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Confocal quadrics lie at the heart of the system of confocal coordinates (also called elliptic coordinates,
after Jacobi). We suggest a discretization which respects two crucial properties of confocal coordinates:
separability and all two-dimensional coordinate subnets being isothermic surfaces (that is, allowing a
conformal parametrization along curvature lines, or, equivalently, supporting orthogonal Koenigs nets).
Our construction is based on an integrable discretization of the Euler—Poisson—Darboux equation and leads
to discrete nets with the separability property, with all two-dimensional subnets being Koenigs nets, and
with an additional novel discrete analogue of the orthogonality property. The coordinate functions of our
discrete nets are given explicitly in terms of gamma functions.
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1. Introduction

Confocal quadrics in RY belong to the favourite objects of classical mathematics, due to their beautiful
geometric properties and numerous relations and applications to various branches of mathematics. To
mention just a few well-known examples:

e Optical properties of quadrics and their confocal families were discovered by the ancient Greeks
and continued to fascinate mathematicians for many centuries, culminating in the famous Ivory and
Chasles theorems from 19th century given a modern interpretation by Arnold [1].

* Dynamical systems: integrability of geodesic flows on quadrics (discovered by Jacobi) and of billiards
in quadrics was given a far reaching generalization, with applications to the spectral theory, by Moser

[2].
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2 A.1. BOBENKO ET AL.

FiG. 1. Left: three quadrics of different signature from a family of confocal quadrics in R3. Right: the corresponding three discrete
quadrics from a family introduced in the present article.

* Gravitational properties of ellipsoids were studied in detail starting with Newton and Ivory, see [1,
Appendix 15], [3, Part 8], and are based to a large extent on the geometric properties of confocal
quadrics.

e Quadrics in general and confocal systems of quadrics in particular serve as favourite objects in
differential geometry. They deliver a non-trivial example of isothermic surfaces which form one of the
most interesting classes of ‘integrable’ surfaces, that is, surfaces described by integrable differential
equations and possessing a rich theory of transformations with remarkable permutability properties.

* Confocal quadrics lie at the heart of the system of confocal coordinates which allows for separation
of variables in the Laplace operator. As such, they support a rich theory of special functions including
Lamé functions and their generalizations [4].

In the present article, we are interested in a discretization of a system of confocal quadrics, or, what is
the same, of a system of confocal coordinates in RY . In general, coordinate systems are instances of smooth
nets, that is, maps R” > U — R". Discretizing them consists of finding suitable approximating discrete
nets, that is, maps Z" > U — R". According to the philosophy of structure preserving discretization [5],
it is crucial not to follow the path of a straightforward discretization of differential equations, but rather
to discretize a well-chosen collection of essential geometric properties. In the case of confocal quadrics,
the choice of properties to be preserved in the course of discretization becomes especially difficult, due
to the above-mentioned abundance of complementary geometric and analytic features.

A number of attempts to discretize quadrics in general and confocal systems of quadrics in particular
are available in the literature. In [6] a discretization of the defining property of a conic as an image
of a circle under a projective transformation is considered. Since a natural discretization of a circle is
a regular polygon, one ends up with a class of discrete curves which are projective images of regular
polygons. More sophisticated geometric constructions are developed in [7] and lead to a very interesting
class of quadrilateral nets in a plane and in space, with all quadrilaterals possessing an incircle, resp. all
hexahedra possessing an inscribed sphere. The rich geometric content of these constructions still waits
for an adequate analytic description.
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DISCRETE CONFOCAL QUADRICS 3

Our approach here is based on a discretization of the classical Euler—Poisson—Darboux equation which
has been introduced in [8] in the context of discretization of semi-Hamiltonian systems of hydrodynamic
type. The discrete Euler—Poisson—Darboux equation is integrable in the sense of multi-dimensional con-
sistency [5], which, in turn, gives rise to Darboux-type transformations with remarkable permutability
properties. As we will demonstrate, the integrable nature of the discrete Euler—Poisson—Darboux equation
is reflected in the preservation of a suite of algebraic and geometric properties of the confocal coordinate
systems.

Our proposal takes as a departure point two properties of the confocal coordinates: they are separable,
and all two-dimensional coordinate subnets are isothermic surfaces (which is equivalent to being conjugate
nets with equal Laplace invariants and with orthogonal coordinate curves). We propose here a novel
concept of discrete isothermic nets. Remarkably, the incircular nets of [7] turn out to be another instance
of this geometry, see Appendix A. Discretization of confocal coordinate systems based on more general
curvature line parametrizations will be addressed in [9].

The pictures in this article were generated using blender, matplotlib, geogebra and
inkscape.

2. Euler-Poisson—Darboux equation
DEFINITION 2.1 Let U C R be open and connected. We say that a net
x:U—)RN, (ul,...,uM)|—>(x1,...,xN)

satisfies the Euler—Poisson—Darboux system if all its two-dimensional subnets satisfy the (vector)
Euler-Poisson—Darboux equation with the same parameter y:

0%x y ox  ox
- a2 (EPD,)

ou;0u; u; —u; \ou;  ou;

foralli,j e {l,...,M},i #].

For any s distinct indices iy, ...,i; € {1,..., M}, we write

Ui .i = {(Mi],---,uis) eR | (uy,...,uy) € U}~

DEFINITION 2.2 A two-dimensional subnet of a net x : RY 5 U — R¥ corresponding to the coordinate
directions i,j € {1,...,M}, i # j, is called a Koenigs net, or, classically, a conjugate net with equal
Laplace invariants, if there exists a function v : U; — R such that

3°x 1dv ax 1 0v ox
_Lovox 10w ox ()
3ui3uj Vv 3uj au,- Y au,- auj

PrOPOSITION 2.1 Letx : RY > U — R" be a net satisfying the Euler—Poisson-Darboux system (EPD, ).
Then all two-dimensional subnets of x are Koenigs nets.

Proof. The function v(u;, u;) = |u; — u;|” solves

lLov vy lov y

b b
vou;  u—u; vou  uji—u

thus the Euler-Poisson—-Darboux system (EPD,, ) is of the Koenigs form (1). O
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4 A.1. BOBENKO ET AL.

REMARK 2.1 Eisenhart classified conjugate nets in R® with all two-dimensional coordinate surfaces being
Koenigs nets [10]. The generic case is described by solutions of the Euler—Poisson—Darboux system
(EPD,)) with an arbitrary coefficient y.

