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The generalized Maxwell model is formulated as a nonlinear relaxation equation for the symmet-
ric traceless stress tensor. The relaxation term of the equation involves the derivative of a potential
function with respect to the stress tensor. Two special cases for this potential referred to as “isotropic”
and “anisotropic” are considered. In the first case, the potential solely depends on the second scalar
invariant, viz. the norm of the tensor. In the second case, also a dependence on the third scalar invari-
ant, essentially the determinant, is taken into account in analogy to the Landau-de Gennes potential
of nematic liquid crystals. Rheological consequences of the model are presented for a plane Couette
flow with an imposed shear rate. The non-Newtonian viscosity and the normal stress differences are
analyzed for stationary solutions. The dependence on the model parameters is discussed in detail.
In particular, the occurrence of a shear-thickening behaviour is studied. The possibility to describe
substances with yield stress and the existence of non-stationary, stick-slip-like solutions are pointed
out. The extension of the model to magneto-rheological fluids is indicated.
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1. Introduction

The generalized Maxwell model is a nonlinear ex-
tension of the standard corotational or codeforma-
tional Maxwell model equation governing the sym-
metric traceless (deviatoric) friction stress tensor. The
relaxation term involves the derivative of a potential
function with respect to the stress tensor. In general,
this potential depends on the second- and third-order
invariants I2 and I3 of the stress tensor which are es-
sentially the square of the magnitude (norm) and the
determinant of the tensor, respectively. In the ordinary
Maxwell model, the potential is linear in I2 and the
Maxwell model equation is linear in the stress tensor.
The nonlinear generalization was invented in order to
treat not only shear-thinning but also shear-thickening
behaviour [1], i. e. the increase of the viscosity with
increasing shear rate as it occurs in dense colloidal dis-
persions [2 – 4] and in some polymeric fluids [5], as
well as in surfactant solutions [6, 7]. The model can
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also be applied to systems with yield stress. For cer-
tain values of the relevant parameters periodic stick-
slip-like solutions are found and even a rather com-
plex chaotic rheological behaviour occurs for a simple
flow geometry [8]. In the applications of the nonlinear
Maxwell model analyzed so far, the potential function
was chosen in analogy to the Landau-de Gennes poten-
tial used in a dynamic theory for the flow alignment in
the isotropic and nematic phases of liquid crystals [9 –
19]. The Landau-de Gennes expression contains terms
linear and quadratic in I2 and a term linear in I3. Here
we study the consequences of an alternative potential
function involving terms of first, second and third or-
der in I2 but no terms depending on I3. This type of
potential is referred to as “isotropic” since it solely de-
pends on the magnitude of the deviatoric stress tensor.
Yet again, a rather complex rheological behaviour is
found which includes shear-thickening as well as the
occurrence of a yield stress and a non-stationary re-
sponse to an imposed stationary shear rate for certain
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ranges of the relevant model parameters. A comparison
with results based on the previous “anisotropic” poten-
tial function is appropriate. The qualitatively different
types of the rheological behaviour are correlated with
the relevant model parameters.

The thermodynamic modeling of equilibrium prop-
erties and non-equilibrium phenomena in complex flu-
ids and solids requires the treatment of internal vari-
ables and their coupling with the standard variables of
thermo-hydrodynamics. In addition to general princi-
ples [20] the tensorial character of the internal vari-
ables has to be taken into account for specific appli-
cations, e. g., a vectorial variable is needed for dielec-
tric relaxation [21] and the treatment of polarizable
media [22]. In this article, second-rank tensorial vari-
ables are considered. Inspired by the equations gov-
erning the alignment tensor of nematic liquid crystals,
the focus is on the extra stress tensor which obeys
a nonlinear Maxwell model equation. It provides a
generic model for the treatment of rheological proper-
ties. A generalization where the coupling between the
tensorial variable and the electric polarization vector
has been taken into consideration has been presented
recently [23]. Here modifications needed to describe
magneto-rheological fluids are discussed briefly.

This article proceeds as follows. Firstly, the equa-
tion for the nonlinear Maxwell model is stated. The
relaxation equation for the symmetric traceless stress
tensor contains the derivative of a potential function
with respect to this tensor. The general form of the
potential is discussed and the two special cases re-
ferred to as “isotropic” and “anisotropic” potentials are
presented. For convenience, scaled variables are intro-
duced. Then, in the following analysis, a plane Cou-
ette flow is considered, with a given shear rate. Basis
tensors are used and the nonlinear tensorial relaxation
equation is rewritten in terms of five coupled equations
for the five components of the stress tensor. One of
these components is the shear stress which serves to
define the non-Newtonian viscosity, two other ones are
associated with the first and second normal stress dif-
ferences and hence with the viscometric functions. The
remaining two components break the plane Couette
symmetry, and they relax to zero in many cases, but
not always. The main part of this article is devoted to
properties of stationary solutions, in particular to their
dependence on the model parameters. Implicit analyti-
cal solutions are given for the non-Newtonian viscosity
and the normal stress differences. A “shear-thickening
phase diagram”, in the parameter space, is inferred

from the dependence of the viscosity on the shear rate.
Similarly, the dependence of the first and second vis-
cometric functions on the model parameters is dis-
cussed. A comparison with experimental data is made
for one particular shear-thickening fluid. After some
remarks on solutions of the model equations which de-
scribe substances with yield stress, it is pointed out
that also solutions with non-stationary shear stress are
possible even when the imposed shear rate is station-
ary. These correspond to stick-slip-like motions. Con-
ditions for their occurrence are given. Two examples
for a non-stationary response are shown. Finally, it is
indicated how the theory can be extended to magneto-
rheological fluids.

2. The Model Equations

2.1. Basics

The symmetric traceless (deviatoric) part σσσ of the
stress tensor σσσ is decomposed into a contribution asso-
ciated with the “internal structure”, for which the non-
linear Maxwell model equations are formulated, and a
contribution linked with a “second Newtonian” viscos-
ity η∞ reached at high shear rates:

σσσ =
√

2Gπππ + 2η∞ΓΓΓ . (1)

Here ΓΓΓ = v is the deformation rate tensor, viz. the
symmmetric traceless part of the velocity gradient ten-
sor. The quantity G is a reference value for a shear
modulus such that πππ is a dimensionless “friction stress
tensor”. An obvious choice for G (which is not needed
now) is either the high-frequency shear modulus or the
reference pressure pref = nkBT , where n and T are the
number density and the temperature. The factor

√
2 has

been inserted for convenience, the factor 2 in (1) is con-
ventional. The symbol . . . indicates the symmetric
traceless part of a tensor, e. g. in Cartesian tensor nota-
tion, σµν = 1

2 (σµν +σνµ)− 1
3 σλ λ δµν , where δµν is

the unit tensor.
When πππ obeys the Maxwell model equation, the

constitutive relation (1) is referred to as Jeffrey model.
In the following a generalization of the Maxwell model
is used. When the tensor πππ is interpreted as the second
moment of the velocity distribution function of a gas,
an equation of this type can be and has been derived
from the nonlinear Boltzmann equation [24, 25]. For
a simple liquid, the dominant contribution to the fric-
tion stress is the virial tensor for which a generalized
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Maxwell equation can be derived from a kinetic equa-
tion of Kirkwood-Smoluchowski type for the pair cor-
relation function [26]. For polymeric fluids, πππ can be
linked with the symmetric traceless part of the second-
rank conformation tensor [16, 27].

