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Abstract

The aim of this thesis is to formulate and prove quantum extensions of the
famous Shannon-McMillan theorem and its stronger version due to Breiman.

In ergodic theory the Shannon-McMillan-Breiman theorem is one of the
fundamental limit theorems for classical discrete dynamical systems. It can be
interpreted as a special case of the individual ergodic theorem. In this work, we
consider spin lattice systems, which can be interpreted as dynamical systems
under the action of the translation group. The Shannon-McMillan-Breiman the-
orem states that the Shannon entropy rate of an ergodic lattice system is the
asymptotical rate of exponential decrease of probability of almost each individ-
ual spin configuration. In information theory, information sources are usually
modeled by time-discrete stochastic processes or equivalently by 1-dimensional
spin lattice systems. There, this theorem plays an important role, giving an
interpretation to the Shannon entropy rate as the asymptotically mean infor-
mation per signal. At the same time the entropy rate is an achievable lower
bound for the compression rate of asymptotically error-free data compression
algorithms.

It turns out, that there are analogues of the classical Shannon-McMillan
theorem and Breiman’s extension for quantum spin lattice systems, modeled as
C∗-dynamical systems with respect to the action of the translation group on
a quasi-local C∗-algebra. There, the concept of Shannon entropy for discrete
probability distributions is generalized by the von Neumann entropy for density
operators. A number of results, related to the quantum Shannon-McMillan-
(Breiman) theorem are presented in this work. Similarly to classical information
theory, the existence of asymptotically error-free data compression schemes for
ergodic quantum sources is proven based on the quantum Shannon-McMillan
theorem. There, the achievable lower bound on the compression rate is given by
the von Neumann entropy rate of the quantum source. Furthermore, a structure
theorem is proven, which describes the convex decomposition of ergodic states
on quantum spin lattice systems into components which are ergodic with respect
to some subgroup of the whole translation group.

Subsuming, we may say, that the presented results about quantum spin
lattice systems establish the von Neumann entropy rate as the generalization of
the Shannon entropy rate to the quantum case.
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Zusammenfassung

Die vorliegende Dissertation hat zum Ziel gehabt, Quantenversionen des be-
kannten Shannon-McMillan Satzes und seiner auf Breiman zurückgehenden Ver-
schärfung zu formulieren und zu beweisen.

In der Ergodentheorie ist der Shannon-McMillan-Breiman Satz einer der
fundamentalen Grenzwertsätze für klassische diskrete dynamische Systeme und
kann als ein Spezialfall des individuellen Ergodensatzes aufgefasst werden. Im
Rahmen dieser Arbeit wurden Spingittersysteme behandelt, die mit der Wirkung
der Translationsgruppe dynamische Systeme darstellen. Der Shannon-McMillan-
Breiman Satz besagt, dass die Shannon-Entropierate ergodischer Gittersysteme
die asymptotische Rate angibt, mit der die individuellen Wahrscheinlichkeiten
fast jeder Spinkonfiguration exponentiell schnell abfallen. Der Satz spielt ins-
besondere in der klassischen Informationstheorie eine zentrale Rolle, wo In-
formationsquellen durch zeitdiskrete stochastische Prozesse bzw. äquivalent
dazu durch eindimensionale Spingittersysteme modelliert werden. Ihm zufolge
kann die Shannon-Entropierate ergodischer Informationsquellen als asympto-
tisch mittlere Information pro Signal interpretiert werden. Gleichzeitig gibt
die Entropierate die erreichbare untere Schranke an die Komprimierungsrate
asymptotisch fehlerfrei arbeitender Datenkomprimierungsalgorithmen an.

Es stellt sich heraus, dass für Quantenspingittersysteme, verstanden als
C∗-dynamische Systeme bzgl. der Wirkung der Translationsgruppe auf einer
quasilokalen C∗-Algebra, Analoga des klassischen Shannon-McMillan-Satzes und
seiner auf Breiman zurückgehenden Verschärfung existieren. Dabei wird das
Konzept der Shannon-Entropie für diskrete Wahrscheinlichkeitsverteilungen durch
die für Dichteoperatoren definierte von Neumann-Entropie verallgemeinert. Eine
Reihe von Resultaten, die mit dem Quanten-Shannon-McMillan-(Breiman-)Satz
verwandt sind, werden in der Arbeit vorgestellt. Insbesondere konnte ähnlich
wie in der klassischen Informationstheorie auf der Grundlage des Shannon-
McMillan-Satzes die Existenz von asymptotisch fehlerfrei arbeitender Datenkom-
primierungsschemen für ergodische Quanteninformationsquellen bewiesen wer-
den. Dabei ist die erreichbare untere Schranke an die Komprimierungsrate
durch die von Neumann-Entropierate der Quantenquelle gegeben. Des weiteren
wurde ein Struktursatz über die Zerlegung ergodischer Quantenspingittersys-
teme in Komponenten, die bzgl. einer Translationsuntergruppe ergodisch sind,
bewiesen.

Zusammenfassend lässt sich sagen, dass die in der Dissertation präsentierten
Resultate für Quantenspingittersysteme die von Neumann-Entropierate als Ver-
allgemeinerung der Shannon-Entropierate im informationstheoretischen Kon-
text bestätigen.
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Chapter 1

Introduction

The aim of the present work is to formulate and prove quantum extensions
of theorems for classical spin lattice systems, which had in the past a strong
impact on classical information theory. Actually, applications to quantum in-
formation theory, in particular in the context of data compression, are one of our
main motivations. We will concentrate on the Shannon-McMillan theorem (SM-
theorem), which is usually referred to as the AEP (Asymptotic Equipartition
Property) in classical information theory, and its stronger version, the Shannon-
McMillan-Breiman theorem (SMB-theorem). For ergodic classical spin lattice
systems both theorems are convergence theorems with the limit equal to the
mean (per lattice site limit) Shannon entropy1. The SM-theorem is a conver-
gence in probability statement. The SMB-theorem is a stronger almost sure
convergence statement. We will show that for ergodic quantum spin lattice sys-
tems analogous convergence theorems exist with the mean (again, per site limit)
von Neumann entropy as limit. Subsequently, with the quantum SM-theorem
at our disposal we will prove a lossless quantum data compression theorem.

Classical spin systems on a ν-dimensional lattice corresponding to the group
Z

ν are mathematically modeled by a probability measure P on a measurable
space (A∞, Σ), where A∞ is a set consisting of A-valued realizations (or con-
figurations in the notation of statistical mechanics) over the lattice Z

ν , A is
a finite set assigned to each lattice site x ∈ Z

ν , and Σ is a σ-algebra gener-
ated by the collection of cylinder sets in A∞. In the 1-dimensional case the
elements of A∞ are just doubly infinite A-valued sequences. Translations of
the lattice canonically induce a dynamics on (A∞, Σ) by shifts on A∞. Thus
if T (Zν) is a representation of the translation group by shifts on A∞ then the
quadruple (A∞, Σ, P, T (Zν)) is a dynamical system corresponding to a classical
ν-dimensional spin lattice system.
Roughly speaking, the SM-theorem states that under the ergodicity condition
for the probability measure P the probabilities of the entropy-typical subsets on
v-boxes, which are regions of finite volume v in the infinite ν-dimensional lattice
Z

ν , converge to 1 in the thermodynamical limit. An entropy-typical subset on

1The SM(B)-theorem can be formulated for more general ergodic dynamical systems, not
necessary corresponding to a spin lattice system. Then the limit is given by the Kolmogorov-
Sinai (dynamical) entropy, which is identical to the mean Shannon entropy in the case of spin
lattice systems.
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2 Introduction

a v-box consists of all the realizations on this box that have individual proba-
bilities of order exp(−vh). Hereby h is the mean (base e) Shannon entropy of
P . As a consequence the entropy-typical subsets are of approximate size equal
to exp(vh), for v large enough. The stronger version of the theorem, the SMB-
theorem, asserts that h is P -almost sure the rate (per lattice site) at which the
individual probabilities of realizations on v-boxes exponentially decrease as the
volume v tends to ∞, again in the case of an ergodic system.2 Summarizing we
can say that an ergodic probability measure concentrates on a typical subset
T ∈ Σ of A∞ consisting of entropy-typical elements.

In classical information theory, 1-dimensional spin lattice systems, which can
be equivalently considered as stochastic processes, model information sources.
The success of the concept of Shannon entropy in classical information theory is
to a large extent based on the AEP of ergodic systems. As the entropy-typical
subsets become subsets of most probability on long enough blocks of the lattice
Z, the ability to approximate their size in terms of the mean Shannon entropy
has direct consequences for data compression: The mean Shannon entropy h
can be interpreted as the average information content of ergodic information
sources. Indeed, a properly designed compression scheme can represent an er-
godic information source asymptotically reliably using not more than h/ log 2
bits per lattice-site. Moreover, h determines the optimal rate of compression in
the sense that any compression of rate lower than h/ log 2 fails to be reliable.
This is due to the fact that for ergodic processes h is a lower bound on the
asymptotic rate of the logarithmic size of subsets of most probability, which is
a direct consequence of the AEP.

In order to treat both classical and quantum spin lattice systems in the same
mathematical framework one uses the C∗-algebraic formalism. In this formalism
ν-dimensional spin lattice systems are modeled by C∗-dynamical systems of the
form (A∞, Ψ, T (Zν)), where A∞ is a quasi-local C∗-algebra constructed from
a finite dimensional unital C∗-algebra A, Ψ is a state, i.e. a normalized posi-
tive linear functional on A∞ and T (Zν) is the representation of the translation
group Z

ν by shifts on A∞. The elements of the algebra A are the mathemati-
cal objects associated with the observables of single spins located at the lattice
sites, while the algebra A∞ is the algebra of observables of the whole lattice sys-
tem. The quantum case corresponds to a non-commutative A, while an abelian
algebra A describes the classical situation. For quantum spin lattice systems
the C∗-algebraic description is a rather standard formalism, (cf. [42],[14]), as is
the concept of quasi-local algebras in local quantum field theory. In contrast,
the classical spin lattice systems are usually described as dynamical systems
(A∞, Σ, P, T (Zν)), as introduced above, or especially in the 1-dimensional case
as stochastic processes. We will present the classical results in this familiar set-
ting and explain the correspondence to the C∗-algebraic description, which we
will use in the quantum case.

As mentioned, the convergence assertion in the SM(B)-theorem holds under the
ergodicity condition. Of course, in the quantum version of the SM(B)-theorem

2In the 1-dimensional situation we would simply say that in the ergodic case the individual
probabilities along P -almost every trajectory decrease exponentially fast at an asymptotical
rate given by h.
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formulated as an extension of the commutative to the non-commutative case, we
need the (quantum version of) ergodicity assumption as well. Consequently, the
class of ergodic quantum states on A∞ shall be the main object in the present
work. The shifts on the quasi-local C∗-algebra A∞ are canonically induced by
lattice translations. It is a well known fact that the set of translation invari-
ant states T (A∞) on the observable algebra A∞ forms a weak∗-compact convex
subset of the entire state space for the quantum lattice system. States which are
extremal points of T (A∞) (the existence of extremal points is ensured by the
compactness of T (A∞)) are called shift-ergodic or, relating to the underlying
translation group, Z

ν -ergodic states of the quantum lattice system.
We emphasize that we do not care about concrete realizations of ergodicity. In
the present work ergodicity always appears just as a mathematical assumption
on the quantum states required to obtain some asymptotical behavior of the lat-
tice systems. Nevertheless, the ergodicity assumption is a physically motivated
and physically reasonable assumption. Ergodic systems form the elementary
components of translation invariant physical systems.

As mentioned at the beginning it turns out that the mean von Neumann entropy
s of ergodic quantum spin lattice systems plays a role analogous to the Shan-
non entropy rate of ergodic classical spin lattice systems. Indeed, the quantum
version of the SM-theorem, Theorem 3.3.1, states that in each local algebra AΛ

of observables corresponding to quantum spins located in the v-box Λ in the
lattice Z

ν there exists a projector p such that each minimal projector from AΛ

dominated by p has an expectation value of order exp(−vs) and the expectation
value of p is close to 1, for v large enough. The expectations are calculated with
respect to an ergodic quantum state on a quasi-local C∗-algebra A∞. The trace
of the projector p, or alternatively the dimension of the corresponding Hilbert
subspace, is approximately equal to exp(vs), for large v.

One of the main ideas behind the proof of the quantum SM-theorem is to ap-
ply the classical SM-theorem to commutative C∗-dynamical subsystems of the
considered ergodic non-commutative (quantum) spin lattice system, where the
classical subsystems approximate the quantum system in mean entropy. The
problem occurring in such an approach is that the approximating classical sub-
systems inherit their ergodic properties from the ergodic properties of the given
quantum system with respect to a subgroup of Z

ν , typically of the form l · Z
ν

with l > 1 an integer. However, in general a state fails to be ergodic with respect
to arbitrary subgroups if the only assumption we make is the Z

ν-ergodicity. To
deal with this problem we will prove an ergodic decomposition statement, The-
orem 3.2.1, which shows that the l · Z

ν -ergodic decompositions of a Z
ν-ergodic

quantum state are of a rather good controllable structure.

As an application of the quantum SM-theorem (quantum AEP) to quantum
information theory we formulate a lossless quantum data compression theorem,
Theorem 3.4.1. It establishes the mean von Neumann entropy s as an informa-
tion quantifying entity. Indeed, disposing of the quantum AEP we can prove the
existence of asymptotically reliable compression schemes for ergodic quantum
information sources. The compression will occur by block coding, which uses for
the representation of source blocks asymptotically not more than s/ log 2 qubits
per source signal. Moreover, s is an optimal rate of compression in the sense
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that using a lower number of representing qubits than s/ log 2 results in a lossy
reconstruction of the original quantum information source, at least if measuring
the success of reconstruction by entanglement fidelity or ensemble fidelity, as we
will do. We emphasize that our construction of optimal compression schemes de-
pends on the quantum state of the information source. Recently, the existence of
universal quantum data compression schemes, which work optimally for a whole
class of ergodic quantum information sources, have been proven, [30]. The class
is characterized by the same mean von Neumann entropy of the quantum states.

The classical SMB-theorem is usually formulated as an almost sure i.e. pointwise
convergence statement, where the notions of individual realizations or trajec-
tories appear. However, in the non-commutative setting such notions do not
exist. In order to avoid the trajectory notion we use an equivalent finite form
of the classical SMB-theorem, which is based on the observation, that due to
the SMB-theorem for an ergodic source the entropy-typical subsets on differ-
ent v-boxes are not independent or isolated, but are nested in a sense specified
later. Then, starting with the finite reformulation we succeed in expanding the
(reformulated) SMB-theorem to the quantum case, Theorem 3.5.1. In fact, the
quantum extension of the SM-theorem is also based on a finite formulation of
the classical SM-theorem, which is a standard formulation in classical informa-
tion theory. In ergodic theory or probability theory the preferred formulation
of the SM-theorem uses the notion of trajectories.

Most of the asymptotically faithful compression algorithms used in practice
are not block coding but sequential coding algorithms. They are working on
forthcoming data strings using the source data sequences to be compressed
simultaneously for generating a codebook. Properly designed sequential com-
pression algorithms can achieve an optimal rate of compression for arbitrary
(not even) stationary information sources without the prior knowledge of their
statistics (universal coding). In general the reason why classical sequential com-
pression schemes like for example the popular Lempel-Ziv algorithm can operate
efficiently can be seen in the fact, that entropy-typical subsets are nested. A
further crucial point is that in the classical situation one can investigate the
unknown statistics of the information source by measurements without disturb-
ing the information source. However, in the quantum setting any measurement
has some influence on the (unknown) quantum state of the information source,
which cannot be predicted but can be estimated in the best case. The existence
of a quantum version of the SMB-theorem can be seen as an indication for the
existence of quantum sequential data compression algorithms. However, it is an
open question how to deal with the remaining problem connected with quantum
measurements and their disturbance of quantum states.

The present work is organized as follows: In the second chapter we review some
facts about commutative shift-invariant lattice systems. The focus is on the
SM-theorem and its extension due to Breiman. We give an equivalent reformu-
lation of the SMB-theorem especially suited for extension to the quantum case,
Lemma 2.2.5. Moreover, we formulate and prove a convergence assertion for a
non-consistent family of probability distributions on finite sets, Lemma 2.2.6.
We will meet such non-consistent families in connection with a consistent family
of density operators corresponding one-to-one to an ergodic quantum state on a
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quasi-local algebra A∞: The probability distributions given by the eigen-value
distributions of the density operators are usually not consistent due to quantum
correlations between single quantum spins. Finally in the second section classi-
cal data compression is briefly discussed as application of the reviewed theorems.
In general, the selection of presented classical results is due to their relevance
for the third chapter. There we prove the quantum Shannon-McMillan theorem
3.3.1 and a quantum version of the Shannon-McMillan-Breiman theorem 3.5.1,
which are our main results. They are formulated as extensions of commuta-
tive case theorems to the non-commutative case of quantum ergodic spin lattice
systems. Moreover, we prove an ergodic decomposition theorem for ergodic
quantum states, Theorem 3.2.1, which is essential in the proof of the quantum
SM-theorem and present the asymptotically lossless quantum data compression
theorem 3.4.1 as an application of the quantum SM-theorem to quantum in-
formation theory. In the last chapter the results are summarized and possible
continuation of the work is discussed.
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Chapter 2

Classical Shift-Invariant
Spin Lattice Systems

This chapter is intended to give an overview of results characterizing the asymp-
totic behavior of classical shift-invariant spin lattice systems as far as these are
useful to prepare the next chapter treating quantum ergodic spin lattice sys-
tems. The focus will be on the Shannon-McMillan theorem and its extension
due to Breiman. As these are well known results in classical theories such as
ergodic theory, information theory or probability theory we will only give refer-
ences of the proofs. Beside the standard formulations of the theorems we will
also present equivalent reformulations especially suited to be extended to the
quantum context. There, the main point will be to avoid the notion of trajecto-
ries appearing in the standard formulations as there are no quantum analogues
to these objects. For the equivalence statement of the standard formulation
and the finite reformulation of the Shannon-McMillan-Breiman theorem we will
present the proof in detail. Another result will be a convergence assertion for a
non-consistent family of discrete probability spaces.

