
A 3/2-Approximation Algorithm for Finding Spanning Trees

with Many Leaves in Cubic Graphs

Paul Bonsma∗ Florian Zickfeld †

Technische Universität Berlin, Institut für Mathematik, Sekr. MA 5-1,

Straße des 17. Juni 136, 10623 Berlin, Germany

bonsma,zickfeld@math.tu-berlin.de

March 28, 2008

Abstract

We consider the problem of finding a spanning tree that maximizes the number of leaves
(MaxLeaf). We provide a 3/2-approximation algorithm for this problem when restricted
to cubic graphs, improving on the previous 5/3-approximation for this class. To obtain
this approximation we define a graph parameter x(G), and construct a tree with at least
(n−x(G)+4)/3 leaves, and prove that no tree with more than (n−x(G)+2)/2 leaves exists.
In contrast to previous approximation algorithms for MaxLeaf, our algorithm works with
connected dominating sets instead of constructing a tree directly. The algorithm also yields
a 4/3-approximation for Minimum Connected Dominating Set in cubic graphs.

1 Introduction

The problem MaxLeaf is defined as follows: given a connected graph G, find a spanning
tree of G that maximizes the number of leaves. This problem is NP-hard [11], even for cubic
graphs [16]. It is closely related to the problem MinCD-Set, which asks for a smallest
possible connected dominating set or CD-set, which is a set S ⊆ V (G) such that G[S] is
connected, and every vertex of G is either in S or adjacent to S (a dominating set). Observing
that the non-leaves of a spanning tree form a CD-set, it is easily seen that G has a spanning
tree with at least k leaves if and only if G has a CD-set of size at most |V (G)| − k (provided
that G 6= K2), and that these can be constructed from each other in polynomial time.

These problems have many theoretical and practical applications; in particular, recently
they have received a lot of attention due to their importance in wireless networks [5]. Therefore
it is not surprising that they have been considered from many different viewpoints, such
as purely combinatorial settings (see below), and using most of the different algorithmic
paradigms for solving hard problems, such as approximation algorithms (see below), fixed
parameter tractable algorithms [4, 8] and fast exact algorithms [9]. Generalizations such as
to directed graphs have been studied [1]. Restrictions to different graph classes have also
been considered. Motivated by the wireless networking applications, unit disk graphs have
been widely studied [5]. In this paper, we study the two problems when restricted to cubic
graphs, which was done before in [6, 12, 16, 17]. Let n(G) denote |V (G)|, and let δ(G) and n(G)

δ(G)∗Supported by the Graduate School “Methods for Discrete Structures” in Berlin, DFG grant GRK 1408
†Supported by the Studienstiftung des deutschen Volkes

1

∆(G) denote the minimum and maximum degree of G, respectively. If there is no cause for ∆(G)

confusion we will simply write n, δ and ∆.
With regard to the approximability of MaxLeaf, it is know that a polynomial time

approximation scheme is unlikely to exist, since the problem is known to be MAX SNP-
complete [10]. A 3-approximation was given by Lu and Ravi [18], and later a 2-approximation
was given by Solis-Oba [20], which is the current best approximation ratio for general graphs.
Loryś and Zwoźniak initiated the study of approximation algorithms for MaxLeaf in cu-
bic graphs, and gave a 7/4-approximation for this class [17]. This was recently improved to
5/3 by Correa et al [6]. In this paper, we will give a 3/2-approximation for MaxLeaf for
cubic graphs. From an approximation viewpoint MaxLeaf and MinCD-Set behave quite
differently: Guha and Khuller [14] showed that it is unlikely that constant factor approxima-
tion algorithms exist for MinCD-Set for general graphs. The current best approximation
is 2 + ln∆(G), given by Ruan et al [19]. For cubic graphs our algorithm will approximate
MinCD-Set with a guarantee of 4/3.

In another branch of research, a number of tight lower bounds is given for the maximum
number of leaves that can be obtained, for (connected) graphs from different classes. Linial
and Sturtevant first proved that every graph with δ ≥ 3 has a spanning tree with at least
n/4 + 2 leaves (unpublished). A short proof appears in [15], where it is also shown that in
graphs with δ ≥ 4, 2n/5 + 8/5 leaves can be obtained. For graphs with δ ≥ 5, n/2 + 2 leaves
are possible [13]. The n/4 + 2 bound is also tight for cubic graphs, but when in addition
diamonds are forbidden as subgraphs, Griggs et al [12] showed that n/3 + 4/3 leaves can be
obtained. A diamond is a K4 minus one edge. Recently it was shown that when in addition to diamond

diamonds, a certain subgraph on seven vertices is forbidden, the n/3 + 4/3 bound also holds
for graphs with δ ≥ 3 [4, 21]. This generalizes an earlier result [2, 3] that proves the same
bound for graphs with δ ≥ 3 without triangles. However, because of some useful features (see
Section 2), it is this earlier result that we will apply in this paper. In [21], a number of these
bounds and similar bounds have been generalized to graphs with arbitrary degrees. Even
though the algorithmic viewpoint is not stressed in the results mentioned above, all proofs
easily give polynomial time algorithms that construct a tree satisfying the bounds.