It should be stressed that the present approach is not
dealing with the liquid crystal problem but with a case
where the stress tensor is the sum of two contributions
each of which obeys its own constitutive equation.
Even for a simple fluid, it is well known from micro-
scopic theory, that the pressure tensor or stress tensor is
the sum of kinetic and potential (configurational) con-
tributions whose dynamics can be derived from kinetic
equations for the velocity distribution function and the
pair correlation function, respectively. In both cases,
equations similar to (2) can and have been derived. We
assume that equations of similar kind can be used for
complex fluids where a simple microscopic theory is
not available. The ansatz (1) differs from that one used
in liquid crystal theory where the second-rank align-
ment tensor (also referred to as order parameter tensor,
Q-tensor, S-tensor) is treated as an additional macro-
scopic variable which is coupled with the stress tensor.
Derivations of the equations relevant for liquid crystals
and applications were given in [9 – 15, 28 – 31].

2.2. Relaxation Equation for the Stress Tensor

The friction stress tensor is assumed to obey the gen-
eralized Maxwell equation [1, 8]

∂πππ
∂t

−2ω ×πππ −2κΓΓΓ ·πππ + τ−1
0 ΦΦΦ(πππ) =

√
2ΓΓΓ . (2)

Here τ0 is a relaxation time coefficient. The ten-
sor ΦΦΦ = ∂Φ/∂πππ is the derivative of a “potential”
function Φ with respect to the deviatoric stress ten-
sor πππ . The scalar function Φ = Φ(I2, I3) depends on
the second and third scalar invariants, written in com-
ponent notation, I2 = πµνπµν , I3 =

√
6πµνπνλ πλ µ =

3
√

6det(π). The second term gives the coupling be-
tween the vorticity ω and the tensor πππ . The term in (2)
involving the cross-product × of the vorticity with
the stress tensor reads, in cartesian tensor notation,
2(ω ×πππ)µν = εµλ ρ ωλ πρν + ενλ ρωλ πρµ .

The “linear” Maxwell model pertains to the sim-
plest choice for the potential function Φ , viz. Φ =
1
2 AI2, with a dimensionless coefficient A > 0. This im-
plies ΦΦΦ = Aπππ . For κ = 0 the time change in (2) is gov-
erned by the corotational time derivative. Thus the re-
laxation equation (2) reduces to the Jaumann-Maxwell

model with the Maxwell relaxation time τ = τ0A−1.
The Newtonian viscosity, attained for small shear rates
is η = ηNew := Gτ + η∞ = Gτ0A−1 + η∞.

For κ = 1 or κ = −1 the time change corrersponds
to that of a codeformational time derivative. In analogy
to the corresponding equation for the alignment tensor
of nematics [10], κ is regarded as an additional model
parameter. For κ �= 0,±1 and a linear relaxation term,
(2) reduces to the Johnson-Segalman model [32 – 34].

A corresponding term appears in the equation for
the potential (configurational) part of the stress tensor
derived from a kinetic equation for the pair correlation
function of a simple fluid [35]. For a special case of
a fluid composed of particles interacting with a power
law binary potential proportional to rν (r is the distance
between two particles), κ = 3/7 + (2/3)ν . Thus one
has e. g. κ = 1 and κ = −3 for a harmonic oscillator
(ν = 2) and for “soft spheres” (ν = −12). Notice that
the magnitude of κ may be larger than 1.

In the absence of flow the stationary solution of (2)
is given by ΦΦΦ = 0. In a fluid state one has πππ = 0 and this
is a stable solution corresponding to the absolute min-
imum of the potential function Φ . The quantity ΦΦΦ is a
nonlinear function of the stress and the equation ΦΦΦ = 0
might also have solutions with πππ different from zero
for certain ranges of the model parameters. If such a
solution is (locally) stable the system possesses a yield
stress.

2.3. Potential Function

When terms up to sixth order in the stress tensor
are taken into consideration the ansatz for the potential
function is

Φ =
1
2

AI2− 1
3

BI3 +
1
4

CI2
2 +

1
5

DI2I3 +
1
6

EI3
2 +

1
6

FI2
3 ,

(3)

where the dimensionless coefficients A, B, C, D, E , F
are model parameters. Notice that the derivatives of I2
and I3 with respect to πµν are, in component notation,
2πµν and 3

√
6 πµλ πλ ν , respectively.

A potential function which imposes a limiting mag-
nitude of the stress tensor has been stated in [8]. Con-
sequences of a similar expression for the potential gov-
erning the alignment tensor of nematic liquid crys-
tals has been studied in [28]. Compared with the sim-
pler choice (3), quantitative but practically no qualita-
tive differences are found. This point is not considered
here.

Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 01.10.18 17:21



84 S. Hess et al. · Generalized Maxwell Models

In analogy to the equations governing the alignment
tensor of nematic liquid crystals, the simple ansatz
with terms up to fourth order in the stress tensor was
made previously [1, 8]. This means that D = E = F = 0
and C > 0. Then one has

ΦΦΦ = Aπππ −
√

6B πππ ·πππ +Cπππ(πππ : πππ). (4)

The model introduced by Giesekus [36] for the study
of polymeric fluids corresponds to B �= 0, C = D =
E = F = 0. For a discussion of related models see [16],
p. 173.

Here the consequences of the alternative choice B =
D = F = 0 with C < 0 and E > 0 are analyzed. In this
case

ΦΦΦ = πππ(A +C(πππ : πππ)+ E(πππ : πππ)2) (5)

holds true instead of (4). Where appropriate, the re-
sults based on the isotropic potential are compared
with those which follow from the previously used
anisotropic potential.

For the special case where the stress tensor is uni-

axial the ansatz πππ =
√

3
2 π0 nn can be made. Here n

is a unit vector parallel to the symmetry axis. In this
case ΦΦΦ = 0 as given by (4) corresponds to π0(A −
Bπ0 +Cπ2

0 ) = 0. Solutions of this equation are π0 = 0,
corresponding to a fluid state, and π0 = B/(2C) ±√

B2/(4C2)−A/C, if A ≤ B2/(4C). For the special
case of a planar biaxial stress tensor, viz. for πππ =
1
2

√
2π1(exex − eyey), with orthogonal unit vectors ex,

ey, ΦΦΦ = 0 as given by (4) implies π1(A +Cπ2
1 ) = 0.