2.1 Main Concepts

As mentioned in the introduction, classical ν-dimensional spin lattice systems,
ν ∈ N, can be described mathematically in the framework of dynamical systems
on an infinite cartesian product space A∞ over the lattice Z

ν , where the dynam-
ics is introduced by the action of the translation group Z

ν . In the 1-dimensional
case translation invariant spin lattice systems, i.e. spin chains, correspond to
stationary discrete-time stochastic processes with a finite state space and model
information sources in classical information theory. In this section we review the
main mathematical concepts concerning classical spin lattice systems, thereby
fixing notations. For a more detailed introduction we suggest for example [42].

Mathematical Model for Classical ν-dimensional Spin Lattice Systems

The ν-dimensional infinitely extended lattice corresponds to the group Z
ν . As-

sociated to each x ∈ Z
ν there is a set Ax. In the sequel we consider only the

case that every Ax is equal to a fixed finite set A. We consider the infinite

7



8 Classical Shift-Invariant Spin Lattice Systems

cartesian product space

A∞ := Xx∈Zν Ax.

In the context of statistical mechanics the elements a ∈ A∞ are usually called
(spin) configurations on the lattice Z

ν . In the 1-dimensional case one refers to
the doubly infinite sequences a ∈ A∞ as trajectories or especially in the context
of information theory as data strings . In the sequel, abusing notions, we will
refer to a ∈ A∞ as trajectories also in the general ν-dimensional case.
Consider a finite subset Λ ⊂ Z

ν . For a ∈ A∞

[a]Λ := {b ∈ A∞| bx = ax, x ∈ Λ}

defines a cylinder set in A∞. Similarly, each finite sequence (ai)i∈Λ =: aΛ from
a finite cartesian product set AΛ := Xx∈ΛA defines a cylinder set

[aΛ] := {b ∈ A∞| bx = ax, x ∈ Λ} ⊂ A∞.

In the 1-dimensional case, if Λ ⊂ Z is a discrete interval [m, n] := {m, . . . , n},
m, n ∈ Z with m ≤ n, we will use the simplifying notation an

m for a finite
sequence (ai)

n
i=m ∈ A[m,n]. Analogously, for a ∈ A∞ we will denote the cylinder

set [a][m,n] ⊂ A∞ by [a]nm.
The product space A∞ together with the σ-algebra Σ generated by the

collection of cylinder sets form a measurable space (A∞, Σ) . On this space we
can define a probability measure P . It corresponds one-to-one to a consistent
family of probability measures {PΛ}Λ⊂Zν on the finite cartesian products AΛ ⊂
A∞, respectively. Each PΛ is determined by P through the relation:

PΛ(aΛ) := P ([aΛ]), for all aΛ ∈ AΛ, (2.1)

i.e. PΛ is the marginal distribution of P on AΛ. By consistency of the family
we mean that

PΛ(aΛ) =
∑

b
Λ
′ ∈A

Λ
′ :bx=ax,∀x∈Λ

PΛ′ (bΛ′ ), for all aΛ ∈ AΛ,

is fulfilled for all finite subsets Λ, Λ
′ ∈ Z

ν with Λ ⊆ Λ
′
.

Each x ∈ Z
ν defines a translation of the lattice Z

ν and induces an automorphism
Tx on (A∞, Σ) given by:

(Tx(a))i = ai+x, i ∈ Z
ν , a ∈ A∞

i.e. {Tx}x∈Zν is the action of the translation group Z
ν by shifts on A∞ and

defines a discrete dynamics on (A∞, Σ). The quadruple

(A∞, Σ, P, T (Zν)), (2.2)

where T (Zν) denotes the representation of the group Z
ν by the shifts Tx,

describes a classical spin lattice system as a dynamical system. In the 1-
dimensional case each shift Tx, x ∈ Z, is obtained as the power T x of the
unit right shift T := Tx=1. Thus we will use the notation (A∞, Σ, P, T ) instead
of (2.2).
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For n = (n1, . . . , nν) ∈ N
ν we denote by Λ(n) the box in Z

ν determined by

Λ(n) := {(x1, . . . , xν) ∈ Z
ν | xi ∈ {0, . . . , ni − 1}, i ∈ {1, . . . , ν}}, (2.3)

and for n ∈ N we denote by Λ(n) the hypercube

Λ(n) := {x ∈ Z
ν | x ∈ {0, . . . , n − 1}ν}.

In the following we simplify notations by defining for n ∈ N
ν (respectively for

n ∈ N)

A(n) := AΛ(n) = Xx∈Λ(n)Ax and P (n) := PΛ(n).

A probability measure P on (A∞, Σ) is called translation invariant if it satisfies

P ◦ Tx = P, ∀x ∈ Z
ν . (2.4)

Due to the invariance it is uniquely defined already by a sequence {P (n)}n∈Nν

of marginal distributions of the probability measure P on the finite cartesian
products A(n), respectively, (cf. [43], Theorem I.1.2).
If G is a subgroup of Z

ν , typically l ·Zν with l ≥ 1 an integer, then we say that a
probability measure P on (A∞, Σ) is G-invariant , if it is invariant (in the sense
of (2.4)) under the action of the translation subgroup G. Thus a translation
invariant measure is also called Z

ν-invariant.

Spin Chains in Information Theory: Information Sources

In classical information theory discrete information sources (IS) are modeled
by discrete-time stochastic processes, i.e. by sequences of random variables
{Xi}i∈Z, each Xi taking values from a given set A, called alphabet. The group
Z is associated to discrete times. A stationary stochastic process with alphabet
A is completely determined by a sequence {P (n)}n∈N, where each P (n), n ∈ N, is
a joint distribution of the finite sequences of random variables (X1, X2, . . . , Xn).

Now, consider the dynamical system (A∞, Σ, P, T ), which is associated to a
shift-invariant classical spin chain, i.e. a 1-dimensional spin lattice system.
Then the coordinate functions Xi, i ∈ N:

Xi : A∞ −→ A, a 
→ xi(a) := ai,

are random variables forming a stationary stochastic process with joint distri-
butions coinciding by construction with the probability measures P (n) on A(n),
respectively.
Conversely, each stationary stochastic process with alphabet A has a represen-
tation as a dynamical system of the form (A∞, Σ, P, T ), where P is a translation
invariant probability measure corresponding one-to-one to the consistent family
of joint distributions of the stochastic process, (cf. Theorem I.1.2 in [43] for the
uniqueness of P ).

The representations of an IS by (A∞, Σ, P, T ) is known as the Kolmogorov
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representation or the Kolmogorov model for an IS. In the sequel we will think
of classical IS interchangeably as spin chains or as stochastic processes. In anal-
ogy to the classical case quantum spin chains model quantum IS in quantum
information theory.

Ergodicity

There are different equivalent definitions of the crucial notion of ergodicity.
We recall one, which can be directly expanded in the next chapter to the case of
non-commutative C∗-dynamical systems corresponding to quantum spin lattice
systems. Let G be a (discrete) group and T (G) its representation by automor-
phisms on a measurable space (A, Σ). A G-invariant probability measure P on
(A, Σ), i.e. P ◦ T (g) = P for all g ∈ G, is said to be G-ergodic, if any convex
decomposition of P into G-invariant probability measures on (A, Σ) is trivial,
i.e. a G-ergodic P is an extremal point in the convex set of G-invariant proba-
bility measures on (A, Σ). If the group G is evident we simply say that P is an
ergodic probability measure.

Shannon Entropy Rate

Recall that the Shannon entropy of a probability distribution P on a finite
set A is defined by

H(P ) := −
∑
a∈A

P (a) log P (a),

where log denotes the natural logarithm. In the information theoretical setting
it is more common to use log2, i.e. the base 2 logarithm, relating to the bit as
the fundamental information unit. Thus, treating information theoretical topics
we will switch to log2.
For any translation invariant probability measure P on the space (A∞, Σ) over
a ν-dimensional lattice system Z

ν the limit

h(P ) := lim
n→∞

1

|n|H(P (n)), (2.5)

exists, where for n = (n1, . . . , nν) ∈ N
ν

|n| :=

ν∏
i=1

ni, (2.6)

is the volume of the ν-dimensional box Λ(n), P (n) denotes the marginal distri-
bution of P on Λ(n) and

n → ∞ :⇐⇒ Λ(n) ↗ N
ν , (2.7)

i.e. n → ∞ implies that ni → ∞, for all i ∈ {1, . . . , ν}. We refer to the limit
(2.5) as mean Shannon entropy of P . It exists due to the subadditivity of Shan-
non entropy (cf. [43]).
In the 1-dimensional case h(P ) = limn→∞ 1

nH(P (n)) is usually called the Shan-
non entropy rate of P .



2.1. Main Concepts 11

Now, we remind briefly, how the celebrated Shannon entropy notion arises
from the more general concept of Kolmogorov-Sinai (dynamical) entropy (KS-
entropy) . For the sake of simplicity we restrict ourselves to the 1-dimensional
case only.

The KS-entropy is introduced in ergodic theory as a function of pairs (P, T ),
where P is a probability measure and T is a transformation, both defined on
a given measurable space (A, Σ) and satisfying P ◦ T = P , (cf. [46]). In the
case of spin chains we are in the situation that the measurable space (A∞, Σ)
and the transformation, the (right) shift T , are fixed and we are interested in
calculating entropy as a function of shift-invariant probability measures P .

Consider a measurable space (A, Σ). Let P be a partition of A, i.e. a finite
collection of disjoint subsets Pi ∈ Σ, i ∈ {1, . . . , m}, such that the union ∪m

i=1Pi

is equal to A. The entropy of P with respect to the probability measure P on
(A, Σ) is defined by

H(P) := −
m∑

i=1

P (Pi) log P (Pi).

The join P ∨ Q of two partitions P ,Q of A is a further partition consisting
of all intersections Pi ∧ Qj , i ∈ {1, . . . , m}, j ∈ {1, . . . , n}. By TP we denote
the partition obtained from P under the action of the transformation T , i.e.
TP := {T (P1), . . . , T (Pm)}. For a pair (P, T ) defined on (A, Σ) and satisfying
P ◦ T = P the limit

h(P, T,P) := lim
n→∞− 1

n
H(∨n

i=1T
−iP)

exists (mainly due to the subadditivity of the entropy H) and is called the
KS-entropy of (P, T ) with respect to P . The KS-entropy of (P, T ) is defined as

h(P, T ) := suph(P, T,P), (2.8)

where the supremum is taken over all partitions P of A.
By the Kolmogorov-Sinai theorem (cf. Theorem 4.17 in [46]) a Σ-generating
partitions P achieves the supremum in (2.8). Here, Σ-generating means that
the σ-algebra generated by ∨i∈ZT iP is equal to the σ-algebra Σ of A.

Let us return to spin chains now. For a ∈ A consider the cylinder set [a] =
{b ∈ A∞| b1 = a} ⊆ A∞. The collection P := {[a]}a∈A is a partition of A∞,
which is Σ-generating as any cylinder set in A∞ is contained in a finite par-
tition ∨i∈[m,n]T

iP for an appropriate discrete interval [m, n], m, n ∈ Z with
m ≤ n. Consequently, by the Kolmogorov-Sinai theorem for each T -invariant
probability measure P we have

h(p) = lim
n→∞− 1

n

∑
an
1 ∈A(n)

P ([an
1 ]) log P ([an

1 ])

= lim
n→∞

1

n
H(P (n)), (2.9)

where the second equality holds by (2.1). But the limit (2.9) is just the Shannon
entropy rate of stationary stochastic processes or equivalently of translation
invariant classical spin chains.
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2.2 Convergence Theorems

2.2.1 The Shannon-McMillan-Breiman Theorem

Consider an ergodic probability measure P on the space (A∞, Σ) over the lat-
tice Z with the Shannon entropy rate h(P ). Then − 1

n log P ([a]n1 ) converges to
h(P ), as n → ∞, in various senses. For us relevant convergence statements are
convergence in probability and almost everywhere convergence. The first one
means that for arbitrary ε ∈ (0, 1)

lim
n→∞P (n)

(
{an

1 ∈ A(n) : | − 1

n
log P ([an

1 ]) − h(P )| ≤ ε}
)

= 1.

This is the assertion of the famous Shannon-McMillan theorem (SM-theorem),
cf. [44] and [36]. The stronger almost everywhere convergence means that

P

(
{a ∈ A∞ : lim

n→∞− 1

n
log P ([a]n1 ) = h(P )}

)
= 1. (2.10)

This extension of the SM-theorem is due to Breiman and is usually referred to
as the Shannon-McMillan-Breiman theorem (SMB-theorem). For the proof we
refer to the original paper [15] or alternatively to [9] (Theorem 13.1) or [31].
Consider an independent identically distributed (i.i.d.) probability measure P ,
i.e. P corresponds one-to-one to the family of marginal distributions given by
P (n) = Xn

i=1P
(1), where P (1) is a probability distribution on A. In this case

− 1

n
log P (n)([a]n1 ) = − 1

n

n∑
i=1

log P (1)(ai)

and h(P ) = H(P (1)) = −∑n
i=1 P (1)(ai) log P (1)(ai). Consequently (2.10) is not

more than the strong (respectively weak in the case of convergence in probabil-
ity) law of large numbers applied to the random variables Xi = − log P (1)(Ai),
i ∈ N, (recall that functions of i.i.d. random variables are also i.i.d. random
variables). Actually, in the general ergodic case the basic ingredient in the proof
of (2.10) is the individual ergodic theorem (e.g. [43]), which can be seen as an
extension of the law of large numbers to the class of stationary probability mea-
sures.

Now we formulate the ν-dimensional version of the SMB-theorem. It is proven
in the more general setting of the action of an amenable group in the work
[35] (see also [40] for the case of a class of amenable groups). The generalized
SM-theorem (again for amenable group action) was proven by Kieffer in [34].

Theorem 2.2.1 (Shannon-McMillan-Breiman Theorem) Let P be an Z
ν-

ergodic probability measure on (A∞, Σ) with the mean Shannon entropy h(P ).
Then

lim
n→∞− 1

|n| log P ([a]Λ(n)) = h(P ), P − almost everywhere. (2.11)

The SM-theorem is the convergence in probability version of Theorem 2.2.1.
Next, we give an equivalent formulation for the SM-theorem, where the notion
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of trajectories does not appear. It will be the starting point for formulating the
extension of the SM-theorem to the quantum case. Its 1-dimensional version is
the standard formulation of the SM-theorem in the context of classical infor-
mation theory, where the theorem is known as AEP (asymptotic equipartition
property) for ergodic information sources.

Proposition 2.2.2 (Shannon-McMillan Theorem) Let P be an ergodic prob-
ability measure on (A∞, Σ) with the mean Shannon entropy h. Then for all
δ > 0 there exists an nδ ∈ N

ν such that for all n ∈ N
ν with Λ(n) ⊇ Λ(nδ) the

entropy-typical subset T
(n)
δ ⊆ A(n):

T
(n)
δ := {a ∈ A(n)| P (n)(a) ∈ (e−|n|(h+δ), e−|n|(h−δ))}

satisfies

P (n)(T
(n)
δ ) ≥ 1 − δ,

and

#T
(n)
δ ∈ (e|n|(h−δ), e|n|(h+δ)).

We say that a subset Ω ⊆ A(n) is ε-typical or relevant with respect to the
probability measure P if P (n)(Ω) ≥ 1 − ε, i.e. if the probability of Ω is close to
1 (ε is small, typically). Then the SM-theorem states that asymptotically the
entropy-typical subsets become relevant with respect to the ergodic probability
measure P on (A∞, Σ). Furthermore, the probability measure is equidistributed
to the first order in the exponent on the entropy-typical subsets. The name AEP
is related to this point of view.

2.2.2 An Equivalent Finite Form of the SMB-Theorem

Next, we give an equivalent reformulation of the classical SMB-theorem. It
avoids the notion of trajectory and allows an immediate translation into the
C∗-algebraic formalism, which is used to describe quantum spin lattice systems
in the next chapter. We restrict ourselves to the 1-dimensional case, i.e. to
the group Z, as we will prove the quantum extension only of the 1-dimensional
classical SMB-theorem.

According to Breiman’s extension of the SM-theorem the entropy-typical sub-

sets T
(n)
δ ⊆ A(n) are not isolated objects, one for each n, but comprise bundles

of trajectories and hence can be chosen being nested in the sense that the pre-
decessor subset consists exactly of the same sequences, only shortened by one
letter. (Notice that the product sets A(n), n ∈ N

ν , are nested in this sense.) This
simple observation leads to a finite, equivalent formulation of Breiman’s theo-
rem avoiding the notion of a trajectory. Consider an arbitrary (not necessarily
translation invariant) probability measure P on the space (A∞, Σ). Further, let
h be a non-negative real number.

Definition 2.2.3 We say that a probability measure P on (A∞, Σ) satisfies the
condition (B) with respect to h if for P -almost every sequence a ∈ A∞ the limit
of − 1

n log P (n)([a]n1 ) exists and equals h, as n → ∞.
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In this notation the SMB-theorem asserts that ergodic P satisfy (B) with re-
spect to the Shannon entropy rate h(P ) of the process.

In the sequel we denote by x� the sequence xn−1
1 obtained from the finite se-

quence x = xn
1 ∈ ⋃k∈N

A(k) by dropping the last symbol.

