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Notation

Ω open domain in RN for N ≥ 1
∂Ω topological boundary of Ω
x = (x1, . . . , xn) point in RN for N ≥ 1
dx = dx1 . . . dxN Lebesgue measure in Ω
QT (0, T )× Ω for T > 0
t time variable
ΣT (0, T )× ∂Ω
Du gradient of a function u
supp f support of a function f
f+, f− max(f, 0), min(f, 0)
D(Ω), D(QT ),... test functions in Ω, QT ,...
D+(Ω), D+(QT ),... positive test functions in Ω, QT ,...
C(Ω),C(QT ), ... the function space of continuous functions in Ω, QT ,...
Ck(Ω),Ck(QT ), ... for 1 ≤ k ≤ ∞ the function space

of k times continuously differentiable functions in Ω, QT ,...
Lp(Ω) {f : Ω→ R|f measurable,

∫
Ω
|f(x)|pdx <∞} for 1 ≤ p <∞

L∞(Ω) {f : Ω→ R|f measurable, ess supx∈Ω |f(x)| <∞}
W 1,p(Ω) {f : Ω→ R|f ∈ Lp(Ω), Df ∈ (Lp(Ω))N} for 1 ≤ p ≤ +∞
W 1,p

0 (Ω) Closure of D(Ω) in W 1,p(Ω) for 1 ≤ p < +∞
H1(Ω) {f : Ω→ R|f ∈ L2(Ω), Df ∈ (L2(Ω))N}
H−1(Ω) dual space of H1(Ω)
X arbitrary Banach space
X ′ dual space of the Banach space X

Lp(0, T ;X) for 1 ≤ p <∞, {f : Ω→ X|
∫ T

0
‖f(t)‖pXdt <∞}

L∞(0, T ;X) {f : (0, T )→ X| ess sup ‖f(t)‖X <∞}
C([0, T ];X) function space of continuous functions

defined on [0, T ] with values in X
D((0, T );X) test functions with values in X
I I : X → X identity mapping on X
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Chapter 1

Introduction

Let Ω be a bounded domain in RN (N ≥ 1) with Lipschitz boundary ∂Ω
if N ≥ 2. Our aim is to prove existence and uniqueness of renormalized
solutions to the nonlinear elliptic equation

(E, f)

{
β(u)− div(a(x,Du) + F (u)) 3 f in Ω,

u = 0 on ∂Ω

and to the corresponding parabolic problem

(P, f, b0)


β(u)t − div(a(x,Du) + F (u)) 3 f in QT ,

u = 0 on ΣT ,

β(u(0, ·)) 3 b0 in Ω

with right-hand side f ∈ L1(Ω) for (E, f) and f ∈ L1(QT ) for (P, f, b0).
Furthermore, F : R → RN is locally Lipschitz continuous and β : R → 2R a
set-valued, maximal monotone mapping such that 0 ∈ β(0).
a : Ω × RN → RN is a Carathéodory function satisfying the following as-
sumptions:

(A1) There exist a continuous function p : Ω→ (1,∞),
1 < minx∈Ω p(x) ≤ N (the case minx∈Ω p(x) > N is easy and can be
solved by variational methods) and a positive constant γ such that
a(x, ξ) · ξ ≥ γ|ξ|p(x) holds for all ξ ∈ RN and almost every x ∈ Ω.

(A2) |a(x, ξ)| ≤ d(x)+ |ξ|p(x)−1 for almost every x ∈ Ω and for every ξ ∈ RN ,
where d is a nonnegative function in Lp

′(·)(Ω) and p′(x) := p(x)/(p(x)−
1) for a.e. x ∈ Ω.

(A3) (a(x, ξ)− a(x, η)) · (ξ − η) ≥ 0 for almost every x ∈ Ω and for every ξ,
η ∈ RN .

4



CHAPTER 1. INTRODUCTION 5

Due to the assumptions (A1), (A2) and (A3), the functional setting involves
Lebesgue and Sobolev spaces with variable exponent Lp(·)(Ω) and W 1,p(·)(Ω).
The theory of Lebesgue and Sobolev spaces with variable exponent has ex-
perienced a revival of interest, shown in a substantial amount of publications
over the past few years. An extensive list of references concerning the recent
advances and open problems can be found in Diening et al. [38].

The equation (E, f) can be viewed as generalization of the p(x)-Laplacian
equation

(L, f)

{
− div(|Du|p(x)−2Du) = f in Ω,

u = 0 on ∂Ω.

In case of a constant exponent p(·) ≡ p, 1 < p < ∞, and f ∈ W−1,p′(Ω)
it follows from Minty-Browder Theorem that there exists a unique solution
u ∈ W 1,p

0 (Ω) to (L, f) in the sense of distributions. For 1 < p < N and
right-hand side f ∈ L1(Ω) we can not expect solutions u ∈ W 1,p

0 (Ω). Indeed,
supposing that for each f ∈ L1(Ω) there exists a solution u ∈ W 1,p

0 (Ω) of
(L, f), as −div(|Du|p−2Du) ∈ W−1,p′(Ω), it follows that L1(Ω) ⊂ W−1,p′(Ω).
By duality, this implies W 1,p

0 (Ω) ⊂ L∞(Ω). From Sobolev embedding the-
orems we know that this is not true in general if 1 < p < N . Suppos-
ing 1 < p < 2 and that there exists a solution u ∈ W 1,1

0 (Ω) of (L, f), as
|Du|p−2Du ∈ (L1/(p−1)(Ω))N we get −div(|Du|p−2Du) ∈ W−1,1/(p−1)(Ω) and

therefore L1(Ω) ⊂ W−1,1/(p−1)(Ω). By duality, this implies W
1,1/(2−p)
0 (Ω) ⊂

L∞(Ω). By Sobolev embedding theorems, this is true if p > 2− 1
N

. Therefore

we can not even expect solutions u ∈ W 1,1
0 (Ω) of (L, f) for 1 < p < 2− 1

N
and

f ∈ L1(Ω). In the case of constant p > 2− 1
N

the existence of a distributional
solution u of (L, f) in the space ⋂

q<
N(p−1)
N−1

W 1,q
0 (Ω)

has been shown in [25]. As it has been shown in [70] and [62], the distri-
butional solution u is in general not unique. In order to get well-posedness
for L1(Ω)-data, the notion of an entropy solution for problem (L, f) was in-
troduced by Bénilan et al. in [15] in the framework of a constant p(·) ≡ p.
Moreover, existence and uniqueness of an entropy solution of (L, f) has been
established for 1 < p < N . In [67] the result of [15] has been extended
to nonconstant p ∈ W 1,∞(Ω). An equivalent notion of solution for problem
(L, f) is called renormalized solution. The concept of renormalized solutions
was introduced by DiPerna and Lions in [39]. This notion was then extended
to the study of various problems of partial differential equations of parabolic,
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elliptic-parabolic and hyperbolic type, we refer to [20], [23], [56], [32], [2] and
the references therein for more details. In [10], existence of renormalized
entropy solutions for quasi-linear anisotropic degenerate parabolic equations
has been shown and in [11] the notion of renormalized solution was adapted
to an anisotropic reaction-diffusion-advection system. In [12], existence and
uniqueness of renormalized solutions to (L, f) has been shown for continuous
functions p : Ω→ (1,∞), such that 2− 1

N
< minx∈Ω p(x).

(P, f, b0) can be viewed as a generalisation of the parabolic p(x)-Laplacian
equation

(L, f, u0)


ut − div(|Du|p(x)−2Du) = f in QT ,

u = 0 on ΣT ,

u(0, ·) = u0(·) in Ω.

One of the motivations for studying (E,F ) and (P, f, b0) comes from ap-
plications to electro-rheological fluids (see [64], [49] for more details) as an
important class of non-Newtonian fluids. Other important applications are
related to image processing and elasticity (see [33], [75]). Note that (L, f, u0)
has a more complicated nonlinearity than the classical p-Laplacian since it is
nonhomogenous. In [13] existence and uniqueness of renormalized solutions
to (L, f, u0) was shown for arbitrary L1-data.

This thesis is organized as follows: In the next chapter we will present
some general definitions and results concerning the necessary function spaces.
Moreover, we will introduce some notation and functions which will be used
frequently. In the third chapter we will study existence and uniqueness of
weak and renormalized solutions to the elliptic problem (E, f). These results
will serve us as a basis for the study of the evolution problem associated with
the same convection-diffusion operator: More precisely, from these results
we deduce that there exists a mild solution of the abstract Cauchy problem
corresponding to (P, f, b0) in the sense of nonlinear semigroup theory. The
nonlinear semigroup theory gives a general notion of solution, called ‘mild’
solution for abstract Cauchy problems of the form

du

dt
+ Au 3 f

where A is (a possibly multivalued) operator in a Banach space X and f ∈
L1(0, T ;X). The mild solution is, roughly speaking, the uniform limit of
piecewise constant approximate solutions of time-discretized equations given
by an implicit Euler scheme. This result will lead us to the appropriate energy
space for weak and renormalized solutions of (P, f, b0) with variable exponent.
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At the end of the last chapter we will show existence and uniqueness of
renormalized solutions using the ideas developed in [18], [2], [68] and [22] for
the case of a constant exponent.

For all the basic definitions and results from nonlinear semigroup theory
we mostly refer to the unpublished book of Bénilan, Crandall and Pazy (see
[17]). Other references are [8], [72], [59], [58] [14], [36], [30]. Consider also
[16], [34], [9], [35] and [19] for furhter reading and applications to partial
differential equations.

For all basic definitions and results concerning (linear and nonlinear)
functional analysis and classical Lebesgue and Sobolev spaces we refer to,
e.g., [29], [66]. For the theory of vector-valued integration and Sobolev spaces
see, e.g., [40], [48].



Chapter 2

Function spaces and notation

2.1 Lebesgue and Sobolev spaces with vari-

able exponent

We recall in what follows some definitions and basic properties of Lebesgue
and Sobolev spaces with variable exponent (see for example [52], [44], [43],
[37], [38] for proofs and details and [60] for general theory of Orlicz spaces).
For an open set Ω ⊂ RN , let p : Ω→ [1,∞) be a measurable function, which
is called the variable exponent, such that

1 ≤ p− := ess infx∈Ω p(x) ≤ p+ := ess supx∈Ω p(x) <∞.

We define the variable exponent Lebesgue space Lp(·)(Ω) to consist of classes
of almost everywhere equal measurable functions f : Ω → R, such that the
modular ρp(f) :=

∫
Ω
|f(x)|p(x)dx is finite. On Lp(·)(Ω), f → ‖f‖Lp(·)(Ω) :=

inf{λ > 0 : ρp(
f
λ
) < 1} defines a norm, (Lp(·)(Ω), ‖ · ‖Lp(·)(Ω)) is a Banach

space and D(Ω) is dense in Lp(·)(Ω). If p− > 1, then Lp(·)(Ω) is reflexive
and its dual space is isomorphic to Lp

′(·)(Ω), where 1
p(·) + 1

p′(·) = 1. For any

f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω), the Hölder type inequality∣∣∣∣∫
Ω

fg dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
‖f‖Lp(·)(Ω)‖g‖Lp′(·)(Ω) (2.1.1)

holds true. Convergence with respect to the modular is equivalent to conver-
gence with respect to the norm. We have the following relation between the
modular and the norm:

min
{
‖f‖p

−

Lp(·)(Ω)
, ‖f‖p

+

Lp(·)(Ω)

}
≤
∫

Ω

|f(x)|p(x)dx ≤ max
{
‖f‖p

−

Lp(·)(Ω)
, ‖f‖p

+

Lp(·)(Ω)

}
.

(2.1.2)

8
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Since we always assume Ω to be bounded, we have

Lq(·)(Ω) ↪→ Lp(·)(Ω) (2.1.3)

with continuous embedding for all variable exponents q ∈ L∞(Ω) such that
p(x) ≤ q(x) almost everywhere in Ω. We define the Sobolev space with
variable exponent

W 1,p(·)(Ω) = {f ∈ Lp(·)(Ω) : |Df | ∈ Lp(·)(Ω)}.

For f ∈ W 1,p(·)(Ω), f → ‖f‖W 1,p(·)(Ω) := ‖f‖Lp(·)(Ω) + ‖|Df |‖Lp(·)(Ω) defines a

norm such that, for (W 1,p(·)(Ω), ‖ · ‖W 1,p(·)) is a Banach space and we have a
continuous embedding

W 1,q(·)(Ω) ↪→ W 1,p(·)(Ω) (2.1.4)

for all variable exponents q ∈ L∞(Ω) such that p(x) ≤ q(x) almost every-
where in Ω. Moreover, if p− > 1, then W 1,p(·)(Ω) is reflexive. For N = 1 and
Ω = (a, b), a, b ∈ R, a < b, it is an immediate consequence of (2.1.4) that

W 1,p(·)(a, b) ↪→ W 1,p−(a, b) ↪→ C([a, b]) (2.1.5)

with continuous and dense embedding. We define also

W
1,p(·)
0 (Ω) := D(Ω)

‖·‖
W1,p(·)(Ω) .

For exponents p ∈ C(Ω,R+), p− ≥ 1 and f ∈ W
1,p(·)
0 (Ω) the Poincaré in-

equality
‖f‖Lp(·)(Ω) ≤ C‖|Df |‖Lp(·)(Ω) (2.1.6)

holds true and the embedding W
1,p(·)
0 (Ω) into Lp(·)(Ω) is compact (see [52],

[44]). In particular, W
1,p(·)
0 (Ω) is a reflexive Banach space if p− > 1. Its

dual space will be denoted by W−1,p′(·)(Ω). According to [44] and [37], for a
bounded domain Ω with Lipschitz boundary and p+ < N , we have a compact
embedding

W 1,p(·)(Ω) ↪→ Lq(·)(Ω)

for all measurable exponents q : Ω → [1,∞) such that q(x) < p∗(x) − ε
almost everywhere in Ω for some ε > 0, where p∗(x) := Np(x)/(N − p(x))
almost everywhere in Ω. Some more general Sobolev embedding results for
variable exponents p ∈ L∞(Ω) such that p− > 1 can be found in [52]. To
the best of our knowledge, no general necessary and sufficient conditions for
the Poincaré inequality (2.1.6) are known beyond continuity of the variable
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exponent. This is different in the particular case of one space dimension: If
Ω = (a, b) for a, b ∈ R, a < b, from Poincaré inequality in W 1,1

0 (a, b) it follows

that W 1,1
0 (a, b) is continuously embedded into C([a, b]). Since W

1,p(·)
0 (a, b) ⊂

W 1,1
0 (a, b) there exists C1 > 0 such that

‖f‖L∞(a,b) ≤ C1‖|Df |‖L1(a,b) (2.1.7)

for all f ∈ W 1,p(·)
0 (a, b). Now, from (2.1.7) and the continuous embedding of

Lp(·)(a, b) into L1(a, b) it follows that there exists C2 > 0 such that

‖f‖L∞(a,b) ≤ C2‖|Df |‖Lp(·)(a,b) (2.1.8)

for all f ∈ W 1,p(·)
0 (a, b). Since L∞(a, b) ↪→ Lp(·)(a, b), from (2.1.8) it follows

that
‖f‖Lp(·)(a,b) ≤ C3‖|Df |‖Lp(·)(a,b) (2.1.9)

holds for all f ∈ W 1,p(·)
0 (a, b), where C3 > 0 does not depend on f . Hence,

the Poincaré inequality (2.1.6) holds for any p ∈ L∞(a, b) such that p− ≥ 1.
However, we will exclusively work with Lebesgue and Sobolev spaces with
continuous variable exponent p : Ω → [1,∞) such that 1 < p−. We do not
assume p(·) to be log-Hölder continuous:

Definition 2.1.1. The continuous function p : Ω → [1,∞) satisfies the
log-Hölder continuity condition iff there exists a non-decreasing function
ω : (0,∞)→ R such that lim supt→0+ ω(t) ln(1/t) < +∞ and

|p(x)− p(y)| < ω(|x− y|) (2.1.10)

holds for all x, y ∈ Ω, |x− y| < 1.

If log-Hölder continuity condition (2.1.10) holds, C∞(Ω) is dense in
W 1,p(·)(Ω) and

W
1,p(·)
0 (Ω) = W 1,p(·)(Ω) ∩W 1,1

0 (Ω).

Moreover, if 1 < p− < p+ < N , then the Sobolev embedding holds also
for q(·) = p∗(·) (see [37] for more details). An additional difficulty to our

setting arises from the fact that W 1,p(·)(Ω) ∩W 1,1
0 (Ω) and W

1,p(·)
0 (Ω) are in

general not equal, hence different duality frameworks for (E, f) are possible
and lead to different notions of solution (see [74], [73], [3] for more details).

We will restrict ourselves to the W
1,p(·)
0 (Ω)/W−1,p′(·)(Ω) duality. We refer to

[3] for some existence and uniqueness results to (E, f) in the case F ≡ 0
and p ∈ L∞(Ω) such that p− > 1 where different duality frameworks and

notions of solution have been considered. Note that W
1,p(·)
0 (Ω) is stable by
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composition with Lipschitz functions, even if for a function w ∈ W 1,p(·)(Ω)

having trace zero does not guarantee that w ∈ W
1,p(·)
0 (Ω). Indeed, let

L : R → R be Lipschitz continuous such that L(0) = 0 and u ∈ W 1,p(·)
0 (Ω).

Then there exists a sequence (un)n ⊂ D(Ω), such that un → u in W 1,p(·)(Ω)
as n → ∞. From the Lipschitz continuity of L it follows immediately that
L(un) → L(u) as n → ∞ in Lp(·)(Ω). Since L′ is essentially bounded and
D(L◦un) = L′(un)D(un) almost everywhere in Ω and inD′(Ω) for each n ∈ N,

we have L(un) ∈ W 1,p+

0 (Ω), hence in W
1,p(·)
0 (Ω) (by continuous embedding

of W 1,p+

0 (Ω) into W
1,p(·)
0 (Ω)). Moreover, there exists a constant C > 0 not

depending on n ∈ N such that

‖|D(L(un))|‖p(·) ≤ C.

By reflexivity of W
1,p(·)
0 (Ω) it follows that there exists a (not relabeled)

subsequence of (L(un))n converging to L(u) weak in W
1,p(·)
0 (Ω). Therefore,

L(u) ∈ W 1,p(·)
0 (Ω).

2.2 Function spaces for the evolution prob-

lem

If X is a Banach space, 1 ≤ q ≤ ∞ and T > 0, then Lq(0, T ;X) denotes
the space of strongly measurable functions u : (0, T ) → X such that t →
‖u(t)‖X ∈ Lq(0, T ). Moreover, C([0, T ];X) denotes the space of continuous
functions u : [0, T ]→ X endowed with the norm

‖u‖C([0,T ];X) = max
t∈[0,T ]

‖u(t)‖X .

The following density result will be used in the study of the evolution prob-
lem:

Proposition 2.2.1. Let X = Lp(Ω) or X = W 1,p(Ω) and 1 ≤ p <∞. Then,
D((0, T )× Ω) is dense in Lq(0, T ;X) for any 1 ≤ q <∞.

Proof: From [40], Cor. 1.3.1, p. 13 it follows that

Z :=

{
n∑
i=1

φi(x)ψi(t), n ≥ 1, φi ∈ D(Ω), ψi ∈ D(0, T )

}
⊂ D((0, T )× Ω)

is dense in Lq(0, T ;X) for any Banach space X such that D(Ω) is dense in
X and 1 ≤ q <∞.
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For T > 0 let QT := (0, T ) × Ω. Extending a variable exponent
p : Ω → [1,∞) to QT by setting p(t, x) := p(x) for all (t, x) ∈ QT , we
may also consider the generalized Lebesgue space

Lp(·)(QT ) :=

{
u : QT → R; u is measurable,

∫
QT

|u(t, x)|p(x)d(t, x) <∞
}
,

endowed with the norm

‖u‖Lp(·)(QT ) := inf
µ>0

{∫
QT

∣∣∣∣u(t, x)

µ

∣∣∣∣p(x)

d(t, x) ≤ 1

}
,

which, of course shares the same properties as Lp(·)(Ω). Moreover, if p(·) is
log-Hölder continuous in Ω, so it is in QT . Indeed, if p(·) satisfies the log-
Hölder continuity condition in Ω, according to Definition 2.1.1, there exists a
non-decreasing function ω : (0,∞)→ R such that lim supt→0+ ω(t) ln(1/t) <
+∞ and

|p(t, x)− p(s, y)| = |p(x)− p(y)| < ω(|x− y|) ≤ ω(|(t, x)− (s, y)|) (2.2.1)

holds for all (t, x), (s, y) ∈ QT such that |(t, x)− (s, y)| < 1.

Let p : Ω → [1,∞) be a continuous variable exponent and T > 0. The
abstract Bochner spaces Lp

+
(0, T ;Lp(·)(Ω)) and Lp

−
(0, T ;Lp(·)(Ω)) will be

important in the study of renormalized solutions to (P, f, b0). In the following
we identify an abstract function like v ∈ Lp

−
(0, T ;Lp(·)(Ω)) with the real-

valued function v defined by v(t, x) = v(t)(x) for almost all t ∈ (0, T ) and
almost all x ∈ Ω. In the same way we associate to any function v ∈ Lp(·)(QT )
an abstract function v : (0, T )→ Lp(·)(Ω) by setting v(t) := v(t, ·) for almost
every t ∈ (0, T ).

Lemma 2.2.2. We have the following continuous dense embeddings:

Lp
+

(0, T ;Lp(·)(Ω))
d
↪→ Lp(·)(QT )

d
↪→ Lp

−
(0, T ;Lp(·)(Ω)). (2.2.2)

Proof: For v ∈ Lp(·)(QT ), the corresponding abstract function v : (0, T )→
Lp(·)(Ω) is strongly Bochner measurable (by the Dunford-Pettis Theorem,
since it is weakly measurable and Lp(·)(Ω) is seperable). Moreover, using
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(2.1.2) and the Jensen inequality, we find the estimate∫ T

0

‖v(t)‖p
−

Lp(·)(Ω)
dt

≤
∫ T

0

max

[∫
Ω

|v(t, x)|p(x)dx,

(∫
Ω

|v(t, x)|p(x)dx

)p−/p+
]
dt

≤
∫ T

0

∫
Ω

|v(t, x)|p(x)dxdt+ T 1−p−/p+

(∫ T

0

∫
Ω

|v(t, x)|p(x)dxdt

)p−/p+

≤ max
[
‖v‖p

−

Lp(·)(QT )
, ‖v‖p

+

Lp(·)(QT )

]
+ T 1−p−/p+

max
[
‖v‖(p−)2/p+

Lp(·)(QT )
, ‖v‖p

−

Lp(·)(QT )

]
.

(2.2.3)

Therefore, the embedding of Lp(·)(QT ) into Lp
−

(0, T ;Lp(·)(Ω)) is continu-
ous. If u ∈ Lp

+
(0, T ;Lp(·)(Ω)), from Lp(·)(Ω) ↪→ L1(Ω) it follows that u ∈

Lp
+

(0, T ;L1(Ω)), hence, according to [40], Prop. 1.8.1, p. 28, the correspond-
ing real-valued function u : (0, T )×Ω→ R is measurable and using the same
arguments as above we find the continuous embedding of Lp

+
(0, T ;Lp(·)(Ω))

into Lp(·)(QT ). It is left to prove that both embeddings are dense. We
consider the first embedding and fix u ∈ Lp(·)(QT ). Since D(QT ) is dense
Lp(·)(QT ), we find a sequence (un)n ⊂ D(QT ) converging to u in Lp(·)(QT ) as
n → ∞. According to Proposition 2.2.1, D(QT ) is densely embedded into
Lp

+
(0, T ;Lp

+
(Ω)), therefore un ∈ Lp

+
(0, T ;Lp(·)(Ω)) for all n ∈ N. To prove

the denseness of the second embedding, we fix v ∈ Lp−(0, T ;Lp(·)(Ω)). Tak-
ing a standard sequence of mollifiers (ρn)n ⊂ D(R) and extending v by zero
onto R, from [40], Proposition 1.7.1, p. 25, it follows that the regularized (in
time) function

(ρn ∗ v)(·) :=

∫
R
ρn(· − s)v(s)ds (2.2.4)

is in Lp
+

(R;Lp(·)(Ω)) for each n ∈ N, hence in Lp(·)(QT ) and converges to v
in Lp

−
(0, T ;Lp(·)(Ω)) (see [40], Théorème 1.7.1, p. 27).

2.3 Notation and functions

Let us introduce some notation and functions that will be frequently used. If
A ⊂ Ω is a Lebesgue measurable set, we will denote its Lebesgue measure by
|A| and by χA its characteristic function. For any u : Ω→ R and k ≥ 0, we
write {|u| ≤ (<,>,≥,=)k} for the set {x ∈ Ω : |u(x)| ≤ (<,>,≥,=)k}. For
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r ∈ R, let r → r+ := max(r, 0), r → sign0(r) the usual sign function which
is equal to −1 on ]−∞, 0[, to 1 on ]0,∞[ and to 0 for r = 0. r → sign+

0 (r) is
the function defined by sign+

0 (r) = 1 if r > 0 and sign+
0 (r) = 0 if r ≤ 0. Let

hl : R→ R be defined by hl(r) := min((l + 1− |r|)+, 1) for each r ∈ R. For
any given k > 0, we define the truncation function Tk : R→ R by

Tk(r) :=


−k, if r ≤ −k,
r, if |r| < k,

k, if r ≥ k.