Here solutions are π1 = 0, corresponding to a fluid
state, and π1 = ±√−A/C, if A < 0. The cases π0 �= 0
or π1 �= 0 in the absence of a flow correspond to a
(metastable) solid state with a yield stress. The poten-
tial function is anisotropic in the space spanned by the
five components of the tensor. This is different for the
case considered next.

The solution corresponding to ΦΦΦ = 0 for (5) ap-
plies for all components of the stress tensor, irrespec-
tive whether it has uniaxial or biaxial symmetry. This
is due to the fact that the underlying “isotropic” poten-
tial function does not depend on the invariant I3. Here,
one has πππ = 0 or π2 =−C/(2A)±√

C2/(4A2)−E/A,
if A �= 0, C2 > 4EA, and π2 = (πππ : πππ) > 0.

In the Landau theory for (equilibrium) phase tran-
sitions the assumption is made that A depends on the
temperature T or on the density ρ according to A =
A0(1−T0/T ) or A = A0(1−ρ/ρ0) with characteristic

temperature T0 or density ρ0. Here such a specific de-
pendence of A is not needed, but it is presupposed that
A decreases with decreasing temperature and increas-
ing density.

2.4. Scaled Variables

Scaled variables are introduced in order to char-
acterize the importance of the terms nonlinear in the
stress by a single model parameter. In previous stud-
ies based on (4) (cf. [1, 8]) the procedure used for
the isotropic-nematic phase transition in liquid crys-
tals [14, 28] was followed. This means that the com-
ponents of πππ are expressed in units of πc = 2

3
B
C , πππ =

πcπππ∗. With A = A∗Ac, Ac := 2B2 (9C)−1, τc = τ0A−1
c =

τ0
( 1

2Cπ2
C

)−1, C > 0, and t = τct∗, Γ ∗
µν = τcΓµν , the

model coefficients B and C no longer appear explicitely
in the relaxation equations. The scaled variables are
denoted by the same symbol as the original variables
when no danger of confusion is expected, e. g. π∗

µν →
πµν , t∗ → t. Then we have, instead of (4),

ΦΦΦ → A∗πππ −3
√

6 πππ ·πππ + 2πππ(πππ : πππ). (6)

For the special case of a uniaxial stress the scaled po-
tential function is Φ(π) = 1

2 A∗π2
0 −π3

0 + 1
2 π4

0 , and ΦΦΦ =
0 corresponds to π0(A∗ − 3π0 + 2π2

0) = 0. For A∗ = 1
one has “phase coexistence”, i. e. Φ(0) = Φ(1).

For the isotropic potential to be studied here a differ-
ent scaling is introduced. Again, one writes πππ = πcπππ∗.
But now, subject to C < 0, πc is defined by

πc =
1
2

√
−3C

E
. (7)

With

A = A∗Ac, Ac := 3C2(16E)−1, τc = τ0A−1
c ,

E > 0,

(8)

times and shear rates expressed in units of τc and τ−1
c ,

respectively, the model coefficients C and E no longer
appear explicitely in the relaxation equations. The
scaled variables are denoted by the same symbol as the
original variables when no danger of confusion is ex-
pected, e. g. π∗

µν → πµν , t∗ → t. Then we have, instead
of (5),

ΦΦΦ → πππ(A∗ −4(πππ : πππ)+ 3(πππ : πππ)2). (9)
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The coefficient A∗ determines whether terms of
higher order in the components of the pressure ten-
sor are of relevance (A∗ ≈ 1) or not (A∗ � 1). It is as-
sumed that A∗ depends strongly on the temperature T
or on the number density ρ of a dispersion in a way
typical for a Landau-type theory of a phase transition.
More specifically, it is expected that A∗ decreases with
decreasing T or with increasing ρ . The Newtonian
viscosity increases with decreasing T or increasing ρ
due to the increase of the relaxation time τ . The fluid
state “coexists” with a state possessing a yield stress
at A∗ = 1. For the dynamics based on (6) or (9), no sta-
tionary solutions with non-zero values of the tensor πππ
exist in equilibrium, if A∗ > As, with As = 9/8 = 1.125
or As = 4/3 ≈ 1.333, respectively.

3. Plane Couette Geometry

3.1. Basis Tensors

In general, the symmetric traceless shear stress ten-
sor has five independent components. For a plane Cou-
ette flow with the velocity in x-direction, its gradient
in y-direction, and the vorticity in z-direction, it is con-
venient to decompose the stress tensor with respect to
the orthonormalized tensors TTT k, k = 0, . . . ,4 (cf. [37])
according to πππ = ∑4

k=0 πkTTT k, with TTT 0 ≡ √
3/2 ezez,

TTT 1 ≡√
1/2(exex−eyey), TTT 2 ≡√

2exey, TTT 3 ≡√
2exez,

TTT 4 ≡√
2eyez, where ex.y.z are unit vetors parallel to the

coordinate axes. The orthogonality relation and the ex-
pression for the coefficients πk are given by TTT i : TTT k =
δik and πk =πππ :TTT k. For a plane Couette geometry it fre-
quently suffices to consider the three components π2,
π1, π0. For the plane Couette geometry, the shear stress
is essentially π2 whereas the coefficients π1and π0 are
associated with normal stress differences. The compo-
nents π3 and π4 are referred to as symmetry-breaking
components.

3.2. Viscosity and Stress Components

The non-Newtonian viscosity η is the ratio of the
shear stress and the applied shear rate, thus

σxy = ηγ̇ = GH Γ . (10)

Here Γ is the shear rate γ̇ = ∂vx/∂y multiplied by the
reference relaxation time τc and vx is the x-component
of the flow velocity. In the following, results for the

viscosity are presented in units of the reference vis-
cosity ηref = Gτc. The dimensionless viscosity coeffi-
cient H is determined by

H = πcπ2/Γ + H∞, H∞ = η∞/ηref. (11)

Similarly, the scaled (dimensionless) shear stress

σ∗ = HΓ = πcπ2 + H∞Γ (12)

and the scaled (dimensionless) first and second normal
stress differences

N∗
1 = (σxx −σyy)/G = 2πcπ1,

N∗
2 = (σyy −σzz)/G = −πc(π1 +

√
3π0)

(13)

are used. In graphs σ∗ and N∗
1 are also denoted by σ

and ν . The viscometric functions Ψ1, Ψ2 are defined as
the ratio of the normal stress differences N1, N2 and
the shear rate squared. For the corresponding scaled
quantities one has

Ψ∗
i = N∗

i /Γ 2, i = 1,2. (14)

No stationary solution with finite stress can exist in
the absence of a flow for A∗ > As. For very small shear
rates, the stationary value of the dimensionless viscos-
ity approaches its Newtonian limit

H = HNew := 1/A∗+ H∞, (15)

provided that A∗ > As.