This leads us back to approximation algorithms. For instance, note that the n/4 + 2
bound gives a trivial 4-approximation when MaxLeaf is restricted to graphs with δ ≥ 3. It
is straightforward to show that spanning trees in cubic graphs have at most n/2 + 1 leaves.
Combined with the n/4+2 lower bound, this gives a trivial 2-approximation for cubic graphs.
The 5/3-approximation given by Correa et al [6] is based on a more sophisticated version of
this idea which we will now treat in more detail, since we use a similar strategy.

The goal of [6] was to match the upper bound n/2 + 1 for cubic graphs with the lower
bound n/3+4/3 for cubic graphs without diamonds. To make this work, only diamonds have
to be treated in some way. This was done by defining a graph parameter c(G) that depends
on the number and positions of diamonds in G: for a subgraph H of G, the internal vertices internal

verticesof H are those with only neighbors in H. Note that diamonds in cubic graphs always have
two internal vertices. The parameter c(G) now denotes the number of components obtained
when removing all internal vertices of diamonds from G. Using the bound from [12], it was
shown that a spanning tree with at least (3n − 2c(G) + 17)/10 > 3

10(n − 2c(G) + 4) leaves
can be constructed, and it was shown that any spanning tree has at most (n − 2c(G) + 4)/2
leaves. Together this gives a 1

2/ 3
10 = 5

3 approximation. It was also conjectured in [6] that a
3/2-approximation algorithm is possible for MaxLeaf.

2

Our contribution We prove this conjecture by providing a 3/2-approximation for MaxLeaf

in cubic graphs. The algorithm itself is very simple, although the analysis is more involved.
It is necessary to extend the study of problematic structures further, beyond only diamonds.
This is indicated by the examples from [6]: there it is shown that graphs G with c(G) = 0
exist that have no spanning tree with more than ⌈(3n + 17)/10⌉ leaves, hence considering
only the parameter c(G) is not good enough. We consider all triangles of G, identify different
types of them, and use their positions in G to define a number of graph parameters. This
is done in Section 3. Then in Section 4, we state the algorithm, and prove it yields at least
(n − x(G) + 4)/3 leaves, where x(G) is a combination of the defined graph parameters. In
Section 5 we prove that spanning trees in cubic graphs have at most (n− x(G) + 2)/2 leaves.
Together, this yields the 3/2-approximation for MaxLeaf, and the 4/3-approximation for
MinCD-Set (see Section 6). We believe that the two bounds we prove, and the identified
graph parameters are interesting in their own right, showing exactly in which cases diamonds
and triangles make it hard or even impossible to find spanning trees with at least n/3 + 4/3
leaves in graphs with δ ≥ 3.

Unlike the previous algorithms, our algorithm is in fact an algorithm that constructs a
CD-set instead of a tree. In [2, 3] it was proved that in graphs with δ ≥ 3 without triangles,
any CD-set S that satisfies some simple properties has |S| ≤ 2n/3−4/3. In Section 7 we show
that this bound can be generalized to graphs with triangles, but with a correction term that
(sloppily speaking) depends on the number of triangles in G[S]. Our algorithm constructs S
such that it contains at most x(G) triangles, such that the bound yields |S| ≤ (2n+x(G)−4)/3.
This in turn gives the bound for spanning trees mentioned above. More details on the bounds
for CD-sets are given in Section 2, together with some basic definitions.

2 Preliminaries

Basic notations and terminology For basic graph theoretic notions we refer to [7]. We
assume all graphs to be simple, with the exception that we allow edge contractions to yield
parallel edges and loops. When applying edge contractions, edges are assumed to be labeled,
that is, edge identities are preserved even if the labels of their end vertices change.

The set resulting from removing element v from S is denoted by S − v, and adding an
element is denoted by S + v. For a set S ⊆ V (G), we use N(S) to denote the set of all
vertices that have a neighbor in S, and S = V (G)\S. The number of components of a graph
G is denoted by cc(G). Internal vertices of a subgraph H of G are those vertices that only
have neighbors in H. Let Int(H) denote the set of internal vertices of H (with respect to its
supergraph G). We say that a subgraph H of G is a block of G if it is a maximal 2-connected
subgraph. Note that in contrast to the usual definition, this implies that bridges of G are not
part of any block. The vertex degree of v ∈ V (G) is denoted by dG(v), or d(v) if possible.

Minimal CD-sets Firstly it is important to recall that a set is said to be minimal for some
set of properties whenever it has no strict subset with these properties. Sets of minimum
cardinality that satisfy a set of properties are called minimum. A CD-set S is called a 2-CD-
set if every vertex in S has at most two neighbors in S. 2-CD-set

Proposition 1 In cubic graphs, for any 2-CD-set S, a minimal 2-CD-set S∗ ⊆ S can easily
be found in polynomial time, by iteratively removing single vertices or pairs of vertices while
maintaining a 2-CD-set.

