The average probability of decoding error at the receivers is given by

µ
(n)
1 :=

∑

j∈W2

∑

k∈W1
Pr[g1(Yn2

1 , k) , j|x
n1

1 (k), x
n1

2 ( j)]

|W1||W2|
=

1

|W|

∑

w∈W

λ1(w)

for node 1 and

µ
(n)
2 :=

∑

j∈W2

∑

k∈W1
Pr[g2(Yn2

2 , j) , k|xn1

1 (k), x
n1

2 ( j)]

|W1||W2|
=

1

|W|

∑

w∈W

λ2(w)
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for node 2.

Definition 1.5. Let µ(n)
1 and µ(n)

2 be the average probabilities of decoding errors at node 1 and

node 2, respectively. The rate pair [R1,R2] is said to be achievable for the two-phase two-

way relay channel if there exists a sequence of
(

M
(n)
1 , M

(n)
2 , n1, n2

)

-codes with
log M

(n)
1

n
→ R1 and

log M
(n)
2

n
→ R2 such that µ(n)

1 , µ
(n)
2 → 0 as n→ ∞.

1.4.3 Concept of Typical Sequences and Related Definitions

In the proofs of this thesis we will make extensive use of typical sequences and their properties.

Therefore we will now give the definition and state some definitions and related notation, which

are used throughout the thesis.

Definition 1.6. Given two random variables Z1 ∈ Z1, Z2 ∈ Z2, let pZ1(i) = Pr[Z1 = i] where

i ∈ Z1 and pZ1,Z2(î) = Pr
[

(Z1, Z2) = î
]

where î ∈ Z1 × Z2. For any ǫ > 0, we define the set of

ǫ-typical sequences [31] of length n as1

T (n)
ǫ (Z1) :=

{

zn
1 : ∀i ∈ Z1, |N(i|zn

1) − npZ1(i)| ≤
ǫnpZ1(i)

log(|Z1|)

}

where N(i|zn
1) is the number of indices k such that the kth element of the vector zn

1 = (zn
1,(1), z

n
1,(2),

. . . , zn
1,(n)) equals i, i.e. zn

1,(k) = i. Furthermore we define for a given zn
2 ∈ Z

n
2 the set

T (n)
ǫ (Z1|z

n
2) :=

{

zn
1 : ∀î ∈ Z1 ×Z2, |N(î|zn

1, z
n
2) − npZ1,Z2(î)| ≤

ǫnpZ1,Z2(î)

log(|Z1||Z2|)

}

.

We will use the properties of sets of typical sequences in the proof of the coding theorems.

Some known properties [31] of ǫ-typical sequences are collected in the following lemma with-

out proof:

Lemma 1.2. Let Z1 ∈ Z1, Z2 ∈ Z2 be random variables. For δ > 0, ǫ > 0 and for sufficiently

large n it holds that:

• Pr[Zn
1 ∈ T

(n)
ǫ (Z1)] ≥ 1 − δ

• For any zn
1 ∈ T

(n)
ǫ (Z1)

∣

∣

∣

∣

∣

1

n
log p(zn

1) + H(Z1)

∣

∣

∣

∣

∣

≤ ǫ

• |T
(n)
ǫ (Z1)| ≤ 2n(H(Z1)+ǫ)

• |T
(n)
ǫ (Z1)| ≥ (1 − δ)2n(H(Z1)−ǫ)

• For any zn
2 ∈ T

(n)
ǫ (Z2)

Pr[Zn
1 ∈ T

(n)
ǫ (Z1|z

n
2)|Zn

2 = zn
2] ≥ 1 − δ

1All logarithms in this paper are to the base 2 and we consider entropies and mutual information in bits.
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• (zn
1, z

n
2) ∈ T (n)

ǫ (Z1, Z2) implies zn
1 ∈ T

(n)
ǫ (Z1) and zn

2 ∈ T
(n)
ǫ (Z2)

Throughout this work we will use indicator functions related to a typical set to simplify the

notation. We define the indicator function with general sets; in the proofs within this work the

usual application will be to typical sets and product spaces on the alphabets related to these

typical sets.

Definition 1.7. Given a setA and a set B ⊆ A, define the indicator function χ : A→ {0, 1} as

χB(a) :=



















1 if a ∈ B

0 otherwise
(1.1)

where a ∈ A.

As a small liberty of notation we use χC
B

(a) as a shortcut for χBC (a) = 1 − χB(a).

1.5 Summary of the Results

Now we will summerize the results of this thesis. First we will give the achievable rate re-

gions obtained in the analysis for the different modes of operation. Thereafter we give a short

discussion on further insights obtained by the analysis.

1.5.1 Achievable Rate Regions

The achievable rate regions are stated here without further comments. The reader is referred to

the respective chapter for the proof, the ideas of the coding and interpretation of the results.

1.5.1.1 Decode-and-Forward

Theorem (Theorem 2.4). An achievable rate region RDF ⊂ R2
+ of the two-phase two-way relay

channel is given by all rate pairs [R1,R2] satisfying

R1 ≤ min{αI(X1; YR|X2,Q), βI(XR; Y2)}

R2 ≤ min{αI(X2; YR|X1,Q), βI(XR; Y1)}

R1 + R2 ≤ αI(X1, X2; YR|Q)

for some joint probability distribution p(q)p(x1|q)p(x2|q)p1(yR|x1, x2)p(xR)p2(y1, y2|xR) and some

α, β ≥ 0 with α + β = 1.

Decode-and-Forward with Three Phases
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Theorem (Theorem 2.7). An achievable rate region for the three-phase two-way relay channel

using a decode-and-forward protocol is the set of all rate pairs [R1,R2] satisfying

R1 < min
{

αI(X1; YR,1);αI(X1; Y2,1) + γI(XR; Y2,3)
}

R2 < min
{

βI(X2; YR,2); βI(X2; Y1,2) + γI(XR; Y1,3)
}

for some joint probability distribution p1(yR,1, y2,1|x1)p2(yR,2, y1,2|x2)pR(y1,3, y2,3|xR)p(x1, x2, xR)

and some α, β, γ ≥ 0 with α + β + γ = 1.

Decode-and-Forward with Four Phases

Theorem (Theorem 2.8). An achievable rate region for the four-phase two-way relay channel

using a decode-and-forward protocol is the set of all rate pairs [R1,R2] satisfying

R1 < min
{

αI(X1,1; YR,1) + γI(X1,3; YR,3|X2,3,Q);αI(X1,1; Y2,1) + δI(XR; Y2,4)
}

R2 < min
{

βI(X2,2; YR,2) + γI(X2,3; YR,3|X1,3,Q); βI(X2,2; Y1,2) + δI(XR; Y1,4)
}

R1 + R2 < αI(X1,1; YR,1) + βI(X2,2; YR,2) + γI(X1,3, X2,3; YR,3|Q)

for some joint probability distribution p(x1,1)p(x2,2)p(xR)p(q)p(x1,3|q)p(x2,3|q)p1(yR,1, y2,1|x1,1)

p2(yR,2, y1,2|x2,2)pR(y1,4, y2,4|xR)pM(yR,3|x1,3, x2,3) and some α, β, γ, δ ≥ 0 with α + β + γ + δ = 1.

1.5.1.2 Compress-and-Forward

Theorem (Theorem 3.1). An achievable rate region for the two-phase two-way relay channel

using a compress-and-forward protocol is the set R1 ⊂ R2
+ of all rate pairs [R1,R2] satisfying

R1 ≤ αI(X1; ŶR|X2,Q)

R2 ≤ αI(X2; ŶR|X1,Q)

under the constraints

α
(

H(ŶR|X1,Q) − H(ŶR|YR)
)

< βI(Y1; XR)

α
(

H(ŶR|X2,Q) − H(ŶR|YR)
)

< βI(Y2; XR)

for some α, β > 0 with α + β = 1 and for joint probability distributions p(q)p(x1|q)p(x2|q)

p1(yR|x1, x2)p(ŷR|yR) and p(xR)p2(y1, y2|xR).

Corollary (Corollary 3.2). An achievable rate region for the two-phase two-way relay channel

using a compress-and-forward protocol is the set R2 ⊂ R2
+ of all rate pairs [0,R2] satisfying

R2 ≤ αI(X2; ŶR|X1,Q)
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under the constraint

α
(

H(ŶR|X1,Q) − H(ŶR|YR)
)

< βI(Y1; XR)

and similarly the set R3 ⊂ R2
+ of all rate pairs [R1, 0] which satisfy

R1 ≤ αI(X1; ŶR|X2,Q)

under the constraint

α
(

H(ŶR|X2,Q) − H(ŶR|YR)
)

< βI(Y2; XR)

for some α, β > 0 with α+ β = 1 and for some joint probability distributions p(q)p(x1|q)p(x2|q)

p1(yR|x1, x2)p(ŷR|yR) and p(xR)p2(y1, y2|xR).

Corollary (Corollary 3.3). An achievable rate region for the two-phase two-way relay channel

using a compress-and-forward protocol is the set RCF ⊂ R2
+ given by the convex hull of R1 ∪

R2 ∪ R3.

1.5.1.3 Partial Decode-and-Forward

Theorem (Theorem 3.5). An achievable rate region for the two-phase two-way relay channel

using a partial decode-and-forward protocol is the set R4 ⊂ R2
+ of all rate pairs [R1,R2] such

that there exists R
(1)
1 ,R

(1)
2 ,R

(2)
1 ,R

(2)
2 ≥ 0 with R

(1)
1 + R

(2)
1 = R1, R

(1)
2 + R

(2)
2 = R2 satisfying

R
(1)
1 ≤ min{αI(U1; YR|U2,Q), βI(V; Y2)}

R
(1)
2 ≤ min{αI(U2; YR|U1,Q), βI(V; Y1)}

R
(1)
1 + R

(1)
2 ≤ αI(U1U2; YR|Q)

R
(2)
1 ≤ αI(X1; ŶR|X2,U1)

R
(2)
2 ≤ αI(X2; ŶR|X1,U2)

under the constraints

α
(

H(ŶR|X1,U2) − H(ŶR|YR)
)

< βI(Y1; XR|V)

α
(

H(ŶR|X2,U1) − H(ŶR|YR)
)

< βI(Y2; XR|V)

for some joint probability distributions p(q)p(u1|q)p(u2|q)p(x1|u1)p(x2|u2)p1(yR|x1, x2)p(ŷR|yR)

and p(v)p(xR |v)p2(y1, y2|xR) and some α, β > 0 with α + β = 1.

Corollary (Corollary 3.6). An achievable rate region for the two-phase two-way relay channel

using a partial decode-and-forward protocol is the set R5 ⊂ R2
+ of all rate pairs [R1,R2] such
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that there exists R
(1)
1 ,R

(2)
1 ,R

(2)
2 ≥ 0 with R

(1)
1 = R1, R

(1)
2 + R

(2)
2 = R2 satisfying

R
(1)
1 ≤ min{αI(U1; YR|U2,Q), βI(V; Y2)}

R
(1)
2 ≤ min{αI(U2; YR|U1,Q), βI(V; Y1)}

R
(1)
1 + R

(1)
2 ≤ αI(U1U2; YR|Q)

R
(2)
2 ≤ αI(X2; ŶR|X1,U2)

under the constraint

α
(

H(ŶR|X1,U2) − H(ŶR|YR)
)

< βI(Y1; XR|V)

and similarly the set R6 ⊂ R2
+ of all rate pairs [R1,R2] such that there exists R

(1)
1 ,R

(1)
2 ,R

(2)
1 ≥ 0

with R
(1)
1 + R

(2)
1 = R1, R

(1)
2 = R2 satisfying

R
(1)
1 ≤ min{αI(U1; YR|U2,Q), βI(V; Y2)}

R
(1)
2 ≤ min{αI(U2; YR|U1,Q), βI(V; Y1)}

R
(1)
1 + R

(1)
2 ≤ αI(U1U2; YR|Q)

R
(2)
1 ≤ αI(X1; ŶR|X2,U1)

under the constraint

α
(

H(ŶR|X2,U1) − H(ŶR|YR)
)

< βI(Y2; XR|V)

for some joint probability distributions p(q)p(u1|q)p(u2|q)p(x1|u1)p(x2|u2)p1(yR|x1, x2)p(ŷR|yR)

and p(v)p(xR |v)p2(y1, y2|xR) and some α, β > 0 with α + β = 1.

Corollary (Corollary 3.7). An achievable rate region for the two-phase two-way relay channel

using a partial decode-and-forward protocol is the set RPDF ⊂ R2
+ given by the convex hull of

R4 ∪ R5 ∪ R6.

1.5.1.4 Compress-and-Forward with Joint Decoding

Theorem (Theorem 4.1). An achievable rate region for the two-phase two-way relay channel

using a compress-and-forward protocol is the set R7 ⊂ R2
+ of all rate pairs [R1,R2] satisfying

R1 ≤ max

{

0,min
{

αI(X1; ŶR|X2,Q), α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Y2)
}

}

R2 ≤ max

{

0,min
{

αI(X2; ŶR|X1,Q), α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Y1)
}

}

for some α, β > 0 with α+ β = 1 and for some joint probability distributions p(q)p(x1|q)p(x2|q)

p1(yR|x1, x2)p(ŷR|yR) and p(xR)p2(y1, y2|xR).

Corollary (Corollary 4.2). An achievable rate region for the two-phase two-way relay channel

using a compress-and-forward protocol is the set RCF-JD ⊂ R2
+ given by the convex hull of R7.
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1.5.1.5 Partial Decode-and-Forward with Joint Decoding

Theorem (Theorem 4.3). Let R8 ⊂ R4
+ be the set of all

[

R
(1)
1 ,R

(1)
2 ,R

(2)
1 ,R

(2)
2

]

satisfying

R
(1)
1 ≤ min

{

αI(U1; YR|U2,Q), βI(V; Y2)
}

R
(1)
2 ≤ min

{

αI(U2; YR|U1,Q), βI(V; Y1)
}

R
(1)
1 + R

(1)
2 ≤ αI(U1U2; YR|Q)

R
(2)
1 ≤ max

{

min
{

αI(X1; ŶR|X2,U1),

α
(

I(X1X2; ŶR|U1,U2) − I(YR; ŶR|U1,U2)
)

+ βI(XR; Y2|V)
}

, 0

}

R
(2)
2 ≤ max

{

min
{

αI(X2; ŶR|X1,U2),

α
(

I(X1X2; ŶR|U1,U2) − I(YR; ŶR|U1,U2)
)

+ βI(XR; Y1|V)
}

, 0

}

for some joint probability distributions p(q)p(u1|q)p(u2|q)p(x1|u1)p(x2|u2)p1(yR|x1, x2)p(ŷR|yR)

and p(v)p(xR |v)p2(y1, y2|xR) and some α, β > 0 with α + β = 1.

An achievable rate region for the two-phase two-way relay channel using a partial decode-

and-forward protocol is the set RPCF-JD ⊂ R2
+ of all rate pairs [R1,R2] such that there exists

[

R
(1)
1 ,R

(1)
2 ,R

(2)
1 ,R

(2)
2

]

∈ ConvexHull(R8) with R
(1)
1 + R

(2)
1 = R1, R

(1)
2 + R

(2)
2 = R2.

1.5.1.6 Compress-and-Forward with three Information Flows

Theorem (Theorem 5.1). An achievable rate region for the two-phase two-way relay chan-

nel using a compress-and-forward protocol is the set RCF-JD-3S ⊂ R2
+ of all rate pairs [R1,R2]

satisfying

R1 ≤ min
{

αI(X1; ŶR,2ŶR,1+2|X2,Q);

α
(

I(X1X2; ŶR,2ŶR,1+2|Q) − I(YR; ŶR,2ŶR,1+2|Q)
)

+ βI(UV2; Y2)
}

R2 ≤ min
{

αI(X2; ŶR,1ŶR,1+2|X1,Q);

α
(

I(X1X2; ŶR,1ŶR,1+2|Q) − I(YR; ŶR,1ŶR,1+2|Q)
)

+ βI(UV1; Y1)
}

R1 + R2 ≤ α
(

I(X1X2; ŶR,2ŶR,1+2|Q) + I(X1X2; ŶR,1ŶR,1+2|Q)

−I(YR; ŶR,2ŶR,1+2|Q) − I(YR; ŶR,1ŶR,1+2|Q)
)

+β
(

I(UV2; Y2) + I(UV1; Y1) − I(V1; V2|U)
)

for some joint probability distributions p(q)p(x1|q)p(x2|q)p(yR|x1, x2)p(ŷR,1+2|yR)p(ŷR,1|yR, ŷR,1+2)

p(ŷR,2|yR, ŷR,1+2) and p(u, v1, v2)p(xR|u, v1, v2)p(y1, y2|xR) and some α, β > 0 with α + β = 1.
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1.5.2 Discussion

The analysis in the following chapters will show, what gains can be achieved by considering on

the one hand the different parts of the network and on the other hand the different abstraction

layers of the communication stack jointly and not separated. The results emphasizes that a

network has to be considered as a network and in general cannot be split without loss in atoms

like BCs and MACs. This insight — which was already used in the network coding approaches

— is not restricted to the coding of network information flows. In fact, by considering the atoms

jointly the channel coding in these atoms can be adapted and gains become achievable in the

overall system. A striking example for this is the joint decoding scheme: Here the relay is not

able to decode the transmitted data. Furthermore, the receiver is not able to decode the relay’s

transmission independently. Only when the receiver considers the MAC transmission and the

BC transmission jointly the decoding succeeds.

The need for a joint treatment of channel and network coding is also pointed out in this

thesis. Network coding approaches acting on noiseless links between nodes do only half the

job while preventing further gains: The mechanisms also active in network coding approaches

induce dependencies in the network and can be used in the decoding to increase the link through-

put. This is pointed out in the following chapters by simple examples. They are all based upon

the XOR encoding being frequently used in network coding. Furthermore, the applied coding

mechanisms are well known source coding techniques as e.g. the famous Slepian-Wolf-Coding

[32] or the Wyner-Ziv-Coding [33]. Due to the dependencies induced by the network structure,

these tools can now be used for channel coding. Thereby the separation between channel coding

and network coding is overcome.

The analysis in the following chapters gives some insight on how one should design codes

for two-way relay channels. In particular for the decode-and-forward mechanism a simple

though very efficient coding framework is proposed, which performs optimal for certain chan-

nels. For the other protocols we shed light on the mechanisms at work. It turns out, that for

the two-way relay channel those codes are important, which have the property that certain sub-

codes of the code have a good performance. For the two-phase case the sub-codes are fixed and

can be determined solely by the statistics of the channel. In a protocol with a direct link the ef-

fective sub-codes change depending on the signal received in the direct link. For the two-phase

protocol the effective codes used in the decoding can therefore be determined offline, while for a

protocol with a direct link the effective codes need to be created while decoding. We conclude,

that for the two-phase protocol the complexity of the decoding is the same as in a single-user

system, if the effective codes together with the mappings used at the relay are calculated of-

fline. The challenge is the design of the code, which is a super-code of several good codes, that

are interwoven in a particular way — for both receivers and for the different messages as side

information.

For the analysis of the two-way relay channel, the results obtained in this thesis are far from
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complete. In particular, the approach with three information flows is only a first step. This

approach can be enhanced in several directions: For example, there are dependencies in the

system that are not used so far for the decoding at the receivers. Furthermore, the auxiliary

random variables are constrained to allow a straight forward analysis. Solving these restrictions

might lead to further gains. Last but not least, the system is closely related to the general BC.

Therefore new insights for this channel might lead to new insights for the considered system.

Another possible focus for future research may be the transfer of the results to channels with

cost constraints, in particular to Gaussian channels with power constraint inputs. Furthermore,

an interesting question is, whether or not one can characterize channels, for which one of the

proposed protocols is optimal.

1.5.3 Further Results which are not Part of the Thesis

During the work on this thesis we obtained further interesting results that are not part of this

thesis.

• In [3, 4] we study the MAC with correlated binary data. Suppose a set of binary sources

produces binary data that is transmitted to a receiver via a Gaussian MAC. The capacity

region of such a setup is unknown; an achievable rate region for the problem can be

found in [34, 35]. A suboptimal strategy is to encode the data using a distributed source

coding scheme (as e.g. proposed in [36]) according to the coding theorem by Slepian and

Wolf [37] and then transmit the encoded data to the sink. But results for this strategy

in a MAC with correlated sources are quite negative: It turns out that a cooperation of

the nodes is inevitable to ensure a sufficient throughput and a good scaling for larger

networks. Without any cooperation, the transport capacity of the so called many-to-one

or reach-back channel scales too slow leading to the problem of vanishing throughput per

node. Any compression scheme is then insufficient to transport the increasing amount of

data produced by the nodes (see for instance [38] and references therein). This is true

for distributed source coding schemes that exploit the correlation [37, 36], as well as for

joint source channel codes that usually assume orthogonal channels [39]. Our work in

[3, 4] does not focus on information theoretical results concerning the communication

task. Instead we analyze, how one could use the source correlation in a Gaussian MAC

with uncoded transmission. We ask how one should place the transmitted symbols in

the signal space in a distributed way, such that the receiver will detect the symbols of

all the receivers without error with high probability. We consider a transmission scheme

based on code-division-multiple-access (CDMA) that exploits the correlation structure of

sources. The motivation for this work is to facilitate statistical cooperation in a sensor

network scenario as proposed in [40]. We assume the jointly optimum detector and focus

on binary sources with arbitrary statistical dependencies. The objective is to characterize

signature sequences that minimize the bit error probability for each source. Based on the
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results of [41], we derive an upper bound on the bit error probability and show that under

certain correlation structures, there exist sequences for which the upper bound equals a

simple genie-aided lower bound. These sequences are optimal in the sense of minimizing

the bit error probability of each source since the lower bound is independent of the choice

of sequences. We prove a necessary and sufficient condition for attaining the lower bound,

and hence provide insight into the design of sequences for CDMA systems with correlated

sources. Finally we give some comments on how to choose sequences if the conditions

on the correlation structure are not satisfied and therefore upper and lower bound differ.

In relation to the topic of this thesis the results in [3, 4] might be useful for the design of

structured codes to improve the performance in the MAC phase of a two-phase two-way

relay channel if the source data of the terminals is correlated. Some comments on the use

of structured codes for the MAC phase in the two-phase two-way relay channel are given

in Section 4.1.4.

• In [5] we analyze the performance of different multiple antenna transmission techniques

in wireless networks with interference treated as noise. Our focus is on the impact of

simple orthogonal space time codes (STCs) on the so-called network-outage probabil-

ity. To ensure some quality-of-service, we assume that each connection in a network

has to achieve a certain signal-to-interference-and-noise-ratio. Due to channel variations

and interference, it might be impossible to maintain the desired SIR on each link perma-

nently. Given some established network topology and channel statistics, one of the most

important objectives is then to guarantee a certain outage probability performance of the

network. The network is said to be in outage if there exists at least one link, for which the

SIR target cannot be satisfied. This event is called network-outage. The network-outage

probability is the probability for this event. There is little literature on the performance

analysis of multiple antenna systems that are exposed to (unknown) interference from

other connections. The work of Blum et al. [42, 43] shows that in scenarios with large

interference, standard multiple antenna techniques could fail to achieve the desired per-

formance objectives. In addition, for some systems, it was shown that transmitting with

only one antenna is optimal. In [5] analytical results on the network-outage probability

are given for some simple networks and different multiple antenna transmission tech-

niques. These results show insufficiency of many traditional space-time coding designs

under interference conditions. Simulations suggest that this main result of the analy-

sis in [5] may also hold for general wireless networks, provided that the interference is

sufficiently strong. In particular the Alamouti STC is inappropriate for many symbol

synchronous networks in which interference is treated as noise since the scheme induces

a diversity gain to the interference. Similar results hold for other orthogonal STCs. In

many scenarios, transmitting with only one antenna is superior if one considers the in-

crease of complexity due to the STC. In general, receive diversity proves to be give more
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benefit than transmit diversity by using STCs. Furthermore general orthogonal STCs lead

to unequal SIR performance for the different symbols transmitted in one STC symbol.

As a consequence, channel knowledge may increase the performance of the code. The

results indicate that traditional point-to-point designs might be not suitable in distributed

networks with strong interference. Most of the current work does not consider nearby

nodes performing similar operations and inducing interference which — although Gaus-

sian distributed for every time instance — may have significantly different impact on the

performance than Gaussian noise, if channel statistics are taken into account.

• In co-authored work with Ruben Heras-Evangelio [1, 2] we studied a two-stage relaying

scheme in the context of wireless sensor networks. The task is to transmit data from a

source to a destination with the help of an array of relays which re-encode the received

signal using a distributed space time code. The relays are assumed not to decode the

transmitted data. In [2] the pairwise error probability is analyzed and upper bounds are

derived for general space time codes. These bounds are used to derive a power alloca-

tion to minimize the pairwise error probability. The results show that significant diversity

gains can be obtained by the cooperative relaying scheme. In [1] we extend the model by

allowing a more flexible placement of the relay nodes. Furthermore a simple hardware

model was used to analyze the impact of the power consumption due to the hardware. It

turns out that hardware energy consumption favors single user transmission over cooper-

ative relaying if the distance between source and destination is not to large. The reason

is, that in this case the fixed energy costs needed to operate the additional nodes are not

compensated by the gain offered by the diversity.



Chapter 2

The Two-Way Relay channel with

Decode-and-Forward

This chapter considers the two-way relay channel, where we impose a decode-and-forward

restriction. This implies that we assume the relay is able to decode the messages of both the

receivers. We begin the analysis by assuming a two-phase communication protocol. In the

first phase the two nodes transmit their messages to the relay node, which decodes both the

messages. This phase is the classical MAC, and the capacity of this channel is known [44] [45].

The second phase is a broadcast from the relay to both receivers. This BC is different from the

usual broadcast channel [46, 47, 48], as the receiving nodes know the message intended for the

other user. The capacity region of the general BC is unknown, the best achievable rate region

is given in [47]. We shall see that the side information available at the receivers simplifies

the problem; therefore we are able to state the capacity region of the BC channel, where both

receivers know the message intended for the other respective node. The region is given and

proven in Section 2.1.2. By using the capacity of the MAC and the the result of Section 2.1.2

we are able to give an achievable rate region for the two-way relay channel obtained with a

decode-and-forward protocol.

The theoretical derivation in Section 2.1 uses random coding arguments. Although the ran-

dom coding arguments do not give an explicit code construction, which yields efficient codes

for all channels, it gives rise to a coset structure of single user codes, that can be used for

practical code design. In Section 2.2 this idea is pursued and a practical coding scheme based

on single user codes is proposed, that is optimal for channels which fulfill a certain symmetry

condition that is explained in detail in that section. For general channels this coding scheme is

suboptimal; a short discussion shows how one could still design codes from single user codes

and which problems arise in more general channels, where the channel disturbance is indepen-

dent of the channel input. For these channels codes based on lattices can be used. For general

channels it seems to be inevitable to use several codes that are interwoven in a special way, i.e.

a joint code design for both receivers is necessary.

Section 2.3 extends the previous result by allowing more than two phases. Achievable rate

23
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regions are given for three and four phases. The additional phases offer some additional degrees

of freedom as follows: The three-phase protocol establishes a direct link between the nodes

without violating the half-duplex constraint, while the advantage of the non-orthogonal MAC

transmission is sacrificed; in the four phase protocol a trade-off between the benefits of the

direct link and the non-orthogonal MAC transmission is permitted. The key feature of all these

protocols is the concluding BC phase, where the signal already received in previous phases as

well as the message intended for the other user may be used as side information for the decoding

at the terminal node. There are further possible extensions, e.g. additional MAC phases, where

one of the nodes and the relay transmit to the other node; these extensions are beyond the scope

of this thesis.

Some of the results presented in this Chapter and related results have been published in

[6, 7, 8, 9, 10]. A similar result as stated in this chapter was recently developed independently

and is published in [49].

2.1 A Coding Theorem for the Two-Phase Two-Way Relay

channel

In this section we consider the achievable rates for a two-phase protocol if we impose a decode-

and-forward constraint at the relay. The setup used in this section is the generic two-way relay

setup introduced in Chapter 1. Recall, that we assume half-duplex nodes that cannot transmit

and receive at the same time. Furthermore we do not allow the transmitted symbols of any

of the terminal nodes to depend on any received signal. For a classical two-way channel this

restriction is known as a restricted two-way channel.

In this section we focus on a protocol that consists of only two phases. Furthermore we

require that the relay node can successfully decode both messages. This assumption seems

reasonable as a first approach, as it simplifies the analysis: By this assumption we can split

the system in two sub-systems, namely a MAC transmission and a BC transmission. For the

analysis of an achievable rate region we may use timesharing between achievable rate pairs for

the two phases. The timesharing result is again achievable by a union bound argument. We

can use the sum of the error probabilities for the two sub-sytems as an upper bound on the

probability of error for the overall system. The approach to enforce decoding at the relay is

motivated by the following observation: In the system all information passes the relay. We

will see later in Chapters 3 to 5 that even though all information passes the relay, it may be

suboptimal to enforce that the relay is able to decode the data.

With the above restrictions we end up with a multiple access phase where node 1 and node 2

transmit messages w1 and w2 to the relay node, and a broadcast phase where the relay forwards

the messages to node 2 and 1 respectively. Before considering the complete system with a time-

division between these two phases in Section 2.1.5 we will look at the two phases separately.
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Figure 2.1: Multiple access (MAC) and broadcast (BC) phase of the time division two-way
relay channel.

In the MAC phase we have the classical MAC, where the optimal coding strategy and the

capacity region CMAC are known [44], [45]. We will restate the capacity region in the next

subsection. For the BC phase, we assume that the relay node has successfully decoded the

messages w1 and w2 in the MAC phase. This is reasonable if we assume rates within the MAC

capacity region and a sufficient coding length. Therefore we have a BC where the message w1

is known at node 1 and the relay node and the message w2 is known at node 2 and the relay

node, as depicted in Figure 2.1. The task of the relay node is to broadcast a signal to node

1 and node 2 which allows both to recover the respective unknown source. This means that

node 1 wants to recover source W2 and node 2 wants to recover source W1. We will present

the information theoretical optimal coding strategy and the capacity region of the bidirectional

broadcast channel in Section 2.1.2.

Clearly in the overall system consisting of the MAC and the BC phase a rate pair is achiev-

able if that rate pair is within the achievable rate regions for both the subsystems. Furthermore

due to the restriction, which prohibits any kind of feedback and cooperation of the encoders,

using the standard cutset bound argument [30] we could conclude that the capacity of the re-

stricted two-phase two-way relay channel with decode-and-forward constraint is indeed given

by timesharing between rate pairs in these two regions. The use of the term “capacity” in this

context is at the least questionable, since the upper bound on the achievable rate region is more

a consequence of the constraints than a consequence or property of the channel. Therefore,

we prefer to call the region simply an achievable rate region for the two-phase two-way relay

channel.

Recall that X1, X2, and XR denote the input and Y1, Y2, and YR the output random variables of

node 1, node 2, and the relay node respectively. Furthermore, R1 and R2 are the rates from node

1 and 2 to the relay node in the MAC phase while they denote the achievable rates between the

relay node and node 2 and 1 in the BC phase. All alphabets are assumed to be discrete and of

finite cardinality.
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2.1.1 Capacity Region of Multiple Access Phase

In this subsection, we restate the well known capacity region of the MAC [44, 45] without

proof; the proof can be found in any textbook on multiuser information theory, e.g. [50].

Definition 2.1. A discrete MAC consists of two input random variables X1 and X2, an output

random variable YR, and a probability transition function p(yR|x1, x2). X1 and X2 take values in

the input alphabets X1 and X2 respectively, while YR does so in the output alphabet YR.

Let Xn
k
= (Xk,(1), Xk,(2), . . . , Xk,(n)), k ∈ {1, 2}, denote the random input sequence of length n

at the kth transmitter which takes realizations xn
k
= (xk,(1), xk,(2), . . . , xk,(n)) ∈ Xn

k
with probability

p(xn
k
). Accordingly, let Yn = (YR,(1), YR,(2), . . . , YR,(n)) denote the output sequence of length n

which takes realizations yn
R
= (yR,(1), yR,(2), . . . , yR,(n)) ∈ Yn

R
with probability p(yn

R
). The MAC is

said to be memoryless if p(yn
R
|xn

1, xn
2) =
∏n

i=1 p(yR,(i)|x1,(i), x2,(i)).

Theorem 2.1. The capacity region CMAC of the memoryless MAC is the set of all rate pairs

[R1,R2] satisfying

R1 ≤ I(X1; YR|X2,U)

R2 ≤ I(X2; YR|X1,U)

R1 + R2 ≤ I(X1, X2; YR|U)

for some probability function p(u)p(x1|u)p(x2|u)p(yR|x1, x2), where the set of the auxiliary ran-

dom variable U has cardinality bounded by |U| ≤ 3.

2.1.2 Capacity Region of Broadcast Phase

In this section we consider the BC-phase only. First we need to introduce some notation and

present certain simplified preliminaries. The simplification is possible, as we do not consider

the MAC phase in this section but assume that the relay has decoded the messages without error.

2.1.2.1 Definitions and Preliminaries

Definition 2.2. A discrete BC consists of a random variable XR taking values in the input al-

phabet XR, two random variables Y1 and Y2 taking values in the output alphabets Y1 and Y2

respectively, and a probability transition function p(y1, y2|x).

Let Xn
R
= (XR,(1), XR,(2), . . . , XR,(n)) denote the random input sequence of length n which takes

realizations xn
R
= (xR,(1), xR,(2), . . . , xR,(n)) ∈ Xn

R
with probability p(xn

R
). Accordingly, let Yn

k
=

(Yk,(1), Yk,(2), . . . , Yk,(n)), k ∈ {1, 2}, denote the random output sequence of length n at the kth

receiver, which takes realizations yn
k
= (yk,(1), yk,(2), . . . , yk,(n)) ∈ Yn

k
with probability p(yn

k
).
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The BC is said to be memoryless if p(yn
1, y

n
2|x

n
R
) =
∏n

s=1 p(y1,(s), y2,(s)|xR,(s)). For a real broad-

cast situation we impose a “no-collaboration” restriction between the receivers so that we need

to consider only the marginal transition probabilities p(y1|xR) and p(y2|xR).

We now consider a block code of length n. The two independent information sources W1

and W2 are random variables, which take values in the message sets

W1 = {1, 2, . . . , M
(n)
1 }, W2 = {1, 2, . . . , M

(n)
2 },

according to two separate uniform distributions. Therefore, we have sources with entropy

H(W1) = log M
(n)
1 and H(W2) = log M

(n)
2 . We collect both sources in the random variable

W = [W1,W2], which takes realizations w = [w1,w2] ∈ W1 ×W2 =W.

Definition 2.3. A (M
(n)
1 , M

(n)
2 , n)-code for the bidirectional BC consists of one encoder at the

relay node

xn
R :W→ Xn

R,

and decoders at node 1 and node 2

g1 : Yn
1 ×W1 →W2,

g2 : Yn
2 ×W2 →W1.

When the sources’ output is w = [w1,w2], the receiver of node 1 is in error if g1(Yn
1 ,w1) ,

w2. We denote the probability of this event by

λ1(w) = Pr[g1(Yn
1 ,w1) , w2 | x

n
R(w = [w1,w2]) has been sent].

Accordingly, we denote the probability that the receiver of node 2 is in error by

λ2(w) = Pr[g2(Yn
2 ,w2) , w1 | x

n
R(w = [w1,w2]) has been sent].

This allows us to introduce the notation for the average probability of error for the kth node

µ
(n)
k
=

1

|W|

∑

w∈W

λk(w).

Definition 2.4. A rate pair [R1,R2] is said to be achievable for the bidirectional broadcast chan-

nel if there exists a sequence of (M
(n)
1 , M

(n)
2 , n)-codes with

log M
(n)
1

n
→ R1,

log M
(n)
2

n
→ R2 while

µ
(n)
1 , µ

(n)
2 → 0 as n → ∞. The set of all achievable rate pairs is the capacity region of the

bidirectional broadcast channel.
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2.1.2.2 Coding Theorem

Theorem 2.2. The capacity region CDF-BC for sending two sources W1 and W2 over the memo-

ryless broadcast channel where the receiving node 1 knows W1 and node 2 knows W2 is the set

of all rate pairs [R1,R2] satisfying

R1 ≤ I(XR; Y2),

R2 ≤ I(XR; Y1),
(2.1)

for some probability function p(xR)p(y1, y2|xR).

Remark 2.1. The region CDF-BC is convex due to the concavity of both the mutual information

expression, I(XR; Y1) and I(XR; Y2), as functions of p(xR) for fixed p(y1|xR) and p(y2|xR).

Remark 2.2. The result for the capacity given in Theorem 2.2 can be generalized to a capacity

region under a power constraint for a Gaussian MIMO broadcast channel. This was done in

[10]. A detailed proof will not be given here. The interested reader is refered to [10].

2.1.3 Proof of the Capacity Region for the Broadcast Phase

Now we will proof Theorem 2.2 in two steps. First we will show, how to construct a sequence

of codes such that for this sequence, the rate pair corresponding to the codes approaches any

given rate pair in the region given by (2.1), while the average error probability of the codes

goes to zero and the block length goes to infinity. Thereafter, we proof the converse, i.e. we

show that whenever the average error probability of a given sequence of codes goes to zero for

a block length n → ∞, then the rate pair corresponding to the codes approaches a rate pair in

the region given by (2.1).

2.1.3.1 Proof of Achievability

Proof. We adapt the random coding proof for the degraded broadcast channel of [51] to our

context. First, we prove the achievability of all rate pairs [R1,R2] satisfying

R1 < I(XR; Y2),

R2 < I(XR; Y1),
(2.2)

for some probability function p(xR)p2(y1, y2|xR). Then we extend this to prove that all points in

the closure of the convex hull of (2.2) are achievable, which is exactly the region as stated in

Theorem 2.2.

Random Codebook Generation We generate M
(n)
1 M

(n)
2 independent codewords Xn

R
(w), w =

[w1,w2] of length n with M
(n)
1 = 2⌊nR1⌋ and M

(n)
2 = 2⌊nR2⌋ according to

∏n
s=1 p(xR,(s)). The random

code is revealed to both receivers and the relay.
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Encoding To send the pair w = [w1,w2] with wk ∈ Wk, k ∈ {1, 2}, the relay sends the

corresponding codeword xn
R
(w).

Decoding The receiving nodes will use typical set decoding. For a strict definition of the

decoding sets we choose parameters ǫ1, ǫ2 for the typical sets as ǫ1 <
I(XR;Y1)−R2

3 and ǫ2 <
I(XR;Y2)−R1

3 respectively. Knowing w1 the decoder at node 1 decides that w2 was transmitted if

xn
R
(w1,w2) is the only codeword such that

(

xn
R
(w1,w2), yn

1

)

∈ T
(n)
ǫ1

(XR, Y1). Accordingly, the

decoder at receiver 2 chooses w1 if xn
R
(w1,w2) is the only codeword such that

(

xn
R
(w1,w2), yn

2

)

∈

T
(n)
ǫ2

(XR, Y2). If there is no or no unique codeword xn
R
(w1, ·) for receiver 1 or xn

R
(·,w2) for receiver

2, the decoder maps on the index 1 (to keep the definition of the decoder consistent).

When xn
R
(w) with w = [w1,w2] has been sent, and yn

1 and yn
2 have been received we say that

the decoder at node 1 is in error if either xn(w) is not in T (n)
ǫ1

(XR, Y1) for the received signal yn
1

(occurring with probability P
(1)
e,1(w)) or if xn

R
(w1, ŵ2) with ŵ2 , w2 is in T (n)

ǫ1 (XR, Y1) (occurring

with P
(2)
e,1(w)). We define the error events at node 2 in an analogous way; these events for receiver

2 occur with probability P
(1)
e,2(w) and P

(2)
e,2(w) respectively.

Analysis of the Probability of Error From the union bound we have

λk(w) ≤ P
(1)
e,k

(w) + P
(2)
e,k

(w)

with

P
(1)
e,k

(w) =
∑

yn
k
∈Yn

k

p(yn
k |x

n
R(w)) χC

T
(n)
ǫk

(XR,Yk)
(xn

R(w), yn
k)

for k ∈ {1, 2} and

P
(2)
e,1(w) =

∑

yn
1∈Y

n
1

p(yn
1|x

n
R(w))

∑

ŵ2,w2

χT (n)
ǫ1

(XR,Y1)(xn
R(w1, ŵ2), yn

1),

and

P
(2)
e,2(w) =

∑

yn
2∈Y

n
2

p(yn
2|x

n
R(w))

∑

ŵ1,w1

χ
T

(n)
ǫ2

(XR,Y2)(xn
R(ŵ1,w2), yn

2),

For uniformly distributed messages W1 and W2 we define

P
(m)
e,k
=

1

|W1| |W2|

∑

w∈W1×W2

P
(m)
e,k

(w)

for m ∈ {1, 2} so that µ(n)
k
≤ P

(1)
e,k
+ P

(2)
e,k

. Next, we average over all codebooks, i.e. Exn
R
{µ

(n)
k
} ≤Exn

R
{P

(1)
e,k
+ P

(2)
e,k
}.

In the following, we show that if R2 < I(X, Y1), we have Exn
R
{µ1} → 0 as n → ∞. The

analogous result that if R1 < I(X, Y2), we have Exn
R
{µ2} → 0 as n→∞ follows immediately.
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We have Exn
R

{

P
(1)
e,1

}

=
1

|W1| |W2|

∑

w∈W1×W2

Exn
R

{

P
(1)
e,1(w)

}

for any
=

fixed w

∑

yn
1∈Y

n
1

Exn
R

{

p
(

yn
1|x

n
R(w)
)

χC

T
(n)
ǫ1

(XR,Y1)

(

xn
R(w), yn

1

)

}

=
∑

yn
k
∈Yn

1

∑

xn
R
∈Xn

R

p(xn
R)p(yn

1|x
n
R) χC

T
(n)
ǫ1

(XR,Y1)
(xn

R, y
n
1)

=Exn
R
,yn

1

{

χC

T
(n)
ǫ1

(XR,Y1)
(xn

R, y
n
1)
}

−→
n→∞

0.

The last term goes to 0 exponentially fast by the law of large numbers and the definition of the

typical set. This can be seen by noting that it is the probability of the event that two sequences

drawn according to a joint probability distribution are not jointly typical.

For the calculation of Exn
R

{

P
(2)
e,1

}

we use the fact that for w = [w1,w2] , [w1, ŵ2] the random

variable p
(

yn
1|X

n
R
(w)
)

is independent of the random variable χ
T

(n)
ǫ1

(XR,Y1)(xn
R
(w1, ŵ2), yn

1).Exn
R

{

P
(2)
e,1

}

=
1

|W1||W2|

∑

w∈W1×W2

Exn
R

{

P
(2)
e,1(w)

}

for any
=

fixed w

∑

yn
1∈Y

n
1

Exn
R



























p
(

yn
1|x

n
R(w)
)

|W2 |
∑

ŵ2=1
ŵ2,w2

χT (n)
ǫ1

(XR,Y1)

(

xn
R(w1, ŵ2), yn

1

)



























=
∑

yn
1∈Y

n
1

|W2 |
∑

ŵ2=1
ŵ2,w2

Exn
R

{

p
(

yn
1|x

n
R(w)
)}Exn

R

{

χT (n)
ǫ1

(XR,Y1)

(

xn
R(w1, ŵ2), yn

1

)

}

=
∑

yn
1∈Y

n
1

|W2 |
∑

ŵ2=1
ŵ2,w2

p(yn
1)Exn

R

{

χ
T

(n)
ǫ1

(XR,Y1)

(

xn
R(w1, ŵ2), yn

1

)

}

= (|W2| − 1)
∑

yn
1∈Y

n
1

∑

xn
R
∈Xn

R

p(xn
R)p(yn

1)χ
T

(n)
ǫ1

(XR,Y1)(xn
R, y

n
1)

For (xn
R
, yn

1) ∈ T (n)
ǫ1 (XR, Y1) and sufficiently large n we have by the properties of the typical setExn

R

{

P
(2)
e,1

}

= (|W2| − 1)
∑

yn
1∈Y

n
1

∑

xn
R
∈Xn

R

p(xn
R)p(yn

1)χ
T

(n)
ǫ1

(XR,Y1)(xn
R, y

n
1)

≤ (|W2| − 1)|T (n)
ǫ1

(XR, Y1)|2−n(H(Y1)−ǫ1)2−n(H(XR)−ǫ1).

Furthermore

|T (n)
ǫ1

(XR, Y1)| ≤ 2n(H(XR,Y1)+ǫ1)

and

(|W2| − 1) ≤ 2nR2 .
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Therefore Exn
R

{

P
(2)
e,1

}

≤ 2n(R2+3ǫ1−I(XR;Y1))

which goes to 0 for n→ ∞ as we choose ǫ1 <
I(XR;Y1)−R2

3 .

Hence, whenever R1 < I(X, Y2) and R2 < I(X, Y1), the average probability of error for both

receivers, averaged over codebooks and codewords, gets arbitrarily small for sufficiently large

block length n. Moreover, if R1 < I(X; Y2) and R2 < I(X; Y1) we can choose ǫ and n such that we

have Exn
R

{

µ
(n)
1 + µ

(n)
2

}

< ǫ. Since the average probabilities of error over the codebooks is small,

there exists at least one codebook C⋆ with small average probabilities of error µ(n)
1 + µ

(n)
2 < ǫ.

This proves the achievability of any rate pair satisfying the equations (2.2).

A Note on Average vs. Maximum Error Probability In the definition of achievable rates

and in the definition of capacity we used the average probability of error and not the maximum

probability of error. In single user systems this difference is not significant. Simply speaking,

one can always take the good performing codewords of the random average probability of error

code while dropping the bad ones without sacrificing too much. One can prove that this is al-

ways possible. Moreover, in single user systems the reduction of codewords is sub-exponential;

hence the rate reduction is not evident for large block length.

This argument does not always hold in multiuser systems. In fact, in general the derivation

of a maximum error code from a average error code is not possible without a loss in rate [52].

The problem lies in the fact that the reduced code needs to have a special structure. In the current

setup it is still possible to find a large enough subset of the code, which codewords perform as

needed. But this code cannot be decoded at the receiver. To show where the problem occurs we

give the usual proving technique here and point out where it fails.

The idea of a code construction for performance under a maximum error criterion starting

from a code for average probability of error is that the encoder uses only codewords xn
R
(w)

of the code C⋆ with an index in the set of codewords w ∈ Q⋆, which have a maximum error

λk(w) < 8ǫ, k ∈ {1, 2} for both receivers. Suppose we have a codebook C⋆ with small average

probabilities of error µ(n)
1 + µ

(n)
2 < ǫ. This implies that we have µ(n)

1 < ǫ and µ(n)
2 < ǫ. Next, we

define sets

Q = {w ∈ W : λ1(w) < 8ǫ and λ2(w) < 8ǫ},

and

Rk = {w ∈ W : λk(w) ≥ 8ǫ},

k ∈ {1, 2}. Therefore, Q contains messages with a small probability of error for the code C⋆ and

for both receivers, while Rk contains messages with a large probability of error for receiver k.