3.3. Relaxation Equations for the Components

Using these basis tensors, we obtain a system of five
ordinary differential equations from (2), viz.

·
π2 −Ωπ1 + φ2 = π−1

c Γ − κ̃Γ π0,
·

π1 +Ωπ2 + φ1 = 0,
·

π0 +φ0 = −κ̃Γ π2,

·
π3 +

1
2

Ωπ4 + φ3 =
1
2

κΓ π4,

·
π4 −1

2
Ωπ3 + φ4 =

1
2

κΓ π3.

(16)

Here the dot denotes the differentiation with respect
to t∗, and Ω is (twice) the dimensionless vorticity. For
the plane Couette flow one has Ω = −Γ . The abbrevi-
ation κ̃ = κ/

√
3 is used.
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The relaxation term based on (6) leads to

φ2 = ψ1π2 −3
√

3π3π4,

φ1 = ψ1π1 − 3
2

√
3(π2

3 −π2
4),

φ0 = ψ0π0 + 3(π2
1 + π2

2)− 3
2
(π2

3 + π2
4 ),

φ3 = ψ0π3 −3
√

3(π1π3 + π2π4),

φ4 = ψ0π4 −3
√

3(π2π3 −π1π4),

(17)

with

ψ1 = A∗ + 6π0 + 2π2,

ψ0 = A∗ −3π0 + 2π2,
(18)

where π2 = π2
0 + π2

1 + π2
2 + π2

3 + π2
4 .

The relaxation term for the isotropic potential func-
tion, i. e. that one based on (9), is considerably simpler,
viz.

φi = ψπi, i = 0, . . . ,4, (19)

with

ψ = A∗ −4π2 + 3π4. (20)

Solutions which do not break the symmetry of the
plane Couette geometry are characterized by the three
components of the stress tensor occurring in (11) and
(13), and one has π3 = π4 = 0. The in-plane compo-
nents can be written as

π1 = pcos(2χ), π2 = psin(2χ), (21)

with p2 = π2
1 + π2

2 . The angle χ determines the direc-
tion of the principal axes within the xy-plane. In this
case one infers from the first and second equations
of (16):

p(2
·
χ −Ω) = π−1

c Γ cos(2χ)(1− κ̃πcπ0), (22)

1
2

·
(p2) +φ1π1 +φ2π2 = π−1

c Γ psin(2χ)(1− κ̃πcπ0).

(23)

It is recalled that Ω = −Γ for the plane Couette flow.
The case Ω = 0 corresponds to a vorticity free planar
biaxial flow as realized in the four-roller geometry. For
a stationary Couette flow (22) leads to

cos(2χ) = πc p(1− κ̃πcπ0)−1. (24)

Of course, the condition πc p < 1− κ̃πcπ0 has to be ful-
filled for the stationary solution to exist. Consequences
of (24) and of the stationary version of (23) for the rhe-
ological properties are analyzed next. The cases κ = 0
and κ �= 0 are treated separately.

4. Stationary Solutions

4.1. Rheological Properties for κ = 0

Implicit Solutions

For κ = 0 and for the isotropic potential which leads
to (19) with (20), one has π0 = 0 in the stationary
state. Then (24) and (23) reduce to cos(2χ) = πc p and
π−1

c Γ psin(2χ) = ψ p2. These two equations provide
the parametric representations χ(p) and Γ (p) and thus
allow to generate graphs showing the non-Newtonian
viscosity and other rheological properties as functions
of the shear rate. More specifically, one has for the vis-
cosity and the shear rate

H(p) = (1−π2
c p2)(A∗ −4p2 + 3p4)−1,

Γ (p) = πc p(A∗ −4p2 + 3p4)(1−π2
c p2)−1/2.

(25)

This implicit solution only exists for certain ranges
for p, e. g. 0 < p < π−1

c . In the following, curves are
displayed for representative values of the parameter A∗.

These results should be compared with those based
on the previously used anisotropic potential function
which leads to (17) with (18). In this case one has π0 �=
0 even for κ = 0. Here the implicit solution of the prob-
lem proceeds as follows [1, 8]. The stationary solution
of the relaxation equation for π0, cf. (16), with q =
π0, implies p(q)2 = −q(A∗ − 3q + q2)(3 + 2q)−1.
Then (24) and (23) lead to the parametric representa-
tions χ(q) and Γ (q) which are used to plot rheologi-
cal properties as functions of the shear rate. In particu-
lar, one has for the viscosity and the shear rate H(q) =
(1−π2

c p(q)2)(A∗+6q+2(p(q)2 +q2)−1) and Γ (q) =
πc p(q)(A∗+6q+2(p(q)2+q2))(1−π2

c p(q)2)−1/2. Of
course, q has to be chosen in appropriate ranges,
e. g. −1.5 < q < 0.

Non-Newtonian Viscosity

In Fig. 1 the non-Newtonian viscosity function H =
H(s)+ H∞, where s stands for either p or q, is plotted
as a function of the shear rate Γ for πc = 1, H∞ = 0.1,
and A∗ = 2.0, 2.5, 4.0. The first Newtonian viscos-
ity, reached for Γ  1, is HNew = (A∗)−1 + H∞. It is
equal to 0.6, 0.5, 0.35 for the cases shown. The thicker
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Fig. 1. The non-Newtonian viscosity H versus the shear
rate Γ for A∗ = 2.0, 2.5, 4.0 (from top to bottom) and πc =
1.0, κ = 0.0, H∞ = 0.1. A logarithmic scale is used for
the horizontal axis. The thick and thin curves pertain to the
isotropic and to the anisotropic potential functions, respec-
tively.

curves pertain to the new isotropic potential, the thin
curves are for the anisotropic potential used in [1, 8].
A transition from a simple shear-thinning behaviour to
a more complex shear-thickening behaviour followed
by shear-thinning at higher shear rates occurs when the
control parameter A∗ decreases.

For small shear rates the expansion of the non-
Newtonian viscosity function H with respect to Γ
yields H = HNew−h2(A∗,κ)Γ 2 + . . .. In the case of the
isotropic potential one finds h2 = (A∗)−3(1−4(A∗)−1)
for πc = 1. Thus h2 is negative and shear-thickening
occurs for A∗ < 4. In the case of the anisotropic po-
tential used in [1, 8], the corresponding expression is
h2 = (A∗)−3(1 + 2(A∗)−1 − 18(A∗)−2). In this case
shear-thickening occurs for A∗ <

√
19− 1 ≈ 3.36. A

discussion of the dependencies on κ and πc is pre-
sented below.