3

Formulated just for cubic graphs, the results in [2, 3] yield the following bound.

Theorem 2 Let G = (V, E) be a connected cubic graph. Let S be a minimal 2-CD-set
of G where G[S] contains no triangles, and let S′ ⊆ S be a minimal CD-set of G. Then
|S′| ≤ (2n(G) − 4)/3.

This theorem can be applied to graphs without triangles, in that case it holds for any minimal
2-CD-set. But when considering the proof in [2, 3], it can be seen that actually the following
stronger statement is proved.

Theorem 3 Let G = (V, E) be a connected cubic graph. Let S be a minimal 2-CD-set of G
where G[S] has b∆ blocks that contain triangles, and let S′ ⊆ S be a minimal CD-set of G.
Then |S′| ≤ (2n(G) + b∆(S′) − 4)/3.

For the convenience of the reader, we have included a new concise proof of Theorem 3 in
Section 7. This is shorter than the one in [2, 3], partly because it is only formulated for cubic
graphs, and partly because of a different setup of the proof.

The strength of Theorem 3 lies not in the combination of the bound and the graph class
itself (as we remarked in the introduction, in that sense it is strengthened and generalized for
instance by the bound from [4]), but in the fact that it holds for any minimal 2-CD-set. This
allows us to first construct a 2-CD-set S∗ that satisfies some useful properties, namely that
it contains few triangles, and then consider a minimal 2-CD-set S ⊆ S∗.

3 Subgraphs obtained by removing triangles

f1(G):

0

1 0

2

1

3

f2(G):

2

2

1

1

cc2(G) = 2

: T-bridge

: V ∆(G)

cc(f1(G)) = 2 ⇒ cc1(G) = 1
cc(f2(G)) = 4⇒

G:

Figure 1: An example of G, f1(G) and f2(G).

The operations and notions defined in this section are illustrated in Figure 1. This figure
introduces the example of G that we will use to illustrate most proofs in the paper. For a
graph G with ∆(G) ≤ 3, let V ∆(G)⊆ V (G) be those vertices of G that are part of a triangle. V ∆(G)

We distinguish a number of triangle types of G. First we distinguish between triangles of
G that are part of diamonds, and those that are not. From now on, when we talk about

triangles of G, we mean those triangles that are not part of diamonds, except triangles of

Gwhen explicitly noted otherwise. Note that since ∆(G) ≤ 3, all diamonds of G are pairwise
vertex disjoint, and all triangles of G are pairwise vertex disjoint (since they are not part of
diamonds). We say a triangle or diamond H of G is of type i if |N(V (H))\V ∆(G)| = i. So type i

triangles can be of type i for i ∈ {0, 1, 2, 3}, and diamonds can be of type i for i ∈ {0, 1, 2}.
Let Ti(G) (Di(G)) denote the number of triangles (diamonds) of type i in G. In Figure 1, Ti(G)

Di(G)the numbers next to the triangles and diamonds of G indicate their types.

4

An edge uv of G is a triangle bridge or T-bridge if u, v ∈ V ∆(G) but u and v are not part T-bridge
of the same triangle or diamond. The graph f1(G) is obtained by deleting all vertices of G f1(G)

that are part of type 0 triangles or type 0 diamonds, and in addition deleting all T-bridges.
The graph f2(G) is obtained from G by deleting all vertices in V ∆(G), so f2(G) is a subgraph f2(G)

of f1(G).
Let cc1(G)= cc(f1(G)) − cc(G), and let cc2(G)= cc(f2(G)) − cc(f1(G)). We will always cc1(G)

cc2(G)consider G to be connected, so cc1(G) ≥ −1, and this is only an equality when V ∆(G) = V (G).
Since every component of f1(G) contains a vertex not in V ∆(G), we have cc2(G) ≥ 0. We
remark that the graph parameter x(G) that we mentioned in the introduction can now be
defined as x(G) = 2cc1(G) + cc2(G) + D0(G) + T0(G). If the graph in question is clear, we
will also write cc1 and T0 etc. instead of cc1(G), T0(G), etc.

4 Constructing and bounding the CD-set

In this section we present our algorithm to construct a minimal 2-CD-set S, and prove an
upper bound for the number of triangles in G[S] (Theorem 5), which gives a suitable upper
bound for the size of any minimal CD-set S′ ⊆ S using Theorem 3. The algorithm is shown
in Algorithm 1.

Algorithm 1 An algorithm for finding small CD-sets in cubic graphs

INPUT: A connected, cubic graph G.
OUTPUT: A minimal 2-CD-set S, and a minimal CD-set S′ ⊆ S.

(Stage 1:)
S1 := V (G).
while ∃ T-bridge uv in G[S1] s.t. S1 − u − v is a CD-set of G do

S1 := S1 − u − v.
(Stage 2:)
S2 := S1.
repeat

if ∃ type 3 triangle T with V (T) ⊆ S2 s.t. S2\V (T) is a CD-set of G then

S2 := S2\V (T).
if ∃ type 2 diamond D with V (D) ⊆ S2 s.t. S2\Int(D) is a CD-set of G then

S2 := S2\Int(D).
until no change was made.
(Stage 3:)
S := S2.
Remove vertices (possibly pairwise) from S until it is a minimal 2-CD-set of G.
S′ := S.
Remove vertices from S′ until it is a minimal CD-set of G.