3. Confocal coordinates

For given a; > a, > --- > ay > 0, we consider the one-parameter family of confocal quadrics in RY
given by
N 2
=Ix=(..., eRY: E =1}, reR 2
0} (x1 xN) a4+ A (2)

k=1

Note that the quadrics of this family are centred at the origin and have the principal axes aligned along
the coordinate directions. For a given point x = (x,...,xy) € RY with x;x,...xy # 0, equation
ZL] x?/(ar + 1) = 1is, after clearing the denominators, a polynomial equation of degree N in A, with
N real roots uy, . .., uy lying in the intervals

A < U < —A) < U < - < —dy < Uy,
so that
N
o AT ]_[Z=l()» +an)

These N roots correspond to the N confocal quadrics of the family (2) that intersect at the point x =
(xla LR wa):

N N
Z =1, i=1L...N & xe[)Q )
=1

A + u, i=1

Each of the quadrics Q,, is of a different signature. Evaluating the residue of the right-hand side of (3) at
A = —ay, one can easily express x,f through uy, ..., uy:

Xk:]_[i#k(ak_ai)’ k=1,...,N. (5)
Thus, for each point (xy, . .., xy) € RY withx,x, ...xy # 0, there is exactly one solution (1, . .., uy) € U
of (5), where
U= {(ul,...,uN) eERY| —a) <uy<—ar<up <...< —ay <uN}.
On the other hand, for each (u;,...,uy) € U there are exactly 2" solutions (xi,...,xy) € R", which

are mirror symmetric with respect to the coordinate hyperplanes. In what follows, when we refer to a
solution of (5), we always mean the solution with values in

]Rﬁ:{(xl,...,XN)ERN|X1 >0,...,)CN>O}.
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DISCRETE CONFOCAL QUADRICS 5

Thus, we are dealing with a parametrization of the first hyperoctant of RY, x : U > (uy,...,uy) >
(x1,...,xy) € RY, given by

k=1 ————ST1V /i .
X = I—[i:l (uz+ak) Hi:k Ui +ak’ k: l’,_.,N, (6)

=1
[[o Vai —a l_[j\,:kJrl Vak — adi

such that the coordinate hyperplanes u; = const are mapped to the respective quadrics given by (4). The
coordinates (uy,...,uy) are called confocal coordinates (or elliptic coordinates, following Jacobi [11,
Vorlesung 26]).

3.1 Confocal coordinates and isothermic surfaces

PROPOSITION 3.1 The netx : i{ — R/ given by (6) satisfies the Euler—Poisson—Darboux system (EPD,,)
with y = % As a consequence, all two-dimensional subnets of x are Koenigs nets.

Proof. The partial derivatives of (6) satisfy

0% — % (7
dup 2 (ap+u)

From this we compute the second order partial derivatives for i # j:

x 1 X X

duidw;  2ap +u) 0w Aag + up)(ag + u;)

_ Xg 1 1
A — u;) (Clk + u; - a +Mi>
1 0xy  0xp
T 20— up) <8_u] - 8_u> H

PrOPOSITION 3.2 The net x : & — RY given by (6) is orthogonal, and thus gives a curvature line
parametrization of any of its two-dimensional coordinate surfaces.

Proof. With the help of (7), we compute, for i # j, the scalar product

ax  ox _1§:
du;” du;| 4 1(ak—i—u)(ak—i—uj)

N xz
2t
4(u, — u;) “ \ i + u; ak + u;

since x(uy, . .., uy) satisfies (4) for u; and for u;. O

We recall the following classical definition.
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6 A.1. BOBENKO ET AL.

DEFINITION 3.1 A curvature line parametrized surface x : U; — RY is called an isothermic surface
if its first fundamental form is conformal, possibly upon a reparametrization of independent variables
u; = @;(u;), u; — @;(u;), that is, if

|9/ du;|* o)
|8x/8u/|2 Olj(I/tJ)

at every point (u;, u;) € Uy.

In other words, isothermic surfaces are characterized by the relations Bzx/au,»auj €
span(dx/du;, 0x/du;) and

ox 0
ox ox\ o
8u,~ Bu/

with a conformal metric coefficient s : U; — R, and with the functions «;, «;, each depending on the
respective variable u;, u; only. These conditions may be equivalently represented as

ax |

2
o = o;(uy)s, ®)

0x

2
= o;(u;)s”, ‘—
u;

9%x _1ds 9x 10s dx <8x 8x>_0

Juidw; s 0w du; s 0wy du;” \ow; Ouy

Comparison with (1) shows that isothermic surfaces are nothing but orthogonal Koenigs nets.
Thus, Propositions 3.1 and 3.2 immediately imply the first statement of the following proposition.

ProposITION 3.3 All two-dimensional coordinate surfaces x : Uj; — RY (for fixed values of u,,, m # i,j)
of a confocal coordinate system are isothermic. Specifically, one has (8) with

s = s(u;, uj) = |u; — uj|1/2, 9)

oi(u) [ iy i — ) . HZ:I(MJ' +a,)

= . (10)
o (uy) HZ:I (u; + ay,) Hm;&i‘j(uj — Up)
Proof. Differentiate both sides of (3) with respect to u;. Taking into account (7), we find:
N
Z 2 Hm#()‘ — Uyy) .
— (u; + ak)()\ +a) TV, +an)
Setting A = u;, we finally arrive at
ox 2_%(3)@)2_ Ien a1 T — ) an
ou; i ou; 4 - (u; + ak)z 4 HZ:I (u; + a,,) '

This proves (8) with (9) and (10). O
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DISCRETE CONFOCAL QUADRICS 7

REMARK 3.1 Darboux classified orthogonal nets in R*® whose two-dimensional coordinate sur-
faces are isothermic [12, Livre II, Chapter III-V] . He found several families, all satisfying the
Euler—Poisson—-Darboux system with coefficient y = i%, —1, or —2. The family corresponding to
y = % consists of confocal cyclides and includes the case of confocal quadrics (or their Mobius images).

3.2 Confocal coordinates and separability

From (6) we observe that confocal coordinates are described by very special (separable) solutions of
Euler—Poisson-Darboux equations (EPD, ). We will now show that the separability property is almost
characteristic for confocal coordinates.

PROPOSITION 3.4 A separable function x : RY D U — R,

N
X, uy) = [ | o) (12)
i=1

is a solution of the Euler—Poisson-Darboux system (EPD,)) iff the functions p; : U; = R,i=1,...,N,
satisfy

piw) ¥

= 13
pi(w) ¢+ u (13
for some ¢ € R and for all u; € U,.
Proof. Computing the derivatives of (12) fori = 1,...,N, we obtain:
0x p; (u;)
= —x. ,
8ul )Oi(ut)
and for the second derivatives (i # j):
9%x . p,{(ui) p]’(u,) (14)
ou;0u; pi(u;) pj(u;)
On the other hand, x satisfies the Euler—Poisson—Darboux system (EPD,,), which implies
92 (u) "(u;
X — )/ <pj J _Pl(u))x (15)
Ou;du; up —u; \ p;() pi(u;)

From (14) and (15) we obtain

di—u =y piui) — pi(uy)
l ! ;i (u;) pj/(uj) '
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8 A.1. BOBENKO ET AL.

or

pilw) _y 0;(u;)
piu) p; (1)

7

foralli,j=1,..,N,i# jand (4,u;) € Uy. Thus, both the left-hand side and the right-hand side of the
last equation do not depend on u;, u;. So, there exists a ¢ € R such that (13) is satisfied. O

Fory = % general solutions of (13) are given, up to constant factors, by
pi(ui, ¢) = Ju; + ¢ for u; > —c,

respectively by

pi(u;,c) =+ —w; +c) for wu < —c.