.

For δ > 0 we define H+
δ : R→ R by

H+
δ (r) =


0, r < 0
1
δ
r, 0 ≤ r ≤ δ

1, r > δ

and Hδ : R→ R by

Hδ(r) =


−1, r < −δ
1
δ
r, −δ ≤ r ≤ δ

1, r > δ.

Clearly, H+
δ is an approximation of sign+

0 and Hδ is an approximation of
sign0.

Remark 2.3.1. The following argument will be frequently used to treat
the

”
convection“ term F (u) · Du in (E, f) and (P, f, b0): Observe that for

F = (F1, . . . , FN) ∈ L∞(R,RN) such that F (0) = 0, u ∈ W 1,p(·)
0 (Ω) we have∫

Ω

F (u) ·Du = 0. (2.3.1)

Proof: Let us define
∫ s

0
F (σ)dσ :=

(∫ s
0
F1(σ)dσ, . . . ,

∫ s
0
FN(σ)dσ

)
and

φ : R → RN , φ(s) :=
∫ s

0
F (σ)dσ for s ∈ R. Observe that φ is Lipschitz

continuous such that φ(0) = 0 and therefore φ ◦u is in (W
1,p(·)
0 (Ω))N . Hence,

∂

∂xi
(φ ◦ u) = F (u)

∂

∂xi
u (2.3.2)

in D′(Ω) for any i = 1, . . . , N . Consequently,

− div

(∫ u

0

F (σ)dσ

)
= F (u) ·Du (2.3.3)

in D′(Ω) and (2.3.1) follows using (2.3.3) and the Gauss-Green Theorem for
Sobolev functions from u = 0 almost everywhere on ∂Ω.



Chapter 3

The elliptic case

3.1 Renormalized solutions

Definition 3.1.1. A renormalized solution to (E, f) is a pair of functions
(u, b) satisfying the following conditions:

(R1) u : Ω → R is measurable, b ∈ L1(Ω), u(x) ∈ D(β(x)) and b(x) ∈
β(u(x)) for a.e. x ∈ Ω.

(R2) For each k > 0, Tk(u) ∈ W 1,p(·)
0 (Ω) and∫

Ω

bh(u)ϕ+

∫
Ω

(a(x,Du) + F (u)) ·D(h(u)ϕ) =

∫
Ω

fh(u)ϕ (3.1.1)

holds for all h ∈ C1
c (R) and all ϕ ∈ W 1,p(·)

0 (Ω) ∩ L∞(Ω).

(R3)
∫
{k<|u|<k+1} a(x,Du) ·Du→ 0 as k →∞.

Remark 3.1.1. We can easily check that all the terms in (R2) make sense.

We recall that a function u such that Tk(u) ∈ W
1,p(·)
0 (Ω), for all k > 0,

does not necessarily belong to W 1,1
0 (Ω). However, it is possible to define its

generalized gradient (still denoted by Du) as the unique measurable function
v : Ω→ RN such that

DTk(u) = vχ{|u|<k}

for a.e. x ∈ Ω and for all k > 0, where χE denotes the characteristic function
of a measurable set E. Moreover, if u ∈ W 1,1

0 (Ω), then v coincides with the
standard distributional gradient of u. See [15], [67] for more details.

The main existence result of this chapter is the following theorem:

Theorem 3.1.2. For f ∈ L1(Ω) there exists at least one renormalized solu-
tion (u, b) to (E, f).

15



CHAPTER 3. THE ELLIPTIC CASE 16

3.2 Existence for L∞-data

To prove Theorem 3.1.2, we will introduce and solve approximating problems.
To this end, for f ∈ L1(Ω) and m,n ∈ N we define fm,n : Ω→ R by

fm,n(x) = max(min(f(x),m),−n)

for almost every x ∈ Ω. Clearly, fm,n ∈ L∞(Ω) for each m,n ∈ N, |fm,n(x)| ≤
|f(x)| a.e. in Ω, hence limn→∞ limm→∞ fm,n = f in L1(Ω) and almost ev-
erywhere in Ω. The next proposition will give us existence of renormalized
solutions (um,n, bm,n) of (E, fm,n) for each m,n ∈ N:

Proposition 3.2.1. For f ∈ L∞(Ω) there exists at least one renormalized
solution (u, b) to (E, f).

The proof of Proposition 3.2.1 will be divided into several steps.

3.2.1 Approximate solutions for L∞-data

At first we approximate (E, f) for f ∈ L∞(Ω) by problems for which existence
can be proved by standard variational arguments. For 0 < ε ≤ 1, let βε : R→
R be the Yosida approximation (see [28]) of β. We introduce the operators

A1,ε : W
1,p(·)
0 (Ω)→ (W

1,p(·)
0 (Ω))′,

u→ βε(T1/ε(u)) + ε arctan(u)− div a(x,Du)

and
A2,ε : W

1,p(·)
0 (Ω)→ (W

1,p(·)
0 (Ω))′,

u→ −div F (T1/ε(u)).

Because of (A2) and (A3), A1,ε is well-defined and monotone (see [55], p.
157). Since βε ◦ T1/ε and arctan are bounded and continuous and thanks
to the growth condition (A2) on a, it follows that A1,ε is hemicontinuous
(see [55], p.157). From the continuity and boundedness of F ◦ T1/ε it follows
that A2,ε is strongly continuous. Therefore the operator Aε := A1,ε +A2,ε is
pseudomonotone. Using the monotonicity of βε, the Gauss-Green Theorem
for Sobolev functions and the boundary condition on the

”
convection“ term∫

Ω
F (T1/ε(u)) · Du, we show with similar arguments as in [12] that Aε is

coercive and bounded. Then it follows from [55], Theorem 2.7, that Aε is

surjective, i.e., for each 0 < ε ≤ 1 and f ∈ (W
1,p(·)
0 (Ω))′ there exists at least

one solution uε ∈ W 1,p(·)
0 (Ω) to the problem

(Eε, f)

{
βε(T1/ε(uε)) + ε arctan(uε)− div(a(x,Duε) + F (T1/ε(uε))) = f in Ω,

u = 0 on ∂Ω
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such that∫
Ω

(βε(T1/ε(uε)) + ε arctan(uε))ϕ+

∫
Ω

(a(x,Duε) + F (T1/ε(uε)) ·Dϕ = 〈f, ϕ〉

(3.2.1)

holds for all ϕ ∈ W 1,p(·)
0 (Ω), where 〈·, ·〉 denotes the duality pairing between

W
1,p(·)
0 (Ω) and (W

1,p(·)
0 (Ω))′.

In the next proposition, we establish uniqueness of solutions uε of (Eε, f)
with right-hand sides f ∈ L∞(Ω) through a comparison principle that will
play an important role in the approximation of renormalized solutions to
(E, f) with f ∈ L1(Ω).

Proposition 3.2.2. For 0 < ε ≤ 1 fixed and f, f̃ ∈ L∞(Ω) let uε, ũε ∈
W

1,p(·)
0 (Ω) be solutions of (Eε, f) and (Eε, f̃), respectively. Then, the follow-

ing comparison principle holds:

ε

∫
Ω

(arctan(uε)− arctan(ũε))
+ ≤

∫
Ω

(f − f̃) sign+
0 (uε − ũε). (3.2.2)

Proof: We use the test function ϕ = H+
δ (uε− ũε) in the weak formulation

(3.2.1) for uε and ũε. Subtracting the resulting inequalities, we obtain

I1
ε,δ + I2

ε,δ + I3
ε,δ + I4

ε,δ = I5
ε,δ

where

I1
ε,δ =

∫
Ω

(βε(T1/ε(uε))− βε(T1/ε(ũε)))H
+
δ (uε − ũε),

I2
ε,δ =

∫
Ω

(ε arctan(uε)− ε arctan(ũε))H
+
δ (uε − ũε),

I3
ε,δ =

∫
Ω

(a(x,Duε)− a(x,Dũε)) ·DH+
δ (uε − ũε),

I4
ε,δ =

∫
Ω

(F (T1/ε(uε))− F (T1/ε(ũε))) ·DH+
δ (uε − ũε),

I5
ε,δ =

∫
Ω

(f − f̃)H+
δ (uε − ũε).

Passing to the limit with δ ↓ 0, (3.2.2) follows.

Remark 3.2.3. Let f, f̃ ∈ L∞(Ω) be such that f ≤ f̃ almost everywhere

in Ω, ε > 0 and uε, ũε ∈ W 1,p(·)
0 (Ω) solutions to (Sε, f), (Sε, f̃) respectively.

Then it is an immediate consequence of Propsition 3.2.2 that uε ≤ ũε almost
everywhere in Ω. Furthermore, from the monotonicity of βε ◦ T1/ε it follows
that also βε(T1/ε(uε)) ≤ βε(T1/ε(ũε)) almost everywhere in Ω.
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3.2.2 A priori estimates

Lemma 3.2.4. For 0 < ε ≤ 1 and f ∈ L∞(Ω) let uε ∈ W
1,p(·)
0 (Ω) be a

solution of (Eε, f). Then,

i.) there exists a constant C1 = C1(‖f‖∞, γ, p(·), N) > 0, not depending
on ε, such that

‖|Duε|‖Lp(·)(Ω) ≤ C1. (3.2.3)

Moreover,

ii.)
‖βε(T1/ε(uε))‖∞ ≤ ‖f‖L∞(Ω) (3.2.4)

holds for all 0 < ε ≤ 1 and

iii.) ∫
{l<|uε|<l+k}

a(x,Duε) ·Duε ≤ k

∫
{|uε|>l}

|f | (3.2.5)

holds for all 0 < ε ≤ 1 and all l, k > 0.

Proof: Taking uε as a test function in (3.2.1), by (A1) we obtain

γ

∫
Ω

|Duε|p(x) ≤ C(p(·), N)‖f‖L∞(Ω)‖|Duε|‖Lp(·)(Ω), (3.2.6)

where C(p(·), N) > 0 is a constant coming from the Hölder and Poincaré
inequalities. From (2.1.2) and (3.2.6) it follows that either

‖|Duε|‖Lp(·)(Ω) ≤
(

1

γ
‖f‖L∞(Ω)C(p(·), N)

) 1
p−−1

or

‖|Duε|‖Lp(·)(Ω) ≤
(

1

γ
‖f‖L∞(Ω)C(p(·), N)

) 1
p+−1

.

Setting

C1 := max

((
1

γ
‖f‖L∞(Ω)C(p(·), N)

) 1
p+−1

,

(
1

γ
‖f‖L∞(Ω)C(p(·), N)

) 1
p−−1

)
,

we get i.). Taking 1
δ
(Tk+δ(βε(T1/ε(uε)) − Tk(βε(T1/ε(uε))) as a test function

in (3.2.1), passing to the limit with δ ↓ 0 and choosing k > ‖f‖∞ we obtain
ii.). For k, l > 0 fixed we take Tk(uε− Tl(uε)) as a test function in (3.2.1) to
obtain iii.).
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Remark 3.2.5. For k > 0, from Lemma 3.2.4, iii.), we deduce∫
{l<|uε|<l+k}

a(x,Duε) ·Duε ≤ k‖f‖∞|{|uε| > l}| ≤ C2(k)l−p
−

(3.2.7)

for any 0 < ε ≤ 1 and a constant C2(k) > 0 not depending on ε. Indeed,

|{|uε| ≥ l}| ≤
∫
{|uε|≥l}

|Tl(uε)|p
−

lp−

≤ C(p−, N)l−p
−
(∫
{|Duε|≥1}

|Duε|p(x) +

∫
{|Duε|<1}

|Duε|p
−
)

≤ C(p−, N)l−p
−
(∫

Ω

|Duε|p(x) + |Ω|
)
, (3.2.8)

where C(p−, N) > 0 is a constant from the Poincaré inequality in W 1,p−

0 (Ω).
Combining (3.2.6), (3.2.3) and (3.2.8), setting

C(p(·), p−, γ, C1) := C(p−, N)

(
C(p(·), N)‖f‖∞

γ
C1 + |Ω|

)
> 0,

we obtain
|{|uε| ≥ l}| ≤ l−p

−
C(p(·), p−, γ, C1). (3.2.9)

Now, (3.2.7) follows from (3.2.9) with C2(k) := C(p(·), p−, γ, C1)k‖f‖∞ > 0.

3.2.3 Basic convergence results

In the following it is always understood that ε takes values in a sequence in
(0, 1) tending to zero. The a priori estimates in Lemma 3.2.4 and Remark
3.2.5 imply the following basic convergences:

Lemma 3.2.6. For 0 < ε ≤ 1 and f ∈ L∞(Ω) let uε ∈ W
1,p(·)
0 (Ω) be the

solution of (Eε, f). There exist u ∈ W
1,p(·)
0 (Ω), b ∈ L∞(Ω) such that for a

not relabeled subsequence of (uε)0<ε≤1 as ε ↓ 0:

uε → u in Lp(·)(Ω) and a.e. in Ω (3.2.10)

Duε ⇀ Du in (Lp(·)(Ω))N (3.2.11)

and
βε(T1/ε(uε))

∗
⇀ b in L∞(Ω). (3.2.12)

Moreover, for any k > 0,

DTk(uε) ⇀ DTk(u) in (Lp(·)(Ω))N (3.2.13)

and
a(x,DTk(uε)) ⇀ a(x,DTk(u)) in (Lp

′(·)(Ω))N . (3.2.14)
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Proof: Since (3.2.10) - (3.2.13) follow directly from Lemma 3.2.4 and
Remark 3.2.5, (3.2.14) is left to prove. To this end, we fix k > 0 and take
hl(uε)(Tk(uε)− Tk(u)) as a test function in (3.2.1). Using Gauss-Green The-
orem for Sobolev functions and passing to the limit with ε ↓ 0 and then with
l→∞ we obtain

lim sup
ε↓0

∫
Ω

a(x,DTk(uε)) ·D(Tk(uε)− Tk(u)) ≤ 0. (3.2.15)

By (A2) and (3.2.3) it follows that given any subsequence of a(x,DTk(uε))ε,
there exists a subsequence, still denoted by a(x,DTk(uε))ε such that

a(x,DTk(uε))ε ⇀ Φk weakly in (Lp
′(·)(Ω))N .

We show that

Φk(x) = a(x,DTk(u)) for almost every x ∈ Ω, (3.2.16)

which allows us to conclude that the whole sequence a(x,DTk(uε))ε converges
to a(x,DTk(u)). To this end, we define the variational operator

A : (Lp(·)(Ω))N → (Lp
′(·)(Ω))N

for G ∈ (Lp(·)(Ω))N by

(AG)(H) =

∫
Ω

a(x,G) ·H, H ∈ (Lp(·)(Ω))N .

By (A2), A ist well-defined and hemicontinuous, by (A3) it is monotone,
hence A is maximal monotone (see [65], Lemma 3.4, p. 88). Using (A3) and
(3.2.15), we calculate∫

Ω

(Φk − a(x,H)) · (DTk(u)−H) ≥ 0 for all H ∈ (Lp(·)(Ω))N . (3.2.17)

Since A is maximal monotone, (3.2.16) follows from (3.2.17).

Remark 3.2.7. As an immediate consequence of (3.2.15) and (A3) we obtain

lim
ε↓0

∫
Ω

a(x,DTk(uε)− a(x,DTk(u)) ·D(Tkuε − Tk(u)) = 0. (3.2.18)

Combining (3.2.7) and (3.2.18), using the same arguments as in [6] it follows
that

lim
l→∞

∫
{l<|u|<l+1}

a(x,Du) ·Du = 0. (3.2.19)
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3.2.4 Proof of existence

Now, we are able to conclude the proof of Proposition 3.2.1:
Proof: Let h ∈ C1

c (R) and φ ∈ W
1,p(·)
0 (Ω) ∩ L∞(Ω) be arbitrary. Taking

hl(uε)h(u)φ as a test function in (3.2.1), we obtain

I1
ε,l + I2

ε,l + I3
ε,l + I4

ε,l = I5
ε,l (3.2.20)

where

I1
ε,l =

∫
Ω

βε(T1/ε(uε))hl(uε)h(u)φ,

I2
ε,l = ε

∫
Ω

arctan(uε)hl(uε)h(u)φ,

I3
ε,l =

∫
Ω

a(x,Duε) ·D(hl(uε)h(u)φ),

I4
ε,l =

∫
Ω

F (T1/ε(uε)) ·D(hl(uε)h(u)φ),

I5
ε,l =

∫
Ω

fhl(uε)h(u)φ.

Step 1: Passing to the limit with ε ↓ 0
Obviously,

lim
ε↓0

I2
ε,l = 0. (3.2.21)

Using the convergence results (3.2.10), (3.2.12) from Lemma 3.2.6 we can
immediately calculate the following limits:

lim
ε↓0

I1
ε,l =

∫
Ω

bhl(u)h(u)φ, (3.2.22)

lim
ε↓0

I5
ε,l =

∫
Ω

fhl(u)h(u)φ. (3.2.23)

We write
I3
ε,l = I3,1

ε,l + I3,2
ε,l ,

where

I3,1
ε,l =

∫
Ω

h′l(uε)a(x,Duε) ·Duεh(u)φ,

I3,2
ε,l =

∫
Ω

hl(uε)a(x,Duε) ·D(h(u)φ).
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Using (3.2.7) we get the estimate

| lim
ε↓0

I3,1
ε,l | ≤ ‖h‖L∞(Ω)‖φ‖L∞(Ω)C2(1)l−p

−
. (3.2.24)

Since modular convergence is equivalent to norm convergence in Lp(·)(Ω), by
Lebesgue Dominated Convergence Theorem it follows that

hl(uε)
∂

∂xi
(h(u)φ)→ hl(u)

∂

∂xi
(h(u)φ)

for any i ∈ {1, . . . , N} in Lp(·)(Ω) as ε ↓ 0. Keeping in mind that

I3,2
ε,l =

∫
Ω

hl(uε)a(x,DTl+1(uε)) ·D(h(u)φ),

by (3.2.14), we get

lim
ε↓0

I3,2
ε,l =

∫
Ω

hl(u)a(x,DTl+1(u)) ·D(h(u)φ). (3.2.25)

Let us write
I4
ε,l = I4,1

ε,l + I4,2
ε,l ,

where

I4,1
ε,l =

∫
Ω

h′l(uε)F (T1/ε(uε)) ·Duεh(u)φ,

I4,2
ε,l =

∫
Ω

hl(uε)F (T1/ε(uε)) ·D(h(u)φ).

For any l ∈ N, there exists ε0(l) such that for all ε < ε0(l),

I4,1
ε,l =

∫
Ω

h′l(Tl+1(uε))F (Tl+1(uε)) ·DTl+1(uε)h(u)φ. (3.2.26)

Using Gauss-Green Theorem for Sobolev functions in (3.2.26) we get

I4,1
ε,l = −

∫
Ω

∫ Tl+1(uε)

0

h′l(r)F (r)dr ·D(h(u)φ). (3.2.27)

Now, using (3.2.10) and the Gauss-Green Theorem, after the passage to the
limit with ε ↓ 0 we get

lim
ε↓0

I4,1
ε,l =

∫
Ω

h′l(u)F (u) ·Du h(u)φ. (3.2.28)
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Choosing ε small enough, we can write

I4,2
ε,l =

∫
Ω

hl(uε)F (Tl+1(uε)) ·D(h(u)φ) (3.2.29)

and conclude

lim
ε↓0

I4,2
ε,l =

∫
Ω

hl(u)F (u) ·D(h(u)φ). (3.2.30)

Step 2: Passage to the limit with l→∞.
Combining (3.2.20) with (3.2.21) - (3.2.30) we find

I1
l + I2

l + I3
l + I4

l + I5
l = I6

l , (3.2.31)

where

I1
l =

∫
Ω

bhl(u)h(u)φ,

I2
l =

∫
Ω

hl(u)a(x,DTl+1(u)) ·D(h(u)φ),

|I3
l | ≤ l−p

−
C2(1)‖h‖∞‖φ‖∞,

I4
l =

∫
Ω

hl(u)F (u) ·D(h(u)φ),

I5
l =

∫
Ω

h′l(u)F (u) ·Du h(u)φ,

and

I6
l =

∫
Ω

fhl(u)h(u)φ.

Obviously, we have
lim
l→∞

I3
l = 0. (3.2.32)

Choosing m > 0 such that supph ⊂ [−m,m], we can replace u by Tm(u) in
I1
l , . . . , I

6
l . Therefore, it follows that

lim
l→∞

I1
l =

∫
Ω

bh(u)φ, , (3.2.33)

lim
l→∞

I2
l =

∫
Ω

a(x,Du) ·D(h(u)φ), (3.2.34)

lim
l→∞

I4
l =

∫
Ω

F (u) ·D(h(u)φ), (3.2.35)

lim
l→∞

I5
l = 0, (3.2.36)

lim
l→∞

I6
l =

∫
Ω

fh(u)φ. (3.2.37)
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Combining (3.2.31) with (3.2.32) - (3.2.37) we obtain∫
Ω

bh(u)φ+

∫
Ω

(a(x,Du) + F (u)) ·D(h(u)φ) =

∫
Ω

fh(u)φ (3.2.38)

for all h ∈ C1
c (R) and all φ ∈ W 1,p(·)

0 (Ω) ∩ L∞(Ω).

3. Step: Subdifferential argument
It is left to prove that u(x) ∈ D(β(x)) and b(x) ∈ β(u(x)) for almost all
x ∈ Ω. Since β a is maximal monotone graph, there exists a convex, l.s.c.
and proper function j : R→ [0,∞], such that

β(r) = ∂j(r) for all r ∈ R.

According to [28], for 0 < ε ≤ 1, jε : R → R defined by jε(r) =
∫ r

0
βε(s)ds

has the following properties:

i.) For any 0 < ε ≤ 1, jε is convex and differentiable for all r ∈ R, such
that

j′ε(r) = βε(r) for all r ∈ R and any 0 < ε ≤ 1

ii.) jε(r) ↑ j(r) for all r ∈ R as ε ↓ 0.

From i.) it follows that for any 0 < ε ≤ 1

jε(r) ≥ jε(T1/ε(uε)) + (r − T1/ε(uε))βε(T1/ε(uε)) (3.2.39)

holds for all r ∈ R and almost everywhere in Ω. Let E ⊂ Ω be an arbitrary
measurable set and χE its characteristic function. We fix ε0 > 0. Multiplying
(3.2.39) by hl(uε)χE, integrating over Ω and using ii.), we obtain

j(r)

∫
E

hl(uε) ≥
∫
E

jε0(Tl+1(uε))hl(uε) + (r − Tl+1(uε))hl(uε)βε(T1/ε(uε))

(3.2.40)
for all r ∈ R and all 0 < ε < min(ε0,

1
l
). As ε ↓ 0, taking into account that

E is arbitrary we obtain from (3.2.40)

j(r)hl(u) ≥ jε0(Tl+1(u))hl(u) + bhl(u)(r − Tl+1(u)) (3.2.41)

for all r ∈ R almost everywhere in Ω. Passing to the limit with l → ∞ and
then with ε0 ↓ 0 in (3.2.41) finally yields

j(r) ≥ j(u(x)) + b(x)(r − u(x)) (3.2.42)

for all r ∈ R and almost every x ∈ Ω, hence u ∈ D(β) and b ∈ β(u)
almost everywhere in Ω. With this last step the proof of Proposition 3.2.1 is
concluded.
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3.3 Weak solutions for L∞-data

Definition 3.3.1. A weak solution to (S, f) is a pair of functions (u, b) ∈
W

1,p(·)
0 (Ω)×L1

loc(Ω) satisfying F (u) ∈ (L1
loc(Ω))N , b ∈ β(u) almost everywhere

in Ω and
b− div(a(x,Du) + F (u)) = f (3.3.1)

in D′(Ω).

Remark 3.3.1. Note that if (u, b) is a renormalized solution to (E, f) such

that u ∈ W
1,p(·)
0 (Ω), then (u, b) in general is not a weak solution in the

sense of Definition 3.3.1, since we did not assume a growth condition on
F and therefore F (u) in general may fail to be locally integrable. If (u, b)
is a renormalized solution of (E, f) such that u ∈ L∞(Ω), it is a direct

consequence of Definition 3.1.1 that u is in W
1,p(·)
0 (Ω) and since (3.1.1) holds

with the formal choice h ≡ 1, (u, b) is a weak solution. Indeed, let us choose
ϕ ∈ D(Ω) and plug hl(u)ϕ as a test function in (3.1.1). Since u ∈ L∞(Ω), we
can pass to the limit with l → ∞ and find that u solves (E, f) in the sense
of distributions.

In the next proposition we will show that renormalized solutions to (E, f)
for right-hand side f ∈ L∞(Ω) are weak solutions. In one space dimension

this follows immediately from Remark 3.3.1 since u ∈ W
1,p(·)
0 (Ω) implies

u ∈ C(Ω) (see Proposition 3.4.6). Therefore, for the rest of this section we
may assume N ≥ 2.

Proposition 3.3.2. Let (u, b) be a renormalized solution to (E, f) for f ∈
L∞(Ω). Then u ∈ W 1,p(·)(Ω) ∩ L∞(Ω) and thus, in particular, u is a weak
solution to (E, f).