Lemma 4 Algorithm 1 has a polynomial time implementation, and yields a minimal 2-CD-
set S of G and minimal CD-set S′ ⊆ S of G.

5

Proof: First note that all steps of the algorithm have a polynomial time implementation (for
Stage 3 this was observed in Proposition 1). Since in every step either the size of the CD-
set under consideration decreases, or the algorithm moves to the next stage, the algorithm
terminates in polynomial time.

The changes made to S1 and S2 in Stage 1 and 2 always remove sets of adjacent vertices,
so these will then have at most two neighbors in the resulting CD-set. So the property of
being a 2-CD-set is maintained throughout, and thus S will be a minimal 2-CD-set. �

Theorem 5 Let S be the minimal 2-CD-set of G constructed by Algorithm 1. Then the
number of triangles plus the number of diamonds in G[S] is at most 2cc1(G) + T0(G) +
D0(G) + cc2(G).

Proof: First we analyze Stage 1. Let S1 denote the set S1 as it is when Stage 1 has finished.
We will show that the number of triangles of type 0, 1 and 2 plus the number of diamonds
of type 0 and 1 with all vertices still in S1 is bounded by 2cc1 + T0 + D0. In particular, if
V ∆ = V (G), the number of triangles and diamonds with all vertices in S1 is bounded by
T0 + D0 − 2.

G:

: S1-bridge

G′:G[S1]:

: removed from S1

Figure 2: The set S1 after Stage 1 and G′ obtained from G[S1] by deleting S1-bridges.

The following definitions are illustrated in Figure 2. A T-bridge uv of G is called an
S1-bridge if u, v ∈ S1. Let nB(S1) denote the number of S1-bridges in G[S1].

Claim 1 An S1-bridge uv is a bridge of G[S1].

Claim proof: If uv is not a bridge, then since u and v are both part of triangles or diamonds,
removing u and v from S1 would not disconnect G[S1]. It would only destroy the property
that S1 is a dominating set if all other neighbors of one of the two vertices, say u, are already
removed from S1. But then u is a leaf of G[S1], so uv is again a bridge. △

Let G′ be the subgraph of G[S1] obtained by removing all S1-bridges. The components of
G′ are of two types: those that are part of components of f1(G), and those that are part of the
type 0 triangles and diamonds of G. Hence G′ has 1 + cc1 + T0 + D0 components. (Note that
because of the way vertices are removed from S1 during Stage 1, for every f1(G) component
and every type 0 triangle or diamond, at least one vertex remains in S1.) Since all S1-bridges
are bridges of G[S1] (Claim 1), contracting every edge of G′ that is not an S1-bridge gives a
tree, so the number of S1-bridges is

nB(S1) = cc1 + T0 + D0.

6

Let Ti,j (Di,j) denote the number of type i triangles (diamonds) of G that contain j vertices
of S1. By counting the number of S1-bridges that every such triangle or diamond is incident
with, we obtain

T2,3 + 2T1,3 + T0,1 + 2T0,2 + 3T0,3 + 2D0,4 + D0,3 + D1,4 ≤ 2nB(S1).

Using the above two inequalities, we can bound the number of type 0, 1, 2 triangles and type
0, 1 diamonds of G that are still fully part of G[S1]:

T0,3 + T1,3 + T2,3 + D0,4 + D1,4 ≤ 2nB(S1) − 2T0,3 − T0,1 − 2T0,2 − T1,3 − D0,4 − D0,3 =

2cc1 + 2T0 + 2D0 − 2T0,3 − T0,1 − 2T0,2 − T1,3 − D0,4 − D0,3 =

2cc1 + T0 + D0 − T0,3 − T0,2 − T1,3 ≤ 2cc1 + T0 + D0.

Now we will analyze Stage 2. Let S2 denote the set S2 as it is when Stage 2 has finished.
Type 3 triangles T with V (T) ⊆ S2 are called S2-triangles, and type 2 diamonds D with
V (D) ⊆ S2 are called S2-diamonds. We will show that the number of S2-triangles plus the
number of S2-diamonds is at most cc2.

The following arguments are illustrated in Figure 3 (which is not based on the graph G that
we have used as example earlier). For a component C of f1(G), the number of components of
f2(G) that are part of C is cc2(C)+1. We will first show that the number of S2-triangles plus
the number of S2-diamonds in C is at most cc2(C). In the example of Figure 3, cc(f2(C)) = 5,
so cc2(C) = 4, and there are two S2-triangles and one S2-diamond.

G′:G[S2]:

S2-triangle or S2-diamond
: cut vertex in an

C:

during Stage 2.
: removed from S2

: V (C)\V ∆(G) : V (C)\V ∆(G)

Figure 3: A component C of f1(G), the set S2 after Stage 2, and G′.