Definition 2.2.4 We say that a probability measure P on (A∞, Σ) satisfies
condition (B*) with respect to h if for each ε > 0 there exists a sequence

{C(n)
ε }n∈N of subsets of A(n), respectively, and a number N(ε) such that

1. C
(n)
ε = (C

(n+1)
ε )� for n ≥ 1

(subsets are nested)

2. #C
(n)
ε ∈ (en(h−ε), en(h+ε)) for n ≥ N(ε)

(exponential growth rate)

3. P (n)(x) < e−n(h−ε) for n ≥ N(ε) and any x ∈C
(n)
ε

(upper semi-AEP)

4. P (n)(C
(n)
ε ) > 1 − ε

(typical subsets).

Except for the concatenation condition (1), these are known properties of the
entropy-typical sets in the case of an ergodic P . Condition (3) is a weakened
version of the well known AEP, particularly it ensures that h is an asymptotic
entropy rate in the general (possibly non-stationary) situation.
We obtain the equivalence assertion

Lemma 2.2.5 A probability measure P on (A∞, Σ) satisfies (B) if, and only
if, it satisfies (B*).

Combining the SMB-theorem 2.2.1 with the above lemma we derive that any
ergodic probability measure P satisfies requirements (1)-(4) in Definition 2.2.4.
Thus, Definition 2.2.4 supplies a reformulation of the SMB-theorem, which can
be regarded as a finite form of the SMB-theorem.
Observe that (1) describes a tree graph of one-sided infinite trajectories.

Proof of Lemma 2.2.5:
1. Assume that (B) is fulfilled. Let

A(M,ε) := {x ∈ A∞| P (n)(xn
1 ) ∈ (e−n(h+ε/2), e−n(h−ε/2)), ∀n ≥ M}.

Obviously (B) implies P (A(M,ε))−→1, as M → ∞, for fixed ε. So there is some
M(ε) with P (A(M(ε),ε)) > 1 − ε. Define

C(n)
ε := {y ∈ A(n)| ∃x ∈ A(M(ε),ε) : yi = xi, 1 ≤ i ≤ n},

let

k(ε) = min{k ∈ N| (1 − ε)ek(h−ε/2) > ek(h−ε)} (2.12)

and set N(ε) = max{k(ε), M(ε)}. Then (1)-(4) are easily derived, taking into
account that bounds on probabilities imply bounds on cardinality. So (B*) is a
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consequence of (B).

2. Assume (B*) to be satisfied. Then it is easy to see that we find a nested

sequence {C(n)

ε } and some N(ε) which fulfill (1)-(4) and even the full AEP
condition

P (n)(x) ∈ (e−n(h+ε), e−n(h−ε)), ∀n ≥ N(ε), ∀x ∈C
(n)

ε .

In fact, define

Aε(n) := {x ∈ A∞| xn
1 ∈ C(n)

ε }

and observe that Aε(n) ↘ Aε, as n → ∞, where Aε is the tree of trajectories

associated with {C(n)
ε }. Condition (4) implies P (Aε) ≥ 1 − ε. Now let

Ãε(n) := {x ∈ Aε(n)| P (n)(xn
1 ) ≤ e−n(h+2ε)}.

By (2) it follows that P (Ãε(n)) ≤ #C
(n)
ε · e−n(h+2ε) < e−nε. Now, the Borel-

Cantelli principle (cf. Lemma I.1.14 in [43]) implies that P (
⋃

n≥m Ãε(n)) ↘ 0,

as m → ∞. So there is some m(ε) with P (
⋃

n≥m(ε) Ãε(n)) < ε. Let

N(ε) := max{N(ε/2), m(ε/2), k(ε)},

where k(ε) is defined by (2.12), and

C
(n)

ε := {xn
1 ∈ C

(n)
ε/2 | ∃w ∈ Aε/2 : wn

1 = xn
1 ,

P (k)(wk
1 ) > e−k(h+ε), ∀k ≥ N(ε)}.

We have, denoting by Aε the trajectory tree associated with {C(n)

ε }n,

P (n)(C
(n)

ε ) ≥ P (Aε) = P (Aε/2\
⋃

n≥N(ε)

Ãε/2(n))

> 1 − ε/2 − ε/2 = 1 − ε.

Thus (4) is established. Item (1) and the ε-AEP are clearly fulfilled, and (2) fol-
lows from the AEP as in step 1. of the proof. Now (B) follows immediately. �

2.2.3 Convergence Assertion for a Non-Consistent Family
of Probability Spaces

Concluding this section we formulate a convergence assertion for a family of
probability distributions {P (n)}n∈Nν defined on finite sets A(n), respectively.
The interesting point is that we do not expect either the finite sets to be nested
in the sense discussed in the last section nor the probability distributions to sat-
isfy any consistency conditions. The A(n) are arbitrary finite sets, not required
to be of the cartesian product form Xi∈Λ(n)A, for some finite set A. This implies
that the family cannot be identified with a real stochastic process, in general.
Indeed, we make a minimum of assumptions on the family of finite probability
spaces (A(n), P (n)) in order to make the following convergence statement useful
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in the setting of quantum spin lattice systems in the next chapter. There, such
probability spaces will arise from eigen-decompositions of density operators,
which are elements of a consistent family of density operators corresponding
one-to-one to an ergodic quantum state of a quantum spin lattice system. The
inconsistency will result from quantum correlations (entanglement) between sin-
gle quantum spins in the lattice.

For n = (n1, . . . , nν) ∈ N
ν we introduce the notation

n ≥ m :⇐⇒ ni ≥ mi, ∀i ∈ {1, . . . , ν}.

Further we use the notations |n| and n → ∞ as introduced in Section 2.1.

Lemma 2.2.6 Let M > 0 and {(A(n), P (n))}n∈Nν be a family, where each A(n)

is a finite set with 1
|n| log #A(n) ≤ M for all n ∈ N

ν and P (n) is a probability

distribution on A(n). Define

αε,n(P (n)) := min{log#Ω| Ω ⊂ A(n), P (n)(Ω) ≥ 1 − ε}. (2.13)

If {(A(n), P (n))}n∈Nν satisfies the following two conditions:

1. limn→∞ 1
|n|H(P (n)) = h < ∞

2. lim supn→∞
1
|n|αε,n(P (n)) ≤ h, ∀ε ∈ (0, 1)

then for every ε ∈ (0, 1)

lim
n→∞

1

|n|αε,n(P (n)) = h. (2.14)

We call subsets Ω ⊆ A(n) achieving the minimum in (2.13) high probability sub-
sets at level ε. They are the ε-typical subsets of minimal size. Notice that due
to the SM-theorem any ergodic spin lattice system satisfies the conditions in the
above Lemma with h being the mean Shannon entropy. It follows that h is a
lower bound on the exponential growth rate of the size of relevant/typical sub-
sets. In other words any sequence {Ω(n)}n∈Nν of subsets of A(n), respectively,
with an asymptotically essential (non vanishing) probability with respect to an
ergodic P must fulfill lim infn→∞ 1

|n| log Ω(n) ≥ h.

Proof of Lemma 2.2.6: Let δ > 0 and define

A
(n)
1 (δ) :=

{
a ∈ A(n) | P (n) (a) > e−|n|(h−δ)

}
,

A
(n)
2 (δ) :=

{
a ∈ A(n) | e−|n|(h+δ) ≤ P (n) (a) ≤ e−|n|(h−δ)

}
,

A
(n)
3 (δ) :=

{
a ∈ A(n) | P (n) (a) < e−|n|(h+δ)

}
.

We fix δ > 0 and use the abbreviation A
(n)
i = A

(n)
i (δ), i ∈ {1, 2, 3}. To see that

lim
n→∞P (n)

(
A

(n)
3

)
= 0 assume the contrary and observe that the upper bound on

the probability of elements from A
(n)
3 implies a lower bound on the cardinality
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of elements from A
(n)
3 needed to cover an ε−fraction, ε ∈ (0, 1), of A(n) with

respect to P (n). Namely one has

min
{
#C | C ⊂ A

(n)
3 , P (n) (C) > ε

}
> ε · e|n|(h+δ)

which contradicts condition 2 in the lemma. Furthermore the set A
(n)
3 cannot

asymptotically contribute to the mean entropy h since

− 1

|n|
∑

a∈A
(n)
3

P (n) (a) log P (n) (a)

≤ − 1

|n|
∑

a∈A
(n)
3

P (n) (a) log
1

#A
(n)
3

Pn(An
3 )

and

lim
n→∞− 1

|n|
∑

a∈A
(n)
3

P (n) (a) log
1

#A
(n)
3

P (n)(A
(n)
3 )

= lim
n→∞

1

|n|
(
P (n)(A

(n)
3 ) log #A

(n)
3 − P (n)(A

(n)
3 ) log P (n)(A

(n)
3 )
)

= 0.

Here we used the fact that log #A(n)

|n| stays bounded from above (by M) and

−
∑

pi log pi ≤ −
∑

pi log qi for finite vectors (pi) , (qi) with
∑

i pi =
∑

i qi ≤ 1

and pi, qi ≥ 0, (cf. Lemma I.6.1 in [43]). Since A
(n)
3 does not contribute to

the entropy one easily concludes that lim
n→∞P (n)

(
A

(n)
1

)
= 0 because otherwise

lim infn→∞ 1
|n|H

(
P (n)
)

< h would hold. Recall that δ > 0 was chosen arbitrar-

ily. Thus

lim
n→∞P (n)

(
A

(n)
2 (δ)

)
= 1, ∀δ > 0. (2.15)

Consequently the lemma follows since P (n) (Ω) ≥ 1 − ε implies

P (n)
(
Ω ∩ A

(n)
2 (δ)

)
≥ (1 − ε)2

for |n| sufficiently large and one needs at least (1 − ε)2 · e|n|(h−δ) elements from

A
(n)
2 (δ) to cover Ω ∩ A

(n)
2 (δ). But δ can be chosen arbitrarily small. �

2.3 Applications to Information Theory

The presented classical results have interesting consequences if applied to infor-
mation sources in classical information theory, in particular in the context of
data compression.

Consider an ergodic information source (A(n), Σ, P, T ). Due to Lemma 2.2.6
for any sequence of high probability subsets at level ε, ε ∈ (0, 1), the limit
(2.13) exists and is equal to the mean Shannon entropy h independent of ε.

Now, let {Ω(n)
εn }n∈N be a sequence of high probability subsets of A(n) at level εn,
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respectively. We can chose the sequence {εn}n∈N such that εn → 0, as n → ∞,
and simultaneously

lim
n→∞

1

n
log2 #Ω(n)

εn
= h, (2.16)

if h is the base 2 Shannon entropy rate. In order to compress the ergodic IS
we can encode finite sequences from A(n) by enumerating only the elements of

Ω
(n)
εn , and ignoring the remaining sequences from A(n)\Ω(n)

εn . It follows due to the

asymptotically bounded size of Ω
(n)
εn , eq. (2.16), that asymptotically we do not

need more than h representing bits per source signal. Note that as P (n)(Ω
(n)
εn ) →

1, for n → ∞, the sets of the ignored source sequences from A(n)\Ω(n)
εn have an

asymptotically vanishing probability. Consequently an asymptotically perfect
reconstruction of the block encoded information source is possible.

Next, we demonstrate how the property of typical subsets to be nested
(cf. finite-form of the SMB-theorem in Section 2.2.2) can be used to design
a straight-forward sequential data compression scheme. We adopt notations

used in Section 2.2.2 and define inductively a sequence of partitions P
(n)
ε of

the unit interval, where #P
(n)
ε = #C

(n)
ε and each subinterval of P

(n)
ε corre-

sponds to a unique element in C
(n)
ε . For n = 1 we dissect the unit interval into

subintervals of equal length, one for each member of C
(1)
ε . At the nth step,

we dissect each interval in P
(n−1)
ε into as many subintervals of equal length as

the corresponding word in C
(n−1)
ε has successors in C

(n)
ε . By this construc-

tion we derive from the given nested sequence of subsets a nested sequence of
partitions of the unit interval. Each trajectory x of the bundle of trajectories

given by {C(n)
ε }n∈N corresponds to a unique sequence of nested intervals. The

upper endpoint of each such sequence converges to a real number r(x). Now
the sequential coding scheme can be described as follows: We take the binary
representation (r1, r2, ...) of r(x) and encode the nth of the nested intervals by
the shortest finite binary string (r1, r2, ..., rR(n)) such that the rational number
with this binary representation belongs to the given interval.

We emphasize that the discussed compression schemes are designed for er-
godic information sources with known statistics. The famous Lempel-Ziv al-
gorithm belongs to the class of universal compression schemes, operating on
forth-coming data strings (sequential encoding). It represents arbitrary, not
even stationary information sources with an asymptotically vanishing probabil-
ity of error. Moreover, to represent an individual data string x the Lempel-Ziv
algorithm uses asymptotically h(px) bits per signal, whereby px denotes the
limiting empirical probability measure on A∞. It is determined by the limiting
relative frequencies of finite sequences in the infinite sequence x (see e.g. [43] for
exact definitions). For stationary information sources the empirical measures px

exist almost surely. Furthermore, px are ergodic almost surely. These are essen-
tially implications of the individual ergodic theorem. Recall that the Shannon
entropy rate h(px) exists for any ergodic px. The Lempel-Ziv algorithm uses the
method of string matching in order to generate code books for the individual
data strings to be compressed. In quantum case string matching is problematic
as any measuring process destroys the quantum states.



Chapter 3

Ergodic Quantum Spin
Lattice Systems

This chapter contains our main results for ergodic quantum spin lattice systems.
These are extensions of classical theorems presented in the last chapter. They
show how the mean von Neumann entropy generalizes the mean Shannon en-
tropy concept in the context of spin lattice systems. Indeed, quantum versions
of the classical SM-theorem and Breiman’s extension can be formulated with the
von Neumann entropy replacing the Shannon entropy. In general, the mean von
Neumann entropy determines the asymptotically minimal dimension of Hilbert
subspaces (associated to finite boxes in Z

ν) which are relevant with respect to
an ergodic quantum state. This is in complete analogy to the classical situation
discussed in the last chapter, where the size of relevant subsets is given in terms
of mean Shannon entropy.
Moreover, we will see in the present chapter that in the context of quantum
information theory the mean von Neumann entropy can be interpreted as the
average information content of (ergodic) quantum information sources. These
are modeled by 1-dimensional quantum spin lattice systems, in analogy to clas-
sical information theory.
We start with a presentation of the standard mathematical formalism for the
physical model of ν-dimensional, ν ∈ N, quantum spin lattice systems. A de-
tailed introduction to the C∗-algebraic formalism can be found e.g. in [14] or
[42].

3.1 Mathematical Model

The ν-dimensional infinitely extended lattice corresponds to the group Z
ν . To

each x ∈ Z
ν there is associated an algebra Ax of observables for a spin located

at site x. It is given by
Ax := τ(x)A,

where τ(x) is an isomorphism and A is a finite dimensional unital C∗-algebra.
The local algebra AΛ of observables for the finite subset Λ ⊂ Z

ν is given by

AΛ :=
⊗
x∈Λ

Ax.

19
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The infinite lattice system is constructed from the finite subsets Λ ⊂ Z
ν . The

algebra of observables corresponding to the whole lattice Z
ν is the quasi-local

C∗-algebra A∞. It is defined as the operator norm closure

A∞ :=
⋃

Λ⊂Zν

AΛ

‖·‖
.

Hereby
⋃

Λ⊂Zν AΛ is a normed ∗-algebra (sometimes called a local algebra),
where the union is in the sense of inclusion maps: AΛ → AΛ′ , a 
→ a⊗ 1A

Λ
′ \Λ

,

for all Λ ⊆ Λ
′
. A state of the infinite spin system is given by a normed positive

functional Ψ on A∞. It corresponds one-to-one to a consistent family of states
{Ψ(Λ)}Λ⊂Zν , where each Ψ(Λ) is the restriction of Ψ to the finite dimensional
subalgebra AΛ of A∞ and consistency means that

Ψ(Λ) = Ψ(Λ
′
) � AΛ,

for Λ ⊂ Λ
′
. The one-to-one correspondence reflects the fact, that the state of the

entire spin lattice system is assumed to be determined by the expectation values
of all observables on finite subsystems Λ. Actually, it is sufficient to consider
boxes only. For each Ψ(Λ) there exists a unique density operator DΛ ∈ AΛ,
such that

Ψ(Λ)(a) = trΛDΛa, a ∈ AΛ

and trΛ is the trace on AΛ. By S(A∞) we denote the state space of A∞.
Every x ∈ Z

ν defines a translation of the lattice and induces an automorphism
T (x) on A∞, which is a canonical extension of the isomorphisms for finite
Λ ⊂ Z

ν :

T (x) : AΛ −→ AΛ+x

a 
−→
(⊗

z∈Λ

Tz(x)

)
a,

where Tz(x) := τ(x)τ−1(z). Then {T (x)}x∈Zν is an action of the translation
group Z

ν by automorphisms (shifts) on A∞. The triple

(A∞, Ψ, T (Zν)) (3.1)

is a C∗-dynamical system describing a quantum spin lattice system, where
T (Zν) denotes the representation of the translation group Z

ν by shifts T (x) on
A∞. In the 1-dimensional case we have {T (x)}x∈Z = {T x}x∈Z with T := Tx=1

and we use the shorter notation (A∞, Ψ, T ) instead of (3.1).

Let G be any subgroup of Z
ν and denote by T (A∞, G) the set of states, which

are invariant under the translations associated with G, i.e.

T (A∞, G) := {Ψ ∈ S(A∞)|Ψ ◦ T (x) = Ψ, ∀x ∈ G}.