Proof: From Lemma 3.2.6 it follows that u ∈ W 1,p(·)(Ω). It suffices to
prove that u ∈ L∞(Ω). For ε, k > 0, we take hl(u)1

ε
Tε(u − Tk(u)) as a test

function in (3.1.1). Neglecting positive terms and passing to the limit with
l→∞, we obtain

1

ε

∫
{k<|u|<k+ε}

|Du|p(x) ≤ ‖f‖N (φ(k))(N−1)/N , (3.3.2)

where φ(k) := |{|u| > k}| for k > 0. Now we use similar arguments as in
[18]. We apply the continuous embedding of W 1,1

0 (Ω) into LN/(N−1)(Ω) and
the Hölder inequality to get

1

εCN
‖Tε(u−Tk(u))‖ N

N−1
≤
(
φ(k)− φ(k + ε)

ε

)1/(p−)′ (
1

ε

∫
{k<|u|<k+ε}

|Du|p−
)1/p−

,

(3.3.3)
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where CN > 0 is the constant coming from the Sobolev embedding. Notice
that

1

ε

∫
{k<|u|<k+ε}

|Du|p− ≤ φ(k)− φ(k + ε)

ε
+

1

ε

∫
{k<|u|<k+ε}

|Du|p(x), (3.3.4)

hence from (3.3.2), (3.3.3) and (3.3.4) we deduce

1

εCN
‖Tε(u− Tk(u))‖ N

N−1
≤(

φ(k)− φ(k + ε)

ε

)1/(p−)′ (
φ(k)− φ(k + ε)

ε
+ ‖f‖N (φ(k))(N−1)/N

)1/p−

.

(3.3.5)
From (3.3.5) and Young’s inequality with α > 0 it follows that

1

CNC
(φ(k + ε))(N−1)/N − αp

−

p−C
‖f‖N (φ(k))(N−1)/N − φ(k)− φ(k + ε)

ε
≤ 0,

(3.3.6)
where

C :=

(
1

α(p−)′(p−)′
+
αp
−

p−

)
> 0.

The mapping (0,∞) 3 k → φ(k) is non-increasing and therefore of bounded
variation, hence it is differentiable almost everywhere on (0,∞) with φ′ ∈
L1

loc(0,∞). Since it is also continuous from the right, we can pass to the limit
with ε ↓ 0 in (3.3.6) to find

C ′′(φ(k))(N−1)/N + φ′(k) ≤ 0 (3.3.7)

for almost every k > 0 and α > 0 chosen small enough such that

C ′′ :=

(
CN
C
− αp

−

p−C
‖f‖N

)
> 0.

Now, the conclusion of the proof follows by contradiction. We assume that
φ(k) > 0 for each k > 0. For k > 0 fixed, we choose k0 < k. From (3.3.7) it
follows that

1

N
C ′′ +

d

ds

(
(φ(s))(1/N)

)
≤ 0 (3.3.8)

for almost all s ∈ (k0, k). The left hand side of (3.3.8) is in L1(k0, k), hence we
integrate (3.3.8) over [k0, k]. Moreover, since φ is non-increasing, integrating
(3.3.8) over (k0, k) we get

(φ(k))1/N ≤ φ(k0)1/N +
1

N
C ′′(k0 − k) (3.3.9)

and from (3.3.9) the contradiction follows.
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3.4 Proof of Theorem 3.1.2

3.4.1 Approximate solutions for L1-data

The comparison principle from Proposition 3.2.2 will be the main tool in the
second approximation procedure. For f ∈ L1(Ω) and m,n ∈ N let fm,n ∈
L∞(Ω) be defined as in the beginning of Section 4. From Proposition 3.2.1 it

follows that for any m,n ∈ N there exists um,n ∈ W 1,p(·)
0 (Ω), bm,n ∈ L∞(Ω),

such that (um,n, bm,n) is a renormalized solution of (E, fm,n). Therefore∫
Ω

bm,nh(um,n)φ+

∫
Ω

(a(x,Dum,n)+F (um,n))·D(h(um,n)φ) =

∫
Ω

fm,nh(um,n)φ

(3.4.1)

holds for all m,n ∈ N, h ∈ C1
c (R), φ ∈ W

1,p(·)
0 (Ω) ∩ L∞(Ω). In the next

Lemma, we give a priori estimates that will be important in the following:

Lemma 3.4.1. For m,n ∈ N let (um,n, bm,n) be a renormalized solution of
(E, fm,n). Then,

i.) For any k > 0 we have∫
Ω

|DTk(um,n)|p(x) ≤ k

γ
‖f‖1. (3.4.2)

ii.) For k > 0, there exists a constant C3(k) > 0, not depending on m,n ∈
N, such that

‖|DTk(um,n)|‖p(·) ≤ C3(k). (3.4.3)

iii.)
‖bm,n‖1 ≤ ‖f‖1 (3.4.4)

holds for all m,n ∈ N.

Proof: Proof: For l, k > 0, we plug hl(um,n)Tk(um,n) as a test function in
(3.4.1). Then i.) and ii.) follow with similar arguments as used in the proof
of Lemma 3.2.4. To prove iii.), we neglect the positive term∫

Ω

a(x,DTk(um,n))DTk(um,n)

and keep ∫
Ω

bm,nTk(um,n) ≤
∫

Ω

fm,num,n. (3.4.5)
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Since bm,n ∈ β(um,n) a.e. in Ω, from (3.4.5) it follows that∫
{|um,n|>k}

|bm,n| ≤
∫

Ω

|f |, (3.4.6)

and we find iii.) by passing to the limit with k ↓ 0.

By definition we have

fm,n ≤ fm+1,n and fm,n+1 ≤ fm,n (3.4.7)

From Proposition 3.2.2 it follows that

uεm,n ≤ uεm+1,n and uεm,n+1 ≤ uεm,n, (3.4.8)

almost everywhere in Ω for any m,n ∈ N and all ε > 0, hence passing to the
limit with ε ↓ 0 in (3.4.8) yields

um,n ≤ um+1,n and um,n+1 ≤ um,n, (3.4.9)

almost everywhere in Ω for any m,n ∈ N. Setting bε := βε(T 1
ε
(uε)), using

(3.4.8), Remark 3.2.3 and the fact that bεm,n
∗
⇀ bm,n in L∞(Ω) and this

convergence preserves order we get

bm,n ≤ bm+1,n and bm,n+1 ≤ bm,n (3.4.10)

almost everywhere in Ω for any m,n ∈ N. By (3.4.10) and (3.4.4), for any
n ∈ N there exists bn ∈ L1(Ω) such that bm,n → bn as m→∞ in L1(Ω) and
almost everywhere and b ∈ L1(Ω), such that bn → b as n → ∞ in L1(Ω)
and almost everywhere in Ω. By (3.4.9), the sequence (um,n)m is monotone
increasing, hence, for any n ∈ N, um,n → un almost everywhere in Ω, where
un : Ω→ R is a measurable function. Using (3.4.9) again, we conclude that
the sequence (un)n is monotone decreasing, hence un → u almost everywhere
in Ω, where u : Ω→ R is a measurable function. In order to show that that
u is finite almost everywhere we will give an estimate on the level sets of um,n
in the next lemma:

Lemma 3.4.2. For m,n ∈ N let (um,n, bm,n) be a renormalized solution of
(E, fm,n). Then, there exist a constant C4 > 0, not depending on m,n ∈ N,
such that

|{|um,n| ≥ l}| ≤ C4 l
−(p−−1) (3.4.11)

for all l ≥ 1.
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Proof: With the same arguments as in Remark 3.2.5 we obtain

|{|um,n| ≥ l}| ≤ C(p−, N)l−p
−
(∫

Ω

|DTl(um,n)|p(x) + |Ω|
)
, (3.4.12)

for all m,n ∈ N where C(p−, N) is the constant from Sobolev embedding in
Lp
−

(Ω). Now, we plug (3.4.2) into (3.4.12) to obtain (3.4.11).
Note that, as (um,n)m is pointwise increasing with respect to m,

lim
m→∞

|{um,n > l}| = |{un > l}| (3.4.13)

and
lim
m→∞

|{um,n ≤ −l}| = |{un ≤ −l}|. (3.4.14)

Combining (3.4.11) with (3.4.13) and (3.4.14) we get

|{un ≤ −l}|+ |{un > l}| ≤ C4 l
−(p−−1), (3.4.15)

for any l ≥ 1, hence un is finite almost everywhere for any n ∈ N. By the
same arguments we get

|{u < −l}|+ |{u > l}| ≤ C4 l
−(p−−1) (3.4.16)

from (3.4.15), hence u is finite almost everywhere. Now, since bm,n ∈ β(um,n)
almost everywhere in Ω it follows by a subdifferential argument that bn ∈
β(un) and b ∈ β(u) almost everywhere in Ω.

Remark 3.4.3. If (um,n, bm,n) is a renormalized solution of (E, fm,n), using
hν(um,n)Tk(um,n − Tl(um,n)) as a test function in (3.4.1), neglecting positive
terms and passing to the limit with ν →∞ we obtain∫
{l<|um,n|<l+k}

a(x,Dum,n) ·Dum,n ≤ k

(∫
{|um,n|>l}∩{|f |<σ}

|f |+
∫
{|f |>σ}

|f |

)
(3.4.17)

for any k, l, σ > 0. Now, applying (3.4.11) to (3.4.17), we find that∫
{l<|um,n|<l+k}

a(x,Dum,n) ·Dum,n ≤ σkC4 l
−(p−−1) + k

∫
{|f |>σ}

|f | (3.4.18)

holds for any k, σ > 0, l ≥ 1 uniformly in m,n ∈ N.

Lemma 3.4.4. For m,n ∈ N let (um,n, bm,n) be a renormalized solution
of (E, fm,n). There exists a subsequence (m(n))n such that setting fn :=
fm(n),n, bn := bm(n),n, un := um(n),n we have

un → u almost everywhere in Ω. (3.4.19)
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Moreover, for any k > 0,

Tk(un)→ Tk(u) in Lp(·)(Ω) and almost everywhere in Ω, (3.4.20)

DTk(un) ⇀ DTk(u) in (Lp(·)(Ω))N , (3.4.21)

a(x,DTk(un)) ⇀ a(x,DTk(u)) in (Lp
′(·)(Ω))N . (3.4.22)

as n→∞.

Proof: Applying the diagonal principle in L1(Ω), we construct a subse-
quence (m(n))n, such that

arctan(um(n),n)→ arctan(u),

bn := bm(n),n → b,

fn := fm(n),n → f

as n→∞ in L1(Ω) and almost everywhere in Ω. It follows that (3.4.19) and

(3.4.20) hold. Combining (3.4.20) with (3.4.3) we get Tk(u) ∈ W
1,p(·)
0 (Ω),

Tk(un)→ Tk(u) in Lp(·)(Ω) and (3.4.21) holds for any k > 0. From (3.4.2) and
(A2) it follows, that, for fixed k > 0, given any subsequence of a(x,DTk(un))n,
there exists a subsequence, still denoted by a(x,DTk(un))n, such that

a(x,DTk(un))n ⇀ Φk in (Lp
′(·)(Ω))N

as n → ∞. Since hl(un)(Tk(un) − Tk(u)) is an admissible test function in
(3.4.1),

lim sup
n→∞

∫
Ω

a(x,DTk(un)) ·D(Tk(un)− Tk(u)) ≤ 0 (3.4.23)

holds. Then, (3.4.22) follows with the same arguments as in the proof of
Lemma 3.2.6.

Remark 3.4.5. With the same arguments as in Remark 3.2.7, we have

lim
n→∞

∫
Ω

a(x,DTk(un)− a(x,DTk(u))) ·D(Tk(un)− Tk(u)) = 0, (3.4.24)

lim
l→∞

∫
{l<|u|<l+1}

a(x,Du) ·Du = 0. (3.4.25)
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3.4.2 Conclusion of the proof of Theorem 3.1.2

It is left to prove that (u, b) satisfies∫
Ω

bh(u)φ+

∫
Ω

(a(x,Du) + F (u)) ·D(h(u)φ) =

∫
Ω

fh(u)φ. (3.4.26)

for all h ∈ C1
c (R), φ ∈ W 1,p(·)

0 (Ω) ∩ L∞(Ω). To this end, we take h ∈ C1
c (R),

φ ∈ W 1,p(·)
0 (Ω)∩L∞(Ω) arbitrary and plug hl(un)h(u)φ into (3.4.1) to obtain

I1
n,l + I2

n,l + I3
n,l = I4

n,l, (3.4.27)

where

I1
n,l =

∫
Ω

bnhl(un)h(u)φ

I2
n,l =

∫
Ω

a(x,Dun) ·D(hl(un)h(u)φ)

I3
n,l =

∫
Ω

F (un) ·D(hl(un)h(u)φ)

I4
n,l =

∫
Ω

fnhl(un)h(u)φ.

Step 1: Passing to the limit with n→∞
Applying the convergence results from Lemma 3.4.4 we get

lim
n→∞

I1
n,l =

∫
Ω

bhl(u)h(u)φ, (3.4.28)

lim
n→∞

I2
n,l =

∫
Ω

fhl(u)h(u)φ. (3.4.29)

Let us write
I2
n,l = I2,1

n,l + I2,2
n,l ,

where

I2,1
n,l =

∫
Ω

hl(un)a(x,Dun) ·D(h(u)φ),

I2,2
n,l =

∫
Ω

h′l(un)a(x,Dun) ·Dun h(u)φ.

With similar arguments as in the proof of (3.2.25) it follows that

lim
n→∞

I2,1
n,l =

∫
Ω

hl(u)a(x,Du) ·D(h(u)φ). (3.4.30)
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By (3.4.18), we get the estimate

| lim
n→∞

I2,2
n,l | ≤ ‖h‖L∞(Ω)‖φ‖L∞(Ω)

(
σC4 l

−(p−−1) +

∫
{|f |>σ}

|f |
)

(3.4.31)

for all n ∈ N and all l ≥ 1, σ > 0. Next, we write

I3
n,l = I3,1

n,l + I3,2
n,l ,

where

lim
n→∞

I3,1
n,l =

∫
Ω

hl(u)F (u) ·D(h(u)φ), (3.4.32)

lim
n→∞

I3,2
n,l =

∫
Ω

h′l(u)F (u) ·Du h(u)φ (3.4.33)

follows with the same arguments as in (3.2.26) - (3.2.30).

Step 2: Passage to the limit with l→∞.
Combining (3.4.27) with (3.4.28) - (3.4.33) we get for all σ > 0 and all l ≥ 1

I1
l + I2

l + I3
l + I4

l + I5
l = I6

l (3.4.34)

where

I1
l =

∫
Ω

bhl(u)h(u)φ,

I2
l =

∫
Ω

hl(u)a(x,DTl+1(u)) ·D(h(u)φ),

|I3
l | ≤ ‖h‖L∞(Ω)‖φ‖L∞(Ω)

(
σC4 l

−(p−−1) +

∫
{|f |>σ}

|f |
)
,

for any σ > 0 and

I4
l =

∫
Ω

h′l(u)F (u) · h(u)φDu,

I5
l =

∫
Ω

hl(u)F (u) ·D(h(u)φ),

I5
l =

∫
Ω

fhl(u)h(u)φ.
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Choosing m > 0 such that supph ⊂ [−m,m], we can replace u by Tm(u) in
I1
l , . . . , I

6
l , hence

lim
l→∞

I1
l =

∫
Ω

bh(u)φ, (3.4.35)

lim
l→∞

I2
l =

∫
Ω

a(x,Du) ·D(h(u)φ), (3.4.36)

lim
l→∞
|I3
l | ≤ ‖h‖L∞(Ω)‖φ‖L∞(Ω)

∫
{|f |>σ}

|f |, (3.4.37)

lim
l→∞

I4
l = 0, (3.4.38)

lim
l→∞

I5
l =

∫
Ω

F (u) ·D(h(u)φ), (3.4.39)

lim
l→∞

I6
l =

∫
Ω

fh(u)φ (3.4.40)

for all σ > 0. Combining (3.4.34) with (3.4.35) - (3.4.40) we finally obtain
that (3.4.1) holds for all h ∈ C1

c (R) and all φ ∈ W 1,p(·)(Ω) ∩ L∞(Ω).

3.4.3 Existence in one space dimension

For N = 1, Ω = (a, b) with a, b ∈ R, a < b the following improved existence
result holds:

Proposition 3.4.6. For f ∈ L1(a, b) there exists at least one weak solution
(u, b) to (E, f) in the sense of Defintion 3.3.1.

Proof: We fix f ∈ L1(a, b). By the continuous embedding of W
1,p(·)
0 (a, b)

into C([a, b]) we have L1(a, b) ⊂ (W
1,p(·)
0 (a, b))′. Now it follows from [55],

Theorem 2.7 that for any ε > 0 there exists uε ∈ W 1,p(·)
0 (a, b) such that

βε(u
ε)− (a(x, (uε)x) + F (uε))x = f (3.4.41)

holds in D′(a, b). For right hand sides fm,n ∈ L∞(a, b) as defined in Section
3.2, all a priori estimates stated in Lemma 3.2.4 hold uniformly in ε > 0.
Moreover, the sequence (uεm,n) is uniformly bounded in L∞(a, b) for ε > 0
and m,n ∈ N. Therefore, using similar arguments as in the conclusion of the
proof of Theorem 3.1.2, we find that (u, b) is a weak solution to (E, f).
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3.5 Uniqueness of renormalized solutions

In this section, we prove a uniqeness result for renormalized solutions to the
problem (E, f) with f ∈ L1(Ω).

Theorem 3.5.1. For f, f̃ ∈ L1(Ω) let (u, b) be a renormalized solution of
(S, f) and (ũ, b̃) be a renormalized solution of (S, f̃). Then, the following
comparison principle holds:∫

Ω

(b− b̃)+ ≤
∫

Ω

(f − f̃) sign+
0 (u− ũ) +

∫
{u=ũ}

(f − f̃) sign+
0 (b− b̃). (3.5.1)

Proof: We choose π ∈ W
1,p(·)
0 (Ω) ∩ L∞(Ω) such that 0 ≤ π ≤ 1 al-

most everywhere in Ω. For l > 0 arbitrary, we use hl(u)H+
δ (Tl+1(u) −

Tl+1(ũ) + δπ) as a test function in the renormalized formulation for (u, b)
and hl(ũ)H+

δ (Tl+1(u) − Tl+1(ũ) + δπ) as a test function in the renormalized
formulation for (ũ, b̃). Subtracting the resulting equalities, we obtain

I1
l,δ + I2

l,δ + I3
l,δ + I4

l,δ + I5
l,δ + I6

l,δ + I7
l,δ = I8

l,δ, (3.5.2)

where M := {0 < Tl+1(u)− Tl+1(ũ) + δπ < δ} and

I1
l,δ =

∫
Ω

(bhl(u)− b̃hl(ũ))H+
δ (Tl+1(u)− Tl+1(ũ) + δπ),

I2
l,δ =

∫
Ω

(h′l(u)a(x,Du) ·Du− h′l(ũ)a(x,Dũ) ·Dũ)H+
δ (Tl+1(u)− Tl+1(ũ) + δπ),

I3
l,δ =

1

δ

∫
M

(hl(u)a(x,Du)− hl(ũ)a(x,Dũ)) ·D(Tl+1(u)− Tl+1(ũ)),

I4
l,δ =

∫
M

(hl(u)a(x,Du)− hl(ũ)a(x,Dũ)) ·Dπ,

I5
l,δ =

∫
Ω

(h′l(u)F (u) ·Du− h′l(ũ)F (ũ) ·Dũ)H+
δ (Tl+1(u)− Tl+1(ũ) + δπ),

I6
l,δ =

1

δ

∫
M

(hl(u)F (u)− hl(ũ)F (ũ)) ·D(Tl+1(u)− Tl+1(ũ)),

I7
l,δ =

∫
M

(hl(u)F (u)− hl(ũ)F (ũ)) ·Dπ,

I8
l,δ =

∫
Ω

(fhl(u)− f̃hl(ũ))H+
δ (Tl+1(u)− Tl+1(ũ) + δπ).

1. Step: Passage to the limit as δ ↓ 0
SinceH+

δ (Tl+1(u)−Tl+1(ũ)+δπ)→ sign+
0 (Tl+1(u)−Tl+1(ũ))+χ{Tl+1(u)=Tl+1(ũ)}π
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as δ ↓ 0 almost everywhere in Ω it follows that

lim
δ↓0

I1
l,δ =

∫
Ω

(bhl(u)− b̃hl(ũ))(sign+
0 (Tl+1(u)− Tl+1(ũ)) + χ{Tl+1(u)=Tl+1(ũ)}π),

(3.5.3)
lim
δ↓0

I7
l,δ = 0, (3.5.4)

lim
δ↓0

I8
l,δ =

∫
Ω

(fhl(u)− f̃hl(ũ))(sign+
0 (Tl+1(u)− Tl+1(ũ)) + χ{Tl+1(u)=Tl+1(ũ)}π).

(3.5.5)
Let us recall that, because of the definition of hl, we can replace u by Tl+1(u)

and ũ by Tl+1(ũ) which belong to W
1,p(·)
0 (Ω) in I1

l,δ, . . . , I
8
l,δ and so DTl+1(u) =

DTl+1(ũ) almost everywhere in {Tl+1(u) = Tl+1(ũ)}. Therefore,

lim
δ↓0

I2
l,δ =

∫
Ω

(h′l(u)a(x,Du)·Du−h′l(ũ)a(x,Dũ)·Dũ)(sign+
0 (Tl+1(u)−Tl+1(ũ))

(3.5.6)
and

lim
δ↓0

I4
l,δ = 0. (3.5.7)

Let us write
I3
l,δ = I3,1

l,δ + I3,2
l,δ ,

where

I3,1
l,δ =

1

δ

∫
M

(hl(u)− hl(ũ))a(x,DTl+1(u)) ·D(Tl+1(u)− Tl+1(ũ)),

I3,2
l,δ =

1

δ

∫
M

hl(ũ)(a(x,DTl+1(u))− a(x,DTl+1(ũ))) ·D(Tl+1(u)− Tl+1(ũ)).

By (A3), I3,2
l,δ is nonnegative. As ‖h′l‖∞ ≤ 1 for all l > 0, we have the estimate

|I3,1
l,δ | ≤

∫
{0<Tl+1(u)−Tl+1(ũ)<δ}

|a(x,DTl+1(u)) ·D(Tl+1(u)− Tl+1(ũ))| (3.5.8)

and from (3.5.8) it follows that

lim sup
δ↓0

I3
l,δ ≥ 0. (3.5.9)

Now, we write

I5
l,δ =

∫
Ω

div

(∫ Tl+1(u)

Tl+1(ũ)

h′l(r)F (r)dr

)
Hδ(Tl+1(u)− Tl+1(ũ) + δπ)

= I5,1
l,δ + I5,2

l,δ ,
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where

I5,1
l,δ = −

∫
{0<Tl+1(u)−Tl+1(ũ)+δπ<δ}

∫ Tl+1(ũ)

Tl+1(u)

h′l(r)F (r)dr ·Dπ,

I5,2
l,δ = −1

δ

∫
{0<Tl+1(u)−Tl+1(ũ)+δπ<δ}

∫ Tl+1(u)

Tl+1(ũ)

h′l(r)F (r)dr ·D(Tl+1(u)− Tl+1(ũ)).

It is easy to calculate that
lim
δ↓0

I5,1
l,δ = 0 (3.5.10)

and from

|I5,2
l,δ | ≤ max

s∈[−l−1,l+1]
|F (s)|

∫
{0<Tl+1(u)−Tl+1(ũ)<δ}

|D(Tl+1(u)−Tl+1(ũ))| (3.5.11)

it follows that
lim
δ↓0

I5
l,δ = 0. (3.5.12)

Let us write
I6
l,δ = I6,1

l,δ + I6,2
l,δ ,

where

I6,1
l,δ =

1

δ

∫
M

hl(u)(F (Tl+1(u))− F (Tl+1(ũ))) ·D(Tl+1(u)− Tl+1(ũ)),

I6,2
l,δ =

1

δ

∫
M

(hl(u)− hl(ũ))F (Tl+1(ũ)) ·D(Tl+1(u)− Tl+1(ũ)).

Let LF > 0 be the Lipschitz constant of F . Then we find

|I6,1
l,δ | ≤ LF

∫
{0<Tl+1(u)−Tl+1(ũ)<δ}

|D(Tl+1(u)− Tl+1(ũ))|, (3.5.13)

|I6,2
l,δ | ≤ max

s∈[−l−1,l+1]
|F (s)|

∫
{0<Tl+1(u)−Tl+1(ũ)<δ}

|D(Tl+1(u)− Tl+1(ũ))|,

(3.5.14)
hence, from (3.5.13) and (3.5.14) it follows that

lim
δ↓0

I6
l,δ = 0. (3.5.15)

Combining (3.5.2) with (3.5.3) - (3.5.15) we obtain

I1
l + I2

l ≤ I3
l , (3.5.16)
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where

I1
l =

∫
Ω

(bhl(u)− b̃hl(ũ))(sign+
0 (Tl+1(u)− Tl+1(ũ)) + χ{Tl+1(u)=Tl+1(ũ)}π),

I2
l =

∫
Ω

(h′l(u)a(x,Du) ·Du− h′l(ũ)a(x,Dũ) ·Dũ)(sign+
0 (Tl+1(u)− Tl+1(ũ)),

I3
l =

∫
Ω

(fhl(u)− f̃hl(ũ))(sign+
0 (Tl+1(u)− Tl+1(ũ)) + χ{Tl+1(u)=Tl+1(ũ)}π).