A separable solution of the Euler—Poisson—-Darboux system (EPD, ) with y = % finally takes the form

N
x(uy, .., uy) =D T piuis o)

i=1

with some ¢ € R, and with a constant D € R, which is the product of all the constant factors of p;(u;, ¢)
mentioned above.

PropoSITION 3.5 Leta; > --- > ay and set

U:{(ul,...,uN)G]RN| —a; < Uy <—112<M2<"'<—LZN<MN}.

(@) Letx, : U4 - Ry, k =1,...,N, be N independent separable solutions of the Euler—Poisson—
Darboux system (EPD, ) with y = % defined on ¢/ and satisfying there the following boundary

conditions:
Iim  x(up,...,uy) =0 for k=1,...,N, (16)
up ™\ (—ay)
lim  x(uy,...,uy) =0 for k=2,...,N. (17)
ug—1,/" (—ag)
Then

N
Xe(ur, .. ouy) =D [ | itwisan), k=1,...,N, (18)

i=1
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DISCRETE CONFOCAL QUADRICS 9

with some Dy, ...,Dy > 0 and with

Jui + a for >k,

pi(ui, ar) =

~=(u; +a,) for i<k
Thus, thenetx = (xy,...,xy) : U — ]Rﬁr’ coincides with the confocal coordinates (6) on the positive
hyperoctant, up to independent scaling along the coordinate axes (xi, ..., xy) = (Cixy, ..., Cyxy)
with some Cy,...,Cy > 0.

(b) The choice of the constants Dy, ...,Dy > 0 that specifies the system of confocal coordinates (6)

among the separable solutions (18), namely

D =[]t — a0 [ Jta — a,

i<k i>k
is the unique scaling (up to acommon factor) such that the parameter curves are pairwise orthogonal.
Proof. (a) We have
X (U1, ..., uy) =Dy - pr(uy,c) ... py(uy,c), k=1,...,N.

Boundary conditions (16) and (17) yield that the constants are given by ¢; = ay, and that the solutions
are actually given by (18). Formulas (6) are now equivalent to a specific choice of the constants Dj.
(b) From (7) we compute:

ax ax\ 1o 1
s~ | = -k —1 k_lD2 + . 19
<8ul~ Buj> 42( +ak)(u,+ak) 42( ) kn(”l ax) (19)
= k=1 I#i]
We have:
l_[(ul +a) = ZP(N 2— m)(u)a;n’
1#ij
where P,N 2-m) (u) is an elementary symmetric polynomial of degree N — 2 — m in u;, [ # i,j. Thus,
ox ox 1 k=1 mp2 | (N=2=m)
<au, 8uj> Z <Z( DDy ) py " ).

Since the polynomials p,N > (u) are independent on I/, the latter expression is equal to zero if and only
if

N
Z(—l)k—la;”Dg =0, m=0,....,N—2.
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10 A.1. BOBENKO ET AL.

This system of N — 1 linear homogeneous equations for the N unknowns D; does not depend on
i,j. Supplying it by the non-homogeneous equation 3 3_ (—1)*"'a¥~'D? = 1, we find the unique
solution of the resulting system as quotients of Vandermonde determinants, or finally (—1)*"'D? =
l/ni;ﬁk(ak —a). i

REMARK 3.2 The boundary conditions ensure that the 2N — 1 faces of the boundary of ¢/ are mapped
into coordinate hyperplanes. Their images are degenerate quadrics of the confocal family (2).

4. Discrete Koenigs nets

For a function f on ZM we define the difference operator in the standard way:

Af(n) =f(n+e) —f(n)

for all n € ZM, where ¢, is the i-th coordinate vector of Z.

DEFINITION 4.1 A two-dimensional discrete net x : Z” > U; — RY corresponding to the coordinate

directions i,j € {1,...,M},i # j, is called a discrete Koenigs net if there exists a function v : U; — R
such that
AAx = JOYD T VY0 YoVa — VYo o (20)
1 - 1
’ v(vi) +vg) V(v + vp)

Here we use index notation to denote shifts of v:
Vo) = v(n +e), v () == v(n +e; +e)), ne’7ZM.

The geometric meaning of this algebraic definition is as follows. Like in the continuous case, discrete
Konigs nets constitute a subclass of discrete conjugate nets (Q-nets), in the sense that all two-dimensional
subnets have planar faces. See [5] for more information on Q-nets, as well as on geometric properties of
discrete Koenigs nets. Consider an elementary planar quadrilateral (x, x;, X, X)) of a Q-net governed
by the discrete Darboux equation

A,ij =AA1x+Bij (21)

Let M be the intersection point of its diagonals [x,x; ] and [x(;, X ]. Then one can easily compute that
M divides the corresponding diagonals in the following relations:

—_ — — —
xyM :Mxj=B+1):(A+1), xM:Mxy; =1:(A+B+1).

A Q-net is called a Koenigs net, if there is a positive function v defined at the vertices of the net such that

e —_ —
X(i)M . M.Xf(]‘) = Vi) V), xM : MX(,:/') =V V3.

One can show [5] that this happens if and only if the intersection points of the diagonals of four adjacent
quadrilaterals are coplanar. The function v should satisfy

(A + 1)\}(,‘) = (B + 1)1)(/'), Vij) = (A + B+ 1)1) (22)
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DISCRETE CONFOCAL QUADRICS 11

This is clearly equivalent to

_ Vi) Vi) — VVa) _ ViV — VY

V(v + 1) V(v + 1)

The pair of linear equations (22) is compatible if and only if the following non-linear equation is satisfied
for the coefficients A, B associated with four adjacent quadrilaterals:

Bij+1 (An+By+1) B+

(23)

If this relation for the coefficients A, B of the discrete Darboux equation (21) holds true everywhere, then
the linear equations (22) determine a function v uniquely, as soon as initial data are prescribed, consisting,
for instance, of the values of v at two neighbouring vertices. The associated discrete Darboux equation
is then of Koenigs type (20).

5. Discrete Euler-Poisson-Darboux equation

DEFINITION 5.1 Let U C ZM. We say that a discrete net
x:U=>RY, (n,....,ny) —~ (x1,...,%y)

satisfies the discrete Euler—Darboux system if all of its two-dimensional subnets satisfy the (vector)
discrete Euler—Poisson—Darboux equation with the same parameter y :

v

AAx=— T
n,~+e,~—nj—ej

(Ajx — Ax) (dEPD,)

foralli,j e {l,...,M},i #j,andsome y € R, €|,...,ey € R.

REMARK 5.1 This discretization of the Euler—Poisson—Darboux system was introduced by
Konopelchenko and Schief [8].

ProPOSITION 5.1 Letx : Z¥ > U — RY be a discrete net satisfying the discrete Euler—Poisson—Darboux
system (dEPD,,). Then all two-dimensional subnets of x are discrete Koenigs nets.