We will be concerned mostly with the space of Z
ν -invariant states. We introduce

the abbreviation T (A∞) = T (A∞, Zν). Clearly, T (A∞) ⊂ T (A∞, G) for any
proper subgroup G of Z

ν .
For n ∈ N

ν we denote by Λ(n) a box in Z
ν as was defined by (2.3) in last chapter.
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Further recall that for n ∈ N the hypercube Λ(n) was given by Λ(n) := {x ∈
Z

ν | x ∈ {0, . . . , n − 1}ν}. In the following we simplify notations by defining

A(n) := AΛ(n), Ψ(n) := Ψ(Λ(n)), and Dn := DΛ(n),

for n ∈ N
ν (respectively for n ∈ N). Obviously, because of the shift-invariance

any Ψ ∈ T (A∞) is uniquely defined by the family of states {Ψ(n)}n∈Nν or al-
ternatively by the family of corresponding density operators {Dn}n∈Nν .

Commutative C∗-dynamical Systems

For convenience, we briefly discuss the correspondence between a commutative
C∗-dynamical system (A∞, Ψ, T ) and the quadruple (A∞, Σ, P, T ) modeling a
classical spin lattice system, as presented in the section 2.1. Here, for simplicity
of notations we restrict ourselves to 1-dimensional lattices.

We start with the triple (A∞, Ψ, T ), where A∞ is constructed from an
abelian finite dimensional and unital algebra A. Thus A∞ is also abelian and
unital. Consequently both A and A∞ can be represented by the Gelfand iso-
morphism (e.g. Theorem VIII.2.1 in [17] or Theorem 2.1.11A in [14]) as algebras
of (continuous) functions over the compact (in the weak∗ topology, which is in-
herited from the dual of A and A∞, respectively) maximal ideal spaces of A and
A∞, respectively. Due to the finite dimensionality of the algebra A its maximal
ideal space A is a set of finite cardinality with #A = dimA. The quasi-local
algebra A∞ is ∗-isomorphic to C(A∞), where A∞ := ×x∈ZνA. Further, the
state Ψ on A∞ induces a linear functional on the algebra of functions over A∞.
By the Riesz representation theorem there exists a probability measure P on
the measurable space (A∞, Σ), which is uniquely determined by

Ψ(a) =
∑

a∈AΛ

fa(a)PΛ(a),

for all a ∈ AΛ and arbitrary Λ ⊂ Z. Here fa(·) ∈ C(AΛ) is the Gelfand
transform of a ∈ AΛ. Again, translations of the lattice Z induce a dynamics
on A∞ given by the family of shifts {T x}x∈Z on A∞. Thus we achieve from
(A∞, Ψ, T ) the quadruple (A∞, Σ, P, T ), which can be associated to a classical
spin lattice system.

Contrary, given a quadruple (A∞, Σ, P, T ) associated to a classical transla-
tion invariant spin lattice system with the finite alphabet A, we can identify
the elements a of A with a set of mutually orthogonal 1-dimensional projec-
tors pa on a Hilbert space H. The algebra A generated by the projectors pa,
a ∈ A is then finite dimensional and commutative. It can be taken to con-
struct the commutative quasi-local algebra A∞ over the lattice Z. For each
discrete interval Λ = [m, n] in Z the probability measure PΛ on AΛ induces a
density operator DΛ :=

∑
an

m∈A PΛ(an
m)
⊗n

i=m pai in AΛ. The family {DΛ}Λ⊂Z

is consistent by the consistency of the probability measures {PΛ}Λ⊂Z, and con-
sequently corresponds to a state Ψ on A∞. Thus this construction leads back
to the C∗-algebraic representation (A∞, Ψ, T ). It follows the correspondence
(A∞, Ψ, T ) ←→ (A∞, Σ, P, T ) for commutative systems.

Ergodicity of Quantum States with Respect to Group Actions
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The set T (A∞, G) is a convex, weak∗-compact subset of S(A∞) for any sub-
group G of Z

ν . We denote by ∂exT (A∞, G) the set of extremal points of
T (A∞, G) and refer to the elements of ∂exT (A∞, G) as G-ergodic states. The
elements of ∂exT (A∞) are called ergodic states.

Example: The simplest example of an ergodic quantum state on A∞ is the
analogue of a classical i.i.d. stochastic process, which is uniquely characterized
by the distribution of a single random variable. Similarly, an i.i.d. quantum
state can be constructed from a single-site density operator D ∈ A. Namely,
it corresponds to the consistent family {Dn}n∈Nν , where each Dn is the tensor
product density operator

Dn :=
⊗

x∈Λ(n)

D ∈ A(n).

We remark that in general it is not easy to check by definition if a given quantum
state Ψ on A∞ is ergodic. Fortunately, for C∗-dynamical systems of the form
(A∞, Ψ, T (Zν)) ergodicity is equivalent to the statement that

lim
Λ(n)↗Nν

Ψ

⎛⎜⎝
⎛⎝ 1

#(Λ(n))

∑
x∈Λ(n)

T (x)(a)

⎞⎠2
⎞⎟⎠ = Ψ(a)2 (3.2)

holds for all self-adjoint a ∈ A∞, (cf. Proposition 6.3.5 in [42], see also [27]).
The equivalence can be verified using the Z

ν -abelianness (a kind of asymptotic
abelianness) of quasi-local algebras over Z

ν , (cf. Section 6.2 in [42]). Compared
to the original definition of ergodicity, it should be easier to deal with condition
(3.2).

Another useful characterization of ergodicity exists for the class of C∗-finitely
correlated or alternatively called algebraic states , which form a weak∗-dense
subset in T (A∞, Z), (cf. [20]). A state Ψ ∈ T (A∞, Z) is called algebraic if it
can be constructed from a triple (B, E, Ω) in the following way:

Ψ(a1 ⊗ a2 ⊗ · · · ⊗ am) = Ω(E(a1 ⊗ 1B) ◦ E(a2 ⊗ 1B) ◦ · · · ◦ E(am ⊗ 1B)),

where B is a finite dimensional C∗-algebra, E : A ⊗ B −→ B is a completely
positive linear map and Ω is a (faithful) state on B. The state Ψ is ergodic if and
only if 1B is the only eigenvector of E(1A⊗ (·)) with respect to the eigenvalue 1,
i.e. the characterization of ergodicity is in terms of a completely positive linear
map between finite dimensional algebras.

Elements from the union ∪l∈Nν ∂exT (A∞, l · Z
ν), i.e. states which are ergodic

with respect to any shift T (x), x ∈ N
ν , are called completely ergodic. For the

class of completely ergodic states of quantum spin chains Hiai and Petz ob-
tained some results, which have strongly stimulated our work (we will explain
this in more detail later), [23]. On the one hand the assumption of complete
ergodicity is much less restrictive than the condition of i.i.d. states, where any
kind of correlations is excluded. In the context of quantum information theory
predominately i.i.d. quantum states have been studied in detail. On the other
hand complete ergodicity is a rather strong restriction compared with the sim-
ple condition of ergodicity. In general, complete ergodicity does not allow any
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periodicity in the sense that the state (convexly) decomposes in states, which
are ergodic with respect to some subgroups l · Z

ν , l ∈ N
ν . The following chain

of implications relates the completely ergodic property to the more familiar
mixing properties of stochastic processes: strong mixing =⇒ weak mixing =⇒
completely ergodic =⇒ ergodic. Thus completely ergodicity is the next weakest
mixing property after ergodicity. However, for example in the case of classical
Markov processes complete ergodicity is equivalent to the weak and strong mix-
ing property. The algebraic quantum states (mentioned in the examples above)
can be regarded as quantum Markov states in some sense. For these states
complete ergodicity is equivalent to weak and strong mixing property as well,
as is shown in [24].

Mean Von Neumann Entropy

The von Neumann entropy of a state Ψ on an arbitrary finite dimensional C∗-
algebra A (cf. [39]) is defined in terms of the corresponding density operator
DΨ as

S(Ψ) := −trADΨ log DΨ,

where trA is the trace on A. We will interchangeably use a notation relating to
the density operator, that is S(DΨ) instead of S(Ψ).
Notice that S(Ψ) is equal to the Shannon entropy of the probability distribution
P given by the eigenvalues λ of the corresponding density operator DΨ, namely

S(Ψ) = −
∑

λ

λ log λ = H(P ).

It is well known that for every Ψ ∈ T (A∞) the limit

s(Ψ) := lim
Λ(n)↗Nν

1

#(Λ(n))
S(Ψ(n))

exists due to the subadditvity of von Neumann entropy. We call s(Ψ) the mean
von Neumann entropy of Ψ. However, treating quantum spin chains in the con-
text of quantum information theory we prefer to call s(Ψ) the von Neumann
entropy rate corresponding to the meaning of the Z-translations as time shifts.

Let l ∈ N and consider the subgroup Gl := l · Z
ν . For a Gl-invariant state

Ψ we define the mean entropy with respect to Gl by

s(Ψ, Gl) := lim
Λ(n)↗Nν

1

#(Λ(n))
S(Ψ(l·n)). (3.3)

Observe that if the state Ψ is Z
ν-invariant then we have the relation

s(Ψ, Gl) = lν · s(Ψ).

Further note that in the case of a commutative algebra A the mean von Neu-
mann entropy s of a state Ψ ∈ T (A∞) coincides with the mean Shannon entropy
h. Therefore we can say that s is an extension of the mean Shannon entropy
concept to non-commutative spin lattice systems, at least in the formal sense.
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The quantum analogues of the SM- and SMB-theorems presented below estab-
lish the mean von Neumann entropy as an extension of h in a more general sense:
It turns out that s, in complete analogy to h, appears as a limit in the quantum
version of the SM-theorem 3.3.1, and in its stronger form Theorem 3.5.1, which
can be understood as a quantum version of the SMB-theorem. Moreover, it
can be interpreted, again in complete analogy to classical situation, from the
information theoretical point of view as the average information content of the
quantum information source. Operationally this means that the von Neumann
entropy rate of an ergodic quantum information source is the necessary amount
of quantum resources (usually measured in qubits, the quantum version of the
classical bits) needed for asymptotically lossless compression of the source, (cf.
Theorem 3.4.1 below).

Remark: There are several efforts to define an extension of the KS-entropy
to arbitrary C∗-dynamical systems. Maybe the most famous such quantum
dynamical entropy concept is the CNT-entropy introduced in [16]. It arises
from a technically rather complicated construction involving variation of finite
quantum state decompositions and is difficult to compute for concrete models.
However it satisfies (by construction) some required properties like additivity.

Another quantum dynamical entropy concept for general C∗-dynamical sys-
tems (nonequivalent to the CNT-entropy) is the AF-entropy introduced in [3].
The construction starts with a finite operational partition of unity as a quan-
tum generalization of finite partition of a measurable space in its interpretation
as measurement. Correlation matrices generated by the initial unit partition
and its ’refinements’ due to the given (reversible) dynamics form a consistent
family of density matrices corresponding to an imaginary one-sided quantum
spin chain (unfortunately the spin chain is not necessary stationary), which can
be regarded as a quantum symbolic dynamics of the initial system. The supre-
mum over operational partitions of unity of the mean von Neumann entropy
of the resulting imaginary quantum chains gives the AF-entropy of the given
C∗-dynamical system. Compared with the CNT-entropy the AF-entropy has
the advantage to be simpler technically.

Until now the CNT-entropy misses convincing interpretations, in particular
in the context of information theory. Some attempts to give an information the-
oretical meaning to the CNT-entropy can be found in [5]. The work of Benatti
and Knauf, [6], discusses in a comprehensible way the CNT-entropy, however
especially as a possible quantity characterizing quantum chaos. Nevertheless,
we mention it here as a useful reference helping to get some intuition on the
CNT-entropy.

Concerning the AF-entropy we refer e.g. to the papers [1] and [2], where the
meaning of the AF-entropy in quantum information theory is discussed in the
context of classical-quantum coding and quantum communication channels.

3.2 An Ergodic Decomposition Theorem

Consider a Z
ν-ergodic quantum state Ψ on a quasi-local C∗-algebra A∞. Then,

according to the definition of ergodicity with respect to a group, Ψ is invariant
but in general not ergodic with respect to an arbitrary subgroup l · Z

ν , where
l > 1 integer. This would be the case under the condition of complete ergodicity.
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However, it turns out that the (unique) convex decomposition of a Z
ν-ergodic

Ψ in l · Z
ν-ergodic states has a rather well controllable structure: There are

not more than lν components in the decomposition, the convex weights are
equidistributed and the l · Z

ν -ergodic components are related to each other by
suitable lattice translations. Moreover the mean von Neumann entropies of the
components (computed with respect to the subgroup l · Z

ν) are all identical to
s(Ψ, l · Z

ν). A precise formulation of this situation is given in Theorem 3.2.1
below. The classical case is covered by this ergodic decomposition theorem if we
apply it to a commutative quasi-local algebra A∞. For the proof of the classical
version in the framework of information theory (stochastic processes) we refer
for example to [7] (Theorem 7.2.3).
In the present work we need the ergodic decomposition theorem as an interme-
diate result in the proof of the quantum SM-theorem. However we emphasize,
that it is also an interesting result on its own.

Theorem 3.2.1 Let Ψ be a Z
ν-ergodic state on A∞. Then for every subgroup

Gl := l ·Zν , with l > 1 an integer, there exists a k(l) ∈ N
ν and a unique convex

decomposition of Ψ into Gl-ergodic states Ψx:

Ψ =
1

#(Λ(k(l)))

∑
x∈Λ(k(l))

Ψx. (3.4)

The Gl-ergodic decomposition (3.4) has the following properties:

1. kj(l) ≤ l and kj(l)|l for all j ∈ {1, . . . , ν}

2. {Ψx}x∈Λ(k(l)) = {Ψ0 ◦ T (−x)}x∈Λ(k(l))

3. For every Gl-ergodic state Ψx in the convex decomposition (3.4) of Ψ the
mean entropy with respect to Gl, s(Ψx, Gl), is equal to the mean entropy
s(Ψ, Gl), i.e.

s(Ψx, Gl) = s(Ψ, Gl) (3.5)

for all x ∈ Λ(k(l)).

The basic tool for proving the above theorem will be the GNS representation of
the C∗-dynamical system (A∞, Ψ, T (Zν)). The concept of the GNS construc-
tion is introduced in detail e.g. in [14].
The proof relies on the fact, that quasi-local C∗-algebras are asymptotically
abelian with respect to the underlying group Z

ν and its subgroups Gl, (cf. [42],
Section 6.2). This property implies e.g. a simplex structure of the compact
convex set T (A∞): An extremal convex decomposition of a Z

ν -invariant state
within T (A∞) is unique. A variety of geometrical properties, which are given
in the case of asymptotical abelianness (with respect to a group), are involved
in the proof.

Proof of Theorem 3.2.1: Let (HΨ, πΨ, ΩΨ, UΨ) be the GNS representation
of the C∗-dynamical system (A∞, Ψ, T (Zν)). UΨ is the unitary representation
of Z

ν on HΨ. It satisfies for every x ∈ Z
ν :

UΨ(x)ΩΨ = ΩΨ, (3.6)

UΨ(x)πΨ(a)U∗
Ψ(x) = πΨ(T (x)a), ∀a ∈ A∞. (3.7)



26 Ergodic Quantum Spin Lattice Systems

Define

NΨ,Gl
:= πΨ(A∞) ∪ UΨ(Gl),

PΨ,Gl
:= {P ∈ N ′

Ψ,Gl
| P = P ∗ = P 2}.

By ′ we denote the commutant. Observe that NΨ,Gl
is selfadjoint. Thus N ′

Ψ,Gl

(as the commutant of a selfadjoint set) is a von Neumann algebra. Further it is
a known result that N ′

Ψ,Gl
is abelian, (cf. Proposition 4.3.7. in [14] or Lemma

IV.3.4 in [27]). This is, essentially, due to the fact that the quasi-local algebra
is by construction asymptotically abelian with respect to Gl. The details can
be found in the references cited above.

Consider some l > 1 such that Ψ /∈ ∂exT (A∞, Gl). (If there is no such l
the statement of the theorem is trivial.) Then

PΨ,Gl
\{0,1} �= ∅. (3.8)

In fact, Ψ /∈ ∂exT (A∞, Gl) is equivalent to the reducibility of NΨ,Gl
, (cf. The-

orem 4.3.17 in [14]). This means that there is a non-trivial closed subspace of
HΨ invariant under the action of πΨ(A∞) and UΨ(Gl). Let P be the projector
on this subspace and P⊥ = 1 − P . Then P, P⊥ /∈ {0,1} and of course P and
P⊥ are contained in N ′

Ψ,Gl
. Thus (3.8) is clear.

Let I be a countable index set. An implication of the Z
ν -ergodicity of the

Gl-invariant Ψ is the following:

{Qi}i∈I orthogonal partition of unity in N ′
Ψ,Gl

=⇒ |I| ≤ lν . (3.9)

To see (3.9) observe at first that for any Q ∈ PΨ,Gl
\{0} the projection UΨ(x)QU∗

Ψ(x),
x ∈ Λ(l), belongs to the abelian algebra N ′

Ψ,Gl
, namely

πΨ(a)UΨ(x)QU∗
Ψ(x) = UΨ(x)πΨ(T (−x)a)QU∗

Ψ(x) (by (3.7))

= UΨ(x)QπΨ(T (−x)a)U∗
Ψ(x)

= UΨ(x)QU∗
Ψ(x)πΨ(a) (by (3.7))

holds for every a ∈ A∞ and [UΨ(y), UΨ(x)QU∗
Ψ(x)] = 0 is obvious by [UΨ(y), UΨ(x)] =

0 for all y ∈ Gl and x ∈ Z
ν . Thus {UΨ(x)QU∗

Ψ(x)}x∈Λ(l) is a family of mutu-
ally commuting projections. The Gelfand isomorphism represents the projec-
tions UΨ(x)QU∗

Ψ(x) as continuous characteristic functions 1Qx on some compact
(totally disconnected) space. Define

Q̄ :=
∨

x∈Λ(l)

UΨ(x)QU∗
Ψ(x),

which has the representation as
∨

x∈Λ(l) 1Qx = 1S
x∈Λ(l) Qx

. Note that if Q ∈
PΨ,Gl

\{0} then for any y ∈ Z
ν we have

UΨ(y)QU∗
Ψ(y) = UΨ(y(mod l))QU∗

Ψ(y(mod l)),

where l = (l, . . . , l) ∈ Z
ν . This means that

{UΨ(y)UΨ(x)QU∗
Ψ(x)U∗

Ψ(y)}x∈Λ(l) = {UΨ(x)QU∗
Ψ(x)}x∈Λ(l)
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and consequently Q̄ is invariant under the action of UΨ(Zν). From the Z
ν -

ergodicity of Ψ we deduce that Q̄ = 1. If we translate back the finite subad-
ditivity of probability measures to the expectation values of the projections
UΨ(x)QU∗

Ψ(x) we obtain:

1 = 〈ΩΨ, Q̄ΩΨ〉 ≤
∑

x∈Λ(l)

〈ΩΨ, UΨ(x)QU∗
Ψ(x)ΩΨ〉

= lν · 〈ΩΨ, QΩΨ〉 (by (3.6)).