2. Step: Passage to the limit with l→∞
Thanks to (3.4.25) it follows that

lim
l→∞

I2
l = 0. (3.5.17)

Since we have hl(u) = 0 almost everywhere on {|u| ≥ l + 1} and hl(ũ) = 0
almost everywhere on {|ũ| ≥ l + 1} it follows that

I1
l = I1,1

l + I1,2
l ,

where

I1,1
l =

∫
{|u|<l+1}∩{|ũ|<l+1}

(bhl(u)− b̃hl(ũ))χ{u=ũ}π,

I1,2
l =

∫
Ω

(bhl(u)− b̃hl(ũ)) sign+
0 (Tl+1(u)− Tl+1(ũ)).

Using that u, ũ are almost everywhere finite, we have

lim
l→∞

I1,1
l =

∫
Ω

(b− b̃)χ{u=ũ}π. (3.5.18)

and
lim
l→∞

sign+
0 (Tl+1(u)− Tl+1(ũ)) = sign+

0 (u− ũ) (3.5.19)

almost everywhere in Ω and weak-∗ in L∞(Ω). Therefore,

lim
l→∞

I1,2
l =

∫
Ω

(b− b̃) sign+
0 (u− ũ). (3.5.20)

With similar arguments we conclude

lim
l→∞

I3
l =

∫
Ω

(f − f̃)(sign+
0 (u− ũ) + χ{u=ũ}π). (3.5.21)
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Combining (3.5.16) with (3.5.17) - (3.5.21) we get∫
Ω

(b− b̃)(sign+
0 (u− ũ) + χ{u=ũ}π)) ≤

∫
Ω

(f − f̃)(sign+
0 (u− ũ) + χ{u=ũ}π)

(3.5.22)

for any π ∈ W 1,p(·)
0 (Ω)∩L∞(Ω) such that 0 ≤ π ≤ 1 almost everywhere in Ω.

3. Step:
Following the idea of [22], for n ∈ N we choose π = T1(πn) in (3.5.22), where
(πn)n ⊂ C∞c (Ω) is an approximation of sign+

0 (b− b̃) in L1(Ω). Passing to the
limit with n→∞, we finally obtain (3.5.1).

Remark 3.5.2. Let f ∈ L1(Ω). Given any two renormalized solutions (u, b),
(ũ, b̃) of (E, f), it is an immediate consequence of Theorem 3.5.1 that b = b̃
almost everywhere in Ω. If β is a strictly increasing, continuous function
then it follows immediately that u = ũ. If β is a monotone graph, F ≡
0 and a(x,Du) is strictly monotone, using the fact that (u, b), (ũ, b̃) are
renormalized solutions to (S, f) iff they are entropy solutions (see [67] for a
definition) we obtain u = ũ almost everywhere in Ω by similar arguments
as in [67]. In the general case with convection, we cannot get u = ũ almost
everywhere in Ω from Theorem 3.5.1 even if p(·) is assumed to be constant.
A one-dimensional counterexample can be found in [26].

3.6 Extensions and remarks

The condition that F is locally Lipschitz continuous is not crucial for the
existence of renormalized solutions to (E, f) with f ∈ L1(Ω). Indeed, any
continuous function F : R → RN can be approximated uniformly on com-
pact sets by a sequence (Fk)k of Lipschitz continuous functions Fk : R→ RN .
Given fm,n ∈ L∞(Ω) as in the beginning of Section 3.2, the weak solutions
uk,m,nε of the approximate problems (Ek

ε , fm,n) with locally Lipschitz contin-
uous flux function Fk will converge to a weak solution um,nε of (Eε, fm,n) with
continuous flux function F and the comparison principle of Proposition 3.2.2
still holds for um,nε . Therefore, we are able to construct a sequence of ap-
proximate solutions (un, bn)n as in Lemma 3.4.4. Using the same arguments
as in the conclusion of the proof of Theorem 3.1.2, we obtain a renormalized
solution (u, b) of (E, f) with continuous flux function F . The uniqueness of
renormalized solutions of (E, f), however, is an open problem if F is only
continuous. If a = a(Du) does not depend on the space variable x (by (A1)
and (A2) this implies p(·) ≡ p is constant), according to [32], uniqueness can
be proved by the method of doubling variables.
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Even if we assume a(x, ξ) = A(x)ξ for all ξ ∈ RN where A(x) = (Ai,j(x))i,j ∈
RN×N for any x ∈ Ω, Ai,j ∈ W 1,∞(Ω) for all i, j = 1, . . . N , γ > 0 such that
ξTA(x)ξ ≥ γ|ξ|2 holds for all ξ ∈ RN , x ∈ Ω, β to be the identity mapping
and L∞-data, the method of doubling variables does not apply. Note, how-
ever, the following uniqueness result which we have been able to establish in
the particular case of linear diffusion in one space dimension:

Proposition 3.6.1. For a, b ∈ R, a < b, let F : R → R be continuous,
A ∈ L∞(a, b) such that there exists γ > 0 with A(x) ≥ γ for almost all
x ∈ (a, b) and let f be in L1(a, b). Then the weak solution u ∈ H1

0 (a, b) of

(PB)

{
u− (A(x)ux)x − (F (u))x = f in (a, b),

u(a) = 0, u(b) = 0,

is unique.

Proof: Let f be in L1(Ω). From Proposition 3.4.6 it follows that there ex-
ists at least one weak solution to (PB). The proof is based on the continuity
of weak solutions of (PB). If u, v ∈ H1(a, b) are two weak solutions of (PB)
with right-hand side f , we will identify u, v ∈ H1(a, b) with their continuous
representatives u, v ∈ C([a, b]) without changing notation. Assuming that
there exists x0 ∈]a, b[ such that u(x0) 6= v(x0), from the continuity of u, v it
follows that there exist c, d ∈ R, c < d, an interval (c, d) ⊂ (a, b), such that
u(c) = v(c), u(d) = v(d), x0 ∈ (c, d) and u > v or u < v on (c, d). Now, we
will show that our assumption leads to a contradiction. The proof will be
divided into several steps.

Step 1: First, we construct a family of test functions (ξh)h>0, satisfying the
following conditions:

i.) 0 ≤ ξh ≤ 1 holds for all 0 < h < (d− c)/2,

ii.) ξh ∈ H1
0 (c, d) for all 0 < h < (d− c)/2,

iii.) ξh → χ(c,d) almost everywhere in (c, d) as h ↓ 0,

iv.) There exist constants C1, C2 > 0 not depending on 0 < h < (d− c)/2,
such that ∫ d

c

|(ξh)x|2 ≤
C1

h
, (3.6.1)∫ d

c

|(ξh)x| ≤ C2 (3.6.2)

holds for all 0 < h < (d− c)/2.
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v.) If W ∈ H1
0 (c, d) is nonnegative, then∫ d

c

A(x)(ξh)xWxdx ≥ 0 (3.6.3)

holds for all 0 < h < (d− c)/2.

The construction of the test functions ξh for h > 0 has been introduced in [5]
for A(x) ≡ 1. It is well-known that for any 0 < h < (d− c)/2, the problems

(PB1
h)

{
(A(x)ux)x = 0 on (c, c+ h)

u(c) = 0, u(c+ h) = h,

(PB2
h)

{
(A(x)ux)x = 0 on (d− h, d)

u(d− h) = h, u(d) = 0.

have solutions u1
h ∈ H1

0 (c, c + h), u2
h ∈ H1

0 (d − h, d) respectively, such that
(A(x)(u1

h)x)x = 0 holds in H−1(c, c + h) and (A(x)(u2
h)x)x = 0 holds in

H−1(d− h, d). Now, we define ξh : (c, d)→ R by

ξh(x) =


2
h

min(u1
h(x), h

2
), for x ∈ [c, c+ h),

1, for x ∈ [c+ h, d− h],
2
h

min(u2
h(x), h

2
), for x ∈ (d− h, d].

(3.6.4)

Therefore, i.) follows directly from (3.6.4). A short calculation gives

(ξh)x =
2

h

(
(u1

h)xχ{{u1
h<h/2}∩(c,c+h)} + (u2

h)xχ{{u2
h<h/2}∩(d−h,d)}

)
(3.6.5)

in D′(c, d), hence ξh ∈ H1
0 (c, d) and supp(ξh)x ⊂ {x ∈ (c, c + h) : u1

h <
h/2} ∩ {x ∈ (d − h, d) : u2

h < h/2} for all 0 < h < (d − c)/2. Choosing any
x ∈ (c, d), there exists h0 > 0 such that x ∈ [c+ h, d− h] for all 0 < h < h0,
hence ξh(x) = 1 for all h < h0 and iii.) follows. Note that u1

h is the unique
solution of the minimization problem

min
u∈K

{
1

2

∫ c+h

c

A(x)(ux)
2

}
where K := (x − c) + H1

0 (c, c + h) and u2
h is the unique solution of the

minimization problem

min
u∈K̃

{
1

2

∫ d

d−h
A(x)(ux)

2

}
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where K̃ := (d − x) + H1
0 (d − h, d) (see [7], Theorem 6.5.1, p. 246). Using

(3.6.5) it follows that

γ

∫ d

c

|(ξh)x|2 ≤
4

h2

(∫ c+h

c

A(x)(u1
h)

2
x +

∫ d

d−h
A(x)(u2

h)
2
x

)
≤ 8

h2

(
1

2

∫ c+h

c

A(x) +
1

2

∫ d

d−h
A(x)

)
≤

8‖A‖L∞(a,b)

h
(3.6.6)

hence (3.6.1) holds. Applying the Hölder inequality to
∫ d
c
|(ξh)x| and using

(3.6.1), we get (3.6.2). To prove v.), we choose W ∈ H1
0 (c, d) such that

W ≥ 0 in (c, d) and write∫ d

c

A(x)(ξh)xWx = I1 + I2, (3.6.7)

where

I1 =

∫ c+h

c

A(x)(ξh)xWx,

I2 =

∫ d

d−h
A(x)(ξh)xWx.

In the next steps, we will show I1 ≥ 0 and I2 ≥ 0. Since W (·)H+
δ (h/2−u1

h) ∈
H1

0 (c, c+ h) is an admissible test function in (PB1
h), we have

0 = −
∫ c+h

c

A(x)(u1
h)x(W (x)H+

δ (h/2− u1
h))x

= −
∫ c+h

c

A(x)(u1
h)xH

+
δ (h/2− u1

h)Wx +
1

δ

∫
{0<h/2−u1

h<δ}
A(x)(u1

h)
2
xW (x)

(3.6.8)

neglecting the positive term and passing to the limit with δ ↓ 0 from (3.6.8)
it follows that

0 ≤ 2

h

∫ c+h

c

A(x)(u1
h)xχ{u1

h<h/2}Wx = I1. (3.6.9)

Since Since W (·)H+
δ (h/2− u2

h) ∈ H1
0 (d− h, d) is an admissible test function

in (PB2
h), we have

0 = −
∫ d

d−h
A(x)(u2

h)x(W (x)H+
δ (h/2− u2

h))x, (3.6.10)
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therefore

0 ≤ 2

h

∫ d

d−h
A(x)(u2

h)xχ{u2
h<h/2}Wx = I2 (3.6.11)

and v.) holds.

Step 2: Conclusion. Let us assume u > v on (c, d). As ξh ∈ H1
0 (c, d) for all

0 < h < (d− c)/2, we will identify ξh with its extension by zero on (a, b) that
is in H1

0 (a, b). Using ξh as a test function in the weak formulations for u and
v respectively we find∫ d

c

(u− v)ξh +

∫ d

c

(F (u)−F (v))(ξh)x +

∫ d

c

A(x)(ux− vx)(ξh)x = 0. (3.6.12)

Now, the function u− v is nonnegative and in H1
0 (c, d), since by assumption

we have u > v on (c, d) and u(c) = v(c), u(d) = v(d). Hence the last integral
on the left-hand side in (3.6.13) is nonnegative by v.). Now we write∫ d

c

(F (u)− F (v))(ξh)x = Ih1 + Ih2 , (3.6.13)

where

Ih1 =

∫ c+h

c

(F (u)− F (v))(ξh)x ≤ Ih1,1 + Ih1,2

Ih2 =

∫ d

d−h
(F (u)− F (v))(ξh)x ≤ Ih2,1 + Ih2,2 (3.6.14)

and

Ih1,1 =

∫ c+h

c

|F (u)− F (u(c))| |(ξh)x|,

Ih1,2 =

∫ c+h

c

|F (v)− F (v(c))| |(ξh)x|,

Ih2,1 =

∫ d

d−h
|F (u)− F (u(c))| |(ξh)x|,

Ih2,2 =

∫ d

d−h
|F (v)− F (v(c))| |(ξh)x|. (3.6.15)

By continuity of F ◦ u, (3.6.2) and iv.), for any ε > 0 we find h0 > 0 such
that

Ih1,1 + Ih1,2 + Ih2,1 + Ih2,2 ≤ 4εC2 (3.6.16)
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for all 0 < h ≤ h0. Therefore, using (3.6.14), (3.6.15), (3.6.16), iii.) and
neglecting the nonnegative term we can pass to the limit with h ↓ 0 in
(3.6.12) to obtain ∫ d

c

|u− v| = 0, (3.6.17)

hence u = v on (c, d) and we have a contradiction. Assuming u < v on (c, d)
and using the same arguments leads to the same contradiction, hence the
proof is completed.

It is an open problem whether this result can be generalized to problems
with linear diffusion in several space dimensions replacing the continuity
of solutions by their cap-p quasicontinuity and using capacity theory (see
[45], [57]). Another possible object of future work is the generalisation of
Proposition 3.6.1 to nonlinear problems, i.e. replacing (A(x)ux) in (PB)
by, e.g., (|ux|p(x)−2ux). This question is closely related to the question of
existence of solutions to the problems

(PB̃1
h)

{
(|ux|p(x)−2ux)x = 0 on (c, c+ h)

u(c) = 0, u(c+ h) = h,

(PB̃2
h)

{
(|ux|p(x)−2ux)x = 0 on (d− h, d)

u(d− h) = h, u(d) = 0,

for h > 0 and c, d ∈ R.



Chapter 4

The parabolic case

4.1 Mild solutions of the abstract Cauchy prob-

lem

4.1.1 Existence of mild solutions

It follows from Theorem 3.1.2 of the previous chapter that for all f ∈ L1(Ω),
λ > 0 there exists a renormalized solution (u, b) to

(S, λ, f)

{
β(u)− λ div(a(x,Du) + F (u)) 3 f in Ω,

u = 0 on ∂Ω.

For f, f̃ ∈ L1(Ω) let (u, b) and (ũ, b̃) be renormalized solutions of (S, λ, f),
(S, λ, f̃) respectively. Writing |b− b̃| = (b− b̃)+ + (b̃− b)+ and applying the
comparison principle from Theorem 3.5.1, we find that

‖b− b̃‖L1(Ω) ≤ ‖f − f̃‖L1(Ω). (4.1.1)

In terms of nonlinear operators the preceeding results read as follows: If Aβ
is the nonlinear operator defined in L1(Ω) by

Aβ :=
{

(b, w) ∈ L1(Ω)× L1(Ω) : ∃u : Ω→ R measurable, b ∈ β(u)

almost everywhere in Ω and u is a renormalized solution of

− div(a(x,Du) + F (u)) = w
} (4.1.2)

then Aβ is m-accretive in L1(Ω), i.e., the resolvent mapping

f ∈ L1(Ω)→ (I + λAβ)−1f =: JλAβ(f) ∈ L1(Ω)

44
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is a contraction in the L1-norm (because of (4.1.1)) and the range condition

R(I + λAβ) = L1(Ω) (4.1.3)

holds for all λ > 0. Indeed, for any f ∈ L1(Ω), λ > 0 there exists (b, w) ∈ Aβ
such that

b+ λw = f (4.1.4)

almost everywhere in Ω: If (u, b) is the renormalized solution to (S, λ, f),
then we have b ∈ β(u) almost everywhere in Ω and u is the renormalized
solution to

−λ div(a(x,Du) + F (u)) = f − b.

Therefore (b, f−b
λ

) ∈ Aβ and (4.1.4) holds with w = f−b
λ

. By the general
theory of nonlinear semigroups (see [17], [8]) we conclude that the abstract
Cauchy problem corresponding to (P, f, b0)

(ACP )(f, b0)


db

dt
+ Aβb 3 f in (0, T ),

b(0) = b0

admits a unique mild solution b ∈ C([0, T ];L1(Ω)) for any initial datum

b0 ∈ D(Aβ)
‖·‖L1(Ω) and any right-hand side f ∈ L1(0, T ;L1(Ω)) ∼= L1(QT ).

As we will see in the next subsection,

D(Aβ)
‖·‖L1(Ω) =

{
b ∈ L1(Ω) : b ∈ R(β) a.e. in Ω

}
.

Roughly speaking, a mild solution is a continuous abstract function b ∈
C([0, T ];L1(Ω)) which is the uniform limit of piecewise constant functions
bε : (0, T ) → L1(Ω) defined by bε(0) = bε0, bε(t) = bεi on ]tεi−1, t

ε
i ] for i =

1, . . . , N(ε) where (bεi )
N(ε)
i=1 are solutions of time-discretized problems given

by an implicit Euler scheme of the form

bεi − bεi−1

tεi − tεi−1

+ Aβb
ε
i 3 f εi , i = 1, . . . , N(ε), (4.1.5)

where ε > 0, N(ε) ∈ N, 0 = tε0 < tε1 < . . . < tεN(ε) ≤ T and f εi ∈ L1(Ω),

i = 1, . . . , N(ε) such that, as ε→ 0,

N(ε)∑
i=1

∫ tεi

tεi−1

‖f(t)− f εi ‖L1(Ω)dt→ 0,
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max1,...,N(ε)(t
ε
i − tεi−1)→ 0, T − tεN(ε) → 0 and ‖b0 − bε0‖L1(Ω) → 0.

Let us recall that the mild solution of (ACP )(f, b0) depends continuously
on the data, more precisely, if b, v ∈ C([0, T ];L1(Ω)) are mild solutions of
(ACP )(f, b0), (ACP )(g, v0) respectively, then

‖b(t)− v(t)‖L1(Ω) ≤ ‖b0 − v0‖L1(Ω) +

∫ t

0

‖f(s)− g(s)‖L1(Ω)ds (4.1.6)

holds for any 0 ≤ t ≤ T . Moreover, a function b ∈ C([0, T ];L1(Ω)) is the
unique mild solution of (ACP )(f, b0), if and only if b is the unique integral
solution of (ACP )(f, b0) in the sense of Bénilan ([14], [17], [8]), i.e. if b
satisfies the following family of integral inequalities: For any (v, w) ∈ Aβ, for
any 0 ≤ s ≤ t ≤ T , we have

‖b(t)− v‖L1(Ω) ≤ ‖b(s)− v‖L1(Ω) +

∫ t

s

[u(τ)− v, f(τ)− w]dτ, (4.1.7)

where, for g, h ∈ L1(Ω), the bracket [g, h] denotes the right-hand side Gâteaux
derivative of the L1-norm at g in the direction of h, i.e.,

[g, h] = lim
λ→0

‖g − λh‖L1(Ω) − ‖g‖L1(Ω)

λ

=

∫
Ω

sign0(g)h dx+

∫
g=0

|h| dx.

4.1.2 The closure of D(Aβ)

The following proposition gives us a description of D(Aβ)
‖·‖L1(Ω) :

Proposition 4.1.1. Let Aβ be the operator defined in (4.1.2). Then

D(Aβ)
‖·‖L1(Ω) =

{
b ∈ L1(Ω) : b ∈ R(β) a.e. in Ω

}
. (4.1.8)

Proof: If we define

M :=
{
b ∈ L1(Ω) : b ∈ R(β) a.e. in Ω

}
,

then obviouslyD(Aβ)
‖·‖L1(Ω) ⊂M . Therefore we will proveM ⊂ D(Aβ)

‖·‖L1(Ω) .
The proof will be divided into several steps.

Step 1: We choose an appropriate dense subset of M :
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Lemma 4.1.2. The set

D := {b ∈ L∞(Ω) : ∃u ∈ L∞(Ω) : b ∈ β(u) a.e. in Ω}

is dense in M .

Proof: We choose b ∈M and set

Ω1 := {x ∈ Ω : b(x) ∈ R(β)},

Ω∗2 := {x ∈ Ω : b(x) ∈ R(β) \R(β)}.
Let b+ := supR(β), b− := inf R(β). Assuming Ω∗2 is nonempty implies that
at most one among b+, b− does not belong to R(β), so b− < b+ and therefore,
since β is a maximal monotone graph,

Ω∗2 = Ω2 ∪ Ω3,

where
Ω2 := {x ∈ Ω : b(x) = b+}

and
Ω3 := {x ∈ Ω : b(x) = b−}.

Clearly, Ω1, Ω2 and Ω3 are measurable subsets of Ω and Ω = Ω1∪Ω2∪Ω3∪N ,
where N ⊂ Ω is measurable with |N | = 0. If r ∈ D(β), let v0 ∈ β(r) be the
element of β(r) with minimal norm. For r ∈ R we define

β0(r) :=


v0 ∈ β(r), if r ∈ D(β),

+∞, if [r,+∞[∩D(β) = ∅,
−∞, if ]−∞, r] ∩D(β) = ∅,

βmax(r) :=


sup β(r), if r ∈ D(β),

+∞, if [r,+∞[∩D(β) = ∅,
−∞, if ]−∞, r] ∩D(β) = ∅,

βmin(r) :=


inf β(r), if r ∈ D(β),

+∞, if [r,+∞[∩D(β) = ∅,
−∞, if ]−∞, r] ∩D(β) = ∅,

By the definition of b+ and b−, there exist sequences (b+
n )n, (b−n )n ⊂ R(β),

(r−n )n, (r+
n )n ⊂ D(β), such that b+

n ∈ β(r+
n ), b−n ∈ β(r−n ) for all n ∈ N and

b+
n ↑ b+, b−n ↓ b− as n→∞.

We fix b ∈ M . Now, we are ready to construct sequences (bn)n, (un)n ⊂
L∞(Ω) such that un ∈ D(β), bn ∈ β(un) almost everywhere in Ω for all
n ∈ N and bn → b in L1(Ω) for n→∞. The construction depends on D(β).
Keeping in mind that 0 ∈ D(β) by assumption, we have the following cases:
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i.) D(β) = [c, d] for c, d ∈ R, c < 0 < d. Since β is maximal monotone it
follows that R(β) = R and we have:

un(x) := ((β−1)0(b(x)) ∧ (d− 1

n
)) ∨ (c+

1

n
), x ∈ Ω,

bn(x) := (b(x) ∧ βmax(d− 1

n
)) ∨ βmin(c+

1

n
), x ∈ Ω.

ii.) D(β) = R:

un(x) :=


((β−1)0(b(x)) ∧ n) ∨ −n, if x ∈ Ω1,

r+
n , if x ∈ Ω2,

r−n , if x ∈ Ω3.

bn(x) :=


(b(x) ∧ βmax(n)) ∨ βmin(−n), if x ∈ Ω1,

b+
n , if x ∈ Ω2,

b−n , if x ∈ Ω3.

iii.) D(β) = [a,∞] for a ∈ R, a < 0. Since β is maximal monotone it
follows that Ω3 is empty and we have:

un(x) :=

{
((β−1)0(b(x)) ∧ n) ∨ (a+ 1

n
), if x ∈ Ω1,

r+
n , if x ∈ Ω2.

bn(x) :=

{
(b(x) ∧ βmax(n)) ∨ βmin(a+ 1

n
), if x ∈ Ω1,

b+
n , if x ∈ Ω2.

iv.) D(β) = [−∞, a] for a ∈ R, a > 0. Since β is maximal monotone it
follows that Ω2 is empty and we have:

un(x) :=

{
((β−1)0(b(x)) ∧ (a− 1

n
)) ∨ −n, if x ∈ Ω1,

r−n , if x ∈ Ω3.

bn(x) :=

{
(b(x) ∧ βmax(a− 1

n
)) ∨ βmin(−n), if x ∈ Ω1,

b−n , if x ∈ Ω3.
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Step 2: According to Lemma 4.1.2, it is left to prove thatD ⊂ D(Aβ)
‖·‖L1(Ω) .

By general nonlinear semigroup theory (see [17]), since Aβ is m-accretive in
L1(Ω), this is true if, for each b ∈ D and λ > 0,

lim
λ↓0

JλAβ(b) = b (4.1.9)

holds in L1(Ω). To this end, we fix b ∈ D and choose u ∈ L∞(Ω) such

that b ∈ β(u) almost everywhere in Ω. For β̂ := β + I the operator Abβ
is m-accretive in L1(Ω), hence for each λ > 0 there exist (̂bλ, ŵλ) ∈ Abβ,

ûλ ∈ L1(Ω) such that

b̂λ + λŵλ = b+ u (4.1.10)

holds in L1(Ω),

b̂λ ∈ β̂(ûλ) (4.1.11)

almost everywhere in Ω and ûλ is a renormalized solution to

− div(a(x,Dûλ) + F (ûλ)) = ŵλ. (4.1.12)

Step 3: A priori estimates and convergence.