Proof. 1t is straightforward to verify that the coefficients

A=-B=—_V
n,+e¢ — n; — €j
indeed obey the Koenigs condition (23). (]

We now show that for a discrete net satisfying the discrete Euler—Poisson-Darboux equation (dEPD,,),
the function v can be found explicitly. For this aim, use the ansatz

v(m, n) = u(n; —ny),
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12 A.1. BOBENKO ET AL.

so that v = v(m; + 1,n; + 1) = v(n;, n;) = v. Under this ansatz, equation (20) simplifies to

Vi) — Vi Vi) — Vg
AiAx = )= V0 5yt YO =V A,
Vi + Vg Vi) + v

Comparing with (dEPD,,) we obtain

Vi) = Vo) 14

Vi) t Vg mit €& —n—¢§

=4 V(i) (1—4) :U(/') (1++)
n,~+6,~—nj—6j ni+6i—nj—€j

n,-—i—E,-—nj—Ej—i—y
ni+ € —nj—¢€ —y

< v+ 1,m) =v(m,n + 1)

Thus, the function p should satisfy
m+¢€ —€ +
pm+1) = pm— 1) =97
m+e€—¢€—y

This equation is easily solved:

F({m+e—¢+y+1D)
F(horre—q—y 1)

u(im) = b(m),

where I" denotes the gamma function and b is any function of period 2. Itis recalled that I" (x4 1) = xI"(x).

6. Discrete confocal quadrics

We have seen in the continuous case (Proposition 3.5) that confocal quadrics are described, up to a com-

ponentwise scaling, by separable solutions of the Euler-Poisson-Darboux system (EPD, ) with y = 1

5
It is therefore natural to consider separable solutions of the discrete Euler—Poisson—Darboux system.

6.1 Separability

PROPOSITION 6.1 [8] A separable function x : Z¥ > U — R,

x(ny,...,ny) = pi(my) - - - py(ny), (24)

is a solution of the discrete Euler—Poisson—Darboux system (dEPD,, ) iff the functions p; : U; — R,
i=1,...,N, satisfy

v pi(n;)

Api(n;) = ———,
p( ) n,+e¢ +c

(25)

or, equivalently,

n+e+c+y

26
ni+e€+c (26)

pi(n; + 1) = p;i(n;)

for some ¢ € R and for all n; € U,.
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DISCRETE CONFOCAL QUADRICS 13
Proof. Substituting (24) into (dEPD,,) we obtain

(0ini + 1) = pi(n) (p;(n; + 1) — p;(ny))

= e e (P 010+ 1 = i) = 1) (i 1) = )

which is equivalent to

yi(n;) Y p; (1))

n,-—i—e,-—nj—e,»z — .
' pim; +1) — pi(ny)  pj(n; + 1) — p;j(ny)

So, the expression

ypi(n;) —(mte) =c
pi(ni + 1) — p;(n;)
depends neither on n; nor on n;, i.e. is a constant. This is equivalent to (25) and thus to (26). O

If the constants y, ¢ and ¢; are such that neither €; + ¢ nor €; + ¢ + y is an integer, then the general
solution of (26) is given by

I'(n; i ~ TI'(=n—¢— 1
6+ ) = d (ni+€+c+y) _ (=ni—e—c+1)
F(l’l[+6[+c) F(—n,-—e,——c—y-i—l)

for all n; € 7Z with some constants d;, cii e R.
In what follows, we will use the Pochhammer symbol (1), with a not necessarily integer index y:

_TPlu+y

(), = W’ u,y > 0.

Because of the asymptotics (), ~ u” as u — o0, which can also be put as

. u
lim & (—) =u’,
e—0 &ly

the function (u),, has been considered as a discretization of u” in [13, p. 47]. With this notation, the above
formulas take the form

pi(ni € +c) = di(ni + €+ ¢), = di(—n; — e, —c—y + 1),
DEFINITION 6.1 The discrete square root function is defined by

Cu+3)

(u)l/z = W
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14 A.1. BOBENKO ET AL.

To achieve boundary conditions similar to (16) and (17), we will be more interested in the cases where
solutions are only defined on an integer half-axis, and vanish at its boundary point. For y = % this is the
case if:

e either €; + ¢ € Z, and then the general solution to the right of —c¢ — ¢; is given by multiples of
pi(n,€i+c) = +¢€+c)p for n>-—c—g, (27)

e ore+c+ % € Z, and then the general solution to the left of —c — € + % is given by multiples of

1
pi(ni, € +c¢) = (—m; — € —c + %)1/2 for m <—c—e€+ 3 (28)

In terms of discrete square roots, the expressions for the separable solutions of the discrete Euler—Poisson—
Darboux system for y = % now resemble their classical counterparts.

PrROPOSITION 6.2 Letay,...,ay € Z with @) > o > -+ > ay, and set
U= {(”u---JlN) €| —ay=m < -0 <m< - < —ay SnN}~
Letx, :U - R,k =1,...,N, be N independent separable solutions of the discrete Euler—Poisson—

Darboux system (dEPD, ) with y = % defined on ¢/ and satisfying the following boundary conditions:

Xilng=—ey =0 for k=1,...,N, (29)
Xl j=—, =0 for k=2,...,N. (30)

Then the shifts €; of the variables n; are given by

e,-—e,:]% for ij=1,....N, 31)
and the solutions are expressed by
N
xi(ni,..omy) =Dy [ ] o o), (32)
i=1
for some constants Dy, ...,Dy > 0 and
) (i +a+ 59, , for i>k,
i (ni) = A (33)
(=i —oy — S+ %)1/2 for i<k.

Proof. Separable solutions of (dEPD,,) with y = % are of the general form (32), where each ,oi(k) (n)) =
pi(n;, €; + ¢;) is defined by one of the formulas (27), (28), and all multiplicative constants are collected
inDy,...,Dy > 0. We have to determine suitable constants ¢; and c¢;.
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DISCRETE CONFOCAL QUADRICS 15

The boundary conditions (29) and (30) imply that x; is defined for n, > —«;, while vanishing for
n, = —oy, and also that x;, is defined for n;_; < —a;, while vanishing for n,_; = —a;. This shows that

ap=cC+é€ =cr+ €1 — =.

2
We obtain €, — ¢, = —%, and equation (31) follows. Together with ¢; + €, = q, this implies that
k—i
Cr+ € =0 + ) . (34)
It remains to substitute (34) into (27) and (28). U

6.2 Orthogonality

The remaining scaling freedom (multiplicative constants D;) of the components x; as given by (32) is the
same as in the continuous case. As we have seen in Proposition 3.5, in the continuous case, one can fix
the scaling by imposing the orthogonality condition (dx/0u;) L (9x/0u;). In the discrete case, it turns
out to be possible to introduce a notion of orthogonality, which will allow us to fix the scaling in a similar
way.