Shear Stress

The shear stress σ as given by (12) is displayed
in Fig. 2 for the same values of the parameters as
used above for the viscosity. Figure 2A represents the
isotropic and Fig. 2B the anisotropic potential func-
tions, respectively. In the second case, the curve for
A∗ = 1.75 is shown in addition.

For a certain range of the shear stress, not only one
but more values of the shear rate pertain to one value of
the shear stress. Here shear banding is expected to oc-
cur in the system, cf. [38]. The spontaneous formation
of spatial inhomogeneities is not pursued here.

0.1 0.2 0.5 1 2 5 10
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0.4

0.6

0.8

1.0

1.2

1.4
A B

σ

Γ
0.1 0.2 0.5 1 2 5 10

Γ

Fig. 2. The shear stress σ versus the shear rate Γ for A∗ =
2.0, 2.5, 4.0 (from left to right) and πc = 1.0, κ = 0.0,
H∞ = 0.1. A logarithmic scale is used for the horizontal axis.
(A) Isotropic potential function. (B) Anisotropic potential
function; the thick curve (most left at small shear rates) is
for A∗ = 1.75.

Normal Stress Differences, Viscometric Functions

The stress differences and viscometric functions can
be computed in analogy to the shear stress and viscos-

0.1 0.2 0.5 1 2 5 10

0.5

1

1.5

2

ν

0.1 0.2 0.5 1 2 5 10
Γ Γ

A B

Fig. 3. The first normal stress difference ν = N1 versus the
shear rate Γ for A∗ = 2.0, 2.5, 4.0 (from left to right) and
πc = 1.0, κ = 0.0. A logarithmic scale is used for the hori-
zontal axis. (A) Isotropic potential function. (B) Anisotropic
potential function; the thick curve (most left at small shear
rates) is for A∗ = 1.75.
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Fig. 4. The first viscometric function Ψ1 versus the shear
rate Γ . (A) Isotropic potential function. (B) Anisotropic po-
tential function. The model parameters are the same as cho-
sen for Figure 3.
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Fig. 5. The second viscometric function Ψ2 versus
the shear rate Γ as obtained with the anisotropic
potential functions. (A) A∗ = 1.75, 2.0, 2.5, 4.0.
(B) A∗ = 4.0, 8.0. Notice the different vertical
scales.

ity. In Fig. 3 the first normal stress difference ν = N1
is displayed as a function of the shear rate (logarith-
mic scale) for the same values of the parameters as
in Figure 2. Again Fig. 3A represents the isotropic
and Fig. 3B the anisotropic potential functions, respec-
tively. The parameters are A∗ = 2.0, 2.5, 4.0, and πc =
1.0, κ = 0.0. The thick curve in Fig. 3B (most left at
small shear rates) is for A∗ = 1.75. The corresponding
curves for the first viscometric function Ψ1 are shown
in Figure 4. The small shear rate limit of Ψ1 is 2(A∗)−2.
A shear-thickening-like behaviour is also seen for Ψ1.
In the case of the isotropic and anisotropic potentials
this occurs for A∗ < 8 and A∗ < 2(

√
10− 1) ≈ 4.325,

for πc = 1. These values are larger than those for the
onset of shear-thickening revealed by the viscosity.

The behaviour of the shear stress, the first normal
stress difference, as well as of the viscosity and the
first viscometric function are qualitatively rather sim-
ilar for the results pertaining to the isotropic and to
the anisotropic potential functions. There are quanti-
tative differences, however. The second normal stress
difference and the second viscometric function, on the
other hand, differ also qualitatively for both poten-
tials. For the case of the isotropic potential one has
N2 = −(1/2)N1 < 0 and Ψ2 = −(1/2)Ψ1 < 0. For the
anisotropic potential, the small shear rate limit of N2
and Ψ2, with πc = 1, is negative or positive depending
on whether A∗ is larger or smaller than 3

√
3 ≈ 5.196.

At higher shear rates,Ψ2 may change sign with increas-
ing shear rate.

In Fig. 5 the second viscometric function Ψ2 is plot-
ted versus the shear rate Γ , as calculated with the
anisotropic potential function. Figure 5A is for A∗ =
1.75, 2.0, 2.5, 4.0, Fig. 5B for A∗ = 4.0, 8.0. As be-
fore, πc = 1.0 is used.

4.2. Rheological Properties for κ �= 0

The case of the isotropic potential is considered
first. For a stationary situation, (23) and the relaxation

equation for π0 = q lead to q(1− κ̃πcq)+ κ̃πc p2 = 0.
This relation is independent of the specific form of ψ ,
cf. (20). Now one can either express p as a function
of q, viz. p =

√−(κ̃πc)−1q(1− κ̃πcq), or q as a func-
tion of p, viz.

q =
1
2
(κ̃πc)−1(1−

√
1 + 4p2κ̃2π2

c ). (26)

The sign is chosen such that q = π0 is negative. This
corresponds to the case where the principal direction
associated with the largest eigenvalue of the stress ten-
sor remains perpendicular to the vorticity direction,
i. e. in the xy-plane, just as for a simple shear flow
with κ = 0. The shear rate and the other quantities of
interest can be computed as functions of either q or p.
The use of p as parameter is computationally more
convenient for small values of κ =

√
3κ̃ . In any case,

q →−κ̃πc p2 for small q and κ̃ → 0. Thus q = 0 is the
stationary solution for κ̃ = 0, as presupposed above.
Insertion of q = q(p) given by (26) or of p = p(q)
into (24) yields χ as a function of p or of q. From (23)
one infers

Γ = πc pψ(π2)(1− κ̃πcq)−1(sin(2χ))−1 (27)

with

ψ(π2) = A∗ −4π2 + 3π4, π2 = p2 + q2. (28)

The shear stress, the viscosity as well as the normal
pressure differences can be plotted as functions of the
shear rate. Examples for the dependence of the non-
Newtonian viscosity on κ are displayed in Figure 6.