Lemma 4.1.3. For all λ > 0, b ∈ D, u ∈ L∞(Ω) such that b ∈ β(u) almost

everywhere in Ω, (̂bλ, ŵλ) ∈ Abβ, ûλ ∈ L1(Ω) satisfying (4.1.10), (4.1.12) and
(4.1.11), the following holds true:

i.)
‖ûλ‖L∞(Ω) ≤ ‖b+ u‖L∞(Ω), (4.1.13)

ii.) ûλ ∈ W 1,p(·)
0 (Ω)∩L∞(Ω) and there exists a constant C > 0 not depend-

ing on λ > 0 such that

λ

∫
Ω

|Dûλ|p(x) ≤ C‖b+ u‖L∞(Ω), (4.1.14)

iii.)

lim
λ↓0

λ

∫
Ω

|Dûλ|p(x)−1 = 0, (4.1.15)

iv.)

‖b̂λ‖L2(Ω) ≤ ‖b+ u‖L2(Ω) (4.1.16)

and b̂λ → b+ u in L2(Ω).
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Proof: We fix λ > 0. By the definition of β̂ and (4.1.11), there exists
dλ ∈ L1(Ω) satisfying dλ ∈ β(ûλ) for almost all x ∈ Ω and

b̂λ = dλ + ûλ (4.1.17)

almost everywhere in Ω. By (4.1.10), (4.1.12) and (4.1.17),∫
Ω

(dλ + ûλ)h(ûλ)φ+ λ(a(x,Dûλ) + F (ûλ)) ·D(h(ûλ)φ) =

∫
Ω

(b+ u)h(ûλ)φ

(4.1.18)

holds for all h ∈ C1
c (R) and all φ ∈ W 1,p(·)

0 (Ω)∩L∞(Ω). We choose hl(ûλ)
1
δ
(Tk+δ(ûλ)−

Tk(ûλ)) as a test function in (4.1.18). Neglecting positive terms we pass to
the limit with δ ↓ 0 and then with l → ∞. Setting k = ‖b + u‖L∞(Ω), we
find (4.1.13) and i.) holds. Since ûλ is a renormalized solution to (4.1.12)

in follows from (4.1.13) that ûλ ∈ W 1,p(·)
0 (Ω) ∩ L∞(Ω). Therefore, using the

same arguments as in the proof of Proposition 3.3.2, we can use ûλ as a test
function and find∫

Ω

dλûλ + (ûλ)
2 + λ

∫
Ω

(a(x,Dûλ) + F (ûλ)) ·Dûλ =

∫
Ω

(b+ u)ûλ. (4.1.19)

Now, (4.1.14) follows from (4.1.19) and (A1). To prove (4.1.15), we choose
0 < λ < 1. Then, using the Young inequality with p(x) and p′(x) =
p(x)/(p(x)− 1) almost everywhere in Ω and (4.1.14) it follows that

λ

∫
Ω

|Dûλ|p(x)−1 ≤ λ
1− 1

(p′)−

∫
Ω

λ
1

p′(x) |Dûλ|p(x)−1

≤ λ
1− 1

(p′)− λ
1

(p′)−

∫
Ω

|Dûλ|p(x) + λ
1− 1

(p′)−
1

p−
|Ω|

≤ λ
1− 1

(p′)−

(
1

(p′)−
C‖b+ u‖L∞(Ω) +

1

p−
|Ω|
)

where C > 0 does not depend on λ. Now, iii.) follows since 1− 1
(p′)−

> 0. To

prove iv.), for ε > 0, let βε be the Yosida approximation of β and set β̂ε :=

I + βε. Then for each ε, λ > 0, there exists a weak solution ûλε ∈ W
1,p(·)
0 (Ω)

to
β̂ε(T1/ε(û

λ
ε ))− λ div(a(x,Dûλε ) + F (T1/ε(û

λ
ε )) = b+ u. (4.1.20)

Choosing β̂ε(T1/ε(û
λ
ε )) as a test function in (4.1.20), we find that

‖β̂ε(T1/ε(û
λ
ε ))‖L2(Ω) ≤ ‖b+ u‖L2(Ω) (4.1.21)

holds for all ε, λ > 0. Using the same arguments as in the proof of Propo-
sition 3.2.1, it follows that β̂ε(T1/ε(û

λ
ε )) ⇀ b̂λ in L2(Ω) as ε ↓ 0. Therefore,
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(4.1.16) holds for all λ > 0. It is an immediate consequence of (4.1.15),

(4.1.10) and (4.1.12) that b̂λ → b+ u in D′(Ω) and now it follows by (4.1.16)

that b̂λ → b+ u in L2(Ω) as λ ↓ 0, hence the proof of iv.) is complete.

Step 4: Conclusion: From the proof of Lemma 4.1.3 we recall that by
(4.1.11), for each λ > 0 we can write

b̂λ = dλ + ûλ, (4.1.22)

where dλ ∈ L1(Ω) satisfies dλ ∈ β(ûλ) almost everywhere in Ω. From (4.1.10)
and (4.1.12) it follows that (dλ, ŵλ) ∈ Aβ and

dλ = JλAβ(b+ u− ûλ) (4.1.23)

for all λ > 0. Now, using the contractivity property of the resolvent mapping
JλAβ and the contractivity of (β + I)−1, we get the estimate

‖JλAβ(b)− b‖L1(Ω) ≤ ‖JλAβ(b)− JλAβ(b+ u− ûλ)‖L1(Ω) + ‖b̂λ − ûλ − b‖L1(Ω)

≤ 2‖ûλ − u‖L1(Ω) + ‖b̂λ − (b+ u)‖L1(Ω)

≤ 3‖b̂λ − (b+ u)‖L1(Ω). (4.1.24)

Applying iv.) from Lemma 4.1.3, (4.1.9) follows and the proof of Proposition
4.1.1 is complete.

4.2 Solutions and function spaces for the evo-

lution problem

For a constant exponent p(·) ≡ p, the notion of renormalized solution to
(P, f, b0) is well known (see [2], [68], [22]) and (P, f, b0) is well-posed in the
space Lp(0, T ;W 1,p

0 (Ω)). We remind that (u, b) is a renormalized solution to
(P, f, b0) for f ∈ L1(QT ) in this particular case, iff (u, b) is satisfying the
following conditions:

(1) u : QT → R is measurable, b ∈ L1(QT ), u(t, x) ∈ D(β(t, x)) and
b(t, x) ∈ β(u(t, x)) for a.e. (t, x) ∈ QT ,

(2) b(0, x) = b0(x) a.e. in Ω,

(3) For each k > 0, Tk(u) ∈ Lp(0, T ;W 1,p
0 (Ω)),
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(4)

−
∫
QT

ξt

∫ b(t,x)

b0

h ◦ (β−1)0(r)drd(t, x)

+

∫
QT

(a(x,Du) + F (u)) ·D(h(u)ξ)d(t, x) =

∫
QT

fh(u)ξd(t, x)

holds for all h ∈ C1
c (R) and all ξ ∈ D([0, T )× Ω).

(5)
∫
QT∩{k<|u|<k+1} a(x,Du) ·Du d(t, x)→ 0 as k →∞.

In the general case, the situation is more delicate. We will use the above
definition as a starting point in our study because we already know from
the previous section that there exists a mild solution to the corresponding

abstract Cauchy problem (ACP, f, b0) for any b0 ∈ D(Aβ)
‖·‖L1(Ω) and any

f ∈ L1(QT ). This kind of data (f, b0) will be called L1-data in the follow-
ing. In the next lemma we give a priori estimates on the solutions of the
discretized problem (DPε) associated to (P, f, b0) for arbitary L1-data. From
these results we will deduce the generalised notion of renormalized solution
to (P, f, b0) for variable exponents. Then we will define the appropriate func-
tional setting and the notion of weak solution to (P, f, b0). In this approach
we tacticly assume an integration-by-parts Lemma for variable exponents
that will be proved later (see Lemma 4.2.11).

Another possible approach would be to start with data that allow weak so-
lutions in the discretized problems (DPε) and to obtain energy estimates and
function spaces for weak solutions. Then, the integration-by-parts Lemma
would naturally lead us to the notion of renormalized solution for variable
exponents.

Lemma 4.2.1. For f ∈ L1(QT ), b0 ∈ D(Aβ)
‖·‖L1(Ω), 0 < ε ≤ 1, N(ε) ∈ N

and

(Dε)


tε0 = 0 < tε1 < . . . < tεN(ε) ≤ T,

tεi − tεi−1 ≤ ε, T − tεN(ε) ≤ ε ∀i = 1, . . . , N(ε),

f εi ∈ L1(Ω), i = 1, . . . , N(ε), :
∑N(ε)

i=1

∫ tεi
tεi−1
‖f(t)− f εi ‖L1(Ω)dt ≤ ε

bε0 ∈ L1(Ω) : ‖bε0 − b0‖L1(Ω) ≤ ε
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let (bεi , u
ε
i )
N(ε)
i=1 be a solution of the discretized problem

(DPε)



bεi ∈ L1(Ω), uεi : Ω→ R measurable, Tk(u
ε
i ) ∈ W

1,p(·)
0 (Ω) ∀k > 0,∫

{n<|uεi |<n+1} a(x,Duεi ) ·Duεi → 0 as n→∞,∫
Ω

bεi−bεi−1

tεi−tεi−1
h(uεi )ϕ+

∫
Ω

(a(x,Duεi ) + F (uεi )) ·D(h(uεi )ϕ) =
∫

Ω
f εi h(uεi )ϕ

∀ϕ ∈ W 1,p(·)
0 (Ω) ∩ L∞(Ω), h ∈ C1

c (R),

bεi ∈ β(uεi ) a.e. in Ω for all i = 1, . . . , N(ε).

For k > 0, we define the piecewise constant functions fε : (0, T ] → L1(Ω),

bε : [0, T ] → L1(Ω) and Tk(uε) : (0, T ] → W
1,p(·)
0 (Ω) as follows: fε(t) = f εi ,

bε(0) = bε0, bε(t) = bεi and Tk(uε(t)) = Tk(u
ε
i ) for t ∈ (tεi−1, t

ε
i ] and i =

1, . . . , N(ε). If tεN(ε) < T , fε, bε and uε are extended by setting fε(t) = f εN(ε),

Tk(uε(t)) = Tk(u
ε
N(ε)) and bε(t) = bεN(ε) for all t ∈ (tεN(ε), T ].

Then the following estimates hold true for all k > 0 and 0 < ε ≤ 1:

i.) There exists a constant C1(‖f‖L1(QT ), ‖b0‖L1(Ω), k) > 0 not depending
on ε > 0, such that∫ T

0

∫
Ω

|DTk(uε)|p(x)dxdt ≤ C1(‖f‖L1(QT ), ‖b0‖L1(Ω), k). (4.2.1)

ii.) There exists a constant C2(‖f‖L1(QT ), ‖b0‖L1(Ω), k, T, p(·),Ω) > 0 not
depending on ε > 0, such that

‖Tk(uε)‖Lp− (0,T ;W
1,p(·)
0 (Ω))

≤ C2(‖f‖L1(QT ), ‖b0‖L1(Ω), k, T, p(·),Ω).

(4.2.2)

iii.) There exist constants C3(‖f‖L1(QT ), ‖b0‖L1(Ω), k, p(·),Ω) > 0,
C4(C1(‖f‖L1(QT ), ‖b0‖L1(Ω), k)) > 0 not depending on ε > 0, such that

‖a(x,DTk(uε))‖L(p′)− (0,T ;Lp
′(·)(Ω)) ≤ C3(‖f‖L1(QT ), ‖b0‖L1(Ω), k, p(·),Ω)

(4.2.3)
and∫ T

0

∫
Ω

|a(x,DTk(uε))|p
′(x) ≤ C4(C1(‖f‖L1(QT ), ‖b0‖L1(Ω), k)). (4.2.4)

Remark 4.2.2. Since Aβ is m-accretive, by nonlinear semigroup theory (see

[17]), (DPε) has a solution (bεi , u
ε
i )
N(ε)
i=1 for every discretisation (Dε), ε > 0, f ∈
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L1(QT ) and b0 ∈ D(Aβ)
‖·‖L1(Ω) . Moreover, the piecewise constant function

bε defined in Lemma 4.2.1 converges in L∞(0, T ;L1(Ω)) as ε ↓ 0 to the mild
solution b ∈ C([0, T ];L1(Ω)) of (ACP )(f, b0).

Proof of Lemma (4.2.1): For i ∈ {1, . . . , N(ε)} we take Tk(u
ε
i )hl(u

ε
i ),

k, l > 0, as a test function in (DPε) to obtain

I1 + I2 + I3 = I4,

where

I1 =

∫
Ω

bεi − bεi−1

tεi − tεi−1

hl(u
ε
i )Tk(u

ε
i ),

I2 =

∫
Ω

a(x,Duεi ) ·D(hl(u
ε
i )Tk(u

ε
i )),

I3 =

∫
Ω

F (uεi ) ·D(hl(u
ε
i )Tk(u

ε
i )),

I4 =

∫
Ω

f εi hl(u
ε
i )Tk(u

ε
i ).

By Gauss-Green Theorem, it follows that I3 = 0 for all l > k. Applying (A1)
in I2, we can pass to the limit with l→∞ and find∫

Ω

bεi − bεi−1

tεi − tεi−1

Tk(u
ε
i ) + γ

∫
Ω

|DTk(uεi )|p(x) ≤ k

∫
Ω

|f εi |. (4.2.5)

If we define the convex, l.s.c., proper function φTk : R→ R ∪ {+∞} by

φTk(r) :=

{∫ r
0
Tk((β

−1)0(σ))dσ, if r ∈ R(β),

+∞, otherwise,

then Tk(u
ε
i ) ⊂ ∂φTk(b

ε
i ) for all i = 1, . . . , N(ε) and

φTk(b
ε
i )− φTk(bεi−1) ≤ (bεi − bεi−1)Tk(u

ε
i ) (4.2.6)

holds almost everywhere in Ω. Therefore from (4.2.5) and (4.2.6) it follows
that ∫

Ω

φTk(b
ε
i )− φTk(bεi−1)

tεi − tεi−1

+ γ

∫
Ω

|DTk(uεi )|p(x) ≤ k

∫
Ω

|f εi |. (4.2.7)

Integrating (4.2.7) over (tεi−1, t
ε
i ], and taking the sum over i = 1, . . . , N(ε)

yields∫
Ω

φTk(bε(T ))dx+γ

∫ T

0

∫
Ω

|DTk(uε)|p(x)dxdt ≤
∫

Ω

φTk(bε(0))+k

∫ T

0

∫
Ω

|fε|dxdt.

(4.2.8)
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According to (Dε), bε(0) = bε0 converges to b0 in L1(Ω) and fε converges to
f in L1(0, T ;L1(Ω)) as ε ↓ 0. Therefore, the right-hand side of (4.2.8) is
bounded by a constant C1(‖f‖L1(QT ), ‖b0‖L1(Ω), k) > 0 that does not depend
on ε. Now, (4.2.1) follows from (4.2.8) if we neglect the positive term and
use (A1). To prove ii.), we apply (2.1.2) and find∫ T

0

‖DTk(uε)‖p
−

Lp(·)(Ω)
dt

≤
∫ T

0

max

[∫
Ω

|DTk(uε)|p(x),

(∫
Ω

|DTk(uε)|p(x)

)p−/p+
]
dt,

(4.2.9)

hence (4.2.2) follows from the Poincaré inequality in W
1,p(·)
0 (Ω) and (4.2.1).

To prove iii.), we use (A2) and the same arguments as above.

Remark 4.2.3. As we will see in the following, estimate (4.2.1) plays a
crucial role in order to get a well-posed problem. Note that, if p(·) = p
is constant, then, of course, (4.2.2) implies (4.2.1) and the problem can be
settled within the classical functional setting of the Bochner-Lebesgue spaces
Lp(0, T ;W 1,p

0 (Ω)). In the general case, a function v ∈ Lp−(0, T ;W
1,p(·)
0 (Ω))

does not automatically satisfy (4.2.1). As an example, consider N = 2,
Ω = (−1, 1)2, p(x, y) = 3/2 − |x|/4, (x, y) ∈ Ω. Then p+ = 5/4, p− = 3/2
and the function v : [0, T ]×Ω→ R defined by v(t, x, y) = t−2/3(1−|x|)(1−|y|)
is an element of Lp

−
(0, T ;W

1,p(·)
0 (Ω)), but vx, vy /∈ Lp(·)(QT ) (see [13] for more

details).

4.2.1 Renormalized solution

In view of the results in [2], [22], [68] and [13], the a priori estimates in Lemma
4.2.1 naturally lead to an appropriate notion of a renormalized solution to
(P, f, b0):

Definition 4.2.1. For f ∈ L1(QT ), b0 ∈ L1(Ω) a renormalized solution to
(P, f, b0) is a pair of functions (u, b) satisfying the following conditions:

(P1) u : QT → R is measurable, b ∈ L1(QT ), u(t, x) ∈ D(β(t, x)) and
b(t, x) ∈ β(u(t, x)) for a.e. (t, x) ∈ QT ,

(P2) b(0, x) = b0(x) a.e. in Ω,

(P3) For each k > 0, Tk(u) ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)) andDTk(u) ∈ (Lp(·)(QT ))N ,
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(P4)

−
∫
QT

ξt

∫ b(t,x)

b0

h ◦ (β−1)0(r)drd(t, x)

+

∫
QT

(a(x,Du) + F (u)) ·D(h(u)ξ)d(t, x) =

∫
QT

fh(u)ξd(t, x)

holds for all h ∈ C1
c (R) and all ξ ∈ D([0, T )× Ω).

(P5)
∫
QT∩{k<|u|<k+1} a(x,Du) ·Du d(t, x)→ 0 as k →∞.

Remark 4.2.4. Using the embedding W 1,p(·)(Ω) ↪→ W 1,1(Ω), we can asso-
ciate to every measurable function u : QT → R satisfying

Tk(u) ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)), DTk(u) ∈ (Lp(·)(QT ))N

for all k > 0, a generalized gradient (still denoted by Du), defined as the
unique measurable function satisfying Du = DTk(u) a.e. on {|u| < k} for all
k > 0 (see, e.g., [15]). It follows that all the terms in (P4) are well-defined.
In particular, the first member of (P4) makes sense as∫ b(t,x)

b0

h ◦ (β−1)0(r)dr ≤ ‖h‖L∞(R)|b(t, x)− b0|

almost everywhere in QT and b ∈ L1(QT ), b0 ∈ L1(Ω).

Remark 4.2.5. A definiton of renormalized solutions involving the spaces
Lp(·)(QT ) and Lp

−
(0, T ;W

1,p(·)
0 (Ω)) has been recently proposed in [71] for

the special case when β is the identity mapping F ≡ 0 and a(x,Du) =
div(|Du|p(x)−2Du). But just a few comments about those spaces have been
made. To the best of our knowledge, the study of properties of the spaces
Lp(·)(QT ) and Lp

−
(0, T ;W

1,p(·)
0 (Ω)) in Lemma 2.2.2, their introduction in Def-

inition 4.2.1 as a natural consequence of the a priori estimates on the solutions
of the time-discretized problems in Lemma 4.2.1 and the following study of
the energy space V for weak solutions is new. Note that the proof of the
main Theorem 1.1 in [71] is false. Nevertheless, the existence result holds
true as a special case of (P, f, b0). A detailed proof and additional regularity
results can found in [13].

4.2.2 Functional setting and weak solutions

At the end of this subsection we will give a definition of weak solution
(u, b) to (P, f, b0). The main problem is to find an appropriate energy
space for u. As we will see in the next remark, it is not enough to claim
u ∈ Lp−(0, T ;W

1,p(·)
0 (Ω)).
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Remark 4.2.6. According to the a priori estimates in Lemma 4.2.1 let
us assume that for given f ∈ L∞(QT ), b0 ∈ L1(Ω) there exists (u, b) ∈
Lp−(0, T ;W

1,p(·)
0 (Ω))× L1(QT ) such that Du ∈ (Lp(·)(QT ))N , b(0, x) = b0(x)

almost everywhere in Ω, F (u) ∈ (Lp
′(·)(QT ))N . Furthermore we assume

−
∫
QT

(b− b0)ξt +

∫
QT

(a(x,Du) + F (u)) ·Dξ =

∫
QT

fξ (4.2.10)

to hold for all ξ ∈ D([0, T )× Ω). From the embeddings of Lemma 2.2.2 and
(A2) we have a(x,Du) +F (u) ∈ L(p′)−(0, T ;Lp(·)(Ω)) and therefore it follows
that (b − b0)t ∈ L(p′)−(0, T ;W−1,p′(·)(Ω)) in the sense of distributions. But
since

(p′)− = ess inf
x∈Ω

(
p(x)

p(x)− 1

)
= 1 +

1

p+ − 1
= (p+)′

≤ 1 +
1

p− − 1
= (p−)′ (4.2.11)

and equality holds in (4.2.11) if and only if p(·) ≡ p is constant, in general

L(p−)′(0, T ;W−1,p′(·)(Ω)) $ L(p′)−(0, T ;W−1,p′(·)(Ω)).

Hence we can not use test functions ξ ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)) in (4.2.10) and

(P, f, b0) is not well-posed in Lp
−

(0, T ;W
1,p(·)
0 (Ω)).

In fact, the function u from the preceeding remark is indeed more regular
than Lp

−
(0, T ;W

1,p(·)
0 (Ω)). Since we claimed Du ∈ (Lp(·)(QT ))N , u is an

element of the functional space

V := {f ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)) : |Df | ∈ Lp(·)(QT )} (4.2.12)

which, endowed with the norm

‖f‖V := ‖f‖
Lp− (0,T ;W

1,p(·)
0 (Ω))

+ ‖|Df |‖Lp(·)(QT )

is a separable and reflexive Banach space. We state some further properties
of V in the following lemma:

Lemma 4.2.7. Let V be defined as in (4.2.12) and V ′ denote the dual space
of V . Then,
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i.) we have the following continuous dense embeddings:

Lp
+

(0, T ;W
1,p(·)
0 (Ω))

d
↪→ V

d
↪→ Lp

−
(0, T ;W

1,p(·)
0 (Ω)). (4.2.13)

In particular, since D(QT ) is dense in Lp
+

(0, T ;W
1,p(·)
0 (Ω)), it is dense

in V and for the corresponding dual spaces we have

L(p−)′(0, T ;W−1,p′(·)(Ω)) ↪→ V ′ ↪→ L(p+)′(0, T ;W−1,p′(·)(Ω)). (4.2.14)

ii.) ‖f‖V := ‖|Df |‖Lp(·)(QT ) is an equivalent norm on V ,

iii.) one can represent the elements of V ′ as follows: If T ∈ V ′, then there
exists F = (f1, . . . , fN) ∈ (Lp

′(·)(QT ))N such that T = divx F in the
sense that

〈T, ξ〉V ′,V =

∫ T

0

∫
Ω

F ·Dξdxdt

for any ξ ∈ V . Moreover, an equivalent norm on V ′ is given by

‖T‖V ′ = max{‖fi‖Lp(·)(QT ), i = 1, . . . , n}.