Since

ǫ >
1

|W|

∑

w∈W

λk(w) ≥
|Rk|

|W|
8ǫ,
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we can bound the cardinality |Rk| <
|W|

8 for k ∈ {1, 2}. It follows fromW = Q ∪ R1 ∪ R2 that

|Q| ≥ |W| − |R1| − |R2| >
3

4
|W|.

Now, let T be the set of w1 having the property that for each w1 there are at least 1
2 M

(n)
2 choices

of w2 so that [w1,w2] ∈ Q. Therefore, for w1 ∈ T there are at most M
(n)
2 choices w2 ∈ W2 and

for w1 < T there are less than 1
2 M

(n)
2 choices w2 ∈ W2 such that [w1,w2] ∈ Q. Accordingly, we

have

|T |M
(n)
2 + |W1 \ T |

1

2
M

(n)
2 > |Q| > 3

4 M
(n)
1 M

(n)
2 .

It follows that |T | > 1
2 M

(n)
1 where we used |W1 \ T | = M

(n)
1 − |T |. As a consequence there

exists an index set Q⋆1 ⊂ W1 with 1
2 M

(n)
1 indices w1, to each of which we can find an index set

Q⋆2 (w1) ⊂ W2 with 1
2
M

(n)
2 indices w2 so that we have for each w1 ∈ Q

⋆
1 and w2 ∈ Q

⋆
2 (w1) a

maximum error λk(w1,w2) < 8ǫ for k ∈ {1, 2}.

Note that the index set has no Cartesian structure. This is where the problem will occur.

From the above arguments it follows that there exist bijective mappings

Φ :W⋆ → Q⋆,

Φ1 :W⋆
1 → Q

⋆
1 ,

Φ
w1

2 :W⋆
2 → Q

⋆
2 (w1)

for each w1 ∈ Q
⋆
1 where

Φ(w1,w2) =
[

Φ1(w1),Φw1

2 (w2)
]

with setsW⋆ =W⋆
1 ×W

⋆
2 ,W⋆

k
=
{

1, 2, . . . , 1
2
M

(n)
k

}

for k ∈ {1, 2}, and

Q⋆ =
{

[w1,w2] ∈ W : w1 ∈ Q
⋆
1 ,w2 ∈ Q

⋆
2 (w1)

}

⊂ Q.

Furthermore, there exist inverse mappings

Ψk : Q⋆ →W⋆
k , k ∈ {1, 2},

with

w = [Ψ1 (Φ(w)) ,Ψ2 (Φ(w))] .

Using codewords xn
R
(w) of the codebook C⋆ and corresponding decoders g1(yn

1,w1) and

g2(yn
2,w2) the above arguments allow us to define a (1

2 M
(n)
1 , 1

2 M
(n)
2 , n)-code as follows: The en-

coder x̃n
R

:W⋆ → Xn
R

is given by

x̃n
R(w) = xn

R (Φ(w)) .
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The decoders

g̃1 : Yn
1 ×W

⋆
1 →W

⋆
2

and

g̃2 : Yn
2 ×W

⋆
2 →W

⋆
1

are defined as

g̃1(yn
1,w1) = Ψ̃2

(

Φ1(w1), g1
(

yn
1,Φ1(w1)

))

and

g̃2(yn
2,w2) = Ψ̃1

(

g2

(

yn
2,Φ

w1

2 (w2)
)

,Φ
w1

2 (w2)
)

with the mappings Ψ̃k :W→W⋆
k

given by

Ψ̃k =



















Ψk(w), if w ∈ Q⋆

1, if w < Q⋆

for k ∈ {1, 2}.

The code has a maximum error performance as needed for receiver 1. The problem occurs

at receiver 2. To decode the codeword this receiver uses the side information. But the side

information was re-indexed depending on the message for receiver 2, i.e. the receiver is not

able to calculate Φw1

2 (w2) which is needed in the decoding process. To facilitate the decoding

at receiver 2 the mapping Φw1

2 (w2) needs to be independent of w1. This induces the need of a

Cartesian structure of the good codewords. In general this requirement can only be satisfied

with a rate loss compared to the average probability of error code [52].

The above only shows, that this way does not lead to a code with arbitrarily small maximum

probability of error. It might still be possible to construct such a code. The used random coding

proof seems inadequate for this task.

Achivability of the Closure of the Rate Region Let R
(

p(xR)
)

denote the rate region which

we achieve with the input distribution p(xR). Since the cardinality of the input set XR is finite,

the rate region
⋃

p(xR) R
(

p(xR)
)

is bounded.

The achievability of the closure of the rate region is a consequence of the definition of

achievability: What is needed in this step of the proof is the construction of a sequence of

codes such that their rate pair converges to a point on the boundary. We know that we have

such sequences for any rate point in the interior of the region. In particular there exist such

sequences for rate points arbitrarily close to the boundary. The idea now is to choose a sequence

of rate pairs that converges to the boundary of the rate region and choose some codes from the

sequences of codes corresponding to these rate pairs. As a consequence the rate pair of the

resulting new sequence of codes converges to the boundary.

For any rate pair [I(XR, Y2) − ǫ
m
, I(XR, Y1) − ǫ

m
], ǫ > 0, m ∈ N, there exists a sequence of
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(2⌊n(I(XR,Y2)− ǫ
m

)⌋, 2⌊n(I(XR,Y1)− ǫ
m

)⌋, n)-codes such that µ(n)
k,m
→ 0, k ∈ {1, 2}, when n → ∞. Therefore,

for any m there exists n0,m such that we have µ(n)
k,m

< 1
m

for n > n0,m. Now, let m(n) = max{m :

n > n0,m}, which denotes the largest m such that µ(n)
k,m

< 1
m

holds. Since µ(n)
k,m
→ 0, it follows that

m(n) →∞ when n→ ∞ so that for the sequence of (2⌊n(I(XR,Y2)− ǫ

m(n) )⌋, 2⌊n(I(XR,Y1)− ǫ

m(n) )⌋
, n)-codes we

have 1
n
⌊n(I(XR, Yk)−

ǫ

m(n) )⌋ → I(XR, Yk) with µ(n)
k
< 1

m(n) → 0, k ∈ {1, 2}, when n→∞. Therefore,

the rate pair [I(XR, Y2), I(XR, Y1)] is achievable and R (p(xR)) is closed. �

2.1.3.2 Proof of the Converse

Proof. We have to show that any given sequence of (M
(n)
1 , M

(n)
2 , n)-codes with µ

(n)
1 , µ

(n)
2 → 0

satisfies 1
n
H(W1) ≤ I(X; Y2) and 1

n
H(W2) ≤ I(X; Y1) for a joint distribution p(xR)p(y1, y2|xR).

For a fixed block length n the joint distribution

p(w1,w2, xn
R, y

n
1, y

n
2) =

1

|W1|

1

|W2|
p(xn

R|w1,w2)
n
∏

i=1

p(y1,(i)|x(i))p(y2,(i)|xR,(i))

on W1 × W2 × X
n
R
× Yn

1 × Y
n
2 is well-defined. In what follows the mutual information and

entropy expressions are calculated with respect to this distribution.

Lemma 2.3. We can adapt Fano’s inequality for our context as

H(W2|Y
n
1 ,W1) ≤ µ(n)

1 log |W2| + 1 = nǫ
(n)
1 , (2.3)

with ǫ(n)
1 =

log |W2 |

n
µ

(n)
1 +

1
n
→ 0 for n→ ∞ as µ(n)

1 → 0.

Proof. From Yn
1 and W1 node 1 decodes the index W2 of the transmitted codeword Xn

R
(W1,W2).

We define the event of an error at node 1 as

E1 =



















1, if g1(Yn
1 ,W1) , W2,

0, if g1(Yn
1 ,W1) = W2.

Therefore we have for the mean probability of error µ(n)
1 = Pr[E1 = 1]. We can extend

H(E1,W2|Y
n
1 ,W1) in two different ways using the chain rule for entropies:

H(E1,W2|Y
n
1 ,W1) = H(W2|Y

n
1 ,W1) + H(E1|Y

n
1 ,W1,W2)

= H(E1|Y
n
1 ,W1) + H(W2|E, Y

n
1 ,W1).

(2.4)

Since E1 is a function of W1, W2, and Yn
1 , we have H(E1|Y

n
1 ,W1,W2) = 0. Furthermore, since
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E1 is a binary valued random variable, H(E1|Y
n
1 ,W1) ≤ H(E1) ≤ 1 and we have

H(W2|Y
n
1 ,W1, E1) = Pr[E1 = 0]H(W2|Y

n
1 ,W1, E1 = 0) + Pr[E1 = 1]H(W2|Y

n
1 ,W1, E1 = 1)

≤ (1 − µ(n)
1 )0 + µ(n)

1 log(|W2| − 1)

≤ µ
(n)
1 log |W2|.

(2.5)

It follows that

H(W2|Y
n
1 ,W1) = H(W2|E, Y

n
1 ,W1) + H(E1|Y

n
1 ,W1)

≤ 1 + µ(n)
1 log |W2|.

(2.6)

This concludes the proof of the lemma. �

With the above lemma, we can bound the entropy H(W2) as follows

H(W2) = H(W2|W1)

= I(W2; Yn
1 |W1) + H(W2|Y

n
1 ,W1)

≤ I(W2; Yn
1 |W1) + nǫ

(n)
1

≤ I(W1,W2; Yn
1 ) + nǫ

(n)
1

≤ I(Xn; Yn
1 ) + nǫ

(n)
1

≤ H(Yn
1 ) − H(Yn

1 |X
n) + nǫ

(n)
1

(2.7)

where the equations and inequalities follow from the independence of the messages, the defini-

tion of mutual information, Lemma 2.3, the chain rule for mutual information, the positivity of

mutual information and the data processing inequality.

If we divide the inequality by n we get the rate

1

n
H(W2) ≤

1

n

n
∑

i=1

(

H(Y1,(i)|Y
i−1
1 ) − H(Y1,(i)|Y

i−1
1 , Xn

R)
)

+ ǫ
(n)
1

≤
1

n

n
∑

i=1

(

H(Y1,(i)) − H(Y1,(i)|XR,(i))
)

+ ǫ
(n)
1

=
1

n

n
∑

i=1

I(Y1,(i); XR,(i)) + ǫ
(n)
1

(2.8)

using the memoryless property and again standard arguments. A similar derivation for the

source rate 1
n
H(W1) gives the bound

1

n
H(W1) ≤

1

n

n
∑

i=1

I(Y2,(i); XR,(i)) + ǫ
(n)
2
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with

ǫ
(n)
2 =

log |W1|

n
µ

(n)
2 +

1

n
→ 0

for n→ 0 as µ(n)
2 → 0. In words: The rates of the sources are bounded by averages of the mutual

informations calculated at the empirical distribution in column i of the codebook. Therefore,

we can rewrite these inequalities with an auxiliary random variable U, where U = i ∈ U =

{1, 2, . . . , n} with probability 1
n
.

1

n
H(W2) ≤ 1

n

n
∑

i=1

I(Y1,(i); XR,(i)) + ǫ
(n)
1

=

n
∑

i=1

Pr(U = i)I(Y1,(i); XR,(i)|U = i) + ǫ(n)
1

= I(Y1,U ; XR,U |U) + ǫ(n)
1

= I(Y1; XR|U) + ǫ(n)
1

(2.9)

and accordingly 1
n
H(W1) ≤ I(Y2; XR|U) + ǫ(n)

2 with ǫ(n)
k
→ 0, k ∈ {1, 2}, when n → ∞, where

Yk = Yk,U and XR = XR,U are new random variables whose distribution depend on U in the

same way as the distributions of Yk,(i) and XR,(i) depend on i. Now in the current coding scenario

U → XR → Yk, k ∈ {1, 2} forms a Markov chain and therefore I(Yk; XR|U) ≤ I(Yk; XR). This

completes the proof of the converse and the proof of the capacity region of the bidirectional

broadcast channel. �

2.1.4 Discussion and Example

The coding principles are similar to the network coding approach where we would have im-

plemented a bitwise XOR operation on the decoded messages at the relay node [24], [25],

[26]. In fact a slight change in the above proof reveals that — without any rate loss — the

encoder could also operate on the modulo sum of the two messages represented in an appropri-

ate field. The difference to the usual network coding approach lies in the fact that we use the

side information in the channel decoding, while the standard XOR approach inverts the mod-

ulo operation after the decoding. Therefore for the network coding approach the achievable

rates in the BC phase are limited by the worst receiver, i.e R1,R2 ≤ min{I(X; Y1), I(X; Y2)} for

some input distribution p(x). For our coding scheme each achievable rate depends only on the

common input distribution and its own channel distribution. This means that we can find the

optimal input distribution for each channel separately, which achieves the maximal achievable

rate for that link (equal to the single link capacity). Though this input distribution need not

be optimal for the other channel.1 Therefore, we see that the network coding approach using

XOR on the decoded messages at the relay and after the channel decoding at the terminal nodes

1It is curious that if we transfer the result to scalar Gaussian channels we will see that one input distribution
will maximize both links simultaneously.
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achieves the capacity of the broadcast phase if and only if for the maximizing input distribution

p⋆(x) = arg maxp(x) max{I(X; Y1), I(X; Y2)} we have I(X; Y1) = I(X; Y2).

Example 2.1 (The Binary Symmetric Broadcast Channel). For the binary symmetric broadcast

channel, let p1 and p2 denote the probability that the relay input X ∈ {0, 1} is complemented at

the output Y1 ∈ {0, 1} and Y2 ∈ {0, 1} of node 1 and 2 respectively. From [30, Chapter 8.1.4] we

know that an uniform input distribution maximizes the binary symmetric channel. Therefore,

the broadcast capacity region for the binary symmetric channel is given by

CBC = [0, 1 − H(p2)] × [0, 1 − H(p1)], (2.10)

which includes the region [0, 1 −max{H(p1),H(p2)}]2 ⊂ R2
+, which is achievable using XOR at

the relay node according to [24].

2.1.4.1 A Note on Coding Mechanisms in the BC phase

Before putting together the pieces to get an achievable rate region for the two-phase two-way

relay channel, we take a deeper look at the coding mechanism, which permits the seemingly

interference free transmission in the BC phase. In the following sections and chapters we will

give a similar discussion to point out where the proposed schemes differ, and what the key

features in the different approaches are and how they could be used for practical coding schemes.

A practical coding scheme that follows directly from the mechanism of the coding is proposed

in Section 2.2. It facilitates the use of single user codes. The following discussion will give the

motivation for this scheme.

In what follows suppose a code for the BC phase is given which facilitates the required

performance, i.e. the code has a sufficiently low error probability for both the receivers. The

first thing to note is that the BC phase uses only one code for both users together. This code has

a Cartesian structure because of the constraint that the relay is able to decode both messages.

This is depicted in Figure 2.2 on the left. Each square represents a codeword for one message

pair. Therefore, in the general case there is one codeword for each pair of messages (w1,w2). If

a message pair is transmitted, the encoder chooses the codeword corresponding to that message

pair and transmits it to both receivers. In the figure such a codeword is indicated by •.

The right side of Figure 2.2 shows what happens at the receiver. The receiver knows its

own message, e.g. node 1 knows the message w1. Now, for this decoder the possible choices

of codewords are reduced by the side information, i.e. the decoder decodes the message using

only a sub-code of the original code determined by the side information. The codewords of

this sub-code C(w1) are marked by squares filled with vertical lines in the figure. Similarly

decoder 2 uses a sub-code C(w2) marked by squares filled with horizontal lines in the figure.

The transmitted codeword belongs to both these sub-codes. If the overall code for the BC phase

has a good performance than — in average — all the sub-codes C(w1) are good codes for the

channel to receiver 1, while all the sub-codes C(w2) are good codes for the channel to receiver
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C(w1,w2)

(1,1) (2,1) (3,1)

(1,2) (2,2)
C(w2)

C(w1)

Figure 2.2: Coding mechanisms in the BC phase: The left hand side of this figure shows the
Cartesian structure of the code used by the relay to encode the two messages. On the right
hand side the decoding at the receivers is shown. Each square represents a codeword for one
message pair. The transmitted codeword for the message pair (w1,w2) is indicated by •. Both
receivers use a sub-code of the relay’s code for the decoding. These sub-codes depend on the
side information; the sub-codes for the actual side information are marked with vertical and
horizontal lines. The transmitted codeword belongs to the sub-codes of both the messages.

2. Note that some of the codes may be bad codes, as the proof considers only the average

probability of error.

To construct a code for the BC phase one could use this interpretation and start with a set of

codes for both users. These sets of codes need to be interwoven as it is depicted in Figure 2.2:

The codeword C(w1,w2) needs to be a codeword of both codes, C(w1) and C(w2). An important

thing to note is, that as the decoder does not care about codewords which are not contained in

the code C(w1) for the given side information w1, the same codeword may be used for different

pairs of messages, i.e. we can have c(w1,w2) = c(ŵ1, ŵ2) for w1 , ŵ1, w2 , ŵ2. As the channel

is independent of the message, this indicates that one could use the same set of codewords for

all side informations — say we use the set of codewords from the code C(w1) for all possible

side information if the number of messages M1 for receiver 2 is not greater than the number

of messages M2 for receiver 1. Only the encoder and decoder mapping need to be different

for every side information. This induces codes C(w2) for the second user. If the number of

codewords M1 < M2, this code construction leads to sub-codes containing different codewords

for receiver 2. Therefore using this code construction one has to ensure that in average the

resulting sub-codes for receiver 2 satisfy the needed performance requirement.

Now, compare the coding mechanism with that of the XOR coding scheme [24]. In the

XOR coding scheme the decoded messages are combined with an XOR operation. Therefore

the shorter message is padded with some predefined symbols, e.g. with zeros. Note that for the

XOR scheme it turns out that we have M1 = M2 if we operate at maximum sum rate. Therefore

in this case applying the idea of the coding scheme one may use the same codewords in every
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sub-code C(w1), e.g. with a mapping cyclically shifted for all the different side information.

This leads to sub-codes C(w2) that consist all of the same codewords, again with a mapping

which is cyclically shifted. The cyclical shift in turn can be expressed by an XOR operation of

the messages in an adequate representation, e.g. binary.

Another way of looking at the problem is to assume that we already calculated the XOR

operation on the messages w1 ⊕ w2. Lets assume that the number of messages M1 < M2 and

therefore lets say the binary representation of w1 was padded with zeros to allow the XOR

operation. Instead of decoding the complete code used by the relay to encode the resulting

message w1 ⊕ w2 consisting of M2 different codewords and invert the XOR operation after

decoding, one can now as well decode in a sub-code of this code. Indeed for a given side

information w2 there are only M1 possible codewords to choose from. Using the random coding

argument, one can show that there exist codes such that in average over the resulting sub-codes

for receiver 2 the error probability goes to zero as the block length goes to infinity. Only a

small change in the proof of achievability is required to show that the relay may also operate

on the XOR sum of both messages, and still the same rate pairs are achievable. The important

difference to the standard XOR approach is, that now the decoder uses the side information to

restrict the number of possible codewords before decoding. This allows the rate of both the

nodes to be chosen according only to its own respective channel, i.e. the rate for the node with

the better channel is not restricted by the weaker channel.

2.1.5 Time Division between MAC and BC

Using the above capacity results for the MAC and BC phase we can now state an achievable

rate region by concatenating both phases. The achievable rate region follows by timesharing

between both phases. The rate pair needs to be achievable for both the sub-systems.

Recall the setup given in Chapter 1: Node 1 wants to transmit message w1 with rate nR1 in n

channel uses of the two-way relay channel to node 2. Simultaneously, node 2 wants to transmit

message w2 with rate nR2 in n channel uses to node 1. Then let n1 and n2 = n − n1 denote the

number of channel uses in the MAC phase and BC phase with the property n1

n
→ α ∈ [0, 1] and

n2

n
→ β = 1− α as n→ ∞ respectively. With a sufficient block length n (respectively n1 and n2)

we can achieve a two-way transmission of messages w1 and w2 with arbitrary small decoding

error if rate pairs [RMAC
1 ,RMAC

2 ] ∈ CMAC and [RDF-BC
1 ,RDF-BC

2 ] ∈ CDF-BC exist so that we have

nR1 ≤ min{n1RMAC
1 ; n2RDF-BC

1 },

nR2 ≤ min{n1RMAC
2 ; n2RDF-BC

2 }.

This argumentation holds as we can apply a union bound to bound the probability of error from

above by the sum of the error probabilities of the two phases. As the error probability of the two

phases goes to zero as n1, n2 → ∞, the sum goes to zero as n → ∞. For the code for the two-
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Figure 2.3: The left figure shows the capacity regions CMAC (dotted line) and CDF-BC (dashed
line), the right figure shows the corresponding achievable rate region RDF (solid line). The
dashed-dotted line shows exemplary for one angle φ the achievable rate pair (•) on the boundary
of RDF with the optimal time-division between the two rate tuples (×) on the boundary of CMAC

and CDF-BC.

phase two-way relay channel we use the encoder of the code used in the proof of the achievable

rate for the MAC. The decoder is that of the bidirectional BC. The encoder at the relay is a

concatenation of the decoder for the MAC and the encoder of the BC. Using appropriate codes

from the sequences of codes used in the proofs for MAC an bidirectional BC we can get for all

n a code for the two-phase two-way relay channel such that for the resulting sequence of codes

the probability of error goes to 0 as n→∞. Therefore the rate pair [R1,R2] is achievable.

As a consequence, an achievable rate region of the two-way relay channel is given by the set

of all rate pairs [R1,R2] which are achievable with some time-devision parameter α, β ∈ [0, 1]

as n→ ∞. We collect the previous consideration in the following theorem.

Theorem 2.4. The achievable rate region RDF ⊂ R2
+ of the two-phase two-way relay channel is

given by all rate pairs [R1,R2] satisfying

R1 ≤ min{αI(X1; YR|X2,Q), βI(XR; Y2)}

R2 ≤ min{αI(X2; YR|X1,Q), βI(XR; Y1)}

R1 + R2 ≤ αI(X1, X2; YR|Q)

(2.11)

for some joint probability distribution p(q)p(x1|q)p(x2|q)p1(yR|x1, x2)p(xR)p2(y1, y2|xR) and some

α, β ≥ 0 with α + β = 1.

Since the capacity region of the BC phase CDF-BC is larger than the region achieved by

applying interference cancellation [22, 23] or by performing an XOR operation on the decoded

messages at the relay node [24, 25, 26], the achievable rate regionRDF includes the region which

can be achieved by interference cancellation and network coding.

Remark 2.3. The region RDF is convex. This can be seen by noting that [R1,R2] ∈ RDF if and

only if for some fixed α, β = 1 − α we have [R1,R2] = α[RMAC
1 ,RMAC

2 ] with [RMAC
1 ,RMAC

2 ] ∈
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CMAC and [R1,R2] = (1 − α)[RDF-BC
1 ,RDF-BC

2 ] with [RDF-BC
1 ,RDF-BC

2 ] ∈ CDF-BC. This is a direct

consequence of the definition of RDF, CMAC, and CDF-BC. Now define two sets

S1 = {[[R
MAC
1 ,RMAC

2 ], 0, 0]|[RMAC
1 ,RMAC

2 ] ∈ CMAC}

and

S2 = {[0, 0,R
DF-BC
1 ,RDF-BC

2 ]|[RDF-BC
1 ,RDF-BC

2 ] ∈ CDF-BC}.

Furthermore define S3 = convexHull{S1 ∪ S2}. The set S3 is convex. Now define S5 as the in-

tersection of S3 with a plane given by S4 = {[a, b, c, d]|a = c, b = d}, i.e. S5 = S3∩S4. By con-

struction S5 is convex. The set contains all points [a, b, c, d] such that [a, b] = α[RMAC
1 ,RMAC

2 ]

with [RMAC
1 ,RMAC

2 ] ∈ CMAC and [a, b] = (1 − α)[RDF-BC
1 ,RDF-BC

2 ] with [RDF-BC
1 ,RDF-BC

2 ] ∈ CDF-BC.

Therefore we have RDF = {[R1,R2]|∃c, d : [R1,R2, c, d] ∈ S5}. Therefore we conclude that RDF

is convex. An alternative proof can be given using arguments analogous to that used in Remark

2.11 below.

We close this section with looking briefly at an example with binary channels. In Figure

2.3 the capacity regions CMAC and CDF-BC as well as the achievable rate region RDF are depicted

for a symmetric binary erasure multiple access channel [30, Example 14.3.3] and a binary sym-

metric broadcast channel, cf. equations (2.10). The boundary of the achievable rate region can

be obtained geometrically if one takes for any angle φ ∈ [0, π/2] half of the harmonic mean

between the boundary rate tuples of the capacity regions where we have tan φ =
RMAC

2

RMAC
1
=

RDF-BC
2

RDF-BC
1

.

2.2 A Practical Coding Scheme for the Broadcast Phase

In the last section we derived the capacity region for the broadcast phase of a two-way relay

channel with decode-and-forward constraint. The proofs of Theorem 2.2 rely on random coding

arguments, hence provide only limited insight into the problem of designing practical codes for

the bidirectional relay channel. So, this section complements the previous work by presenting

a simple coding scheme that achieves or closely approaches the asymptotic capacity bounds of

Theorem 2.2. Again, we focus on the second (broadcast) phase of the overall communication

protocol of the two-way relay channel with decode-and-forward at the relay. In doing so, we

neglect potential decoding errors in the first phase, which is equivalent to the assumption that

the relay node has perfect knowledge about the messages of both terminals. This knowledge

can be used to enhance the performance of the broadcast channel [6][24, 22, 26, 53].

To start the discussion on the design of practical codes for the broadcast phase of the two-

way relay channel with decode-and-forward at the relay, we first review Theorem 2.2:

Theorem (Theorem 2.2). The capacity region CDF-BC for sending two sources W1 and W2 over

the memoryless broadcast channel where the receiving node 1 knows W1 and node 2 knows W2
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is the set of all rate pairs [R1,R2] satisfying

R1 ≤ I(XR; Y2),

R2 ≤ I(XR; Y1),

for some probability function p(xR)p(y1, y2|xR).

This result can be interpreted as follows: The performance for each terminal is in many cases

close to the performance of a single-user channel. The possible performance loss compared to

the single-user channel is a potentially suboptimal channel input distribution, which may be

needed to achieve some rate tuples. It is interesting to point out that in case of scalar Gaussian

channels, there is no loss compared to the marginal single-user channels, as the Gaussian input

distribution maximizes jointly both the mutual information expressions.

In this section, we address the problem of designing practical codes for this communication

channel, which is referred to as the bidirectional broadcast channel2. More precisely, we pro-

vide guidelines for the use of well-developed single-user codes in the bidirectional broadcast

channel, with the goal of achieving or closely approaching the performance bounds of Theo-

rem 2.2. In particular, in the case of finite alphabet channels with the channel distortion being

independent of the channel input, the performance of our coding scheme only depends on the

performance of the base codes on the corresponding single-user channels. In other words, if the

involved single-user codes provide the best possible performance, so does the proposed coding

scheme for the bidirectional broadcast channel. In case of arbitrary channels, however, further

performance gains may be achieved by better exploiting the distortion characteristics of the

channel.

The main advantage of the proposed coding scheme is that it only involves simple opera-

tions on single-user codes designed for some types of single-user channels. Consequently, from

the practical point of view, the proposed scheme is very attractive as it merely requires minor

modifications of the traditional single-user coding schemes. In particular, it can be easily gen-

eralized to the case of additional soft-information. Finally, note that the assumption of channels

with finite input/output alphabets is not restrictive in view of practical system implementation,

since in practical systems usually finite input alphabets are used; the channel output is quantized

to a finite alphabet, possibly with additional soft-information attached to every symbol, which

can be used in the proposed scheme as well.

2.2.1 A Coding Scheme for Symmetric Marginal Channels

In this section, we propose a coding scheme for the bidirectional broadcast channel. This

scheme is quite general and works for several coding techniques. After introducing some no-

tation and basic assumptions, we present an example of a concrete realization of the scheme

2We use the term “bidirectional” because each receiver knows the messages intended for the other receiver.
From this point on, “terminal” and “user” are used interchangeably.
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that is based on linear block codes. For brevity, we focus on finite code lengths. An extension

to infinite code length that is relevant in view of convolutional coding is straightforward, but

requires more cumbersome notation.

2.2.1.1 Symmetric Marginal Channels

We consider a broadcast channel with finite input and output alphabets. If the probability tran-

sition function of a broadcast channel is p(y1, y2|xR), then the channels from the relay node to

both the terminals with the conditional marginal distributions p(y1|xR) and p(y2|xR) are referred

to as marginal channels. A key assumption for our analysis is the symmetry property defined

below.

Definition 2.5 (Symmetric marginal channel). A marginal channel is called symmetric if the

following holds.

(i) For both users k ∈ {1, 2} the channel has an output alphabet Yk = {0, 1, . . . , M − 1, e} of

cardinality M + 1 and a common input alphabet XR = Yk\{e} of cardinality M, where e

is the erasure symbol. We assume that an addition + is defined such that (XR,+) forms

an Abelian group with neutral element 0. The addition is extended to Yk, k ∈ {1, 2}, by

defining a + e = e + a = e for any a ∈ XR. Furthermore there is no inverse element of the

erasure symbol e.

(ii) For some integer L, the channel output vectors of length L are given by yL
k
= xL

R + zL
k
∈ YL

k
,

where k ∈ {1, 2} and zL
k
∈ YL

k
has some distribution on YL

k
independent of xL

R ∈ X
L
R. The

addition is according to the definition above.

Remark 2.4. The channel parameter L is introduced to make the result more general. By

allowing for L > 1 the noise may be structured. It is only required that for sequences of length

L < ∞ the noise vectors are i.i.d. and independent of the channel input. A simple example for

L = 2 is a binary channel, where every second bit is inverted with some probability while the

other bits are transmitted without distortion.

Remark 2.5. Note that both conditions are satisfied by many important channels, of which the

most prominent one is the binary symmetric channel with erasure. For usual error correction

code design it is often assumed that the channel satisfies the above conditions. This is motivated

by the assumption that modulation and demodulation are used often in combination with some

scrambling; therefore one can abstract from the real physical channel that may be highly non-

symmetric. This assumption is often suboptimal, especially if it is the structure of the channel

coding in combination with the channel characteristics which are used for performance gains,

as in this scheme.

In this section, the marginal channels are assumed to be symmetric in the sense of the above

definition. Section 2.2.4.1 illustrates potential consequences of dropping this assumption. For
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simplicity, in what follows we slightly abuse the notation by using the symbols in yk = xR + zk

for the vectors of channel output, channel input and channel distortion, even if we consider

inputs of length N = aL for some a ∈ N.

2.2.1.2 Encoding and Decoding

Our coding scheme is based on two given base codes3, say codes C1 and C2 that are defined

over the channel input alphabet XR with encoders E1 and E2 as well as decoders D1 and D2,

respectively. It is assumed Ck ⊆ X
N
R
, k ∈ {1, 2}, where N is a multiple of the channel parameter

L. Adequate codes and encoders can be found by simply concatenating several codewords of

some given codes to generate new codes with a code length which is for instance the least

common multiple of the length of both the codes and the channel parameter L. Both base codes

may have different coding rates R1 and R2 (in bits per code symbol) so that the encoders

Ek : {0, 1, . . . , 2RkN − 1} → Ck ⊆ X
N
R

generate codewords ck ∈ X
N
R
, k ∈ {1, 2}. For each code, say code k ∈ {1, 2}, the decoder

Dk : YN
k → {0, 1, . . . , 2

RkN − 1}

is assumed to decode a received word yk = ck + zk correctly iff the distortion word zk is in the

set of correctable errors Ecor
k

, i.e. iff zk ∈ E
cor
k

.

Now, the coding and thereby the code C for the bidirectional broadcast channel is defined

as follows:

Encoding: Suppose that wk ∈ {0, 1, . . . , 2RiN − 1} is a given message of user k ∈ {1, 2}. Then,

the encoder at the relay node is a mapping

ψ : {0, 1, . . . , 2R1N − 1} × {0, 1, . . . , 2R2N − 1} → C ⊆ XN
R

with the encoding rule given by

ψ(w1,w2) = E1(w2) + E2(w1) .

As before, the addition is symbol-wise and defined over the Abelian group XR. In words, the

two encoders generate c1 and c2 using the encoders on the information generated for the other

user respectively, i.e. E1 on the information w2 and E2 on the information w1. The resulting

codewords are added and xR = ψ(w1,w2) = c1 + c2 is transmitted via the broadcast channel to

users 1 and 2, which observe y1 and y2, respectively.

3We use the term “code” as a set of codewords. Encoder and decoder are not part of the code, but the encoder
may define the code. Encoder, decoder and code together form a coding scheme.
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Decoding: The decoders at the terminals are mappings

φ1 : {0, 1, . . . , 2R1N − 1} × YN → {0, 1, . . . , 2R2N − 1}

φ2 : {0, 1, . . . , 2R2N − 1} × YN → {0, 1, . . . , 2R1N − 1}

The decoding rules are as follows: Upon receiving y1, the first user uses its perfectly known side

information w1 to generate c2 = E2(w1). Then, it calculates ĉ1 = y1 − c2, where ”−” denotes the

addition of the inverse element, and declares the estimate of w2 to be ŵ2 = D1(ĉ1). The decoder

of the second user is defined accordingly. In our setup, wk can be interpreted as side information

perfectly known to user k ∈ {1, 2}.

Remark 2.6 (Codes are constrained to use the same input alphabet). Note that both codes use

the same alphabet XR. Although this assumption may appear as a significant restriction, it does

not impact the generality of the analysis, since we do not require the use of all alphabet symbols.

Therefore, starting at codes defined on different alphabets with a possibly lower cardinality, the

codes can be transformed to a common alphabet. The restriction is necessary and reasonable

since the marginal channels use the same input.

In fact, from a practical point of view, the receiver side, i.e. the channel output alphabet,

poses more problems. For instance, it is not clear what should be done if different modulations

are used on a marginal channel in a real system. In this case, it may be required to restrict the

alphabet at the receiver from some super-alphabet to the needed modulation alphabet before de-

tection. A crucial point here is that the subtraction now needs to be done in signal space without

knowing the received constellation point. However, using a scheme similar to the proposed one,

where addition is defined in a modulo like manner based on some lattice on the signal space as

it is done for lattice codes [54, 55, 56], one arrives at a practical scheme for the broadcasting

in the two-way relay channel. This is nothing but a straightforward generalization of the pro-

posed scheme to coding in signal space, where the modulo addition is used to fulfill a possibly

given power restriction. However, the theorems of this section concerning the performance of

the codes do not generalize to such channels. The resulting coding is in general suboptimal. A

more elaborated discussion on this issue is given in Section 2.2.4.2.

Remark 2.7 (Joint network-channel coding). The coding at the relay node can be seen as a joint

network-channel coding. Instead of using the traditional network code with a modulo addition

performed on data symbols as proposed e.g. by [24, 26, 53], our scheme follows the lines of

the information theoretical analysis above. As a result, the modulo addition is performed on the

codeword symbols. An important difference to the traditional approach is that we can easily

handle the case of marginal channels of different quality, as the base codes may have different

coding rates. For the reasons mentioned in what follows, the proposed scheme is referred to

as joint network-channel coding and the code C as joint network-channel code. The code we

use is in essence a nested code [54, 57] which allows different interpretations of the transmitted
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information for both receivers.

Note that except for the code length, the two base codes can be chosen independently. In-

deed, as far as the coding performance is concerned, it does not even matter whether they consist

of the same or have completely different codewords. Also note that in general, the resulting en-

coding mapping ψ is not necessarily bijective so that there may be no way to decode messages

without side information.

2.2.1.3 Examples

Example 2.2 (Identical Linear Codes). Consider two identical linear codes C1 = C2 = Ĉ. In

this case, the resulting joint network-channel code is the same as the base code so that C = Ĉ.

Only the encoder ψ and the decoders φk, k ∈ {1, 2}, are different as they depend on the side

information. Note that without side information, no information symbol can be recovered. Due

to the linearity of all the operations, the addition and subtraction can be performed on the

information symbols without any loss of performance. Therefore, the modulo addition on the

data symbols as e.g. proposed by [24, 26, 53] can be seen as a special case of the proposed

coding scheme. Another interpretation is that the side information is used for data compression.

In this case, the encoding is in fact a classical Slepian-Wolf encoding [37], where the transmitter

needs to compress (w1,w2) for two users that have side information w1 and w2, respectively

[58]. The compressed data is broadcasted using an error correction code that fits for both the

marginal channels. Following this interpretation there is no side information used for channel

coding.

Example 2.3 (Codes with different Codewords). Now consider two base codes having different

codewords. In this case, the resulting joint network-channel code may have more codewords

than either of the two base codes. This may be true for instance if the two channels are of

different quality. To illustrate this, consider the following binary codes C1 = {000, 111} and

C2 = {000, 110, 101, 011}, in which case the encoding mapping ψ is bijective, meaning that

there is no compression using side information. Because of the increased number of codewords,

both users may not be able to correct the transmission error without side-information; for

the example at hand, all tuples in {0, 1}3 are codewords, and therefore the error correction or

detection is impossible without side information. Error correction decoding (or error detection

for the second user) becomes possible by restricting the decoding to a subset of codewords with

the help of the side information. In this example, there is no compression at all since |C| =

|C1||C2|, but the side information is used in a similar way as the already decoded information is

used in the decoding of the weaker signals in interference cancellation schemes (see for instance

[59]).
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2.2.2 Analysis of the Coding Scheme

2.2.2.1 A Conservation Law for the Coding Scheme

The following theorem shows that the performance characteristics of the base codes in the

corresponding marginal single-user channels are preserved under the proposed coding scheme.

Theorem 2.5. The proposed coding scheme with encoder-decoder pair (ψ, φk), k ∈ {1, 2}, and

code C has exactly the same performance as the base coding scheme consisting of the encoder-

decoder pair (Ek,Dk) and base code Ck in the corresponding marginal (single-user) channel.

Proof. User 1 observes y1 = xR + z1 and computes

y1 − c2 = xR + z1 − c2 = c1 + c2 + z1 − c2 = c1 + z1 .

By assumption, this can be decoded correctly iff z1 ∈ E
cor
1 . Now, since the distribution of z1 is

the same as in the marginal channel, the performance of the code is the same as in the marginal

channel. The same reasoning holds for the second user, completing the proof. �

2.2.2.2 An Optimality Property of the Scheme

An immediate consequence of Theorem 2.5 is that in our setting the performance of the pro-

posed coding scheme is entirely determined by the performance of the base codes in the cor-

responding marginal channels. The following theorem proves an optimality property of the

proposed procedure in the sense that it enables us to construct a coding scheme whose per-

formance for both users is at least as good as any other coding scheme for the bidirectional

broadcast channel.

Theorem 2.6. For the considered symmetric channel, we can always find two base codes of

length N with encoders E1(w2), E2(w1) and decoders D1(y1),D2(y2) such that the resulting

code with encoder ψ(w1,w2) and decoders φ1(w1), φ2(w2) has a probability of error for both the

users at least as low as any given code of length N with encoder θ(w1,w2) as well as decoders

ρ1(w1, y1) and ρ2(w2, y2). This is true even if a given code with encoder θ(w1,w2, q) permits a

certain randomness depending on some randomization parameter q ∈ Q as long as q is indepen-

dent of wk.

Remark 2.8. The parameter q ∈ Q is introduced to make the result more general. Due to the

parameter the result holds for coding schemes which use some kind of common randomness,

e.g. some dither, scrambling, or random interleaving.

Proof. Suppose that q ∈ Q is a randomization parameter independent of w1 and w2 and that

some code for a symmetric channel with encoder θ(w1,w2, q) is given. For deterministic encod-

ing, let the cardinality of Q be |Q| = 1. Based on this code and encoder, we can define codes for

the marginal channels of both the users by fixing the side information and the randomization
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parameter, until we find good marginal codes. More precisely: For an arbitrary pair (w1, q) of

side information w1 and the randomization parameter q, define a code for user 1 with encoder

Ê1,w1,q(w2) = θ(w1,w2, q) and decoder D̂1,w1 ,q(y1) = ρ1(w1, y1, q). This encoder defines a code

of length N. Check the probability of error for this coding scheme on the marginal channel. If

the probability of error of this code and this user is at least as low as that of the given code, fix

encoder E1(w2) = Ê1,w1,q(w2) and decoder D1(y1) = D̂1,w1,q(y1), and then use this code as base

code for user 1. Otherwise, check another pair (w1, q) of side information w1 and randomization

parameter q. As q is independent of w1 and w2, and the decoder is the same as in the original

code, there exists at least one such code. The same is repeated for user 2. By Theorem 2.5, the

code with encoder ψ(w1,w2) constructed based on the single user encoders E1(w2) and E1(w2)

has an error probability at least as low as the given code for both the users, if the decoding

φk(wk) use Dk(yk) after subtracting the encoded side information. Furthermore, the code is of

length N as required by the theorem. �

This proves the optimality of the proposed scheme. By using the coding not on the data

but, as proposed by the information theoretical result, on the channel input, we can use different

coding rates for both the users and may — provided that we find good single user codes —

achieve any point in the capacity region given by Theorem 2.2.

2.2.3 Interpretation and Example

In general, the joint network-channel code utilizes more codewords than the users are able to

differentiate. Furthermore, since max{|C1|, |C2|} ≤ |C| ≤ |C1||C2| holds with strict inequalities for

many base codes, the proposed scheme is in general neither full compression nor pure channel

coding. In fact, depending on the choice of the base codes, one achieves a certain point on

a tradeoff curve between these two extreme points. By eliminating all the effects caused by

the simultaneous transmission, the proposed joint network-channel coding restricts the error

correction decoding at the receiver to a sub-code, which is the corresponding base code. By the

symmetry of the channel, the decoder of this error correction code “sees” only the distortion

caused by the marginal channel. As the code is designed for this channel, the performance will

be as desired.

Another interpretation of the coding/decoding scheme, which is more along the lines of the

information theoretical result, is that of a set of codes4. The direct part of the proof of Theorem

2.2 indicates that one should design several codes with encoder and decoder for each user,

all corresponding to the marginal channel; one triplet of encoder, code and decoder for each

potential side information.

Following these requirements, we need 2R1N encoders E1,w1 to encode w2 and 2R2N encoders

4Note that the codes in the set need not to be disjoint. It may even happen that some of these codes are identical
and only the decoder and encoder differ. In fact, the design is a classical coset code design as proposed by [36],
except that our scheme may use the same coset with different mappings several times.
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E2,w2 to encode w1. Furthermore, only one codeword should be transmitted. Therefore the

encoders and codes need to be interwoven with each other such that E1,w1(w2) = E2,w2(w1). If

this equation holds then given (w1,w2) the output of both encoders E1,w1 and E2,w2 is the same,

in spite of the codeword carrying different information for different receivers.

In general, the requirements on coding that follow from Theorem 2.2 seem to be hard to

satisfy. Nevertheless, the proposed coding scheme is a simple recipe to realize codes with the

required properties: The codes and corresponding encoder mappings for different side informa-

tion are created by shifting one base code and the encoder mapping in XN
R

. The shift is realized

by adding the encoded side information. The resulting codes are coset-codes of the original

code. By the commutativity of the addition this design guarantees the desired interconnec-

tion E1,w1(w2) = E2,w2(w1) of the codes. At the decoder, instead of decoding the shifted code,

we can as well invert the shift and decode the base codes. If needed, this also indicates how

soft-information should be handled: Shift the soft-information in the same way as the code.

2.2.3.1 Example

As an example for the proposed coding scheme, we present a code construction starting from

two linear block-codes of length N. In this case, the encoders E1 and E2 of the codes are given

as two generator matrices G1 and G2 and the codewords are calculated e.g. for the first user

by c1 = w2G1 from data words wk ∈ X
RkN , where the coding rates Rk are given in information

symbols per code symbol.

Assume a binary Hamming code for the first user with the generator matrix given by

G1 =



























1001110

0101011

0011101



























which has a minimum code distance of 3 and a code for user 2 with the generator matrix given

by

G2 =















1010101

0101011















which has a minimum distance of 4. Furthermore, note that the corresponding check matrices

Hk satisfy Gk HT
k = 0 so that they are the generator matrices of the dual codes.

In the case of linear block codes, the encoding at the relay is simply

x = [w2w1]















G1

G2















We do not require the rows of G1 and G2 to be linearly independent. In the example, the

overall code has a minimum distance of 2. For instance, the codeword 1010101 corresponds to

w2 = 000 and w1 = 10, while 1010011 is the codeword for w2 = 101 and w1 = 00. However, due



50 Chapter 2. The Two-Way Relay channel with Decode-and-Forward

to subtracting the codeword generated from the side information, the codes used for decoding

at the terminal have a code distance of 3 and 4, respectively. This is because all the codeword

pairs with distance 2, as those in the example above, belong to different cosets for both users.

This in turn implies that they will only appear with different side information.

Error detection can be performed via syndrome calculation. If this is done before subtracting

the encoded side information, this reveals the coset structure on which the scheme is based: The

first terminal uses the side information to calculate the new syndrome for error-free transmission

s1 = w1G2HT
1 . Now use the matrix H1 to check the received codeword y1 with this syndrome

y1HT
1

?
= s1 before subtracting the encoded side information. If the equation is fulfilled, there

is no error. If not, the difference between the left and right hand side may be used to locate

the error. Error detection at terminal 2 works accordingly. As an alternative to subtracting

the encoded side information, the decoding can shift the mapping defined by the generator

matrix Gk according to the coset indicated by the side information. Note that now, not only

the syndrome but all the information needs to be taken into account: The coset-code may have

an all-zero-syndrome, as for example the coset of code C1,w1 for user 1 with side information

w1 = 01. Still, the mapping that is used in the encoding is different from the original mapping

given by G1.

2.2.3.2 Concluding Remark

The proposed framework for designing coding schemes for the symmetric bidirectional broad-

cast channel is a strong and easy-to-apply tool for symmetric marginal channels. Our frame-

work is optimal in the sense that for every given coding scheme, we can construct a new coding

scheme which performs at least as good as the given one. Furthermore, the scheme has the ad-

vantage that we can use well-developed single user codes. As a consequence, we can conclude

that there is no need to develop special codes for the symmetric bidirectional broadcast channel.

2.2.4 Discussion of Effects in General Channels

Now we leave the assumption of symmetric marginal channels behind and look at more general

channels. It turns out that for these channels the performance of the coding scheme degrades.

The next two subsections will point out why this happens and what needs to be done to circum-

vent this problem. Unfortunately, we are not able to give a coding scheme that can be build up

from single user codes in a simple way for general channels without performance loss.

2.2.4.1 Non-symmetric Channels

In the previous section, the case of symmetric channels was considered. This does not include

a channel in which the channel distortion word zk depends on the channel input. A simple

counter example presented below shows that in this case, the performance of the base codes

may degrade if we use the proposed scheme.



2.2. A Practical Coding Scheme for the Broadcast Phase 51

Counter-example 2.4. Assume a binary symmetric channel to user 2 with crossover probability

such that a three bit repetition code achieves the desired probability of error, i.e. we have

C2 = {000, 111}. The non-symmetric channel to user 1 outputs 3 random bits, whenever the

binary sum of the input of three bits equals 1. If the sum is 0, the channel is error-free. A 3-bit

code for this channel may simply use all the four even weight sequences of length 3 and will

achieve zero error probability. Therefore, a possible code is C2 = {000, 011, 110, 101}. The joint

network-channel code resulting from the proposed scheme is now C = {0, 1}3. If we use this code

to broadcast the information to both users, user 1 cannot achieve the desired performance. Half

of the codewords of this code are inappropriate for the channel to user 1. Whenever c2 = 111,

the output of the channel to user 1 is random. Even with side information, user 1 cannot decide

which data word is correct. This is because the coset code C1,w1 = {111, 100, 001, 010} for this

side information does not perform as desired for the given channel. The second user will still

achieve the desired performance as its channel is symmetric.