The implicit analytical stationary solution for the
anisotropic potential employed in [1, 8] is obtained
by computing the quantities of interest as functions
of q = π0. In the stationary state (23) now implies

ψ1 p2 = π−1
c Γ psin(2χ)(1− κ̃πcq) (29)
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Fig. 6. The dependence of the non-Newtonian vis-
cosity H on the model parameter κ . The curves
are for κ = 0.01, 0.4, 1.0, and 1.5, which yields
the highest maxima. A logarithmic scale is used for
the shear rate Γ . (A) Isotropic potential function.
(B) Anisotropic potential function. The curves start-
ing at 0.5 and 0.35 are for A∗ = 2.5, 4.0, and πc =
1.0, H∞ = 0.1, in all cases.

with ψ1 = A∗+6q+2q2 +2p2. The stationary version
of the relaxation equation (16) for π0 = q is equivalent
to

ψ0q + 3p2 + κ̃Γ psin(2χ) = 0 (30)

with ψ0 = A∗ − 3q + 2q2 + 2p2. For κ̃ �= 0 one
has Γ psin(2χ) = −κ̃−1(ψ0q + 3p2). Insertion of this
expression into (29) yields ψ1 p2 + π−1

c κ̃−1(ψ0q +
3p2)(1− κ̃πcq) = 0. This is a quadratic equation
for p2 which can be solved for p2 = p2(q):

p2(q) = κ̃−1b(q)(
√

1− κ̃c(q)/b(q)2 −1), (31)

b(q)= (π−1
c (1−κ̃πcq)(3+2q)+ κ̃(A∗+6q+2q2))/4,

c(q) = π−1
c (1− κ̃πcq)(A∗ −3q + 2q2)/2. (32)

For κ̃ → 0 the expression (31) for p2, with (32), re-
duces to the relation given above for κ = 0. Now
p = p(q) can be inserted into (24) and (30) to ob-
tain χ(q) and Γ (q) in analogy to the cases considered
before.

In Fig. 6 the dependence of the non-Newtonian vis-
cosity H on the model parameter κ is presented. The
curves are for κ = 0.01, 0.4, 1.0, and 1.5, which yields
the highest maximum. As before, a logarithmic scale
is used for the shear rate Γ . Figure 6A pertains to the
isotropic and Fig. 6B to the anisotropic potential func-
tions, respectively. The curves starting at 0.5 and 0.35
are for A∗ = 2.5, 4.0, and πc = 1.0, H∞ = 0.1 were cho-
sen in all cases. Clearly, the shear-thickening behaviour
is stronger for larger values of κ .

4.3. Shear-Thickening Phase Diagram

Shear-thickening behaviour is indicated by a posi-
tive value of the derivative of the viscosity with re-
spect to the shear rate in the small shear rate limit,

2 4 6 8 10 12 14
-1.5

-1

-0.5

0

0.5

1

1.5

κ

2 4 6 8 10 12 14
A A

A B

Fig. 7. Shear-thickening phase diagram in the A∗-κ-plane.
Shear-thickening occurs for those values of A∗ and κ which
are on the left-hand side of the curves. These are drawn,
from left to right, for πc = 1.5, 1.0, 0.75. (A) Isotropic poten-
tial function. (B) Anisotropic potential function. The dashed
curves indicate the sign change of the second normal stress
difference.

viz. by dH/dΓ > 0 for Γ → 0. For given parame-
ters κ and πc a characteristic value Ath exists such that
shear-thickening occurs for A∗ < Ath. In the case of the
isotropic potential one has

Ath = 4(1−κ2/3)−1π−2
c . (33)

The corresponding expression for the anisotropic po-
tential is

Ath =
(
(3/2)

√
3κπc −1

+
√

1−3
√

3κπc + 18π2
c +(3/4)κ2

)

· (1−κ2/3)−1π−2
c .

(34)

Relations (33) and (34) are used to generate shear-
thickening phase diagrams. Figure 7 indicates the
parameter ranges in the A∗-κ-plane where shear-
thickening occurs. Figure 7A represents the isotropic
and Fig. 7B the anisotropic potentials, respectively.
Shear-thickening occurs for those values of A∗ and κ
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which are on the left-hand side of the curves. The
curves shown pertain to πc = 1.5, 1.0, 0.75. The dashed
curves in Fig. 7 mark the regions where, in the limit of
small shear rates, the ratio of the second and first nor-
mal stress differences is positive (above) or negative
(below the curves).

4.4. Normal Stress Differences at Small Shear Rates

Let ν21 be the ratio of the second to the first normal
stress difference N2/N1 = ψ2/ψ1 in the limit of small
shear rate, viz. for Γ → 0. One finds ν21 =−(1/2)(1−
κ) and ν21 = −(1/2)(1− κ − 3

√
3)/(A∗πc) for the

isotropic and the anisotropic potential functions, re-
spectively. The dashed curves in Fig. 7 indicate
where ν12 changes sign. In particular, one has ν12 > 0
(ν12 < 0) above (below) the dashed curves.

For the application of the model to a specific sub-
stance, i. e. for a decision between the different po-
tential functions and a determination of the relevant
model parameters, it is desirable to have data not only
for the shear rate dependence of the viscosity but also
for the the first and second normal stress differences.
When only viscosity data are available, different sets
of model parameters are possible. One example is pre-
sented next.

4.5. Comparison with Experimental Data

To demonstrate that the flow curves obtained within
the present theoretical approach indeed are similar

0.01 0.1 1 10
0

0.2

0.4

0.6

0.8
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1.4

Γ

η

Fig. 8. Comparison of an experimental flow curve showing
shear-thickening and shear-thinning behaviour with theoret-
ical results. The data stem from [5]. The viscosity (linear
scale) is in units of Pa, the shear rate (logarithmic scale)
in s−1. The model parameters and the reference values for
the viscosity and the shear rate used for the theoretical curves
are given in the text.
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Fig. 9. Reduced shear stress versus reduced shear rate: com-
parison of experimental data (points) with theoretical results
(curves). The data stem from [7].

to experimental findings, first a comparison is made
with data presented in [5]. The measurements were
performed on a system built up from an oil-in-water
droplet microemulsion into which a telechelic poly-
mer was incorporated. In Fig. 8 the experimental data,
viscosity (in Pa) versus shear rate (in s−1

, logarith-
mic scale), are represented by dots. The thick and thin
curves pertain to the isotropic and anisotropic poten-
tial functions. For the thick curve, the reference vis-
cosity 6 Pa was used, the dimensionless shear rate Γ
was multiplied by the reference shear rate γ̇ref = 5 s−1

in order to match approximately the shear rates of [5].
The model parameters for the thick curve are A∗ = 8,
πc = 1, H∞ = 0.01/6 ≈ 0.002, κ = 1.75

√
3 ≈ 3.0.

For the thinner curves computed with the anisotropic
potential function, the reference viscosity 4.2 Pa was
chosen and the reference shear rate γ̇ref = 4.5 s−1

was used. Here the parameters are A∗ = 6, πc = 1,
H∞ = 0.01/4.2 ≈ 0.002, furthermore κ = 1.75

√
3 ≈

3.0 and κ = 0.002 for the curves which show and
do not show shear-thickening behaviour. It must be
stressed that no search for the parameters was con-
ducted which give the best fit.

Here the parameter A∗ is relatively large such that
the shear-thickening behaviour is mainly due to κ �= 0
as in the Johnson-Segalman model [32]. This should
be different at lower temperatures or at higher densi-
ties where A∗ is smaller. More dramatic effects are ex-
pected at A∗ ≈ 1, i. e. close to solidification or gelation.