Proof: i.): The continuous embeddings in (4.2.13) follow immediately
from Lemma 2.2.2, (2.2.2). To prove the density of the first embedding in
i.), we fix v ∈ V . Let (ρn)n be a standard sequence of mollifiers in R and v the
abstract function v extended by zero onto R. It follows from [40], Proposition
1.7.1, p. 25 and Théorème 1.7.1, p. 27, that the convolution (only) in t of ρn
and v defined as vn := ρn ∗ v ∈ Lp

+
(R;W

1,p(·)
0 (Ω)) for all n ∈ N converges to

v in Lp
−

(0, T ;W
1,p(·)
0 (Ω)) as n → ∞. Since ∂

∂xi
(ρn ∗ v)(t) = (ρn ∗ ∂v

∂xi
)(t) for

all t ∈ R and i = 1, . . . , n, it is left to prove that

∂vn
∂xi

= ρn ∗
∂v

∂xi
→ ∂v

∂xi

for each i = 1, . . . , n in Lp(·)(QT ) as n → ∞. To this end, we fix ε > 0, i ∈
{1, . . . , n} and choose (by Lemma 2.2.2) a function uiε ∈ Lp

+
(0, T ;Lp(·)(Ω))

such that ∫
QT

∣∣∣∣uiε − ∂v

∂xi

∣∣∣∣p(x)

d(t, x) <
ε

3 · 42p+ (4.2.15)

Then ∫ T

0

∫
Ω

∣∣∣∣∂vn∂xi
− ∂v

∂xi

∣∣∣∣p(x)

dxdt ≤ 42p+

(I1 + I2 + I3), (4.2.16)
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where

I1 =

∫ T

0

∫
Ω

∣∣∣∣∫
R
ρn(t− s)

(
∂v

∂xi
(s, x)− uiε(s, x)

)
ds

∣∣∣∣p(x)

dxdt,

I2 =

∫ T

0

∫
Ω

∣∣∣∣∫
R
ρn(t− s)uiε(s, x)ds− uiε(t, x)

∣∣∣∣p(x)

dxdt,

I3 =

∫ T

0

∫
Ω

∣∣∣∣uiε − ∂v

∂xi

∣∣∣∣p(x)

dxdt. (4.2.17)

Substituting, applying the Jensen inequality and Fubini Theorem we get the
estimate

I1 ≤
∫ 1

−1

ρ(σ)

∫ T

0

∫
Ω

∣∣∣∣ ∂v∂xi (t+ σ/n, x)− uiε(t+ σ/n, x)

∣∣∣∣p(x)

dxdtdσ

≤
∫ T

0

∫
Ω

∣∣∣∣ ∂v∂xi (t, x)− uiε(t, x)

∣∣∣∣p(x)

dxdt. (4.2.18)

Since I2 → 0 as n → ∞, choosing n0 large enough and plugging (4.2.15),
(4.2.17) and (4.2.18) into (4.2.16) we have shown that the first embedding
in (4.2.13) is dense. To prove that the second embedding is dense, we fix

u ∈ Lp
−

(0, T ;W
1,p(·)
0 (Ω)). Using the same arguments as in the proof of

Lemma 2.2.2, un := ρn ∗ u is in Lp
+

(0, T ;W
1,p(·)
0 (Ω)), hence in Lp(·)(QT ) for

all n ∈ N and converges to u in Lp
−

(0, T ;W
1,p(·)
0 (Ω)) as n→∞. ii.) follows

directly from Poincaré inequality and Lemma 2.2.2. To prove iii.), note that
the mapping i : V → (Lp(·)(QT ))N defined by

i(u) =

(
∂u

∂x1

, . . . ,
∂u

∂xN

)
for u ∈ V is linear, continuous and, by ii.), norm preserving. Identifying
each T ∈ V ′ with T ◦ i−1 ∈ (i(V ))′ and using Hahn-Banach Theorem, we can
extend T to a continuous linear functional on (Lp(·)(QT ))N and the assertion
follows by the Lp(·)(QT )-Lp

′(·)(QT ) duality.

Remark 4.2.8. Note that, if u is a renormalized solution of (P, f, b0), then
Tk(u), h(u) ∈ V ∩ L∞(QT ) for all h ∈ C1

c (R). Let us also remark that V ∩
L∞(QT ) endowed with the norm

‖v‖V ∩L∞(QT ) := max
{
‖v‖V , ‖v‖L∞(QT )

}
, v ∈ V ∩ L∞(QT )
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is a Banach space. In fact it is the dual space of the Banach space V ′+L1(QT )
endowed with the norm

‖v‖V ′+L1(QT ) = inf
{
‖v1‖V ′ + ‖v2‖L1(QT ); v = v1 + v2, v1 ∈ V ′, v2 ∈ L1(QT )

}
.

Moreover,
∂

∂t

∫ b(t,x)

b0

h ◦ (β−1)0(r)dr ∈ V ′ + L1(QT ). (4.2.19)

Indeed, for any h ∈ C1
c (R), k > 0 such that supph ⊂ [−k, k] and ξ ∈ D(QT )

we have∫
QT

(a(x,Du) + F (u)) ·D(h(u)ξ) +

∫
QT

fh(u)ξ = I1 + I2 (4.2.20)

where, by Remark 4.2.4, there exist constants K1, K2 > 0 not depending on
ξ such that

|I1| =

∣∣∣∣∫
QT

h(u)(a(x,DTk(u)) + F (Tk(u))) ·Dξ
∣∣∣∣ ≤ K1‖|Dξ|‖Lp(·)(QT ),

|I2| =

∣∣∣∣∫
QT

(h′(u)(a(x,DTk(u)) + F (Tk(u))) ·DTk(u) + fh(u))ξ

∣∣∣∣ ≤ K2‖ξ‖L∞(QT )

hence, by Lemma 4.2.7, iii.) there exists G1 ∈ V ′ such that

I1 = 〈G1, ξ〉V ′,V (4.2.21)

and

I2 = 〈h′(u)(a(x,DTk(u)) + F (Tk(u))) ·DTk(u) + fh(u), ξ〉L1(QT ),L∞(QT ).
(4.2.22)

Now, by (P4), (4.2.21) and (4.2.22) it follows that

∂

∂t

∫ b(t,x)

b0

h◦(β−1)0(r)dr = G1+h′(u)(a(x,DTk(u))+F (Tk(u)))·DTk(u)+fh(u)

(4.2.23)
in D′(QT ) and (4.2.19) holds. Since D(QT ) is dense in V , for any φ ∈ V ∩L∞
there exists a sequence (φn) ⊂ D(QT ) such that φn → φ as n→∞ in V and
weak-∗ in L∞(QT ). Therefore, replacing

−
∫
QT

ξt

∫ b(t,x)

b0

h ◦ (β−1)0(r)dr
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by 〈
∂

∂t

∫ b(t,x)

b0

h ◦ (β−1)0(r)dr, ξ

〉
(4.2.24)

in the left-hand side of (P4), where 〈·, ·〉 denotes the duality pairing between
V ′+L1(QT ) and V ∩L∞(QT ), we can also use test functions ξ ∈ V ∩L∞(QT ).

Now, we are finally in the position to give a generalisation to the notion
of weak solutions to (P, f, b0) for variable exponents:

Definition 4.2.2. For f ∈ L1(QT ), b0 ∈ L1(Ω) a weak solution to (P, f, b0)
is a pair of functions (u, b) ∈ V × L1(QT ) satisfying F (u) ∈ (Lp

′(·)(QT ))N ,
b ∈ β(u) almost everywhere in QT , b(0, x) = b0 almost everywhere in Ω such
that

−
∫
QT

(b− b0)ξt +

∫
QT

(a(x,Du) + F (u)) ·Dξ =

∫
QT

fξ (4.2.25)

holds for all ξ ∈ D([0, T )× Ω).

Remark 4.2.9. Note that if (u, b) is a renormalized solution to (P, f, b0) such
that u ∈ L∞(QT ) then (u, b) is a weak solution to (P, f, b0). Indeed, as an
immediate consequence from (P1), and (P3) we get u ∈ V . Now we fix ξ ∈
D([0, T )×Ω) and choose hl(u)ξ as a test function in (P4). As usual, we apply
the Gauss-Green Theorem and the boundary condition on the

”
convection“

term
∫
QT
h′l(u)ξ F (u) · Du and (P5) to estimate

∫
QT
h′l(u)ξ a(x,Du) · Du.

Passing to the limit with l → ∞, we find (4.2.2). The remaining conditions
for being a weak solution follow from (P1) and (P2).

Remark 4.2.10. For f ∈ L∞(QT ), from (4.2.25) it follows that (b−b0)t ∈ V ′.
If we replace

−
∫
QT

(b− b0)ξt

by
〈(b− b0)t, ξ〉V ′,V

in (4.2.25), by density of D(QT ) in V we can use test functions in V . There-
fore, the problem (P, f, b0) is well-posed in V .

4.2.3 Integration-by-parts-formula

In the next Lemma, we prove an integration-by-parts-formula that will be
crucial in the following. The idea of the proof is the same as in [1] and
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the generalisations considered in [31] and [61]. The essential point is that
the Stekhlov average of a function v ∈ V ∩ L∞(QT ) defined by vη(·) =
1
η

∫ ·+η
· v(σ)dσ, η > 0, (appropriately prolongated outside (0, T )) still belongs

to V ∩ L∞(QT ) and converges to v in V and weak-∗ in L∞(QT ) as η ↓ 0.

Lemma 4.2.11. Let β ⊂ R × R be a maximal monotone graph, u ∈ V ,
b ∈ L1(QT ) such that b ∈ β(u) almost everywhere in QT , b0 ∈ L1(Ω) with
b(0, x) = b0 almost everywhere in Ω and u0 : Ω→ R be a measurable function
such that b0 ∈ β(u0) almost everywhere in Ω. Furthermore, we assume that
there exists G ∈ V ′ + L1(QT ) satisfying∫

QT

(b− b0)ξt = 〈G, ξ〉, (4.2.26)

for all ξ ∈ D([0, T ) × Ω), where 〈·, ·〉 denotes the duality pairing between
V ′ + L1(QT ) and V ∩ L∞(QT ). Then,∫

QT

ξt

∫ b(t,x)

b0

h((β−1)0(σ))dσ = 〈G, h(u)ξ〉 (4.2.27)

for all h ∈ C1
c (R) and ξ ∈ D([0, T )× Ω).

Remark 4.2.12. Note that (b − b0)t ∈ D′(QT ) is identified to G ∈ V ′ +
L1(QT ) ⊂ D′(QT ) by formula (4.2.26).

Proof of Lemma 4.2.11: First note that there exist Lipschitz continuous
functions h1, h2 : R→ R such that h1 is non-decreasing, h2 is non-increasing
and h = h1 + h2. Furhermore, there exists k > 0 such that supph ⊂ [−k, k],
hence h(u) = h(Tk(u)) = h1(Tk(u)) +h2(Tk(u)) and obviously h1 ◦Tk(u), h2 ◦
Tk(u) ∈ V ∩ L∞(QT ). For ξ ∈ D+([0, T )× Ω), (t, x) ∈ QT and η > 0 we set
ζ := h1(Tk(u))ξ and

ξη(t, x) :=
1

η

∫ t+η

t

ζ(σ, x)dσ. (4.2.28)

Note that ζ ∈ V ∩L∞(QT ) and the function ξη : QT → R is in V ∩W 1,∞(QT )
with ξη(T, x) = 0 for all x ∈ Ω and η > 0. Using similar arguments as in
Remark 4.2.8, it follows that ξη is an admissible test function in (4.2.26),
hence

〈G, ξη〉 =

∫
QT

(b− b0)(ξη)t

=

∫
QT

1

η
(ζ(t+ η, x)− ζ(t, x))(b(t, x)− b(0, x))

=
1

η
(I1 + I2 + I3), (4.2.29)
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where ζ(t, x) = 0 for t > T , b(t, x) = b0 for t < 0, and

I1 =

∫ T

0

∫
Ω

ζ(t+ η, x)b(t, x) =

∫ T

η

∫
Ω

ζ(t, x)b(t− η, x)

I2 = −
∫ T

0

∫
Ω

ζ(t, x)b(t, x), (4.2.30)

I3 = −
∫ T

0

∫
Ω

ζ(t+ η, x)− ζ(t, x))b(0, x)

=

∫ T

0

∫
Ω

∫ t+η

t

ζ(σ, x)dσ · 0−
∫

Ω

∫ t+η

t

ζ(σ, x)dσ · b(0, x)
∣∣T
0

=

∫ η

0

∫
Ω

ζ(t, x)b(t− η, x). (4.2.31)

From (4.2.30) and (4.2.31) we get

〈G, ξη〉 =
1

η

∫
QT

ζ(t, x)(b(t− η, x)− b(t, x)). (4.2.32)

Now, since b(t, x) ∈ β(u(t, x)) almost everywhere in QT , h1◦Tk nondecreasing
and ξ ≥ 0 it follows that

1

η

∫
QT

ζ(t, x)(b(t− η, x)− b(t, x)) ≤ 1

η

∫
QT

ξ(t, x)

∫ b(t−η,x)

b(t,x)

h1 ◦ Tk ◦ (β−1)0(σ)dσ

(4.2.33)

If we define φh1 : R→ R ∪ {+∞} by

φh1(r) :=

{∫ r
0
h1 ◦ Tk ◦ (β−1)0(σ)dσ, r ∈ R(β),

+∞, otherwise,

from (4.2.32) and (4.2.33) it follows with the same arguments as in (4.2.31)
that

〈G, ξη〉 ≤
1

η

∫
QT

ξ(t, x)(φh1(b(t− η, x))− φh1(b(t, x)))

=
1

η

∫
QT

(ξ(t+ η, x)− ξ(t, x))(φh1(b(t, x))− φh1(b(0, x))

=
1

η

∫
QT

(ξ(t+ η, x)− ξ(t, x))

∫ b(t,x)

b0

h1 ◦ Tk ◦ (β−1)0(σ)dσ.

(4.2.34)
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Passing to a subsequence if necessary, we have ξη → ξh1(Tk(u)) as η ↓ 0 in
V and weak-∗ in L∞(QT ), hence passing to the limit in (4.2.34) yields

〈G, h1(Tk(u))ξ〉 ≤
∫
QT

ξt

∫ b(t,x)

b0

h1 ◦ Tk ◦ (β−1)0(σ)dσ. (4.2.35)

Note that since Tk(u0) ∈ L∞(Ω), there exists a sequence (u0,n)n ⊂ D(Ω) such
that Tk(u0,n) → Tk(u0) in L1(Ω) and almost everywhere in Ω as n → ∞.
For t < 0 and all x ∈ Ω we write u(t, x) = u0,n and b(t, x) = b0. For
ξ ∈ D+([0, T ) × Ω) we define ξ(t, x) := ξ(−t, x) for t < 0 and all x ∈ Ω. If
ζ := h1(Tk(u))ξ, for (t, x) ∈ QT and η > 0 we define

ξ̃η(t, x) :=
1

η

∫ t

t−η
ζ(σ, x)dσ, (4.2.36)

then ξ̃η : QT → R is in V ∩W 1,∞(QT ) such that ξη(T, x) = 0 for all x ∈ Ω
and η > 0 sufficiently small. Using similar arguments as in Remark 4.2.8, it
follows that ξ̃η is an admissible test function in (4.2.26), hence

〈G, ξ̃η〉 =

∫
QT

(b− b0)(ξ̃η)t

=

∫
QT

1

η
(ζ(t, x)− ζ(t− η, x))(b(t, x)− b(0, x))

=
1

η
(J1 + J2 + J3), (4.2.37)

where

J1 =

∫ T

0

∫
Ω

ζ(t, x)b(t, x) =

∫ T+η

η

∫
Ω

ζ(t− η, x)b(t− h, x)

J2 = −
∫ T

0

∫
Ω

ζ(t− η, x)b(t, x), (4.2.38)

and, for η > 0 sufficiently small,

J3 = −
∫ T

0

∫
Ω

ζ(t, x)− ζ(t− η, x))b(0, x)

=

∫ T

0

∫
Ω

∫ t

t−η
ζ(σ, x)dσ · 0−

∫
Ω

∫ t

t−η
ζ(σ, x)dσ · b(0, x)

∣∣T
0

=

∫ 0

−η

∫
Ω

ζ(t, x)b(t, x)

=

∫ η

0

∫
Ω

ζ(t− η, x)b(t− η, x). (4.2.39)
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From (4.2.38) and (4.2.39) we get

〈G, ξ̃η〉 =
1

η
(I1 + I2), (4.2.40)

where

I1 =

∫ T

η

∫
Ω

ζ(t− η, x)(b(t− η, x)− b(t, x)),

I2 =

∫ η

0

∫
Ω

h1(Tk(u0))ξ(b(t− η, x)− b(t, x))

+

∫ η

0

∫
Ω

(h1(Tk(u0,n))− h1(Tk(u0)))ξ(b(t− η, x)− b(t, x))

Since −(h1 ◦ Tk ◦ (β−1)0) is nonincreasing, for any η > 0 we have∫ b(t,x)

b(t−η,x)

−(h1 ◦ Tk ◦ (β−1)0)(σ)dσ ≤ −(b(t, x)− b(t− η, x))h1(Tk(u(t− η, x)))

(4.2.41)
almost everywhere in (η, T )× Ω and∫ b(t,x)

b(t−η,x)

−(h1 ◦ Tk ◦ (β−1)0)(σ)dσ ≤ −(b(t, x)− b0)h1(Tk(u0)) (4.2.42)

almost everywhere in (0, η)×Ω. Now, putting together (4.2.40), (4.2.41) and
(4.2.42) yields

〈G, ξ̃η〉 ≥
1

η

∫
QT

ξ(t− η, x)(φh1(b(t, x))− φh1(b(t− η, x)))

+

∫ η

0

∫
Ω

(h1(Tk(u0,n))− h1(Tk(u0)))ξ(b0 − b(t, x))

≥ 1

η

∫
QT

(ξ(t− η, x)− ξ(t, x))(φh1(b(t, x))− φh1(b(0, x)))

−
∫
QT

|h1(Tk(u0,n))− h1(Tk(u0))||ξ|(|b0|+ |b(t, x)|)

=
1

η

∫
QT

(ξ(t− η, x)− ξ(t, x))

∫ b(t,x)

b0

h1 ◦ Tk ◦ (β−1)0(σ)dσ

−
∫
QT

|h1(Tk(u0,n))− h1(Tk(u0))||ξ|(|b0|+ |b(t, x)|).

(4.2.43)
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Passing to the limit with η ↓ 0 an then with n→∞ in (4.2.43) by Lebesgue
Dominated Convergence Theorem we get

〈G, h1(Tk(u))ξ〉 ≥
∫
QT

ξt

∫ b(t,x)

b0

h1 ◦ Tk ◦ (β−1)0(σ)dσ. (4.2.44)

Combining (4.2.35) and (4.2.44) finally we get

〈G, h1(Tk(u))ξ〉 =

∫
QT

ξt

∫ b(t,x)

b0

h1 ◦ Tk ◦ (β−1)0(σ)dσ. (4.2.45)

for all h1 : R → R non-decreasing and Lipschitz continuous and all ξ ∈
D+([0, T ) × Ω). Replacing h1(Tk(u)) by −h2(Tk(u)) in (4.2.45) it follows
that (4.2.45) also holds for −h2(Tk(u)) and h2(Tk(u)), hence we can also
replace h1(Tk(u)) by h(Tk(u)) = h(u) in (4.2.45). For ξ ∈ D([0, T ) × Ω) we
have ξ = ξ+ + ξ− where ξ+ := max(0, ξ), ξ− := min(0, ξ) are in W 1,∞(QT ).
By density, we can plug ξ+, ξ− in (4.2.45) to finally obtain (4.2.27) for all
h ∈ C1

c (R) and ξ ∈ D([0, T )× Ω).

Remark 4.2.13. The integration-by-parts-formula of Lemma 4.2.26 still
holds for any h ∈ W 1,∞(R). Indeed, there exists a sequence (hn)n ⊂ C1

c (R)
converging to h in W 1,p(R) for any 1 ≤ p < ∞ and in L∞(R) as n → ∞.
Hence, for ξ ∈ D([0, T )×Ω) and u ∈ V , hn(u)ξ converges to h(u)ξ in V and
in L∞(QT ) as n→∞. Therefore we can pass to the limit in (4.2.27).

Proposition 4.2.14. For f ∈ L1(QT ), b0 ∈ L1(Ω) such that there exists a
measurable function u0 : Ω → R with b0 ∈ β(u0) almost everywhere in Ω let
(u, b) be a weak solution to (P, f, b0). Then (u, b) is a renormalized solution
to (P, f, b0).

Proof: Clearly, (u, b) satisfies (P1), (P2) and (P5).

Since u ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)), we have u ∈ L1(0, T ;W 1,1

0 (Ω)) and Tk(u) ∈
Lp
−

(0, T ;Lp(·)(Ω)) for any k > 0. Moreover, the truncation function Tk is

Lipschitz continuous for any k > 0, hence Tk(u(t)) ∈ W 1,p(·)
0 (Ω) for almost

all t ∈ (0, T ). According to the chain rule in W 1,1
0 (Ω) (see [76], Theorem

2.1.11, p. 48-49, [51], Corollary A.6, p. 54), it follows that

DTk(u(t)) = D(Tk ◦ u(t)) = χ{|u(t)|<k}Du(t)

in D′(Ω) for almost all t ∈ (0, T ), hence DTk(u) = χ{|u|<k}Du almost ev-
erywhere in QT . By assumption we have u ∈ V , hence u is finite almost
everywhere in QT and it follows that |{k < |u| < k + 1}| → 0 as k → ∞.
In particular, |Du|p(·) ∈ L1(QT ) and therefore (P3) holds. From (4.2.2) we
get that (b− b0)t ∈ V ′+L1(QT ). Now, (P4) follows from the integration-by-
parts-formula in Lemma 4.2.11.
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4.3 Existence of renormalized solutions

The main result of this section is the following theorem:

Theorem 4.3.1. For each f ∈ L1(QT ) and b0 ∈ D(Aβ)
‖·‖L1(Ω) there exists a

renormalized solution to (P, f, b0).

To prove Theorem 4.3.1, we will use several approximation procedures.
First, we prove existence of weak solutions for L∞-data.

4.3.1 Existence for L∞-data

In a first step, for bounded data f ∈ L∞(QT ), b0 ∈ D(Aβ)
‖·‖L1(Ω) ∩ L∞(Ω),

we prove existence of a weak solution to our elliptic-parabolic problem with
an additional strictly monotone and continuous perturbation ψ : R → R,
ψ(0) = 0, i.e.

(P, ψ, f, b0)


β(u)t + ψ(u)− div(a(x,Du) + F (u)) 3 f in QT ,

u = 0 on ΣT ,

β(u(0, ·)) 3 b0 in Ω

To this end, we define the nonlinear operator

Aβ,ψ :=
{

(b, w) ∈ L1(Ω)× L1(Ω) : ∃u : Ω→ R measurable,

b ∈ β(u) a.e. in Ω, u is a renormalized solution of

− div(a(x,Du) + F (u)) + ψ(u) = w
}
,

(4.3.1)

where a definition of a renormalized solution to the above problem is obtained
from Definition 3.1.1 upon setting f = w − ψ(u)− b0. Using the same argu-
ments as in Subsection 4.1.1 it follows that Aβ,ψ is m-accretive in L1(Ω) and

D(Aβ,ψ)
‖·‖L1(Ω) = D(Aβ)

‖·‖L1(Ω) , i.e. to each (f, b0) ∈ L1(QT )×D(Aβ,ψ)
‖·‖L1(Ω)

there exists a unique mild solution b ∈ C([0, T ];L1(Ω)) of the abstract Cauchy
problem

(ACP )(f, ψ, b0)


db

dt
+ Aβ,ψb 3 f in (0, T ),

b(0) = b0

corresponding to (P, ψ, f, b0). Moreover, for f ∈ L∞(QT ), b0 ∈ D(Aβ)
‖·‖L1(Ω)∩

L∞(Ω), b is the uniform limit of piecewise constant functions bε : (0, T ) →
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L1(Ω) defined by bε = bεi on ]tεi−1, t
ε
i ], i = 1, . . . , N(ε), bε(0) = bε0 where

(uεi , b
ε
i )
N(ε)
i=1 is a solution of the discretized problem (see Proposition 3.3.2)

(DPε,ψ)



bεi ∈ L1(Ω), uεi ∈ W
1,p(·)
0 (Ω) ∩ L∞(Ω),∫

{n<|uεi |<n+1} a(x,Duεi ) ·Duεi → 0 as n→∞,∫
Ω

bεi−bεi−1

ε
ϕ+

∫
Ω

(a(x,Duεi ) + F (uεi )) ·Dϕ+
∫

Ω
ψ(uεi )ϕ =

∫
Ω
f εi ϕ

∀ϕ ∈ W 1,p(·)
0 (Ω)

bεi ∈ β(uεi ) a.e. in Ω,

i = 1, . . . , N(ε).

given by an equidistant time discretisation of the form

(Dε)


tε0 = 0 < tε1 < . . . < tεN(ε) = T,

tεi − tεi−1 = ε, ∀i = 1, . . . , N(ε),

f εi ∈ L∞(Ω), i = 1, . . . , N(ε) :
∑N(ε)

i=1

∫ tεi
tεi−1
‖f(t)− f εi ‖L1(Ω)dt ≤ ε

bε0 ∈ L∞(Ω) : ‖bε0 − b0‖L1(Ω) ≤ ε.

If we define the piecewise constant function uε : (0, T ) → W
1,p(·)
0 (Ω) by

uε(t) = uεi for t ∈ (tεi−1, t
ε
i ] and i = 1, . . . , N(ε), the following a priori esti-

mates hold:

Lemma 4.3.2. Let uε be defined as above. Then, the following results hold
for all ε > 0:

i.) There exists a constant C1(‖f‖L∞(QT ), ‖b0‖L∞(Ω)) > 0 not depending on
ε > 0, such that

‖ψ(uε)‖L∞(QT ) ≤ C1(‖f‖L∞(QT ), ‖b0‖L∞(Ω)). (4.3.2)

ii.) There exists a constant C2(‖f‖L∞(QT ), ‖b0‖L∞(Ω), ψ) > 0 not depending
on ε > 0, such that

‖uε‖L∞(QT ) ≤ C2(‖f‖L∞(QT ), ‖b0‖L∞(Ω), ψ). (4.3.3)

iii.) There exists a constant C3(γ, C1(‖f‖L∞(QT ), ‖b0‖L∞(Ω))) > 0 not de-
pending on ε > 0, such that∫ T

0

∫
Ω

|Duε|p(x) ≤ C3(γ, C1(‖f‖L∞(QT ), ‖b0‖L∞(Ω))). (4.3.4)
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Proof: As in [18], [2], for i = 1, . . . , N(ε) we choose p(uεi ) as a test function
in (DPε,ψ) where p ∈ P0 = {p ∈ C∞(R); 0 ≤ p′ ≤ 1, supp p′ compact, 0 /∈
supp p}. Upon integrating over (tεi−1, t

ε
i ) and summing over i = 1, . . . N(ε)

we obtain i.) and from i.) we deduce ii.) since ψ is strictly increasing and
continuous. To prove iii.), for i = 1, . . . , N(ε) we plug uεi a test function in
(DPε,ψ) and use analogous arguments as in the proof of Lemma 4.2.1.