DEFINITION 6.2 LetU C ZN,U* C (ZN)", where (Z")" = (Z + })". Consider a function
x:UJUU* - RN,

such that both restrictions x({/) and x (U/*) are Q-nets. We say that the discrete net x is orthogonal if each
edge of x({f) is orthogonal to the dual facet of x(U/*).

The (space of the) facet of x({/*) dual to the edge [x(n),x(n + e;)] of x(U{) is spanned by the N — 1
edges [x(n—e;+ %f ), x(n+ %f )] withj # i, wheref = (1,..., 1). Therefore, the orthogonality condition
in the sense of Definition 6.2 reads:

(Aix(n), Ajx(n —e; + 1)) =0 (35)

forall i # j and n € Z". From this it is easy to see that x({/) and x({/*) actually play symmetric roles in
Definition 6.2 (that is, each edge of x({/*) is orthogonal to the dual facet of x({/), compare Fig. 2).

Turning to separable solutions of the discrete Euler—Poisson—Darboux system (dEPD, ) with y =
we extend the function x = (xy, ..., xy) defined in Proposition 6.2 to a bigger domain:

1
2

x:UUU* - RY,
where
U*={(”1,~-,”N)€(ZN)*| —0515”15—0!251125"'5—011\/5"1\/}'

It is emphasized that the lattices x({/) and x(/*) are on equal footing except that the boundary conditions
do not apply to x(U*).
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16 A.1. BOBENKO ET AL.

m(n—ej—l—%f)

F1G. 2. Discrete orthogonality for a system of Q-nets defined on a square lattice and on its dual.

PROPOSITION 6.3 Letay,...,ay € Z witha; > o, > -+ > ay. Then the netx : i/ UU* — RY defined
by (32) and (33) is orthogonal if and only if

D =C[ e — o+ 5 ] J(ow — i + 559 (36)
i<k i>k
with some C € R, .

Proof. We will use the following formulas for the ‘discrete derivative’ of the ‘discrete square root function’
W =T+ %) / I' (1), which are immediate consequences of the identity I'(u + 1) = ul" (1):

; A((—) )__;
2w+ R TEE!

— (37)
172 2)1/2

A(w); ) =

where Af(u) = f(u + 1) — f(u). We also note that the ‘discrete squares’ of discrete square roots obey
the relations

Wip+Y),, =1 (wp-u—1), = —u—1. (38)

Substituting (34) and y = 1 into (25), we obtain:

P (m:)
Apf(ny) = . (39)
2 + o + )
Upon using property (38) and expressions (33), we arrive at
n + o + %, i>k,
(k) (k) 1y _
pi (np; " (ni+3) = (40)

—i+ o+ 55, i<k

We use (32), (39) and (40) to compute the left-hand side of equation (35):

[
(Axn), Ax(n —e; + 3f)) = Z( D*'D; H<n1+ak+7)

1#ij
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DISCRETE CONFOCAL QUADRICS 17

Observe that this literally coincides with the analogous expression in the continuous case (19), if we set

l
ak:ak+§, u=n — —.

2

Therefore, the proof of part (b) of Proposition 3.5 can be literally repeated, leading to the condition
D;? = C[],_.(a — a) [1,., (@ — a;), which coincides with (36). i

6.3 Definition of discrete confocal coordinates

DEFINITION 6.3 Let oy, ...,ay € Z withay > o > .-+ > ay. Discrete confocal coordinates are given
by the discrete net x : U/ UlU* — RY defined by

k-1 N
xi(n) = Dkl_[ (—ni — oy — ]% + %)1/21_[ (n; + oy + kT_i)l/z
i=1 i=k

with

The characteristic properties of this net can be summarized as follows.

(i) Each two-dimensional subnet of x({/) and of x({/*) satisfies (dEPD, ) with y =

(ii) Therefore each two-dimensional subnet of x({/) and of x({/*) is a Koenigs net;

1.
X

(iii) The net x(Uf U ™) is orthogonal in the sense of Definition 6.2;
(iv) Both nets x(U/) and x({/*) are separable;
(v) Boundary conditions (29) and (30) are satisfied.

Properties (ii) and (iii) lead to a novel discretization of the notion of isothermic surfaces.

Property (v) allows us to define discrete confocal quadrics by reflecting the net x in the coordinate
hyperplanes. Like in the continuous case, the boundary conditions correspond to the 2N — 1 degenerate
quadrics of the confocal family lying in the coordinate hyperplanes.

REMARK 6.1 In [9] we will describe more general discrete confocal quadrics, corresponding to general
reparametrizations of the curvature lines. They will be defined in a more geometric way, less based on
integrable difference equations.

6.4 Further properties of discrete confocal coordinates

We now obtain a variety of properties of discrete confocal quadrics and discrete confocal coordinates,
which serve as discretizations of their respective continuous analogues.
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18 A.1. BOBENKO ET AL.
ProposITION 6.4 For any N-tuple of signs 0 = (oy,...,0y), 0; = £1, we have:

H,N:l (ni + o + ]% — i(.l - Ui))
Hi;ék (ak -+ ,%)

xe(n) - x(n + 30) = ; (41)

and therefore

f: X (mx(n + 30) N )

Snta+ S -il-0)

Proof. Equation (41) is obtained by straightforward computation. Usmg this result, equat10n (42) follows
from the continuous equations (4) and (5) upon replacing a; = oy + 5 Yandu, =n; — L — Z(l ;). O

We notice that (41) can be seen as a discrete version of the parametrization formulas (5), while (42)
can be seen as a discrete version of the quadric equation (4). The above formulas take the simplest form
foro =f=(,...,1):

l_[fil (”i +o + I%)

xe(n) - xe(n+ 1) = = (43)

T M (e~ + 5)
and
N
+

yorRr T i 2f) —1. i=1,..N. (44)

o T o + &
In the continuous setting one can obtain from (5)
N N

@), x@) =Y @) =Y (w +ap), (45)

so that the hypersurfaces Zf:l u, = const are (parts) of spheres. In particular, this implies that

foralli = 1,...,N, which can be regarded as a characterization of the particular parametrization of the
confocal quadrics considered in this article. In the discrete case one obtains the following:

ProposITION 6.5 For any N-tuple of signs 0 = (o1, ...,0y), 0x = =1, we have:

N
(xm),x(n+30)) =D (m+ o — 1 —0p)), (46)
k=1
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DISCRETE CONFOCAL QUADRICS 19

and therefore, for any i = 1,...,N and for any o with o; = —1:

(x(n), Ax(n + 10)) = %

Proof. The right-hand sides of (5) and (41) may be identified by setting a;, = oy + % and u; = n; — % -

}1(1 — 0;) and hence the right-hand side of (45) also applies in the discrete case, leading upon the above
identification to (46). ]

Finally, we obtain a factorization similar to (8)—(10), which characterizes isothermic surfaces in the
continuous case.