In the counter example above, the coding may be changed such that the performance of user

1 is increased at the cost of user 2. As the base code C1 of user 1 is the only set of codewords

of cardinality 4 that has the desired performance, in order to protect the performance of user 1,

the new base code C̃2 for user 2 needs to consist only of codewords of the base-code C1. This is

sufficient to obtain coset codes such that C1,w1 = C1 for any w1 as the code C1 is a linear code.

Therefore, C̃2 may consist of any two codewords of even weight and three bit length, as e.g.

C̃2 = {000, 011}. This degrades the performance of user 2 as the code distance now is at most

2. User 2 may as well use up to 4 codewords without further degradation of its performance.

A similar tradeoff effect can be noticed in the information theoretical result of Theorem 2.2:

Whenever the marginal channels do not match concerning their optimizing input distribution,

there is a tradeoff between the performance of the two users. In the proposed coding scheme

the needed match is that of cosets of codes: The coset codes, which are created by the side in-

formation, need to match the channel such that the desired performance is achieved on average.

By the symmetry assumption, we assure that all cosets have the same performance. In case of

non-symmetric channels, an optimal code design might become far more difficult. A simple but

potentially suboptimal solution is to combine the coding with a pseudo noise sequence known

to the transmitter and receiver. By randomly scrambling the channel input, the channel seen by

the code becomes symmetric. In doing so, one looses the possibility to use certain structure of

the channel noise to enhance the decoding performance.

2.2.4.2 Additive Noise Channels with Non-Discrete Alphabets

In practice, wireless channels are not constrained to have finite discrete input and output alpha-

bets. In fact, their inputs and outputs can have arbitrary values and channel distortion often can

be modeled in terms of additive noise. In this section, we briefly consider such channels. Note

that the discussion in this section should only point out where problems may arise if we use the
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above scheme on e.g. Gaussian channels. A detailed treatment or a general solution is out of

the scope of this work.

First of all note that as far as the results of this section are concerned, we do not need the

restriction to discrete finite alphabets. In fact, the following two requirements must hold:

1. There must be an Abelian group (XR,+) defined on the input and the output alphabet.

This is often fulfilled e.g. by channels that have input and output in C or R.

2. The channel distortion is additive noise only, which is independent of the channel input

and is added according to the definition of (XR,+).

These requirements hold for AWGN channels as well as for many more general additive noise

channels, where the noise is not necessarily Gaussian.

For a channel that fulfills these two conditions, all the results of this section hold, provided

that the described coding is performed in signal-space, that is on the channel input/output alpha-

bet according to (XR,+). The problem is that in practice, we have some additional constraints

such as power constraints on the channel input. The use of the coding scheme is in general sub-

optimal if e.g. power constraints are given. In fact, compared to the point-to-point transmission

on the marginal channels for which the base codes are designed and that serve as performance-

reference for the results in this section, the required transmission power is increased by the use

of the coding scheme. Therefore the scheme is not optimal in view of the information theoret-

ical result of Theorem 2.2 adapted to this case by restricting the probability distribution p(xR)

to fulfill the power constraint. The information theoretical result [10] states that we should be

able to achieve for both users the performance of some5 transmission on the marginal channels

using the same power as in the broadcast channel.

Now the question is whether there is a simple solution to the coding problem in additive

noise channels? From a practical point of view, a good but in general suboptimal solution

could be as follows: Define a new Abelian group (X̂T
R
,⊕), where X̂T

R
, T ∈ N is such that every

x̂R
T ∈ X̂T

R
and every sequence of x̂T

R fulfills the given constraint. For example given a power

constraint E{|xR|
2} ≤ P andXR ⊂ C, one may use a modulo like operation on real and imaginary

part such thatℜ(xR) ∈ [−
√

P
2
,+

√

P
2
] and ℑ(xR) ∈ [−

√

P
2
,+

√

P
2
]. It follows that every symbol

xR ∈ X̂R fulfills the constraint6. More advanced schemes may consider more than one symbol

T > 1 to fulfill the constraints or use a more complex group, e.g. based on lattices. In addition,

one needs two base codes with Ck ∈ X̂
nT
R

, k ∈ {1, 2}, for some n ∈ N. Now add the two

codewords c1 and c2 according to the Abelian group (X̂T
R ,⊕). The resulting symbol sequence

fulfills the given constraints.

The next problem to cope with is that the noise is not added in accordance with (X̂T
R
,⊕).

Furthermore, noise (e.g. Gaussian noise) is not restricted to X̂R, and therefore decoding must be

5Note that in the general case, the performance of the set of codes used on the marginal channel may be
suboptimal for that single user channel.

6There may be symbols xR < X̂R that fulfill the constraint as well.
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performed in the unconstrained receive alphabet Yk, k ∈ {1, 2}. As in the discussion of the last

sections, the decoder now may decode the coset code induced by the side information. Nonethe-

less, inverting the shift from the base code to the coset code is in general not a simple subtraction

of the encoded data, as the noise is not added according to (X̂T
R
,⊕). Therefore decoding may be

more complex than before. In particular, the base decoder may be not applicable. Furthermore,

not all coset codes may achieve the same performance as the base code. Therefore the results

of this section do not apply for this class of channels, if a constraint to the input of the channel

is given.

As a toy example, consider an AWGN channel with real input and real output and a con-

straint on the amplitude per symbol xR ∈ [−A, A). Following the above proposal, we use

C1 = {−A,+A − ǫ}, ǫ > 0 and C2 = {−A, 0} and add the encoded symbols according to

c = ((c1 + c2 + A) mod 2A) − A. The code of user 1 has a good performance for c2 = 0,

but for c2 = −A we get the coset code C1,c2=−A = {0,−ǫ}, which has a bad performance if ǫ is

small.

Obviously, this example is constructed to fail; for application in real systems however, the

proposed coding in signal space may often be a good option, especially if one uses good lattices

for the coding that are able to control or prevent the problems pointed out in this subsection.

Nested lattice codes are the counterpart of linear codes in signal space [54, 55, 56] and

can be used for the coding in the BC phase of the two way relay channel. These codes can

prevent the problems pointed out by the above discussion. It is known that nested lattice codes

together with a lattice decoder can achieve capacity in the AWGN channel. For a more elaborate

discussion on these codes the reader is referred to the literature, e.g.[55] and references therein.

In fact we can use two such lattice codes for AWGN channels for the two Gaussian channels to

both the receivers. The need of a common input alphabet transfers to the constraint, that now

both codes use the same fundamental region Ω of the corse lattice Λ, that is used for shaping.

For a single user nested lattice code the codewords are formed by a fine lattice Λ1. For the

transmission the codeword c1 ∈ Λ1 and a dither d are added modulo the fundamental region

Ω the corse lattice Λ. The dither is drawn at random according to a uniform distribution over

a fundamental region Ω of Λ. The transmitted signal is therefore x1 = c1 + d mod ΩΛ. At

the receiver, the received signal is scaled and the known dither is subtracted. All operations are

performed modulo this fundamental regionΩ. To perform a lattice decoding the received signal

is mapped to the fundamental region Ω of the corse lattice Λ. By the scaling the probability of

error is minimized. It can be shown that there exists codes and lattices to achieve the capacity

in the AWGN channel [54, 55, 56].

We can use two such codes as base codes in the BC phase of a two-way relay channel with

decode-and-forward. For the encoding, the relay transmits xr = c1 + c2 + d mod ΩΛ, where

ck is a codeword for the code of receiver k. The dither d is again drawn at random according

to a uniform distribution over a fundamental region Ω of Λ. The receiver k can now decode

by treating the other codeword as part of an effective dither d̃k, i.e. receiver 2 uses an effective
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dither d̃2 = d + c1 mod ΩΛ while receiver 1 uses d̃1 = d + c2 mod ΩΛ. The performance

for both receivers will not degrade compared to the single user channel, as d̃k has a uniform

distribution over the fundamental region Ω of Λ and is independent of c1 and c2 [55, Lemma

1]. Therefore it follows, that as in the case of symmetric marginal channels the performance of

both receivers is the same as the performance of the single user codes upon which the new code

is based. Therefore for these codes the result of Theorem 2.5 applies.

In the single user code with a lattice decoder the dither is used to have a noise term in the

transformed modulo lattice additive noise channel which is independent of the channel input.

In the BC code for the two-way relay channel the dither ensures that the performance of the

different cosets of the lattice code have the same performance. While in the single user AWGN

channel with ML decoding the dither may be neglected, it is mandatory in our setup. The reason

is, that we perform a modulo addition at the relay to merge the information for both receivers

into the transmitted signal. By using the dither in effect we make the performance of both

receivers independent of the message transmitted to the other respective receiver.

It is unlikely that the other results of this section hold for lattice codes and general additive

noise channels. One reason is, that the proposed lattice codes do not perform optimal for the

single user channel. Even though the codes can achieve capacity if the coding length goes to

infinity, there are codes for the AWGN channel, that have a lower probability of error. Further-

more a code for the single user channel has no restriction to use a certain fundamental region or

even a lattice. The structural properties make the nested lattice codes a nice choice for a prac-

tical coding scheme for the BC phase of a two-way channel. Simultaneously these structural

properties impose some restrictions on the choice of the codes we can base upon. Therefore the

resulting coding scheme might be suboptimal. For the optimal performance, joint tranmission

schemes need to be developed.

2.3 Achievable Rates for a Decode-and-Forward System with

More Than Two Phases

In the above sections we discussed the two-way relay channel with a decode-and-forward con-

straint and the assumption that we have two phases to transmit the message to the receiver. In

this section we extend the model by allowing more than two phases. We focus on systems where

we can use side information in a BC phase from the relay to the terminal nodes. Therefore the

additional freedom is used only to transmit the messages to the relay and to use the direct path

between the terminals.

The treatment in this section serves the purpose to show how such additional degrees of

freedom can be used and how the coding changes. We provide only a sketch of the proofs,

serving the purpose to see what needs to be changed and where gains can be achieved. The

treatment is incomplete as we restrict ourselves to setups where the messages are transmitted
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to the terminals via a BC. Protocols where the relay transmits a signal via a MAC to one of the

terminals are not considered. Furthermore, restrictions similar to the ones used in the above

sections are used. Namely we assume the following:

• We assume that the transmissions of the terminal nodes in different phases do not depend

on any received signal, i.e. we do not allow the nodes to use any feedback mechanisms

in any of the phase. If any such information is gathered e.g. during the broadcast of the

relay or the transmission of the other node, it is not used in any of the following phases.

The relay node and the terminal nodes are restricted to half-duplex, i.e. the nodes may

use only information received in those phases in which they are not transmitting.

• The relay node is assumed to be able to decode the messages of both the nodes. This

restriction is in general suboptimal. The restriction does not mean, that the information

flow is necessarily via the relay as it is in the two-phase case. Even the case that there is

no channel from the relay to the nodes is handled by the theorems of this section.

We consider two scenarios: A three-phase setup and a four-phase setup. In the three-phase

setup we make use of the direct link between the terminal nodes. This link can be used either to

transmit the message directly to the other terminal or to provide additional side information for

the final decoding at the receiver. The three phases are used as three BC transmissions. First,

node 1 transmits to the relay and node 2, than node 2 transmits to the relay and node 1, and

finally the relay broadcasts to both terminal nodes.

The four-phase setup consists of two broadcasts and a MAC phase to enable the decoding at

the relay: First node 1 transmits to the relay and node 2, then node 2 transmits to the relay and

node 1, thereafter both nodes transmit to the relay using a MAC. The fourth phase is again the

broadcast from the relay to both the terminal nodes. Therefore, the four-phase protocol can be

seen as a combination of the three-phase and the two-phase protocols.

2.3.1 An Achievable Rate Region for a Three-Phase Relay Channel

The goal is to transmit a message w1 from node 1 to node 2 and w2 from node 2 to node 1 using

the medium between the two nodes and the relay a total of n ∈ N times. We start the discussion

by adapting the definitions to this setup.

We assume three phases where 1 ≥ α, β, γ ≥ 0, α + β + γ = 1 indicate timesharing be-

tween the phases: In the first phase, node 1 transmits the codeword X
n1

1 of length n1 to the relay

and node 2 using a channel p1(yR,1, y2,1|x1) n1 := n1(n) ∈ N times with n1

n
→ α as n → ∞.

These nodes will receive the signals Y
n1

R,1 and Y
n1

2,1 respectively. In the second phase, node 2

transmits the codeword X
n2

2 of length n2 to the relay and node 1 using a channel p1(yR,2, y1,2|x2)

n2 := n2(n) ∈ N times with n2

n
→ β as n → ∞. The received signals are Y

n2

R,2 and Y
n2

1,2 respec-

tively. In the third phase the relay node transmits X
n3

R
to node 1 and node 2 using a channel

p2(y1,3, y2,3|xR) n3 := n3(n) ∈ N times with n3

n
→ γ as n → ∞. The terminal nodes receive the
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signals Y
n3

1,3 and Y
n3

2,3 respectively. All channels are assumed to be memoryless and the channels

in the three phases are assumed to be independent. Therefore we have a joint probability dis-

tribution p(yR,1, y2,1, yR,2, y1,2, y1,3, y2,3|x1, x2, xR) = p1(yR,1, y2,1|x1)p2(yR,2, y1,2|x2)pR(y1,3, y1,3|xR)

which defines the considered relay channel as follows:

Definition 2.6. A discrete memoryless three-phase two-way relay channel is defined by a family

{

p(n) : Xn1

1 × X
n2

2 × X
n3

R
→ Yn1

R,1 × Y
n1

2,1 × Y
n2

R,2 × Y
n2

1,2 × Y
n3

1,3 × Y
n3

2,3

}

n1∈N,n2∈N,n3∈N
with n1 + n2 + n3 = n. The family consists of probability transition functions given by

p(n)(yn1

R,1, y
n1

2,1, y
n2

R,2, y
n2

1,2, y
n3

1,3, y
n3

2,3|x
n1

1 , x
n2

2 , x
n3

R
) :=

n1
∏

i=1

p1(yR,1,(i), y2,1,(i)|x1,(i))
n2
∏

i=1

p2(yR,2,(i), y1,2,(i)|x2,(i))
n3
∏

i=1

pR(y1,3,(i), y2,3,(i)|xR,(i))

for probability functions p1 : X1 → YR,1×Y2,1, p2 : X2 → YR,2×Y1,2 and pR : XR → Y1,3×Y2,3.

Definition 2.7. A (M
(n)
1 , M

(n)
2 , n1, n2, n3)-code for the three-phase two-way relay channel under

a decode-and-forward protocol consists of an encoder at node one

x
n1

1 :W1 → X
n1

1

withW1 = [1, 2, . . . , M
(n)
1 ], an encoder at node two

x
n2

2 :W2 → X
n2

2

withW2 = [1, 2, . . . , M
(n)
2 ], an encoder at the relay node

x
n3

R
:W1 ×W2 → X

n3

R
,

a decoder at node one and node two

g1 : Yn2

1,2 × Y
n3

1,3 ×W1 →W2

g2 : Yn1

2,1 × Y
n3

2,3 ×W2 →W1

and a decoder at the relay node

gR : Yn1

R,1 × Y
n2

R,2 →W1 ×W2.

Definition 2.8. When w := w(w1,w2) = [w1,w2] ∈ W := W1 × W2 is the message pair

transmitted by the two terminal nodes, the message w2 is decoded in error if g1(yn2

1,2, y
n3

1,3,w1) ,

w2 or if gR(yn1

R,1, y
n2

R,2) , (w̃1,w2) for some w̃1 ∈ W1. The probability of this error event is denoted
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by

λ1(w) := Pr
[

g1(Yn2

1,2, Y
n3

1,3,w1) , w2 ∨ gR(yn1

R,1, y
n2

R,2) , (w̃1,w2)|w(w1,w2) has been sent
]

.

Accordingly the corresponding error event for the message w1 is denoted by

λ2(w) := Pr
[

g2(Yn1

2,1, Y
n3

2,3,w2) , w1 ∨ gR(yn1

R,1, y
n2

R,2) , (w1, w̃2)|w(w1,w2) has been sent
]

.

Note that the definition for the error is with respect to the messages rather than with respect

to the decoder. The reason for this is that we need to capture the constraint of decoding at the

relay in the definition of achievable rates.

Definition 2.9. The average probability of decoding error is given by

µ
(n)
1 :=

1

|W|

∑

w∈W

λ1(w)

for message w2 and

µ
(n)
2 :=

1

|W|

∑

w∈W

λ2(w)

for message w1.

Definition 2.10. Let µ(n)
1 and µ(n)

2 be the average probabilities of decoding error for message w2

and w1, respectively. The rate pair [R1,R2] is said to be achievable for the three-phase two-way

relay channel under a decode-and-forward protocol if there exists a sequence of
(

M
(n)
1 , M

(n)
2 , n1,

n2, n3
)

-codes with
log M

(n)
1

n
→ R1 and

log M
(n)
2

n
→ R2 such that µ(n)

1 , µ
(n)
2 → 0 as n→ ∞.

Theorem 2.7. An achievable rate region for the three-phase two-way relay channel using a

decode-and-forward protocol is the set of all rate pairs [R1,R2] satisfying

R1 < min
{

αI(X1; YR,1);αI(X1; Y2,1) + γI(XR; Y2,3)
}

R2 < min
{

βI(X2; YR,2); βI(X2; Y1,2) + γI(XR; Y1,3)
}

(2.12)

for some joint probability distribution p1(yR,1, y2,1|x1)p2(yR,2, y1,2|x2)pR(y1,3, y2,3|xR)p(x1, x2, xR)

and some α, β, γ ≥ 0 with α + β + γ = 1.

Remark 2.9. Due to the factorization of the channel, there is no rate loss if we restrict the

probability distribution of the input p(x1, x2, xR) such that X1, X2 and XR are independent.

Remark 2.10 (Necessity of the feedback constraint). The restriction of the nodes not to use

any feedback mechanism may not seem necessary for the considered setup. To see that it is

indeed necessary, consider a toy setup: Suppose that there is no channel from node 1 to the

relay, while all other channels are error and interference free and offer some rate to transmit.

For this setup I(X1; YR,1) = 0 and therefore R1 is zero as well. Without the restriction it would of
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course be possible to transmit some data from node 1 to node 2 in the first phase. In the second

phase node 2 could forward the data received from node 1 to the relay. Therefore the decode-

and-forward requirement would be satisfied. If we do not allow such cooperation between the

nodes, than using a cutset bound [30] slightly adapted to the considered setup the given region

can be shown to be optimal. The adaption is needed, as the proof in [30] assumes, that the

messages in the network are independent, while here we transmit the same message to the relay

and to the terminal node. Furthermore the encoders in [30] may use all the received signals for

the encoding.

Remark 2.11 (Convexity of the rate region). Looking at the rate region it is not immediately

clear whether the region is convex or not. For fixed timesharing parameters the region is ob-

viously convex. It remains to show that there exist parameters and probability distributions

such that if [R(1)
1 ; R

(1)
2 ] and [R(2)

1 ; R
(2)
2 ] are achievable with possibly different timesharing pa-

rameters, then also a convex combination of both is within the achievable rate region. Indeed

the proof is not that difficult, so we will only sketch it for the given region once. It turns

out, that the the weighted addition can be encapsulated in some auxiliary variable Q. Note

that all terms in the above rate region can be conditioned on Q, if we change p(x1, x2, xR) to

p(x1, x2, xR|q)p(q). This will not change the region. Furthermore using the observation in Re-

mark 2.9, we can add three variables Q1,Q2, Q3 to the expressions and change p(x1, x2, xR) to

p(x1|q1)p(x2|q2)p(x3|q3)p(q1)p(q2)p(q3). The minimum operation can now be split up into two

inequalities. We receive for R∗1 being a convex combination of R
(1)
1 and R

(1)
1

R∗1 = aR
(1)
1 + (1 − a)R(1)

1

the resulting inequalities

R∗1 ≤ aα(1)I(X(1)
1 ; Y

(1)
R,1|Q

(1)
1 ) + (1 − a)α(2)I(X(2)

1 ; Y
(2)
R,1|Q

(2)
1 )

and

R∗1 ≤ aα(1)I(X(1)
1 ; Y

(1)
2,1|Q

(1)
1 ) + aγ(1)I(X(1)

R
; Y

(1)
2,3|Q

(1)
3 )+

(1 − a)α(2)I(X(2)
1 ; Y

(2)
2,1|Q

(2)
1 ) + (1 − a)γ(2)I(X(2)

R
; Y

(2)
2,3|Q

(2)
3 ).

Now

aα(1)I(·|Q(1)
1 ) + (1 − a)α(2)I(·|Q(2)

1 ) = (aα(1) + (1 − a)α(2))I(·|Q̃1),

where Q̃1 with |Q̃1| = |Q
(1)
1 |+ |Q

(1)
1 | is used to include the weighted sum in the expectation over a

appropriately constructed probability distribution. Note that we do not change the channel if we

switch to Q̃1, but only the input distribution to the channel. The above steps can be performed

for the other inequalities and for R2 where the same variables Q̃1, Q̃2, Q̃3 can be used. We

used three auxiliary variables, as the needed random variable might be different for the different
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phases. We see that the resulting vector [R1,R2] is in the region for the timesharing parameters

α∗ = (aα(1) + (1 − a)α(2)), β∗ = (aβ(1) + (1 − a)β(2)), and γ∗ = (aγ(1) + (1 − a)γ(2)). Similar

arguments can be used for the proof of the convexity of other regions in this thesis.

Proof. For γ = 0 the result follows immediately by interpreting marginal channels of the two

broadcast channels as a compound channel [60, 29] used n1 and n2 times respectively. Therefore

in what follows we assume γ > 0. Let R1, R2, p(x1, x2, xR), α, β, γ ≥ 0 with α+β+γ = 1 be given

such that the inequalities in (2.12) are strict. The achievability of the closure is a consequence

of the definition of achievability and will not be repeated here. It can be proved analogous to

the arguments in the proof of Theorem 2.2 in Section 2.1.3.

Random Codebook Generation Let n1 = ⌊αn⌋, n2 = ⌊βn⌋ and n3 = n − n1 − n2 ≤ ⌈γn⌉ + 1.

We generate M
(n)
1 = 2⌊nR1⌋ independent codewords X

n1

1 (w1) of length n1 drawn according to
∏n1

i=1 p(x1,(i)) where p(x1) =
∑

x2∈X2

∑

xR∈XR
p(x1, x2, xR) is the marginal probability distribution.

Similarly, we generate M
(n)
2 = 2⌊nR2⌋ independent codewords X

n2

2 (w2) of length n2 drawn ac-

cording to
∏n2

i=1 p(x2,(i)) and M
(n)
1 M

(n)
2 independent codewords X

n3

R
(w), w = [w1,w2] of length n3

drawn according to
∏n3

i=1 p(xR,(i)). The random code is revealed to both terminal nodes and the

relay.

Encoding Depending on the message to transmit w1 node 1 sends the corresponding code-

word xn1(w1) using the channel n1 times. Node 2 sends xn2(w2) to transmit the message w2. To

send the decoded pair w = [w1,w2] with wk ∈ Wk, k ∈ {1, 2}, the relay sends the corresponding

codeword x
n3

R
(w).

Decoding The receiving nodes will use typical set decoding. For a strict definition of the

decoding sets we choose parameter for the typical sets as ǫ1 <
αI(X1,YR,1)−R1

3α , ǫ2 <
βI(X2,YR,2)−R2

3β ,

ǫ3 <
γI(XR,Y2,3)+αI(X1,Y2,1)−R1

6α
, and ǫ4 <

γI(XR,Y2,3)+αI(X1 ,Y2,1)−R1

6γ
. For the first two phases the relay

decides that w1 and w2 are transmitted, if x
n1

1 (w1) and x
n2

2 (w2) are the only codewords jointly

typical with the received signals y
n1

R,1 and y
n2

R,2 respectively, i.e.
(

x
n1

1 (w1), yn1

R,1

)

∈ T
(n1)
ǫ1 (X1, YR,1)

and
(

x
n2

2 (w2), yn2

R,2

)

∈ T
(n2)
ǫ2

(X2, YR,2). Knowing w2, the decoder at node 2 decides that w1 was

transmitted, if this is the unique w1 such that
(

x
n1

1 (w1), yn1

2,1

)

∈ T
(n1)
ǫ3 (X1, Y2,1) and simultaneously

(

x
n3

R
(w1,w2), yn3

2,3

)

∈ T
(n3)
ǫ4

(XR, Y2,3). Decoding at receiver 1 works in an analogous way. To keep

the definition of the decoder consistent the decoders map to the default message w1 = 1 and

w2 = 1 if no or more than one codewords is found in their respective decoding sets.

Analysis of the Probability of Error Now we bound the probability of error for the decod-

ing. We give the proof for the transmission of message w1 to receiver 2. The proof for the

message w2 follows from analogous arguments. We have

µ
(n)
2 = P

(1)
e,2P̃

(2)
e,2 + P

(1)
e,2(1 − P̃

(2)
e,2) + (1 − P

(1)
e,2)P̃(2)

e,2
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where P̃
(2)
e,2 is the average probability of the event, that the decoding at the terminal node fails and

P
(1)
e,2 is the average probability for a decoding error in the decoding of w1 at the relay. Therefore

we can bound µ(n)
2 form above as

µ
(n)
2 ≤ P

(1)
e,2 + P

(2)
e,2

where P
(2)
e,2 is the average probability for a decoding error at node 2 given that the relay decoded

without error. We can split the analysis of the overall error probability into the analysis of the

error in decoding at the relay and of the error in the decoding at the terminal node. As we use

the random coding argument, in the analysis, we will average over the random codebook and

consider Ex
n1
1 ,x

n2
2 ,x

n3
R

{

µ
(n)
k

}

≤ Ex
n1
1 ,x

n2
2 ,x

n3
R

{

P
(1)
e,k
+ P

(2)
e,k

}

. We show that we have Ex
n1
1 ,x

n2
2 ,x

n3
R

{

µ
(n)
1

}

→ 0.

We will then conclude, that there exists at least one codebook with small average probability of

error for the decoding of w1 and w2.

Decoding at the relay First consider the decoding at the relay. The relay is in error if either
(

x
n1

1 (w1), yn1

R,1

)

< T
(n1)
ǫ1 (X1, YR,1) or if there exists a ŵ1 , w1 with

(

x
n1

1 (ŵ1), yn1

R,1

)

∈ T
(n1)
ǫ1 (X1, YR,1).

Using the union bound it is sufficient to show that both these error events occur with arbitrarily

small probability as n→ ∞.

By the law of large numbers the probability that
(

x
n1

1 (w1), yn1

R,1

)

< T
(n1)
ǫ1

(X1, YR,1) for se-

quences
(

x
n1

1 (w1), yn1

R,1

)

drawn according to a joint probability distribution can be made arbitrarily

small by choosing n (and as a consequence n1) big.

The probability of
(

x
n1

1 (ŵ1), yn1

R,1

)

∈ T
(n1)
ǫ1 (X1, YR,1) for ŵ1 , w1 averaged over all codewords

and the random codebook can be bounded as follows:

∑

y
n1
R,1∈Y

n1
R,1

Ex
n1
1



























p
(

y
n1

R,1|x
n1

1 (w1)
)

|W1 |
∑

ŵ1=1
ŵ1,w1

χ
T

(n1)
ǫ1

(X1,YR,1)
(x

n1

1 (ŵ1), yn1

R,1)



























= (|W1| − 1)
∑

y
n1
R,1∈Y

n1
R,1

∑

x
n1
1 ∈X

n1
1

p(x
n1

1 )p(yn1

R,1)χ
T

(n1)
ǫ1

(X1,YR,1)
(x

n1

1 , y
n1

R,1)

≤ 2n(R1+3αǫ1−αI(X1,YR,1))+I(X1,YR,1).

The last step follows from the properties of the typical set analogous to the procedure in the

proof of Theorem 2.2 and the choice of αn − 1 ≤ n1 ≤ αn. Now for n→∞

2n(R1+3αǫ1−αI(X1,YR,1))+I(X1 ,YR,1) → 0

as we choose ǫ1 <
αI(X1,YR,1)−R1

3α
. We conclude that Exn

R

{

P
(1)
e,k

}

can be made arbitrarily small for n

large.

Decoding at the terminal node For the calculation of the probabilityE{P(2)
e,2} we assume that

the relay has decoded w1 and w2 without error. Furthermore node 2 received some y
n1

2,1 drawn
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according to p
(

y
n1

2,1|x
n1

1 (w1)
)

.

The error that may occur at node 2 is characterized by several possible events:

• E1: x
n1

1 (w1) is not jointly typical with y
n1

2,1,

• E2: x
n3

R
(w1,w2) is not jointly typical with y

n3

2,3,

• E3: x
n1

2 (w̃1) is jointly typical with y
n1

2,1 for some w̃1 , w1, or

• E4: x
n3

R
(w̃1,w2) is jointly typical with y

n3

2,3 for some w̃1 , w1.

For these events we can calculate the probability PEi
where we take into account the random

codebook generation as well as the joint randomness in the system. We can bound the average

probability of error for the decoding from above byE{P(2)
e,2} ≤ PE1 + PE2 + M1PE3PE4,

where the average is over the random codebook as well as over the transmitted symbols. The

last term follows form the observation that an error occurs if E3 and E4 happen simultaneously.

The factor M1 attributes the fact, that this may happen for each wrong message w̃1 , w1.

Clearly PE1 → 0 if n1 → ∞ and PE2 → 0 if n3 → ∞ which follows from the definition of

strong typicality and the law of large numbers. Analogous to the proceeding above we have

PE3 ≤ 2n(3αǫ3−αI(X1,Y2,1))+I(X1,Y2,1)

and

PE4 ≤ 2n(3γǫ4−γI(XR,Y2,3))+2ǫ4

and therefore

M2PE3PE4 ≤ 2n(R1−αI(X1,Y2,1)+3αǫ3−γI(XR,Y2,3)−3γǫ4)+I(X1,Y2,1)+2ǫ4 .

We can now conclude thatE {P(2)
e,2

}

→ 0 as n→ ∞ by the choice of ǫ3 <
γI(XR,Y2,3)+αI(X1,Y2,1)−R1

6α

and ǫ4 <
γI(XR,Y2,3)+αI(X1,Y2,1)−R1

6γ .

This proves that Ex
n1
1 ,x

n2
2 ,x

n3
R

{

µ
(n)
1

}

→ 0 for n→ ∞. Similarly Ex
n1
1 ,x

n2
2 ,x

n3
R

{

µ
(n)
2

}

→ 0. ThereforeEx
n1
1 ,x

n2
2 ,x

n3
R

{

µ
(n)
1 + µ

(n)
2

}

→ 0 and we can conclude that there is at least one codebook such that µ(n)
1

and µ(n)
2 can be made arbitrarily small by choosing n large enough. The closure of the region

is achievable using similar arguments as in the proof of Theorem 2.2. Therefore the claim is

proved. �

2.3.2 An Achievable Rate Region for a Four-Phase Relay Channel

To maintain brevity without any loss of information we assume that all the definitions given

in Section 2.3.1 are extended in the obvious way to the four phase protocol. In this setup we

assume four phases where 1 ≥ α, β, γ, δ ≥ 0, α + β + γ + δ = 1 indicate timesharing between
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the phases. The first two phases are broadcasts, each from one terminal node to the relay and

the other respective terminal node. The third phase is a MAC phase, and the forth phase is a BC

phase.

Theorem 2.8. An achievable rate region for the four-phase two-way relay channel using a

decode-and-forward protocol is the set of all rate pairs [R1,R2] satisfying

R1 < min
{

αI(X1,1; YR,1) + γI(X1,3; YR,3|X2,3,Q);αI(X1,1; Y2,1) + δI(XR; Y2,4)
}

R2 < min
{

βI(X2,2; YR,2) + γI(X2,3; YR,3|X1,3,Q); βI(X2,2; Y1,2) + δI(XR; Y1,4)
}

R1 + R2 < αI(X1,1; YR,1) + βI(X2,2; YR,2) + γI(X1,3, X2,3; YR,3|Q)

(2.13)

for some joint probability distribution p(x1,1)p(x2,2)p(xR)p(q)p(x1,3|q)p(x2,3|q)p1(yR,1, y2,1|x1,1)

p2(yR,2, y1,2|x2,2)pR(y1,4, y2,4|xR)pM(yR,3|x1,3, x2,3) and some α, β, γ, δ ≥ 0 with α + β + γ + δ = 1.

Remark 2.12 (Two-phase and three-phase protocols are special cases). The region includes

the region of Theorem 2.4 and the region of Theorem 2.7 as special cases. In fact, ignoring

the minimum operation and stating the region in a five dimensional space, the region can be

seen to be the convex hull of the regions of Theorem 2.4 and Theorem 2.7 written in this way.

Furthermore, due to the minimum operation we conclude that this region is a super set to the

regions in Theorem 2.4, Theorem 2.7, and the convex combination of both.

Sketch of proof. As the proof does not use any new arguments and does not give new insight to

the problem solution, we only provide a sketch of the proof. We use a random coding argument

as in the proofs above. We start with strict inequalities. In each of the first three phases both

nodes transmit the whole message by transmitting some x
n1

1,1(w1), x
n2

2,2(w2), x
n3

1,3(w1) and x
n3

2,3(w2).

The codewords are drawn according to p(x
n3

1,3|q
n3) and p(x

n3

2,3|q
n3) for a fixed qn3 , which is part of

the codebook and which is drawn according to p(qn3).

As in the proof of Theorem 2.7 we can split the analysis of the probability of error in two

parts:

• P
(1)
k

is the probability of error for the decoding at the relay.

• P
(2)
k

is the probability of error for decoding at the receivers given that the relay decoded

correctly.

Note, that the analysis of P
(2)
k

is essentially the same as in the proof of Theorem 2.7. It is

therefore left to show that the conditions given in the theorem are sufficient to decode both

messages at the relay.

For the bounding of P
(2)
k

we have to specify the decoding at the relay. The relay node

uses typical set decoding, i.e. the relay decides that w = [w1,w2] was transmitted if this is

the unique w such that
(

x
n1

1,1(w1), yn1

R,1

)

∈ T
(n1)
ǫ1

(X1,1, YR,1),
(

x
n2

2,2(w2), yn2

R,2

)

∈ T
(n2)
ǫ2

(X2, YR,2), and
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(

x
n3

1,3(w1), x
n3

2,3(w2), yn3

R,3

)

∈ T
(n3)
ǫ3

(X1,3, X2,3, YR,2). The parameters for the decoding sets are chosen

as

ǫ1 < min

{

αI(X1,1;YR,1)+γI(X1,3;YR,3 |X2,3,Q)−R1

6α ; αI(X1,1;YR,1)+βI(X2,2;YR,2)+γI(X1,3 ,X2,3;YR,3 |Q)−R1−R2

9α

}

,

ǫ2 < min

{

βI(X2,2;YR,2)+γI(X2,3;YR,3 |X1,3,Q)−R2

6β ; αI(X1,1;YR,1)+βI(X2,2;YR,2)+γI(X1,3,X2,3;YR,3 |Q)−R1−R2

9β

}

,

ǫ3 < min

{

αI(X1,1;YR,1)+γI(X1,3;YR,3 |X2,3,Q)−R1

12γ ; βI(X2,2;YR,2)+γI(X2,3;YR,3 |X1,3,Q)−R2

12γ ;

αI(X1,1;YR,1)+βI(X2,2;YR,2)+γI(X1,3 ,X2,3;YR,3 |Q)−R1−R2

24γ

}

.

(2.14)

An error occurs, if the sequences are not jointly typical for the correct w. The probability

of this event can be made arbitrary small by choosing n large. The second event that leads to

an error is that there exists some w̃ , w such that the codewords are jointly typical with the

received signal.

We split this event in three sub-events:

• E1: w̃1 = w1, w̃2 , w2,

• E2: w̃1 ,,w1 w̃2 = w2,

• E3: w̃1 ,,w1 w̃2 , w2.

For n sufficiently large, the probability of E1 averaged over all codewords and over the

random codebook can be bounded from above byE{Pr[E1]} ≤ 2nR2+n2(3ǫ2−I(YR,2;X2,2))+n3(6ǫ3−I(YR,3 ;X2,3 |X1,3,Q))

≤ 2n(R2+3βǫ2−βI(YR,2;X2,2)+6γǫ3−γI(YR,3 ;X2,3 |X1,3,Q))+I(YR,2;X2,2)+I(YR,3;X2,3 |X1,3,Q)

using the properties of the typical set. Therefore E{Pr[E1]} goes to zero for n → ∞ by the

choice of ǫ2 and ǫ3. E{Pr[E2]} can be bounded in a similar way. Furthermore we haveE{Pr[E3]} ≤ 2n(R1+R2)+n1(3ǫ1−I(YR,1;X1,1))+n2(3ǫ2−I(YR,2;X2,2))+n3(8ǫ3−I(YR,3 ;X2,3X1,3|Q))

≤ 2n(R1+R2+3αǫ1−αI(YR,1 ;X1,1)+3βǫ2−βI(YR,2;X2,2)+8γǫ3−γI(YR,3;X2,3 |X1,3,Q))+I(YR,2;X2,2)+I(YR,1 ;X1,1)+I(YR,3 ;X2,3 |X1,3,Q).

Using a union bound argument we conclude that there exists a codebook such that P
(1)
k
→ 0.

Therefore the decoding at the relay will succeed with high probability, whenever the conditions

are fulfilled with strict inequality. The achievability of the closure of the set follows from the

definition of achievability. �
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n2

2,2X   (w2) C(w1)
W2

C(w1)

Figure 2.4: Coding mechanisms in the BC phase for more than two phases: The figure shows
the decoding mechanism at receiver 1. On the left, the code X

n2

2,2(w2) used by node 2 in its
broadcast transmission is shown. The transmitted codeword is indicated by •. The receiver can
not decode the message w2 from the signal received in the broadcast transmission of phase 2.
Nonetheless it can determine a subset W̄2 of messages that could have been sent. The figure
on the right of this code X

n2

2,2(w2) displays the Cartesian structured code used by the relay’s
encoder. The codeword transmitted by the relay is again indicated by •. The known message w1

determines a sub-code C(w1) of this code. Note that each codeword in the set W̄2 corresponds
to one row in the relay’s code. In the figure on the right hand side, the codewords of this relay’s
code, which match these restrictions, are marked with vertical and horizontal lines respectively.
The effective code used in the decoding for receiver 1 consists of the codewords marked with
crossing lines.

2.3.3 A Note on Coding Mechanisms in the BC Phase for More Than Two

Phases

The coding mechanisms in the BC phase for the three phase and for the four phase protocol are

very similar. In fact, the same code can be used for both protocols under the condition that the

following three parameters of the system stay the same:

1. the code in the first two phases,

2. the channel in the direct link,

3. the channel in the BC phase.

The only purpose of the MAC phase is to allow the relay to decode the data. As for the two-

phase protocol, the code used by the relay’s encoder possesses a Cartesian structure. The mes-

sage known at the receiver restricts the possible transmitted codewords in the decoding process

for the receiver to a subset of the codewords of the relay’s code in the same way as it was

discussed in Section 2.1.4.1.

Compared to the two-phase protocol the receiver now has additional side information due

to the direct link between the terminal nodes. This additional side information imposes another

restriction on the possible transmitted messages: The receiver cannot determine which message
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was sent solely by looking at the signal received via the direct link. Nevertheless the receiver

can exclude some messages if the corresponding codewords are not jointly typical with the

received signal. This is shown in Figure 2.4. The decoding at the receiver now combines both

these restrictions leading to a sub-code of the code determined by the known message. As a

consequence, the sub-code used in the decoding contains less codewords compared to the code

for the two-phase protocol.

For a practical coding scheme one has to design interwoven single user codes as it was done

for the two-phase protocol. But these codes need not be good codes for the marginal channel in

the BC phase, as they need not be decodable without the additional side information. Now, the

single user codes need to fulfill another constraint. These single user codes are super-codes of a

set of single user sub-codes. These subcodes consist of less than 2nBC I(XR;Yk,BC ) codewords each,

where nBC is the block length of the BC code and Yk,BC is the random variable induced at the

receiver k by the BC transmission form the relay. Note that for a transmitted message, say w2,

there may occur more than one such sub-code, as the direct link need not restrict the options for

the receiver concerning w2 to the same subset of W̄2 ⊂ W2 in every transmission. It depends

on the statistics of the direct link as well as on the code used for this transmission which and

how many sub-codes may occur. In comparison to the coding for the two-phase protocol this

means, that the codes used in the decoding cannot be determined offline anymore. The effective

code used in the decoding depends on the signal received via the direct line and may change in

each transmission, even if the known message is the same. On average, each of the sub-codes

used in the decoding at the terminal node needs to be a good code for the marginal channel in

the BC phase.

A simple though possibly infeasible or suboptimal code design for this setup may use single

user codes interwoven as in the two-phase protocol. These single user codes have the property

that — in average with respect to the statistics of the direct link, as we only consider the average

probability of error — all subsets of size 2nBC I(XR;Yk,BC ) of the single user code are good codes for

the channel from the relay to the receiver. As in the two-phase protocol, it is possible to use the

XOR operated messages as an input for the encoder at the relay. In this case we have only one set

of codewords, which needs to have the property, that in average the subsets of size 2nBC I(XR;Yk,BC )

are good codes for the channel to receiver k. Note, that if R1 , R2 and the XOR operation is

used, not all possible subsets of the original set of codewords may occur for both receivers. The

receiver with the lower rate already uses subsets of the complete set of codewords, even if the

additional side information by the direct link is not present. By the additional side information

the effective codes can only be subsets of these subsets and therefore not all subsets of the

original set of codewords will occur.

Alternatively one can consider both transmissions as two independent transmissions of the

same message that are both not decodable by themselves. This interpretation suggests the use

of a turbo-like [61] mechanism with iterative decoding: Alternate between the decoding of the

two codes and use the result of the last decoding step as soft information for the next decoding
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step. This is possible, as in both transmissions the same message is transmitted. In this case the

known message restricts the relay’s code in the same way as in the two-phase protocol and a

similar code design can be applied.

2.4 Concluding Remarks

This chapter addresses the two-way relay channel with half-duplex nodes and a decode-and-

forward constraint. We give an achievable rate region for a two-phase protocol for this kind of

channel. The key ingredient of the scheme is the coding for the BC phase. In this phase the

message available at the receiver can be used as side information. This enables a transmission

that is de-facto interference free, implying that both receivers can achieve a rate as if the other

receiver were not present. The only drawback stems from the common input distribution to the

channel. This distribution may be suboptimal for one or both the single user channels. Starting

at the achievability proof we derived a coding scheme that facilitates this special broadcast sce-

nario where the receivers know the message for the other respective node. Finally, we extended

the approach to use the direct link between both terminals and gave achievable rate regions for

a protocol with three and four phases. In these protocols additional side information gathered

by the direct link transmission further improves the decoding in the BC phase.

In all the coding schemes discussed in this section the messages known at the relay are

the key to a quasi-interference free broadcast transmission: these messages can be used to

restrict the relay’s code to a sub-code, that is decodable for the receiver. The signal received via

the direct link further restricts the code. This restriction is again determined by means of the

decoded messages that index the codewords.

In the next section we will see that the relay does not need to decode the messages. We

are still able to use the side information. While in the two phase protocol the restriction was

a deterministic restriction, as the decoder knows one of the two transmitted messages, in the

three phase protocol the restriction becomes stochastic. Though the restriction is still via the

messages, the restricted set is partially determined by the decoder via typicality, by using the

signal received in the direct link. In the next section we go one step further in this direction:

We will focus on a two-phase channel without decoding at the relay. Still the relay’s code

used in the BC phase is restricted by the known message, although only in a stochastic sense.

The relay’s codeword depends on the signal received by the relay. This in turn depends on the

codewords transmitted in the MAC phase and thereby on the known message at the receiver.



Chapter 3

The Two-Way Relay Channel with

Compress-and-Forward

In the last chapter we considered the two-way relay channel with the constraint that the relay

is able to decode the messages sent by both sources. In this chapter we drop this assumption

and ask, whether it might be advantageous not to decode the messages. As a result, in this

chapter we propose another coding strategy and a corresponding rate region for the two-way

relay channel. Note that we maintain the constraint that all the nodes operate in a half-duplex

mode. Furthermore we assume a two-phase protocol, i.e. we have a system without a direct

link between the nodes.

The approach not to decode the messages at the relay seems counter-intuitive at first glance,

as all information passes the relay. Still, it turns out that there are channels where this approach

can enlarge the achievable rate region. A simple example shows that indeed performance gains

can be achieved:

Example 3.1. Consider a channel where the channel output in the first phase is the XOR sum

of two binary inputs. The sum rate of this channel using it as a classical MAC is restricted to

one bit per channel use. Now, assume that we have a channel in the second phase, which can

error free transmit one bit of information per channel use to both receivers. Then, the protocol

proposed in Chapter 2 cannot achieve the rate pair [0.5bit; 0.5bit] since this rate pair would

require the use of the BC for 50% of the time, which in turn would lead to a maximum sum rate

of 0.5 bits in the MAC. It is easy to see that we can do better than that by simply transmitting

the channel output to both receivers. Using this protocol, the overall channel can be interpreted

as a special case of a restricted two-way channel [14]. The capacity region of this channel is

known [14] and in the special case of the example it is given by

R1 ≤ 0.5bit,

R2 ≤ 0.5bit.

Therefore, the rate pair [0.5bit; 0.5bit] is achievable. This example shows that, at least when

67
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the sum-rate constraint of the MAC-phase limits the overall transmission rate, there might be a

better way than decoding at the relay.

The strategy proposed in this chapter follows the line of the classical compress-and-forward

strategy in the paper by Cover et al. [16]. It includes the strategy used in the example above as

a special case. The channel output at the relay is compressed and forwarded to the receivers.

The receivers decode the message transmitted by the relay and therefore have an estimate of the

MAC output. This estimate is used to decode the message intended for the receiver.

In Section 3.1 an achievable rate region is given using the compress-and-forward approach

sketched in the example above. We will prove that gains can be achieved using the known

message for both: decoding of the BC transmission and decoding of the MAC phase. The result

has some interesting properties, namely the rate region has some strange non-continuity if one

of the users is idle, i.e. has no data to transmit. This is discussed in detail in Section 3.1.3,

where this is analyzed and thereby the base for further extensions is laid, which will be given

later in Chapter 5.

In contrast to the achievable rate region RDF stated in Theorem 2.4, the new achievable rate

region requires some auxiliary random variables. These variables are not directly determined by

the system itself. To have a complete characterization of the achievable rate region, the cardinal-

ity of these auxiliary random variables needs to be bounded from above. We do this bounding

in Section 3.2 for the variables that occur in the main theorem of this chapter (Theorem 3.1).