Consider an S2-triangle T in C. The set S2 still contains all vertices of V (G)\V ∆, so since
T is of type 3, after removing V (T) from S2, the set would still be a dominating set of G.
Therefore, since V (T) was not removed during Stage 2, G[S2\V (T)] is not connected. Since
T is a triangle and G is cubic, this implies that V (T) contains at least one cut vertex of C.
Similarly, for S2-diamonds it also holds that they contain a cut vertex of C (two actually).

Consider the graph G′ defined as follows. For every S2-triangle and every S2-diamond in
C, we add a black vertex to G′, and for every f2(G) component in C we add a white vertex to
G′. When an S2-triangle or S2-diamond is adjacent to an f2(G) component, we add an edge
between the corresponding vertices. This gives a bipartite graph G′ with cc2(C) + 1 white
vertices. Note that since every S2-triangle and every S2-diamond contains a cut vertex of C,
all black vertices are cut vertices of G′. Using a simple induction argument it then follows
that the number of black vertices of G′ is at most the number of white vertices minus one,
hence is bounded by cc2(C).

7

Every S2-triangle and S2-diamond of G is part of some component C of f1(G). In addition,
if C is the set of components of f1(G), then cc2(G) =

∑
C∈C cc2(C). It follows that the number

of type 3 triangles plus the number of type 2 diamonds in S2 is at most cc2(G).

Since S is a subset of S1 and of S2, we know that the number of type 0, 1, 2 triangles plus
the number of type 0, 1 diamonds of G that are fully in S is also bounded by 2cc1 + T0 + D0,
and that the number of type 3 triangles plus the number of type 2 diamonds of G that are fully
in S is bounded by cc2. Now all types of triangles and diamonds of G have been considered,
which proves the statement. �

The number of triangles and diamonds in G[S] is an upper bound for the number of blocks
of G[S] that contain triangles (here we do also mean triangles that are part of diamonds):
since S is a minimal 2-CD-set, it is not possible that a diamond of G is not fully part of S but
three of its vertices that together form a triangle are. So by combining Lemma 4, Theorem 3
and Theorem 5 we obtain:

Theorem 6 In polynomial time, Algorithm 1 returns a CD-set S′ of G with |S′| ≤ (2n(G) +
2cc1(G) + cc2(G) + T0(G) + D0(G) − 4)/3.

5 An upper bound for the number of leaves

In this section we prove an upper bound for the number of leaves of a spanning tree of a cubic
graph. We first observe that we only have to prove this for trees of the following form.

Proposition 7 A spanning tree T of G with maximum number of leaves exists that contains
two edges of every type 0, 1 and 2 triangle of G, and contains either zero or two edges of
every type 3 triangle of G.

Proof: We start with any spanning tree T , and make small changes to T , without decreasing
the number of leaves. For all triangles H except those of type 3, we show that we may
assume that T contains two edges of H. Let V (H) = {v1, v2, v3}. First consider the case that
T contains only one edge of H, say v1v2. Then v3 is a leaf and at least one of v1 and v2, say
v1, is not. Then removing the edge incident with v3 from T and adding v1v3 instead yields
again a tree, and no leaves are destroyed. Now consider the case that T contains no edges of
H, so all three vertices of H are leaves of T . We assumed H is not of type 3, so H is adjacent
to another triangle or diamond H ′. W.l.o.g. let u ∈ V (H ′) be adjacent to v1 ∈ V (H). Since
u is part of a triangle or diamond, it can be seen that we may assume that u has degree 2 in
T . Now we change T in the following way: we delete uv1 from T , and the edge of T incident
with v2. We add the edges v1v3 and v2v3 to T . Now only v3 loses leaf status, but u becomes
a leaf. Both v1 and v2 remain leaves. Hence a new spanning tree is obtained with at least as
many leaves. Note that this operation does not influence the number of edges of T in other
triangles, so we can continue applying such changes until the desired property is achieved. �

Theorem 8 Let T be a spanning tree of a cubic graph G. Then T has at most (n(G) −
2cc1(G) − cc2(G) − D0(G) − T0(G) + 2)/2 leaves.

Proof: We will assume T has the properties stated in Proposition 7. The following construc-
tions are illustrated in Figure 4. Let G′ be the graph obtained from G by contracting every

8

diamond and every triangle into a single black vertex, and by contracting every component
of f2(G) into a single white vertex. Let B (W) denote the set of black (white) vertices of
G′. The edges of G that are not contracted, and thus correspond to edges of G′ are called
G′-edges of G. We construct the following spanning subgraph T ′ of G′. An edge of G′ is G′-edges

added to T ′ if and only if for the corresponding edge e ∈ E(G):

• e ∈ E(T), and

• e is not incident with a leaf of T that is part of a triangle or diamond.

Type 3 triangles that contain three leaves of T will correspond to isolated vertices v of T ′

at this point. To ensure that T ′ is connected, in addition we add one arbitrary edge of G′

incident with v to T ′.