Thus (3.9) is clear.
Combining the results (3.8) and (3.9) we get the existence of an orthogonal
partition of unity {Pi}nl−1

i=0 in nl ≤ lν minimal projections Pi ∈ PΨ,Gl
\{0,1}.

Here we use the standard definition of minimality:

P minimal projection in N ′
Ψ,Gl

:⇐⇒ 0 �= P ∈ PΨ,Gl
and Q ≤ P

=⇒ Q = P, ∀Q ∈ PΨ,Gl
\{0}

The abelianness of N ′
Ψ,Gl

implies the uniqueness of the orthogonal partition of

unity {Pi}nl−1
i=0 . Further it follows that {Pi}nl−1

i=0 is a generating subset for PΨ,Gl

in the following sense:

Q ∈ PΨ,Gl
=⇒ ∃{Pij}s≤nl−1

j=0 ⊂ PΨ,Gl
such that Q =

s∑
j=0

Pij . (3.10)

Define pi := 〈ΩΨ, PiΩΨ〉 and order the minimal projections Pi such that

p0 ≤ pi, ∀i ∈ {1, . . . , nl − 1}. (3.11)

Let
G(P0) := {x ∈ Z

ν | U(x)P0U
∗(x) = P0}.

Note that G(P0) is a subgroup of Z
ν and contains Gl, since P0 ∈ PΨ,Gl

. This
leads to the representation

G(P0) =

ν⊕
j=1

kj(l)Z, with kj(l)|l for all j ∈ {1, . . . , ν},

where the integers kj(l) are given by

kj(l) := min{xj | xj is the j-th component of x ∈ G(P0) and xj > 0}.

For P0, as an element of PΨ,Gl
, {UΨ(x)P0U

∗
Ψ(x)}x∈Λ(k(l)) ⊆ PΨ,Gl

for k(l) =
(k1(l), . . . , kν(l)). Thus by (3.10) each UΨ(x)P0U

∗
Ψ(x), x ∈ Λ(k(l)), can be

represented as a sum of minimal projections. But then by linearity of the
expectation values and the assumed ordering (3.11) each UΨ(x)P0U

∗
Ψ(x) must be

a minimal projection for x ∈ Λ(k(l)). Otherwise there would be a contradiction
to 〈ΩΨ, UΨ(x)P0U

∗
Ψ(x)ΩΨ〉 = p0. Consequently {UΨ(x)P0U

∗
Ψ(x)}x∈Λ(k(l)) ⊆

{Pi}nl−1
i=0 . Consider the projection

P̄0 =
∑

x∈Λ(k(l))

UΨ(x)P0U
∗
Ψ(x).
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Using the same argument as for Q̄, defined few lines above, we see that P̄0 is
invariant under the action of UΨ(Zν) and because of the Z

ν -ergodicity of Ψ

P̄0 = 1.

It follows by the uniqueness of the orthogonal partition of unity

{UΨ(x)P0U
∗
Ψ(x)}x∈Λ(k(l)) = {Pj}nl−1

j=0 .

Obviously nl = #(Λ(k(l))) and for each Pi, i ∈ {0, . . . , nl − 1}, there is only
one x ∈ Λ(k(l)) such that

Pi = UΨ(x)P0U
∗
Ψ(x) =: Px. (3.12)

It follows pi = p0 for all i ∈ {0, . . . , nl − 1} and hence

pi =
1

nl
=

1

#(Λ(k(l)))
, i ∈ {0, . . . , nl − 1}.

Finally, set for every x ∈ Λ(k(l))

Ψx(a) := #(Λ(k(l)))〈ΩΨ, PxπΨ(a)ΩΨ〉, a ∈ A∞.

From (3.12), (3.6) and (3.7) we get

Ψx(a) = #(Λ(k(l)))〈ΩΨ, PxπΨ(a)ΩΨ〉
= #(Λ(k(l)))〈ΩΨ, P0πΨ(T (−x)a)ΩΨ〉
= Ψ0(T (−x)a), a ∈ A∞,

hence ∑
x∈Λ(k(l))

〈ΩΨ, PxπΨ(a)ΩΨ〉 = 〈ΩΨ, (
∑

x∈Λ(k(l))

Px)πΨ(a)ΩΨ〉

= Ψ(a).

Thus we arrive at the convex decomposition of Ψ:

Ψ =
1

#(Λ(k(l)))

∑
x∈Λ(k(l))

Ψ0 ◦ T (−x).

By construction this is a Gl-ergodic decomposition of Ψ. It remains to prove
the fact that the mean entropies with respect to the lattice Gl are the same for
all Gl-ergodic components Ψx.

Finally, we prove item 3. saying that the Gl-ergodic components of Ψ have
all a mean Shannon entropy equal to s(Ψ, Gl). It is a well known result that
the mean von Neumann entropy with respect to a given lattice Gl is affine on
the convex set of Gl-invariant states, (cf. prop. 7.2.3 in [42]). Thus to prove
(3.5) it is sufficient to show:

s(Ψx, Gl) = s(Ψ0, Gl), ∀x ∈ Λ(k(l)).

By the definition of the mean entropy this is equivalent to the statement

|S(Ψ(ln)
x ) − S(Ψ

(ln)
0 )| = o(|n|) as n → ∞. (3.13)
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This can be seen as follows: In view of the definition of Ψ
(ln)
x we have

S(Ψ(ln)
x ) = S(Ψ(Λ(ln))

x ) = S(Ψ
(Λ(ln)−x)
0 ).

We introduce the box Λ̃ being concentric with Λ(ln), with all edges enlarged
by l on both directions, i.e. an l-neighborhood of Λ(ln). The two expressions

S(Ψ
(ln)
x ) and S(Ψ

(ln)
0 ) are von Neumann entropies of the restrictions of Ψ

(eΛ)
0

to the smaller sets Λ(ln) and Λ(ln) − x, respectively. On the other hand we

consider the box Λ̂ being concentric with Λ(ln) with all edges shortened by

l at both sides. S(Ψ
(bΛ)
0 ) is the von Neumann entropy of Ψ

(Λ(ln))
0 and Ψ

(Λ(ln))
x

after their restriction to the set Λ̂. S(Ψ
(Λ(ln))
x ) and S(Ψ

(Λ(ln))
0 ) can be estimated

simultaneously using the subadditivity of the von Neumann entropy as follows

S(Ψ
(eΛ)
0 ) − log trΛ̃\Λ(ln)1 ≤ S(Ψ(ln)

γ ) ≤ S(Ψ
(bΛ)
0 ) + log trΛ(ln)\bΛ1,

where γ ∈ {x, 0}. Thus (3.13) follows immediately. �

3.3 Quantum Shannon-McMillan Theorem

The main result in this work is a generalization of the classical Shannon-McMillan
theorem to the quantum case.

Theorem 3.3.1 (Quantum Shannon-McMillan Theorem) Let Ψ be an er-
godic state on A∞ with mean von Neumann entropy s(Ψ). Then for all δ > 0
there is an Nδ ∈ N

ν such that for all n ∈ N
ν with Λ(n) ⊇ Λ(Nδ) there exists

an orthogonal projection pn(δ) ∈ A(n) such that

1. Ψ(n)(pn(δ)) ≥ 1 − δ,

2. for all minimal projections 0 �= p ∈ A(n) with p ≤ pn(δ)

e−#(Λ(n))(s(Ψ)+δ) < Ψ(n)(p) < e−#(Λ(n))(s(Ψ)−δ),

3. e#(Λ(n))(s(Ψ)−δ) < trn(pn(δ)) < e#(Λ(n))(s(Ψ)+δ).

As will be seen in the proof of the above theorem the entropy-typical Hilbert
subspace corresponding to the projector pn(δ) can be chosen as the linear hull
of the eigenvectors of the density operator DΨ(n) whose eigenvalues are of order
e−#(Λ(n))s(Ψ).

The quantum SM-theorem reduces to the classical SM-theorem (Proposition
2.2.2) in its C∗-algebraic formulation if we choose A∞ to be constructed from
an abelian finite dimensional unital C∗-algebra A.

The subsequent proposition can be considered as a reformulation of the above
quantum SM-theorem in terms of high probability subspaces and is especially
suited for possible applications in (quantum) data compression. We first fix
notations.
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Definition 3.3.2 For ε ∈ (0, 1) and n ∈ N
ν we define

βε,n(Ψ) := min{log(trn q)| q ∈ A(n) projection, Ψ(n)(q) ≥ 1 − ε}. (3.14)

A projector p ∈ A(n) which achieves the minimum (3.14) is called high proba-
bility projector at level ε and the corresponding Hilbert subspace is referred to
as high probability subspace at level ε.

Roughly speaking, the high probability subspaces are the relevant subspaces
(with respect to Ψ) of minimal dimension. The proposition states that the
mean von Neumann entropy of an ergodic quantum state Ψ gives the first order
exponent for the increase of per site dimension of high probability subspaces,
independent of the level ε.

Proposition 3.3.3 Let Ψ be an ergodic state on A∞ with mean von Neumann
entropy s(Ψ). Then for every ε ∈ (0, 1)

lim
Λ(n)↗Nν

1

#(Λ(n))
βε,n(Ψ) = s(Ψ). (3.15)

As we will see in the next section, in the setting of quantum information theory
high probability subspaces of quantum spin lattice systems modeling quantum
information sources are the crucial objects for formulating and proving data
coding/compression theorems. As subspaces of probability close to 1 they are
the relevant subspaces in the sense that the expectation values of any observables
restricted to these subspaces are almost equal to the corresponding ones on the
entire space. On the other hand the minimal dimension allows an economical use
of resources (qubits) needed for quantum information storage and transmission.

We remark that Proposition 3.15 already appeared in the papers [24] and
[23] of Petz and Hiai as a special case of a conjecture, which was formulated in
a more general setting of quantum relative entropy. For any two states ψ, φ on
a finite dimensional algebra A the relative entropy is defined through

S(ψ, φ) :=

{
trADψ log(Dψ − Dφ), supp(ψ) ≤ supp(φ)
∞, otherwise,

where supp(ψ) denotes the support projector of the state ψ. The conjecture
says that the mean (per site limit) quantum relative entropy between an er-
godic quantum state Ψ and an i.i.d. reference state Φ on a quasi-local algebra
A∞ gives the first order in the exponential decrease of the expectation value
with respect to Φ of the so-called minimal separating projectors. Choosing as
a reference state the special i.i.d. quantum state Φ with the single-site density
operator D = 1

dν 1 ∈ A, the minimal separating projectors at level ε coincide
with the high probability projectors at level ε, where ε ∈ (0, 1). The conjecture
in its general form can be interpreted in the context of (quantum) hypothesis
testing. Recently, in continuation of [11] the conjecture has been proven, [13].

Now, we sketch the main steps of the proof of Theorem 3.3.3 and Proposi-
tion 3.3.1, respectively. One basic tool for the proof of the statements under the
general assumption of ergodicity is the structural assertion in Theorem 3.2.1. It
is used to circumvent the complete ergodicity assumption, as already mentioned
in the last section. Theorem 3.2.1 combined with the subsequent lemma allow
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to control not only the mean (per site limit) entropies of the ergodic components
(with respect to the sublattice obtained by a coarsening of the lattice Z

ν into
larger boxes), but also to cope with the obstacle that some of these components
might have an atypical entropy on these large but finite boxes. Using these pre-
requisites, we prove Lemma 3.3.5 which is the extension of the Hiai/Petz upper
bound result for completely ergodic states to the case of ergodic states. Finally,
from the probabilistic argument expressed in Lemma 2.2.6 we derive that the
upper bound is really a limit.

In order to simplify our notation in the next lemma we introduce some ab-
breviations. We choose a positive integer l and consider the decomposition of
Ψ ∈ ∂exT (A∞) into states Ψx being ergodic with respect to the action of Gl,
i.e. Ψ = 1

#(Λ(k(l)))

∑
x∈Λ(k(l)) Ψx. Then we set

s := s(Ψ, Zν) = s(Ψ),

i.e. the mean entropy of the state Ψ computed with respect to Z
ν . Moreover

we set

s(l)
x :=

1

#(Λ(l))
S(Ψ(Λ(l))

x ) and s(l) :=
1

#(Λ(l))
S(Ψ(Λ(l))).

From the ergodic decomposition theorem 3.2.1 we know that

s(Ψx, Gl) = s(Ψ, Gl) = lν · s(Ψ), ∀x ∈ Λ(k(l)). (3.16)

For η > 0 let us introduce the following set

Al,η := {x ∈ Λ(k(l))| s(l)
x ≥ s + η}. (3.17)

By Ac
l,η we denote its complement. The following lemma states that the density

of Gl-ergodic components of Ψ which have too large entropy on the box of side
length l vanishes asymptotically in l.

Lemma 3.3.4 If Ψ is a Z
ν-ergodic state on A∞, then

lim
l→∞

#Al,η

#Λ(k(l))
= 0

holds for every η > 0.

Proof of Lemma 3.3.4: We suppose on the contrary that there is some η0 > 0

such that lim supl
#Al,η0

#Λ(k(l)) = a > 0. Then there exists a subsequence (lj) with

the property

lim
j→∞

#Alj ,η0

#Λ(k(lj))
= a.

By the concavity of the von Neumann entropy we obtain

#Λ(k(lj)) · s(lj) ≥
∑

x∈Λ(k(lj))

s
(lj)
x

=
∑

x∈Alj ,η0

s
(lj)
x +

∑
x∈Ac

lj ,η0

s
(lj)
x

≥ #Alj ,η0 · (s + η0) + #Ac
lj ,η0

· min
x∈Ac

lj,η0

s
(lj)
x .
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Here we made use of (3.17) at the last step. Using that for the mean entropy
holds

s(Ψx, Gl) = lim
Λ(m)↗Nν

1

#Λ(m)
S(Ψ(lm)

x ) = inf
Λ(m)

1

#Λ(m)
S(Ψ(lm)

x )

we obtain a further estimation for the second term on the right hand side:

#Ac
lj ,η0

· min
x∈Ac

lj,η0

s
(lj)
x ≥ #Ac

lj ,η0
· min
x∈Ac

lj,η0

1

lνj
s(Ψx, Glj )

= #Ac
lj ,η0

· s(Ψ) (by(3.16)).

After dividing #Λ(k(lj)) ·s(lj) ≥ #Alj ,η0 · (s+η0)+#Ac
lj ,η0

·s(Ψ) by #Λ(k(lj))
and taking limits we arrive at the following contradictory inequality:

s ≥ a(s + η0) + (1 − a)s = s + aη0 > s.

So, a = 0. �

The subsequent lemma states that in the case of any ergodic system (A∞, Ψ, T (Zν))
for large Λ ⊂ Z

ν there exist orthogonal projectors in AΛ which have an expec-
tation value (with respect to Ψ) close to 1 and simultaneously a not too large
dimension of the corresponding Hilbert subspace. Precisely, it is required that
the exponent of the dimension is bounded from above in terms of the mean von
Neumann entropy s(Ψ), namely by a value of order #(Λ) · s(Ψ).

Lemma 3.3.5 Let Ψ be an ergodic state on A∞. Then for every ε ∈ (0, 1)

lim sup
Λ(n)↗Nν

1

#Λ(n)
βε,n(Ψ) ≤ s(Ψ).

The strategy to verify the existence of projectors q ∈ A(n) with Ψ(q) ≥ 1 − ε
and log trq < #(Λ(n))s(Ψ) + ε is based on approximating non-commutative
spin lattice systems by abelian subsystems, to which one can apply the clas-
sical results (SM(B)-theorem). The approximation is in the sense of mean en-
tropy. This method was successfully applied by Hiai and Petz in [23] to obtain
the statement of Lemma 3.3.5 in a more general setting of relative entropy, as
shortly discussed above, however under the restrictive assumption of complete
ergodicity of Ψ.
An abelian subsystem of a non-commutative system (A∞, Ψ, T (Zν)) can be ob-
tained in the simplest case as follows. First we choose an abelian subalgebra
B ⊆ A. Next we construct over the lattice Z

ν a quasi-local algebra B∞ from
B, as described in the previous section. Then B∞ is a commutative subalgebra
of A∞ and the system (B∞, m, T (Zν)), where m := Ψ � B∞ is the reduction of
the state Ψ onto the algebra B∞, is an abelian subsystem. However, to ensure
that an abelian subsystem approximates the original non-commutative system
in mean entropy it is necessary to consider a sublattice of Z

ν typically of the
form l ·Zν , l > 1 integer, and subsequently to construct from a suitable maximal
abelian subalgebra B ⊂ AΛ(l) an abelian subsystem (B∞, ml := Ψ �B∞ , T (l ·Zν))
of (A∞

Λ(l), Ψ �A∞
Λ(l)

, T (l · Zν)), as described above. Next, if we want to apply the

classical SM-theorem to the abelian subsystem we need the ergodicity of ml
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(with respect to the subgroup l · Z
ν). However, the abelian subsystem inherits

the ergodic properties from (A∞
Λ(l), Ψ �A∞

Λ(l)
, T (l ·Zν)). This can be derived from

Theorem 4.3.17 in [14]. Consequently it fails to be l · Z
ν -ergodic if we do not

suppose complete ergodicity of Ψ on A∞. The ergodic decomposition theorem
(Theorem 3.2.1) allows to cope with this problem.