Next, it is indicated that also the discontinuous be-
haviour as found in surfactant solutions can be mod-
eled by the present approach. The data stem from ex-
periments conducted with controlled shear rate [7]. For
simplicity, the comparison is restricted to the model
with the anisotropic potential function and the fixed pa-
rameter values κ = 0, πc = 1.0. In Fig. 9A the exper-
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imental values for the shear stress and the shear rate
are divided by the reference values σref = 79 Pa and
γ̇ref = 251 s−1. The curve is computed from the sta-
tionary solution discussed above with A∗ = 1.25, H∞ =
0.05. The curve in Fig. 9B is for A∗ = 1.25, H∞ = 0.15.
Here an additional contribution to the shear stress, viz.
H2Γ /(1 +(τ2Γ )2), is included in order to account for
the shear-thinning behaviour prior to the discontinuous
shear-thickening. The values of the additional param-
eters are H2 = 2.0, τ2 = 15. In this case the experi-
mental data have been scaled with σref = 63 Pa and
γ̇ref = 501 s−1. It is not uncommon that rheological
data are fitted by a superposition of Maxwell models
with different relaxation times. The charm of the sim-
plicity of model then is lost, however. Again, it must
be stressed that it is not our intention to find a best fit
for the data of a specific substance but to demonstrate
the qualitative similarity between experimental find-
ings and results inferred from the nonlinear Maxwell
model.

5. Yield Stress and Periodic Response

5.1. Yield Stress

As mentioned above, the relaxation equation for the
symmetric traceless stress tensor possesses non-zero
solutions even in the absence of a flow when the pa-
rameter A∗ is below 4/3 ≈ 1.333 and 9/8 = 1.125
for the isotropic and the anisotropic potential functions
considered here. This yield stress or residual stress is
typical for a solid-like material, crystalline or amor-
phous. The dependence of the yield stress on the model
parameter A∗, which is recalled to decrease with de-
creasing temperature and with increasing density, is
shown in Fig. 10 for πc = 1. The thin curve ((3 +√

9−8A∗)/4) and the dashed curve (−A∗/2) pertain to
uniaxial and planar biaxial stresses for the anisotropic

potential. The thick curve (
√

(2 +
√

4−3A∗)/3) indi-
cates the yield stress for the isotropic potential, irre-
spective of the stress symmetry.

For small deformations ε = Γ t and small shear
rates Γ , the model implies an elastic behaviour charac-
terized by σxy = Geffε , where the effective shear mod-
ulus is given by Geff = G(1−πcκ̃π ini

0 ). Here G is the
reference shear modulus introduced in (1) and π ini

0 is
the “0” component of the stress in the initial state. A
detailed discussion of the elastic behaviour is outside
of the scope of the present article. For larger deforma-
tions, typically ε > 1, plastic flow results.
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Fig. 10. The dependence of the yield stress on the model
parameter A∗, for πc = 1. The thin curve and the dashed
curve pertain to uniaxial and planar biaxial stresses for the
anisotropic potential, the thick curve is for the isotropic po-
tential.

Plastic flow and shear-induced melting occur in
solid friction processes. These phenomena have been
studied in Non-Equilibrium-Molecular-Dynamics
(NEMD) computer simulations [39, 40]. The present
theory provides a generic model for the flow of solids.
In many cases, analytical and numerical solutions of
the nonlinear Maxwell model yield stationary solu-
tions for a steady flow. However, there are parameter
ranges where the stress shows a non-stationary re-
sponse typical for stick-slip-like motions. The analogy
with the behaviour of the alignment of nematic liquid
crystals is useful.

5.2. Stick-Slip Motions

In nematic liquid crystals, the alignment tensor may
be stationary or not in the presence of a steady shear
flow depending on whether the “tumbling parame-
ter” λ , defined for small shear rates, is larger or smaller
than 1 [16]. For λ < 1 the axis associated with the
largest eigenvalue of the relevant tensor undergoes a
periodic tumbling motion. At larger shear rates more
complex and even chaotic motions [19, 29 – 31, 41], as
well as a transition to a stationary state can occur. A
similar behaviour, viz. a time-dependent shear stress as
response to a stationary imposed velocity gradient, cor-
responding to a stick-slip-like motion, is found for the
nonlinear Maxwell model. In [8] this was studied for
the anisotropic potential. Comparison with the relax-
ation equation governing the alignment tensor shows
that, for the anisotropic potential function, the param-
eter πc is related to the model parameter λK of [29]
by λK = 2/(

√
3πc).
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A B Fig. 11. The stick-slip parameter λ

versus A∗. (A) Isotropic potential
function. (B) Anisotropic poten-
tial function. The parameters are
(κ,πc) = (0.0,1.0), (0.0,1.25), and
(0.5,1.25) for the thick, the thin, and
the dashed curves. The horizontal
line marks the limit λ = 1.
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Fig. 12. Stick-slip phase diagram in the A∗-πc-plane
for κ = −0.5, 0.0, 0.5, 1.0, from bottom to top.
(A) Isotropic potential function. (B) Anisotropic po-
tential function. Stick-slip like behaviour is expected
for values of πc above the curves shown. The horizon-
tal line marks πc = 1. The dashed curve in (A) corre-
sponds to the planar biaxial case discussed in the text.

The “tumbling” or “stick-slip parameter” λ is in-
ferred from the expression (24) for the flow angle χ ,
according to cos(2χ) = λ−1, in the limit of small shear
rates and for those values of A∗ for which residual
stresses and a yield stress exist. With π0 = q, one has

λ = (πc peq)−1 − κ̃(qeq/peq). (35)

The superscript eq indicates the equilibrium values in
the limit of vanishing shear rates. For a uniaxial stress
tensor the components peq and qeq are related to the
principal value πeq by

peq = (
√

3/2)πeq, qeq = −πeq/2, (36)

and consequently

λ = 2(
√

3πcπeq)−1 + κ/3. (37)

For the isotropic and the anisotropic potential func-

tions one has πeq =
√

(2 +
√

4−3A∗)/3 and πeq =
(3 +

√
9−8A∗)/4, respectively. Hence the stick-slip

parameter is only defined for A∗ < 4/3 ≈ 1.33 and
A∗ < 9/8 = 1.125 in these cases. The isotropic poten-
tial allows also a planar biaxial equilibrium solution.
Then one has peq = πeq, qeq = 0, and (35) leads to
λ = (πcπeq)−1, which is independent of the parame-
ter κ .

In Fig. 11 the stick-slip parameter λ , as given
by (37), is plotted versus A∗. Figures 11A and B repre-
sents the isotropic and anisotropic potential functions,

respectively. Notice the different horizontal scales. The
model parameters are (κ ,πc) = (0.0,1.0), (0.0, 1.25),
and (0.5, 1.25) for the thick, the thin, and the dashed
curves, respectively. The horizontal line marks the
limit 1 below which stick-slip-like behaviour is ex-
pected.