PROPOSITION 6.6 For i # j we have
(Ax(n), Aix(n + %f)) = S Pi(ny),
(Ax(n —e; + %f), Aix(n —e; +f)) = S2¢j(”j),

where

i
! l+— )
2 2

s(ni,ny) = |n; — n; +

and

¢i(n;) _Hm;ﬁij(ni — Nyt % + %) ) l_[ﬁzzl(”j +ay — mT_j)
é;(n)) [Ty i+ — 25+ 3 Ty (= 1+ 552 = 5)

Proof. For any i, k we compute

1 1 [T (o + e + 52
4Hm#k(ak—am—|—k_7m ni+ak+l%i+% .

Ax(n) - Aix(n + 3f) =

Here, the right-hand side can be identified with the right-hand side of the corresponding continuous
expression, put as

(em)z 1 1 [Tzi i + )
8”[ B 4 Hm;gk(ak - am) (ui + ak) |

upon replacing

a, = o+ —,
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20 A.L. BOBENKO ET AL.
Therefore, the continuous identity (11) upon the above identification implies

Hm;éi(ni — Ny + % + %)
AT i o — 22+ 1)

(Aix(n), Ax(n + %f)> =

Similarly, we find:

[Ty = 1+ 5 = 3)
41_[2:1(’/5 + oy — ?)

(Ax(n —e;+ 1f), Ax(n —e; + f)) =

The observation that the only factors in each of the latter two expressions which depends on both n; and
n; are equal (up to sign) finishes the proof. O

REMARK 6.2 Similar to equations (43) and (44) it is possible to generalize Proposition 6.6 by replacing
the vector f by a vector of signs o with o; = 0; = 1 and all other components being arbitrary.

7. The case N =2

Here, and in the following section, we examine in greater detail the general theory set down in the
preceding in the cases N = 2 and N = 3. For the benefit of the reader, these two sections are made as
self-contained as possible.

7.1 Continuous confocal coordinates

Leta > b > 0. Then formulas

Jur +au; +a

x(ul’u2) = m s
47)
=@ + b)Vuy, + b
y(up, up) = s

va—>b
define a parametrization of the first quadrant of R? by confocal coordinates
U= {(ul,uz) eR| —a<u <—-b< uz} — Ri.

See Fig. 3. A family of confocal conics is obtained by reflections in the coordinate axes.

7.2 Discrete confocal coordinates

We start with the general formula
x(ny,ny) = Di(my + € +¢1)yp(m2 + €2+ ¢1)y 2,

Yy, m) =Dr(—ny — € —cr + %)1/2(712 +e+c)ip
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DISCRETE CONFOCAL QUADRICS 21

U Yy

\4

Uy

Fi6.3. Square grid on the domain I/ and its image under the map (47). The horizontal lines u; = const are mapped to ellipses
with the degenerate case u \, —b, which is mapped to a line segment on the x-axis. The vertical lines u; = const are mapped to
hyperbolas with the degenerate cases u; /' —b, which is mapped to a ray on the x-axis, and uy N\ —a, which is mapped to the
positive y-axis.

for a separable solution of the discrete Euler—Poisson—Darboux system (dEPD, ) with y = % where a
suitable choice of solutions (27) and (28) has already been made according to the continuous case. We
use the above ansatz to illustrate the choice of the coordinate shifts €; and ¢, according to boundary
conditions (29) and (30). For «, 8 € Z with @ > B, we define ¢y, ¢, and €y, €, such that we obtain a map

uz{(nl,nz)GZZ| _afnlf—ﬂfl’lz}—)Ri,

where the boundary components n; = —«, n; = —f and n, = —f correspond to degenerate conics that
lie on the coordinate axes:

X|y=—a = 0 (degenerate hyperbola),
Yln=—p =0 (degenerate hyperbola),
Vln—-p =0 (degenerate ellipse).

For this, the following linear system of equations has to be satisfied:

€+ =a,
1
e+o=0+ 5
&+ =p.
As a consequence, we find:
1
€&+ =a— E
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22 A.1. BOBENKO ET AL.

Ny L

\4

n

A\ 4
]

FiG. 4. Points of the square grid on the domain ¢/ and their images under the map (48), joined by straight line segments respectively.

The horizontal lines n, = const are mapped to discrete ellipses with the degenerate case n, = —p, which is mapped to a line
segment on the x-axis. The vertical lines n; = const are mapped to discrete hyperbolas with the degenerate cases n;y = —f, which
is mapped to a ray on the x-axis, and n; = —«, which is mapped to the positive y-axis.

Thus, we end up with the formula

Dl(nl +a)1/2(n2 +a— %)1/2
Dy(—ny — B)1p(n2 + By s

x(n) = 48)

Up to scaling along the coordinate axes, the latter defines discrete confocal coordinates on the first
quadrant of R?, if the domain U is extended to U U U* as demonstrated below. See Figs 4 and 5. From
this we generate a family of discrete confocal conics by reflections in the coordinate axes.

In order to implement the orthogonality condition, we extend x to /*, and compute the discrete
derivatives of the extension of x along the dual edges of the two dual square lattices ¢/ and U/*. Formulas
(37) for the ‘discrete derivatives’ of the discrete square root immediately lead to

1
(ny +a — 5)1/2

D1—1
(n +a+ 5)1/2

(n2 + B
(—=m — B — %)1/2

1
Aix(n) = 3
-D,

and

(m +a)pp
—— 17
(my + @) p

1
Agx(n) = 5
(=n1 — /3)1/2

y—
(2 + B + %)1/2
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DISCRETE CONFOCAL QUADRICS 23

Ny Y

Fi1G. 5. Points of the square grid on the domain &/ UU{/* and their images under the map (48). All pairs of corresponding dual edges
are mutually orthogonal.

If we introduce the notation
n? =n+ %(01,02), o, = %1,
then it turns out that
(Ax(n), Apx(n)) = (D} = D3),
so that dual edges are orthogonal if and only if
D? = Di.
We make the choice

D} =Dj = (49)

_
a—f—

(S

Formulas (48) with the constants (49) constitute a discretization of the parametrization (47).
It is readily verified that with the choice (49), a lattice point x(r) and its nearest neighbours x(rn*+)
and x(n"") are related by

(n +a)(m +a — 1)

1
Ol—ﬂ—z

x(n)x(n™) =

(50)
(m+B+3)m+p)
B—« +%

ymy@n') =

b}
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24 A.L. BOBENKO ET AL.
respectively by

m+a)ym+a—1)

1
a—p—1

x(n)x(n*") =

(51)
(m+B+Hm+p—1
B—oa+i

ym)yn) =

k)

which are natural discretizations of the formulas

s, (+a)(u+a) , (g +b)(u+b)
X = —_— y -_—
a—>b b—a

for the squares of coordinates. From (50) and (51) one easily derives

x(mx(mn™)  y(m)ym*) _

17

mta o +B+3
Xx(@n')  ymy@™) |
n+o— % n, + B '

and

Xxm™)  ymy@m) 1
ny+ o n + B+ % '
x(m)x(n™)  y)y(n) 1
mta—1 nm+p— % '

which can be considered as discretizations of the defining equations of the two confocal conics through
the point (x,y) € R*:

2 3
u +a u1+b_ ’
52 2
+ 2=
u+a u+b

Observe that relations (50) and (51) may be regarded as two maps

4

™ ix(m) > x(n™), 7 1x(n)— x(n),

whose commutativity T* o1t = ¥ ot is directly verified. Thus, the netx can be uniquely determined
from its value at a single vertex.
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z(n+ e+ e3)
®

z(n+3f) z(n+3f+el)
° °

S e
2

z(n +e;)

®
z(n—ex+3f)

FiG. 6. Combinatorics of the factorization property (52).