Proof of Lemma 3.3.5: We fix ε > 0 and choose arbitrary η, δ > 0. Consider
the Gl-ergodic decomposition

Ψ =
1

#Λ(k(l))

∑
x∈Λ(k(l))

Ψx

of Ψ for integers l ≥ 1. By Lemma 3.3.4 there is an integer L ≥ 1 such that for
any l ≥ L

ε

2
≥ 1

#Λ(k(l))
#Al,η ≥ 0

holds, where Al,η is defined by (3.17). This inequality implies

1

#Λ(k(l))
#Ac

l,η · (1 − ε

2
) ≥ 1 − ε. (3.18)

On the other hand by

S(Ψ(n)) = inf{S(Ψ(n) � B)| B maximal abelian C∗ − subalgebra of A(n)}

(cf. Theorem 11.9 in [38] and use the one-to-one correspondence between maxi-
mal abelian ∗-subalgebras and orthogonal partitions of unity into minimal pro-
jections contained in A(n)) there exist maximal abelian C∗-subalgebras Bx of
AΛ(l) with the property

1

#Λ(l)
S(Ψ(Λ(l))

x � Bx) < s(Ψ) + η, ∀ x ∈ Ac
l,η. (3.19)

We fix an l ≥ L and consider the abelian quasi-local C∗-algebras B∞
x , con-

structed with Bx, as C∗-subalgebras of A∞ and set

mx := Ψx � B∞
x and m(n)

x := Ψx � B(n)
x

for x ∈ Ac
l,η and n ∈ N

ν . The states mx are Gl-ergodic since they are re-
strictions of Gl-ergodic states Ψx on a quasi-local algebra. This easily follows
from Theorem 4.3.17. in [14]. Moreover, by the Gelfand isomorphism and Riesz
representation theorem, we identify the states mx with probability measures on
corresponding (compact) maximal ideal spaces of B∞

x . By commutativity and
finite dimensionality of the algebras Bx these compact spaces can be represented
as B∞

x with finite sets Bx for all x ∈ Ac
l,η. By the classical SMB-theorem (cf.

Theorem 2.11)

lim
Λ(n)↗Nν

− 1

#Λ(n)
log m(n)

x (ωn) = hx (3.20)

mx-almost surely for all x ∈ Ac
l,η, where hx denotes the mean Shannon entropy

of mx, and ωn ∈ Bx
Λ(n) are the components of ω ∈ B∞

x corresponding to the
box Λ(n). Actually, as we shall see, we need the theorem cited above only in its
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weaker form as convergence in probability, i.e. we need only the SM-theorem.
For each n and x ∈ Ac

l,η let

C(n)
x := {ωn ∈ B(n)

x | | − 1

#Λ(n)
log m(n)

x (ωn) − hx| < δ}

= {ωn ∈ B(n)
x | e−#Λ(n)·(hx+δ) < m(n)

x (ωn) < e−#Λ(n)·(hx−δ)}.
Since lower bounds on the probability imply upper bounds on the cardinality
we obtain

#C(n)
x = trn

(
p(n)
x

)
≤ e#Λ(n)·(hx+δ) ≤ e#Λ(n)·(lν(s(Ψ)+η)+δ) (3.21)

where p
(n)
x is the projection in B(n)

x corresponding to the function 1
C

(n)
x

. In the

last inequality we have used that hx ≤ S(Ψ
(Λ(l))
x � Bx) < lν(s(Ψ) + η) for all

x ∈ Ac
l,η by

hx = lim
Λ(n)↗Nν

1

#Λ(n)
H(m(n)

x ) = inf
Λ(n)

1

#Λ(n)
H(m(n)

x ),

(cf. [42]), and by (3.19 for the second equality). Recall that H denotes the
Shannon entropy.
From (3.20) it follows that there is an N ∈ N (depending on l) such that for all
n ∈ N

ν with Λ(n) ⊃ Λ(N)

m(n)
x (C(n)

x ) ≥ 1 − ε

2
, ∀ x ∈ Ac

l,η. (3.22)

For each y ∈ N
ν with yi ≥ Nl let yi = nil + ji, where ni ≥ N and 0 ≤ ji < l.

We set
q(ln) :=

∨
x∈Ac

l,η

p(n)
x .

and denote by qy the embedding of q(ln) in A(y), i.e. qy = q(ln) ⊗ 1Λ(y)\Λ(ln).
By (3.22) and (3.18) we obtain

Ψ(y)(qy) =
1

#Λ(k(l))

∑
x∈Λ(k(l))

Ψ(y)
x (qy)

≥ 1

#Λ(k(l))
#Ac

l,η · (1 − ε

2
) ≥ (1 − ε).

Thus the condition in the definition of βε,y(Ψ) is satisfied. Moreover by the
definition of qy and (3.21)

βε,y(Ψ) ≤ log tryqy = log trlnq(ln) + log(trΛ(y)\Λ(ln)1Λ(y)\Λ(ln))

≤ log(
∑

x∈Ac
l,η

e#Λ(n)·(hx+δ)) + log(trΛ(y)\Λ(ln)1Λ(y)\Λ(ln))

≤ log(#Ac
l,η · e#Λ(n)(lν(s(Ψ)+η)+δ)) (by (3.21))

+ log(trΛ(y)\Λ(ln)1Λ(y)\Λ(ln))

≤ log(#Ac
l,η) + #Λ(n)(lν(s(Ψ) + η) + δ)

+ log(trΛ(y)\Λ(ln)1Λ(y)\Λ(ln))

≤ log(#Ac
l,η) + #Λ(ln)(s(Ψ) + η +

δ

lν
)

+ log(trΛ(y)\Λ(ln)1Λ(y)\Λ(ln)).
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We can conclude from this that

lim sup
Λ(y)↗Nν

1

#Λ(y)
βε,y(Ψ) ≤ s(Ψ) + η +

δ

lν
,

because #Ac
l,η does not depend on n and Λ(y) ↗ N

ν if and only if Λ(n) ↗ N
ν .

This leads to

lim sup
Λ(y)↗Nν

1

#Λ(y)
βε,y(Ψ) ≤ s(Ψ),

since η, δ > 0 were chosen arbitrarily. �

Proof of Proposition 3.3.3: A(n) as a finite dimensional C∗-algebra is ∗-
isomorphic to a finite direct sum

⊕M
j=1 B(H(n)

j ), where each H(n)
j is a Hilbert

space with dimH(n)
j = d

(n)
j < ∞ and any minimal projection in A(n) is repre-

sented by a 1-dimensional projection on H(n) :=
⊕M

j=1 H
(n)
j with dimH(n) =∑M

j=1 d
(n)
j =: dn. Note that

⊕M
j=1 B(H(n)

j ) ⊆ B(H(n)). Consider the spectral

representation of the density operator Dn of Ψ(n) in B(H(n)):

Dn =

dn∑
i=1

λ
(n)
i q

(n)
i ,

i.e. λ
(n)
i ∈ [0, 1] are eigen-values and q

(n)
i ∈ B(H(n)) are (minimal) eigen-

projectors.
For n = (n1, . . . , nν) ∈ N

ν let A(n) be the finite set consisting of the eigen-

projectors q
(n)
i of Ψ(n), i.e.

A(n) := {q(n)
i }dn

i=1. (3.23)

Let P (n) be the probability distribution on A(n) given by the eigen-values:

P (n)(q
(n)
i ) := Ψ(n)(q

(n)
i ) = λ

(n)
i . (3.24)

Recall that |n| =
∏ν

i=1 ni. Let M := log(dimH(0)), then 1
|n| log #A(n) ≤ M for

all n ∈ N
ν . We show that the family {(A(n), P (n))}n∈Nν fulfills both conditions

in Lemma 2.2.6 and consequently

lim
n→∞

1

|n|αε,n(P (n)) = lim
n→∞

1

|n|H(P (n)), ∀ε ∈ (0, 1). (3.25)

It is clear that H(P (n)) = −∑dn

i=1 λ
(n)
i log λ

(n)
i = S(Ψ(n)). Thus

h := lim
n→∞

1

|n|H(P (n)) = s(Ψ). (3.26)

Next assume the following ordering:

i < j =⇒ λ
(n)
i ≥ λ

(n)
j

and define for ε ∈ (0, 1)

nε,n := min{k ∈ {1, . . . , dn}|
k∑

j=1

λ
(n)
j ≥ 1 − ε}.
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Thus αε,n(P (n)) = log #({q(n)
i }nε,n

i=1 ) = log nε,n. We claim :

αε,n(P (n)) = βε,n(Ψ(n)), ∀ε ∈ (0, 1). (3.27)

From Ψ(n)(
∑nε,n

i=1 q
(n)
i ) ≥ 1 − ε and trn

∑nε,n

i=1 q
(n)
i = nε,n it is obvious that

βε,n(Ψ(n)) ≤ αε,n(P (n)).

Assume βε,n(Ψ(n)) < αε,n(P (n)). Then there exists a projector q ∈ A(n) with
Ψ(n)(q) ≥ 1 − ε such that m := trn q < nε,n. Let

∑m
i=1 qi, where qi ∈ B(H(n)),

be the spectral representation of q. For Dn as density matrix on H(n) we use
Ky Fan’s maximum principle, [8], and obtain the contradiction

1 − ε ≤ Ψ(n)(q) = trnDnq =

m∑
i=1

trnqiDnqi ≤
m∑

i=1

λ
(n)
i < 1 − ε.

Ψ is ergodic. Thus we can apply Lemma 3.3.5:

lim sup
Λ(n)↗Nν

1

#(Λ(n))
βε,n(Ψ(n)) ≤ s(Ψ), ∀ε ∈ (0, 1). (3.28)

Setting (3.27) and (3.26) in (3.28) and using that #(Λ(n)) = |n| we obtain

lim sup
n→∞

1

|n|αε,n(P (n)) ≤ h, ∀ε ∈ (0, 1). (3.29)

With (3.26) and (3.29) both conditions in Lemma 2.2.6 are satisfied. It follows
(3.25). Now we set back (3.27) and (3.26) in (3.25) and arrive at

lim
Λ(n)↗Nν

1

#(Λ(n))
βε,n(Ψ) = s(Ψ), ∀ε ∈ (0, 1). �

Proof of the Quantum Shannon-McMillan Theorem:
Fix δ > 0. Adopt the family {(A(n), P (n))}n∈Nν and further notations from the

proof of Proposition 3.3.3. Choose some δ′ < δ. Let A
(n)
2 (δ′) be the subset of

A(n) defined in the proof of Lemma 2.2.6 with h = s(Ψ), appropriate to (3.26).

Let In(δ′) := {i ∈ {1, . . . , dn}| qn
i ∈ A

(n)
2 (δ′)}. Set

pn(δ) =
∑

In(δ′)

qn
i .

By (2.15) there exists an Nδ ∈ N
ν such that pn(δ) is a projection with

Ψ(n)(pn(δ)) = P (n)(A
(n)
2 (δ′)) ≥ 1 − δ, ∀n ≥ Nδ.

Any minimal projector 0 �= p ∈ A(n) with p ≤ pn(δ) is represented as a projector
onto a 1-dimensional subspace of H(n) spanned by a (normalized) vector vp ∈
H(n) such that vp =

∑
i∈In(δ′) γivqn

i
, where vqn

i
∈ H(n) are corresponding to the

eigen-projectors qn
i and

∑
i∈In(δ′) |γ|2i = 1. Hence

Ψ(n)(p) =
∑

i∈In(δ′)

|γi|2λ(n)
i
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is a weighted average of the eigenvalues λ
(n)
i corresponding to the set A

(n)
2 (δ′).

Thus we obtain by the definition of this set

e−#Λ(n)(s(Ψ)+δ) < Ψ(n)(p) < e−#Λ(n)(s(Ψ)−δ). (3.30)

Using the linearity of Ψ(n) and applying (3.30) to the projections q
(n)
i we arrive

at the following estimation

e#Λ(n)(s(Ψ)−δ) < trnpn(δ) < e#Λ(n)(s(Ψ)+δ),

if n is large enough. We have shown all assertions of the theorem. �

Concluding this section we remark that for an i.i.d. quantum state Ψ on A∞

the quantum SM-theorem (and even the finite reformulation of Breiman’s ex-
tension) can be directly derived from the classical SM(B)-theorem. This is due
to the fact that the family {(An, Pn)}n∈Nν associated to the spectral decom-
positions of the density operators Dn, respectively, as introduced in the proof
of Proposition 3.3.3 (cf. definitions (3.23) and (3.24)), is consistent and conse-
quently forms an (ergodic) stochastic process, to which we can directly apply
the classical SM(B)-theorem. In general, the whole class of quantum states,
which can be obtained from ergodic stochastic processes by mapping the alpha-
bet of the process onto a set of mutually commuting 1-dimensional projectors
on a finite dimensional Hilbert space (classical-quantum coding) allows such a
simple derivation of the quantum SM(B)-theorems. These states however do
not possess any quantum correlations.

3.4 Quantum Data Compression Theorem

In this section we demonstrate how the quantum results from the previous sec-
tion can be applied to quantum information theory. In analogy to classical
information theory 1-dimensional quantum spin lattice systems (A∞, Ψ, T ), as
presented in Section 3.1, model (discrete-time) quantum information sources.
The goal in the present section is to formulate and prove an asymptotically
lossless data compression theorem for ergodic quantum information sources.

One of the interests in quantum information theory is an economical and error-
free storage or transmission of quantum information. In other words the ques-
tion is: What is the minimal amount of resources measured in units of qubits
or equivalently in Hilbert space dimensions needed to store quantum states
faithfully? This question has been solved in the case of i.i.d. sources using
the entanglement fidelity Fe as a criterion for reliability, [38]: Any compression
scheme possessing a rate smaller than the (base 2) von Neumann entropy S
of the single-site density operator D cannot be reliable in the sense that the
entanglement fidelity tends to 0. Here by rate we mean the asymptotic number
of qubits per signal used to represent the quantum information source (QIS).
It has been shown in [4] that for encodings of classical memoryless sources into
some fixed set of pure quantum states, as will be described below, an analogous
assertion holds. In this case the reliability is measured by the ensemble fidelity
F̄ . In both cases compression schemes have been constructed with rates, that
can be made arbitrary close to the von Neumann entropy S of the single-site
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density operator determining the i.i.d. source. An essential ingredient is the
quantum AEP for i.i.d. information sources. With the quantum AEP 3.3.1 or
especially with the related Proposition 3.3.3 for general ergodic quantum lattice
systems we dispose of a necessary tool to extend the asymptotically lossless data
compression theorem to the more general case of ergodic quantum sources. It
turns out that again the von Neumann entropy rate s is the optimal rate in
the sense that a rate R ≥ s is a necessary condition for asymptotical reliability
of compression schemes and even more the fidelity of any compression scheme
with rate R < s vanishes asymptotically. Of course, this result depends on the
underlying fidelity notion for the compression/decompression operations on the
QIS. Our results hold if reliability is measured by F̄ or by Fe. Moreover, we
provide an asymptotically optimal compression scheme based on the concept
of high probability subspaces. We show by construction (cf. Theorem 3.4.1
below) that for any ergodic QIS there exists an asymptotically reliable com-
pression scheme with rate R equal to the von Neumann entropy rate s. The
main tool to construct compression schemes achieving the optimal rate s are
high probability subspaces. Compression maps that are essentially projections
onto high probability subspaces provide the optimal data compression. A basic
result concerning high probability subspaces was proven in the previous section.
Due to this result the mean (per site) minimal logarithmic dimension of these
subspaces converges to the von Neumann entropy rate s in the case of ergodic
QIS.

The concept of high probability subspaces is also crucial in the work of Petz
and Mosonyi [41], where they prove a coding theorem for the class of com-
pletely ergodic QIS. Using projections onto high probability subspaces they
show that completely ergodic QIS can be compressed with any rate R ≥ s in
such a way that the ensemble fidelity F̄ is asymptotically equal to 1. On the
other hand F̄ cannot achieve 1 asymptotically if the rate satisfies R < s. The
reason why they cannot conclude that for R < s the asymptotical fidelity F̄ is
equal to 0 is that they use the result of Hiai/Petz [23] which provides bounds
on limit superior and limit inferior and not the limit of the minimal logarithmic
dimension rate of the high probability subspaces. The result of Petz/Mosonyi
represents an extension of the coding theorem formulated in [29] by Jozsa and
Schumacher for the smaller class of independent identically distributed (i.i.d.)
QIS and proved in [29] and [4]. An analogous result for i.i.d. QIS using the
entanglement fidelity Fe as a criterion for the reliability of compression schemes
is presented by Nielsen and Chuang in [38].