For the bounding of the cardinality of further auxiliary random variables, which occur in other

theorems in this thesis, the interested reader is referred to the appendix.

It will turn out that the new coding scheme may degrade the performance of the BC phase

while it enhances the performance of the MAC phase. Therefore, in Section 3.3 we superimpose

the new scheme and the decode-and-forward coding proposed in Chapter 2 to facilitate a tradeoff

between both these approaches. The resulting superposition coding yields an achievable rate

region which contains the regionRDF stated in Theorem 2.4 as well as the region of Theorem 3.1

as special cases. Furthermore, the new region also contains the rate pairs that can be achieved

by timesharing between the decode-and-forward and the compress-and-forward strategies.

An extension to more than two phases as it was done in Section 2.3 is possible and might

further extend the achievable rate region. The usage of the direct link makes additional side

information available at the receiver. This side information, i.e. the received signal, can also be

used in the decoding of both phases in essentially the same way the codeword transmitted in the

MAC phase of the two-phase protocol is used. The analysis of this extension does not yield any

new insight to the solution of the problem and is not considered in more detail in this thesis.
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3.1 A Compress-and-Forward Coding Theorem

In this section we propose an achievable rate region that is attained by a compress-and-forward

strategy. Instead of decoding the MAC output the relay forwards a quantized representation

of this output to both receivers. As in the proof of Theorem 2.2 the message known by the

receiver is used to enhance the decoding performance in the BC phase. This is possible as

the MAC output depends on the codeword transmitted by the receiver. Having decoded the

compressed MAC output, the receiver uses the known message a second time. By interpreting

the compressed MAC output as the output of a two-way channel between both the terminal

nodes, the side information can be used in the decoding of the message intended for the receiver.

The results of this section where published in [11] and [12]. For the following discussion,

recall the system model and the definitions given in Chapter 1.

3.1.1 Coding Theorem

Theorem 3.1. An achievable rate region for the two-phase two-way relay channel using a

compress-and-forward protocol is the set R1 ⊂ R2
+ of all rate pairs [R1,R2] satisfying

R1 ≤ αI(X1; ŶR|X2,Q)

R2 ≤ αI(X2; ŶR|X1,Q)
(3.1)

under the constraints

α
(

H(ŶR|X1,Q) − H(ŶR|YR)
)

< βI(Y1; XR)

α
(

H(ŶR|X2,Q) − H(ŶR|YR)
)

< βI(Y2; XR)
(3.2)

for some α, β > 0 with α + β = 1 and some joint probability distributions p(q)p(x1|q)p(x2|q)

p1(yR|x1, x2)p(ŷR|yR) and p(xR)p2(y1, y2|xR).

Remark 3.1. Because of the Markov chain ŶR − YR − XkQ we have H(ŶR|Xk,Q) − H(ŶR|YR) =

I(ŶR; YR|Xk,Q). Written in this way, the result is more similar to the compress-and-forward

result of Cover et al. [16].

Remark 3.2 (Cardinalities of random variables). To achieve any point in the stated region it is

sufficient to consider only random variables Q and ŶR with cardinalities restricted to |Q| ≤ 4

and |ŶR| ≤ |YR| + 3. This can be shown using the Fenchel-Bunt extension of Caratheodory’s

theorem [62]. A proof of this claim is given in the Section 3.2.

Remark 3.3 (Connections to Wyner-Ziv coding and the restricted two-way channel). The idea

of the proof is to convey a quantized version of the output of the MAC at the relay to both

receivers using the Wyner-Ziv coding mechanisms [33] in connection with the tools used in

Tuncel’s proof to transmit data to receivers that have some correlated side information [29].
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By forwarding a compressed version of the relay’s channel output to both receivers, a vir-

tual restricted two-way channel with output ŶR at both receivers is established. This channel

determines the rates achievable in the overall communication for probability distributions con-

strained by (3.2). This can be seen by comparing (3.1) with the result in [14]. The targeted

rate in turn is a kind of distortion requirement for the quality of the the compressed channel

output, i.e. αI(X1; ŶR|X2,Q), αI(X2; ŶR|X1,Q) can be read as two quality (or inverse distortion)

measures while R1 and R2 is the respective reconstruction quality needed. With this interpre-

tation the inequalities (3.2) define an achievable source region for transmitting a compressed

variable YR under some distortion constraint over a BC to receivers that have some side infor-

mation available. In the classical Wyner-Ziv setup [33], the reconstruction of YR is a function

of the side information and the decoded variable ŶR. In our setup, there is no gain in making

such a step because of the nature of the “distortion constraint”: The reconstruction cannot be

improved with respect to the mutual information expression in (3.1) even if we replace ŶR by

some Zk = g(ŶR, Xk).

Remark 3.4 (More than one quantized variables). A more general approach and a seemingly

natural extension to this result could utilize two quantized variables ŶR,1 and ŶR,2, i.e. a virtual

two-way channel with different outputs. In the general case of such a setup, the BC phase

becomes more difficult. To facilitate the side-information in the BC, the two variables should

be correlated, which leads to the problem of transmitting correlated data over a BC where

the receivers have some correlated side-information. Without side-information the problem is

treated by Han et al. [63], giving an achievable rate region. To the best of our knowledge, the

problem was not yet considered with additional correlated side information at the receiver. At

the end of this section we give some arguments that there might be some gains possible with

this more general approach. These arguments will lead to an extension of the scheme along the

lines sketched above. The resulting achievable rate region is stated and discussed in Chapter 5.

Remark 3.5 (Convexity of R1). The region R1 is convex. To see that it is convex for fixed α and

β note, that one can add Q as a condition to all entropy and mutual information terms without

changing the region. If we allow for different timesharing parameters α and β, then we can use

arguments analogous to that in Remark 2.11 to prove, that the region is convex.

3.1.2 Proof of the Coding Theorem

Proof. The proof of the theorem will be as follows: First we assume that the inequalities in

the theorem are strict. For these cases we give a construction of a random codebook, define

encoders and decoders. Thereafter we define the events that lead to an error while decoding.

We use the union bound to bound the probability of a decoding error from above by using these

events. We will show, that every event that leads to an error appears with a vanishing probability

if the length of the code goes to infinity. Therefore the probability of error goes to zero given
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that the inequalities in the theorem are strict. Finally we show, that the closure of the rate region

is achievable. This will conclude the proof.

Suppose the inequalities in (3.1) are strict for the probability distributions1 p(q)p(x1|q)

p(x2|q)p1(yR|x1, x2)p(ŷR|yR), p(xR|q)p2(y1, y2|xR), some α, β > 0 with α + β = 1, and a rate

pair [R1,R2]. We will first show how to construct a
(

M
(n)
1 , M

(n)
2 , n1, n2

)

-code for a fixed n such

that for the sequence of this
(

M
(n)
1 , M

(n)
2 , n1, n2

)

-codes the probability of error goes to zero and

the rate pair of the codes goes to [R1,R2] as n→ ∞.

Some remarks on the variable Q: We do not use Q to switch between different codebooks

as in traditional timesharing, but we use this parameter to create the now seemingly dependent

variables X1 and X2. The traditional way of proving the achievability for a fixed q and then

arguing with timesharing will not give the region in the theorem, as this region only forces the

“average” codebook to fulfill the constraints, while the traditional timesharing argument, i.e. the

convex combination of achievable rate points requires every codebook used in the timesharing

to fulfill the constraints.

3.1.2.1 Random Codebook Generation

For a given n set n1 = ⌊αn⌋, n2 = ⌈βn⌉.

• Choose one qn1 drawn according to the probability
∏n1

s=1 p(qn1

(s)).

• Choose 2⌊nR1⌋ i.i.d. codewords x
n1

1 each according to the probability
∏n1

s=1 p(x
n1

1,(s)|q
n1

(s)).

Label these x
n1

1 (w1), w1 ∈ {1, 2, . . . , 2⌊nR1⌋}.

• Choose 2⌊nR2⌋ i.i.d. codewords x
n1

2 each according to the probability
∏n1

s=1 p(x
n1

2,(s)|q
n1

(s)).

Label these x
n1

2 (w2), w2 ∈ {1, 2, . . . , 2⌊nR2⌋}.

• Choose ǫq ∈ (0,min{ǫ(1)
q , ǫ

(2)
q , ǫ

(3)
q , ǫ

(4)
q }) where ǫ(1)

q := 1
2α+β

(

βI(XR; Y1) − α
(

H(ŶR|X1,Q)

−H(ŶR |YR)
))

, ǫ(2)
q := 1

2α+β

(

βI(XR; Y2) − α
(

H(ŶR|X2,Q) − H(ŶR|YR)
))

, ǫ(3)
q :=

I(X2;ŶR |X1,Q)−
R2
α

3

and ǫ(4)
q :=

I(X1;ŶR |X2,Q)−
R1
α

3
.

• For each i ∈ {1, 2, . . . , 2⌈αnRQ⌉}, RQ = I(YR; ŶR|Q) + ǫq, draw one codeword ŷ
n1

R
(i) accord-

ing to
∏n1

s=1 p(ŷn1

R,(s)|q
n1

(s)) and one codeword x
n2

R
(i) according to

∏n2

s=1 p(x
n2

R,(s)). The 2⌈αnRQ⌉

codeword pairs are drawn i.i.d..

This constitutes a random codebook C(n) = {qn1} ∪ C
(n)
x1 (qn1) ∪ C(n)

x2 (qn1) ∪ C(n)
ŷR

(qn1) ∪ C(n)
xR

where

C
(n)
x1

(qn1) is the ordered set of codewords x
n1

1 (1), . . . xn1

1 (2⌊nR1⌋) drawn conditioned on a given qn1 ,

and the ordered sets C(n)
x2 (qn1), C(n)

ŷR
(qn1), C(n)

xR
are defined accordingly for the remaining code-

words.

1All probabilities in the proof will be calculated for these given distributions.
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3.1.2.2 Decoding Sets

For the decoding we use typical set decoding. The coding and decoding steps are specified

below. For a strict definition of the decoding sets we choose parameter for the typical sets as

ǫ1 = ǫ2 = ǫ3 = ǫ4 ∈ (0,
ǫq

6 ). The missing parameters for the receiver 2 are chosen in an analogous

way.

3.1.2.3 Coding

i To transmit message w1 node 1 sends x
n1

1 (w1).

ii To transmit message w2 node 2 sends x
n1

2 (w2).

iii Upon receiving y
n1

R
the relay looks for the first i such that

(

y
n1

R
, ŷ

n1

R
(i)
)

∈ T
(n1)
ǫ1

(YR, ŶR|q
n1). If

such an i is found the relay transmits x
n2
R

(i). If no such i is found the relay chooses2 i = 1

and transmits x
n2

R
(1). This induces a mapping f : Yn1

R
→ C

(n)
ŷR

(qn1) as ŷ
n1

R
(i) = f (yn1

R
).

iv Upon receiving y
n2

1 node 1 looks for the unique i such that x
n2

R
(i) and the received signal

y
n2

1 are jointly typical, and simultaneously the side-information x
n1

1 (w1) and ŷ
n1
R

(i) are jointly

typical given qn1 , i.e.
(

x
n2

R
(i), yn2

1

)

∈ T
(n2)
ǫ2

(XR, Y1) and
(

x
n1

1 (w1), ŷn1

R
(i)
)

∈ T
(n1)
ǫ3

(X1, ŶR|q
n1).

This enables node 1 to recover ŷ
n1
R

(i). If no or more than one such i is found, the decoding

is aborted and w2 = 1 is chosen.

v Knowing ŷ
n1

R
(i) and x

n1

1 (w1) node 1 decides that w2 was transmitted if x
n1

2 (w2) is the only

codeword such that x
n1

2 (w2), ŷ
n1
R

(i) and x
n1

1 (w1) are jointly typical given qn1 , i.e. we have
(

x
n1

1 (w1), x
n1

2 (w2), ŷn1

R
(i)
)

∈ T
(n1)
ǫ4

(X1, X2, ŶR|q
n1). If no or more than one such codeword is

found, the decoding is aborted and w2 = 1 is chosen.

vi The decoding at node 2 is performed in an analogous way.

3.1.2.4 Error Events

Now we show that the average probability of error goes to zero in the average of all random

codebooks, more precisely we show that for any given ǫ there exists an n(0) such thatE{µ(n)
k
} < ǫ,

k ∈ {1, 2}, n > n(0), where the expectation is taken over the random codebook. This in turn

implies that for any ǫ we can find n(0) such that E{µ(n)
1 + µ

(n)
2 } < 2ǫ, n > n(0), and therefore there

is at least one codebook with µ(n)
1 + µ

(n)
2 < 2ǫ, n > n(0), and therefore µ(n)

1 < 2ǫ and µ(n)
2 < 2ǫ for

n > n(0).

We bound the average probability of error E{µ(n)
1 } from above by the union bound using

six events E j, j ∈ {1, 2, . . . , 6}, whose union is a superset of the error event. Therefore we have

2This is done to have a well defined error probability. Equivalently one could declare an error at the relay, but
this induces a much more cumbersome notation in the definition of the error probability. Similar arguments apply
when choosing w2 = 1 in coding step iv and iv.
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1 } ≤

∑6
j=1E{Pr[E j]}. The average error probabilityE{µ(n)

2 } can be bounded in an analogous

way.

In what follows we summarize the definition of the error events for receiver 1:

• E1: Suppose a codebook is given and x
n1

1 (w1), x
n1

2 (w2) are transmitted. E1 is the event that

there does not exist an i ∈ {1, 2, . . . , 2⌈αnRQ⌉} such that
(

y
n1
R
, ŷ

n1
R

(i)
)

∈ T
(n1)
ǫ1 (YR, ŶR|q

n1).

• E2: Suppose a codebook is given and transmits x
n2

R
(i). E2 is the event that

(

x
n2

R
(i), yn2

1

)

<

T
(n2)
ǫ2

(Xn2

R
, Y

n2

1 ).

• E3: Suppose a codebook is given, x
n1

1 (w1), x
n1

2 (w2) are transmitted and the relay chooses

some i such that
(

y
n1
R
, ŷ

n1
R

(i) = f (yn1
R

)
)

∈ T
(n1)
ǫ1 (YR, ŶR|q

n1). E3 is the event that
(

x
n1

1 (w1),

ŷ
n1

R
(i)
)

< T
(n1)
ǫ3

(X1, ŶR|q
n1).

• E4: Suppose a codebook is given, x
n1

1 (w1), x
n1

2 (w2) are transmitted, the relay chooses some

i and x
n2

R
(i) is transmitted. E4 is the event that ∃ j , i :

(

x
n1

1 (w1), ŷn1

R
( j)
)

∈ T
(n1)
ǫ3

(X1, ŶR|q
n1)

and
(

x
n2
R

( j), yn2

1

)

∈ T
(n)
ǫ2 (Xn2

R
, Y

n2

1 ).

• E5: Suppose a codebook is given, x
n1

1 (w1), x
n1

2 (w2) are transmitted and the relay chooses

some i such that
(

y
n1

R
, ŷ

n1

R
(i) = f (yn1

R
)
)

∈ T
(n1)
ǫ1

(YR, ŶR|q
n1). E5 is the event that

(

x
n1

1 (w1),

x
n1

2 (w2), ŷn1

R
(i)
)

< T
(n1)
ǫ4

(X1, X2, ŶR|q
n1).

• E6: Suppose a codebook is given, x
n1

1 (w1), x
n1

2 (w2) are transmitted and the relay chooses

some i such that
(

y
n1

R
, ŷ

n1

R
(i) = f (yn1

R
)
)

∈ T
(n1)
ǫ1 (YR, ŶR|q

n1). E6 is the event that
(

x
n1

1 (w1),

x
n1

2 (ŵ2), ŷn1

R
(i)
)

∈ T
(αn)
ǫ4

(X1, X2, ŶR|q
n1) with ŵ2 , w2.

To see that these error events capture all events that may lead to an error we step through the

coding procedure and verify, that all possible causes of an error where captured: First note that

the probability of error can be bounded from above by

Pr[E] ≤ Pr[Ev ∪ Ēiv ∪ Ēiii] + Pr[Eiv] + Pr[Eiii].

Here Ev is the event that coding step v fails, i.e. that no or more than one codeword x
n1

2 (w2) is

found. Accordantly Eiv and Eiii are the event that the coding step iv and iii failed respectively.

A bar indicates the complementary event.

We break down the events even further: In coding step iii it may turn out that there is no

typical ŷ
n1

R
(i) for the received y

n1

R
. This does not yield an error immediately, but it may lead to

an error in later decoding. To simplify the error calculation we treat this as an error captured by

event E1 and for the following considerations about error events we can assume that we have
(

y
n1

R
, ŷ

n1

R
(i)
)

∈ T
(n1)
ǫ1

(YR, ŶR|q
n1). Therefore E1 is not an intrinsic error event, but it is used to

simplify the definitions and the calculation of the errors that may happen in the coding steps iv

and v.
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Coding step iv fails, if either i is not found, or if j , i is found. The correct i is not found

if either
(

x
n2

R
(i), yn2

1

)

< T
(n2)
ǫ2

(XR, Y1), captured by E2, or if
(

x
n1

1 (w1), ŷn1

R
(i)
)

< T
(n1)
ǫ3

(X1, ŶR|q
n1),

captured by E3. The event that j , i is found in step iv is captured by E4.

Coding step v fails, if either w2 is not found, or if ŵ2 , w2 is found. These events are

captured by E5 and E6 respectively. Clearly no other events lead to an error for the decoding

process at receiver 1.

We will now prove for each event E j, j ∈ {1, 2, . . . , 6}, that there exists an n( j) such thatE{Pr[E j]} <
ǫ
6 for n ≥ n( j). This in turn implies that for n ≥ max j∈{1,2,...,6} n

( j) =: n(0) we haveE{µ(n)
k
} < ǫ, k ∈ {1, 2}.

3.1.2.5 Bounding the Probability of the Error Events

We now bound the probability of the error events averaged over the codebooks C(n) for a code

of length n and the transmitted messages [w1,w2] ∈ W.

Error event E1 The averaged probability for the error event E1 isE{Pr[E1]} =
1

|W|

∑

(w1,w2)∈W

∑

C(n)

p(C(n))
∑

y
n1
R

:y
n1
R
∈J(C(n))

p
(

y
n1

R
|xn1

1 (w1), x
n1

2 (w2)
)

with

J(C(n)) =

{

y
n1

R
∈ Yn1

R
: ∄i ∈

{

1, 2, . . . , 2⌈αnRQ⌉
}

, ŷ
n1

R
(i) ∈ C(n)

ŷR
(qn1) such that

(

y
n1

R
, ŷ

n1

R
(i)
)

∈ T (n1)
ǫ1

(YR, ŶR|q
n1)

}

.

This can be rewritten asE{Pr[E1]} =
∑

C(n)

p(C(n))
∑

y
n1
R

:y
n1
R
∈J(C(n))

p
(

y
n1

R
|xn1

1 (1), x
n1

2 (1)
)

as the codewords are drawn i.i.d.. Furthermore, we can simplify the expression by summing

over x
n1

1 (w1), w1 , 1, x
n1

2 (w2), w2 , 1 and x
n2

R
(i), and dropping the index of the remaining

codewords x
n1

1 (1) and x
n1

2 (1):E{Pr[E1]} =
∑

y
n1
R
∈Y

n1
R

∑

x
n1
1 ∈X

n1
1

∑

x
n1
2 ∈X

n1
2

∑

qn1∈Q
n1

p(x
n1

1 , x
n1

2 , q
n1 , y

n1
R

)
∑

C
(n)
ŷR

(qn1 ):y
n1
R
∈J

(

C
(n)
ŷR

(qn1 )
)

p
(

C
(n)
ŷR

(qn1)
)

.
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Here we used

J
(

C
(n)
ŷR

(qn1)
)

=

{

y
n1

R
∈ Yn1

R
: ∄i ∈

{

1, 2, . . . , 2⌈αnRQ⌉
}

, ŷ
n1

R
(i) ∈ C(n)

ŷR
(qn1) such that

(

y
n1

R
, ŷ

n1

R
(i)
)

∈ T (n1)
ǫ1

(YR, ŶR|q
n1)

}

.

With the indicator function χ on the typical set T (n1)
ǫ1 (YR, ŶR|q

n1) it follows thatE{Pr[E1]} =
∑

y
n1
R
∈Y

n1
R

∑

qn1∈Q
n1

p(qn1 , y
n1
R

)





















1 −
∑

ŷ
n1
R
∈Ŷ

n1
R

p(ŷn1
R
|qn1)χ

T
(n1)
ǫ1

(YR,ŶR|q
n1 )

(yn1
R
, ŷ

n1
R

)





















2⌈αnRQ⌉

.

The term in the bracket is the probability that for a given qn1 and a given y
n1

R
, a random ŷ

n1

R

drawn according to p(ŷn1

R
|qn1) is not jointly typical with y

n1

R
. The exponent 2⌈αnRQ⌉ accounts for

the fact, that there are 2⌈αnRQ⌉ possible ŷ
n1
R

in the code, and an error occurs if none of them is

jointly typical with y
n1

R
.

Now we can bound
∑

ŷ
n1
R
∈Ŷ

n1
R

p(ŷn1

R
|qn1)χ

T
(n1)
ǫ1

(YR,ŶR|q
n1 )

(yn1

R
, ŷ

n1

R
)

from below by using properties of the typical set: For (yn1
R
, ŷ

n1
R

) ∈ T (n1)
ǫ1 (YR, ŶR|q

n1) and suffi-

ciently large n, i.e. for some n > n(1,1) we have

p(ŷn1
R
|yn1

R
, qn1) =

p(ŷn1

R
, y

n1

R
|qn1)

p(yn1

R
|qn1)

≤ p(ŷn1
R
|qn1)

2−n1(H(YR,ŶR|Q)−2ǫ1)

2−n1(H(Y
R
|Q)+2ǫ1)2−n1(H(ŶR|Q)+2ǫ1)

= p(ŷn1

R
|qn1)2⌊αn⌋(I(YR;ŶR |Q)+6ǫ1)

≤ p(ŷn1
R
|qn1)2αn(I(YR;ŶR |Q)+6ǫ1).

Therefore

∑

ŷ
n1
R
∈Ŷ

n1
R

p(ŷn1
R
|qn1)χ

T
(n1)
ǫ1

(YR,ŶR|q
n1 )

(yn1
R
, ŷ

n1
R

)

≥
∑

ŷ
n1
R
∈Ŷ

n1
R

p(ŷn1

R
|yn1

R
, qn1)2−αn(I(YR;ŶR |Q)+6ǫ1)χ

T
(n1)
ǫ1

(YR,ŶR|q
n1 )

(yn1

R
, ŷ

n1

R
)
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andE{Pr[E1]} ≤
∑

y
n1
R
∈Y

n1
R

∑

qn1∈Q
n1

p(qn1 , y
n1

R
)
(

1−

∑

ŷ
n1
R
∈Ŷ

n1
R

p(ŷn1

R
|y

n1

R
, qn1)2−αn(I(YR;ŶR |Q)+6ǫ1)χ

T
(n1)
ǫ1

(YR,ŶR |q
n1 )

(yn1

R
, ŷ

n1

R
)
)2αnRQ

.

This can be bounded form above [30, Lemma 13.5.3] byE{Pr[E1]} ≤ 1 −
∑

y
n1
R
∈Y

n1
R

∑

qn1∈Q
n1

∑

ŷ
n1
R
∈Ŷ

n1
R

p(qn1 , y
n1

R
, ŷ

n1

R
)χ
T

(n1)
ǫ1

(YR,ŶR|q
n1 )

(yn1

R
, ŷ

n1

R
)

+ exp
(

−2αn(RQ−I(YR;ŶR |Q)−6ǫ1)
)

.

Now, RQ = I(YR; ŶR|Q) + ǫq and ǫq > 6ǫ1. Therefore the term exp
(

−2αn(RQ−I(YR;ŶR |Q)−6ǫ1)
)

can be

made arbitrarily small for n large. In particular for a given ǫ > 0 we can find n(1,2) such that

exp
(

−2αn(RQ−I(YR;ŶR |Q)−6ǫ1)
)

< ǫ
12 for all n > n(1,2).

The remaining term

1 −
∑

y
n1
R
∈Y

n1
R

∑

qn1∈Q
n1

∑

ŷ
n1
R
∈Ŷ

n1
R

p(qn1 , y
n1

R
, ŷ

n1

R
)χ
T

(n1)
ǫ1

(YR,ŶR|q
n1 )

(yn1

R
, ŷ

n1

R
) (3.3)

is the probability that (yn1

R
, ŷ

n1

R
) < T (n1)

ǫ1
(YR, ŶR|q

n1) for sequences qn1 , y
n1

R
, ŷ

n1

R
drawn according to

the joint probability distribution p(qn1 , y
n1

R
, ŷ

n1

R
). By the law of large numbers this probability

goes to zero. In particular by Lemma 1.2 for a given ǫ > 0 we can find n(1,3) such that (3.3)

is smaller than ǫ

12
for all n > n(1,3). We can now choose n(1) ≥ max

{

n(1,1), n(1,2), n(1,3)
}

and the

probability of error for the first error event can be bounded by E{Pr[E1]} < ǫ

6 for n ≥ n(1).

Error event E2 For the fixed i chosen by the relay the averaged probability for the error event

E2 is E{Pr[E2]} =
∑

C(n)

p(C(n))
∑

y
n2
1 ∈Y

n2
1

p(yn2

1 |x
n2
R

(i))χC

T
(n2)
ǫ2

(XR,Y1)
(x

n2
R

(i), yn2

1 )

=
∑

x
n2
R
∈X

n2
R

∑

y
n2
1 ∈Y

n2
1

p(x
n2

R
, y

n2

1 )χC

T
(n2)
ǫ2

(XR,Y1)
(x

n2

R
, y

n2

1 ).

This is the probability that a pair of sequences (x
n2
R
, y

n2

1 ) drawn according to p(x
n2
R
, y

n2

1 ) is not

in T (n2)
ǫ2

(XR, Y1). The probability for this goes to zero as n → ∞ by the law of large numbers

and the definition of the typical set. Therefore for any given ǫ we can find n(2) such that forE{P(E2)} < ǫ
6 for n ≥ n(2).
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Error event E3 This part of the proof could be done along the lines to the proof for error

event E5 below. But in fact as for the parameters associated with the typical sets in these coding

steps we have ǫ3 = ǫ4, it follows that whenever E5 does not appear, E3 will not appear as well,

because of the definition of the typical sets. Therefore we have E{Pr[E3]} ≤ E{Pr[E5]} for any

n and we can simply choose some n(3) ≥ n(5) and have E{Pr[E3]} < ǫ

6 for n ≥ n(3) given thatE{Pr[E5]} < ǫ
6 for n ≥ n(5).

Error event E4 The averaged probability for the error event E4 is bounded from above byE{Pr[E4]} ≤
∑

qn1∈Q
n1

p(qn1)Pr[E4,1]Pr[E4,2]2⌈αnRQ⌉

Here E4,1 is the event that for two sequences x
n1

1 , ŷ
n1

R
drawn independently of each other given qn1

we have (x
n1

1 , ŷ
n1

R
) ∈ T (αn)

ǫ3
(X1, ŶR|q

n1). x
n1

1 and ŷ
n1

R
are drawn at random according to p(x

n1

1 |q
n1) and

p(ŷn1
R
|qαn) respectively to capture the averaging over the random codebooks. E4,2 is the event that

for two sequences x
n2

R
, y

n2

1 drawn independently of each other we have (x
n2

R
, y

n2

1 ) ∈ T (n2)
ǫ2

(XR, Y1).

The factor 2⌈αnRQ⌉ accounts for the fact that we can use a union bound and the error occurs if at

least one j , i is found fulfilling the requirements.

For sufficiently large n, we have

Pr[E4,1] =
∑

(x
n1
1 ,ŷ

n1
R

)∈X
n1
1 ×Y

n1
R

p(x
n1

1 |q
n1)p(ŷn1

R
|qn1)χ

T
(n1)
ǫ3

(X1,ŶR|q
n1 )

(x
n1

1 , ŷ
n1

R
)

≤ |T (n1)
ǫ3

(X1, ŶR|q
n1)|2−n1(H(X1|Q)−2ǫ3)2−n1(H(ŶR|Q)−2ǫ3)

due to the properties of the typical set. Furthermore, it follows from these properties that for

sufficiently large n

|T (n1)
ǫ3

(X1, ŶR|q
n1)| ≤ 2n1(H(X1,ŶR |Q)+2ǫ3).

Pr[E4,2] can be bounded in a similar way. As a consequence there exists n(4,1) such that the

above bounds for Pr[E4,1], Pr[E4,2] hold for all n > n(4,1). Therefore we have for n > n4,1E{Pr[E4]} ≤
∑

qn1∈Q
n1

p(qn1)2−n1(I(X1;ŶR |Q)−6ǫ3)2−n2(I(XR;Y1)−6ǫ2)2αnRQ+1

≤ 2−n(α(I(X1;ŶR |Q)−RQ−6ǫ3)+β(I(XR;Y1)−6ǫ2))+1+I(X1;ŶR |Q)+6ǫ2

= 2−n(α(I(X1;ŶR |Q)−I(YR;ŶR |Q))+βI(XR;Y1)−ǫ̃)+1+I(X1;ŶR |Q)+6ǫ2

with

ǫ̃ = αǫq + β6ǫ2 + α6ǫ3.
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This term goes to zero if

α
(

I(X1; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Y1) − ǫ̃ =

βI(XR; Y1) − α
(

H(ŶR|X1,Q) − H(ŶR|YR)
)

− ǫ̃ > 0.

Now

βI(XR; Y1) − α
(

H(ŶR|X1,Q) − H(ŶR|YR)
)

> 0

because of the constraints fulfilled by assumption, and

ǫ̃ < βI(XR; Y1) − α
(

H(ŶR|X1,Q) − H(ŶR |YR)
)

due to the choice of the parameters ǫq, ǫ2, and ǫ3. Therefore for any given ǫ we can find n(4) >

n(4,1) such that for E{Pr[E4]} < ǫ
6 for n ≥ n(4).

Error event E5 The averaged probability for the error event E5 is bounded from above byE{Pr[E5]} ≤
1

|W|

∑

(w1 ,w2)∈W

∑

C(n)

p
(

C(n)
)
∑

y
n1
R
∈Y

n1
R

p
(

y
n1
R
|xn1

1 (w1), x
n1

2 (w2)
)

× χ
T

(n1)
ǫ1

(YR,ŶR|q
n1 )

(

y
n1

R
, f (yn1

R
)
)

χC

T
(n1)
ǫ4

(X1,X2,ŶR|q
n1 )

(

x
n1

1 (w1), x
n1

2 (w2), f (yn1

R
)
)

.

In this formula f : Yn1

R
→ C

(n)
ŷR

(qn1) is the mapping induced by the relay when choosing i upon

receiving y
n1
R

. We use f (yn1
R

) here instead of ŷ
n1
R

(i) as all randomness needed for this calculation of

the probability of the event E5 is induced by the channel via y
n1

R
and the random coding, which

determines the mapping f (·). Furthermore, by restricting the sum via the indicator function

on the set T (n1)
ǫ1

(YR, ŶR|q
n1) we assume that the coding mechanism at the relay found a typical

sequence ŷ
n1

R
(i).

We can rewrite the upper bound asE{Pr[E5]} ≤
∑

x
n1
1 ∈X

n1
1

∑

x
n1
2 ∈X

n1
2

∑

qn1∈Q
n1

∑

C
(n)
ŷR

(qn1 )

∑

y
n1
R
∈Y

n1
R

p
(

C
(n)
ŷR

(qn1)
)

p
(

qn1 , x
n1

1 , x
n1

2 , y
n1
R

)

× χ
T

(n1)
ǫ1

(YR,ŶR|q
n1 )

(

y
n1

R
, f (yn1

R
)
)

χC

T
(n1)
ǫ4

(X1,X2,ŶR|q
n1 )

(

x
n1

1 (w1), x
n1

2 (w2), f (yn1

R
)
)

=
∑

qn1∈Q
n1

∑

C
(n)
ŷR

(qn1 )

∑

y
n1
R
∈Y

n1
R

p
(

y
n1

R
, qn1
)

p
(

C
(n)
ŷR

(qn1)
)

χ
T

(n1)
ǫ1

(YR,ŶR|q
n1 )

(

y
n1

R
, f (yn1

R
)
)

∑

(x
n1
1 ,x

n1
2 )∈X

n1
1 ×X

n1
2

p(x
n1

1 , x
n1

2 |y
n1

R
, qn1)χC

T
(n1)
ǫ4

(X1,X2,ŶR|q
n1 )

(

x
n1

1 (w1), x
n1

2 (w2), f (yn1

R
)
)

,

where C(n)
ŷR

(qn1) is the part of the codebook containing ŷ
n1
R

(i), i ∈
{

1, 2, . . . , 2⌈αnRQ⌉
}

and there-

fore defines the mapping f (yn1

R
). The last sum is the probability that for a given y

n1

R
, qn1 and
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for (x
n1

1 , x
n1

2 ) drawn according to p(x
n1

1 , x
n1

2 |y
n1

R
, qn1) the triple x

n1

1 , x
n1

2 , f (yn1

R
) is not jointly typi-

cal, i.e.
(

x
n1

1 , x
n1

2 , f (yn1

R
)
)

< T
(n1)
ǫ4

(X1, X2, ŶR|q
n1). Now,

(

y
n1

R
, f (yn1

R
)
)

∈ T
(n1)
ǫ1

(YR, ŶR|q
n1) implies

(

y
n1
R
, f (yn1

R
), qn1

)

∈ T
(n1)
ǫ1 (YR, ŶR,Q). Furthermore for any

(

y
n1
R
, f (yn1

R
), qn1

)

∈ T
(n1)
ǫ1 (YR, ŶR,Q) and

for (x
n1

1 , x
n1

2 ) drawn according to p(x
n1

1 , x
n1

2 |y
n1

R
, qn1) we have by the properties of the typical set

that

Pr
[

(x
n1

1 , x
n1

2 ) ∈ T (n1)
ǫ1

(

X1, X2|y
n1

R
, f (yn1

R
), qn1
)

|yn1

R
, f (yn1

R
), qn1
]

can be made arbitrarily close to 1 by choosing n large. Here we used the fact that (x
n1

1 , x
n1

2 ) are

independent of ŷ
n1
R

given y
n1
R

and qn1 .

Furthermore,
(

x
n1

1 , x
n1

2

)

∈ T
(n1)
ǫ1 (X1, X2|y

n1

R
, f (yn1

R
), qn1) implies that we have

(

x
n1

1 , x
n1

2 , y
n1

R
, f (yn1

R
),

qn1

)

∈ T
(n1)
ǫ1 (X1, X2, YR, ŶR,Q) and therefore

(

x
n1

1 , x
n1

2 , f (yn1

R
)
)

∈ T
(n1)
ǫ1 (X1, X2, ŶR|q

n1). Now, as we

choose ǫ1 = ǫ4 we can conclude that E{Pr[E5,1]} can be made arbitrarily small by choosing n

large. In particular for a given ǫ > 0 we can find n(5) such that E{Pr[E5]} < ǫ

6
for all n > n(5).

Error event E6 The probability of this event can be bounded from above byE{Pr[E6]} ≤
1

|W|

∑

(w1 ,w2)∈W

∑

ŵ2∈W2
ŵ2,w2

∑

C(n)

p
(

C(n)
)
∑

y
n1
R
∈Y

n1
R

p
(

y
n1

R
|xn1

1 (w1), x
n1

2 (w2)
)

× χ
T

(n1)
ǫ1

(YR,ŶR|q
n1 )

(

y
n1
R
, f (yn1

R
)
)

χ
T

(n1)
ǫ4

(X1,X2,ŶR|q
n1 )

(

x
n1

1 (w1), x
n1

2 (ŵ2), f (yn1
R

)
)

where f : Yn1

R
→ C

(n)
ŷR

(qn1) is the mapping induced by the relay when choosing i upon receiving

y
n1

R
. This can be bounded from above asE{Pr[E6]} ≤

∑

qn1∈Q
n1

∑

x
n1
1 ∈X

n1
1

∑

x
n1
2 ∈X

n1
2

∑

ŷ
n1
R
∈Ŷ

n1
R

∑

y
n1
R
∈Y

n1
R

2nR22⌈αnRQ⌉p(qn1 , x
n1

1 , x
n1

2 )

× p(yn1

R
|xn1

1 )p(ŷn1

R
|qn1)χ

T
(n1)
ǫ4

(X1,X2,ŶR|q
n1 )

(x
n1

1 , x
n1

2 , ŷ
n1

R
)χ
T

(n1)
ǫ1

(YR,ŶR|q
n1 )

(yn1

R
, ŷ

n1

R
).

For (yn1

R
, ŷ

n1

R
) ∈ T (n1)

ǫ1 (YR, ŶR|q
n1) and for n sufficiently large we have

p(ŷn1

R
|yn1

R
, qn1) =

p(ŷn1

R
, y

n1

R
|qn1)

p(yn1
R
|qn1)

≥ p(ŷn1

R
|qn1)

2−n1(H(YR,ŶR|Q)+2ǫ1)

2−n1(H(Y
R
|Q)−2ǫ1)2−n1(H(ŶR|Q)−2ǫ1)

= p(ŷn1

R
|qn1)2n1(I(YR;ŶR |Q)−6ǫ1).
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Therefore we haveE{Pr[E6]} ≤ 2αn(ǫq+6ǫ1)+1+I(YR ;ŶR |Q)2nR2

∑

qn1∈Q
n1

∑

x
n1
1 ∈X

n1
1

∑

x
n1
2 ∈X

n1
2

∑

ŷ
n1
R
∈Ŷ

n1
R

∑

y
n1
R
∈Y

n1
R

p(qn1 , x
n1

1 , x
n1

2 )

× p(yn1

R
|x

n1

1 )p(ŷn1

R
|y

n1

R
)χ
T

(n1)
ǫ4

(X1,X2,ŶR|q
n1 )

(x
n1

1 , x
n1

2 , ŷ
n1

R
)χ
T

(n1)
ǫ1

(YR,ŶR|q
n1 )

(yn1

R
, ŷ

n1

R
).

The sum in this upper bound can be seen to be the probability that for sequences x
n1

1 , x
n1

2 , y
n1

R
,

ŷ
n1

R
, qn1 drawn according to the distributions p(qn1), p(yn1

R
, ŷ

n1

R
, x

n1

1 |q
n1) and p(x

n1

2 |q
n1) we have

that (yn1

R
, ŷ

n1

R
) ∈ T (n1)

ǫ1
(YR, ŶR|q

n1) while at the same time (x
n1

1 , x
n1

2 , ŷ
n1

R
) ∈ T (n1)

ǫ4
(X1, X2, ŶR|q

n1). It

follows thatE{Pr[E6]} ≤ 2αn(ǫq+6ǫ1)+1+I(YR ;ŶR |Q)2nR2

∑

qn1∈Q
n1

∑

x
n1
1 ∈X

n1
1

∑

x
n1
2 ∈X

n1
2

∑

ŷ
n1
R
∈Ŷ

n1
R

p(qn1)p(ŷn1
R
, x

n1

1 |q
n1)p(x

n1

2 |q
n1)

× χ
T

(n1)
ǫ4

(X1,X2,ŶR|q
n1 )

(x
n1

1 , x
n1

2 , ŷ
n1

R
).

For sufficiently large n this can be bounded from above byE{Pr[E6]} ≤ 2αn(ǫq+6ǫ1)+1+I(YR ;ŶR |Q)2nR2

∑

qn1∈Q
n1

p(qn1)2−n1(I(X2;ŶR |X1,Q)−6ǫ4)

≤ 2n(R2−αI(X2;ŶR |X1,Q))2αn(ǫq+6ǫ1+6ǫ4)+1+I(YR ;ŶR |Q)+I(X2;ŶR |X1,Q)

≤ 2n(R2−α(I(X2;ŶR |X1,Q)+3ǫq))+1+I(YR;ŶR |Q)+I(X2;ŶR |X1,Q)

using the properties of the typical set.

By assumption R2 < αI(X2; ŶR|X1,Q) and we choose ǫq <
I(X2;ŶR |X1,Q)−

R2
α

3
. Therefore the

probability of this event can be made arbitrarily small for n large. In particular for a given

ǫ > 0 we can find n(6) such that for all n > n(6) we have E{Pr[E6]} < ǫ

6
and such that n >

n(6) is sufficiently large to ensure the inequalities used in this part of the proof. Therefore the

probability of error for the sixth error event can be bounded by E{Pr[E6]} < ǫ
6 for n ≥ n(6).

3.1.2.6 The Case R2 = I(X2; ŶR|X1,Q) = 0

The case I(X2; ŶR|X1,Q) = 0 needs a special treatment as it is not captured by the above ar-

guments which assume strict inequality in (3.1). In this case we can simply set the number of

messages M2 = 1 and the error probability of the receiver 1 is 0 by definition. In the calculation

of the error probability of receiver 2 neither R2 nor I(X2; ŶR|X1,Q) appear but in the definition of

ǫq. In this case the definition can be changed by removing the requirement ǫq <
I(X2;ŶR |X1,Q)−

R2
α

3 as

this requirement is only needed to ensure the low error probability of receiver 1 and is therefore

not necessary for this case. The changed code and the above steps of the proof for receiver 2

yield a sequence of
(

M
(n)
1 , M

(n)
2 , n1, n2

)

-codes. This sequence of codes has the property, that its



3.1. A Compress-and-Forward Coding Theorem 81

probability of error goes to zero and the rate of the codes goes to [R1,R2] as n→ ∞ given

R1 < αI(X1; ŶR|X2,Q)

R2 = αI(X2; ŶR|X1,Q) = 0

and

α
(

H(ŶR|X1,Q) − H(ŶR|YR)
)

< βI(Y1; XR|Q)

α
(

H(ŶR|X2,Q) − H(ŶR|YR)
)

< βI(Y2; XR|Q)

for the probability distributions p(q)p(x1|q)p(x2|q)p1(yR|x1, x2)p(ŷR|yR), p(xR|q)p2(y1, y2|xR) and

some α, β > 0 with α + β = 1.

Analogous arguments apply for R1 = I(X1; ŶR|X2,Q) = 0. The achievability of [R1,R2] =

[0, 0] is obvious from the definition.

3.1.2.7 The Achievable Set is Closed

The above proves that any [R1,R2] with

R1 < αI(X1; ŶR|X2,Q)

R2 < αI(X2; ŶR|X1,Q)

is achievable as long as the constraints (3.2) are fulfilled. Left is the proof that the achievable

rate region is closed. This follows from the definition of achievability: Given a rate pair [R1,R2]

with R1 > 0, R2 > 0 on the boundary of R1, then for any rate pair [R1 −
ǫ

m
,R2 −

ǫ

m
], ǫ > 0,

m ∈ N there exists a sequence of
(

2⌊n(R1−
ǫ
m

)⌋, 2⌊n(R2−
ǫ
m

)⌋, n1, n2

)

-codes such that µ(n)
1 , µ

(n)
2 → 0 as

n → ∞. Therefore for any m there exists n0(m) such that µ(n)
k
< 1

m
, k ∈ {1, 2} for n > n0(m).

Let m(n) = max{m : n > n0(m)}. Because µ(n)
k
→ 0 as n → ∞ we have m(n) → ∞. So we

can construct a sequence of
(

2⌊n(R1−
ǫ

m(n) )⌋
, 2⌊n(R2−

ǫ

m(n) )⌋
, n1, n2

)

-codes with 1
n
⌊n(R1 −

ǫ

m(n) )⌋ → R1,
1
n
⌊n(R2 −

ǫ

m(n) )⌋ → R2, µ(n)
k

< 1
m
→ 0, i ∈ {1, 2} as n → ∞. Therefore by the definition of

achievability the rate pair [R1,R2] is achievable. An analogous argument applies for rate pairs

on the boundary where one of the rates is 0. It follows that the set of achievable rates is closed.

This completes the proof. �

3.1.3 Boundary effects: Rate Region for the One-Way Case

The treatment of the case R2 = I(X2; ŶR|X1,Q) = 0 at the end of the proof shows that the

calculation of the error probability for the two receivers separates, even though the coding does

not. In the proof above we changed only the allowed range of ǫq in the code such that the

claimed region is achievable. But in fact we can choose ǫq even more freely in the case that

one of the rates is 0. Furthermore the constraint in (3.2) corresponding to the user which has
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no message to transmit is not needed anymore. Doing so yields a region which is similar to

the region of the one-way compress-and-forward relay channel, but with half-duplex nodes and

without a direct channel. Furthermore the node which does not need to convey any information

now helps the transmission of the other node.

Corollary 3.2. An achievable rate region for the two-phase two-way relay channel using a

compress-and-forward protocol is the set R2 ⊂ R2
+ of all rate pairs [0,R2] satisfying

R2 ≤ αI(X2; ŶR|X1,Q)

under the constraint

α
(

H(ŶR|X1,Q) − H(ŶR|YR)
)

< βI(Y1; XR)

and similarly the set R3 ⊂ R2
+ of all rate pairs [R1, 0] which satisfy

R1 ≤ αI(X1; ŶR|X2,Q)

under the constraint

α
(

H(ŶR|X2,Q) − H(ŶR|YR)
)

< βI(Y2; XR)

for some joint probability distributions p(q) p(x1|q) p(x2|q) p1(yR|x1, x2) p(ŷR|yR) and p(xR)

p2(y1, y2|xR) and some α, β > 0 with α + β = 1.

Proof. The rate pairs claimed in the corollary where one of the rates is set to 0 follow directly

from the proof of Theorem 3.1 by observing, that the terminal with rate 0 does not need to

transmit any information. Therefore, its only purpose is to help the transmission of the other

terminal. For the following treatment we assume R1 = 0. The proof for R2 = 0 is analogous.

From the proof of Theorem 3.1 it follows immediately, that — as by the simple decoder ∀k ∈

W2, y
n2

1 ∈ Y
n2

1 g1(yn2

1 , k) = 1, we have µ(n)
1 = 0 — we do only need to restrict ǫq in the code

by ǫq ∈ (0,min{ǫ(1)
q , ǫ

(3)
q }). Furthermore, for the same reason there is no need for the constraint

α(H(ŶR|X2,Q) − H(ŶR|YR)) < βI(Y2; XR). �

Now we can join the three regions to a new achievable rate region by convex combination

of rate pairs from the three regions.

Corollary 3.3. An achievable rate region for the two-phase two-way relay channel using a

compress-and-forward protocol is the set RCF ⊂ R2
+ given by the convex hull of R1 ∪ R2 ∪ R3.

Remark 3.6 (Timesharing of codes). The code construction in Theorem 3.1 and Corollary

3.2 is very similar. It seems, that one could include the convex hull operation in some time

sharing variable. But in fact we already use a timesharing variable in Theorem 3.1, which is

explicitly not used to timeshare between codebooks, as this would lead to more constraints

compared to the stated region. In contrast to these arguments, additional constraints are now
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accepted, with the benefit that for the corresponding sub-codebooks yielding the new constraints

a less restricted set of probability distributions is allowed. The decoding of the resulting code

can be seen as decoding up to three codes interleaved with each other separately, each having

its own constraints. The additional timesharing over different codes could be captured by an

additional timesharing variable, but this would lead to much more complicated expressions to

cope with the constraints active in the different timesharing phases: The code resulting from

the timesharing operation can be interpreted as using up to three heavily constraint dependent

random variables Ŷ
(1)
R

, Ŷ
(2)
R

, and Ŷ
(1,2)
R

for the quantized representation of the MAC output. Ŷ
(1)
R

is transmitted only to receiver 1, Ŷ
(2)
R

is transmitted only to receiver 2, and Ŷ
(1,2)
R

is transmitted

to both the receivers; the BC transmission is performed separately for these three variables.