G and T : G′: T ′′:T ′:

: E(T)

: E(G)

Figure 4: The graphs G, T , G′, T ′ and T ′′ from the proof of Theorem 8.

Claim 2 T ′ is connected.

Claim proof: Let u and v be two vertices of G′, that correspond to subgraphs Hu and Hv of
G respectively. We identify a vertex xu ∈ V (Hu) as follows. If Hu is a triangle of type 0, 1
or 2, or if Hu is a component of f2(G), then we may choose xu ∈ V (Hu) arbitrarily. If Hu

is a triangle of type 3, then for some w ∈ V (G′), we have added uw to E(T ′). The edge uw
corresponds to a G′-edge e ∈ E(G). Then let xu be the vertex of Hu that is incident with e. If
Hu is a diamond, then we choose xu to be a vertex of Hu that is not a leaf in T (such a vertex
exists). We choose xv ∈ V (Hv) using the same rules. Now consider an (xu, xv)-path P in
T , which exists since T is connected. By construction of T ′, every G′-edge in P corresponds
to an edge that is present in T ′. Only for the first and last edge of P this is not trivial, but
follows by the choice of xu and xv, and because type 0, 1, 2 triangles contain two edges of T
(Proposition 7). Hence P corresponds to a path from u to v in T ′. △

Claim 3 If a black vertex v has degree i in T ′, then the corresponding subgraph Hv of G
contains at least i − 1 vertices that have degree 2 in T .

Claim proof: If Hv is a triangle, then either T contains two edges of Hv, or Hv is a type 3
triangle that contains three leaves of T (Proposition 7). In the latter case, v has degree 1 in
T ′ and the statement follows trivially. So we may assume Hv contains two edges of T . Since
v has degree i in T ′, there are also at least i G′-edges of G part of T . Considering the few
possibilities then yields the statement.

If Hv is a diamond, then we only have to consider the case i = 2. By the construction
of T ′, the two vertices of Hv that are incident with the two G′-edges of G can then not be

9

leaves of T . Then either at least one of them has degree 2 in T , or both have degree 3. But
the latter case implies T contains a 4-cycle, a contradiction. △

Since T ′ is connected (Claim 2), we have

|E(T ′)| ≥ |V (T ′)| − 1 = |B| + |W | − 1.

Note that all edges of G′ are incident with at least one black vertex. Consider the subgraph
T ′′ of T ′ that has vertex set V (G′) again, but only contains those edges of T ′ that are incident
with at least one white vertex. Note that cc(T ′′) = D0(G) + T0(G) + cc1 + 1. When we add
the edges of T ′ one by one until T ′ is obtained, clearly every edge addition can only decrease
the number of components by at most one. Hence cc(T ′′)−1 is a lower bound for the number
of edges of T ′ that are incident with two black vertices. The degree sum of black vertices
is then at least the number of edges of G′ plus the number of edges of G′ incident with two
black vertices. This yields the following bound.

∑

v∈B

(dT ′(v) − 1) ≥ |E(T ′)| + (cc(T ′′) − 1) − |B| ≥

|B| + |W | − 1 + D0 + T0 + cc1 − |B| = 2cc1 + cc2 + D0 + T0.

For the last equality we used |W | = cc1 + cc2 + 1. Since vertices of T ′ with degree 2 account
for at least one vertex of degree 2 in T , and vertices of degree 3 account for at least two such
vertices (Claim 3), the above number is also a lower bound for the number of degree 2 vertices
in T .

Now let di denote the number of vertices of T with degree i, and n = V (T). So d1 + d3 =
n− d2. For trees with ∆ ≤ 3 it is easy to see that d3 = d1 − 2. This yields 2d1 = n− d2 +2 ≤
n − (2cc1 + cc2 + D0 + T0) + 2, which gives the stated bound. �

6 The approximation guarantee

Theorem 9 Algorithm 1 is a 4/3-approximation for MinCD-Set in cubic graphs, and gives
a 3/2-approximation for MaxLeaf in cubic graphs.

Proof: Let x(G) = 2cc1(G) + cc2(G) + T0(G) + D0(G) and n = n(G). Let S′ be the minimal
CD-set returned by the algorithm, and let S∗ be a minimum CD-set of G. By Theorem 6,
|S′| ≤ (2n+x(G)−4)/3 ≤ 2(n+x(G)−2)/3. By Theorem 8, any spanning tree of G has at most
(n−x(G)+2)/2 leaves, so any CD-set of G, in particular S∗, has |S∗| ≥ n−(n−x(G)+2)/2 =
(n + x(G) − 2)/2. It follows that

|S′|/|S∗| ≤
2(n + x(G) − 2)

3
/
(n + x(G) − 2)

2
= 4/3.

Similarly, using S′, a spanning tree T with lA ≥ n − (2n + x(G) − 4)/3 = (n − x(G) + 4)/3
leaves can easily be constructed in polynomial time. Since an optimal spanning tree has at
most l∗ ≤ (n − x(G) + 2)/2 < (n − x(G) + 4)/2 leaves, the approximation guarantee for
MaxLeaf is

l∗/lA <
(n − x(G) + 4)

2
/
(n − x(G) + 4)

3
≤ 3/2.