Preliminary Remarks

Compared to the previous sections the notations in the present section are much
simpler due to the fact that we deal with the 1-dimensional lattice Z only. To
avoid further technical complications we propose to restrict our considerations
to the case of finite dimensional C∗-algebras of the form A = B(H), where
B(H) is the algebra of linear operators on the Hilbert space H of dimension
dimH = d < ∞. Recall that in the most general case, including abelian alge-
bras corresponding to the classical situation, the finite dimensional algebra A
is ∗-isomorphic to a finite direct sum

⊕M
j=1 B(Hj), where each Hj is a Hilbert

space with dimHj = dj < ∞. Under the proposed assumption for any n ∈ N
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the local algebra A(n) is ∗-isomorphic to B(H⊗n).
Moreover, we use in this section the Dirac notation |φ〉 for vectors in H and 〈φ|
for the corresponding dual vectors.
We will compute the von Neumann entropy with respect to the base 2 logarithm
log2, relating to the qubit as the standard quantum information unit.
All notational renewals are intended on the one hand for simplifications, on the
other hand to fit in the standard (notational) framework of quantum information
theory (see for example [38]).

3.4.1 Data Compression Schemes

In order to define lossless data compression schemes for encoding quantum sig-
nals we need the concept of trace preserving quantum operations. A physical
approach to trace preserving quantum operations can be obtained as follows.
Consider a quantum system S prepared in some state ρ corresponding to the
density operator Dρ acting on the Hilbert space H. We imagine that this system
interacts with its environment, a quantum system Senv in a state ρenv on the
finite dimensional Hilbert space Henv. The system S × Senv is closed and we
make the assumption that it is initially in the product state with the density
operator Dρ ⊗Dρenv on H⊗Henv. As a state of a closed system it undergoes a
unitary evolution represented by a unitary operator U on H ⊗Henv. The cor-
responding evolution of the state ρ of S is usually not unitary, i.e. irreversible.
It is given by a trace preserving quantum operation E on B(H):

E(Dρ) := trHenv(U(Dρ ⊗ Dρenv)U
∗). (3.31)

It can be shown that each trace preserving quantum operation E possesses the
following representation known as Kraus or sum representation (cf. [21], [22],
[38])

E(Dρ) =
∑

i

EiDρE
∗
i ,

where Ei ∈ B(H) and
∑

i E∗
i Ei = 1. This description contains, for example, the

cases of the unitary time evolution and general measurements. For a treatment
of quantum operations within the framework of completely positive linear maps
between C∗-algebras we suggest [18] or [33] .

A (block) compression scheme (C,D) for stationary QIS is a sequence {(C (n),D(n))}n∈N

of pairs of trace preserving quantum operations

C(n) : S(H⊗n) −→ S(H(n)),

D(n) : S(H(n)) −→ S(H⊗n)

where H(n) is a subspace of H⊗n for all n ∈ N and S(H⊗n), S(H(n)) denote
in this section the sets of density operators on H⊗n and H(n), respectively. We
refer to C(n) and D(n) as compression and decompression map, respectively.
The rate R(C) of a compression scheme (C,D) is defined by

R(C) := lim sup
n→∞

1

n
log2 dimH(n). (3.32)
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3.4.2 Fidelities

We need a quantitative criterion to decide if a compression scheme operates
reliably. For this purpose we review in this section different relevant notions of
fidelity and their basic properties.
The fidelity F between two density operators Dρ and Dσ acting on some finite
dimensional Hilbert space H is defined by

F (Dρ, Dσ) := tr

√√
DρDσ

√
Dρ. (3.33)

The fidelity is symmetric in its entries and takes values between 0 and 1 with
F (Dρ, Dσ) = 0 if, and only if, Dρ and Dσ are supported on orthogonal sub-
spaces. The value 1 is achieved only in the case Dρ = Dσ. In view of these
properties it is reasonable to interpret the fidelity as a measure of distinguisha-
bility between two density operators which reduces to the well known overlap
|〈ψ|φ〉| in the case of pure states |ψ〉〈ψ| and |φ〉〈φ| on H. Moreover F is jointly
concave and increasing under trace preserving quantum operations. The proofs
of these facts may be found in [38]. The fidelity F is related to the familiar
trace distance of two density operators by:

1 − F (Dρ, Dσ) ≤ 1

2
tr|Dρ − Dσ| ≤

√
1 − (F (Dρ, Dσ))2, (3.34)

(cf. [38]). The trace distance can be represented as (cf. [38])

1

2
tr|Dρ − Dσ| = max{tr(P (Dρ − Dσ)) : P = P ∗ = P 2}.

This equality has the following meaning: the orthogonal projections appearing
in the above equation are usually interpreted as ideal “yes-no” measurements.
The outcome “yes” (respectively “no”) is represented by P (respectively 1−P ).
The trace distance quantifies the largest difference of probabilities for obtaining
outcome “yes” if we perform measurements on quantum systems in the states
ρ and σ, respectively. This relation between the fidelity and the trace distance
gives us an idea about the operational interpretation of the fidelity.

The question how well the state of an open quantum system is preserved by
a time evolution, a measurement or more generally an arbitrary quantum oper-
ation leads to several fidelity concepts.

Entanglement Fidelity

We begin with the concept of entanglement fidelity Fe. It is a function of
a density operator Dρ and a quantum operation E . It is defined by

Fe(Dρ, E) := [F (|ψ〉〈ψ|, (1 ⊗ E)(|ψ〉〈ψ|))]2, (3.35)

where |ψ〉 ∈ H′ ⊗ H is an arbitrary purification of Dρ, i.e. trH′ |ψ〉〈ψ| = Dρ.
It can be shown that this definition does not depend on the particular choice
of the purification of Dρ, cf. [38]. Entanglement fidelity measures how well the
purifications of a given state are preserved under quantum operations E . If the
state is mixed then all purifications are entangled pure states.
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Now, we present a further formula for the entanglement fidelity, which turns
out to be very useful in the proof of the quantum data compression theorem
3.4.1. Let E(Dρ) =

∑
i EiDρE

∗
i be the sum representation of E where Ei ∈ B(H)

and
∑

i E∗
i Ei = 1. Then

Fe(Dρ, E) =
∑

i

|trDρEi|2. (3.36)

This formula implies that the entanglement fidelity is a convex function of the
density operator. Indeed, the last expression is merely the squared norm of a
complex vector with the components tr(DρEi), which depend affinely on Dρ.
Moreover, every norm is a convex function, so we obtain the claimed convexity
of Fe.

Ensemble fidelity

In order to define the ensemble fidelity F̄ we start with a finite set of symbols
{1, . . . , n} (a classical alphabet) which are drawn according to a probability dis-
tribution (p1, . . . , pn). We associate to this set of symbols a fixed set of density
operators {D1, . . .Dn} on H and define the ensemble fidelity by

F̄ ({(pi, Di)}n
i=1, E) :=

n∑
i=1

pi (F (Di, E(Di)))
2 , (3.37)

where E is a quantum operation. The weighted ensemble of n quantum states
{(pi, Di)}n

i=1 represents a convex decomposition of the density operator Dρ =∑n
i=1 piDi. If the Di are all pure states then we call the ensemble or the convex

decomposition a pure one. We will denote by Fs(Dρ, E) the supremum over
pure convex decompositions of the ensemble fidelities for a density operator Dρ

and a quantum operation E :

Fs(Dρ, E) := sup{F̄ ({(pi, Pi)}n
i=1, E) : {(pi, Pi)}n

i=1 pure convex

decomposition of Dρ}. (3.38)

The idea behind the definition (3.37) is that the classical alphabet is represented
by quantum systems prepared in the states from some fixed set. For example
we can encode the alphabet {0, 1} into two different polarization directions of
photons. The probability of occurrence of each polarization direction is deter-
mined by the probability distribution on the classical alphabet. The ensemble
fidelity F̄ appears mainly in problems concerning classical information to be e.g.
stored on or transmitted via quantum states.

We conclude this section with a relation among the fidelity notions introduced
here. For a fixed quantum state ρ with corresponding density operator Dρ we
define

F̄ρ,E := {F̄ ({(pi, Di)}i, E)|
∑

i

piDi = Dρ}.

It holds
0 ≤ Fe(Dρ, E) ≤ F̄ ≤ F (Dρ, E(Dρ)) ≤ 1, F̄ ∈ F̄ρ,E . (3.39)
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The second inequality follows immediately from the convexity of the entan-
glement fidelity. The third inequality holds because the fidelity F is jointly
concave. Observe that according to (3.39) we can give upper and lower bounds
for F̄ which depend exclusively on the density operator Dρ corresponding to the
convex decomposition in consideration. The inequality (3.39) will play a crucial
role in our derivation of data compression theorem.

3.4.3 Lossless Data Compression Theorem for Ergodic Quan-
tum Information Sources

Now we are in a position to formulate and prove the asymptotically lossless data
compression theorem for ergodic QIS.
Recall that according to the assumption A = B(H) any ergodic quantum state
Ψ on A∞ corresponds one-to-one to a consistent family of density operators
{Dn}n∈N on H⊗n, respectively.

Theorem 3.4.1 (Data Compression Theorem) Let (A∞, Ψ, T ) be an er-
godic quantum information source with entropy rate s(Ψ) and {Dn}n∈N the
family of density operators corresponding to Ψ.

1) Each compression scheme (C,D) satisfying

lim
n→∞ F̄ ({(λ(n)

i , P
(n)
i )}kn

i=1,D(n) ◦ C(n)) = 1 (3.40)

for some sequence {{(λ(n)
i , P

(n)
i )}kn

i=1}n∈N of pure convex decompositions
of Dn, respectively, fulfills

R(C) ≥ s(Ψ).

2) There exists a compression scheme (C,D) with R(C) = s(Ψ) such that

lim
n→∞Fe(Dn,D(n) ◦ C(n)) = 1.

3) Any compression scheme (C,D) with R(C) < s(Ψ) satisfies

lim
n→∞Fs(Dn,D(n) ◦ C(n)) = 0, (3.41)

where Fs is defined by (3.38).

Remark: Taking into account the relation (3.39) we use worst case fidelities
in the separate parts of the above theorem. In this way we obtain that the von
Neumann entropy rate is the optimal compression rate using the fidelity F̄ as
well as Fe.

Before we present the proof of the above theorem we sketch the main ideas.
The first statement in the theorem is essentially a consequence of the mono-
tonicity of the relative entropy (cf. [45]) and the Fannes inequality (cf. [19]).
The second statement is derived from Proposition 3.3.3, which states that the
asymptotic rate of βε,n is given by the von Neumann entropy rate and does not
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depend on the level ε. Compression schemes (C,D) consisting of compression
maps which are essentially projections onto the high probability subspaces and
the canonical embedding as decompression maps posses a rate equal to the von
Neumann entropy rate. So, if we combine appropriately high probability sub-
spaces such that their corresponding levels tend to 0, we can achieve that the
entanglement fidelity becomes arbitrary close to 1. This strategy leads directly
to the proof of the second part of the theorem. Finally, the third statement in
the above theorem can be proven using the fact that Fs is bounded from above
by the maximal expectation value of projectors P ∈ H⊗n satisfying the dimen-
sion condition trP = dimH(n). But if the rate of a data compression scheme is
asymptotically smaller than the von Neumann entropy rate then according to
the Proposition 3.3.3 the expectation values of projectors providing the upper
bounds for Fs must vanish asymptotically.

Proof of Theorem 3.4.1: Proof of 1) Fix a convex decomposition of Dn

into 1-dimensional projectors {P (n)
i }kn

i=1 corresponding to the set of weights

{λ(n)
i }kn

i=1. Following an idea of M. Horodecki in [26] we arrive at the following
elementary inequalities using the relative entropy and its decreasing behavior
with respect to the trace preserving operations (cf. [45]):

log2 dimH(n) ≥ S(C(n)(Dn))

≥ S(C(n)(Dn)) −
kn∑
i=1

λ
(n)
i S(C(n)(P

(n)
i ))

=

kn∑
i=1

λ
(n)
i S(C(n)(P

(n)
i ), C(n)(Dn))

≥
kn∑
i=1

λ
(n)
i S(D(n) ◦ C(n)(P

(n)
i ),D(n) ◦ C(n)(Dn))

= S(D(n) ◦ C(n)(Dn)) −
kn∑
i=1

λ
(n)
i S(D(n) ◦ C(n)(P

(n)
i ))

In the next step we will show that

lim
n→∞

1

n
S(D(n) ◦ C(n)(Dn)) = s(Ψ), (3.42)

and

lim
n→∞

1

n

kn∑
i=1

λ
(n)
i S(D(n) ◦ C(n)(P

(n)
i )) = 0, (3.43)

holds, which implies the first part of the theorem. By the Fannes inequality for
density operators Dρ and Dσ acting on a Hilbert space of dimension d (cf. [19])

|S(Dρ) − S(Dσ)| ≤ (log2 d)tr|Dρ − Dσ| + 1, (3.44)

and by (3.34) we have

1

n
|S(Dn)− S(D(n) ◦ C(n)(Dn))| ≤ 2 log2 d

√
1 −
(
F (Dn,D(n) ◦ C(n)(Dn))

)2
+

1

n
.
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Employing the limit assertion (3.40) and joint concavity of the fidelity we obtain
(3.42).
Fix ε ∈ (0, 1). We consider the set

A(n)
ε := {i ∈ {1, . . . , kn}|

(
F
(
P

(n)
i ,D(n) ◦ C(n)(P

(n)
i )
))2

< 1 − ε}

and estimate

kn∑
i=1

λ
(n)
i

(
F
(
P

(n)
i ,D(n) ◦ C(n)(P

(n)
i )
))2

≤ (1 − ε)
∑

i∈A
(n)
ε

λ
(n)
i +

∑
i∈A

(n)c
ε

λ
(n)
i ,(3.45)

where A
(n)c
ε denotes the complement of A

(n)
ε . We claim that for all ε ∈ (0, 1)

lim
n→∞

∑
i∈A

(n)
ε

λ
(n)
i = 0. (3.46)

In fact, suppose that for some ε ∈ (0, 1)

lim sup
n→∞

∑
i∈A

(n)
ε

λ
(n)
i = a > 0.

Then there would exist a subsequence, which we denote again by {A(n)
ε }n∈N for

simplicity, with

lim
n→∞

∑
i∈A

(n)
ε

λ
(n)
i = a.

After taking limits in (3.45) this would imply the following contradictory in-
equality

1 ≤ (1 − ε)a + (1 − a).

By (3.46), it suffices to show that

lim
n→∞

1

n

∑
i∈A

(n)c
ε

λ
(n)
i S(D(n) ◦ C(n)(P

(n)
i )) = 0.

For small ε ∈ (0, 1) and for n large enough we have

1

n

∑
i∈A

(n)c
ε

λ
(n)
i S(D(n) ◦ C(n)(P

(n)
i )) ≤ 1

n

∑
i∈A

(n)c
ε

λ
(n)
i (2n log2(d)

√
ε + 1)

≤ 2 log2(d)
√

ε +
1

n
,

where in the first inequality we have applied Fannes inequality (3.44) to the

expressions S(D(n) ◦C(n)(P
(n)
i )) = |S(P

(n)
i )−S(D(n) ◦C(n)(P

(n)
i ))|, respectively.

Since ε can be made arbitrarily small, we have

lim
n→∞

1

n

∑
i∈A

(n)c
ε

λ
(n)
i S(D(n) ◦ C(n)(P

(n)
i )) = 0.
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Proof of 2) Denote by P (n)
ε the high probability subspace of H⊗n with respect

to Ψ at level ε. Then by Proposition 3.3.3 we have

lim
n→∞

1

n
log2 dimP(n)

ε = lim
n→∞

1

n
βε,n = s(Ψ)

for each ε ∈ (0, 1). A simple argument shows that there exists a sequence
εn ↘ 0, as n → ∞, such that

lim
n→∞

1

n
βεn,n = s(Ψ). (3.47)

We consider the compression scheme (C,D), where for each n ∈ N the compres-
sion map C(n) is given by

C(n)(Dn) = P (n)
εn

DnP (n)
εn

+
∑

e∈S(n)

|0〉〈e|Dn|e〉〈0|,

whereby P
(n)
εn is a high probability projector at level εn corresponding to the

subspace P(n)
εn , |0〉 ∈ P(n)

εn and S(n) is an orthonormal system in (P (n)
εn )⊥. Then

the compression map C(n) is onto P(n)
εn . The decompression map D(n) is just the

canonical embedding of S(P (n)
εn ) into S(H⊗n). Then by (3.47) and by definition

(3.32) we have

R(C) = s(Ψ).

Using the formula (3.36) for Fe we obtain

Fe(Dn, C(n)) = |trDnP (n)
εn

|2 +
∑

e∈S(n)

|trDn|0〉〈e||2 ≥ |trDnP (n)
εn

|2.

By definition of high probability projectors trDnP
(n)
εn ≥ 1 − εn for all n ∈ N.

Thus

|trDnP (n)
εn

|2 ≥ (1 − εn)2 ≥ 1 − 2εn.

Recall that εn ↘ 0, as n → ∞, and thus assertion 2) follows.

Proof of 3) Let us define for a density operator Dρ on H and some integer
d ≤ dimH

ηd(Dρ) := max{trDρP | P projector on H, trP = d}.

As was proven in [4], for any compression scheme (C,D) we have

Fs(Dn,D(n) ◦ C(n)) < 6 · ηd(n)(Dn), ∀n ∈ N,

where d(n) := dimH(n). Let lim supn→∞
1
n log2 d(n) = R(C) < s(Ψ). Then

limn→∞ ηd(n)(Dn) = 0. Otherwise there would exist a sequence {P (n)}n∈N of
projectors in H⊗n, respectively, with asymptotically not vanishing expectation
values trP (n)Dn = ηd(n)(Dn) and limn→∞ 1

n log2 trP (n) = R(C) < s(Ψ). This
would be a contradiction to Proposition 3.3.3. �
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3.5 A Quantum Version of Breiman’s Theorem

Our starting point for a quantum SMB-theorem shall be the finite reformula-
tion of the classical SMB-theorem, Lemma 2.2.5. Recall that the reformulation
is in terms of nested typical subsets. Substituting typical subsets by typical
projectors corresponding to typical subspaces of Hilbert spaces, the property
of them to be nested can be expressed easily in terms of partial traces. It turns
out that the proof of the quantum Shannon-McMillan theorem 3.3.1 yields the
necessary tools to prove that typical subspaces can be nested.
We restrict ourselves to the case of 1-dimensional lattices Z in the present sec-
tion. This is the relevant case in the setting of quantum information theory,
where we see possible applications of the theorem. Moreover, this simplifies
notations.
In the sequel we denote by R(a) the support projector of a self-adjoint element
a of the local algebra A[m,n]. By tr[k,l]a we denote the partial trace of a over
the local algebra A[k,l] ⊂ A[m,n].