As these assumptions are rather restrictive, this leads to the conjecture that a more general

approach with more than one variable ŶR could lead to a larger region for some channels. For

the general case of such a setup, the BC phase becomes much more difficult. As the three

variables all depend on the MAC output and to facilitate the side-information in the BC, the

variables will be correlated. The resulting coding problem is similar to the problem of trans-

mitting correlated data over a BC where the receivers have some correlated side-information.

Without side-information the problem of transmitting correlated data over a BC is treated by

Han et al. [63], giving an achievable rate region. To the best of our knowledge, the problem was

not yet considered with additional correlated side information at the receiver. Chapter 5 focuses

on extending the rate region by using approaches as the one discussed in this remark.

3.1.4 A Note on Coding Mechanisms

In contrast to the encoding for the decode-and-forward system, the relay now has no knowledge

about any of the two messages. Therefore the code used at the relay to encode the data has no

Cartesian structure. This is displayed in Figure 3.1

Still, the known messages can be used to restrict the number of codewords for the receiver.

As the MAC output depends on the transmitted message, so does the quantized representative of

the MAC output. Therefore the message rules out some of the indices i that will not occur if this

message was transmitted. As a consequence, each message — say w1 — determines a sub-code

C(w1) of the relay’s code, which is the effective code used in the decoding for receiver 1. This

sub-code consists of less then 2βnI(XR;Y1) codewords and therefore can be decoded at the terminal

node. Note, that different sub-codes C(w1) and C(ŵ1) need not be disjoint. Furthermore, the

two codes C(w1) and C(w2) for a message pair (w1,w2) may have more then one codeword in

common. This is a consequence of the missing Cartesian structure. As a consequence of the

fact that the relay cannot decode it follows that the same codeword could be sent by the relay

for the messages pairs (w1,w2) and (ŵ1, ŵ2) as long as ŵ1 , w1 and ŵ2 , w2. If this were not

true for all message pairs, the relay would be able to decode. At the receivers, the different

known messages will change the effective code used in the decoding. Therefore the result of
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C(w1)

C(w2)

Figure 3.1: Coding mechanisms in the BC phase: The relay’s code has no Cartesian structure
in the compress-and-forward system. The transmitted codeword for the quantization index i is
indicated by •. Both receivers use a sub-code of the relay’s code for the decoding. These sub-
codes depend on the messages w1 and w2 known at the receivers. In the figure the sub-codes
for the some possible pair of side information are marked with vertical and horizontal lines.
The transmitted codeword belongs to the sub-codes of both the messages. Note, that the same
codeword could be send by the relay for messages ŵ1 , w1 and ŵ2 , w2. In this case both the
effective codes used by the receivers will be different and therefore the decoding will result in a
different decoded message even though the sent codeword is the same.

the decoding will be different, even though the transmitted codeword is the same in both cases.

The restriction of the relay’s code to the sub-code C(w1) stems from the stochastic depen-

dency of the MAC output from the transmitted codeword x
n1

1 (w1): Only a subset of the possible

MAC outputs in Yn1

R
is jointly typical with the transmitted codeword x

n1

1 (w1). As the mapping

f (·) used at the relay for the compression is fixed, only a subset of the 2⌈αnRQ⌉ quantized MAC

outputs in C(n)
ŷR

(qn1) will occur at the relay. This subset in turn corresponds to a subset of code-

words x
n2

R
which form the effective code C(w1) for the receiver 1 in the BC phase. As the subsets

are determined solely by the known message and the statistical properties of the channels, the

codes corresponding to the different side information can be calculated offline. This reduces the

complexity for the decoding at the terminal nodes.

For a practical code design one needs to control the statistical dependency of the MAC

and the quantization at the relay, i.e. one has to control the subset of indices i that can occur

in the quantization if w1 is transmitted. The corresponding codewords x
n2

R
(i) should form a

good code for the channel p(y1|xR). This needs to be true in average for all messages w1.

Furthermore, in average an analogous requirement needs to be fulfilled for all messages w2 and

the channel p(y2|xR). A simple but potentially suboptimal code design could consider the BC

code independent of the quantization. In this case the BC code should have the property that

every subset of size 2βnI(XR;Y1) needs to be a good code for the channel to receiver 1, while every

subset of the relay’s code of size 2βnI(XR;Y2) needs to be a good code for the channel to receiver 2.

Furthermore, the quantization has to ensure that for each w1 (and w2 respectively) one of at most

2βnI(XR;Y1) (and 2βnI(XR;Y2) respectively) quantization indices will occur with high probability.
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3.2 Bounding Auxiliary Variables

We can bound the required cardinality of Q and Ŷ in Theorem 3.1 by using the Fenchel-Bunts

extension of Caratheodorys theorem [62], which says:

Theorem 3.4 (Fenchel-Bunts extension of Caratheodorys theorem [62]). IfS ⊂ Rn has no more

than n connected components (in particular, if S is connected), then any x ∈ ConvexHull(S)

can be expressed as a convex combination of n elements of S.

We can make use of this theorem by interpreting the auxiliary variables as factors in a

convex combination in an appropriate defined space. For the variable Q this can be done in a

simple way by interpreting the constraints (3.2) as two coordinates in a four dimensional space

— in addition to the two rates (3.1). For the variable Ŷ we need a slightly less intuitive space,

such that implicit constraints due to the mixed appearance of conditioned and non-conditioned

probability distributions in the formulas are fulfilled by the result of the convex combination.

This is done along the lines of the bounding of the auxiliary variables in many information

theoretical results. An example can be found in the appendix of [33].

3.2.1 The Cardinality of Q in Theorem 3.1

We start by bounding the required cardinality of Q. The achievable rate region R1 can be

rewritten as the set of all rate pairs [R1,R2] satisfying

R1 ≤ α
∑

q∈Q

p(q)I(X1; ŶR|X2,Q = q)

R2 ≤ α
∑

q∈Q

p(q)I(X2; ŶR|X1,Q = q)
(3.4)

with the constraint

0 <
∑

q∈Q

p(q)
(

βI(Y1; XR|Q = q) − α
(

H(ŶR|X1,Q = q) − H(ŶR|YR,Q = q)
))

0 <
∑

q∈Q

p(q)
(

βI(Y2; XR|Q = q) − α
(

H(ŶR|X2,Q = q) − H(ŶR|YR,Q = q)
)) (3.5)

for some α, β > 0 with α + β = 1 and some joint probability distributions p(q)p(x1|q)p(x2|q)

p1(yR|x1, x2)p(ŷR|yR) and p(xR)p2(y1, y2|xR). It is save to add Q as a condition to all terms in

(3.5) due to the constraints on the probability distribution; this additional conditioning will not

change the value of the entropy and mutual information expressions. The above formulation

gives rise to an interpretation as a convex combination in a four dimensional space.
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Define for given channels p1(yR|x1, x2), p2(y1, y2|xR) and variables α and β

S =
⋃

p(x1)p(x2)p(ŷR |yR)p(xR)

{

[

δ1(p), δ2(p), δ3(p), δ4(p)
]

|p = p(x1)p(x2)p1(yR|x1, x2)p(ŷR|yR)p(xR)p2(y1, y2|xR)
}

,

where the union is over the compact set of all possible p(x1)p(x2)p(ŷR|yR)p(xR) and where

δ1(p) = I(X1; ŶR|X2)

δ2(p) = I(X2; ŶR|X1)

δ3(p) = βI(Y1; XR) − α
(

H(ŶR |X1) − H(ŶR|YR)
)

δ4(p) = βI(Y2; XR) − α
(

H(ŶR |X2) − H(ŶR|YR)
)

.

Furthermore let C = ConvexHull(S) and let C̄ = {[δ1, δ2, δ3, δ4] ∈ C : δ3 > 0, δ4 > 0}.

Now, the achievable rate region can be stated as

R1 =
{

[R1,R2] ∈ R2
+ : ∃[δ1, δ2, δ3, δ4] ∈ C̄ with δ1 ≥ R1, δ2 ≥ R2

}

.

The set S is connected, as it is the continuous image of a continuous compact set. Therefore

all points in C can be expressed as a convex combination of at most dim{S} = 4 elements of

S. Furthermore, as C̄ ⊂ C all points in C̄ can be expressed as a convex combination of at most

dim{S} = 4 elements of S. Therefore we can bound the required cardinality of Q from above by

4 by noting that the weighted sums in (3.4) and (3.5) can be interpreted as a convex combination

of |Q| elements of S.

Applying the above arguments to Corollary 3.2 it follows immediately, that in this case a

cardinality |Q| ≤ 2 is sufficient to achieve all points in any of the two regions R2 and R3.

3.2.2 The Cardinality of Ŷ in Theorem 3.1

The achievable rate region R1 can be rewritten as the set of all rate pairs [R1,R2] satisfying

R1 ≤ α
∑

ŷR∈ŶR

p(ŷR)
(

H(X1|X2,Q) − H(X1|X2,Q, ŶR = ŷR)
)

R2 ≤ α
∑

ŷR∈ŶR

p(ŷR)
(

H(X2|X1,Q) − H(X2|X1,Q, ŶR = ŷR)
) (3.6)

with

0 <
∑

ŷR∈ŶR

p(ŷR)
(

βI(Y1; XR|Q) − α
(

H(YR|X1,Q) − H(YR|X1,Q, ŶR = ŷR)
))

0 <
∑

ŷR∈ŶR

p(ŷR)
(

βI(Y2; XR|Q) − α
(

H(YR|X2,Q) − H(YR|X2,Q, ŶR = ŷR)
)) (3.7)
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for some α, β > 0 with α+ β = 1 and for some joint probability distributions p(q)p(x1|q)p(x2|q)

p1(yR|x1, x2)p(ŷR|yR) and p(xR)p2(y1, y2|xR).

Note that this is not a simple convex combination in a four dimensional space. In contrast

to the bounding of the cardinality of Q we cannot add ŶR as a further condition to the other

entropy expressions without changing their values. Therefore in this case, we have to cope with

the problem of marginal versus conditioned probability distributions, i.e. we need to ensure that

∑

ŷR∈ŶR

p(ŷR)p(yR|ŷR) = p(yR). (3.8)

This condition is sufficient, because all other random variables are independent of ŶR given Y .

For the following derivation we need an auxiliary probability vector, to build up a space,

such that the convex combination works as needed. This auxiliary probability vector plays the

role of a wild card for the probability distribution conditioned on ŷR, i.e. a wild card for p(yR|ŷR).

Furthermore the auxiliary probability vector adds some dimensions to the space, in which the

convex combination takes place, as by doing so we can ensure that the marginal distribution fits

to the conditioned distribution, i.e. (3.8) is fulfilled.

We start with the needed definition and specify the notation:

Definition 3.1. For n ∈ N, let ∆n be the simplex of probability n-vectors.

Now, let s1 ∈ ∆|YR | be a wild card distribution for p(YR|ŶR = ŷR). We address the elements

of the probability vector by a (·)-notation, i.e. s1(i) is the ith element in s1.

For given channels p1(yR|x1, x2), p2(y1, y2|xR) and fixed p = p(q)p(x1|q)p(x2|q)p(xR) let the

set S(p) be given by

S(p) =
⋃

s1∈∆|YR |

{[δ1, δ2, δ3, δ4, s1]}

where the union is over all s1 ∈ ∆|YR | and we have

δ1 = α

(

H(X1|X2,Q) +
∑

i,x1 ,x2 ,q

s1(i)p(x1, x2, q|YR = i)

×
(

log
(
∑

j

s1( j)p(x2, q|YR = j)
)

− log
(
∑

j

s1( j)p(x1, x2, q|YR = j)
))

)

δ2 = α

(

H(X2|X1,Q) +
∑

i,x1 ,x2 ,q

s1(i)p(x1, x2, q|YR = i)

×
(

log
(
∑

j

s1( j)p(x1, q|YR = j)
)

− log
(
∑

j

s1( j)p(x1, x2, q|YR = j)
))

)
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δ3 = βI(Y1; XR) − α
(

H(YR |X1,Q) −
∑

i,x1 ,q

s1(i)p(x1, q|YR = i)

×
(

log
(
∑

j

s1( j)p(x1, q|YR = j)
)

− log
(

s1(i)p(x1, q|YR = i)
))

)

δ4 = βI(Y2; XR) − α
(

H(YR |X1,Q) −
∑

i,x1 ,q

s1(i)p(x2, q|YR = i)

×
(

log
(
∑

j

s1( j)p(x2, q|YR = j)
)

− log
(

s1(i)p(x2, q|YR = i)
))

)

.

Here we use the common convention 0 log 0 = 0 justified by continuity since x log x → 0 as

x→ 0.

Now, let C(p) = ConvexHull(S(p)). Furthermore let

C̄(p) = {[δ1, δ2, δ3, δ4, s1] ∈ C(p) : δ3 > 0, δ4 > 0,∀i s1(i) = p(YR = i)}.

Now, the achievable rate region can be stated as

R1 =
⋃

p

{[R1,R2] : ∃[δ1, δ2, δ3, δ4, s1] ∈ C̄(p) with δ1 ≥ R1, δ2 ≥ R2}.

The set S(p) is connected, as it is the continuous image of the continuous compact set ∆|YR |.

Therefore all points in C(p) can be expressed as a convex combination of at most dim{S(p)} =

|YR| + 3 elements of S(p). As C̄(p) ⊂ C(p) all points in C̄(p) can be expressed as a convex

combination of at most dim{S(p)} = |YR| + 3 elements of S(p). Therefore all points in the

achievable rate region can be achieved with |ŶR| ≤ |YR| + 3.

Applying the above arguments to Corollary 3.2 it follows immediately, that in this case a

cardinality |ŶR| ≤ |YR|+1 is sufficient to achieve all points in any of the two regions R2 and R3.

3.3 A Partial-Decode-and-Forward Coding Theorem

3.3.1 Coding Theorem

The region RCF of Corollary 3.3 and the region RDF stated in Theorem 2.4 might be different as

shown in Example 3.1. Furthermore, neither the region RCF need to be a superset of RDF nor

need this be true the other way around. In this section we prove an extended region, that contains

both these regions as special cases as well as the convex combination of both of them. In the

achievability proof we use a superposition code following the lines of [16]: The relay partially

decodes the message and transmits the decoded messages to the receivers using a technique

similar to the one used in the proof of Theorem 2.2. The missing information needed to decode
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the complete message is relayed to the receivers by a compress-and-forward mechanism similar

to the one used in the proof of Theorem 3.1.

Theorem 3.5. An achievable rate region for the two-phase two-way relay channel using a partial

decode-and-forward protocol is the set R4 ⊂ R2
+ of all rate pairs [R1,R2] such that there exist

R
(1)
1 ,R

(1)
2 ,R

(2)
1 ,R

(2)
2 ≥ 0 with R

(1)
1 + R

(2)
1 = R1, R

(1)
2 + R

(2)
2 = R2 satisfying

R
(1)
1 ≤ min{αI(U1; YR|U2,Q), βI(V; Y2)}

R
(1)
2 ≤ min{αI(U2; YR|U1,Q), βI(V; Y1)}

R
(1)
1 + R

(1)
2 ≤ αI(U1U2; YR|Q)

R
(2)
1 ≤ αI(X1; ŶR|X2,U1)

R
(2)
2 ≤ αI(X2; ŶR|X1,U2)

(3.9)

under the constraints

α
(

H(ŶR|X1,U2) − H(ŶR|YR)
)

< βI(Y1; XR|V)

α
(

H(ŶR|X2,U1) − H(ŶR|YR)
)

< βI(Y2; XR|V)
(3.10)

for some α, β > 0 with α+ β = 1 and for some joint probability distributions p(q)p(u1|q)p(u2|q)

p(x1|u1)p(x2|u2)p1(yR|x1, x2)p(ŷR|yR) and p(v)p(xR|v)p2(y1, y2|xR).

Remark 3.7 (Cardinalities of random variables). To achieve any point in the stated region it is

sufficient to consider only random variables Q, U1, U2, V , and ŶR with cardinalities restricted

to |Q| ≤ 7, |U1| ≤ |X1||Q| + 3, |U2| ≤ |X2||Q| + 3,V ≤ |XR| + 1, and |ŶR| ≤ |YR| + 3. This can be

shown using the Fenchel-Bunt extension of Caratheodory’s theorem [62]. A proof of this claim

is given in the appendix.

Remark 3.8 (Relaxing the constraints for I(Yk; XR|V) = 0). We have H(ŶR|X1,U2)−H(ŶR |YR) =

I(YR, ŶR|X1,U2) due to the Markov chain constraint. Furthermore we have βI(Y1; XR|V) >

αI(YR, ŶR|X1,U2) ≥ αI(X2; ŶR|X1,U2) ≥ R
(2)
2 . As in the proof of the theorem the calculation

of the probability of error for the two receiver separates for the compress-and-forward part, this

leads to the conclusion, that in case of I(Y1; XR|V) = 0 the corresponding strict inequality in

(3.10) can be relaxed to a non-strict inequality. A similar argument will be used to strengthen

the above result in Corollary 3.6 below.

Remark 3.9 (Decode-and-forward and compress-and-forward as special cases). The result con-

tains the results stated in the Theorems 2.4 and 3.1 as special cases. The region RDF is obtained

by choosing |ŶR| = 1 U1 = X1, U2 = X2, and V = XR, and noting that in this case the strict

inequality constraints (3.10) can be relaxed; we obtain the region R1 by choosing U1 = U2 = Q

and |V| = 1.

Remark 3.10 (Interpretation of auxiliary variables). The idea behind the coding theorem is to

build a hybrid scheme superimposing both approaches, decode-and-forward and compress-and-
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forward as it was done in [16] for the classical relay channel. To get some meaning to the

variables and the rates in the theorem, one may consider R
(1)
1 ,R

(1)
2 as rates, which are achieved

by decoding at the relay. For this part of the coding scheme U1 and U2 play the role of the

channel input of a (virtual) MAC with p(yR|u1, u2), while V is the channel input of a (virtual)

BC with p(y1, y2|v), both induced by the real channels and the random coding. On the other hand

R
(2)
1 ,R

(2)
2 are rates, that are achieved by forwarding a compressed version of the channel output

at the relay. Since we may assume that we already decoded the decode-and-forward part of the

message, the compress-and-forward operations can use this information as side information at

the relay and at the receivers.

Remark 3.11 (Convexity of R4). The region R4 is convex. To see that it is convex for fixed

α and β note, that one can add Q as a condition to all entropy and mutual information terms

without changing the region. If we allow for different timesharing parameters α and β, then we

can use arguments analogous to that in Remark 2.11 to prove, that the region is convex.

3.3.2 Proof of the Coding Theorem

Proof. Suppose we have strict inequalities in (3.9) for the probability distributions3 p(q)p(u1|q)

p(u2|q)p(x1|u1)p(x2|u2)p1(yR|x1, x2)p(ŷR|yR), p(v)p(xR|v)p2(y1, y2|xR), some α, β > 0 with α +

β = 1, and a rate pair [R1,R2] with R
(1)
1 + R

(2)
1 = R1, R

(1)
2 + R

(2)
2 = R2. We will first show

how to construct a
(

M
(n)
1 , M

(n)
2 , n1, n2

)

-code for a fixed n such that for the sequence of these
(

M
(n)
1 , M

(n)
2 , n1, n2

)

-codes the probability of error goes to zero and the rate of the codes goes to

[R1,R2] as n → ∞. Let M
(n)
1 = 2⌊nR

(1)
1 ⌋+⌊nR

(2)
1 ⌋ and M

(n)
2 = 2⌊nR

(1)
2 ⌋+⌊nR

(2)
2 ⌋ with R1 = R

(1)
1 + R

(2)
1 ,

R2 = R
(1)
2 + R

(2)
2 .

3.3.2.1 Random Codebook Generation:

For a given n set n1 = ⌊αn⌋, n2 = ⌈βn⌉.

• Label the messages w1 ∈ {1, 2, . . . , 2⌊nR
(1)
1 ⌋+⌊nR

(2)
1 ⌋} as w1(w(1)

1 ,w
(2)
1 ), w

(1)
1 ∈ {1, 2, . . . , 2

⌊nR
(1)
1 ⌋},

w
(2)
1 ∈ {1, 2, . . . , 2

⌊nR
(2)
1 ⌋}.

• Label the messages w2 ∈ {1, 2, . . . , 2⌊nR
(1)
2 ⌋+⌊nR

(2)
2 ⌋} as w2(w(1)

2 ,w
(2)
2 ), w

(1)
2 ∈ {1, 2, . . . , 2

⌊nR
(1)
2 ⌋},

w
(2)
2 ∈ {1, 2, . . . , 2

⌊nR
(2)
2 ⌋}.

• Choose one qn1 drawn according to the probability
∏n1

s=1 p(qn1

(s)).

• Choose 2⌊nR
(1)
1 ⌋ i.i.d. codewords u

n1

1 each drawn according to the probability distribution
∏n1

s=1 p(un1

1,(s)|q(s)). Label these u
n1

1 (w(1)
1 ), w

(1)
1 ∈ {1, 2, . . . , 2

⌊nR
(1)
1 ⌋}.

• For each w
(1)
1 choose 2⌊nR

(2)
1 ⌋ i.i.d. codewords x

n1

1 each drawn according to the probability

distribution
∏n1

s=1 p(x
n1

1,(s)|u
n1

1,(s)(w
(1)
1 )). Label these x

n1

1 (w(2)
1 |w

(1)
1 ), w

(2)
1 ∈ {1, 2, . . . , 2

⌊nR
(2)
1 ⌋}.

3All probabilities in the proof will be calculated for these given distributions.
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• Choose 2⌊nR
(1)
2 ⌋ i.i.d. codewords u

n1

2 each drawn according to the probability distribution
∏n1

s=1 p(un1

2,(s)|q
n1

(s)). Label these u
n1

2 (w(1)
2 ), w

(1)
2 ∈ {1, 2, . . . , 2

⌊nR
(1)
2 ⌋}.

• For each w
(1)
2 choose 2⌊nR

(2)
2 ⌋ i.i.d. codewords x

n1

2 each drawn according to the probability

distribution
∏n1

s=1 p(x
n1

2,(s)|u
n1

2,(s)(w
(1)
2 )). Label these x

n1

2 (w(2)
2 |w

(1)
2 ), w

(2)
2 ∈ {1, 2, . . . , 2

⌊nR
(2)
2 ⌋}.

• Let ǫ(1)
q = 1

2α+β

(

βI(XR; Y1|V) − α
(

H(ŶR|X1,U2) − H(ŶR|YR)
))

, ǫ(2)
q = 1

2α+β

(

βI(XR; Y2|V) −

α
(

H(ŶR|X2,U1) − H(ŶR|YR)
))

, ǫ(3)
q =

I(X2;ŶR |X1,U2)−
R

(2)
2
α

3 , and ǫ(4)
q =

I(X1;ŶR |X2,U1)−
R

(2)
1
α

3 . Choose

ǫq ∈ (0,min{ǫ(1)
q , ǫ

(2)
q , ǫ

(3)
q , ǫ

(4)
q }).

• For each pair (un1

1 (w(1)
1 ), un1

2 (w(1)
2 )), w

(1)
1 ∈ {1, 2, . . . , 2

⌊nR
(1)
1 ⌋}, w

(1)
2 ∈ {1, 2, . . . , 2

⌊nR
(1)
2 ⌋}, draw

2⌈αnRQ⌉, RQ = I(YR; ŶR|U1,U2,Q) + ǫq i.i.d. codewords ŷR according to the probability

distribution
∏n1

s=1 p(ŷn1

R,(s)|u
n1

1,(s)(w
(1)
1 ), un1

2,(s)(w
(1)
2 )). Label these ŷ

n1

R
(i|w(1)

1 ,w
(1)
2 ), i ∈ {1, 2, . . . ,

2⌈αnRQ⌉}.

• Draw i.i.d. 2⌊nR
(1)
1 ⌋+⌊nR

(1)
2 ⌋ codewords vn2 according to

∏n2

s=1 p(vn2

(s)). Label these vn2(w(1)
1 ,w

(1)
2 ),

w
(1)
1 ∈ {1, 2, . . . , 2

⌊nR
(1)
1 ⌋}, w

(1)
2 ∈ {1, 2, . . . , 2

⌊nR
(1)
2 ⌋}.

• For each vn2(w(1)
1 ,w

(1)
2 ), w

(1)
1 ∈ {1, 2, . . . , 2⌊nR

(1)
1 ⌋}, w

(1)
2 ∈ {1, 2, . . . , 2⌊nR

(1)
2 ⌋}, draw 2⌈αnRQ⌉

i.i.d. codewords x
n2

R
according to

∏n2

s=1 p(x
n2

R,(s)|v
n2

(s)(w
(1)
1 ,w

(1)
2 )). Label these x

n2

R
(i|w(1)

1 ,w
(1)
2 ),

i ∈ {1, 2, . . . , 2⌈αnRQ⌉}

This constitutes a random codebook C(n) given by C(n) = {qn1} ∪ C
(n)
u1

(qn1) ∪ C(n)
u2

(qn1) ∪
⋃

u
n1
1 ∈C

(n)
u1

(qn1 )

⋃

u
n1
2 ∈C

(n)
u2

(qn1 )

(

C
(n)
x1

(un1

1 ) ∪ C(n)
x2

(un1

2 ) ∪ C(n)
ŷR

(un1

1 , u
n1

2 )
)

∪ C
(n)
v ∪

⋃

vn2∈C
(n)
v
C

(n)
xR

(vn2) where

C
(n)
u1

(qn1) is the ordered set of codewords u
n1

1 (1), . . . un1

1 (2⌊nR
(1)
1 ⌋) drawn conditioned on a given

qn1 , and the ordered sets C(n)
u2 (qn1), C(n)

x1 (un1

1 ), C(n)
x2 (un1

2 ), C(n)
ŷR

(un1

1 , u
n1

2 ), C(n)
v ,and C(n)

xR
(vn2) are defined

accordingly for the remaining codewords.

3.3.2.2 Decoding Sets

For the decoding we will use typical set decoding. For a strict definition of the decoding sets we

choose parameter for the typical sets as ǫ2 = ǫ4 = ǫ5 = ǫ6 ∈ (0,
ǫq

6
), ǫ1 ∈

(

0,min
{

αI(U1;YR |U2,Q)−R
(1)
1

6
,

αI(U2;YR |U1,Q)−R
(1)
2

6
,
αI(U1U2;YR |Q)−R

(1)
1 −R

(1)
2

8

})

, and ǫ3 ∈
(

0,min
{

βI(V;Y1)−R
(1)
2

3
,
βI(V;Y2)−R

(1)
1

3

})

. The missing pa-

rameters for receiver 2 are chosen in an analogous way.

3.3.2.3 Coding

i To transmit message w1 node 1 sends x
n1

1 (w(2)
1 |w

(1)
1 ).

ii To transmit message w2 node 2 sends x
n1

2 (w(2)
2 |w

(1)
2 ).
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iii Upon receiving y
n1

R
the relay looks for the unique w

(1)
1 , w

(1)
2 such that

(

y
n1

R
, u

n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

∈

T
(n1)
ǫ1

(YR,U1,U2|q
n1). If no unique w

(1)
1 , w

(1)
2 is found the relay chooses4 w

(1)
1 = w

(1)
2 = 1.

iv Knowing w
(1)
1 , w

(1)
2 the relay looks for the first i such that the pair y

n1

R
, ŷ

n1

R
(i|w(1)

1 ,w
(1)
2 ) is jointly

typical, i.e.
(

y
n1

R
, ŷ

n1

R
(i|w(1)

1 ,w
(1)
2 )
)

∈ T
(n1)
ǫ2

(

YR, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

. If such an i is found the

relay transmits x
n2
R

(i|w(1)
1 ,w

(1)
2 ). If no such i is found the relay chooses i = 1 and transmits

x
n2

R
(1|w(1)

1 ,w
(1)
2 ). This induces a mapping f : Yn1

R
→ Ŷn1

R
as f (yn1

R
) := ŷ

n1

R
(i|w(1)

1 ,w
(1)
2 ).

v Upon receiving y
n2

1 and knowing its own side information w
(1)
1 , node 1 looks for the unique

w
(1)
2 such that

(

y
n2

1 , v
n2(w(1)

1 ,w
(1)
2 )
)

∈ T
(n2)
ǫ3

(Y1,V). If no unique w
(1)
2 is found node 1 chooses

w
(1)
2 = 1.

vi Knowing the already decoded w
(1)
2 and its own side information w

(1)
1 and w

(2)
1 , node 1 looks

for the unique i such that x
n2

R
(i|w(1)

2 ,w
(1)
1 ) and the received signal y

n2

1 are jointly typical, and

simultaneously the transmitted codeword x
n1

1 (w(2)
1 |w

(1)
1 ) and ŷ

n1
R

(i|w(1)
1 ,w

(1)
2 ) are jointly typical,

i.e we have
(

x
n2

R
(i|w(1)

2 ,w
(1)
1 ), yn2

1

)

∈ T
(n2)
ǫ4

(

XR, Y1|v
n2(w(1)

1 ,w
(1)
2 )
)

and simultaneously for the

same i we have
(

x
n1

1 (w(2)
1 |w

(1)
1 ), ŷn1

R
(i|w(1)

1 ,w
(1)
2 )
)

∈ T
(n1)
ǫ5

(

X1, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 ), qn1

)

. This

enables node 1 to recover ŷ
n1

R
(i|w(1)

1 ,w
(1)
2 ). If no or more than one such i is found, node 1

chooses i = 1.

vii Knowing ŷ
n1

R
(i|w(1)

1 ,w
(1)
2 ), x

n1

1 (w(2)
1 |w

(1)
1 ), u

n1

1 (w(1)
1 ), and u

n1

2 (w(1)
2 ) receiver 1 decides that the

message w2(w(1)
2 ,w

(2)
2 ) was transmitted if x

n1

2 (w(2)
2 |w

(1)
2 ) is the only codeword jointly typi-

cal with ŷ
n1
R

(i|w(1)
1 ,w

(1)
2 ) and x

n1

1 (w(2)
1 |w

(1)
1 ), i.e.

(

x
n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (w(2)
2 |w

(1)
2 ), ŷn1

R
(i|w(1)

1 ,w
(1)
2 )
)

∈

T
(n1)
ǫ6

(

X1, X2, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 ), qn1

)

. If no or more than one such codeword is found

node 1 chooses w2(w(1)
2 ,w

(2)
2 ) = 1.

viii The decoding at node 2 is performed in an analogous way.

3.3.2.4 Error Events

Now, we show that the average probability of error goes to zero in the average of all random

codebooks, more precisely we show that for any given ǫ there exists an n(0) such thatE{µ(n)
k
} < ǫ,

k ∈ {1, 2}, n > n(0), where the expectation is over the random codebook. This in turn implies that

for each ǫ we can find n(0) such that E{µ(n)
1 + µ

(n)
2 } < 2ǫ, n > n(0), and therefore there is at least

one codebook with µ(n)
1 + µ

(n)
2 < 2ǫ, n > n(0), and therefore µ(n)

1 < 2ǫ and µ(n)
2 < 2ǫ for n > n(0).

We bound the average error probability E{µ(n)
1 } from above by the union bound using ten

events E j, j ∈ {1, 2, . . . , 10}, whose union is a superset of the error event. Therefore we haveE{µ(n)
1 } ≤

∑10
j=1E{Pr[E j]}. The average error probabilityE{µ(n)

2 } can be bounded in an analogous

way. In what follows we summarize the definition of the error events for receiver 1:

4This is done to have a well defined error probability. Equivalently one could declare an error at the relay, but
this induces a much more cumbersome notation in the definition of the error probability. Similar arguments apply
for a similar default choice in the other coding steps.
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• E1: Suppose a codebook is given and x
n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (w(2)
2 |w

(1)
2 ) are transmitted. E1 is

the event that
(

y
n1

R
, u

n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

< T
(n1)
ǫ1

(YR,U1,U2|q
n1).

• E2: Suppose a codebook is given and x
n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (w(2)
2 |w

(1)
2 ) are transmitted. E2 is the

event that there exists a pair (ŵ(1)
1 , ŵ

(1)
2 ) , (w(1)

1 ,w
(1)
2 ) such that

(

y
n1

R
, u

n1

1 (ŵ(1)
1 ), un1

2 (ŵ(1)
2 )
)

∈

T
(n1)
ǫ1 (YR,U1,U2|q

n1).

• E3: Suppose a codebook is given, x
n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (w(2)
2 |w

(1)
2 ) are transmitted, and the

messages (w(1)
1 ,w

(1)
2 ) are known at the relay. E3 is the event that ∄i ∈ {1, 2, . . . , 2⌈αnRQ⌉} :

(

y
n1
R
, ŷ

n1
R

(i|w(1)
1 ,w

(1)
2 )
)

∈ T
(n1)
ǫ2

(

YR, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

.

• E4: Suppose a codebook is given, x
n2

R
(i|w(1)

1 ,w
(1)
2 ) is transmitted, and w

(1)
1 is known at

receiver 1. E4 is the event that we have
(

y
n2

1 , v
n2(w(1)

1 ,w
(1)
2 )
)

< T
(n2)
ǫ3 (Y1,V).

• E5: Suppose a codebook is given, x
n2

R
(i|w(1)

1 ,w
(1)
2 ) is transmitted, and w

(1)
1 is known at

receiver 1. E5 is the event that we have
(

y
n2

1 , v
n2(w(1)

1 , ŵ
(1)
2 )
)

∈ T
(n2)
ǫ3 (Y1,V) for some ŵ

(1)
2 ,

w
(1)
2 .

• E6: Suppose a codebook is given, x
n2

R
(i|w(1)

1 ,w
(1)
2 ) is transmitted. E6 is the event that we

have
(

x
n2
R

(i|w(1)
1 ,w

(1)
2 ), yn2

1

)

< T
(n2)
ǫ4

(

XR, Y1|v
n2(w(1)

1 ,w
(1)
2 )
)

.

• E7: Suppose a codebook is given, x
n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (w(2)
2 |w

(1)
2 ) are transmitted, the re-

lay chooses some i with
(

y
n1

R
, ŷ

n1

R
(i|w(1)

1 ,w
(1)
2 ) = f (yn1

R
)
)

∈ T
(n1)
ǫ2

(

YR, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

,

and the messages (w(1)
1 ,w

(1)
2 ) are known at receiver 1. E7 is the event that we have

(

x
n1

1 (w(2)
1 |w

(1)
1 ), ŷn1

R
(i|w(1)

1 ,w
(1)
2 )
)

< T
(n1)
ǫ5

(

X1, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 ), qn1

)

.

• E8: Suppose a codebook is given, the codewords x
n1

1 (w(2)
1 |w

(1)
1 ), and x

n1

2 (w(2)
2 |w

(1)
2 ) are trans-

mitted, the relay chooses some i, (w(1)
1 ,w

(1)
2 ) is known at receiver 1, and x

n2

R
(i|w(1)

1 ,w
(1)
2 )

is transmitted. E8 is the event that ∃ j , i such that
(

x
n1

1 (w(2)
1 |w

(1)
1 ), ŷn1

R
( j|w

(1)
1 ,w

(1)
2 )
)

∈

T
(n1)
ǫ5

(

X1, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 ), qn1

)

and for the same j we have
(

x
n2

R
( j|w

(1)
1 ,w

(1)
2 ), yn2

1

)

∈

T
(n)
ǫ4

(

XR, Y1|v
n2(w(1)

1 ,w
(1)
2 )
)

.

• E9: Suppose a codebook is given, x
n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (w(2)
2 |w

(1)
2 ) are transmitted, and the relay

chooses some i with
(

y
n1

R
, ŷ

n1

R
(i|w(1)

1 ,w
(1)
2 ) = f (yn1

R
)
)

∈ T
(n1)
ǫ2

(

YR, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

. E9

is the event that we have
(

x
n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (w(2)
2 |w

(1)
2 ), ŷn1

R
(i|w(1)

1 ,w
(1)
2 ) = f (yn1

R
)
)

< T
(n1)
ǫ6

(

X1,

X2, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 ), qn1

)

.

• E10: Suppose a codebook is given, x
n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (w(2)
2 |w

(1)
2 ) are transmitted, the relay

chooses some i with
(

y
n1

R
, ŷ

n1

R
(i|w(1)

1 ,w
(1)
2 ) = f (yn1

R
)
)

∈ T
(n1)
ǫ2

(

YR, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

, and

(w(1)
1 ,w

(1)
2 ) is known at receiver 1. E10 is the event that for some ŵ

(2)
2 , w

(2)
2 we have

(

x
n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (ŵ(2)
2 |w

(1)
2 ), ŷn1

R
(i|w(1)

1 ,w
(1)
2 )
)

∈ T
(n1)
ǫ6

(

X1, X2, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

.

To see that these error events capture all events that may lead to an error we step through the

coding procedure and verify, that all possible causes of an error are captured.
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The probability of error for node 1 can be bounded from above by

Pr[E] ≤ +Pr[Evii ∪ Ēvi ∪ Ēv ∪ Ēiv ∪ Ēiii] + Pr[Eiv ∪ Ēiii]

+Pr[Eiii] + Pr[Ev ∪ Ēiii] + Pr[Evi ∪ Ēv ∪ Ēiv ∪ Ēiii].

Here En is the event that coding step n fails. A bar indicates the complementary event.

Coding step iii is a multiple access decoding of two virtually transmitted symbols u
n1

1 and

u
n1

2 . In this coding step it may turn out that w
(1)
1 , w

(1)
2 is not found, either because we have

(

y
n1
R
, u

n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

< T
(n1)
ǫ1 (YR,U1,U2|q

n1) or because the result of the typical set decoding

is not unique. This is captured by E1 and E2 respectively.

In coding step iv there might be no typical ŷ
n1

R
(i|w(1)

1 ,w
(1)
2 ) for the received y

n1

R
given w

(1)
1 ,

w
(1)
2 . This does not yield an error immediately, but it may lead to an error in later decoding. To

simplify the error calculation we treat this as an error captured by event E3 and for the following

considerations about error events we can assume that we have
(

y
n1
R
, ŷ

n1
R

(i|w(1)
1 ,w

(1)
2 ) = f (yn1

R
)
)

∈

T
(n1)
ǫ1

(

YR, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

. Similar arguments apply to E1 and E2. E1, E2 and E3 are not

intrinsic error events but is used to simplifies the definitions and the calculation of the errors

that may happen in the coding steps vi and vii.

Coding step v is a coding for a virtual broadcast channel with input V and outputs Y1, Y2

where the receiving nodes have side information w1 and w2 respectively. In this coding step an

error occurs if either
(

y
n2

1 , v
n2(w(1)

1 ,w
(1)
2 )
)

< T
(n2)
ǫ3

(Y1,V) or if the decoding is not unique. This is

captured by E4 and E5 respectively. For the following coding steps we may assume, that w
(1)
1

and w
(1)
2 are known at the receiving node.

In coding step vi the receiver cannot find the correct i, if either we have
(

x
n2

R
(i|w(1)

2 ,w
(1)
1 ), yn2

1

)

<

T
(n2)
ǫ4

(

XR, Y1|v
n2(w(1)

1 ,w
(1)
2 )
)

, which is captured by event E6, or if
(

x
n1

1 (w(2)
1 |w

(1)
1 ), ŷn1

R
(i|w(1)

1 ,w
(1)
2 )
)

<

T
(n1)
ǫ5

(

X1, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

, captured by E7. The solution is not unique, i.e. j , i is found

in step vi, if ∃ j , i :
(

x
n2
R

( j|w
(1)
2 ,w

(1)
1 ), yn2

1

)

∈ T
(n2)
ǫ4

(

XR, Y1|v
n2(w(1)

1 ,w
(1)
2 )
)

and simultaneously
(

x
n1

1 (w(2)
1 |w

(1)
1 ), ŷn1

R
( j|w

(1)
1 ,w

(1)
2 )
)

∈ T
(n1)
ǫ5

(

X1, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

. This is captured by E8.

Coding step vii fails, if either the correct w
(2)
2 is not found by the typical set decoding,

i.e.
(

x
n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (w(2)
2 |w

(1)
2 ), ŷn1

R
(i|w(1)

1 ,w
(1)
2 )
)

< T
(n1)
ǫ6

(

X1, X2, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

or if for

ŵ
(2)
2 , w

(2)
2 we have

(

x
n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (ŵ(2)
2 |w

(1)
2 ), ŷn1

R
(i|w(1)

1 ,w
(1)
2 )
)

∈ T
(n1)
ǫ6

(

X1, X2, ŶR|u
n1

1 (w(1)
1 ),

u
n1

2 (w(1)
2 )
)

. These events are captured by E9 and E10 respectively.

Clearly no other events lead to an error for the decoding process at receiver 1. We will

now prove for each event E j, j ∈ {1, 2, . . . , 10}, that there exists an n( j) that E{Pr[E j]} <
ǫ

10
for

n ≥ n( j). This in turn implies that for n ≥ max j n( j) = n(0) we have E{µ(n)
k
} < ǫ, k ∈ {1, 2}.

3.3.2.5 Bounding the Probability of the Error Events

We now bound the probability of the error events averaged over the codebooks C(n) of length n

and the transmitted messages [w1,w2] ∈ W1 ×W2.
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Error event E1 The averaged probability for the error event E1 isE{Pr[E1]} =
1

|W|

∑

(w1 ,w2)∈W

∑

C(n)

p(C(n))
∑

y
n1
R
∈Y

n1
R

p
(

y
n1

R
|x

n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (w(2)
2 |w

(1)
2 )
)

× χC

T
(n1)
ǫ1

(YR,U1,U2|q
n1 )

(

y
n1
R
, u

n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

=
∑

qn1∈Q
n1

∑

y
n1
R
∈Y

n1
R

∑

u
n1
1 ∈U

n1
1

∑

u
n1
2 ∈U

n1
2

p(qn1 , y
n1
R
, u

n1

1 , u
n1

2 )χC

T
(n1)
ǫ1

(YR,U1,U2|q
n1 )

(

y
n1
R
, u

n1

1 , u
n1

2

)

.

This probability can be made arbitrarily small by choosing n1 large enough by the properties of

the typical set.

Error event E2 For sufficient large n we haveE{Pr[E2]} ≤
∑

qn1∈Q
n1

∑

y
n1
R
∈Y

n1
R

∑

u
n1
1 ∈U

n1
1

∑

u
n1
2 ∈U

n1
2

p(qn1)χ
T

(n1)
ǫ1

(YR,U1,U2|q
n1 )

(

y
n1
R
, u

n1

1 , u
n1

2

)

×
(

2nR
(1)
2 p(yn1

R
, u

n1

1 |q
n1)p(un1

2 |q
n1) + 2nR

(1)
1 p(yn1

R
, u

n1

2 |q
n1)p(un1

1 |q
n1)

+ 2nR
(1)
1 2nR

(1)
2 p(yn1

R
|qn1)p(un1

1 |q
n1)p(un1

2 |q
n1)
)

≤
∑

qn1∈Q
n1

p(qn1)2n1(H(YR,U1,U2|Q)+2ǫ1)
(

2nR
(1)
2 2−n1(H(YR,U1|Q)−2ǫ1)2−n1(H(U2 |Q)−2ǫ1)

+ 2nR
(1)
2 2−n1(H(YR,U2|Q)−2ǫ1)2−n1(H(U1|Q)−2ǫ1)

+ 2n(R(1)
1 +R

(1)
2 )2−n1(H(YR|Q)−2ǫ1)2−n1(H(U1|Q)−2ǫ1)2−n1(H(U1|Q)−2ǫ1)

)

≤ 2n
(

R
(1)
2 −αI(U2;U1YR |Q)+6ǫ1

)

+ 2n
(

R
(1)
1 −αI(U1;U2YR|Q)+6ǫ1

)

+ 2n
(

R
(1)
1 +R

(1)
2 −αI(U1U2;YR |Q)+8ǫ1

)

.

Now because U1 and U2 are independent given Q this goes to zero for sufficient large n if

R
(1)
1 + 6ǫ1 < αI(U1; YR|U2,Q)

R
(1)
2 + 6ǫ1 < αI(U2; YR|U1,Q)

R
(1)
1 + R

(1)
2 + 8ǫ1 < αI(U1U2; YR|Q)

as assumed in the code design and by the choice of the parameter ǫ1.

Error event E3 The averaged probability for the error event E3 isE{Pr[E3]} =
1

|W|

∑

(w1 ,w2)∈W

∑

C(n)

p(C(n))
∑

y
n1
R

:y
n1
R
∈J(C(n))

p
(

y
n1

R
|xn1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (w(2)
1 |w

(1)
1 )
)
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with

J(C(n)) =

{

y
n1

R
∈ Yn1

R
: ∄i ∈

{

1, 2, . . . , 2⌈αnRQ⌉
}

, ŷ
n1

R
(i|w(1)

1 ,w
(1)
2 ) ∈ C(n) such that

(

y
n1

R
, ŷ

n1

R
(i|w(1)

1 ,w
(1)
2 )
)

∈ T (n1)
ǫ2

(

YR, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 ), qn1

)

}

.

This can be rewritten asE{Pr[E3]} =
∑

C(n)

p(C(n))
∑

y
n1
R

:y
n1
R
∈J(C(n))

p
(

y
n1

R
|x

n1

1 (1|1), x
n1

1 (1|1)
)

as the codewords where drawn i.i.d.. Now, we can simplify the expression by dropping some of

the indices asE{Pr[E3]} =
∑

y
n1
R
∈Y

n1
R

∑

u
n1
1 ∈U

n1
1

∑

u
n1
2 ∈U

n1
2
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x
n1
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1
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x
n1
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2

∑
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p(un1
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n1
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n1

1 , x
n1

2 , q
n1, y
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R
)

∑

C
(n)
ŷR

(u
n1
1 ,u

n1
2 ):y

n1
R
∈J

(

C
(n)
ŷR

(u
n1
1 ,u

n1
2 )
)

p
(

C
(n)
ŷR

(un1

1 , u
n1

2 )
)

where

J
(

C
(n)
ŷR

(un1

1 , u
n1

2 )
)

=

{

y
n1

R
∈ Yn1

R
: ∄i ∈

{

1, 2, . . . , 2⌈αnRQ⌉
}

, ŷ
n1

R
(i|1, 1) ∈ C(n)

ŷR
(un1

1 , u
n1

2 ) such that

(

y
n1

R
, ŷ

n1

R
(i|1, 1)

)

∈ T (n1)
ǫ2

(YR, ŶR|u
n1

1 , u
n1

2 , q
n1)

}

.