Proposition 6.6 in the case N = 2 can be shown by simple calculations starting either with the explicit
parametrization (48) or the maps (50) and (51). For instance, a factorization property associated with t++
(shift by 1f) reads:

(Ax(m), Ax(n + 3f)) _ $i(m)
(Ax(m — e+ 3f), Apx(m — e +f))  p2(m)’

(52)

where

$pi(n))  (mta—3)m+p)

p(m) ~ (mta+ D+

and a similar property is associated with the map t* . This can be seen as a discretization of the
isothermicity property of the system of confocal conics which reads

|9x /9w |* _ai(u)
|0x/0us > s (un)’

where

a;(u) _ (2 + a)(u + b)
ay(uy) (u1 + a)(u, +b)’

The combinatorics of the factorization property (52) is illustrated in Fig. 6.
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26 A.1. BOBENKO ET AL.

8. The case N =3
8.1 Continuous confocal coordinates

Leta > b > ¢ > 0. Then formulas

Jup + aus + aus + a
va—bya—c ’
=@y + D) uy + bJus + b

x(ui, up, u3) =

vy, un, uz) = mm s
=y + ) /= + ) Jus + ¢
2(uy, up, u3) =

Ja—ca/b—c
define a parametrization of the first octant of R? by confocal coordinates,
U={(u, o, u3) | —a<u <—b<u <—c<u}— Ri.

Confocal quadrics are obtained by reflections of the coordinate surfaces (corresponding to u; = const for
i = 1,2 or 3) in the coordinate planes of R3, see Fig. 1, left.

e The planes u; = const are mapped to ellipsoids. In the degenerate case u3 \ —c one has z = 0,
while x(u;, u,) and y(u,, u,) exactly recover the two-dimensional case (47) on the interior of an ellipse
given by u, /' —c.

e The planes u, = const are mapped to one-sheeted hyperboloids with the two degenerate cases
corresponding to u, /' —c and u, N\ —b.

e The planes u; = const are mapped to two-sheeted hyperboloids with the two degenerate cases
corresponding to u; /' —b and u; \{ —a.

8.2 Discrete confocal coordinates

Letw,B,y € Z witha > B > y. Then the formula

Di(ny + @) p(ny + o — %)1/2(”3 +oa—1p
x(n) = Dy(—n; — ﬁ)l/z(”z + :3)1/2(”3 +B - %)1/2 (53)
D3(—ny —y — %)]/2(—"2 = Vhips+v)ip

withx(n) = (x(n), y(n), z(n)) defines a discrete net in the first octant of R? (discrete confocal coordinate
system), that is, a map

U={(.m.n) el | —a<nm <—B<m=<-y=<nm}—>R
which is a separable solution of (dEPD ;). If this net is extended to &/ U U* then discrete confocal
quadrics are obtained by reflections of the coordinate surfaces (n; = const for i = 1,2 or 3) in the
coordinate planes of R?, see Fig. 1, right, and Fig. 7 provided that the constants D, are chosen in the
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DISCRETE CONFOCAL QUADRICS 27

manner described below. The five boundary components ny = —«, ny = —f,n, = —f8, n, = —y and
n3 = —y are mapped to degenerate quadrics that lie in the coordinate planes of R>.
One computes the discrete derivatives with the help of formulas (37):

(m+a—13) ,0m+a—1,

I
(m+a+3),
Ax(n) = 1 D, (2 + By p(ns + B — %)1/2 i
2 (—m=B=1),,
o Em =) + Vi
(—=m —y — 1)1/2
(m +a) s +a—1),
D,

(my + @) )p

(= = B)yp(ns + g — %)1/2

1
Arx(n) = 5 D,
12

(=m —y — %)1/2(’13 + V)i
1
(=np—y — 5)1/2

—D;

and
(m + o) p(ny + o — %)
(ns+a—3)

1/2

1
1/2

(=n1 — B)ipp(n2 + /3)1/2
(n; + ,3)1/2

1
Asx(n) = 3 D,

(=m —y — %),/2(—712 - V)l/z
(3 +y+3),,

3

In accordance with the general orthogonality condition, we now demand that dual pairs of edges and
faces of the nets x({/) and x(U/*) be orthogonal, so that

(A1x(n), Aox(n — e; + 3f))
(Aix(n), Asx(n — e3 + 5f))
(Arx(n), Asx(n — e3 + 3f))

07
07
0.

Evaluation of the above conditions leads to
Diny+a—3)—Dins+b—3)+Di(ns+c—3)=0,
Dimy+a—1)—Di(ny+b—1)+Di(my+c—1)=0, (54)
Dini+a—3)—D3(n+b—21)+Din+c—1)=0,
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28 A.1. BOBENKO ET AL.

FiG.7. A discrete ellipsoid (n1, ny integer, n3 = const) from the system (53) and its two adjacent layers from the dual n (n1, n2
half-integer, n3 = const £ %). All faces are planar and orthogonal to the corresponding edges of the other net.

where
a:a—{—%, b=p8+1, c:y—{—%.

These are, mutatis mutandis, identical with their classical continuous counterparts as demonstrated in
connection with the general case analysed in Section 6. Since the coefficients D; are independent of, for
instance, n3, the first condition in (54) splits into the pair

D} —D;+D; =0,
D?a — Db + Dic =0,

and it is evident that the remaining two conditions constitute linear combinations thereof. Accordingly,
the orthogonality requirement leads to the unique relative scaling

Di D D]

REMARK 8.1 The curvature lines of a smooth surface are characterized by the following properties: they
form a conjugate net, and along each curvature line two infinitesimally close normals intersect. In the
case of discrete confocal coordinates the edges of the dual net x({/*) can be interpreted as normals to the
faces of the net x({/). Since both nets have planar faces, any two neighbouring normals intersect. Thus,
extended edges of x(£*) constitute a discrete line congruence normal to the faces of the Q-net (discrete
conjugate net) x () (cf. [5] for the notion of a discrete line congruence).
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The bilinear relations between a lattice point x(n) and its nearest neighbours x(n + %a) may be
formulated as follows:

x(m)x(n + o) N ym)y@®n + 10) N z2(m)z(n + o) .

u+a u+b u-+c
x(m)x(n + o) N ym)yn + 1o) N 2m)z(n + 10) |
v+a v+b v+c -
x(m)x(n + 10) N ym)y@n + o) N 2m)z(n + 30) 1
w+a w+b w+c v
provided that
2 _ 1
(a—b)a—c)b—-c)
and
u:nl+igl_%, V:I’lz—i-iob—%, W:n3+%0'3_%.