In the next steps we will show that a subsequence (uε, bε)ε, converges
to a weak solution (u, b) of (P, ψ, f, b0) as ε ↓ 0. Since the (uniform) con-
vergence of (bε)ε is a straightforward consequence from nonlinear semigroup
theory, the main difficulty is to obtain almost everywhere convergence (up
to a subsequence) of (uε)ε. In general (see [2], [68] for the case of a constant
exponent), we have to solve approximate problems (Pk, ψ, f, b0) where we
replace β by β + 1

k
I, for k > 0. The result of the following lemma allows us

to skip this approximation step in the particular case when β is a continuous,
non-decreasing function.

A technical lemma

Lemma 4.3.3. Let β be a continuous and non-decreasing function, f ∈
L∞(QT ), b0 ∈ D(Aβ)

‖·‖L1(Ω) ∩ L∞(Ω). For ε, δ > 0 let (Dε), (Dδ) be

equidistant time discretisations and (uεi , b
ε
i )
N(ε)
i=1 , (uδj , b

δ
j)
M(δ)
j=1 solutions of the

corresponding discretised problems (DPε,ψ) and (DPδ,ψ). Assume that the
piecewise constant functions bε, bδ : [0, T ] → L1(Ω) defined by bε(0) = bε0,
bδ(0) = bδ0, bε(t) = bεi , bδ(t) = bδj for t ∈ (tεi−1, t

ε
i ] and t ∈ (tδj−1, t

δ
j ] respectively,

i = 1, . . . , N(ε), j = 1, . . . ,M(δ) converge to a function b ∈ C([0, T ];L1(Ω))
as ε, δ ↓ 0 in L∞(0, T ;L1(Ω)). Then,

lim
ε,δ↓0

∫ T

0

∫
Ω

|ψ(uε)− ψ(uδ)| = 0 (4.3.5)

holds for the piecewise constant functions uε, uδ : (0, T )→ W
1,p(·)
0 (Ω) defined

by uε(t) = uεi for t ∈ (tεi−1, t
ε
i ] and i = 1, . . . , N(ε), uδ(t) = uδj for t ∈ (tδj−1, t

δ
j ]

and j = 1, . . . ,M(δ).

Proof: Let t, s denote two variables in [0, T ], ξ ∈ D(0, T ), ξ ≥ 0 and (ρn)n
be a sequence of mollifiers. We write the variable t in (Dε) and the variable
s in (Dδ). For j ∈ {1, . . . ,M(δ)} fixed, we plug 1

k
Tk(u

ε
i − uδj)ρn(tεi − sδj)ξ(tεi )
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as a test function into (DPε,ψ) to obtain

1

k

∫
Ω

bεi − bεi−1

ε
Tk(u

ε
i − uδj)ρn(tεi − sδj)ξ(tεi )

+
1

k

∫
Ω

ρn(tεi − sδj)ξ(tεi )(a(x,Duεi ) + F (uεi )) ·DTk(uεi − uδj)

+
1

k

∫
Ω

ψ(uεi )Tk(u
ε
i − uδj)ρn(tεi − sδj)ξ(tεi )

=
1

k

∫
Ω

f εi Tk(u
ε
i − uδj)ρn(tεi − sδj)ξ(tεi )

(4.3.6)

for all i = 1, . . . , N(ε). For i ∈ {1, . . . , N(ε)}, fixed, we plug Tk(u
δ
j−uεi )ρn(tεi−

sδj)ξ(t
ε
i ) as a test function into (DPδ,ψ) to obtain

1

k

∫
Ω

bδj − bδj−1

δ
Tk(u

δ
j − uεi )ρn(tεi − sδj)ξ(tεi )

+
1

k

∫
Ω

ρn(tεi − sδj)ξ(tεi )(a(x,Duδj) + F (uδj)) ·DTk(uδj − uεi )

+
1

k

∫
Ω

ψ(uδj)Tk(u
δ
j − uεi )ρn(tεi − sδj)ξ(tεi )

=
1

k

∫
Ω

f δj Tk(u
δ
j − uεi )ρn(tεi − sδj)ξ(tεi )

(4.3.7)

for all j = 1, . . . ,M(δ). If we define the piecewise constant functions fε :
(0, T )→ L∞(Ω), ξε : (0, T )→ R and ρε,δn : (0, T )2 → R by fε(t) = f εi , ξε(t) =
ξ(tεi ) for t ∈ (tεi−1, t

ε
i ] and ρε,δn (t, s) = ρn(tεi−sδj) for (t, s) ∈ (tεi−1, t

ε
i ]×(sδj−1, s

δ
j ],

integrating (4.3.6) over (tεi−1, t
ε
i ) and summing over i = 1, . . . , N(ε) yields

Iε1 + Iε2 + Iε3 = Iε4 , (4.3.8)

where

Iε4 =
1

k

∫ T

0

∫
Ω

fε(t)Tk(uε(t, x)− uδj)ρε,δn (t, sδj)ξε(t)dxdt, (4.3.9)

Iε3 =
1

k

∫ T

0

∫
Ω

ψ(uε(t, x))Tk(uε(t, x)− uδj)ρε,δn (t, sδj)ξε(t)dxdt, (4.3.10)

Iε2 =
1

k

∫ T

0

∫
Ω

ρε,δn (t, sδj)ξε(t)(a(x,Duε) + F (uε)) ·DTk(uε(t, x)− uδj)dxdt.

(4.3.11)
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Furthermore, for r ∈ R and j = 1, . . . ,M(δ), we define

φTk(·−uδj )(r) :=

{∫ r
bδj
Tk((β

−1)0(σ)− uδj)dσ, if r ∈ R(β)

+∞, otherwise.

Since Tk(u
ε
i − uδj) ⊂ ∂φTk(·−uδj )(b

ε
i ) for all i = 1, . . . , N(ε) and almost every-

where in Ω, we have

Iε1 ≥
1

k

∫
Ω

N(ε)∑
i=1

(φTk(·−uδj )(b
ε
i )− φTk(·−uδj )(b

ε
i−1))ρn(tεi − sδj)ξ(tεi )dx. (4.3.12)

Now, observe that

N(ε)∑
i=1

(φTk(·−uδj )(b
ε
i )− φTk(·−uδj )(b

ε
i−1))ρn(tεi − sδj)ξ(tεi )

=−
N(ε)−1∑
i=0

φTk(·−uδj )(b
ε
i )(ρn(tεi+1 − sδj)ξ(tεi+1)− ρn(tεi − sδj)ξ(tεi ))

=−
N(ε)−1∑
i=0

∫ tεi+1

tεi

φTk(·−uδj )(b
ε
i )
∂

∂t
(ρn(t− sδj)ξ(t))dt,

(4.3.13)

hence setting bε(t) = bε0 for all t ∈ (−ε, 0] from (4.3.12) and (4.3.13) it follows
that

Iε1 ≥ −
1

k

∫ T−ε

−ε

∫
Ω

φTk(·−uδj )(bε)(ρn(t+ε−sδj)ξ′(t+ε)+ρ′n(t+ε−sδj)ξ(t+ε))dxdt.

(4.3.14)

If we define the piecewise constant functions uδ : (0, T )→ W
1,p(·)
0 (Ω), ρδn, ρ

′
n,δ :

(0, T )2 → R by uδ(s) = uδj , ρ
δ
n(t, s) = ρn(t − sδj), ρ

′
n,δ(t, s) = ρ′n(t − sδj)

for t ∈ [0, T ] and s ∈ (sδj−1, s
δ
j ], j = 1, . . . ,M(δ), integrating (4.3.8) over

(sδj−1, s
δ
j) and summing over j = 1, . . . ,M(δ) from (4.3.9) - (4.3.14) it follows

that

− 1

k

∫ T

0

∫ T−ε

−ε

∫
Ω

φTk(·−uδ(s))(bε)(ρ
δ
n(t+ ε, s)ξ′(t+ ε) + ρ′n,δ(t+ ε, s)ξ(t+ ε))dxdtds

+
1

k

∫
[0,T ]2

∫
Ω

ρε,δn (t, s)ξε(t)(a(x,Duε) + F (uε)) ·DTk(uε(t, x)− uδ(s, x))dxdtds

+
1

k

∫
[0,T ]2

∫
Ω

ψ(uε)Tk(uε(t, x)− uδ(s, x))ρε,δn (t, s)ξε(t)dxdtds

≤1

k

∫
[0,T ]2

∫
Ω

fε(t)Tk(uε(t, x)− uδ(s, x))ρε,δn (t, s)ξε(t)dxdtds.

(4.3.15)



CHAPTER 4. THE PARABOLIC CASE 72

Now, we define the piecewise constant function fδ : (0, T ) → L∞(Ω) by
fδ(s) = f δj for s ∈ (sδj−1, s

δ
j ], and j = 1, . . . ,M(δ), integrate (4.3.7) over

(sδj−1, s
δ
j) and sum over j = 1, . . . ,M(δ) to obtain

Iδ1 + Iδ2 + Iδ3 = Iδ4 , (4.3.16)

where

Iδ4 =
1

k

∫ T

0

∫
Ω

fδTk(uδ(s, x)− uεi )ρε,δn (tεi , s)ξ(t
ε
i )dxds, (4.3.17)

Iδ3 =
1

k

∫ T

0

∫
Ω

ψ(uδ)Tk(uδ(s, x)− uεi )ρε,δn (tεi , s)ξ(t
ε
i )dxds, (4.3.18)

and

Iδ2 =
1

k

∫ T

0

∫
Ω

ρε,δn (tεi , s)ξ(t
ε
i )(a(x,Duδ) + F (uδ)) ·DTk(uδ(s, x)− uεi )dxds.

(4.3.19)
Setting bδ(s) = bδ0 for all s ∈ (−δ, 0], with similar arguments as in (4.3.14)

it follows that

Iδ1 ≥
1

k

∫ T−δ

−δ

∫
Ω

φTk(·−uεi )(bδ)ρ
′
n(tεi − (s+ δ))ξ(tεi )dxds

− 1

k

∫
Ω

φTk(·−uεi )(bδ(0))ρn(tεi )ξ(t
ε
i )dx, (4.3.20)

where, for r ∈ R and i = 1, . . . , N(ε),

φTk(·−uεi )(r) :=

{∫ r
bεi
Tk((β

−1)0(σ)− uεi )dσ, if r ∈ R(β)

+∞, otherwise.

Next, we define the piecewise constant functions ρεn, ρ
′
n,ε : (0, T )2 → R by

ρεn(t, s) := ρn(tεi − s) and ρ′n,ε(t, s) := ρ′n(tεi − s) for all s ∈ [0, T ], t ∈ (tεi−1, t
ε
i ],

i = 1, . . . , N(ε). Integrating (4.3.16) over (tεi−1, t
ε
i ) and summing over i =
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1, . . . , N(ε) from (4.3.17) - (4.3.20) it follows that

1

k

∫ T

0

∫ T−δ

−δ

∫
Ω

φTk(·−uε)(bδ)ρ
′
n,ε(t, s+ δ)ξε(t)dxdsdt

−1

k

∫
[0,T ]×Ω

φTk(·−uε)(bδ(0))ρεn(t, 0)ξε(t)dxdt

+
1

k

∫
[0,T ]2

∫
Ω

ρε,δn (t, s)ξε(t)(a(x,Duδ) + F (uδ)) ·DTk(uδ(s, x)− uε(t, x))dxdtds

+
1

k

∫
[0,T ]2

∫
Ω

ψ(uδ)Tk(uδ(s, x)− uε(t, x))ρε,δn (t, s)ξε(t)dxdtds

≤1

k

∫
[0,T ]2

∫
Ω

fδTk(uδ(s, x)− uε(t, x))ρε,δn (t, s)ξε(t)dxdtds.

(4.3.21)

Taking the sum of (4.3.15) and (4.3.21) we find

Ik,ε,δ,n1 + Ik,ε,δ,n2 + Ik,ε,δ,n3 + Ik,ε,δ,n4 + Ik,ε,δ,n5 + Ik,ε,δ,n6 ≤ Ik,ε,δ,n7 (4.3.22)

where

Ik,ε,δ,n1 =− 1

k

∫ T

0

∫ T−ε

−ε

∫
Ω

φTk(·−uδ)(bε)

· (ρδn(t+ ε, s)ξ′(t+ ε) + ρ′n,δ(t+ ε, s)ξ(t+ ε))dxdtds,

Ik,ε,δ,n2 =
1

k

∫ T

0

∫ T−δ

−δ

∫
Ω

φTk(·−uε)(bδ)ρ
′
n,ε(t, s+ δ)ξε(t)dxdsdt,

(4.3.23)

Ik,ε,δ,n3 =− 1

k

∫ T

0

∫
Ω

φTk(·−uε)(bδ(0))ρεn(t, 0)ξε(t)dxdt,

Ik,ε,δ,n4 =
1

k

∫
[0,T ]2

∫
Ω

ρε,δn (t, s)ξε(t)(a(x,Duε)− a(x,Duδ))

·DTk(uε − uδ)dxdtds,

(4.3.24)

Ik,ε,δ,n5 =
1

k

∫
[0,T ]2

∫
Ω

ρε,δn (t, s)ξε(t)(F (uε)− F (uδ))·

DTk(uε − uδ)ρε,δn (t, s)ξε(t)dxdtds,

Ik,ε,δ,n6 =
1

k

∫
[0,T ]2

∫
Ω

(ψ(uε)− ψ(uδ))Tk(uε − uδ)ρε,δn (t, s)ξε(t)dxdtds,

Ik,ε,δ,n7 =
1

k

∫
[0,T ]2

∫
Ω

(fε − fδ)Tk(uε − uδ)ρε,δn (t, s)ξε(t)dxdtds.

(4.3.25)
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Now, we will pass to the limit with k ↓ 0 in (4.3.22). Note that by (DPε,ψ),
(DPδ,ψ) and the continuity of β we have bε = β(uε) and bδ = β(uδ) almost
everywhere in QT . Since 1

k
Tk(uε−uδ)→ sign0(uε−uδ) almost everywhere in

QT as k ↓ 0, by Lebesgues Dominated Convergence Theorem it follows that

lim
k↓0

Ik,ε,δ,n1 = −
∫ T

0

∫ T−ε

−ε

∫
Ω

|bδ(s)− bε(t)|(ρδn(t+ ε, s)ξ′(t+ ε)

+ ρ′n,δ(t+ ε, s)ξ(t+ ε))dxdtds,

lim
k↓0

Ik,ε,δ,n2 =

∫ T

0

∫ T−δ

−δ

∫
Ω

|bδ(s)− bε(t)|ρ′n,ε(t, s+ δ)ξε(t)dxdsdt,

(4.3.26)

lim
k↓0

Ik,ε,δ,n3 = −
∫ T

0

∫
Ω

|bδ(0)− bε(t)|ρεn(t, 0)ξε(t)dxdt,

lim
k↓0

Ik,ε,δ,n6 =

∫
[0,T ]2

∫
Ω

|ψ(uε)− ψ(uδ)|ρε,δn (t, s)ξε(t)dxdtds,

lim
k↓0

Ik,ε,δ,n7 =

∫
[0,T ]2

∫
Ω

(fε − fδ) sign0(uε − uδ)ρε,δn (t, s)ξε(t)dxdtds.

(4.3.27)

Since F is locally Lipschitz continuous, it follows that

lim
k↓0

Ik,ε,δ,n5 = 0 (4.3.28)

and, by (A3) we have

lim sup
k↓0

Ik,ε,δ,n4 ≥ 0, (4.3.29)

hence, using (4.3.26), (4.3.28) and (4.3.29) from (4.3.22) we get

−
∫ T

0

∫ T−ε

−ε

∫
Ω

|bδ(s)− bε(t)|·

(ρδn(t+ ε, s)ξ′(t+ ε) + ρ′n,δ(t+ ε, s)ξ(t+ ε))dxdtds

+

∫ T

0

∫ T−δ

−δ

∫
Ω

|bδ(s)− bε(t)|ρ′n,ε(t, s+ δ)ξε(t)dxdtds
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−
∫ T

0

∫
Ω

|bδ(0)− bε(t)|ρεn(t, 0)ξε(t)dxdt

+

∫
[0,T ]2

∫
Ω

|ψ(uε)− ψ(uδ)|ρε,δn (t, s)ξε(t)dxdtds

≤
∫

[0,T ]2

∫
Ω

|fε − fδ|ρε,δn (t, s)ξε(t)dxdtds.

(4.3.30)

By assumption, bδ, bε → b as ε, δ ↓ 0 in L∞(0, T ;L1(Ω)) and b ∈ C([0, T ];L1(Ω)).
Moreover, as ε, δ ↓ 0, we have ξε(t)→ ξ(t), ρεn(t, 0)→ ρn(t) for all t ∈ (0, T ),
ρε,δn (t, s), ρεn(t, s) and ρδn(t, s)→ ρn(t− s), ρ′n,ε(t, s) and ρ′n,δ(t, s)→ ρ′n(t− s)
for all (t, s) ∈ (0, T )2 and all these function sequences are uniformly bounded
in (ε, δ). Therefore, we can pass to the limit with ε, δ ↓ 0 in (4.3.30) and
obtain

In1 + In2 + In3 ≤ 0, (4.3.31)

where

In1 = −
∫

[0,T ]2

∫
Ω

|b(t)− b(s)|ρn(t− s)ξ′(t)dxdtds,

In2 =

∫ T

0

∫
Ω

|b(0)− b(t)|ρn(t)ξ(t)dxdt,

In3 = lim sup
ε,δ↓0

∫
[0,T ]2

∫
Ω

|ψ(uε)− ψ(uδ)|ρε,δn (t, s)ξε(t)dxdtds. (4.3.32)

Finally, n→∞ in (4.3.31) yields

lim sup
n→∞

lim sup
ε,δ↓0

∫
[0,T ]2

∫
Ω

|ψ(uε)− ψ(uδ)|ρε,δn (t, s)ξε(t)dxdtds ≤ 0. (4.3.33)

Now we are in the position to conclude the proof: Choosing an arbitrary (not
relabeled) subsequence of(∫ T

0

∫
Ω

ψ(uε(t))− ψ(uδ(t))dxdt

)
ε,δ

,

by Lemma 4.3.2, (4.3.2) there exists α ∈ L∞(QT ), such that, extracting
another (not relabeled) subsequence if necessary,

(|ψ(uε)− ψ(uδ)|)ε,δ ⇀ α (4.3.34)

weak-∗ in L∞(QT ) as ε, δ ↓ 0. Since
∫ T

0
ρε,δn (·, s)ds ξε(·) converges to

∫ T
0
ρn(·−
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s)ds ξ(·) as ε, δ ↓ 0 in L1(0, T ), it follows from (4.3.34) that

lim
n→∞

lim
ε,δ↓0

∫ T

0

∫
Ω

∫ T

0

ρε,δn (t, s)ds ξε(t)|ψ(uε(t))− ψ(uδ(t))|dxdt

= lim
n→∞

∫ T

0

∫
Ω

∫ T

0

ρn(t− s)ds ξ(t)α(t, x)dxdt

=

∫ T

0

∫
Ω

ξ(t)α(t, x)dxdt

= lim
ε,δ↓0

∫ T

0

∫
Ω

ξ(t)|ψ(uε(t))− ψ(uδ(t))|dxdt.

(4.3.35)

For 0 < θ < τ < T , we choose ξ ∈ D(0, T ) such that 0 ≤ ξ ≤ 1 in [0, T ] and
ξ = 1 in [θ, τ ]. Now, using (4.3.2), (4.3.35) and (4.3.33) we get

lim
ε,δ↓0

∫ τ

θ

∫
Ω

|ψ(uε(t))− ψ(uδ(t))|dxdt

≤ lim
ε,δ↓0

∫ T

0

∫
Ω

|ψ(uε(t))− ψ(uδ(t))|ξ(t)dxdt

= lim
n→∞

lim
ε,δ↓0

∫ T

0

∫
Ω

∫ T

0

ρε,δn (t, s)ds ξε(t)|ψ(uε(t))− ψ(uδ(t))|dxdt

≤ lim sup
n→∞

lim sup
ε,δ↓0

∫ T

0

∫ T

0

∫
Ω

|ψ(uε(t))− ψ(uδ(s))|ρε,δn (t, s)ξε(t)dxdtds

+ lim sup
n→∞

lim sup
ε,δ↓0

∫ T

0

∫ T

0

∫
Ω

|ψ(uδ(t))− ψ(uδ(s))|ρδ,δn (t, s)ξδ(t)dxdtds

+ lim sup
n→∞

lim sup
ε,δ↓0

∫ T

0

∫ T

0

∫
Ω

|ψ(uδ(t))− ψ(uδ(s))|

· (ρε,δn (t, s)ξε(t)− ρδ,δn (t, s)ξδ(t))dxdtds

≤ 0,

(4.3.36)

hence

lim
ε,δ↓0

∫ T

0

∫
Ω

|ψ(uε(t))− ψ(uδ(t))|dxdt = 0. (4.3.37)

Since we started with an arbitrary subsequence, (4.3.37) holds for the whole
sequence (∫ T

0

∫
Ω

|ψ(uε)− ψ(uδ)|dxdt
)
ε,δ

and the proof of the lemma is completed.



CHAPTER 4. THE PARABOLIC CASE 77

Remark 4.3.4. In the general case when β may be set-valued, we could
follow the idea of [22] to choose Tk(u

ε
i − uδj + kπ) as a test function in (4.3.6)

and Tk(u
δ
j − uεi − kπ) as a test function in (4.3.7), where π ∈ D(Ω). Then,

lim
k↓0

Ik,ε,δ,n1 =−
∫ T

0

∫ T−ε

−ε

∫
Ω

∫ bε

bδ

sign0((β−1)0(σ)− uδ) + χ{(β−1)0(σ)=uδ}πdσ

· ((ρδn(t+ ε, s)ξ′(t+ ε) + ρ′n,δ(t+ ε, s)ξ(t+ ε))dxdtds

(4.3.38)

and

lim
k↓0

Ik,ε,δ,n2 =−
∫ T

0

∫ T−δ

−δ

∫
Ω

∫ bδ

bε

sign0((β−1)0(σ)− uε)− χ{(β−1)0(σ)=uε}πdσ

· ρ′n,ε(t, s+ δ)ξε(t)dxdsdt.

(4.3.39)

To continue in the proof of Lemma 4.3.3, it would be necessary to choose
π = πl such that πl → sign0(uε(t) − uδ(s)) as l → ∞ in L1([0, T ]2 × Ω).
Unfortunately, it is an open problem how to perform the former calculation
of the proof if π is assumed to be time dependent.

β continuous, non-decreasing

The a priori estimates of Lemma 4.3.2 and Lemma 4.3.3 imply the following
convergence results for the approximate solutions of (DPε,ψ) for ε ↓ 0:

Lemma 4.3.5. Let ε > 0 take values in a sequence in (0, 1) tending to 0. For

f ∈ L∞(QT ), b0 ∈ D(Aβ)
‖·‖L1(Ω) ∩ L∞(Ω) let uε, bε be the piecewise constant

functions defined by (DPε,ψ). Then there exist functions b ∈ C([0, T ];L1(Ω)),
u ∈ V ∩ L∞(QT ) and Φ ∈ (Lp

′(·)(QT ))N such that for a not relabeled subse-
quence of (uε)ε we have the following convergence results for ε ↓ 0:

i.) uε → u almost everywhere in QT , weak-∗ in L∞(QT ) and weak in

Lp
−

(0, T ;W
1,p(·)
0 (Ω)),

ii.) bε → b in L∞(0, T ;L1(Ω)) and b = β(u) almost everywhere in QT .

iii.) Duε ⇀ Du in (Lp(·)(QT ))N ,

iv.) a(x,Duε) ⇀ Φ in (Lp
′(·)(QT ))N .
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Proof: If (εn)n ⊂ (0, 1) is a sequence tending to 0 as n → ∞, applying
Lemma 4.3.3 with uε = uεn , uδ = uεm for m,n ∈ N yields that (passing to a
subsequence if necessary)

|ψ(uεn)− ψ(uεm)| → 0

almost everywhere in QT as m,n→∞. Hence, (uεn)n is a Cauchy sequence
almost everywhere in QT and there exists a measurable function u : QT → R
such that uεn → u almost everywhere in QT as n → ∞. By (4.3.3) and
(4.3.4) it follows that u ∈ V ∩ L∞(QT ) and i.), iii.) hold. By definition of
the operator Aβ,ψ, assuming β to be a continuous, non-decreasing function
it follows that bε(t) = β(uε(t)) a.e. in (0, T ) for all ε > 0. Keeping in mind
that by nonlinear semigroup theory, (bε)ε converges to the mild solution b ∈
C([0, T ];L1(Ω)) of (ACP )(f, ψ, b0) as ε ↓ 0 and using i.) and the continuity
of β, ii.) holds. Applying (4.3.4) and (A2) (and passing to a subsequence
if necessary), we find that a(x,Duε) ⇀ Φ in (Lp

′(·)(QT ))N for some Φ ∈
(Lp

′(·)(QT ))N .