When λ is put equal to 1 in (37), one obtains a
stick-slip phase boundary in the A∗-κ-πc-parameter-
space separating stationary solutions from stick-slip-
like ones. The intersections for different values of
κ yield a stick-slip phase diagram in the A∗-πc-plane
as displayed in Fig. 12, for κ =−0.5, 0.0, 0.5, 1.0. Fig-
ures 12A and B pertain to the isotropic and anisotropic
potential functions, respectively. Stick-slip-like be-
haviour is expected for values of πc above the curves
shown. The horizontal line πc = 1 marks the value
which has been used in many calculations, here and
in [8]. The dashed curve in Fig. 12A indicates πc =
(peq)−1 corresponding to the planar biaxial case dis-
cussed above.

5.3. Examples for Non-Stationary Response

Examples for a time-dependent response of the
shear stress and for the normal stress differences are
displayed in Fig. 13 and Fig. 14 for the isotropic and
anisotropic potential functions. The values for the pa-
rameter κ are −0.5 and 0.5, respectively. The other
model parameters are (A∗, πc, H∞) = (0.5,2/

√
3 ≈

1.1547,1.0), and the imposed shear rate is Γ = 0.75,
in both cases. The inital values of all five com-
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Fig. 13. The shear stress and the first and second (dashed
curve) normal stress differences as functions of the time for
the isotropic potential. The parameters are (A∗,πc,κ,H∞) =
(0.5,2/

√
3 ≈ 1.1547,−0.5,1.0). The imposed shear rate is

Γ = 0.75.

Fig. 14. The shear stress and the normal stress differ-
ences as functions of the time for the anisotropic po-
tential. The parameters are (A∗,πc,κ,H∞) = (0.5,2/

√
3 ≈

1.1547,0.5,1.0). The imposed shear rate is Γ = 0.75.

ponents of the tensor are small (±0.1), but non-
zero.

A large-amplitude stick-slip-like behaviour is seen
for about 100 time units with the amplitude of
symmetry-breaking xz- and yz-components grows to
its final size, then the shear stress shows a smoother
periodic behaviour. In liquid crystal terminology, the
dynamics is initially of tumbling type where the prin-
cipal axis associated with the largest eigenvalue of the
tensor undergoes a periodic motion in the xy-plane.
Later it turns into a kayaking-tumbling motion [42]
where this principal axis performs a rotation about the z
(vorticity)-axis.

The stick-slip parameter as given by (37) for a uni-
axial yield stress is λ ≈ 0.75 and λ ≈ 0.93 for the

specific parameters chosen for the isotropic and the
anisotropic potentials, respectively. Thus a periodic be-
haviour, at small shear rates, is definitely expected in
both cases, and it is indeed observed. The shear stress
shown in A of Fig. 13 and Fig. 14 are qualitatively
rather similar for both cases. The differences are larger
for the first and second (dashed curves) normal stress
differences, displayed in the lower graphs.

The time dependence of the shear stress is qualita-
tively similar to that one found in NEMD computer
simulations for the plastic flow of solids and in sliding
friction [39, 40]. The friction force observed in experi-
ments shows a similar behaviour [43].

It should be mentioned again that the discussion
of the full complexity of the rich dynamic behaviour
of the nonlinear Maxwell model is outside the scope
of the present article. Further examples for time-
dependent responses are shown in [8, 44].

6. Concluding Remarks

The stability of solutions as discussed here was stud-
ied for the isotropic potential function [45], a bifur-
cation analysis for the anisotropic potential case has
been performed recently [44]. These aspects are out-
side the scope of article. The present approach is based
on a symmetric traceless extra stress tensor. As a gen-
eralization, scalars, like the trace of the pressure ten-
sor or the density of the fluid, can be treated as addi-
tional dynamic variables. Related models which led to
a chaotic behaviour were studied in [38, 46]. The dy-
namics of two coupled second-rank tensors were used
to treat side-chain liquid-crystalline polymers [47].

An extension of the theory to magneto-rheological
fluids is possible if additional terms depending on an
external magnetic field B are taken into considera-
tion in the potential function. The simplest terms of
this kind are b1B ·πππ ·B + (1/2) b2B · πππ ·πππ ·B with
the phenomenological coupling coefficients b1 and b2.
Then the tensor ΦΦΦ(πππ) in the relaxation equation (2) for
the stress tensor is replaced by

ΦΦΦ(πππ)+ b1 BB + b2 BB ·πππ .

Due to b2 �= 0, the rheological properties, in particu-
lar the viscosity and the viscometric functions, depend
on the magnitude and the direction of the applied field.
Most frequently the field is chosen in the direction of
the velocity gradient [48]. The term involving b1 leads
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to a normal stress difference, even in the absence of a
flow. This solid-like behaviour has been observed in
high-density colloidal dispersions of magnetic parti-
cles [49]. A more detailed analysis is desirable, pre-
liminary results are available [45].

Finally, it must be stressed that the analysis of the
model equation was restricted to the plane Couette ge-
ometry with an imposed shear rate. The gradient of the
flow velocity has essentially been treated like an ex-
ternal field. In general, one has to deal with spatial in-
homogeneities and the normal stress differences will
set up secondary flows. The equations for the com-
ponents of the stress tensor, cf. (16), then contain all
three components of the vorticity and all five compo-
nents of the strain rate tensor rather than just the z- and
the xy-components, viz. Ω and Γ , respectively. The
full hydrodynamic problem has to be solved, viz. the
local conservation equation for the linear momentum
ρ dvµ

dt + µ P = ν σνµ and the dynamic equation (2)
for the stress tensor σµν . Here P is the (hydrostatic)
pressure. The application of methods used for the study
of the spatio-temporal behaviour of lasers [50] and for

the flow of liquid crystals [51] seems to be promis-
ing. Results are available for a three-dimensional flow
problem [52]. Alternatively, it is feasible to general-
ize the smooth particle dynamics calculations of [53]
where the symmetric traceless friction stress tensor
was treated as an independent variable obeying a coro-
tational Maxwell model to the case of the nonlinear
model studied here.

Acknowledgements

Partial financial support by the Deutsche
Forschungsgemeinschaft (DFG) via the project
He1108/8 − 1 “Rheologie und stationäre Nicht-
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M. Kröger, Phys. Rev. E 69, 021509 (2004); Phys. Rev.
E 70, 066139 (2004).

[41] M. Grosso, R. Keunings, S. Crescitelli, and P. L. Maf-
fettone, Phys. Rev. Lett. 86, 3184 (2001).

[42] R. G. Larson and H. C. Öttinger, Macromolecules 24,
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