8.3 Discrete umbilics and discrete focal conics

An interesting feature of discrete confocal quadrics which is not present in the two-dimensional case
is obtained by considering the ‘discrete umbilics’ (that is, vertices of valence different from 4) of the
discrete ellipsoids n; = const and the discrete two-sheeted hyperboloids n; = const. In the case of the
discrete ellipsoids, these have valence 2 and are located at n; = n, = —f so that (53) reduces to the
planar discrete curve

Di(a — B — %)(”3 +a—1),
x(n3) = 0
Ds(B—y — D +v)),

Once again, it turns out convenient to extend the domain of this one-dimensional lattice to the appropriate
subset of Z U Z* so that

x(n3)x(nz + 1) _ 2(n3)z(nz + 3) _

; ; 1.
o-p-3  B-v-1%

The latter constitutes a discretization of the focal hyperbola [14]
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30 A.1. BOBENKO ET AL.

which is known to be the locus of the umbilical points of confocal ellipsoids. Similarly, evaluation of
(53) at n, = n3 = —y produces the planar discrete curve
Di(a —y — D(n + a)yp
x(n)=| Dy(B—y —P(=n— P
0
which consists of the discrete umbilics of the discrete two-sheeted hyperboloids. Extension to half-integers
yields

x(n)x(ny + 1) N y(m)y(n + 1) _

1 1’
a—y—1 B—v—3

which reproduces, in the formal continuum limit, the classical focal ellipse

X2 y2

+
a—c b-—c

as the locus of the umbilical points of confocal two-sheeted hyperboloids.

Appendix A. Incircular nets as orthogonal Koenigs nets

A geometric discretization of confocal conics as incircular nets (IC-nets) was recently suggested in [7].
This version of discrete confocal conics is given via a simple local geometric condition: one considers
a congruence of straight lines with the combinatorics of the square grid such that all the quadrilaterals
formed by neighbouring lines possess inscribed circles. In this appendix we show that, surprisingly,
IC-nets share two crucial properties with discrete confocal coordinates introduced in the present article,
namely the Koenigs property and the orthogonality in the sense of Definition 6.2. One should mention
however that IC-nets are not separable, therefore they do not constitute a special case of discrete confocal
conics as defined in Definition 6.3.

DEFINITION Al A discrete net f : Z> D U — R? is called an incircular net (IC-net) if

1. The points f;; with i = const, respectively j = const, lie on straight lines, preserving the order.

2. Every elementary quadrilateral (f;}, fi+1,,fi+1,+1,/fij+1) has an incircle.

All lines of an IC-net touch some conic «, while all vertices of one diagonal i + j = const, resp.
i —j = const, lie on a conic confocal to «.

Denote the incentre of the quadrilateral (f;;, fi1,, fir1,41.fij+1) by @;j. So, @ : U — R? is the net of
incentres of f. Note that @ also possesses property (i). Denote the two dual subnets of w, corresponding
to (i,j) with 2k := i + j and 2/ := j — i even, respectively odd, by n and 7:

M o= o, (kD) € 7% and  figy 1= wx_ipps (k,1) € (ZD)".

In Fig. 8, the edges of the nets 1 and 7 are shown. The intersection points of dual pairs of edges happen
to be points of the underlying IC-net f. At each such point, the intersecting edges of 1 and of 7 are
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DISCRETE CONFOCAL QUADRICS 31

FiG. 8. Two dual subnets 1 and 7 of the net of incentres of an IC-net. The edges are tangent to confocal conics, and corresponding
edges of the two nets are orthogonal.

tangent to the confocal conics mentioned above (the conics through f;; with i 4 j = 2k = const, resp.
with j — i = 2] = const). Therefore, the dual pairs of edges are orthogonal. We show that these nets also
possess the Koenigs property and collect their important properties in the following theorem.

THEOREM Al For the two dual subnets  and 7 of the incentre-net of an IC-net:

(i) the edges are tangent to confocal conics, the points of tangency being the points of the IC-net;

(ii) each subnet consists of intersection points of diagonals of elementary quadrilaterals of the other
subnet;

(iii) both subnets are circular-conical (that is, opposite angles sum up to 7 in each quadrilateral and at
each vertex-star);

(iv) each pair of dual edges intersects orthogonally;

(v) both subnets are Koenigs nets.
Proof.

1. See[7].
2. This holds for the two dual subnets of any net consisting of straight lines.

3. Each of the dual nets corresponds to the incentres of a checkerboard IC-net, that is, a net having
incircles in every other quadrilateral (both checkerboard IC-nets fitting perfectly into each other
forming a regular IC-net). Checkerboard IC-nets have been observed to be circular-conical in [7].
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32 A.1. BOBENKO ET AL.

F1G.9. Koenigs property of the incentre net w of an IC-net implies the Koenigs property for its two diagonal nets 1 and 7.

4. Dual edges intersect at a point where two lines of the IC-net intersect. The dual edges of 1 and of ;
are the two angle bisectors of those two lines of the IC-net, and therefore are mutually orthogonal.

5. From now on, we use the shift notation, like in Section 4, so that 1., () := n(n £ e;) and
ngm) = n(n + e; + e;), with the understanding that the argument of »n, 7 is (k,[), while the
argument of f is (7,j). Consider four quadrilaterals of the net n adjacent to one vertex (compare
Fig. 9). The points of intersection of diagonals of these four quadrilaterals are the points 7, (1), 712
and 7)) of the net 77. We show that

ial  Meiel  Meoil  Meyiol _
Mayna ! Menenl  neyl 1Hanol

This is equivalent to the net 1 being Koenigs (see [5, p. 52]).

Considering one of the four quotients on the left-hand side, we find:

Inwnanl  area(nay, naz.n)  Vnnayl - Immal
lanne|  area(@ay, nesn)  fanianl - nme)l’

since the dual edges of 1 and of 7 are orthogonal. In the product the lengths of the edges [nn;|
cancel out, and we obtain

|'7(l)7~l(12)| . |71(2)ﬁ(2)| ) |77(71)ﬁ| ) |'7(72)ﬁ(1)|
Mannol Moncol eyl onol
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_< 12fl - Inafol  1maafoyl |77<2)f(2)|>1
Vil Vonanl  faatiel  fonl

The latter product is equal to 1 since the triangles (7,f,f2)) and (a2),f).faz) are perspective
triangles (Menelaus condition for Desargues configuration, cf. [5, p. 361]). We mention that the
right-hand side of the latter formula being equal to 1 is the Koenigs condition for the net w, while
the left-hand side being equal to 1 is the Koenigs condition for the net 7.

Apparently, there also holds:
(vi) the dual subnets n and 1) satisfy the discrete factorization property (52),

but at present this only has been checked via numerical experiments.
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