Theorem 3.5.1 (Quantum Shannon-McMillan-Breiman Theorem) Let
Ψ be an ergodic state on the quasi-local C*-algebra A∞ with mean entropy s.

Then to each ε > 0 there is a sequence of orthogonal projectors {p(n)
ε }∞n=1 in

A(n), respectively, and some N(ε), such that

(q1) p
(n)
ε = R(trn+1 p

(n+1)
ε ),

(q2) tr p
(n)
ε ∈ (en(s−ε), en(s+ε)), for n ≥ N(ε),

(q3) there exist minimal projectors pi ∈ A(n) fulfilling p
(n)
ε =

tr p(n)
ε∑

i=1

pi and

Ψ(n)(pi) < e−n(s−ε), ∀n ≥ N(ε),

(q4) Ψ(n)(p
(n)
ε ) > 1 − ε.

According to the fact that each finite dimensional unital ∗-algebra A is isomor-
phic to

⊕s
i=1 B(Hi), where Hi are finite dimensional Hilbert spaces, we may

associate to each nested projector p
(n)
ε in the theorem above a typical subspace

of H⊗n with H :=
⊕s

i=1 Hi.

Proof of Theorem 3.5.1:
1. Let ε > 0 be given. Choose an integer l > 0 sufficiently large such that the
entropy of Ψ(l) satisfies

s ≤ 1

l
S(Ψ(l)) < s + ε2.

Take a complete set Vl of mutually orthogonal eigen- projectors for Ψ(l). Let
B denote the abelian subalgebra of A(l) generated by these projectors. The
completeness of Vl implies that B is maximal abelian. Furthermore the entropy
of Ψ(l) �B, the restriction of Ψ(l) to the subalgebra B, is identical to S(Ψ(l)).
Generally we have the relation

S(Ψ(n)) = min{S(Ψ(n) �C)| C ⊂ A(n) max. abelian subalgebra}. (3.48)
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The quasi-local algebra B∞ constructed from B is an abelian subalgebra of A∞

and Ψ acts on this algebra as a stochastic process Pl with alphabet Vl. The
Shannon mean entropy hl of this process can be estimated by

s ≤ 1

l
hl ≤

1

l
S(Ψ(l) �B) < s + ε2.

The first inequality is a consequence of (3.48). Pl is a stationary, but not
necessarily ergodic process. We apply the corresponding version of the clas-
sical SMB-theorem for stationary processes, cf. [31], to this process. We ob-
tain that there is a set of trajectories V ∗

l ⊂ V Z

l of measure one such that for
each (vi)i∈Z ∈ V ∗

l the limit (individual mean Shannon entropy) h((vi)i∈Z) :=

limn→∞ − 1
n log P

(n)
l ((vi)

n
i=1) exists and the expectation value EPl

h((vi)i∈Z) is
equal to hl.

2. Let V ε,−
l ⊂ V ∗

l be the subset of those trajectories, for which the relation
1
l h((vi)i∈Z) < s − ε2 holds. We have Pl(V

ε,−
l ) = 0. In fact, consider the sets

W
(n),−
l := {(wi)

n
i=1 ∈ V

(n)
l | P

(n)
l ((wi)

n
i=1) > e−nl(s−ε2)}

obviously containing the sets

V
(n),−
l := {(vi)

n
i=1 | ∃(wi)i∈Z ∈ V ε,−

l with (wi)
n
i=1 = (vi)

n
i=1 and

P
(m)
l ((vi)

m
i=1) > e−ml(s−ε2) for all m ≥ n},

respectively. This means that P
(n)
l (W

(n),−
l ) ≥ P

(n)
l (V

(n),−
l ). The cardinality

of each W
(n),−
l is bounded from above by enl(s−ε2). Now suppose Pl(V

ε,−
l ) >

0. Then for n sufficiently large we would have P
(n)
l (V

(n),−
l ) > c for some

c > 0 implying P
(n)
l (W

(n),−
l ) > c. For the quantum state this would have the

consequence that for large n there are projectors

p(nl) :=
∑

(wi)n
i=1∈W

(n),−
l

⊗n
i=1wi

with tr p(nl) < enl(s−ε2) and Ψ(nl)(p(nl)) > c . This contradicts Proposition
3.3.3, saying that no sequence of projectors in A(nl), respectively, of non-zero
expectation can have asymptotically a smaller trace than enl(s−ε2).

3. Let V ε,+
l ⊂ V ∗

l be the subset of those trajectories, for which the relation
1
l h((vi)i∈Z) > s + ε holds. By 2. and by the relation EPl

h((vi)i∈Z) = hl we
obtain

hl > l(s − ε2)(1 − Pl(V
ε,+
l )) + l(s + ε)Pl(V

ε,+
l )

resulting in Pl(V
ε,+
l ) < 2ε.

4. Combining the preceeding results we can easily derive for each ε > 0 the
existence of an l and of some N(ε) such that there is a subset Ṽ ∗

l ⊂ V ∗
l with

the properties

(a) Pl(Ṽ
∗
l ) > 1 − ε ,
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(b) e−nl(s+ε) < P
(n)
l ((vi)

n
i=1) < e−nl(s−ε), ∀(vi)i∈Z ∈ Ṽ ∗

l and n > N(ε).

Indeed, assume ε < 1 (otherwise we would obtain the result above with ε2

instead of ε) and set Al,ε := V ∗
l \ (V

ε
2 ,−

l ∪ V
ε
2 ,+

l ). We have Pl(Al,ε) > 1− ε and

Al,ε ⊆ ⋃n≥0

⋂
k≥n A

(k)
l,ε , where

A
(k)
l,ε :=

{
(vi)i∈Z| − 1

k
log P

(k)
l ((vi)

k
i=1) ∈ (l(s − ε), l(s + ε))

}
.

Then there exists N(ε) ∈ N such that Pl(
⋂

k≥N(ε) A
(k)
l,ε ) > 1 − ε. The set

Ṽ ∗
l :=

⋂
k≥N(ε) A

(k)
l,ε fulfills both conditions above.

Obviously Ṽ ∗
l generates a sequence of nested sets {C(n)

ε }∞n=1 fulfilling 1-4 given
in Definition 2.2.4. In the given situation, we may reformulate these properties
as follows:

(a) C
(n)
ε = (C

(n+1)
ε )� for n ≥ 1

(b) #C
(n)
ε ∈ (enl(s−ε), enl(s+ε)) for n ≥ N(ε)

(c) Ψ(nl)(p) < e−nl(s−ε) for n ≥ N(ε) and any p = ⊗n
k=1vk, where (vk)n

k=1

∈C
(n)
ε

(d) Ψ(nl)(
∑

(vk)n
k=1∈C

(n)
ε

⊗n
k=1vk) > 1 − ε .

Now it is easy to define nested projectors , first for multiples of l:

p(nl)
ε :=

∑
(vk)n

k=1∈C
(n)
ε

⊗n
k=1vk,

and then for general n = ml + r, r < l by the set-up

p(n)
ε := R

(
tr[ml+r+1,(m+1)l]p

((m+1)l)
ε

)
.

Observe that both definitions are compatible. Obviously, by definition the prop-
erty (q1) is fulfilled by the defined system of projectors. Next, we have with
n = ml + r, r < l

en(s−2ε) < #C(m)
ε ≤ tr p(n)

ε ≤ #C(m)
ε tr 1A(l)

< en(s+ε)tr 1A(l) < en(s+2ε) (3.49)

for n sufficiently large. In fact, the first inequality in this chain is obvious. By
definition we have

p(ml)
ε =

tr p(ml)
ε∑

i=1

q
(m)
i

for certain minimal projectors q
(m)
i from (B(l))

(m), and

p((m+1)l)
ε =

tr p(ml)
ε∑

i=1

ki∑
j=1

q
(m)
i ⊗ qi,j
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for some minimal projectors qi,j from B[m+1]. In order to simplify our notation
let

I(m, r) := [ml + r + 1, (m + 1)l].

We obtain

tr p(ml+r)
ε = tr R

⎛⎝tr p(ml)
ε∑

i=1

ki∑
j=1

q
(m)
i ⊗ trI(m,r)qi,j

⎞⎠
= tr

tr p(ml)
ε∑

i=1

R

⎛⎝q
(m)
i ⊗

ki∑
j=1

tr I(m,r)qi,j

⎞⎠
=

tr p(ml)
ε∑

i=1

tr q
(m)
i ⊗ R

⎛⎝ ki∑
j=1

tr I(m,r)qi,j

⎞⎠
=

tr p(ml)
ε∑

i=1

tr R

⎛⎝ ki∑
j=1

trI(m,r)qi,j

⎞⎠ (3.50)

≥ tr p(ml)
ε = #C(m)

ε .

Here in the second step we have made use of the mutual orthogonality of the

q
(m)
i . This proves the second inequality in (3.49). The third inequality also

immediately follows from the formula (3.50). So (q2) is fulfilled, too (with 2ε
instead of ε).
By (c) we see that (q3) is fulfilled if n is a multiple of l. In the general case
n = ml + r observe that in the representation

p(ml+r)
ε =

tr p(ml)
ε∑

i=1

q
(m)
i ⊗ R

⎛⎝ ki∑
j=1

trI(m,r)qi,j

⎞⎠
we sum over mutually orthogonal projectors each of them fulfilling

Ψ(ml+r)

⎛⎝q
(m)
i ⊗ R

⎛⎝ ki∑
j=1

trI(m,r)qi,j

⎞⎠⎞⎠
≤ Ψ(ml+r)

(
q
(m)
i ⊗ 1I(m,r)

)
= Ψ(ml)(q

(m)
i ) < e−ml(s−ε) < e−n(s−2ε)

if n is sufficiently large. Now (q3) follows easily, again with 2ε instead of ε.
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Finally, we have

Ψ(ml+r)(p(ml+r)
ε )

=

tr p(ml)
ε∑

i=1

Ψ(ml+r)

⎛⎝q
(m)
i ⊗ R

⎛⎝ ki∑
j=1

trI(m,r)qi,j

⎞⎠⎞⎠
=

tr p(ml)
ε∑

i=1

Ψ((m+1)l)

⎛⎝q
(m)
i ⊗ R

⎛⎝ ki∑
j=1

trI(m,r)qi,j

⎞⎠⊗ 1AI(m,r)

⎞⎠
≥

tr p(ml)
ε∑

i=1

Ψ((m+1)l)

⎛⎝q
(m)
i ⊗

ki∑
j=1

qi,j

⎞⎠ = Ψ((m+1)l)(p((m+1)l)
ε ) > 1 − ε.

Hereby, the first inequality can be verified using the Schmidt decomposition
for 1-dimesional projectors from tensor product algebras, (e.g. [38]). The last
inequality follows from (d). This proves (q4). �



Chapter 4

Conclusions and Open
Problems

We have shown that there exists an extension of the famous Shannon-McMillan
theorem and its stronger version due to Breiman to the case of quantum spin
lattice systems. These systems are mathematically modeled as C∗-dynamical
systems, where the dynamics is given by the action of the translation group
Z

ν by shifts on a quasi-local C∗-algebra A∞. The case of a commutative A∞

corresponds to a classical spin lattice system. For such systems the dynam-
ical entropy is given by the mean Shannon entropy. In view of our results
its non-commutative generalization turns out to be the mean von Neumann
entropy. In complete analogy to the classical case it appears in the quantum
Shannon-McMillan theorem as the asymptotically logarithmic dimension of typ-
ical Hilbert subspaces with respect to an ergodic quantum state on A∞. These
typical subspaces replace the concept of typical subsets in the classical situation.

As an interesting intermediate result we have proven an ergodic decompo-
sition theorem for quantum spin lattice systems. It gives the structure of the
convex decomposition of an Z

ν -ergodic state into G-ergodic components, where
G = l · Z

ν , l > 1 integer, is a subgroup of Z
ν . The G-ergodic states have all

the same mean von Neumann entropy, similar to the situation for classical spin
lattice systems.

In the case of more general classical dynamical systems the crucial entropy
notion is the Kolmogorov-Sinai dynamical entropy, which reduces to the mean
Shannon entropy in the case of spin lattice systems, considered as dynamical
systems. The question arises what the generalizations of the Kolmogorov-Sinai
entropy and the Shannon-McMillan theorem are in the case of more general
classes of C∗-dynamical systems. There is no satisfying answer known to this
problem. Some attempts exist to solve this problem, however only partial re-
sults could be achieved until now. For the class of asymptotically abelian C∗-
dynamical systems with locality (containing the here discussed class of quantum
spin lattice systems) there is an analogue of the Shannon-McMillan theorem us-
ing the CNT-entropy as an extension of the classical Kolmogorov-Sinai entropy,
cf. [37]. However, it is proven for a rather small class of tracial quantum states.
For a quantum spin lattice system the class of tracial quantum states consists
of just one i.i.d. quantum state determined by the equidistributed single-site
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density operator. For such an i.i.d. quantum state the mean von Neumann
entropy coincides with the CNT-entropy.

In the context of (quantum) information theory the relevant dynamical sys-
tems are 1-dimensional (quantum) spin lattice systems modeling (quantum) in-
formation sources. Based on the quantum Shannon-McMillan theorem we have
formulated and proven a data compression theorem for quantum information
sources. The theorem states that the mean von Neumann entropy of an ergodic
quantum information source gives the achievable lower bound on the compres-
sion rate for asymptotically reliably operating block compression schemes. We
have quantified the reliability of compression by both, the entanglement fidelity
and the ensemble fidelity. These are well established fidelity concepts in quan-
tum information theory. Until now, except for the completely ergodic case,
similar quantum data compression theorems could be proven only for i.i.d. in-
formation sources, where any kind of correlations between the quantum spins is
excluded.

One aspect of Breiman’s extension of the Shannon-McMillan theorem is that
the family of entropy-typical subsets is nested. We have proven that this is also
true in the quantum setting for typical Hilbert subspaces. Recall that the clas-
sical Shannon-McMillan-Breiman theorem is originally formulated as an almost
everywhere convergence statement involving the notion of trajectory, which does
not exists in the algebraic formalism. We have shown that the property of the
typical subsets to be nested is equivalent to the Shannon-McMillan-Breiman
theorem. In view of this equivalence it is justified to say that we have proven a
quantum version of the Shannon-McMillan-Breiman theorem.

In the classical situation, the property of entropy-typical subsets to be nested
can be used to design sequential data compression algorithms. The question
arises if the quantum version of the Shannon-McMillan-Breiman theorem can
be used as a starting point to derive quantum sequential data compression
schemes. However, classical sequential coding is to a large extent also based
on simultaneous measurements of the data strings to be compressed. In the
quantum situation the disturbing effect of measurements of quantum states
can not be excluded. Consequently, essentially adopting the ideas behind the
classical algorithms will not be sufficient in the quantum situation.
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GNS representation, 25

high probability
projector , 30
subspace, 30
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information source, 9
invariant

G-, 9
Z

ν -, 9
IS, see information source

Kolmogorov model, 10
Kolmogorov representation, 10
Kolmogorov-Sinai entropy, 11
KS entropy, see Kolmogorv-Sinai en-

tropy
Ky Fan’s maximum principle, 36

law of large numbers, 12
Lempel-Ziv algorithm, 18
linear map

completely positive, 39
local C∗-algebra, 19

map
compression, 39
decompression, 39
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projector, 46, 48
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partial trace, 46
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Σ-generating, 11
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probability measure
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probability measures

subadditivity, 27
projector

high probability, 30
nested, 46
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quantum operation
Kraus representation, 39
sum representation, 39
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quantum spin lattice system, 20

quantum state
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ν -invariant, 20
algebraic, 22
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Shannon entropy, 10
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classical, 13
quantum, 29

Shannon-McMillan-Breiman theorem
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Quantum, 46

shift, 20
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classical, 9
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quantum, 20

stochastic process
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of von Neumann entropy, 23, 29
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entropy-typical, 13
nested, 13
relevant, 13
typical, 14

subspace
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representation of, 20
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projector, 46
subspace, 46

von Neumann entropy, 23
mean, 23
mean with respect to Gl, 23
rate, 23
subadditivity of, 23, 29



56 INDEX



Symbols and Notations

A∞, 8

Al,η, 31

an
m, 8

DΛ, 20

Dn, 21

F (Dρ, Dσ), 40

Fe, 40

F̄ , 41

Gl, 23

h(P ), 10

H(P ), 10

R(a), 46

R(C), 39

s(Ψ), 23

s(Ψ, Gl), 23

S(Ψ), 23

S(ψ, φ), 30

T (Zν), 8, 20

Ax, 19

A(n), 21

A∞, 20

AΛ, 19

βε,n(Ψ), 30

C(n), 39
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(C,D), 39

D(n), 39

E(Dρ), 39

NΨ,Gl
, 26

PΨ,Gl
, 26

P ∨Q, 11

τ(x), 19

T (A∞), 20

T (A∞, G), 20

∂exT (A∞, G), 22

Λ(n), 9, 20

Λ(n), 9

Λ, 20

Ψ, 20

Ψ(n), 21

{Ψ(Λ)}Λ⊂Zν , 20

|φ〉, 39

n → ∞, 10
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