Now, we can eliminateJ
(

C
(n)
ŷR

(un1

1 , u
n1

2 )
)

in the above expression by using the indicator func-

tion χ on the typical set T (n1)
ǫ2

(YR, ŶR|u
n1

1 , u
n1

2 , q
n1):E{Pr[E3]} =

∑

y
n1
R
∈Y

n1
R

∑

u
n1
1 ∈U

n1
1

∑

u
n1
2 ∈U

n1
2
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1 , u
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2 , y
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R
)





















1 −
∑

ŷ
n1
R
∈Ŷ

n1
R

p(ŷn1

R
|un1

1 , u
n1

2 , q
n1)χ

T
(n1)
ǫ2

(YR,ŶR |u
n1
1 ,u

n1
2 ,qn1 )

(yn1

R
, ŷ

n1

R
)





















2⌈αnRQ⌉

We can bound
∑

ŷ
n1
R
∈Ŷ

n1
R

p(ŷn1
R
|un1

1 , u
n1

2 , q
n1)χ

T
(n1)
ǫ2

(YR,ŶR|u
n1
1 ,u

n1
2 ,qn1 )

(yn1
R
, ŷ

n1
R

)

from below by using properties of the typical set: For (yn1

R
, ŷ

n1

R
) ∈ T (n1)

ǫ2
(YR, ŶR|u

n1

1 , u
n1

2 , q
n1) and
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sufficiently large n, i.e. for some n > n(3,1) we have

p(ŷn1
R
|yn1

R
, u

n1

1 , u
n1

2 , q
n1) =

p(ŷn1

R
, y

n1

R
|un1

1 , u
n1

2 , q
n1)

p(yn1

R
|un1

1 , u
n1

2 , q
n1)

≤ p(ŷn1
R
|un1

1 , u
n1

2 , q
n1)

2−n1(H(YR,ŶR|U1,U2,Q)−2ǫ2)

2−n1(H(Y
R
|U1,U2,Q)+2ǫ2)2−n1(H(ŶR|U1,U2,Q)+2ǫ2)

= p(ŷn1
R
|un1

1 , u
n1

2 , q
n1)2⌊αn⌋(I(YR;ŶR |U1,U2,Q)+6ǫ2)

≤ p(ŷn1

R
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1 , u
n1

2 , q
n1)2αn(I(YR;ŶR |U1,U2,Q)+6ǫ2).

Therefore

∑

ŷ
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R
∈Ŷ
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R

p(ŷn1

R
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n1

2 , q
n1)χ
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(yn1

R
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R
)

≥
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T
(n1)
ǫ2

(YR,ŶR|u
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R
, ŷ
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R
)

andE{Pr[E3]} ≤
∑

y
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R
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∑
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∑

ŷ
n1
R
∈Ŷ
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R
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R
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(yn1
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, ŷ
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R
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2αnRQ

.

This can be bounded from above [30, Lemma 13.5.3] byE{Pr[E3]} ≤ 1 −
∑

y
n1
R
∈Y

n1
R

∑

u
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1

∑
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)

+ exp
(

−2αn(RQ−I(YR;ŶR |U1,U2,Q)−6ǫ2)
)

.

Now, since RQ = I(YR; ŶR|U1,U2,Q) + ǫq and ǫq > 6ǫ2, the last term can be made arbitrarily

small for n large. In particular for a given ǫ > 0 we can find n(3,2) such that the last term in the

sum exp
(

−2αn(RQ−I(YR;ŶR |U1,U2,Q)−6ǫ2)
)

< ǫ

20
for all n > n(3,2).

The remaining term

1 −
∑
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ŷ
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∈Ŷ
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R
) (3.11)

is the probability that (yn1

R
, ŷ

n1

R
) < T (n1)

ǫ2
(YR, ŶR|u

n1

1 , u
n1

2 , q
n1) for sequences qn1 , u

n1

1 , u
n1

2 , y
n1

R
, ŷ

n1

R
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drawn according to the joint probability distribution p(qn1 , u
n1

1 , u
n1

2 , y
n1

R
, ŷ

n1

R
). By the law of large

numbers this probability goes to zero.

In particular by Lemma 1.2 for a given ǫ > 0 we can find n(3,3) such that (3.11) is smaller

than ǫ
20 for all n > n(3,3). We can now choose n(3) ≥ max{n(3,1), n(3,2), n(3,3)} and the probability of

error for the error event E3 can be bounded by E{Pr[E3]} < ǫ

10
for n ≥ n(3).

Error event E4E{Pr[E4]} =
1

|W|
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1 )

This is the probability that two codewords (vn2 , y
n2

1 ) drawn according to p(vn2 , y
n2

1 ) are not in

T
(n2)
ǫ3 (V, Y1). The probability for this goes to zero as n→ ∞ by the law of large numbers and the

definition of the typical set. Therefore for any given ǫ we can find n(4) such that E{Pr[E4]} < ǫ

10

for n ≥ n(4).

Error event E5 For sufficiently large n we haveE{Pr[E5]} ≤
∑

(vn2 ,y
n2
1 )∈Vn2×Y

n2
1

p(yn2

1 )p(vn2)2⌊nR
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ǫ3

(V,Y1)
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1 )

≤ 2n(R(1)
2 −βI(V,Y1)+3ǫ3)+3ǫ3

by the properties of the typical set. This goes to zero as by assumption R
(1)
2 + 3ǫ3 < βI(V, Y1).

Error event E6E{Pr[E6]} =
1

|W|
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=
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This is the probability that for codewords (vn2 , x
n2
R
, y

n2

1 ) drawn according to p(vn2 , x
n2
R
, y

n2

1 ) we

have (x
n2

R
, y

n2

1 ) < T (n2)
ǫ2

(XR, Y1|v
n2). The probability for this goes to zero as n → ∞ by the law of

large numbers and the definition of the typical set. Therefore for any given ǫ we can find n(6)

such that for E{Pr[E6]} < ǫ
10 for n ≥ n(6).
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Error event E7 This part of the proof could be done analogous to the proof for error event E9

below. But in fact as ǫ5 = ǫ6 whenever E9 does not appear, E7 will not appear as well, because

of the definition of the typical sets. Therefore we have E{Pr[E7]} ≤ E{Pr[E9]} for any n and

we can simply set n(7) ≥ n(9) and have E{Pr[E7]} < ǫ

10
for n ≥ n(7) given that E{Pr[E9]} < ǫ

10

for n ≥ n(9).

Error event E8E{Pr[E8]} ≤
∑
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n1

p(qn1 , u
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1 , u
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Here E8,1 is the event that given u
n1

1 , u
n1

2 , and qn1 for two sequences x
n1

1 , ŷ
n1

R
drawn independent of

each other we have (x
n1

1 , ŷ
n1
R

) ∈ T (n1)
ǫ5

(X1, ŶR|u
n1

1 , u
n1

2 , q
n1). For the calculation of this probability

x
n1

1 and ŷ
n1

R
are drawn according to p(x

n1

1 |u
n1

1 , q
n1) = p(x

n1

1 |u
n1

1 , u
n1

2 qn1) and p(ŷn1

R
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1 , u
n1

2 , q
αn) re-

spectively to capture the averaging over the random codebooks and the known side information.

E8,2 is the event, that given vn2 for two sequences x
n2

R
, y

n2

1 drawn independent of each other we

have (x
n2

R
, y

n2

1 ) ∈ T (n2)
ǫ4

(XR, Y1|v
n2). The factor 2⌈αnRQ⌉ accounts for the fact that we can use a union

bound and the error occurs if at least one j , i is found fulfilling the requirements.

For sufficiently large n, we have

Pr[E8,1] =
∑

(x
n1
1 ,ŷ
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1 |u
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R
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n1)χ
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(x
n1

1 , ŷ
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R
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≤ |T (n1)
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2 , q
n1)|2−n1(H(X1 |U1,U2,Q)−2ǫ5)2−n1(H(ŶR |U1,U2,Q)−2ǫ5)

due to the properties of the typical set. Furthermore, it follows from these properties that for

sufficiently large n

|T (n1)
ǫ5

(X1, ŶR|u
n1

1 , u
n1

2 , q
n1)| ≤ 2n1(H(X1,ŶR|U1,U2,Q)+2ǫ5).

Pr[E8,2] can be bounded in a similar way. As a consequence, there exists n(8,1) such that the

above properties hold for all n > n(8,1) and for both, Pr[E8,1] and Pr[E8,2]. We have for n > n(8,1)E{Pr[E8]} ≤
∑

vn2∈V
n2
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u
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n1
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∑
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2 )p(vn2)2−n1(I(X1;ŶR |U1,U2,Q)−6ǫ5)

2−n2(I(X
R

;Y1 |V)−6ǫ4)2αnRQ+1

≤ 2−n(α(I(X1;ŶR |U1,U2,Q)−RQ−6ǫ5)+β(I(X
R

;Y1 |V)−6ǫ4))+1+I(X1;ŶR |U1,U2,Q)+6ǫ4

= 2−n(α(I(X1;ŶR |U1,U2,Q)−I(YR;ŶR |U1,U2,Q))+βI(XR;Y1 |V)−ǫ̃)+1+I(X1;ŶR |U1,U2,Q)+6ǫ4

with

ǫ̃ = αǫq + β6ǫ4 + α6ǫ5.
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This upper bound goes to zero if

α
(

I(X1; ŶR|U1,U2,Q) − I(YR; ŶR|U1,U2,Q)
)

+ βI(XR; Y1|V) − ǫ̃ =

βI(XR; Y1|V) − α
(

H(ŶR |X1,U2) − H(ŶR|YR)
)

− ǫ̃ > 0.

Now

βI(XR; Y1|V) − α
(

H(ŶR|X1,U2) − H(ŶR|YR)
)

> 0

because of the constraints (3.10) fulfilled by assumption, and

ǫ̃ < βI(XR; Y1) − α
(

H(ŶR|X1,U2) − H(ŶR|YR)
)

due to the choice of the parameters ǫq, ǫ4, and ǫ5. Therefore for any given ǫ we can find an

n(8) > n(8,1) such that for E{Pr[E8]} < ǫ
10 for n ≥ n(8).

Error event E9E{Pr[E9]} ≤
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where f (yn1
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1 ,w
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2 ) is the mapping induced by the relay when choosing i upon re-

ceiving y
n1

R
and knowing (w(1)

1 ,w
(1)
2 ). This can be rewritten asE{Pr[E9]} =

∑

u
n1
1 ∈U

n1
1

∑

u
n1
2 ∈U

n1
2

∑

x
n1
1 ∈X

n1
1

∑

x
n1
2 ∈X

n1
2

∑

qn1∈Q
n1

∑

y
n1
R
∈Y

n1
R

∑

C
(n)
ŷR

(u
n1
1 ,u

n1
2 )

p
(

C
(n)
ŷR

(un1

1 , u
n1

2 )
)

p(qn1 , u
n1

1 , u
n1

2 , x
n1

1 , x
n1

2 , y
n1

R
)

× χ
T

(n1)
ǫ2

(YR,ŶR|u
n1
1 ,u

n1
2 )

(

y
n1
R
, f (yn1

R
)
)

χC

T
(n1)
ǫ6

(X1,X2,ŶR|u
n1
1 ,u

n1
2 )

(

x
n1

1 , x
n1

2 , f (yn1
R

)
)

=
∑

qn1∈Qn1

∑

u
n1
1 ,u

n1
2

∑

C
(n)
ŷR

(u
n1
1 ,u

n1
2 )

p
(

C
(n)
ŷR

(un1

1 , u
n1

2 )
)

∑

y
n1
R
∈Y

n1
R

p(yn1

R
, u

n1

1 , u
n1

2 , q
n1)χ

T
(n1)
ǫ2

(YR,ŶR|u
n1
1 ,u

n1
2 )

(

y
n1

R
, f (yn1

R
)
)

∑

(x
n1
1 ,x

n1
2 )∈X

n1
1 ×X

n1
2

p(x
n1

1 , x
n1

2 |y
n1
R
, qn1 , u

n1

1 , u
n1

2 )χC

T
(n1)
ǫ6

(X1,X2,ŶR|u
n1
1 ,u

n1
2 )

(

x
n1

1 , x
n1

2 , f (yn1
R

)
)

Here C(n)
ŷR

(un1

1 , u
n1

2 ) is the part of the codebook containing ŷ
n1

R
(i|w(1)

1 ,w
(1)
2 ), i ∈ {1, 2, . . . , 2⌈αnRQ⌉}

and therefore defines the mapping f (yn1
R

).

The last sum is the probability that for given y
n1
R
, qn1 , u

n1

1 , u
n1

2 for (x
n1

1 , x
n1

2 ) drawn accord-

ing to p(x
n1

1 , x
n1

2 |u
n1

1 , u
n1

2 , y
n1

R
, qn1) we have

(

x
n1

1 , x
n1

2 , f (yn1

R
)
)

< T
(n1)
ǫ6

(X1, X2, ŶR|u
n1

1 , u
n1

2 , q
n1). Now,
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(

y
n1

R
, f (yn1

R
)
)

∈ T
(n1)
ǫ2

(YR, ŶR|u
n1

1 , u
n1

2 , q
n1) implies by the definition of the typical set that we have

(

y
n1

R
, f (yn1

R
), qn1 , u

n1

1 , u
n1

2

)

∈ T
(n1)
ǫ2

(YR, ŶR,Q,U1,U2). Furthermore it follows from the properties

of the typical set, that for any
(

y
n1
R
, f (yn1

R
), qn1 , u

n1

1 , u
n1

2

)

∈ T
(n1)
ǫ2 (YR, ŶR,Q,U1,U2) and for (x

n1

1 , x
n1

2 )

drawn according to p(x
n1

1 , x
n1

2 |y
n1

R
, qn1 , u

n1

1 , u
n1

2 ) we have

Pr
[

(x
n1

1 , x
n1

2 ) ∈ T (n1)
ǫ2

(

X1, X2|y
n1

R
, f (yn1

R
), qn1 , u

n1

1 , u
n1

2

)

|yn1

R
, f (yn1

R
), qn1 , u

n1

1 , u
n1

2

]

can be made arbitrarily close to 1 by choosing n large. Here we used the fact that (x
n1

1 , x
n1

2 ) are

independent of ŷ
n1
R

given y
n1
R

, u
n1

1 , u
n1

2 , and qn1 .

Now (x
n1

1 , x
n1

2 ) ∈ T (n1)
ǫ2

(

X1, X2|y
n1
R
, f (yn1

R
), qn1 , u

n1

1 , u
n1

2

)

implies that we have
(

x
n1

1 , x
n1

2 , y
n1
R
, f (yn1

R
),

qn1 , u
n1

1 , u
n1

2

)

∈ T
(n1)
ǫ2

(X1, X2, YR, ŶR,Q,U1,U2) and therefore it follows that
(

x
n1

1 , x
n1

2 , f (yn1

R
)
)

∈

T
(n1)
ǫ2

(X1, X2, ŶR|q
n1 , u

n1

1 , u
n1

2 ). As we choose ǫ2 = ǫ6 we can conclude that E{Pr[E9,1]} can be

made arbitrarily small by choosing n large. In particular for a given ǫ > 0 we can find n(9) such

that E{Pr[E9]} < ǫ

10
for all n > n(9).

Error event E10 The probability of this event can be bounded from above byE{Pr[E10]} ≤
1

|W|

∑

(w1 ,w2)∈W

∑

ŵ
(2)
2 ,w

(2)
2

∑

C(n)

p(C(n))
∑

y
n1
R
∈Y

n1
R

p
(

y
n1

R
|x

n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (w(2)
2 |w

(1)
2 )
)

× χ
T

(n1)
ǫ2

(

YR,ŶR|u
n1
1 (w(1)

1 ),u
n1
2 (w(1)

2 )
)

(

y
n1

R
, f (yn1

R
)
)

χ
T

(n1)
ǫ6

(

X1,X2,ŶR|u
n1
1 (w(1)

1 ),u
n1
2 (w(1)

2 )
)

(

x
n1

1 (w1), x
n1

2 (ŵ2), f (yn1

R
)
)

,

where f (yn1

R
) = ŷ

n1

R
(i|w(1)

1 ,w
(1)
2 ) is a mapping induced by the relay when choosing i upon receiving

y
n1

R
and knowing (w(1)

1 ,w
(1)
2 ). We can rewrite the upper bound asE{Pr[E10]} ≤

∑

u
n1
1 ∈U

n1
1

∑

u
n1
2 ∈U

n1
2

∑

qn1∈Q
n1

∑

x
n1
1 ∈X

n1
1

∑

x
n1
2 ∈X

n1
2

2nR
(2)
2 2⌈αnRQ⌉p(qn1 , u

n1

1 , u
n1

2 , x
n1

1 , x
n1

2 )

∑

ŷ
n1
R
∈Ŷ

n1
R

p(ŷn1

R
|un1

1 , u
n1

2 )χ
T

(n1)
ǫ6

(X1,X2,ŶR|u
n1
1 ,u

n1
2 )

(x
n1

1 , x
n1

2 , ŷ
n1

R
)

∑

y
n1
R
∈Y

n1
R

p(yn1
R
|xn1

1 )χ
T

(n1)
ǫ2

(YR,ŶR|u
n1
1 ,u

n1
2 )

(yn1
R
, ŷ

n1
R

).

Now for (yn1

R
, ŷ

n1

R
) ∈ T (n1)

ǫ2
(YR, ŶR|u

n1

1 , u
n1

2 ) and for n sufficiently large we have

p(ŷn1

R
|yn1

R
, u

n1

1 , u
n1

2 ) =
p(ŷn1

R
, y

n1

R
|un1

1 , u
n1

2 )

p(yn1
R
|un1

1 , u
n1

2 )

≥ p(ŷn1

R
|un1

1 , u
n1

2 )
2−n1(H(YR,ŶR|U1,U2)+2ǫ2)

2−n1(H(Y
R
|U1,U2)−2ǫ2)2−n1(H(ŶR |U1,U2)−2ǫ2)

= p(ŷn1

R
|un1

1 , u
n1

2 )2n1(I(YR;ŶR |U1,U2)−6ǫ2).
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It follows thatE{Pr[E10]} ≤ 2αn(ǫq+6ǫ2)+1+I(YR;ŶR |U1,U2)2nR
(2)
2

∑

u
n1
1 ∈U

n1
1

∑

u
n1
2 ∈U

n1
2

∑

qn1∈Q
n1

p(qn1 , u
n1

1 , u
n1

2 )

∑

x
n1
1 ∈X

n1
1

∑

x
n1
2 ∈X

n1
2

∑

ŷ
n1
R
∈Ŷ

n1
R

∑

y
n1
R
∈Y

n1
R

p(x
n1

2 |u
n1

2 )p(x
n1

1 |u
n1

1 )p(ŷn1

R
|yn1

R
, u

n1

1 , u
n1

2 )p(yn1

R
|xn1

1 )

× χ
T

(n1)
ǫ2

(YR,ŶR|u
n1
1 ,u

n1
2 )

(yn1
R
, ŷ

n1
R

)χ
T

(n1)
ǫ6

(X1,X2,ŶR|u
n1
1 ,u

n1
2 )

(x
n1

1 , x
n1

2 , ŷ
n1
R

).

The last sum can be seen to be the probability that for sequences x
n1

1 , x
n1

2 , y
n1
R
, ŷ

n1
R
, qn1 , u

n1

1 , u
n1

2

drawn according to p(qn1 , u
n1

1 , u
n1

2 ), p(yn1

R
, ŷ

n1

R
, x

n1

1 |u
n1

1 , u
n1

2 ), and p(x
n1

2 |u
n1

2 ) we have (yn1

R
, ŷ

n1

R
) ∈

T
(n1)
ǫ2

(YR, ŶR|u
n1

1 , u
n1

2 ) and (x
n1

1 , x
n1

2 , ŷ
n1

R
) ∈ T (n1)

ǫ6
(X1, X2, ŶR|u

n1

1 , u
n1

2 ) simultaneously. Therefore we

can writeE{Pr[E10]} ≤ 2αn(ǫq+6ǫ2)+1+I(YR;ŶR |U1,U2)2nR
(2)
2

×
∑

u
n1
1 ∈U

n1
1

∑

u
n1
2 ∈U

n1
2

∑

qn1∈Qn1

∑

x
n1
1 ∈X

n1
1

∑

x
n1
2 ∈X

n1
2

∑

ŷ
n1
R
∈Ŷ

n1
R

p(qn1 , u
n1

1 , u
n1

2 )p(ŷn1

R
, x

n1

1 |u
n1

1 , u
n1

2 )

× p(x
n1

2 |u
n1

2 )χ
T

(n1)
ǫ6

(X1,X2,ŶR|u
n1
1 ,u

n1
2 )

(x
n1

1 , x
n1

2 , ŷ
n1

R
).

For sufficiently large n this can be bounded from above byE{Pr[E10]} ≤ 2αn(ǫq+6ǫ1)+1+I(YR;ŶR |U1,U2)2nR
(2)
2

×
∑

u
n1
1 ∈U

n1
1

∑

u
n1
2 ∈U

n1
2

∑

qn1∈Q
n1

p(qn1 , u
n1

1 , u
n1

2 )2−n1(I(X2;ŶR |X1,U2)−6ǫ6)

≤ 2n
(

R
(2)
2 −αI(X2;ŶR |X1,U2)

)

2αn(ǫq+6ǫ2+6ǫ6)+1+I(YR ;ŶR |U1,U2,Q)+I(X2;ŶR |X1,U2)

≤ 2n
(

R
(2)
2 −α(I(X2;ŶR |X1,U2)+3ǫq)

)

+1+I(YR ;ŶR |U1,U2,Q)+I(X2;ŶR |X1,U2).

By assumption R
(2)
2 < αI(X2; ŶR|X1,U2) and we choose ǫq <

I(X2;ŶR |X1,U2)−
R

(2)
2
α

3
. Therefore the

probability of this event can be made arbitrarily small for n large. In particular for a given

ǫ > 0 we can find n(10) such that for all n > n(10) we have E{Pr[E10]} < ǫ
10 and such that the

n > n(10) is sufficiently lage to ensure the inequalities used in this part of the proof. Therefore the

probability of error for the tenth error event can be bounded by E{Pr[E10]} < ǫ
10 for n ≥ n(10).

3.3.2.6 Cases, where the Assumed Strict Inequalities are not Possible

The case I(X2; ŶR|X1,U2) = 0 needs a special treatment as it is not captured in the above

proof: In this case the error probability for the compress-and-forward part of the proof at re-

ceiver 1, i.e. the error probability for decoding a wrong w
(2)
2 is 0 by definition, i.e. we do

not need to consider the error events E8 and E10. In the calculation of the other error events

and in the calculation of the error probability of receiver 2 neither R
(2)
2 nor I(X2; ŶR|X1,U2)



3.3. A Partial-Decode-and-Forward Coding Theorem 103

is restricted but in the definition of ǫq. This definition can in this case be changed by re-

moving the requirement ǫq < ǫ
(3)
q =

I(X2;ŶR |X1,U2)−
R

(2)
2
α

3 as this requirement is only needed to

ensure the low probability for error event E10 for receiver 1 and is therefore not necessary

for this case. The changed code and the above steps of the proof for receiver 2 yield a se-

quence of
(

M
(n)
1 , M

(n)
2 , n1, n2

)

-codes such that the probability of error goes to zero and the rate

of the codes goes to [R1,R2] as n → ∞ given the above strict inequalities hold except for the

one restricting R
(2)
2 , and we have R

(2)
2 = I(X2; ŶR|X1,U2) = 0 for the probability distributions

p(q)p(x1|q)p(x2|q)p1(yR|x1, x2)p(ŷR|yR), p(xR|q)p2(y1, y2|xR), and some α, β > 0 with α + β = 1.

Analogous arguments apply for R1 = I(X1; ŶR|X2,U1) = 0.

Using similar arguments the cases R
(1)
1 = βI(V; Y2) = 0 and R

(1)
2 = βI(V; Y1) = 0 can be

handled, as in these cases the decoding of w
(1)
1 or w

(1)
2 respectively at the receiver cannot be in

error and therefore the event E3 does not need to be considered. It follows that the choice of

ǫ3 can be relaxed (or is not necessary at all). Similarly R
(1)
1 = αI(U1; YR|U2,Q) = 0, R

(1)
2 =

αI(U2; YR|U1,Q) = 0, and R
(1)
1 + R

(1)
2 = αI(U1U2; YR|Q) = 0 can be treated: A small change

calculation of E2 needs to be applied to cope with the fact that for one or both of the codewords

w
(1)
1 , w

(1)
2 there is no possible wrong decision. This again leads to the possibility either to relax

ǫ1 such that it can still be chosen as ǫ1 > 0, or to discard ǫ1 as the connected decoding set is not

necessary anymore. The achievability of [R1,R2] = [0, 0] is obvious from the definition.

3.3.2.7 The Achievable Set is Closed

The above proves that any [R1,R2] with

R
(1)
1 < min{αI(U1; YR|U2,Q), βI(V; Y2)} (3.12)

R
(1)
2 < min{αI(U2; YR|U1,Q), βI(V; Y1)} (3.13)

R
(1)
1 + R

(1)
2 < αI(U1U2; YR|Q) (3.14)

R
(2)
1 < αI(X1; ŶR|X2,U1) (3.15)

R
(2)
2 < αI(X2; ŶR|X1,U2) (3.16)

is achievable as long as the constraints (3.10) are fulfilled. We conclude the proof by showing

that the achievable rate region is closed. But this follows from the definition of achievability:

Let [R1,0,R2,0] be some rate pair on the boundary of the set with R1,0 > 0, R2,0 > 0. For any

rate pair [R1,0 −
ǫ

m
,R2,0 −

ǫ

m
], ǫ > 0, m ∈ N there exists a sequence of

(

2⌊n(R(1)
1,0−

ǫ
2m

)⌋+⌊n(R(2)
1,0−

ǫ
2m

)⌋,

2⌊n(R(1)
2,0−

ǫ
2m

)⌋+⌊n(R(2)
2,0−

ǫ
2m

)⌋, n1, n2

)

-codes such that µ(n)
1 , µ

(n)
2 → 0 as n → ∞. Therefore for any m

there exists n0(m) such that µ(n)
k

< 1
m

, k ∈ {1, 2} for n > n0(m). Let m(n) = max{m : n >

n0(m)}. Because µ(n)
k
→ 0 as n → ∞ we have m(n) → ∞. So we can construct a sequence of

(

2⌊n(R(1)
1,0−

ǫ

2m(n) )⌋+⌊n(R(2)
1,0−

ǫ

2m(n) )⌋
, 2⌊n(R(1)

2,0−
ǫ

2m(n) )⌋+⌊n(R(2)
2,0−

ǫ

2m(n) )⌋
, n1, n2

)

-codes with 1
n
⌊n(R(1)

1,0−
ǫ

2m(n) )⌋+⌊n(R(2)
1,0−

ǫ

2m(n) )⌋ → R1,0, 1
n
⌊n(R(1)

2,0 −
ǫ

2m(n) )⌋ + ⌊n(R(2)
2,0 −

ǫ

2m(n) )⌋ → R2,0, µ(n)
k

< 1
m
→ 0, k ∈ {1, 2} as n →

∞. Therefore by the definition of achievability the rate pair [R1,0,R2,0] is achievable. With
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analogous arguments rate pairs on the boundary of the region where one of the rates is 0 can be

achieved. This proves that the set of achievable rates is closed. �

3.3.3 Asymmetric Strategies

We can make use of the boundary effects that needed a special treatment in the above proof.

These boundary effects may lead to more relaxed constraints and therefore allow a larger rate

for one of the users. Using the boundary effects means: One of the messages is forwarded using

both, the compress-and-forward as well as the decode-and-forward strategy, while the other

node’s message is fully decoded.

Corollary 3.6. An achievable rate region for the two-phase two-way relay channel using a

compress-and-forward protocol is the set R5 ⊂ R2
+ of all rate pairs [R1,R2] such that there exists

R
(1)
1 ,R

(2)
1 ,R

(2)
2 ≥ 0 with R

(1)
1 = R1, R

(1)
2 + R

(2)
2 = R1 satisfying

R
(1)
1 ≤ min{αI(U1; YR|U2,Q), βI(V; Y2)} (3.17)

R
(1)
2 ≤ min{αI(U2; YR|U1,Q), βI(V; Y1)} (3.18)

R
(1)
1 + R

(1)
2 ≤ αI(U1U2; YR|Q) (3.19)

R
(2)
2 ≤ αI(X2; ŶR|X1,U2) (3.20)

under the constraint

α(H(ŶR |X1,U2) − H(ŶR|YR)) < βI(Y1; XR|V)

and similarly the set R6 ⊂ R2
+ of all rate pairs [R1,R2] such that there exists R

(1)
1 ,R

(1)
2 ,R

(2)
1 ≥ 0

with R
(1)
1 + R

(2)
1 = R1, R

(1)
2 = R2 satisfying

R
(1)
1 ≤ min{αI(U1; YR|U2,Q), βI(V; Y2)} (3.21)

R
(1)
2 ≤ min{αI(U2; YR|U1,Q), βI(V; Y1)} (3.22)

R
(1)
1 + R

(1)
2 ≤ αI(U1U2; YR|Q) (3.23)

R
(2)
1 ≤ αI(X1; ŶR|X2,U1) (3.24)

under the constraint

α(H(ŶR |X2,U1) − H(ŶR|YR)) < βI(Y2; XR|V)

for some joint probability distributions p(q)p(u1|q)p(u2|q)p(x1|u1)p(x2|u2)p1(yR|x1, x2)p(ŷR|yR)

and p(v)p(xR |v)p2(y1, y2|xR), and for some α, β > 0 with α + β = 1.

Proof. The rate pairs claimed in the corollary where one of the compress-and-forward sub-

rates is implicitly set to 0 follow directly from the proof of Theorem 3.5 by observing, that

the terminal with rate 0 does not need to transmit any information via the compress-and-

forward mechanism. For the following treatment we assume R
(2)
1 = 0. The treatment of
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R
(2)
2 = 0 is analogous. From the proof of Theorem 3.5 it follows immediately, that — as

the events E8 and E10 do not lead to an error for receiver 2, and even more the coding steps

vi and vii can be skipped for this decoder — we do only need to restrict ǫq in the code by

ǫq ∈
(

0,min{ǫ(1)
q , ǫ

(3)
q }
)

with ǫ(1)
q =

1
2α+β

(

βI(XR; Y1|V) − α
(

H(ŶR|X1,U2) − H(ŶR|YR)
))

and ǫ(3)
q =

I(X2;ŶR |X1,U2)−
R

(2)
2
α

3
. Furthermore for the same reason there is no requirement for the constraint

α
(

H(ŶR|X2,U2) − H(ŶR|YR)
)

< βI(XR; Y2|V). �

Now we can join the three regions to a new achievable rate region by convex combination

of rate pairs from the three regions.

Corollary 3.7. An achievable rate region for the two-phase two-way relay channel using a

compress-and-forward protocol is the set RPDF ⊂ R2
+ given by the convex hull of R4 ∪ R5 ∪ R6.

3.4 Concluding remarks

In this chapter the two-way relay channel with a compress-and-forward strategy is studied. We

proposed an achievable rate region for a two-phase protocol. The base upon which the scheme

is build is the observation, that the side information available at the receiver can be used to

enhance the performance in both, the MAC phase and the BC phase. This is due to the fact that

the output of the MAC is caused by the transmitted signals. Therefore the transmitted signal

restricts the possible outcome of the MAC output at the relay, and thereby reduces the number

of possible occurring codewords transmitted in the BC phase for both receivers.

The coding mechanism analyzed in Section 3.1.4 gives rise to further improvements: Recall

Figure 3.1. Suppose for now, that the receiver 1 would know w2 in addition to its side informa-

tion w1 when decoding the relay’s codeword. This restricts the codewords that may occur even

further. The codeword xR(i) transmitted by the relay is in both subsets of the relay’s code, in

the code C(w1) and in the code C(w2). In Figure 3.1 this is true for three codewords. Therefore

the receiver knows that xR(i) ∈ C(w1) ∩ C(w2). The receiver would only need to decide which

of these three codewords has been transmitted. Now, suppose, that M2 > 1; the receiver does

not know w2 but it knows the codewords x
n1

2 (w2), w2 ∈ W2 used by the other transmitter. Ther-

fore the receiver knows the restrictions C(w2) for each of the transmitted messages w2 ∈ W2.

Therefore one could change the coding paradigm and decode only one of the codewords in
⋃

w2
(C(w1) ∩ C(w2)). Unfortunately this will not reduce the number of codewords in the code:

⋃

w2
C(w2) includes all the codewords used by the relay. Otherwise the relay could dismiss the

codeword not in
⋃

w2
C(w2) without any loss in performance, as it would never be used.

Now, recall, that the restriction to the sub-codes C(w1) and C(w2) is due to statistical de-

pendencies in the MAC. Furthermore, note that some sequence of length n1 in the MAC output

alphabet Yn1

R
might be jointly typical with x

n1

1 (w1) and it might be jointly typical with x
n1

2 (w2).

But this still does not imply, that it is jointly typical with the pair
(

x
n1

1 (w1), x
n1

2 (w2)
)

. There-

fore we can construct a better restriction say a set C(w1,w2) ⊆ C(w1) ∩ C(w2) of codewords
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that may occur at the relay if (w1,w2) was transmitted. The union of these restricted codes
⋃

w2
C(w1,w2) ⊆

⋃

w2
(C(w1) ∩ C(w2)) = C(w1) in turn can be used at the receiver 1 to decode

the quantization index i transmitted by the relay and the message transmitted by node 2 jointly.

This joint decoding can improve the performance of the two-way relay channel even more. In

effect one cannot only disable the sum constraint in the MAC, as it was done in this chapter.

Even more, one can use the effect that causes this constraint to improve the performance in the

overall system. The next chapter will analyze this joint decoding mechanism in detail. As a

result an achievable rate region is stated, which extends the region R1 of Theorem 3.1.



Chapter 4

The Two-Way Relay Channel with

Compress-and-Forward and Joint

Decoding

In this chapter we extend the compress-and-forward region given in Chapter 3. In Theorem 3.1

the goal is to transmit a good enough representation of the MAC output to both receivers. The

receiver decodes the message transmitted by the relay and therefore gets the quantized MAC

output. This is used to decode the MAC transmission of the other user. The receivers use their

own transmitted messages as side information in all decoding steps. Indeed, for some channels

one can do better than decoding the relay’s transmission, i.e. there are gains possible compared

to the strategy proposed in Theorem 3.1. The following toy example gives some intuition on

how one could improve the coding:

Example 4.1. The MAC output in this example is the XOR sum of two binary inputs. The

channel from the relay to receiver 1 is a lossless channel which allows transmission of one bit

per channel use. The channel to receiver 2 is noisy. Now suppose that node 2 transmits uncoded.

Node 1 uses some code of rate smaller than 1, e.g. some repetition code (In this toy example

this code is in fact used to fight the noise in the BC phase as we will see below.). Clearly the

relay cannot decode the messages. Now consider the following strategy: The relay forwards

the MAC output to both receivers. Using the strategy of Theorem 3.1 receiver 1 can decode

the relay’s transmitted codeword without error using its own message as side information, but

receiver 2 cannot. Note, that the relay’s transmission code contains all binary codewords of

length n. Using only its own transmitted signal as side information for the decoding of the

relay’s transmission does — by the construction of the example — not restrict the number of

possible transmitted codewords. This way of decoding is not very intuitive: Looking at the

problem at hand one automatically uses the knowledge of the code of node 1. Inverting the

XOR operation the restricted transmission code of the relay is clearly the same as the one used

by node 1 for the MAC transmission.

107
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This toy example shows: Decoding is possible, if the receiver 2, in addition to its own trans-

mitted codeword, also uses knowledge about the MAC transmission code of the other node.

Doing so results in a joint decoding of the MAC codeword of node 1 and the relay’s transmis-

sion. In fact the decoding changes to not decoding the relay’s transmission explicitly. The focus

is now on the message intended for the receiver using the received signal as side information

and the knowledge, how the MAC code of the other node restricts the relay’s transmission code.

The correct decoding of the relay’s transmission is only a by-product. The goal of the relay also

changes: now the goal is not to convey a MAC output to the receivers, but to help the receiver

to decode the message intended for it. As in the toy example it might not be possible to decode

the relay’s codeword without simultaneously decoding the message intended for the receiver.

The new strategy proposed in this section does — unlike the strategy of Theorem 3.1 —

not explicitly decode the transmitted signal xR and therefore the compressed channel output ŷR

at the receivers. In fact it uses the dependency structure between the variables that occur in

the system. Decoding of the message is now performed by a joint decoding over all involved

random variables. This strategy will lead to a new region which can be shown to be an extension

of the region given in Theorem 3.1.

In Section 4.1 we state an achievable rate region for the two-phase two-way relay channel

with compress-and-forward and joint decoding at the receiver. Section 4.1.2 gives the proof for

this region. We shed light on the coding mechanisms used in the decoding in Section 4.1.3.

There, some hints are given for the design of practical codes. In Section 4.2 we extend the

achievable rate region of Theorem 4.1 in Section 4.1 by superimposing the scheme on a decode-

and-forward scheme. The resulting region RPCF-JD stated in Theorem 4.3 includes all regions

for the two-phases two-way relay channel given in this thesis up to that point.

Some of the results of this section where published in [13].

4.1 An Achievable Rate Region with Joint Decoding

In this section we propose an achievable rate region that is attained by a compress-and-forward

strategy with joint decoding at the receiver. As in Chapter 3, the relay forwards a quantized

representation of this output to both receivers. Again the message known by the receiver is used

to enhance the decoding performance in the BC phase. This is possible as the MAC output

depends on the codeword transmitted by the receiver. In addition to this side information the re-

ceiver uses its knowledge about the codewords used by the other node in the MAC transmission

and about the statistical dependencies due to the MAC. As a consequence the receiver does not

aim to decode the relay’s transmission but focuses on the decoding of the message transmitted

by the other node directly. The decoding of the relay’s transmission is a by-product of the joint

decoding. For the following discussion, recall the system model and the definitions given in

Chapter 1.
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4.1.1 Coding Theorem

Theorem 4.1. An achievable rate region for the two-phase two-way relay channel using a

compress-and-forward protocol is the set R7 ⊂ R2
+ of all rate pairs [R1,R2] satisfying

R1 ≤ max

{

0,min
{

αI(X1; ŶR|X2,Q), α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Y2)
}

}

R2 ≤ max

{

0,min
{

αI(X2; ŶR|X1,Q), α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Y1)
}

} (4.1)

for some α, β > 0 with α+ β = 1 and for some joint probability distributions p(q)p(x1|q)p(x2|q)

p1(yR|x1, x2)p(ŷR|yR) and p(xR)p2(y1, y2|xR).

Remark 4.1 (Cardinalities of random variables). To achieve any point in the given region it is

sufficient to consider only random variables Q and ŶR with cardinalities restricted to |Q| ≤ 3

and |ŶR| ≤ |YR| + 2. This can be shown using the Fenchel-Bunt extension of Caratheodory’s

theorem [62]. A proof of this claim is given in the appendix.

Remark 4.2 (Extension of the compress-and-forward region). To see that the region R7 is an

extension of the region R1 given in Theorem 3.1 we plug in some rate pair and rewrite the new

rate constraint the same way as the constraints (3.2) for R1: For Theorem 4.1 we have

α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Y1) − R2 ≥ 0

α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Y2) − R1 ≥ 0
(4.2)

while the constraints (3.2) can be rewritten as

α
(

I(X1; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(Y1; XR) > 0

α
(

I(X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(Y2; XR) > 0.
(4.3)

Now α
(

I(X1X2; ŶR|Q) − I(X1; ŶR|Q)
)

− R2 = αI(X2; ŶR|X1,Q) − R2 ≥ 0 for any distribution that

fulfills the requirements of any of the rate regions. Therefore the additional rate constraints of

Theorem 4.1 are less strict than the constraints (3.2).

Remark 4.3 (Loss due to quantization). The expressions (4.1) split into a part for the MAC and

a part for the BC. The rate constraints are similar to those in the decode-and-forward region

(2.11); the difference is, that we trade the sum constraint for the MAC in for a penalty term for

the BC. Now, an interesting question is, whether we can eliminate the sum constraint without a

penalty to the BC rate region.

We have I(X1X2; ŶR|Q) − I(YR; ŶR|Q) ≤ 0 due to the data processing inequality. The second

expression in (4.1) is only dependent on the broadcast channel, if in addition to the requirement

of the theorem we had p(x1, x2, yR, ŷR|q) = p(x1, x2|q)p(ŷR|x1, x2)p1(yR|x1, x2). We have by the

requirements of the theorem p(yR, ŷR|x1, x2) = p(ŷR|yR)p1(yR|x1, x2). Furthermore we now would
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need p(yR, ŷR|x1, x2) = p1(yR|x1, x2)p(ŷR|x1, x2). So the second expression in the rate require-

ments is only dependent on the broadcast channel if and only if ∀x1, x2, yR : p1(yR|x1, x2) , 0

we have p(ŷR|x1, x2) = p(ŷR|yR). This is easy to fulfill if we chose ŶR independent of X1, X2,

and YR but in this case the first expression in the rate constraint is 0. The first expression in the

rate constraint can be nonzero if the multiple access channel is such, that for K > 1 disjoint

subsets in the channel input alphabet X̄k ⊂ X1 × X2, k ∈ {1, 2, . . . ,K},
⋃

k X̄k = X1 × X2 and

for L, 1 < L ≤ K disjoint subsets in the channel output alphabet Ȳl ⊂ YR,
⋃

l Ȳl = YR we

have ∀(x1, x2) ∈ X̄k, yR ∈ Ȳl, l , f (k) p1(yR|x1, x2) = 0, where f (·) is some fixed mapping. The

required compression at the relay is in general very lossy and will degrade the MAC perfor-

mance. In fact the positive values in p(yR|x1, x2) do not matter for the performance using that

kind of compression. The toy example given in the introduction uses this scheme and suffers no

performance loss due to the special deterministic structure of the MAC.

Remark 4.4 (Non-convexity of the region). In the general case the region given in Theorem 4.1

in non-convex. In comparison to the compress-and-forward regionR1 it turns out, that the region

R7 contains the special case of idle users which was treated in Corollary 3.2 as new regions R2

andR3. In fact we can interpret the region as the union of one two-dimensional region, where we

have no idle users, and two one-dimensional regions, where one of the users is idle, i.e. has a rate

of 0. Setting one of the user’s rate to 0 we gain some more freedom, as in this case the probabil-

ity distribution is less constraint, i.e. we allow α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Y1) < 0

if R2 = 0. This increased freedom may be used to achieve a bigger rate R1. Therefore the region

R7 may be non-convex. Clearly the convex hull of the region R7 is achievable by timesharing.

Corollary 4.2. An achievable rate region for the two-phase two-way relay channel using a

compress-and-forward protocol is the set RCF-JD ⊂ R2
+ given by the convex hull of R7.

Remark 4.5 (Timesharing of codes). If the convexification and therefore timesharing of codes

is needed, the resulting code does not fulfill the requirements of Theorem 4.1. As a consequence

the typical set decoding used in the proof need not work on the overall code. The decoding needs

to use the special structure of the code, i.e. ignoring some of the symbols in the decoding for

one of the users. The coding operations of the resulting code can be seen as decoding up to three

codes interleaved with each other separately, each having its own constraints. In fact, as already

discussed in Remark 3.6 the timesharing could be included in some time sharing variable with

similar difficulties. As pointed out in Remark 3.6 the BC phase gets more complicated if we

use more then one random variable for the compression at the relay. With the joint decoding

approach the coding in the BC phase might change compared to the compress-and-forward

approach, as we do not explicitly aim to decode the correlated variables, i.e. the MAC output

representatives, but the transmitted data. An extension along these lines is analyzed in Chapter

5.
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4.1.2 Proof of the Coding Theorem

Proof. For the proof of the theorem we can reuse arguments from the proof of Theorem 3.1.

The generation of the codebook is the same and so is most of the coding. We will restrict the

proof to those things that change: What is replaced is the decoding at the terminal nodes and

the choice of the parameter ǫq. The decoding sets are changed as well, as they depend on ǫq.

Furthermore, for some of the parameters of the decoding sets we need a stronger constraint to

cope with the new decoding at the receiver. We also have to adapt the error events. All things

that are not explicitely stated here can be reused without change form Section 3.1.2.

The first thing to note is, that one of the rate constraints, e.g. α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+

βI(XR; Yk), k ∈ {1, 2}, might be smaller than 0. We start the proof by assuming probability

distributions and a rate pair such that the inequalities (4.1) are strict and therefore we have

I
(

X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Yk) > 0 for k ∈ {1, 2}. For these rate pairs the proof is

similar to the proof of Theorem 3.1 and only the differences will be given in this proof. Finally

as for the proof of Theorem 3.1 and used by Corollary 3.2 it turns out, that the rate require-

ments are not connected directly, i.e. R2 does not appear in the calculation for receiver 2 while

R1 does not appear in the calculation for receiver 1 and so do the constraints and requirements

on the decoding sets related to these rates. Therefore in case that one of the users is idle, i.e.

has a rate of 0, the constraints corresponding to that rate are not active and can be disabled. It

follows that it is save to set the rate to 0 if α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Yk) < 0 for

some k ∈ {1, 2}. The achievability of the closure of the rate region is again a consequence of

the definition of achievability. The convex hull is achievable by timesharing using up to three

codes, one for each of the three different modi operandi.

4.1.2.1 Adapted Random Codebook Generation

For the choice of ǫq we now have:

• Let the parameters ǫ(1)
q , ǫ(2)

q ,ǫ(3)
q , and ǫ(4)

q , be given as:

ǫ(1)
q :=

1

2α + β

(

α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Y2) − R1

)

,

ǫ(2)
q :=

1

2α + β

(

α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Y1) − R2

)

,

ǫ(3)
q :=

I(X2; ŶR|X1,Q) − R2

α

3
,

and

ǫ(4)
q :=

I(X1; ŶR|X2,Q) − R1

α

3
.

Choose ǫq ∈ (0,min{ǫ(1)
q , ǫ

(2)
q , ǫ

(3)
q , ǫ

(4)
q }).
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Using this ǫq we can generate the random codebook as it was done in Section 3.1.2.1. Most

of the decoding sets could use the same parameters as in Section 3.1.2.2 but with the new ǫq.

Nevertheless, we will diminish the parameter as ǫ4 needs a new restriction due to the joint

decoding.

4.1.2.2 Adapted Decoding Sets

For the decoding we will use typical set decoding. For a strict definition of the decoding sets

we choose parameter for the typical sets as ǫ1 = ǫ2 = ǫ3 = ǫ4 ∈ (0,
ǫq

8
). The missing parameters

for the receiver 2 are chosen in an analogous way.

4.1.2.3 Adapted Coding

While in the proof of Theorem 3.1 we decoded ŷ first and w2 thereafter, we do both steps at the

same time now, i.e. we have decoding steps iv and v replaced by the new decoding step îv:

îv Upon receiving y
n2

1 node 1 decides that w2 was transmitted if x
n1

2 (w2) is the only codeword

such that for some i ∈ {1, 2, . . . , 2⌈αnRQ⌉}, the sequences x
n1

2 (w2), ŷ
n1

R
(i), and x

n1

1 (w1) are

jointly typical given qn1 , and simultaneously x
n2
R

(i) and the received signal y
n2

1 are jointly

typical, i.e ∃i ∈ {1, 2, . . . , 2⌈αnRQ⌉} :
(

x
n1

1 (w1), x
n1

2 (w2), ŷn1

R
(i)
)

∈ T
(n1)
ǫ4

(X1, X2, ŶR|q
n1) and

(

x
n2
R

(i), yn2

1

)

∈ T
(n2)
ǫ2 (XR, X1).