�

10

7 A proof of the bound for minimal 2-CD-sets

In this Section we give a proof of Theorem 3, using notions that were used to prove the similar
theorem in [2, 3]. Consider a CD-set S of G. If S − v is not a dominating set of G, then v is
called a dominator of S. If G[S − v] is not connected, then v is called a connector of S. Note dominator

connectorthat vertices in S may be both dominators and connectors. Observe also that in any minimal
CD-set S, every vertex is a dominator or connector. Recall that we defined the blocks of a
graph G such that bridges of G are not part of blocks of G.

Proposition 10 Let S be a minimal 2-CD-set in a cubic graph G with a vertex v ∈ S that
is neither a connector nor a dominator, which is part of block G[B] of G[S]. For any CD-set
S′ ⊆ S with B ⊆ S′, v is neither a connector nor a dominator of S′.

Proof: The set S is a minimal 2-CD-set, so v has three neighbors in S. Since v is not a
connector, all three of its neighbors are in B. Because G is cubic, in G the vertex v has no
other neighbors other than its three neighbors in B. Therefore, regardless of which vertices
are removed from S to obtain S′, as long as B ⊆ S′ v will not become a dominator or
connector. �

The following Lemma is proved in [3] (Lemma 5.10). Here it is formulated only for cubic
graphs.

Lemma 11 Let S be a minimal 2-CD-set of a cubic graph G. For a block H of G[S], let
Di ⊆ V (H) be the vertices that have i neighbors in H (i ∈ {2, 3}). Then |D2| ≥ |D3|, and if
H contains no triangles, |D2| ≥ |D3| + 1.

Theorem 3 Let G = (V, E) be a connected cubic graph. Let S be a minimal 2-CD-set of G
where G[S] has b∆ blocks that contain triangles, and let S′ ⊆ S be a minimal CD-set of G.
Then |S′| ≤ (2n(G) + b∆(S′) − 4)/3.

Proof: Let S be a minimal 2-CD-set of G, and let S′ ⊆ S be a minimal CD-set of G. Let Li

denote the vertices in S that have i neighbors in S (i = 1, 2). and let L3 = S\S′. So we have

S′ = L1 ∪ L2 ∪ L3.

Figure 5 illustrates the following definitions. Consider the graph G′ obtained from G by
deleting L2, and deleting all edges that are only incident with vertices in L1. Consider the
tree T obtained from G′ by contracting blocks into single vertices. By VC ⊂ V (T) we denote
the vertices of T resulting from these block contractions. We partition S′ into the sets X, N
and VB defined as follows:

• X : vertices v of G′ such that G′ − v has three components.

• N : vertices of degree 2 in G′.

• VB: vertices that are part of a block of G′, excluding vertices in L3.

Observe that this indeed yields a partition of S′. For every block G′[B] of G′, we partition
B into D2 and D3, the vertices of degree 2 and 3 respectively in G′[B]. Let I∆(B) = 1 when
G′[B] contains a triangle, and I∆(B) = 0 otherwise. Now we have |D2| ≥ |D3| + 1 − I∆(B)

11

vB: L1

: VC

: X

: S
G: G′:

T :

B

G′[B]:

: D2

: D3

: LB
3

: S\S′ = L3

: L1 ∪ L2

Figure 5: A graph G with a minimal 2-CD-set S, and the resulting graphs G′ and T .

(Lemma 11). Let LB
3 = L3 ∩ B. Since G is cubic, a vertex in D3 cannot be a connector or

a dominator. So if D3 6= ∅, then B contains at least one vertex of L3 (Proposition 10), and
therefore |LB

3 | ≥ 1. On the other hand, if D3 = ∅ then G′[B] must be a cycle, so we have
|D2| ≥ 4 − I∆(B). In both cases the following inequality holds.

3|LB
3 | + |D2| ≥ |D3| + 4 − I∆(B) ⇒ 3|LB

3 | + 2|D2| ≥ |D2| + |D3| + 4 − I∆(B).

Now let vB ∈ VC be the vertex of T corresponding to B. Since S is a minimal 2-CD-set, a
vertex in D2 has a neighbor in G′ that is not in the block G′[B], so dT (vB) ≥ |D2|. Then the
above inequality yields

3|LB
3 | + 2dT (vB) ≥ |B| + 4 − I∆(B) ⇒

2|LB
3 | + 2(dT (vB) − 2) ≥ |B\LB

3 | − I∆(B).

Summing this inequality for all blocks of G′ we obtain

2|L3| + 2
∑

v∈VC

(dT (v) − 2) ≥ |VB| − b∆ ⇒ |L3| ≥ |VB|/2 −
∑

v∈VC

(dT (v) − 2) − b∆/2.