All other coding steps are identical to the coding described in Section 3.1.2.3.

4.1.2.4 Adapted Error Events

For the bounding of E{µ(n)
1 } we can reuse all the error events defined in Section 3.1.2.4 but E4.

Therefore we replace E4 by a new error event:

• Ê4: Suppose a codebook is given, x
n1

1 (w1), x
n1

2 (w2) are transmitted, the relay chose some i

and x
n2

R
(i) is transmitted. Ê4 is the event that ∃ j , i, ŵ2 , w2 :

(

x
n1

1 (w1), x
n1

2 (ŵ2), ŷn1

R
( j)
)

∈

T
(n1)
ǫ4 (X1, X2, ŶR|q

n1),
(

x
n2
R

( j), yn2

1

)

∈ T
(n2)
ǫ2 (XR, X1).

Note that the seemingly missing event j = i is already captured by E6. Now we bound the

probability for this error event for receiver 1. The proof for receiver 2 is analogous.

Error event Ê4 E{Pr[Ê4]} ≤
∑

qn1∈Q
n1

p(qn1)Pr[Ê4,1]Pr[Ê4,2]2⌈αnRQ⌉2⌊nR2⌋ (4.4)

Here Ê4,1 is the event that for three sequences x
n1

1 , x
n1

2 , ŷ
n1
R

drawn independent of each other

we have (x
n1

1 , x
n1

2 , ŷ
n1

R
) ∈ T (n1)

ǫ4
(X1, X2, ŶR|q

n1). x
n1

1 , x
n1

2 , and ŷ
n1

R
are drawn at random according
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to p(x
n1

1 |q
n1), p(x

n1

2 |q
n1), and p(ŷn1

R
|qn1) respectively to capture the averaging over the random

codebooks. Ê4,2 is the event that for two sequences x
n2

R
, y

n2

1 drawn independent of each other we

have (x
n2
R
, y

n2

1 ) ∈ T (n2)
ǫ2 (XR, X1). The factor 2⌈αnRQ⌉ accounts for the fact that we can use a union

bound and the error occurs if at least one j , i is found fulfilling the requirements. The factor

2⌊nR2⌋ accounts for the different possible ŵ2.

For sufficiently large n

Pr[Ê4,1] =
∑

x
n1
1 ∈X

n1
1

∑

x
n1
2 ∈X

n1
2

∑

ŷ
n1
R
∈Ŷ

n1
R

p(x
n1

1 |q
n1)p(x

n1

2 |q
n1)χ

T
(n1)
ǫ4

(X1,X2,ŶR |q
n1 )

(x
n1

1 , x
n1

2 , ŷ
n1

R
)p(ŷn1

R
|qn1)

≤ |T (n1)
ǫ4

(X1, X2, ŶR|q
n1)|2−n1(H(X1 |Q)−2ǫ4)2−n1(H(X2 |Q)−2ǫ4)2−n1(H(ŶR|Q)−2ǫ4)

due to the properties of the typical set. Furthermore, it follows from these properties that

|T (n1)
ǫ4

(X1, X2, ŶR|q
n1)| ≤ 2n1(H(X1,X2,ŶR|Q)+2ǫ4).

Pr[Ê4,2] can be bounded in a similar way. Therefore we haveE{Pr(Ê4)} ≤
∑

qn1∈Q
n1

p(qn1)2−n1(I(X1X2;ŶR |Q)−8ǫ4)2−n2(I(X
R

;Y1)−6ǫ2)2αnRQ+12nR2

≤ 2−n(α(I(X1X2;ŶR |Q)−RQ−8ǫ4)+β(I(XR;Y1)−6ǫ2)−R2)+1+I(X1X2;ŶR |Q)+6ǫ2

= 2−n(α(I(X1X2;ŶR |Q)−I(YR;ŶR |Q))+βI(X
R

;Y1)−R2−ǫ̃)+1+I(X1X2;ŶR |Q)+6ǫ2

with

ǫ̃ = αǫq + β6ǫ2 + α8ǫ4 < (2α + β)ǫq.

This term goes to zero if

α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Y1) − R2 − (2α + β)ǫq > 0

By the choice of ǫq as

ǫq <
1

(2α + β)

(

α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Y1) − R2

)

this is true whenever

R2 < α
(

I(X1X2; ŶR|Q) − I(YR; ŶR|Q)
)

+ βI(XR; Y1)

as required by the assumption. Therefore for any given ǫ we can find n(4) such that forE{Pr[Ê4]} <
ǫ
6 for n ≥ n(4). The rest of the proof is analogous to the proof of Theorem 3.1 and is omitted
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here. �

4.1.3 A Note on Coding Mechanisms for Joint Decoding

The coding mechanism in the proof of Theorem 4.1 is similar to the coding used in Theorem 3.1.

In fact the code used by the relay can be the same for both coding schemes. Only the decoding

at the terminal node changes. Instead of using only its one side information as described in

Section 3.1.4 the receivers use in addition the knowledge of the other nodes code in the MAC

phase for the decoding.

We now describe the decoding procedure at node 1. This node knows its own message w1

and the code used by node 2 in the MAC phase. Now, node 1 determines the MAC outputs

which are jointly typical with the side information w1 and the message w2 = 1. Furthermore,

using the relay’s mapping f (·) node 1 can determine the subset C(w1, 1) of codewords xR(i), that

may occur if w1 and w2 = 1 are transmitted. This proceeding is repeated for all messages w2.

The union of these subcodes forms the effective code C(w1) =
⋃

w2
C(w1,w2) used by node

1 for the decoding. Note that the code can be determined offline, as it does not depend on

any random variable but only on the statistics of the channels. With high probability the code

C(w1) contains less than 2βnI(XR;Y1) codewords and is therefore decodable by the receiver. The

decoding yields both: the message w2 transmitted by the other node and the index i used for the

compression at the relay.

For a practical coding scheme one has to consider the MAC encoding, the quantization

at the relay and the BC coding jointly. Except for the statistics of the MAC and the chosen

quantization there is no structure in the mechanism, that could be used to create good codes.

A simple but potentially suboptimal code for the BC is again a set of codewords, such that all

subsets of size 2βnI(XR;Y1) are good codes for the channel to receiver 1, and all subsets of size

2βnI(XR;Y2) are good codes for the channel to receiver 2. Note, that once the MAC statistics,

the MAC code and the quantization is known, the index subsets that determine the subcode

C(w1,w2) for a given w1, w2 are known as well. These in turn determine the codes C(w1) and

C(w2). However, although the code used in the MAC phase should be a good code for the MAC

transmission, and enables the decoding knowing ŷ
n2

R
and the side information, the Example 4.1

showed, that this code can also be used for error correction in the BC. Therefore it is unlikely,

that in general good codes can be designed separating MAC and BC phase. On the contrary

to the above considerations it may be more promising to design a BC code first, consisting

of good interwoven subcodes C(w1) and C(w2), and thereafter tuning the quantization and the

MAC coding such that theses codes are actually those, which occur at the relay. This is possible

as the MAC encoding together with the quantization determine the subcodes C(w1,w2), that are

used by both nodes in the decoding process.
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Figure 4.1: The left figure shows the capacity regions of the Channel considered in Section
4.1.4. The achievable rate region is indicated by the solid line. The dashed and dotted lines
depict the constraints imposed by the MAC and BC phase respectively. The capacity for the
channel is achievable with compress-and-forward and joint decoding. The region displayed in
the center is an achievable rate region with compress-and-forward without joint decoding using
an identity mapping at the relay and uniform distributed MAC inputs. The figure on the right
hand side is the region of rate pairs achievable with decode-and-forward.

4.1.4 Example and Interpretation

As a first example consider a setup similar to the one in Example 4.1. The MAC output is the

XOR sum of two binary inputs. The BC channel consists of one lossless channel with binary

input to receiver 2. The channel to receiver 1 is a binary symmetric channel with a probability

p1,BC that the output bit is inverted. The MAC channel has a maximum sum rate of 1 bit.

The channel to receiver 1 can transport 1 − h(p1,BC) bits per channel use. If we use a uniform

input distribution on X1, X2 and an identity mapping from yR to ŷR we have I(X1; YR|X2,Q) =

I(X1; ŶR|X2,Q) = I(ŶR; YR|Q) = I(X1X2; ŶR|Q) = 1 bit. Therefore I(X1X2; ŶR|Q) − I(ŶR; YR|Q) =

0 and the achievable rate region is given by

R1 ≤ min{α, (1 − α)}

R2 ≤ min{α, (1 − α)(1 − h(p1,BC))}

for some α ∈ [0, 1]. Comparison with the outer bound in Lemma 1.1 shows, that this is indeed

the capacity of the considered channel.

If we do not use joint decoding the constraints in (3.2) enforce α < (1 − α)(1 − h(p1,BC)) if

we use the identity mapping and an uniform input distribution to the MAC1. This degrades the

achievable rate region. Figure 4.1 shows the capacity region for this example together with the

region that is achievable without joint decoding using the sketched strategy. The third region

shown is achievable by decode-and-forward.

Note that in a similar setup with a symmetric binary erasure multiple access channel as

considered in Section 2.1.5 the same rate pairs are achievable by compress-and-forward with

joint decoding. The strategy uses a mapping of the MAC output such that the virtual channel

1A non-uniform input distribution achieves some more rate pairs, but the analysis of this is out of the scope of
the example. Some remarks on this effect will be given in the discussion of the next example.
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p(ŷR|x1, x2) is the channel considered in the example above. For the optimal (uniform) input

distribution on X1, X2 , we still have I(X1X2; ŶR|Q) − I(ŶR; YR|Q) = 0 while the individual rate

constraints do not change due to that mapping, i.e. we have I(X1; YR|X2,Q) = I(X1; ŶR|X2,Q).

The resulting rate expressions are that of the cutset outer bound on the capacity region (Lemma

1.1). Therefore we conclude that for the example in Section 2.1.5 capacity can be achieved by

compress-and-forward with joint decoding.

Now consider a setup with a noisy MAC. The setup is based on the MAC of the above

example, where the output is the XOR sum of two binary inputs. Some binary noise is added

to the channel output, that is independent of the channel inputs, i.e. we invert the MAC output

with probability pMAC . Using the identity mapping at the relay and a uniform input distribution

leads to I(X1; ŶR|X2,Q) = 1 − h(pMAC) and I(X1X2; ŶR|Q) − I(ŶR; YR|Q) = −h(pMAC). Therefore

we get some penalty if we use this strategy. This penalty is caused by the quantization: We

spent some bits to describe the MAC output, which contains noise that has no information for

the receivers. Whenever I(X1X2; ŶR|Q) − I(ŶR; YR|Q) = −I(ŶR; YR|X1, X2,Q) < 0 the noise is

still included in quantized representative. Therefore some bits are wasted on the noise. We can

decrease this penalty be using a less fine quantization. One way2 of achieving this is to use a

quantized variable such that p(ŷR|yR) is a binary symmetric channel with crossover probability

pQ. Thereby we degrade the MAC performance and we have for uniform distributed channel

inputs I(X1X2; ŶR|Q) − I(ŶR; YR|Q) = h(pQ) − h(pMAC + pQ − 2pMAC pQ) and I(X1; ŶR|X2,Q) =

1 − h(pMAC + pQ − 2pMAC pQ). Now suppose we optimize α to achieve a high rate for receiver 1

ignoring the rate of receiver 2. Fixing the strategy as discussed above leads to

α =
1 − h(p1,BC)

2 − h(pQ) − h(p1,BC)

and a maximum rate

R2 =
1 − h(p1,BC)

2 − h(pQ) − h(p1,BC)
(1 − h(pMAC + pQ − 2pMAC pQ)).

Therefore we can calculate the optimal parameter pQ for this strategy and for the rate R2. In

Figure 4.2 the rate R2 is plotted over the parameter pQ for the quantization assuming fixed

pMAC = 0.3 and p1,BC = 0.2 and a corresponding optimal α. It turns out that the optimal pQ

depends on both, pMAC and p1,BC. In particular, the optimal parameters pQ and αwill be different

if the goal is to maximize R1. The figure shows, that the degradation of the MAC output can

increase the rate in the overall communication.

Similar effects, i.e. the degradation of the performance in one of the transmission steps to

increase the overall performance, might be used to increase the rate of R1 in the first example of

the noiseless MAC without joint decoding above: In that example using a non-uniform distri-

2We do not argue that this is the optimal way of quantization. But this quantization serves the purpose to show
some effects which can occur for the compress-and-forward strategy with joint decoding.
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Figure 4.2: The figure the achievable rate R = R1 for receiver 1 over the parameter p = pQ for
the quantization assuming fixed pMAC = 0.3 and p1,BC = 0.2.

bution for X2 allows for larger α. This in turn increases the rate R1. With this strategies for the

example at hand the rate region with joint decoding and without joint decoding are the same (up

to boundary effects du to the strict inequalities in the constraint (3.2)), but different strategies

need to be used. Note that in general it is not possible to use a different input distribution on X1

without affecting the rates achievable for R2 in the MAC phase.

Back to the example with a noisy MAC: Suppose for now we choose α and pQ to maximize

R1. We have h(pQ) − h(pMAC + pQ − 2pMAC pQ) < 0 for pQ , 0.5. Therefore to achieve the

maximum rate R1 it might be necessary to set R2 = 0 if p1,BC is close to 0.5. If the BC is

orthogonal for both receivers, a simple solution for the two problems sketched above is to use

a different quantization for the two receivers. This strategy is analyzed in Chapter 5. Note that

we cannot use different α, as this parameter determines the timesharing and is common for both

receivers.

The example with the noisy MAC output leads the way to a different strategy at the relay:

There exists [64, 65] a capacity achieving sequence of linear codes for the binary symmetric

channel with parameter pMAC . Now, if both nodes use the same of these linear codes, the XOR

sum of the codewords is again a codeword du to the linearity of the code. Therefore the relay

will be able to decode the XOR sum of the two messages. As already pointed out in Chapter

2, the relay can use the XOR sum of the messages as an input of coding for the BC with side

information at the receivers. Therefore we conclude that for this channel the cutset bound given

in Lemma 1.1 is achievable. The strategy in this example is based on the structure of the codes.

Because of this structure the relay need to choose one out of only 2αn max{R1,R2} codewords. Such

a reduction of the number of effective codewords the relay has to pick from cannot be ensured

with a random coding argument, unless one of the nodes uses all available codewords as in the

case if there is no noise in the MAC. Until today the achievable rate region with such structured

codes is only known for very few channels.
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In [66] a structured code based on nested lattices for certain Gaussian channels was proposed

and an achievable rate region was stated. A related topic was introduced as computational

coding in [67]. In computational coding the goal is to receive a certain function of several

random variables at the receiver of a MAC. Receiving the XOR sum can be seen to be an

example of such a computational code. For general channels the achievable rate region for

decoding the XOR sum of two messages with structured coding remains unknown. A related

result for source coding can be found in [68, 35]. In this references structured codes are used

to encode the XOR sum of two dependent random variables. During the work on this thesis

we obtained some results for the transmission of correlated binary data via an AWGN MAC,

which are related to the design of structured codes. These results were published in [3, 4]. The

analysis of computational coding for a MAC is out of the scope of this thesis.

4.2 Partial Decode-and-Forward with Joint Decoding at the

Receiver

Similar to the proceeding in Section 3.3.1 the above coding scheme can be superimposed on

a decode-and-forward scheme. The resulting coding partially decodes the messages at the re-

lay. The complement information is forwarded by a compress-and-forward approach. At the

receiver, a joint decoding is used to decode the compress-and-forward part of the messages.

4.2.1 Coding Theorem

Theorem 4.3. Let R8 ⊂ R4
+ be the set of all

[

R
(1)
1 ,R

(1)
2 ,R

(2)
1 ,R

(2)
2

]

satisfying

R
(1)
1 ≤ min

{

αI(U1; YR|U2,Q), βI(V; Y2)
}

R
(1)
2 ≤ min

{

αI(U2; YR|U1,Q), βI(V; Y1)
}

R
(1)
1 + R

(1)
2 ≤ αI(U1U2; YR|Q)

R
(2)
1 ≤ max

{

min
{

αI(X1; ŶR|X2,U1),

α
(

I(X1X2; ŶR|U1,U2) − I(YR; ŶR|U1,U2)
)

+ βI(XR; Y2|V)
}

, 0

}

R
(2)
2 ≤ max

{

min
{

αI(X2; ŶR|X1,U2),

α
(

I(X1X2; ŶR|U1,U2) − I(YR; ŶR|U1,U2)
)

+ βI(XR; Y1|V)
}

, 0

}

(4.5)

for some joint probability distributions p(q)p(u1|q)p(u2|q)p(x1|u1)p(x2|u2)p1(yR|x1, x2)p(ŷR|yR)

and p(v)p(xR |v)p2(y1, y2|xR) and some α, β > 0 with α + β = 1.

An achievable rate region for the two-phase two-way relay channel using a partial decode-

and-forward protocol is the set RPCF-JD ⊂ R2
+ of all rate pairs [R1,R2] such that there exists
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[

R
(1)
1 ,R

(1)
2 ,R

(2)
1 ,R

(2)
2

]

∈ ConvexHull(R8) with R
(1)
1 + R

(2)
1 = R1, R

(1)
2 + R

(2)
2 = R2.

Remark 4.6 (Cardinalities of all auxiliary variables). All the cardinalities of all auxiliary vari-

ables can be bounded using the Fenchel-Bunt extension of Caratheodory’s theorem [62]. The

proof of this claim is along the lines of the bounding of the auxiliary variables in the other the-

orems. These are given in Section 3.2 and in the appendices. The proof for this rate region does

not contain any new elements. Therefore it is skipped for brevity. The region R8 contains the

region RDF and the region RCF-JD as special cases. The region of RDF is obtained by choosing

|ŶR| = 1 U1 = X1, U2 = X2, and V = XR; we obtain the regionsRCF-JD by choosing U1 = U2 = Q

and |V| = 1.

4.2.2 Proof of the Coding Theorem

Proof. The proof is an extension of the proof of Theorem 3.5 analogous to the proceeding in

the proof of Theorem 4.1. We will restrict the proof here to those things that change compared

to the proof of Theorem 3.5: What is replaced is the decoding at the terminal nodes and the

choice of the parameter ǫq. For the choice of ǫq we now have:

• Let ǫ(1)
q = 1

2α+β

(

βI(XR; Y1|V) − α
(

I(ŶR; X1, X2|U1,U2) + I(ŶR; YR|U1,U2)
)

− R
(2)
2

)

, ǫ(2)
q =

1
2α+β

(

βI(XR; Y2|V)−α
(

I(ŶR; X1, X2|U1,U2)+I(ŶR; YR|U1,U2)
)

−R
(2)
1

)

, ǫ(3)
q =

I(X2;ŶR |X1,U2)−
R

(2)
2
α

3 ,

and ǫ(4)
q =

I(X1;ŶR |X2,U2)−
R

(2)
1
α

3
. Choose ǫq ∈ (0,min{ǫ(1)

q , ǫ
(2)
q , ǫ

(3)
q , ǫ

(4)
q }).

Some parameters for the decoding sets are changed. They are now chosen as ǫ2 = ǫ4 = ǫ5 =

ǫ6 ∈ (0,
ǫq

8 ). Furthermore we have decoding steps vi and vii replaced by the new decoding step

îv:

v̂i Upon receiving y
n2

1 and knowing w
(1)
2 , w

(1)
1 and w

(2)
1 node 1 decides that w2(w(1)

2 ,w
(2)
2 ) was

transmitted if x
n1

2 (w(2)
2 |w

(1)
2 ) is the only codeword such that for some i ∈ {1, 2, . . . , 2⌈αnRQ⌉}

the sequences x
n1

2 (w(2)
2 |w

(1)
2 ), ŷ

n1

R
(i|w(1)

1 ,w
(1)
2 ), and x

n1

1 (w(2)
1 |w

(1)
1 ) are jointly typical, and si-

multaneously x
n2
R

(i|w(1)
2 ,w

(1)
1 ) and the received signal y

n2

1 are jointly typical, i.e. ∃i ∈

{1, 2, . . . , 2⌈αnRQ⌉} such that
(

x
n2

R
(i|w(1)

2 ,w
(1)
1 ), yn2

1

)

∈ T
(n2)
ǫ4

(

XR, Y1|v
n2(w(1)

1 ,w
(1)
2 )
)

and simulta-

neously
(

x
n1

1 (w(2)
1 |w

(1)
1 ), x

n1

2 (w(2)
2 |w

(1)
2 ), ŷn1

R
(i|w(1)

1 ,w
(1)
2 )
)

∈ T
(n1)
ǫ6

(

X1, X2, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

.

If no or more than one such codewords is found node 1 chooses w2(w(1)
2 ,w

(2)
2 ) = 1.

We can reuse all the error events but E8. Therefore we replace E8 by a new error event:

• Ê8: Suppose a codebook is given, x
n1

1 (w1), x
n1

2 (w2) are transmitted, the relay chose some

i and x
n2

R
(i) is transmitted. Ê8 is the event that for some j , i and ŵ

(2)
2 , w

(2)
2 we

have
(

x
n2

R
(i|w(1)

2 ,w
(1)
1 ), yn2

1

)

∈ T
(n2)
ǫ4

(

XR, Y1|v
n2(w(1)

1 ,w
(1)
2 )
)

and simultaneously
(

x
n1

1 (w(2)
1 |w

(1)
1 ),

x
n1

2 (ŵ(2)
2 |w

(1)
2 ), ŷn1

R
(i|w(1)

1 ,w
(1)
2 )
)

∈ T
(n1)
ǫ6

(

X1, X2, ŶR|u
n1

1 (w(1)
1 ), un1

2 (w(1)
2 )
)

Note that the seemingly missing event j = i is already captured by E10. Now we bound the

probability for the new error event for receiver 1.
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Error event Ê8E{Pr[Ê4]} ≤
∑

vn2∈V
n2

∑

u
n1
1 ∈U

n1
1

∑

u
n1
2 ∈U

n1
2

∑

qn1∈Q
n1

p(qn1 , u
n1

1 , u
n1

2 )p(vn2 )Pr[Ê8,1]Pr[Ê8,2]2⌈αnRQ⌉2⌊nR
(2)
2 ⌋

Here Ê8,1 is the event, that given u
n1

1 , u
n1

2 , and qn1 for three sequences x
n1

1 , x
n1

2 , ŷ
n1

R
drawn indepen-

dent of each other we have (x
n1

1 , x
n1

2 , ŷ
n1
R

) ∈ T (n1)
ǫ6

(X1, X2, ŶR|u
n1

1 , u
n1

1 ). x
n1

1 , x
n1

2 , and ŷ
n1
R

are drawn at

random according to p(x
n1

1 |u
n1

1 ), p(x
n1

2 |u
n1

2 ) and p(ŷn1

R
|un1

1 , u
n1

2 ) respectively to capture the averag-

ing over the random codebooks and the known side information. Ê8,2 is the event, that given vn2

for two sequences x
n2
R
, y

n2

1 drawn independent of each other according to p(x
n2
R
|vn2) and p(yn2

1 |v
n2)

we have (x
n2

R
, y

n2

1 ) ∈ T (n2)
ǫ4

(XR, X1|v
n2). The factor 2⌈αnRQ⌉ accounts for the fact that we can use a

union bound and the error occurs if at least one j , i is found fulfilling the requirements. The

factor 2⌊nR
(2)
2 ⌋ accounts for the different possible ŵ

(2)
2 .

For sufficiently large n

Pr[Ê8,1] =
∑

x
n1
1 ∈X

n1
1

∑

x
n1
2 ∈X

n1
2

∑

ŷ
n1
R
∈Ŷ

n1
R

p(x
n1

1 |u
n1

1 )p(x
n1

2 |u
n1

2 )p(ŷn1

R
|un1

1 , u
n1

2 )

× χ
T

(n1)
ǫ6

(X1,X2,ŶR|u
n1
1 ,u

n1
2 )

(x
n1

1 , x
n1

2 , ŷ
n1

R
)

≤ |T (n1)
ǫ6

(X1, X2, ŶR|u
n1

1 , u
n1

2 )|2−n1(H(X1 |U1)−2ǫ6)2−n1(H(X2 |U2)−2ǫ6)2−n1(H(ŶR|U1,U2)−2ǫ6)

due to the properties of the typical set. Furthermore, it follows from these properties that

|T (n1)
ǫ6

(X1, X2, ŶR|u
n1

1 , u
n1

2 )| ≤ 2n1(H(X1,X2,ŶR|U1,U2)+2ǫ6).

Pr[Ê8,2] can be bounded in a similar way. Therefore we have for sufficient large nE{Pr(Ê8)} ≤
∑

v
n2∈Vn2

∑

u
n1
1 ∈U

n1
1

∑

u
n1
2 ∈U

n1
2

∑

qn1∈Q
n1

p(qn1 , u
n1

1 , u
n1

2 )p(vn2)2−n1(I(X1X2;ŶR |U1,U2)−8ǫ6)

2−n2(I(X
R

;Y1 |V)−6ǫ4)2αnRQ+12nR
(2)
2

≤ 2−n
(

α(I(X1X2;ŶR |U1,U2)−RQ−8ǫ6)+β(I(X
R

;Y1 |V)−6ǫ4)−R
(2)
2

)

+1+I(X1X2;ŶR |U1,U2)+6ǫ4

= 2−n
(

α(I(X1X2;ŶR |U1,U2)−I(YR ;ŶR |U1,U2))+βI(XR;Y1 |V)−R
(2)
2 −ǫ̃

)

+1+I(X1X2;ŶR |U1,U2)+6ǫ4

with

ǫ̃ = αǫq + β6ǫ4 + α8ǫ6 < (2α + β)ǫq.

This term goes to zero if

α
(

I(X1X2; ŶR|U1,U2) − I(YR; ŶR|U1,U2)
)

+ βI(XR; Y1|V) − R
(2)
2 − (2α + β)ǫq > 0
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By the choice of ǫq as

ǫq <
1

(2α + β)

(

α
(

I(X1X2; ŶR|U1,U2) − I(YR; ŶR|U1,U2)
)

+ βI(XR; Y1|V) − R
(2)
2

)

this is true whenever

R
(2)
2 < α

(

I(X1X2; ŶR|U1,U2) − I(YR; ŶR|U1,U2)
)

+ βI(XR; Y1|V)

as required by the assumption. Therefore for any given ǫ we can find n(8) such thatE{Pr[Ê8]} <
ǫ

10
for n ≥ n(8).

�

4.3 Concluding remarks

In this chapter, the compress-and-forward scheme proposed in Chapter 3 is extended by ap-

plying a joint decoding mechanism. An achievable rate region for a two-phase protocol was

stated in Theorem 4.1. The gain originates from the observation, that the MAC phase induces

some dependencies to the system, which remain unused by the compress-and-forward scheme,

namely we can use the joint typicality between both inputs and the output of the MAC to restrict

the effective code in the BC phase.

The new scheme has some interesting properties. First it is not required, that the relay

can decode the data. Furthermore the terminal node may not be able to decode the relay’s

transmission without decoding the message of the other node; even more, the receiver is not

required to decode the relay’s transmission without error. Surprisingly, the relaying of both

messages via the relay is possible anyhow.

For certain channels the achievable rate region given in Theorem 4.1 equals the outer bound

on the capacity region given by the cutset bound in Lemma 1.1. In general this bound cannot be

achieved with the proposed coding technique, as some penalty term caused by the quantization

occurs. A promising way to overcome this penalty is sketched in Section 4.1.4. Instead of

a quantization the relay decodes the XOR sum of both messages. In fact for the examples

where we achieve the capacity the quantization can be interpreted as decoding the XOR sum.

Unfortunately for general channels no rate region is known, that is achievable with this strategy.

It seems inevitable to use structured codes as in [66, 68, 35, 67] to achieve high rates. Proofs

based on random coding argument seem incapable to realize the possible gains. Computational

coding [67], i.e. decoding the XOR sum of two messages at the relay, promises larger achievable

rate region; beyond the two-phase two-way relay channel, computational coding might be a

powerful tool in many network scenarios to increase the achievable rates. Research has just

started to focus on this kind of coding. Until today it is unclear what gains can be achieved.

The rate regions given in this chapter still show some ugly boundary effects. Therefore a
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convexification is needed. In the proof of Theorem 4.1 one can see where these non-continuity

stem from. It is the compression at the relay, that adds this undesired property to the overall

region. Take a look at (4.4). Note that the factor 2⌊nR2⌋ is a simplified upper bound. As one

codeword is the correct one, (2⌊nR2⌋ − 1) is a more precise factor. With this factor, it is obvious

that with a change from R2 = 0 to R2 > 0 new conditions need to be satisfied. If R2 = 0, thenE{Pr[Ê4]} = 0; but for R2 > 0 the term (2⌊nR2⌋ − 1) grows exponentially and needs to be com-

pensated by adequate coding. This indicates that during the quantization an interference like

effect occurs: The quantization for the two different flows of information should be performed

with a different quality. While the flow with the higher rate needs a finer quantization, the flow

that transports less information can be quantized rather coarsely. In the extrema of only one

flow of information the quantization needs to focus only on this stream. While the extreme case

is already captured by Theorem 4.1, the case of different needed qualities of quantization is not

appropriately covered by the coding used in the proof.

In the next chapter we take a closer look at the different flows of information and extend

the results given so far by using three flows of information at the relay at the same time: One

flow goes to both receivers, and one flow goes to one of the receivers respectively. The resulting

region is convex without further timesharing. It includes all the compress-and-forward regions

in this thesis.



Chapter 5

Using More than one Representation for

Compress-and-Forward

This chapter considers the question, how one can cope with the different information flows

that occur in the system. The discussion in the previous chapters shows, that there might be

a gain for one node, if the other node stays silent for some time. While in the general coding

scheme we transmit a codeword containing information which is crucial for the decoding at

both receivers, in this case only one of the receivers needs to get the information. This in turn

results in an increase of freedom for the compression at the relay, and therefore may give a

larger achievable rate for one of the nodes.

The key feature of the coding approaches is at the same time the crux: In the broadcast only

one message is transmitted, which is decoded by both receivers. The feature of this approach is

that by the virtue of the decoding we can get rid of interference, as there is no second codeword

transmitted. The crux is, that the compression at the relay cannot differentiate between the

information flows to the different nodes.

The quantization at the relay needs to be fine enough to capture all information for the

information flow from both transmitters to the receivers. The side information available at the

receiver restricts the number of codewords in the effective code, as it was discussed in Section

4.1.3. Still, the resulting effective code has in general some overhead, i.e. it contains more

codewords then there are messages which could be transmitted. For example for receiver 1 the

effective code in the joint decoding scheme contains approximately 2n(R2+α(I(ŶR;YR |Q)−I(X1X2;ŶR|Q)))

codewords. Now, I(ŶR; YR|Q) − I(X1X2; ŶR|Q) = I(ŶR; YR|X1, X2) due to the Markov chain. The

factor of this overhead is the same for both receivers, and it depends on the quality of the

quantized representation for the MAC output. In Remark 4.3 we already discussed, that in

general it is not possible to keep the overhead to zero. This leads to a tradeoff between overhead

in the BC and a good representation to achieve a high overall rate. The problem is now, that

the optimal tradeoff might be different for the two information flows. The following example

outlines the problem that may occur:
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Example 5.1. Consider a setup where the channel in the BC phase to receiver 1 allows only

very limited transmission, while the channel to receiver 2 has a very high capacity. At the same

time the MAC allows high though limited rates for both nodes. Obviously the R2 rate is bounded

from above by the channel in the BC phase to receiver 1. Therefore this receiver demands only

a corse representation of the MAC output. The corse representation keeps the overhead in the

effective code small, while at the same time it is sufficient to achieve the best possible throughput

in the overall system. At the same time receiver 2 demands a fine representation: it does not care

about the overhead in the BC to much, and its rate is maximized by a fine representation. Clearly

we need to tradeoff between the demands of both the users. If the representation is chosen such,

that receiver 1 has optimal performance, this degrades the performance of receiver 2. In case

we choose a fine representation to satisfy the demands of receiver 2 this will degrade the rate R2.

Therefore we have an effect similar to interference. But this does not emerge from the channel,

but from the quantization at the relay.

An approach that follows from the observation outlined in the example above is to separate

the different flows of information at the relay and use different representations for the two re-

ceivers. Moreover, as some information about the MAC output may be useful for both receivers,

in this chapter we consider three different information flows via the relay: one flow is directed

to receiver 1 and receiver 2 respectively and a third flow goes to both receivers. As a result we

can avoid the interference like effect in the quantization at the relay. This is bought by the need

to transmit more then one information flow via the BC, and therefore in general we introduce

new interference. The resulting coding scheme contains the coding schemes discussed in Sec-

tion 4.1 as a special cases. The split of the information flows can only increase freedom in the

optimization and therefore the performance of the overall system.

5.1 Extending the Region by using Three Data Streams

For the coding schemes in Chapter 3 and 4 it was necessary to convexify the achievable rate re-

gion by timesharing over different codes. As a result, to achieve the boundary of the achievable

rate region it could be necessary to use more than one data stream. One information flow is from

the relay to both receivers, while one flow is to one of the receivers respectively. The drawback

of the convexification is, that the quantization at the relay as well as the BC transmission is

performed in an orthogonal fashion for these three flows. This might be suboptimal.

Therefore, in this section we extend the previous results by using three data streams in

the coding, that can be in use simultaneously, i.e. non-orthogonal. The technique used is

an application of the mechanisms used in the proof of the achievable rate region for the BC

[47, 69]. We sketch the proceeding for a simple case without superposition with a decode-and-

forward mechanism. Furthermore, the result captures only a first approach in this direction and

is therefore not complete. In the analysis we will point out, where further improvements are
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possible, and what difficulties arise with these more general approaches.

5.1.1 Coding Theorem

Theorem 5.1. An achievable rate region for the two-phase two-way relay channel using a

compress-and-forward protocol is the set RCF-JD-3S ⊂ R2
+ of all rate pairs [R1,R2] satisfying

R1 ≤ min
{

αI(X1; ŶR,2ŶR,1+2|X2,Q);

α
(

I(X1X2; ŶR,2ŶR,1+2|Q) − I(YR; ŶR,2ŶR,1+2|Q)
)

+ βI(UV2; Y2)
}

R2 ≤ min
{

αI(X2; ŶR,1ŶR,1+2|X1,Q);

α
(

I(X1X2; ŶR,1ŶR,1+2|Q) − I(YR; ŶR,1ŶR,1+2|Q)
)

+ βI(UV1; Y1)
}

R1 + R2 ≤ α
(

I(X1X2; ŶR,2ŶR,1+2|Q) + I(X1X2; ŶR,1ŶR,1+2|Q)

−I(YR; ŶR,2ŶR,1+2|Q) − I(YR; ŶR,1ŶR,1+2|Q)
)

+β
(

I(UV2; Y2) + I(UV1; Y1) − I(V1; V2|U)
)

(5.1)

for some joint probability distributions p(q)p(x1|q)p(x2|q)p(yR|x1, x2)p(ŷR,1+2|yR)p(ŷR,1|yR, ŷR,1+2)

p(ŷR,2|yR, ŷR,1+2) and p(u, v1, v2)p(xR|u, v1, v2)p(y1, y2|xR) and some α, β > 0 with α + β = 1.

Remark 5.1. For the proof of the theorem we use a joint decoding mechanism. Clearly, an

extension of the sequential decoding mechanism form Theorem 3.1 is possible, but it leads to a

smaller region.

Remark 5.2 (Convexity of R1). The region RCF-JD-3S is convex. To see that it is convex for fixed

α and β note, that one can add Q as a condition to all entropy and mutual information terms

without changing the region. If we allow for different timesharing parameters α and β, then we

can use arguments analogous to that in Remark 2.11 to prove, that the region is convex.

Remark 5.3 (Cardinality of the auxiliary variables cannot be bounded). Note that the result is

incomplete in the sense that we do not give an upper bound on the cardinality of the auxiliary

variables V1 and V2. While the cardinality of Q, ŶR,1, ŶR,2, ŶR,1+2, and U can be bounded1

as before using the Fenchel-Bunt extension of Caratheodory’s theorem [62], this cannot be

done for these variables. The problematic term in the calculation is I(V1; V2|U). Applying the

method to the variables V1 or V2 leads to a bound, which depends on the cardinality of other

respective variable. Therefore the cardinality bound has a recursive structure. As a consequence

upper bounds cannot be calculated which depend solely on the fixed cardinalities of the input

or output alphabets given by the system setup. A similar problem was pointed out in [63] for

the broadcast channel with correlated sources.

Remark 5.4 (Possible extension to partial decoding). We could easily extend the proof of The-

orem 4.3 to this approach with three data streams. The result is a superposition of a decode-and-

forward code and a compress-and-forward code with joint decoding using three data streams.

1As the proof does not give any new insights we skip it for brevity.
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The proof would be a simple combination of the other proofs given in the thesis and does not

give any new insight.

Remark 5.5 (Outlook). The given proof does neither use the dependency between ŶR,1 and ŶR,2,

nor the fact that both these variables depend on both codewords transmitted in the MAC. This

dependencies could be used as additional side information in the decoding of the BC as they

restrict the effective code used by the receiver for the decoding even further. Therefore this

may lead to an even larger region. Furthermore, in the theorem the variables ŶR,1 and ŶR,2 are

assumed to be independent given ŶR,1+2 and YR. This was done to allow a straight forward —

namely a separated — quantization of the three data streams at the relay. It is unclear, whether

or not a more complex joint quantization could extend the achievable rate region. The coding

approaches sketched in this remark are beyond the scope of this thesis and will not be analyzed

here.

Proof. In what follows we extend the Proof of the Theorem 4.1. We will focus only on those

things that change. In particular we skip the details, if the bounding of the error is a straight

forward extension of some bounding in one of the proofs above, i.e. the result can be achieved

with exactly the same technique but on slightly different sets.

As in the above proofs we start with assuming strict inequality in (5.1). The achievability

of the closure and the case that one of the rates is restricted by 0 can be handled analogous to

the procedure in the above proofs. Depending on which of the strict inequalities assumed in

the proof are not valid, it may be necessary to adjust parts of the proof, especially the choice

of the parameters for some of the the decoding sets or some of the three parameters for the

quantization ǫq,1+2, ǫq,1, ǫq,2. The arguments are similar to the effects with idle users and the

treatment in the section about boundary effects in the above proofs and will not be handled in

detail. By comparison it is easy to see, that the region proved in Theorem 4.1 is a special case

of this theorem. Therefore it is also an extension of the region given in Theorem 3.1.

Note, that for some probability distributions the rate constraints in the theorem might be

negative for one user. In contrast to the non-continuity effect of the rate region that we had in

Theorem 4.1 we do not achieve any more freedom for the probability distribution, if one of the

rates is set to 0. This can be seen by observing that in this case we can choose alphabets of

cardinality 1 for e.g. ŶR,1+2 and ŶR,1 while all information for receiver 2 is carried by ŶR,2. It

turns out that this is the special case with an idle user, which is now included in the theorem.

Furthermore, it is obvious that the region is convex, as we can add Q as a condition to all

terms without changing the region; the minimum operation as well as the restriction to positive

rates does not effect the convexity. Therefore no additional timesharing over codes is needed to

convexify the region as it was needed in Corollary 4.2.

We start the proof by assuming that for R1, R2, and some positive RV,1, RV,1 the following

inequalities hold for some probability distributions p(q)p(x1|q)p(x2|q)p(yR|x1, x2)p(ŷR,1+2|yR)
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p(ŷR,1|yR, ŷR,1+2)p(ŷR,2|yR, ŷR,1+2) and p(u, v1, v2)p(xR|u, v1, v2)p(y1, y2|xR):

R1 < αI(X1; ŶR,2ŶR,1+2|X2,Q) (5.2)

R2 < αI(X2; ŶR,1ŶR,1+2|X1,Q) (5.3)

R1 + RV,2 < α
(

I(X1X2; ŶR,2ŶR,1+2|Q) − I(YR; ŶR,1+2|Q)
)

+ βI(UV2; Y2) (5.4)

R2 + RV,1 < α
(

I(X1X2; ŶR,1ŶR,1+2|Q) − I(YR; ŶR,1+2|Q)
)

+ βI(UV1; Y1) (5.5)

RV,1 > αI(YR; ŶR,1|ŶR,1+2,Q) (5.6)

RV,2 > αI(YR; ŶR,2|ŶR,1+2,Q) (5.7)

RV,1 + RV,2 > α
(

I(YR; ŶR,1|ŶR,1+2,Q) + I(YR; ŶR,2|ŶR,1+2,Q)
)

+ βI(V1; V2|U) (5.8)

Whenever we have strict inequality for R1, R2 in (5.1), we can find positive RV,1, RV,1 fulfilling

these inequalities.

5.1.1.1 Random codebook generation

For a given n set n1 = ⌊αn⌋, n2 = ⌈βn⌉.

• Choose one qn1 drawn according to the probability
∏n1

s=1 p(qn1

(s)).

• Choose 2⌊nR1⌋ i.i.d. codewords x
n1

1 each according to the probability
∏n1

s=1 p(x
n1

1,(s)|q
n1

(s)).

Label these x
n1

1 (w1), w1 ∈ {1, 2, . . . , 2⌊nR1⌋}.

• Choose 2⌊nR2⌋ i.i.d. codewords x
n1

2 each according to the probability
∏n1

s=1 p(x
n1

2,(s)|q
n1

(s)).

Label these x
n1

2 (w2), w2 ∈ {1, 2, . . . , 2⌊nR2⌋}.

• Let ǫ(1)
q,1+2 := 1

2α+β

(

α
(

I(X1X2; ŶR,1ŶR,1+2|Q) − I(YR; ŶR,1+2|Q)
)

+ βI(UV1; Y1) − R2 − RV,1

)

,

ǫ
(2)
q,1+2 := 1

2α+β

(

α
(

I(X1X2; ŶR,2ŶR,1+2|Q) − I(YR; ŶR,1+2|Q)
)

+ βI(UV2; Y2) − R1 − RV,2

)

, ǫ(3)
q,1+2

:=
I(X2;ŶR,1+2ŶR,1 |X1,Q)−

R2
α

4
and ǫ

(4)
q,1+2 :=

I(X1;ŶR,1+2ŶR,2 |X2,Q)−
R1
α

4
. Choose the parameter for the

quantization ǫq,1+2 ∈
(

0,min{ǫ(1)
q,1+2, ǫ

(2)
q,1+2, ǫ

(3)
q,1+2, ǫ

(4)
q,1+2}
)

.

• Choose ǫq,1 ∈ (0,min{ǫ(1)
q,1, ǫ

(2)
q,1, ǫ

(3)
q,1}) where ǫ

(1)
q,1 :=

RV1

α
− I(YR; ŶR,1|ŶR,1+2,Q), ǫ(2)

q,1 :=
I(X2;ŶR,1+2ŶR,1 |X1,Q)−

R2
α

4
, and ǫ(3)

q,1 :=
RV,1+RV,2−α(I(YR;ŶR,1 |ŶR,1+2 ,Q)+I(YR;ŶR,2 |ŶR,1+2,Q))−βI(V1;V2 |U)

2α
.

• Choose ǫq,2 ∈ (0,min{ǫ(1)
q,2, ǫ

(2)
q,2, ǫ

(3)
q,2}) where ǫ

(1)
q,2 :=

RV2

α
− I(YR; ŶR,2|ŶR,1+2,Q), ǫ(2)

q,2 :=
I(X1;ŶR,1+2ŶR,2 |X2,Q)−

R1
α

4 , and ǫ(3)
q,2 :=

RV,1+RV,2−α(I(YR;ŶR,1 |ŶR,1+2 ,Q)+I(YR;ŶR,2 |ŶR,1+2,Q))−βI(V1;V2 |U)

2α .

• For each i ∈ {1, 2, . . . , 2⌈αnRQ,1+2⌉}, RQ,1+2 = I(YR; ŶR,1+2|Q) + ǫq,1+2, choose one code-

word ŷ
n1

R,1+2(i) according to
∏n1

s=1 p(ŷn1

R,1+2,(s)|q
n1

(s)) and one codeword un2(i) according to
∏n2

s=1 p(un2

(s)). The 2⌈αnRR,1+2⌉ codeword pairs are drawn i.i.d..
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• For every un2(i) , i ∈ {1, 2, . . . , 2⌈αnRQ,1+2⌉}, draw independently 2⌊nRV,1⌋ codewords v
n2

1 ac-

cording to
∏n2

s=1 p(vn2

1,(s)1|u
n2

(s)). Label these v
n2

1 ( j, l|i), l ∈ {1, 2, . . . , 2⌊nRV,1⌋}, where j is a bin

index defined by j := l mod 2⌈αnRQ,1⌉ with RQ,1 = I(YR; ŶR,1|ŶR,1+2,Q) + ǫq,1.

• For every un2(i) , i ∈ {1, 2, . . . , 2⌈αnRQ,1+2⌉}, draw independently 2⌊nRV,2⌋ codewords v
n2

2 ac-

cording to
∏n2

s=1 p(vn2

2,(s)2|u
n2

(s)). Label these v
n2

2 (k,m|i), m ∈ {1, 2, . . . , 2⌊nRV,2⌋}, where m is a

bin index defined by m := k mod 2⌈αnRQ,2⌉ with RQ,2 = I(YR; ŶR,2|ŶR,1+2,Q) + ǫq,2.

• For each pair (i, j), i ∈ {1, 2, . . . , 2⌈αnRQ,1+2⌉}, j ∈ {1, 2, . . . , 2⌈αnRQ,1⌉}, choose one codeword

ŷ
n1

R,1( j|i) according to
∏n1

s=1 p(ŷn1

R,1,(s)|ŷ
n1

R,1+2,(s)(i), q
n1

(s)).

• For each pair (i,k), i ∈ {1, 2, . . . , 2⌈αnRQ,1+2⌉}, k ∈ {1, 2, . . . , 2⌈αnRQ,2⌉}, choose one codeword

ŷ
n1

R,2(k|i) according to
∏n1

s=1 p(ŷn1

R,2,(s)|ŷ
n1

R,1+2,(s)(i), q
n1

(s)).

This constitutes a random codebook.

5.1.1.2 Decoding sets

For the decoding we will use typical set decoding. For a strict definition of the decoding sets

we choose parameter for the typical sets as ǫ1 = ǫ2 = ǫ4 = ǫ5 = ǫ6 ∈ (0,min{
ǫq,1+2

8
;
ǫq,1

8
;
ǫq,2

8
})

and ǫ7 <
RV,1+RV,2−α(I(YR;ŶR,1 |ŶR,1+2 ,Q)+I(YR;ŶR,2 |ŶR,1+2 ,Q)+ǫq,1+ǫq,2)−βI(V1;V2 |U)

18β . The missing parameters for

the receiver 2 are chosen in an analogous way.

5.1.1.3 Coding

i To transmit message w1 node 1 sends x
n1

1 (w1).

ii To transmit message w2 node 2 sends x
n1

2 (w2).

iii Upon receiving y
n1
R

the relay looks for the first i such that
(

y
n1
R
, ŷ

n1

R,1+2(i)
)

∈ T
(n1)
ǫ1

(

YR, ŶR,1+2|q
n1

)

.

If no such i is found the relay chooses2 i = 1. Thereafter the relay looks for the first j such

that
(

y
n1

R
, ŷ

n1

R,1( j|i)
)

∈ T
(n1)
ǫ5

(

YR, ŶR,1|ŷ
n1

R,1+2(i), qn1

)

, and for the first k such that
(

y
n1

R
, ŷ

n1

R,2(k|i)
)

∈

T
(n1)
ǫ6

(

YR, ŶR,2|ŷ
n1

R,1+2(i), qn1

)

. If no such j (k) is found the relay chooses j = 1 (k = 1). This

induces a mapping f : Yn1

R
→ C

(n)
ŷR,1+2

(qn1)×C(n)
ŷR,1

(ŷn1

R,1+2, q
n1)×C(n)

ŷR,2
(ŷn1

R,1+2, q
n1) . Now, the relay

looks for the first triple
(

un2(i), vn2

1 ( j, l|i), vn2

2 (k,m|i)
)

such that
(

un2(i), vn2

1 ( j, l|i), vn2

2 (k,m|i)
)

∈

T
(n1)
ǫ7

(U,V1,V2). If such a triple is found the relay transmits a random x
n2

R
drawn according

to p
(

x
n2

R
|un2(i), vn2

2 ( j, l|i), vn2

2 (k,m|i)
)

. If no such triple is found an arbitrary x
n2

R
is transmitted.

iv Upon receiving y
n2

1 node 1 decides that w2 was transmitted if x
n1

2 (w2) is the only code-

word such that for some i ∈ {1, 2, . . . , 2⌈αnRQ⌉}, some j ∈ {1, 2, . . . , 2⌈αnRQ,1⌉}, and some

2This is done to have a well defined error probability. Equivalently one could declare an error at the relay, but
this induces a much more cumbersome notation in the definition of the error probability. Similar arguments apply
for the other default choices.
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l ∈ {1, 2, . . . , 2⌊nRV,1⌋} the sequences x
n1

2 (w2), ŷ
n1

R,1+2(i), ŷ
n1

R,1( j|i) and x
n1

1 (w1) are jointly typ-

ical given qn1 , and simultaneously un2(i), v
n2

1 ( j, l|i) and the received signal y
n2

1 are jointly

typical, i.e ∃(i, j, l) with i ∈ {1, 2, . . . , 2⌈αnRQ⌉}, j ∈ {1, 2, . . . , 2⌈αnRQ,1⌉}, l ∈ {1, 2, . . . , 2⌊nRV,1⌋}

such that
(

x
n1

1 (w1), x
n1

2 (w2), ŷn1

R,1+2(i), ŷn1

R,1( j|i)
)

∈ T
(n1)
ǫ4

(X1, X2, ŶR,1+2, ŶR,1|q
n1) and simultane-

ous
(

un2(i), vn2

1 ( j, l|i), yn2

1

)

∈ T
(n2)
ǫ2 (U,V1, Y1).

v The decoding at node 2 is performed in a analogous way.

5.1.1.4 Error Events

The error events do not change to much even tough the coding seems to have changed dramati-

cally. In fact the event E1 can be reused without change. This leads to the condition ǫq,1+2 > 6ǫ1.

For the other two variables ŶR,1 and ŶR,2 a similar new event can be defined and bounded using

the same tools, but conditioned on both, Q and YR,1+2. From the definition of the typical set and

the factorization constraint of the probability distribution, this is sufficient to proof that we will

find a triple (i, j, k) with probability arbitrarily close to 1 for n sufficient large. The bounding

uses the assumption that ǫq,1 > 6ǫ5 and ǫq,2 > 6ǫ6.

E2 can be changed into events stating that the pair (un2(i), vn2

1 ( j, l|i)) is jointly typical with

y
n2

1 with high probability, which is obvious. Similar arguments apply for E3 and E5 where ŶR

is replaced by the pair (ŶR,1+2, ŶR,1) for receiver 1. The proofs uses the assumption that ǫ2 = ǫ4.

Furthermore E5 can be easily proved if we use the assumption ǫ1 = ǫ4 = ǫ5 = ǫ6.

The replacement of ŶR by (ŶR,1+2, ŶR,1) in the proof can also be used for E6, now yielding

the requirement

R2 < αI(X2; ŶR,1+2ŶR,1|X1,Q)

for receiver 1 and

R1 < αI(X1; ŶR,1+2ŶR,2|X2,Q)

for receiver 2. In the bounding it is used that ǫ1 = ǫ4 = ǫ5 = ǫ6; ǫq,1 <
I(X2;ŶR,1+2ŶR,1 |X1,Q)−

R2
α

4 , and

ǫq,1+2 <
I(X2;ŶR,1+2ŶR,1 |X1,Q)−

R2
α

4 .

What needs to be changed is the calculation and definition of error events for the joint

decoding, i.e. Ê4 from the proof of Theorem 4.1. Furthermore we now have an additional event

E7, that captures an error in the encoding at the relay, i.e. the event, that there is no jointly

typical triple un2(i), v
n2

2 ( j, l|i), v
n2

2 (k,m|i) for the given (i, j, k).

Next, we give a definition of the changed error events E4 and the new event E7

• E4: Suppose a codebook is given, x
n1

1 (w1), x
n1

2 (w2) are transmitted, the relay chose some

i, j,k and un2(i), and some v
n2

1 ( j, l|i), v
n2

2 (k,m|i). An accordant x
n2
R

is transmitted. E4 is

the event that there exists a pair (î, ĵ) , (i, j), some ŵ2 , w2 and some l̂ such that
(

x
n1

1 (w1), x
n1

2 (ŵ2), ŷn1

R,1+2(î), ŷn1

R,1( ĵ|î)
)

∈ T
(n1)
ǫ4 (X1, X2, ŶR,1+2, ŶR,1|q

n1) and simultaneously we

have
(

un2(î), vn2

1 ( ĵ, l̂|î), yn2

1

)

∈ T
(n2)
ǫ2

(U,V1, X1).
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• E7: Suppose the triple (i, j, k) is given. E7 is the event, that the relay cannot find a triple

un2(i), v
n2

1 ( j, l|i), v
n2

2 (k,m|i) such that ∃l,m with (un2(i), vn2

1 ( j, l|i), vn2

2 (k,m|i)) ∈ T (n1)
ǫ7

(U,V1,V2).

Now we can bound the two error events defined above.

Error event E4 The error event E4 can be bounded as

E{Pr[E4]} ≤
∑

qn1∈Q
n1

p(qn1)Pr[E4,1]Pr[E4,2]2⌈αnRQ,1+2⌉2⌈αnRQ,1⌉2⌊nR2⌋⌈2⌊nRV,1⌋−⌈αnRQ,1⌉⌉

Here E4,1 is the event, that for sequences x
n1

1 ,xn1

2 ,ŷn1

R,1+2, ŷ
n1

R,1 we have (x
n1

1 , x
n1

2 , ŷ
n1

R,1+2, ŷ
n1

R,1) ∈

T
(n1)
ǫ4

(X1, X2, ŶR,1+2, ŶR,1|q
n1). For this event x

n1

1 , x
n1

2 ,ŷn1

R,1+2, and ŷ
n1

R,1 are drawn at random ac-

cording to p(x
n1

1 |q
n1), p(x

n1

2 |q
n1), and p(ŷn1

R,1, ŷ
n1

R,1+2|q
n1) respectively to capture the averaging over

the random codebooks. Ê4,2 is the event, that for sequences un2 , v
n2

1 , y
n2

1 we have (un2 , v
n2

1 , y
n2

1 ) ∈

T
(n2)
ǫ2

(U,V1, X1). For this error event the sequences are drawn according to p(un2 , v
n2

1 ) and p(yn2

1 ).

The factor 2⌈αnRQ,1+2⌉ accounts for the fact that we can use a union bound and the error occurs if

at least one î , i is found fulfilling the requirements. The factor 2⌈αnRQ,1+2⌉ accounts for a wrong

ĵ following the same argument. Furthermore, the event E4,2 may happen for any l̂; the union

bound can be used and therefore leads to the factor ⌈2⌊nRV,1⌋−⌈αnRQ,1⌉⌉. The factor 2⌊nR2⌋ accounts

for the different possible ŵ2.

For sufficiently large n

Pr[Ê4,1] =
∑

x
n1
1 ∈X

n1
1

∑

x
n1
2 ∈X

n1
2

∑

ŷ
n1
R,1+2∈Ŷ

n1
R,1+2

∑

ŷ
n1
R,1∈Ŷ

n1
R,1

p(x
n1

1 |q
n1)p(x

n1

2 |q
n1)p(ŷn1

R,1+2, ŶR,1|q
n1)

× χ
T

(n1)
ǫ4

(X1,X2,ŶR,1+2,ŶR,1 |q
n1 )

(x
n1

1 , x
n1

2 , ŷ
n1

R,1+2, ŷ
n1

R,1)

≤ |T (n1)
ǫ4

(X1, X2, ŶR,1+2, ŶR,1|q
n1)|2−n1(H(X1 |Q)−2ǫ4)2−n1(H(X2 |Q)−2ǫ4)2−n1(H(ŶR,1+2,ŶR,1 |Q)−2ǫ4)

due to the properties of the typical set. Furthermore, it follows from these properties that

|T (n1)
ǫ4

(X1, X2, ŶR,1+2, ŶR,1|q
n1)| ≤ 2n1(H(X1,X2,ŶR,1+2,ŶR,1 |Q)+2ǫ4).

Pr[Ê4,2] can be bounded in a similar way. Therefore we have

E{Pr(Ê4)} ≤
∑

qn1∈Q
n1

p(qn1)2−n1(I(X1X2;ŶR,1+2ŶR,1 |Q)−8ǫ4)2−n2(I(UV1;Y1)−6ǫ2)2⌈αnRQ,1+2⌉

2⌈αnRQ,1⌉2⌊nR2⌋⌈2⌊nRV,1⌋−⌈αnRQ,1⌉⌉

≤ 2−n(α(I(X1X2;ŶR,1+2ŶR,1 |Q)−RQ,1+2−8ǫ4)+β(I(UV1;Y1)−6ǫ2)−R2−RV,1)+2+I(X1X2;ŶR,1+2ŶR,1 |Q)+6ǫ2

= 2−n(α(I(X1X2;ŶR,1+2ŶR,1 |Q)−I(YR;ŶR,1+2 |Q))+βI(UV1;Y1)−R2−RV,1−ǫ̃)+2+I(X1X2;ŶR,1+2ŶR,1 |Q)+6ǫ2
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with

ǫ̃ = αǫq,1+2 + β6ǫ2 + α8ǫ4 < (2α + β)ǫq,1+2.

This term goes to zero if

α
(

I(X1X2; ŶR,1+2ŶR,1|Q) − I(YR; ŶR,1+2|Q)
)

+ βI(UV1; Y1) − R2 − RV,1 − (2α + β)ǫq,1+2 > 0.

By the choice of ǫq,1+2 as

ǫq,1+2 <
1

(2α + β)

(

α
(

I(X1X2; ŶR,1+2ŶR,1|Q) − I(YR; ŶR,1+2|Q)
)

+ βI(UV1; Y1) − R2 − RV,1

)

this is true whenever

R2 + RV,1 < α
(

I(X1X2; ŶR,1+2ŶR,1|Q) − I(YR; ŶR,1+2|Q)
)

+ βI(UV1; Y1)

as required by the assumption. Therefore for any given ǫ we can find n(4) such that for E{Pr[Ê4]} <
ǫ

7
for n ≥ n(4).

Error event E7 The event E7 can be proved following the lines of the proof of the lemma in

[69]. In what follows, we prove that given i and un2(i) with high probability there is at least one

pair v
n2

1 ( j, l|i), v
n2

2 (k,m|i) for a given ( j, k) that is jointly typical given un2(i). From the definition

of the typical set, it follows that the sequences (un2(i), vn2

1 ( j, l|i), vn2

2 (k,m|i)) ∈ T (n1)
ǫ7 (U,V1,V2).

For a fixed i, j, k and un2(i), let T j,k(i) be the set of codeword pairs in the bin pair ( j, k) that

are jointly typical sequences given un2(i), i.e.

T j,k(i) =
{(

v
n2

1 ( j, l|i), vn2

2 (k,m|i)
)

:
(

v
n2

1 ( j, l|i), vn2

2 (k,m|i)
)

∈ T (n1)
ǫ7

(V1,V2|u
n2(i))
}

.

The number of sequences in each bin j is greater than C1 = ⌊2⌊nRV,1⌋−⌈αnRQ,1⌉⌋. We calculate the

error probability for a bin with a small number of sequences. The probability of not finding a

pair of sequences for bins with more sequences can only be smaller. Similarly the number of

sequences in each bin k is greater than C2 = ⌊2⌊nRV,2⌋−⌈αnRQ,2⌉⌋.

It is assured that for sufficient large n we have

C1 ≥ 2nRV,1−αn(I(YR;ŶR,1 |ŶR,1+2,Q)+ǫq,1)−3 ≥ 1

as we assumed

RV,1 > αI(YR; ŶR,1|ŶR,1+2,Q)

and chose

ǫq,1 <
RV,1

α
− I(YR; ŶR,1|ŶR,1+2,Q).

Similar arguments apply for C2 ≥ 1.
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As all codewords are drawn at random we assume without loss of generality in what follows

i = j = k = 1 and set T := T1,1(1). Furthermore we use the fact that the bin j = 1 contains

more than C1 sequences and the bin k = 1 contains more than C2 sequences (and so does any

other bin pair). As more sequences in the bins can only decrease the probability of error in

what follows we assume that the considered bins j = 1, k = 1 contain C1 and C2 sequences

respectively.

The error probability for event E7 is given byE{Pr[E7]} = Pr[|T | = 0].

For 0 < ǫ(7) < 1 we have by Chebychev’s inequality and using the fact that E{|T |} > 0

Pr [|T | = 0] ≤ Pr
[

|T | < (1 − ǫ(7))E{|T |}]
= Pr

[E{|T |} − |T | > ǫ(7)E{|T |}]
≤ Pr

[
∣

∣

∣

∣

|T | −E{|T |}∣∣∣
∣

> ǫ(7)E{|T |}]
≤

σ2(|T |)

(ǫ(7)E{|T |})2
,

where σ2(·) = E{(·)2} −E{·}2 is the variance of the argument.

Now E{|T |} = C1C2Pr[E7,1],

where E7,1 is the event that two sequences drawn according to p
(

v
n2

1 |u
n2(i)
)

and p
(

v
n2

2 |u
n2(i)
)

are jointly typical, i.e. (vn2

1 , v
n2

2 ) ∈ T (n1)
ǫ7 (V1,V2|u

n2). The probability for this event can be lower

bounded using the properties of the typical set. Therefore we haveE{|T |} ≥ (1 − δ)C1C22−βn(I(V1;V2 |U)+6ǫ7),

where δ can be made arbitrarily small by choosing n large.

It is left to find an upper bound for E{|T |2}. Now, with the C1 sequences v
n2

1 (a) = v
n2

1 (1, a|1)
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and the C2 sequences v
n2

2 (b) = v
n2

2 (1, b|1) in the bins j = 1, k = 1 considered in this proof

|T |2 =





























∑

a∈{1,2,...C1}
b∈{1,2,...C2}

χT
(

v
n2

1 (a), vn2

2 (b)
)





























2

=
∑

a∈{1,2,...C1}
b∈{1,2,...C2}

χT
(

v
n2

1 (a), vn2

2 (b)
)

+
∑

a,ã∈{1,2,...C1}
b∈{1,2,...C2}

χT
(

v
n2

1 (a), vn2

2 (b)
)

χT
(

v
n2

1 (ã), vn2

2 (b)
)

+
∑

a∈{1,2,...C1}

b,b̃∈{1,2,...C2}

χT
(

v
n2

1 (a), vn2

2 (b)
)

χT
(

v
n2

1 (a), vn2

2 (b̃)
)

+
∑

a,ã∈{1,2,...C1}

b,b̃∈{1,2,...C2}

χT
(

v
n2

1 (a), vn2

2 (b)
)

χT
(

v
n2

1 (ã), vn2

2 (b̃)
)

where χT (·) is the indicator function on the set T .

After taking expectations we can write

σ2{|T |} = C1C2Pr[
(

v
n2

1 (a), vn2

2 (b)
)

∈ T }

+C2(C2
1 − C1)Pr[

(

v
n2

1 (a), vn2

2 (b)
)

∈ T and
(

v
n2

1 (ã), vn2

2 (b)
)

∈ T ]

+C1(C2
2 − C2)Pr[

(

v
n2

1 (a), vn2

2 (b)
)

∈ T and
(

v
n2

1 (a), vn2

2 (b̃)
)

∈ T ]

+(C2
1 −C1)(C2

2 − C2)Pr[
(

v
n2

1 (a), vn2

2 (b)
)

∈ T and
(

v
n2

1 (ã), vn2

2 (b̃)
)

∈ T ]

−
(

C1C2Pr[(vn2

1 (a), vn2

2 (b)) ∈ T ]
)2
.

Here we use that

E{|T |}2 =
(

C1C2Pr[(vn2

1 (a), vn2

2 (b)) ∈ T ]
)2

in the calculation of σ2{|T |}.

We can bound the probabilities that sequence drawn independent of each other are jointly

typical with the technique used in e.g. the bounding of event E6. Therefore we get for sufficient



134 Chapter 5. Using More than one Representation for Compress-and-Forward

large n

σ2{|T |} ≤ C1C22−βn(I(V1;V2 |U)−6ǫ7)

+C1(C2
2 −C2)2−2βn(I(V1;V2 |U)−6ǫ7)

+C2(C2
1 −C1)2−2βn(I(V1;V2 |U)−6ǫ7)

+(C1C2 −C2
1C2 − C1C2

2)2−2βn(I(V1;V2 |U)−6ǫ7)

= C1C22−βn(I(V1;V2 |U)−6ǫ7)

−C1C22−2βn(I(V1;V2 |U)−6ǫ7)

≤ C1C22−βn(I(V1;V2 |U)−6ǫ7),

where we used
(

Pr[(vn2

1 (a), vn2

2 (b)) ∈ T ]
)2
= Pr[(vn2

1 (a), vn2

2 (b)) ∈ T and (vn2

1 (ã), vn2

2 (b̃)) ∈ T ].

With these bounds on variance and expectation of |T | we can upper bound E{Pr[E7]} as

E{Pr[E7]} ≤ Pr[|T | = 0] ≤
C1C22−βn(I(V1;V2 |U)−6ǫ7)

(ǫ(7)(1 − δ)C1C22−βn(I(V1;V2 |U)+6ǫ7))2

=
1

(ǫ(7))2(1 − δ)2C1C22−βn(I(V1;V2 |U)+18ǫ7)
.

Now for sufficient large n

E{Pr[E7]} ≤
1

(ǫ(7))2(1 − δ)22−n(αRQ,1+αRQ,2−RV,1−RV,2+β(I(V1;V2 |U)+18ǫ7))−6

where we used C1 ≥ 2nRV,1−αnRQ,1−3, C2 ≥ 2nRV,2−αnRQ,2−3, and where δ → 0 for n → ∞. This goes

to zero if

αRQ,1 + αRQ,2 − RV,1 − RV,2 + βI(V1; V2|U) + β18ǫ7 < 0

which is equal to the condition

α
(

I(YR; ŶR,1|ŶR,1+2,Q) + I(YR; ŶR,2|ŶR,1+2,Q) + ǫq,1 + ǫq,2

)

+ β(I(V1; V2|U) + 18ǫ7) < RV,1 + RV,2.

This inequality is fulfilled by assumption and by the choice of ǫq,1, ǫq,2 and ǫ7.

The rest of the proof follows immediately using similar arguments as in the proofs given in

previous chapters and is not repeated here.

�

5.2 Concluding Remarks

In this chapter we take a first glance on the potential that arises by considering the different

information flows, which are present in the two way relay channel. It turns out, that the system

design gains some degrees of freedom, if the relay treats the different information flows not
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jointly, but allows for a different coarseness in the quantization depending on the need of the

respective flow. In particular, we use three information flows, which are quantized distinct from

each other at the relay. One information flow is form the relay to both respective receivers,

while a third information flow is from the receiver to both receivers at the same time. This third

stream facilitates a de-facto interference free transmission in the BC, while the individual data

streams interfere with each other. Depending on the BC and MAC statistics this interference is

accepted, as it is less harmful than the joint quantization at the relay.

The coding uses tools from the proof of the general BC [47, 69] to permit the transmission of

different information to the respective receivers. As in the case of compress-and-forward with

joint decoding, side information about the dependency of the MAC output from the transmitted

codewords is used to restrict the number of codewords in the effective code, which is used for the

decoding at the receiver. Due to the inability of the relay to decode the data there is in general

still some overhead in the effective code. In contrast to the compress-and-forward scheme with

joint decoding, this overhead can now be controlled individually for both receivers. Therefore,

the new scheme is promising particularly for systems with non-symmetric rates, more precisely

for systems, where the BC channel for one of the transmissions is the bottleneck for the overall

system. This feature is bought by additional interference at least for one of the receivers.

Note, that the proposed coding scheme is only a first simple step in the direction of a more

general understanding of the two-way relay channel. There are dependencies in the system that

are not used so far, namely the dependency of the other receiver’s quantized MAC output repre-

sentation from the transmitted codewords. Furthermore, for the ease of analysis the quantization

at the relay is constrained by the assumption that the two respective individual MAC output rep-

resentations are independent given the channel output and the common representation. A more

general treatment and analysis of the system needs to break up these restrictions. This leads to

the problem to cope with correlated information transmitted in a multi-user system. Further-

more, the BC coding bases upon the coding for the general BC. It is likely that progress towards

a proof of the capacity region of the BC will impact the achievable rate region of the two-way

relay channel using more then one data streams.





Chapter 6

Conclusion and Outlook

In many communication scenarios the task of the transmission protocol is to get messages from

one node in a network to a distant node. One-hop transmissions over long distances need high

transmission power and therefore cause large interference to other links in the network. The

same is true if the direct link between transmitter and receiver is weak. In a real communi-

cation scenario, this can be caused by shadowing, e.g. if there is no line-of-sight connection

between transmitter and receiver possible. Relaying protocols have the potential to circumvent

that problem by splitting the distance into several hops. Thereby, these protocols can increase

the coverage of cellular systems and enhance the throughput by reducing interference due to a

smaller transmission power. For that reason relaying concepts will play a central role in future

wireless communication systems.

In this thesis we study the two-way relay channel. In the two-way relay channel the task

of the relay is to establish a bi-directional communication between two nodes in the network.

Recently, two-way relaying has attracted great interest, as it has the potential to offer gains

compared to one-hop communication or one-way transmission protocols. The reason is that for

systems with half duplex nodes no additional resourses such as time or frequency have to be

allocated compared to the one-way relaying scenario; the transmission in both directions can be

performed simultaneously.

The two-way relay channel features an interesting property, that originates from the setup of

the system. Both terminal nodes know the message intended for the other respective receiver.

This knowledge can be used to eliminate some of the interference in the transmission from the

relay to the terminal nodes. In Chapter 2 we state the capacity region for a BC, where the

receivers know the message intended for the other respective node. This region shows that a

de-facto interference free transmission is possible in this channel. In fact the interference can

be canceled by coding and no interference cancellation at the receiver is needed. Both links

can be operated as if the other node were not present. The only drawback is the common input

distribution to the channel, i.e. one of the links may not achieve the single user capacity, as the

transmission needs to fit for both channels at the same time.

We analyze the coding in the broadcast phase in detail and give a practical coding scheme,

137
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which uses the mechanisms pointed out by the proof of the capacity region. This scheme uses

well developed single user codes to build a joint code for the BC in the two-way relay channel,

for the case where the relay decodes the messages. The resulting code achieves the single user

performance of the base codes for both users, whenever the marginal channels fulfill a certain

symmetry condition. It turns out that some properties of the scheme can be generalized to

Gaussian channels if nested lattice codes are used as base codes. As these codes achieve the

capacity of the single user Gaussian channel, the resulting joint code will achieve the capacity

of the BC in the two-way relay channel with decode-and-forward.

The result of an achievable rate region for the BC phase is used to state an achievable rate

region for the two-way relay channel with two phases. For this achievable rate region the relay is

assumed to decode the messages, and re-encode both for transmission over the BC. The results

are extended to the case that the MAC transmission is replaced by other transmission strategies

in order to enable the decoding at the relay. Thereby we allow for transmission protocols that

facilitate the transmission via a direct link between the terminal nodes.

Through simple examples one can see that decoding at the relay might be suboptimal. This

can be the case if a sum-rate constraint of the MAC restricts the achievable rates in the overall

system. Whenever the sum rate of the MAC does not pose an additional constraint on the rate

region of the MAC, the decode-and-forward protocol achieves the cutset outer bound on the

capacity region and therefore is optimal. If a sum-rate constraint of the MAC is active, knowing

the message of one of the nodes could permit the decoding, even though it is impossible without

possessing this knowledge. This observation leads to a protocol where the compressed MAC

output is forwarded to the terminal nodes which already know one of the transmitted signals.

The resulting scheme is a compress-and-forward protocol for the two-way relay channel.

In a first approach the receivers decode the transmission of the relay. Although this trans-

mission seems to be a simple multicast, it turns out that the receivers can use the known message

as side information. The reason for this is that the MAC output, and as a consequence also the

compressed MAC output, as well as the signal transmitted by the relay depend on the message

transmitted by the terminal nodes in the MAC phase. The approach is extended by noting that

the MAC output depends also on the message transmitted by the other node. Therefore gains

can be achieved if the receiver decodes the transmission of the relay and the message intended

for it jointly instead of sequentially. In effect the receiver does not decode the signal transmitted

by the relay explicitly, but focuses on the message transmitted by the other respective node. The

relay’s transmission enables the decoding of this message. The result shows that in networks it

can be suboptimal to treat the atoms of the network as a MAC and a BC separately. The gains

offered by the protocol can only be achieved if the overall system is considered in the decoding

process.

As in the decode-and-forward protocol there is no interference in the BC for the compress-

and-forward protocols. Furthermore, the sum-constraint of the MAC vanishes. Due to the

compression at the relay, the rate region can still be smaller than the cutset outer bound on the
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capacity region. If the compression at the relay is such that it is not lossy with respect to the

input signals while it eliminates all the information overhead due to noise in the MAC output,

then the proposed compress-and-forward scheme can be proven to achieve the capacity of the

two-way relay channel.

It turns out that the common compression in the system may hinder the transmission in one

way to allow transmission in the other way. Therefore we extend the previous results by allow-

ing an individual compression for all the flows of information that occur in the system. Thereby

we can trade off an interference-like effect in the relay’s compression for some interference in

the BC. The resulting achievable rate region includes all regions proposed in this thesis which

are achievable with compress-and-forward.

As the strategies of compress-and-forward and decode-and-forward use different mecha-

nisms to achieve large rates, an hybrid approach can trade off between these effects. For the

compress-and-forward protocols we therefore propose a partial decode-and-forward strategy,

which is a superposition of both the schemes.

In summary we have three extreme cases: For the decode-and-forward approach, interfer-

ence is present in the MAC, but not in the BC. In the compress-and-forward approach we suffer

from a possibly suboptimal compression and an interference-like effect in the compression. In

the extreme case, using an independent compression for the different flows of information we

can eliminate this effect, but now we have interference in the BC channel. We conclude that by

the superposition of decode-and-forward with the compress-and-forward protocol, which facil-

itates more than one flow of information, we can balance these negative effects. In effect we

can build a system such that the users interfere where it causes the least harm.

6.1 Outlook

Until today the capacity of the two-way relay channel has benn obtained only for very few

channels. The achievable rate regions in this thesis are only subsets of the capacity region for

most channels. For example the achievable rate region obtained in Chapter 5 could be improved

by using more of the statistical dependencies in the system. This includes a more involved

compression as well as considerations about how one can further use the side information in

the BC to cancel some of the interference. These improvements seem quite demanding though

very interesting and important for the understanding of the two-way relay channel.

Further improvements may target the MAC transmission and the “decoding” at the relay.

In Chapter 2 we noted that it is sufficient to know the XOR sum of the messages at the relay.

This gives rise to the so called computational coding, where the goal is to decode a function

of the messages instead of the message itself. A first discussion as well as references can be

found in Section 4.1.4. The topic of computational coding has just begun to attract interest in

the research community. Therefore some results can be expected in the coming years. It turns

out that structured codes are important for this kind of coding, therefore the random coding
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approaches used in classical information theory will fail.

This thesis focuses on discrete alphabet channels. For channels with continuous alphabets

such as Gaussian channels, the decode-and-forward result is known to hold. Most of the other

results can probably be adapted to these channels, though the proof is not yet provided. Fur-

thermore for the Gaussian channel, there are several other strategies proposed for the case of

one-way communication besides decode-and-forward and compress-and-forward. It is unclear

if some of these strategies may improve the rate regions given in this thesis.

Another interesting topic for future research is to drop the assumption that the two-way

communication is restricted. This will enable explicit cooperation between the terminal nodes

as well as feedback. The most general treatment for the considered setup is the non-restricted

two-way relay channel with full-duplex nodes. All the restricted scenarios considered in this

thesis can be seen to be special cases of this channel.



Appendix A

Appendix — Bounding of the Cardinalities

A.1 Cardinalities of Auxiliary Random Variables

In this appendix we derive upper bounds for the cardinality of the auxiliary variables in the

theorems given in this thesis. The key tool for the bounding is the Fenchel-Bunts extension of

Caratheodorys theorem [62] which we restated in Theorem 3.4:

Theorem (Fenchel-Bunts extension of Caratheodorys theorem [62]). If S ⊂ Rn has no more

than n connected components (in particular, if S is connected), then any x ∈ ConvexHull(S)

can be expressed as a convex combination of n elements of S.

A.1.1 The Cardinality of the Auxiliary Variables in Theorem 3.5

A.1.1.1 The cardinality of Q

We can bound the cardinality of Q in Theorem 3.5 similar to the proceeding in Section 3.2 for

Theorem 3.1: Define for given channels p1(yR|x1, x2), p2(y1, y2|xR), and fixed α, β

S =
⋃

p(u1)p(u2)p(x1 |u1)p(x2 |u2)p(ŷR |yR)

{

[δ1(p), δ2(p), δ3(p), δ4(p), δ5(p), δ6(p), δ7(p)]

|p = p(u1)p(u2)p(x1|u1)p(x2|u2)p1(yR|x1, x2)p(ŷR|yR)
}

141
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where the union is over the compact set of all p(u1)p(u2)p(x1|u1)p(x2|u2)p(ŷR|yR) and where

δ1(p) = αI(X1; ŶR|X2,U1)

δ2(p) = αI(X2; ŶR|X1,U2)

δ3(p) = αI(U1; YR|U2)

δ4(p) = αI(U2; YR|U1)

δ5(p) = αI(U2U2; YR)

δ6(p) = αI(ŶR; YR|X1,U2)

δ7(p) = αI(ŶR; YR|X2,U1)

Furthermore let C = ConvexHull(S) and let

Ŝ =
⋃

p(v)p(xR |v)

{

[βI(V, Y2), βI(V, Y1), βI(XR, Y1|V), βI(XR, Y2|V)]
}

.

The achievable rate region can now be stated as

R4 =
{

[R1,R2] ∈ R2
+ : ∃[δ1, δ2, δ3, δ4, δ5, δ6, δ7] ∈ C; [δ8, δ9, δ10, δ11] ∈ Ŝ and

∃R
(1)
1 ,R

(1)
2 ,R

(2)
1 ,R

(2)
2 ≥ 0 with R

(1)
1 + R

(2)
1 = R1,R

(1)
2 + R

(2)
2 = R2,

R
(2)
1 ≤ δ1,R

(2)
2 ≤ δ2,R

(1)
1 ≤ min{δ3, δ8},R

(1)
2 ≤ min{δ4, δ9},R

(1)
1 + R

(1)
2 ≤ δ5, δ6 < δ10, δ7 < δ11

}

.

The set S is connected, as it is the continuous image of a continuous compact set. Therefore,

all points in C can be expressed as a convex combination of at most dim{S} = 7 elements of S.

It follows that we can bound the required cardinality of Q from above by 7.

A.1.1.2 The Cardinality of Ŷ

Let s1 ∈ ∆|YR |. Define for given channels p1(yR|x1, x2), p2(y1, y2|xR), fixed α, β and fixed p =

p(q)p(u1|q)p(u2|q)p(x1|u1)p(x2|u2)

S(p) =
⋃

s1

{[δ1, δ2, δ6, δ7, s1]}

where the union is over all s1 ∈ ∆|YR |, and we have

δ1 = α

(

H(X1|X2,U1) +
∑

i,x1 ,x2 ,u1

s1(i)p(x1, x2, u1|YR = i)

×
(

log
(
∑

j

s1( j)p(x2, u1|YR = j)
)

− log
(
∑

j

s1( j)p(x1, x2, u1|YR = j)
))

)
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δ2 = α

(

H(X2|X1,U2) +
∑

i,x1 ,x2 ,u2

s1(i)p(x1, x2, u2|YR = i)

×
(

log
(
∑

j

s1( j)p(x1, u2|YR = j)
)

− log
(
∑

j

s1( j)p(x1, x2, u2|YR = j)
))

)

δ6 = α

(

H(YR|X1,U2) +
∑

i,x1 ,u2

s1(i)p(x1, u2|YR = i)

×
(

log
(

s1(i)p(x1, u2|YR = i)
)

− log
(
∑

j

s1( j)p(x1, u2|YR = j)
))

)

δ7 = α

(

H(YR|X2,U1) +
∑

i,x2 ,u1

s1(i)p(x2, u1|YR = i)

×
(

log
(

s1(i)p(x2, u1|YR = i)
)

− log
(
∑

j

s1( j)p(x2, u1|YR = j)
))

)

Here we use the common convention 0 log 0 = 0 justified by continuity since x log x → 0 as

x→ 0. Now, let C(p) = ConvexHull(S(p)) and let

Ŝ =
⋃

p(v)p(xR |v)

{

[βI(V, Y2), βI(V, Y1), βI(XR, Y1|V), βI(XR, Y2|V)]
}

.

Furthermore let

C̄(p) =
{

[δ1, δ2, αI(U1; YR|U2,Q), αI(U2; YR|U1,Q), αI(U1U2; YR|Q), δ6, δ7] :

[δ1, δ2, δ6, δ7, s1] ∈ C(p) and ∀i s1(i) = p(YR = i)
}

.

The achievable rate region can be stated as

R4 =
⋃

p

{

[R1,R2] : ∃R
(1)
1 ,R

(1)
2 ,R

(2)
1 ,R

(2)
2 ≥ 0,

∃[δ1, δ2, δ3, δ4, δ5, δ6, δ7] ∈ C̄(p) and ∃[δ8, δ9, δ10, δ11] ∈ Ŝ

with R
(1)
1 + R

(2)
1 = R1,R

(1)
2 + R

(2)
2 = R2,

R
(2)
1 ≤ δ1,R

(2)
2 ≤ δ2,R

(1)
1 ≤ min{δ3, δ8},R

(1)
2 ≤ min{δ4, δ9},R

(1)
1 + R

(1)
2 ≤ δ5, δ6 < δ10, δ7 < δ11

}

.

The set S(p) is connected, as it is the continuous image of the continuous compact set ∆|YR |.

Therefore all points in C(p) can be expressed as a convex combination of at most dim{S(p)} =

|YR| + 3 elements of S(p). Therefore all points in the achievable rate region can be achieved

with |ŶR| ≤ |YR| + 3.
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A.1.1.3 The Cardinality ofU1 andU2

In what follows we bound the cardinality ofU1. The bounding of the cardinality ofU2 follows

accordingly.

Let s1 ∈ ∆|X1 | s2 ∈ ∆|Q| and s3 ∈ ∆|X1 ||Q|. Define for given channels p1(yR|x1, x2), p2(y1, y2|xR),

fixed α, β and fixed p = p(q, x1)(u2|q)p(x2|u2)

S(p) =
⋃

s1 ,s2

{

[γ1, γ2, γ3, γ4, s3]
}

where the union is over all possible s1 ∈ ∆|YR|, s2 ∈ ∆|Q|, and we have

γ1 = α

(

∑

i, j,ŷR ,x2

s1(i)s2( j)p(ŷR, x2|X1 = i,Q = j)

×
(

log(p(ŷR|X1 = i, x2)) − log
(

∑

k s1(k)p(ŷR|X1 = k, x2)
))

)

γ2 = α

(

∑

i, j,yR ,u2

s1(i)s2( j)p(ŷR, u2|X1 = i,Q = j)
(

− log
(
∑

k

s1(k)p(yR|X1 = k, u2)
))

)

γ3 = α

(

∑

i, j,yR ,u2

s1(i)s2( j)p(ŷR, u2|X1 = i,Q = j)

×
(

log(
∑

k s1(k)p(yR|x1 = k, u2)) − log
(

∑

l s1(l)p(yR|X1 = l, q = j)
))

)

γ4 = α

(

∑

i, j,ŷR ,x2

s1(i)s2( j)p(ŷR, x2|X1 = i,Q = j)
(

− log
(
∑

k

s1(k)p(ŷR|X1 = k, x2)
))

)

and s3(i, j) = s1(i)s2( j). In the last equation we use a notation similar to that we use for

joint probability distributions to index the elements of the vector s3. Again we use the com-

mon convention 0 log 0 = 0 justified by continuity since x log x → 0 as x → 0. Let C(p) =

ConvexHull(S(p)) and let

Ŝ =
⋃

p(v)p(xR |v)

{

[βI(V, Y2), βI(V, Y1), βI(XR, Y1|V), βI(XR, Y2|V)]
}

.

Furthermore let

C̄(p) =
{

[

γ1, αI(X2; ŶR|X1,U2), αH(YR|U2,Q) − γ2, γ3,

αH(YR|Q) − γ2, α
(

H(ŶR|X1,U2) − H(ŶR|YR)
)

, γ4 − αH(ŶR |YR)
]

: ∃[γ1, γ2, γ3, γ4, s3] ∈ C(p), with ∀i, j s3(i, j) = p(X1 = i,Q = j)
}
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The achievable rate region can be stated as

R4 =
⋃

p

{

[R1,R2] : ∃R
(1)
1 ,R

(1)
2 ,R

(2)
1 ,R

(2)
2 ≥ 0;

∃[δ1, δ2, δ3, δ4, δ5, δ6, δ7] ∈ C̄(p); and ∃[δ8, δ9, δ10, δ11] ∈ Ŝ with

R
(1)
1 + R

(2)
1 = R1,R

(1)
2 + R

(2)
2 = R2,

R
(2)
1 ≤ δ1,R

(2)
2 ≤ δ2,R

(1)
1 ≤ min{δ3, δ8},R

(1)
2 ≤ min{δ4, δ9},R

(1)
1 + R

(1)
2 ≤ δ5, δ6 < δ10, δ7 < δ11

}

.

The set S(p) is connected, as it is the continuous image of the continuous compact set

∆|X1 | × ∆|Q|. Therefore all points in C(p) can be expressed as a convex combination of at most

dim{S(p)} = |X1||Q| + 3 elements of S(p). Therefore all points in the achievable rate region

can be achieved with |U1| ≤ |X1||Q| + 3. The needed cardinality of U2 can be bounded in an

analogous way as |U2| ≤ |X2||Q| + 3

A.1.1.4 The Cardinality ofV

Define for a given channel p1(yR|x1, x2), and fixed α, β

S =
⋃

p(q)p(u1 |q)p(u2 |q)p(x1 |u1)p(x2 |u2)p(ŷR |yR)

{[δ1(p), δ2(p), δ3(p), δ4(p), δ5(p), δ6(p), δ7(p)]

|p = p(u1)p(u2)p(x1|u1)p(x2|u2)p1(yR|x1, x2)p(ŷR|yR)}

where the union is over the compact set of all p(q)p(u1|q)p(u2|q)p(x1|u1)p(x2|u2)p(ŷR|yR) and

where

δ1(p) = αI(X1; ŶR|X2,U1)

δ2(p) = αI(X2; ŶR|X1,U2)

δ3(p) = αI(U1; YR|U2,Q)

δ4(p) = αI(U2; YR|U1,Q)

δ5(p) = αI(U2U2; YR|Q)

δ6(p) = αI(ŶR; YR|X1,U2)

δ7(p) = αI(ŶR; YR|X2,U1)

Furthermore let s1 ∈ ∆|XR | and define for a given channel p2(y1, y2|xR), fixed α, β and fixed

p̂ = p(xR)

Ŝ(p̂) =
⋃

s1∈∆|XR |

{γ1(p̂), γ2(p̂), s1}
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where the union is over all possible s1 ∈ ∆|XR|, and we have

γ1(p̂) =
∑

y2 ,i

s1(i)p(y2|XR = i) log(
∑

j

s1( j)p(y2|XR = j))

γ2(p̂) =
∑

y1 ,i

s1(i)p(y1|XR = i) log(
∑

j

s1( j)p(y1|XR = j))

Now, let C(p̂) = ConvexHull(Ŝ(p̂)) and

C̄ =
⋃

p̂

{

[H(Y2) + γ1,H(Y1) + γ2,−H(Y1|XR) − γ2,−H(Y2|XR) − γ1]

: ∃[γ1, γ2, s1] ∈ C(p̂) with ∀i s1(i) = p(XR = i)
}

.

The achievable rate region can now be stated as

R4 =
{

[R1,R2] : ∃R
(1)
1 ,R

(1)
2 ,R

(2)
1 ,R

(2)
2 ≥ 0;

∃[δ1, δ2, δ3, δ4, δ5, δ6, δ7] ∈ S and ∃[δ8, δ9, δ10, δ11] ∈ C̄ with

R
(1)
1 + R

(2)
1 = R1,R

(1)
2 + R

(2)
2 = R2,

R
(2)
1 ≤ δ1,R

(2)
2 ≤ δ2,R

(1)
1 ≤ min{δ3, δ8},R

(1)
2 ≤ min{δ4, δ9},R

(1)
1 + R

(1)
2 ≤ δ5, δ6 < δ10, δ7 < δ11

}

.

Now, the set Ŝ is connected, as it is the continuous image of a continuous compact set. Therefore

all points in C can be expressed as a convex combination of at most dim{Ŝ} = |XR|+ 1 elements

of Ŝ. Therefore we can bound the required cardinality ofV from above by |XR| + 1.

A.1.1.5 The Cardinality of the Auxiliary Random Variables in Corollary 3.6

Applying the above arguments to Corollary 3.6 it follows immediately, that in this case cardi-

nalities |Q| ≤ 5, |ŶR| ≤ |YR| + 1, |V| ≤ |XR| + 1, |U1| ≤ |X1||Q| + 1, and |U2| ≤ |X2||Q| + 3

are sufficient to achieve all points in the region R5. For the region R6 the cardinalities |Q| ≤ 5,

|ŶR| ≤ |YR| + 1, |V| ≤ |XR| + 1, |U1| ≤ |X1||Q| + 3, and |U2| ≤ |X2||Q| + 1 are sufficient.

A.1.2 The Cardinality of Q and Ŷ in Theorem 4.1

As mentioned in the remarks for Theorem 4.1 the region stated in the Theorem is not convex,

but can be convexified by timesharing over codes for the three regions implicitly defined by

the inequalities in the theorem. We can still bound the cardinality of Q and Ŷ in Theorem 4.1

similar to the proceeding above:
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A.1.2.1 The cardinality of Q

Define for given channels p1(yR|x1, x2) and fixed α, β

S =
⋃

p(x1)p(x2)p(ŷR |yR)

{

[δ1(p), δ2(p), δ3(p), δ4(p)]|p = p(x1)p(x2)p1(yR|x1, x2)p(ŷR|yR)
}

where the union is over the compact set of all distributions p(x1)p(x2)p(ŷR|yR) and where

δ1(p) = αI(X1; ŶR|X2)

δ2(p) = αI(X2; ŶR|X1)

δ3(p) = α
(

I(X1X2; ŶR) − I(YR; ŶR)
)

.

(A.1)

Furthermore let C = ConvexHull(S) and let

Ŝ =
⋃

p(xR)

{

[βI(XR, Y1), βI(XR, Y2)]
}

for a given channel p(y1, y2|xR). The achievable rate region can now be stated as

R7 =

{

[R1,R2] : ∃[δ1, δ2, δ3] ∈ C, [δ4, δ5] ∈ Ŝ

with R1 ≤ max
{

0,min{δ1, δ3 + δ4}
}

,R2 ≤ max
{

0,min{δ2, δ3 + δ5}
}

}

.

The set S is connected, as it is the continuous image of a continuous compact set. Therefore

all points in C can be expressed as a convex combination of at most dim{S} = 3 elements of S.

Therefore we can upper bound the required cardinality of Q by 3.

A.1.2.2 The cardinality of Ŷ

Let s1 ∈ ∆|YR|. For given channels p1(yR|x1, x2), p2(y1, y2|xR), fixed α, β and fixed p = p(q)

p(x1|q)p(x2|q) let the set S(p) be given by

S(p) =
⋃

s1

{

[δ1, δ2, δ3, s1]
}

where the union is over all possible s1 ∈ ∆|YR|, and we have

δ1 = α

(

H(X1|X2,Q) +
∑

i,x1 ,x2 ,q

s1(i)p(x1, x2, q|YR = i)

×
(

log
(
∑

j

s1( j)p(x2, q|YR = j)
)

− log
(
∑

j

s1( j)p(x1, x2, q|YR = j)
))

)
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δ2 = α

(

H(X2|X1,Q) +
∑

i,x1 ,x2 ,q

s1(i)p(x1, x2, q|YR = i)

×
(

log
(
∑

j

s1( j)p(x1, q|YR = j)
)

− log
(
∑

j

s1( j)p(x1, x2, q|YR = j)
))

)

δ3 = −α

(

H(YR|X1, X2,Q) +
∑

i,x1 ,q

s1(i)p(x1x2, q|YR = i)

×
(

log
(
∑

j

s1( j)p(x1, x2, q|YR = j)
)

− log
(

s1(i)p(x1, x2, q|YR = i)
))

)

.

Here we use the common convention 0 log 0 = 0 justified by continuity since x log x → 0 as

x→ 0. Let C(p) = ConvexHull(S(p)) and let

Ŝ =
⋃

p(xR)

{

[βI(XR, Y1), βI(XR, Y2)]
}

.

Furthermore let C̄(p) =
{

[δ1, δ2, δ3, s1] ∈ C(p)|∀i s1(i) = p(YR = i)
}

. Now the achievable rate

region can be stated as

R7 =
⋃

p

{

[R1,R2] : ∃[δ1, δ2, δ3, s1] ∈ C̄(p), [δ4, δ5] ∈ Ŝ with

0 ≤ R1 ≤ max
{

0,min{δ1, δ3 + δ4}
}

, 0 ≤ R2 ≤ max
{

0,min{δ2, δ3 + δ5}
}

}

.

The set S(p) is connected, as it is the continuous image of the continuous compact set ∆|YR |.

Therefore all points in C(p) can be expressed as a convex combination of at most dim{S(p)} =

|YR| + 2 elements of S(p). As C̄(p) ⊂ C(p) all points in C̄(p) can be expressed as a convex

combination of at most dim{S(p)} = |YR| + 2 elements of S(p). Therefore all points in the

achievable rate region can be achieved with |ŶR| ≤ |YR| + 2.
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