Since vertices in N have degree 3 in G, every such vertex must be adjacent to a vertex in
L2. Vertices in L2 have at most two neighbors in N , so |L2| ≥ |N |/2. Since T is a tree, we
know that

∑
v∈V (T) d(v) = 2n(T)− 2, which gives |L1| ≥

∑
v∈V (T)\L1

(dT (v)− 2) + 2. We can

combine these lower bounds to obtain a lower bound for |S′|:

|S′| = |L3| + |L2| + |L1| ≥

|VB|/2 −
∑

v∈VC

(dT (v) − 2) − b∆/2 + |N |/2 +
∑

v∈V (T)\L1

(dT (v) − 2) + 2 =

|VB|/2 − b∆/2 + |N |/2 +
∑

v∈V (T)\L1\VC

(dT (v) − 2) + 2.

We know that V (T)\L1\VC = X ∪ N , and vertices in N have degree 2 in T , so we may now
write:

|S′| ≥ |VB|/2 − b∆/2 + |N |/2 + |X| + 2 =

12

|S′|/2 − b∆/2 + |X|/2 + 2 ≥ |S′|/2 − b∆/2 + 2.

Here we used |S′| = |VB| + |N | + |X|. Adding |S′| to both sides yields

n(G) ≥
3

2
|S′| − b∆/2 + 2 ⇒ |S′| ≤ (2n(G) + b∆ − 4)/3.

�

References

[1] N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh, Parameterized algo-
rithms for directed maximum leaf problems, in ICALP 2007, vol. 4596 of LNCS, Springer, 2007,
pp. 352–362.

[2] P. Bonsma, Spanning trees with many leaves in graphs with minimum degree three. To appear
in SIAM J. Discrete Math.

[3] , Sparse cuts, matching-cuts and leafy trees in graphs, PhD thesis, University of Twente,
Enschede, the Netherlands, 2006. http://purl.org/utwente/57117.

[4] P. Bonsma and F. Zickfeld, Spanning trees with many leaves in graphs without diamonds and
blossoms. To appear in LATIN 2008.

[5] X. Cheng, X. Huang, D. Li, W. Wu, and D. Du, A polynomial-time approximation scheme
for the minimum-connected dominating set in ad hoc wireless networks, Networks, 42 (2003),
pp. 202–208.

[6] J. R. Correa, C. Fernandes, M. Matamala, and Y. Wakabayashi, A 5/3-approximation
for finding spanning trees with many leaves in cubic graphs, in WAOA 2007, vol. 4927 of LNCS,
Springer, 2008, pp. 184–192.

[7] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.

[8] V. Estivill-Castro, M. R. Fellows, M. A. Langston, and F. A. Rosamond, FPT
is P-time extremal structure I, in ACiD 2005, vol. 4 of Texts in algorithmics, King’s College
Publications, 2005, pp. 1–41.

[9] F. V. Fomin, F. Grandoni, and D. Kratsch, Solving connected dominating set faster than
2n, in FSTTCS 2006, vol. 4337 of LNCS, Springer, Berlin, 2006, pp. 152–163.

[10] G. Galbiati, A. Morzenti, and F. Maffioli, On the approximability of some maximum
spanning tree problems, Theoret. Comput. Sci., 181 (1997), pp. 107–118. LATIN 1995.

[11] M. R. Garey and D. S. Johnson, Computers and intractability, Freeman, San Francisco, 1979.

[12] J. R. Griggs, D. J. Kleitman, and A. Shastri, Spanning trees with many leaves in cubic
graphs, J. Graph Theory, 13 (1989), pp. 669–695.

[13] J. R. Griggs and M. Wu, Spanning trees in graphs of minimum degree 4 or 5, Discrete Math.,
104 (1992), pp. 167–183.

[14] S. Guha and S. Khuller, Approximation algorithms for connected dominating sets, Algorith-
mica, 20 (1998), pp. 374–387.

[15] D. J. Kleitman and D. B. West, Spanning trees with many leaves, SIAM J. Discrete Math.,
4 (1991), pp. 99–106.

[16] P. Lemke, The maximum-leaf spanning tree problem in cubic graphs is NP-complete, IMA pub-
lication no. 428, University of Minnesota, Mineapolis, 1988.

13

[17] K. Loryś and G. Zwoźniak, Approximation algorithm for the maximum leaf spanning tree
problem for cubic graphs, in Algorithms—ESA 2002, vol. 2461 of LNCS, Springer, Berlin, 2002,
pp. 686–697.

[18] H. Lu and R. Ravi, Approximating maximum leaf spanning trees in almost linear time, Journal
of Algorithms, 29 (1998), pp. 132–141.

[19] L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K. Ko, A greedy approximation for minimum
connected dominating sets, Theoret. Comput. Sci., 329 (2004), pp. 325–330.

[20] R. Solis-Oba, 2-approximation algorithm for finding a spanning tree with maximum number of
leaves, in Algorithms—ESA 1998, vol. 1461 of LNCS, Springer, Berlin, 1998, pp. 441–452.

[21] F. Zickfeld, Geometric and combinatorial structures on graphs, PhD thesis, Technische Univer-
sität Berlin, Berlin, 2007.

14