Using the convergence results of the preceeding Lemma, we have the
following existence result:

Proposition 4.3.6. If β : R→ R is a continuous and non-decreasing func-
tion, then there exists a weak solution (in the sense of Definition 4.2.2)

(u, b = β(u)) to (P, ψ, f, b0) for any f ∈ L∞(QT ) and any b0 ∈ D(Aβ)
‖·‖L1(Ω)∩

L∞(Ω) .

Proof: Let b̃ε : [0, T ]→ L1(Ω) be the piecewise linear function defined by

b̃ε(t) = bεi−1 +
t−tεi−1

tεi−tεi−1
(bεi − bεi−1) for t ∈ [tεi−1, t

ε
i ], i = 1, . . . , N(ε). For arbitrary

ξ ∈ D([0, T ) × Ω) and t ∈ [0, T ) the function Ω 3 x → ξ(t, x) is in D(Ω),
hence we can use it as a test function each equation of (DPε,ψ). Integrating
over (tεi−1, t

ε
i ) and summing over i = 1, . . . , N(ε) we find

−
∫ T

0

∫
Ω

b̃εξt + (a(x,Duε) + F (uε)) ·Dξ + ψ(uε)ξ −
∫

Ω

b̃ε(0)ξ(0, ·)

=

∫ T

0

∫
Ω

fεξ.

(4.3.40)

Since b̃ε → b in C([0, T ];L1(Ω)) as ε ↓ 0, using the convergence results of
Lemma 4.3.5 we can pass to the limit in (4.3.40) to obtain

−
∫ T

0

∫
Ω

(b− b0)ξt + (Φ + F (u)) ·Dξ + ψ(u)ξ =

∫ T

0

∫
Ω

fξ. (4.3.41)



CHAPTER 4. THE PARABOLIC CASE 79

for all ξ ∈ D([0, T )×Ω), where b = β(u). It is left to prove that Φ = a(x,Du).
To this end let κ be a non-negative function in C∞c ([0, T )). We discretise
κ with respect to (DPε,ψ) by setting κε(0) = κ(0) and κε(t) = κ(tεi ) for
t ∈ (tεi−1, t

ε
i ] and i = 1, . . . , N(ε). Taking κ(tεi )u

ε
i as a test function in (DPε,ψ)

yields:

κ(tεi )

∫
Ω

bεi − bεi−1

ε
uεi + (a(x,Duεi ) + F (uεi )) ·Duεi + ψ(uεi )u

ε
i =

∫
Ω

f εi κ(tεi )u
ε
i

(4.3.42)
for all i = 1, . . . , N(ε). If we define φid : R→ R ∪ {+∞} by

φid(r) =

{∫ r
0

(β−1)0(σ)dσ, if r ∈ R(β),

+∞, otherwise,
(4.3.43)

since bεi = β(uεi ) for all i = 1, . . . , N(ε) it follows that

bεi − bεi−1

ε
uεi ≥

1

ε

∫ bεi

bεi−1

(β−1)0(σ)dσ =
1

ε
(φid(b

ε
i )− φid(bεi−1)) (4.3.44)

a.e. in Ω. Now, integration over (tεi−1, t
ε
i ) in (4.3.42) and summation over

i = 1, . . . , N(ε) yields:

N(ε)∑
i=1

∫
Ω

(φid(b
ε
i )− φid(bεi−1))κ(tεi )

+

∫
QT

κε((a(x,Duε) + F (uε)) ·Duε + ψ(uε)uε) ≤
∫
QT

fεuεκε,

(4.3.45)

where uε : (0, T ) → W
1,p(·)
0 (Ω) is the piecewise constant function defined

by uε(t) = uεi for t ∈ (tεi−1, t
ε
i ], i = 1, . . . , N(ε) and fε : (0, T ) → L∞(Ω)

is the piecewise constant function defined by fε(t) = f εi for t ∈ (tεi−1, t
ε
i ],

i = 1, . . . , N(ε). Using summation by parts in the first term of (4.3.45) and
setting bε(t) = bεi for t ∈ (tεi−1, t

ε
i ], i = 1, . . . , N(ε), bε(t) = bε0 for t ∈ (−ε, 0]

it follows that ∫
QT

κεa(x,Duε) ·Duε

≤
∫ T−ε

−ε

∫
Ω

κt(t+ ε)φid(bε) +

∫
Ω

φid(b
ε
0)κε(0)

−
∫
QT

κε(F (uε) ·Duε + (ψ(uε)− fε)uε).

(4.3.46)
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Using the convergence results of Lemma 4.3.5, there is no problem to pass
to the limit with ε ↓ 0 on the right-hand side of (4.3.46). Moreover,

lim sup
ε↓0

∫
QT

κεa(x,Duε) ·Duε

≥ lim sup
ε↓0

∫
QT

κa(x,Duε) ·Duε + lim inf
ε↓0

∫
QT

(κε − κ)a(x,Duε) ·Duε

(4.3.47)

where the second term on the right hand side of (4.3.47) is 0 by (A2), (4.3.4)
and since ‖κε−κ‖L∞(0,T ) → 0 as ε ↓ 0. Combining (4.3.46) with (4.3.47) and
passing to the limit with ε ↓ 0 we find

lim sup
ε↓0

∫
QT

κa(x,Duε) ·Duε

≤
∫
QT

κt(t)φid(b) +

∫
Ω

φid(b0)κ(0)−
∫
QT

κ(F (u) ·Du+ ψ(u)u− fu).

(4.3.48)

Since (4.3.41) holds, we can apply the integration-by-parts formula of Lemma
4.2.26 with h(u) = u and ξ = κχΩ to obtain∫

QT

κt

∫ b(t,x)

b0

(β−1)0(σ)dσ

=

∫
QT

κ(F (u) ·Du+ Φ ·Du+ ψ(u)u− fu)

(4.3.49)

for all κ ∈ C∞c ([0, T )), κ ≥ 0. Combining (4.3.48) and (4.3.49) we finally get

lim sup
ε↓0

∫
QT

κa(x,Duε) ·Duε ≤
∫
QT

κΦ ·Du. (4.3.50)

Therefore it follows that

lim sup
ε↓0

∫
QT

κ(a(x,Duε)− a(x,Du)) · (Duε −Du) ≤ 0 (4.3.51)

for all κ ∈ C∞c ([0, T )), κ ≥ 0. Using (A3) and Minty’s monotonicity argument
we get Φ = a(x,Du) from (4.3.50) and (4.3.51). Moreover, choosing κ =
χ(0,τ) for 0 < τ < T , from (4.3.51) we obtain a(x,Duε) ·Duε ⇀ a(x,Du) ·Du
weak in L1((0, τ)× Ω).
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The general case of multivalued β

Now, let β ⊂ R×R be a maximal monotone graph. To continue the proof of
Theorem 4.3.1, we proceed as in [68] (see also [69]) in the case of a constant
exponent and combine the techniques developed in [22] with the approach
from [2] so that we do not need the additional assumption that β−1 is con-
tinuous and defined on R if we accept one more approximation procedure.
Once we have found the appriopriate energy space V , there will be no great
difficulties arising from the variable exponent. However, the following tech-
nical assumption on β will be needed later: To prove a comparison principle
that will be used instead of Lemma 4.3.3, we assume from now on that β is
such that for any n ∈ N, the number of points in [−n, n] ∩D(β) where the
image of β in an interval is Mn ∈ N. Since β is maximal monotone in R×R,
it follows immediately that the set of points in D(β) where β is set-valued
must by at most countable. Due to our technical assumption we exclude the
case that this set has an accumulation point in a finite interval of D(β).

For the first approximation procedure let us regularize β by βk := β+ 1
k
I,

k > 0. Clearly the results of Subsection 4.1.1 still apply to the nonlinear
operator

Aβk,ψ :=
{

(bk, wk) ∈ L1(Ω)× L1(Ω) : ∃uk : Ω→ R measurable,

bk ∈ βk(uk) a.e. in Ω and uk is a renormalized solution of

− div(a(x,Duk) + F (uk)) + ψ(uk) = wk
}

and therefore there exists a unique mild solution bk ∈ C([0, T ];L1(Ω)) of the
abstract Cauchy problem

(ACP )k(ψ, f, b
k
0)


dbk

dt
+ Aβk,ψb

k 3 f in (0, T ),

bk(0) = bk0

corresponding to (Pk, ψ, f, b
k
0) for any given f ∈ L1(QT ), bk0 ∈ D(Aβk,ψ)

‖·‖L1(Ω)

and k > 0. Moreover, it follows from the results for the elliptic case (see
Theorem 3.1.2) that for any f ∈ L1(Ω)

lim
k→∞
‖(I + Aβk,ψ)−1f − (I + Aβ,ψ)−1f‖L1(Ω) = 0. (4.3.52)

Applying the a priori estimates of Lemma 4.3.2 we get the following conver-
gence results for the solutions of the discretized problems (DP k

ε,ψ):



CHAPTER 4. THE PARABOLIC CASE 82

Lemma 4.3.7. For f in L∞(QT ), bk0 ∈ D(Aβk,ψ)
‖·‖L1(Ω)∩L∞(Ω) and ε, k > 0

let (bε,ki , uε,ki )
N(ε)
i=1 be a solution of the discretized problem (DP k

ε,ψ). For k >

0, let bk ∈ C([0, T ];L1(Ω)) be the L∞(0, T ;L1(Ω))-limit of the sequence of
piecewise constant functions (bkε)ε defined by bkε : (0, T ) → L1(Ω)), bkε(0) =
bε,k0 , bkε(t) = bε,ki for t ∈ (tεi−1, t

ε
i ] and i = 1, . . . , N(ε). If we define ukε :

(0, T )→ W
1,p(·)
0 (Ω)∩L∞(Ω) by ukε(t) = uε,ki for t ∈ (tεi−1, t

ε
i ], i = 1, . . . , N(ε),

there exists uk ∈ V ∩L∞(QT ) and a subsequence of (ukε)ε such that, as ε ↓ 0,

i.) ukε → uk almost everywhere in QT , weak-∗ in L∞(QT ) and weak in

Lp
−

(0, T ;W
1,p(·)
0 (Ω)),

ii.) bkε → bk in L∞(0, T ;L1(Ω)), in L1(QT ) and almost everywhere in QT .
Moreover, bk ∈ βk(uk) almost everywhere in QT ,

iii.) Dukε ⇀ Duk in (Lp(·)(QT ))N ,

iv.) a(x,Dukε) ⇀ a(x,Duk) in (Lp
′(·)(QT ))N .

Proof: Using the a priori estimates (4.3.2), (4.3.3) and (4.3.4), it follows
immediately that there exists uk ∈ V ∩ L∞(QT ) such that, passing to a
subsequence if necessary, iii.) holds and ukε ⇀ uk weak-∗ in L∞(QT ) and

weak in Lp
−

(0, T ;W
1,p(·)
0 (Ω)). The convergence of bkε to bk in L∞(0, T ;L1(Ω))

follows immediately from nonlinear semigroup theory and this implies the
other convergence results for a subsequence of (bkε)ε. By (DP k

ε,ψ), we have

bkε ∈ βk(ukε) almost everywhere in QT . Since β is a maximal monotone graph,
(β+ 1

k
I)−1 = k(kβ+I)−1 is single-valued and Lipschitz continuous in R, hence

ukε := (β+ 1
k
I)−1bkε converges to uk = (β+ 1

k
I)−1bk almost everywhere in QT .

Therefore i.) and ii.) hold. Finally, iv.) follows with the same arguments as
in the proof of Lemma 4.3.5 and Proposition 4.3.6.

Using the convergence results of Lemma 4.3.7 we can prove the following
result:

Proposition 4.3.8. For any k > 0, f ∈ L∞(QT ) and bk0 ∈ D(Aβk,ψ)
‖·‖L1(Ω) ∩

L∞(Ω) there exists a weak solution (uk, bk) to (Pk, ψ, f, b
k
0). In particular, bk

is the mild solution of (ACP )k(ψ, f, b
k
0).

Proof: The assertion follows according to the convergence results of
Lemma 4.3.7 and by similar arguments as in the proof of Proposition 4.3.6.

Next we want to obtain a weak solution (u, b) of (P, ψ, f, b0) for f ∈
L∞(QT ) and b0 ∈ D(Aβ,ψ)

‖·‖L1(Ω)∩L∞(Ω) by passing to the limit with k →∞
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in the approximate equations (Pk, ψ, f, b0). The convergence of the sequence
(bk)k is an immediate consequence of nonlinear semigroup theory:

Lemma 4.3.9. If b0 is in D(Aβ,ψ)
‖·‖L1(Ω) such that there exists (bk0)k ⊂ L1(Ω)

with bk0 ∈ D(Aβk,ψ)
‖·‖L1(Ω) for all k > 0 and bk0 → b0 in L1(Ω) as k →∞, then

bk converges in C([0, T ];L1(Ω)) to the mild solution b of (ACP )(ψ, f, b0) as
k →∞.

Proof: From (4.3.52) it follows that Aβ,ψ ⊂ lim infk→∞Aβk,ψ and therefore
the assertion follows according to nonlinear semigroup theory (see, e.g. [17]).

The main difficulty of this step is to show almost everywhere convergence
of a subsequence of (uk)k. As we have already mentioned in Remark 4.3.4,
it is not possible to genereralize the result of Lemma 4.3.3 directly. The
following comparison principle is a corresponding result for multivalued β
and was proved in [22] and [68] in the constant exponent case:

Lemma 4.3.10. For f ∈ L1(QT ), l, k > 0, bk0, bl0 ∈ L1(Ω) such that

lim
k,l→∞

‖bk0 − bl0‖L1(Ω) = 0

let (uk, bk), (ul, bl) be the weak solution of (Pk, ψ, f, b
k
0), (Pl, ψ, f, b

l
0) respec-

tively. Then,

lim
k,l→∞

∫ θ

τ

∫
Ω

|ψ(uk)− ψ(ul)| = 0 (4.3.53)

holds for all 0 < τ < θ < T .

Proof: The proof of this lemma follows the same lines as the proof of the
corresponding result in the case of a constant exponent p as stated in [68],
Proposition 4.2.2., p. 104-114 and p.116 (see also [22], Proposition 4.2, p.
402-416) and is omitted here in detail. It is based on Kruzhkov’s doubling
of variable technique (see e.g. [53]) that has been adapted by other authors
(see [46], [47], [61], [31], [32], [2], [22], [68]) to prove uniqueness results and
comparison principles for elliptic-parabolic problems. In our particular case,
we only have to double the time variables: Let t, s denote two variables
in [0, T ]. We write the t variable in the weak formulation of (Pk, ψ, f, b

k
0)

and the s variable in the weak formulation of (Pl, ψ, f, b
l
0). For δ > 0, and

r ∈ R we define the function r → ηδ(r) by ηδ(r) := 1
δ
Tδ(r). According

to the integration-by-parts formula of Lemma 4.2.11 we choose ηδ(uk(t, x)−
ul(s, x)+δπ(x))φ(t)ρn(t−s) as a test function in (Pk, ψ, f, b

k
0) and (Pl, ψ, f, b

l
0)
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where π ∈ D(Ω) such that 0 ≤ π ≤ 1, φ ∈ D([0, T )) such that φ ≥ 0 and
(ρn)n is a sequence of mollifiers in R. There is no problem to pass to the limit
with δ ↓ 0 in the diffusion and the convection term because F is assumed to
be locally Lipschitz continuous. In order to pass to the limit in the parabolic
term, we have to distinguish between the points where β is single-valued
and where it is set-valued and want the sums over the number of points in
[−n, n]∩D(β) where the image of β is an interval to be finite for fixed n ∈ N.
Here we need the technical assuption on β that these numbers have to be
Mn ∈ N < +∞ for [−n, n] ∩ D(β) and n ∈ N. Further we proceed with
similar arguments as in Lemma 4.3.3.

Using this result, we can prove the following

Proposition 4.3.11. For any f ∈ L∞(QT ) and b0 ∈ D(Aβ,ψ)
‖·‖L1(Ω) ∩

L∞(Ω) there exists u ∈ V ∩ L∞(QT ) and b ∈ C([0, T ];L1(Ω)) such that
(u, b) is a weak solution to (P, ψ, f, b0). In particular, b is the mild solution
of (ACP )(ψ, f, b0).

Proof: According to Proposition 4.1.1, we have

D(Aβ,ψ)
‖·‖L1(Ω) ⊂ D(Aβk,ψ)

‖·‖L1(Ω)

for all k > 0. Therefore, if b0 is in D(Aβ,ψ)
‖·‖L1(Ω) ∩ L∞(Ω) it is in

D(Aβk,ψ)
‖·‖L1(Ω) ∩L∞(Ω) for all k > 0 and by Proposition 4.3.8, (Pk, ψ, b0, f)

has a weak solution (uk, bk) ⊂ (V ∩L∞(QT ))×C([0, T ];L1(Ω)) for all k > 0.
In particular,∫

QT

−(bk − b0)ξt + (a(x,Duk) + F (uk)) ·Dξ + ψ(uk)ξ =

∫
QT

fξ (4.3.54)

holds for any ξ ∈ D([0, T ) × Ω). By Lemma 4.3.9, bk → b as k → ∞ in
C([0, T ];L1(Ω)), where b ∈ C([0, T ];L1(Ω)) is the mild solution of
(ACP )(ψ, f, b0) and therefore b(0) = b0 almost everywhere in Ω. From
Lemma 4.3.10 it follows with the same arguments as in the proof of Lemma
4.3.5 that there exists a measurable function u : QT → R and a (not rela-
beled) subsequence of (uk)k such that uk → u almost everywhere as k →∞.
Since the a priori estimates of Lemma 4.3.2 still hold for uk, independently
of k > 0, it follows that, as k → ∞ and up to a non-relabeled subsequence,
uk converges to u weak-∗ in L∞(QT ) and weak in Lp−(0, T ;W

1,p(·)
0 (Ω)),

Duk ⇀ Du in (Lp(·)(QT ))N , hence u is in V ∩ L∞(QT ). Moreover, there
exists Φ ∈ (Lp

′(·)(QT ))N such that a(x,Duk) ⇀ Φ weak in (Lp
′(·)(QT ))N as
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k →∞. Using these convergence results we can pass to the limit in (4.3.54)
and find that

−
∫
QT

(b− b0)ξt +

∫
QT

(Φ + F (u)) ·Dξ +

∫
QT

ψ(u)ξ =

∫
QT

fξ (4.3.55)

holds for all ξ ∈ D([0, T ) × Ω). Next, we prove a(x,Du) = Φ. To this end,
we fix σ ∈ D([0, T )), σ ≥ 0 and l > 0. Since (4.3.54) holds, by Lemma 4.2.11
we can use σTl(u

k) as a test function and obtain

−
∫
QT

σt

∫ bk

b0

Tl ◦ (β +
1

k
I)−1(s)ds+

∫
QT

σa(x,Duk) ·DTl(uk)

= −
∫
QT

σ(F (uk) ·DTl(uk) + (ψ(uk)− f)Tl(u
k)).

(4.3.56)

There is no problem to pass to the limit with k →∞ on the right-hand side
of (4.3.56). To pass to the limit in the first term on the left-hand side, we
write ∫ bk

b0

Tl ◦ (β +
1

k
I)−1(s)ds = I1 + I2 (4.3.57)

where, since bk ∈ (β + 1
k
I)uk almost everywhere in QT ,

I1 =

∫ bk

0

Tl ◦ (β +
1

k
I)−1(s)ds = bkTl(u

k)−
∫ Tl(u

k)

0

(β0 +
1

k
I)(s)ds (4.3.58)

(see [1], [6], [61]) almost everywhere in QT and

I2 = −
∫ b0

0

Tl ◦ (β +
1

k
I)−1(s)ds. (4.3.59)

Now, setting u0 := (β−1)0(b0) we have (b0 + 1
k
u0) ∈ (β + 1

k
I)u0, hence

I2 = −b0Tl(u0) +

∫ Tl(u0)

0

(β0 +
1

k
I)(s)ds−

∫ b0+ 1
k
u0

b0

Tl ◦ (β +
1

k
I)−1(s)ds

(4.3.60)
almost everywhere in Ω. Passing to the limit with k →∞ we find:

lim
k→∞

I1 = −bTl(u) +

∫ Tl(u)

0

(β0)(s)ds

= −
∫ b

0

Tl ◦ (β−1)0(s)ds

(4.3.61)
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almost everywhere in QT and

lim
k→∞

I2 = −b0Tl(u0) +

∫ Tl(u0)

0

(β0)(s)ds

= −
∫ b0

0

Tl ◦ (β−1)0(s)ds

(4.3.62)

almost everywhere in Ω. Now, thanks to Lebesgue Dominated Convergence
Theorem it follows that

lim
k→∞
−
∫
QT

σt

∫ bk

bk0

Tl ◦ (β +
1

k
I)−1(s)ds = −

∫
QT

σt

∫ b

b0

Tl ◦ (β−1)0(s)ds

(4.3.63)
and therefore

lim sup
k→∞

∫
QT

σa(x,Duk) ·DTl(uk)

=

∫
QT

σt

∫ b

b0

Tl ◦ (β−1)0(s)ds−
∫
QT

σ(F (u) ·DTl(u) + (ψ(u)− f)Tl(u)).

(4.3.64)

Now we use σTl(u) as a test function in (4.3.55). By Lemma 4.2.11 we get∫
QT

σΦ ·DTl(u)

=

∫
QT

σt

∫ b

b0

Tl ◦ (β−1)0(s)ds−
∫
QT

σ(F (u) ·DTl(u) + (ψ(u)− f)Tl(u)).

(4.3.65)

Subtracting (4.3.65) from (4.3.64) and choosing l = ‖u‖L∞(QT ) it follows that

lim sup
k→∞

∫
QT

σa(x,Duk) ·Duk ≤
∫
QT

σΦ ·Du (4.3.66)

for all σ ∈ D([0, T )), σ ≥ 0. Furthermore, using (4.3.66) we have

lim
k→∞

∫
QT

σ(a(x,Duk)− a(x,Du)) · (Duk −Du) = 0 (4.3.67)

for all σ ∈ D([0, T )), σ ≥ 0. Now, Φ = a(x,Du) follows from (4.3.67) by
the Minty monotonicity argument. It is left to prove that b ∈ β(u) almost
everywhere in QT . Since we have bk ∈ βk(uk) almost everywhere in QT , for
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any k > 0 there exists Bk ∈ β(uk) such that bk = Bk + 1
k
uk and since Bk → b

for k → ∞ almost everywhere in QT . If we define j : R → R ∪ {+∞} by
j(r) =

∫ r
0
β0(σ)dσ if r ∈ D(β) and j(r) = +∞ otherwise, it is easy to see

that j is a convex, l.s.c, proper function such that β = ∂j. Therefore,

j(r) ≥ j(uk) +Bk(r − uk) (4.3.68)

holds for any r ∈ R and almost everywhere in QT . Now, by the almost
everywhere convergence of Bk to b and uk to u, from (4.3.68) it follows that
b ∈ β(u) almost everywhere in QT .

Remark 4.3.12. The weak solution (u, b) to (P, ψ, f, b0) for f ∈ L∞(QT )

and b0 ∈ D(Aβ,ψ)
‖·‖L1(Ω) ∩ L∞(Ω) obtained in Proposition 4.3.11 is also a

renormalized solution. Note that there exists a measurable function u0 :
Ω → R such that b0 ∈ β(u0) almost everywhere in Ω and we can apply
Proposition 4.2.14.

4.3.2 L1-contraction and uniqueness of renormalized
solutions

The following L1-contraction result still holds true in the case of a variable
exponent:

Proposition 4.3.13. For f1, f2 ∈ L1(QT ), b1
0, b

2
0 ∈ L1(Ω) let (u1, b1), (u2, b2)

be renormalized solutions of (P, f1, b
1
0), (P, f2, b

2
0) respectively. Then∫

Ω

(b1(t)− b2(t))+ ≤
∫ t

0

∫
Ω

(f1 − f2)+ +

∫
Ω

(b1
0 − b2

0)+ (4.3.69)

holds for almost all t ∈ (0, T ).

Proof: We can copy the proof in [22], Theorem 4.1, p. 401-416 for the
case of a constant exponent with slight modifications such as exchanging the
space Lp(0, T ;W

1,p(·)
0 (Ω)) by V .

Remark 4.3.14. The result of Proposition 4.3.13 still holds if we replace
(P, fi, b

i
0) by (P, ψi, fi, b

i
0), where ψi : R→ R is a continuous, non-decreasing

function for i = 1, 2.

Remark 4.3.15. Uniqueness of renormalized solutions is a direct conse-
quence of Proposition 4.3.13: If (u, b) is a renormalized solution to (P, f, b0)

for f ∈ L1(Ω) and b0 ∈ D(Aβ)
‖·‖L1(Ω) , then b is unique. We cannot expect

uniqueness of the function u without additional assumptions on β.
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4.3.3 A comparison principle and weak solutions for
L∞-data

The proof following Lemma is a straightforward generalisation of the case of
a constant exponent and will be not given in detail:

Lemma 4.3.16. Let b0, b̃0 be in L1(Ω), f, f̃ ∈ L1(QT ), ψ, ψ̃ : R → R be
strictly increasing, continuous functions and (u, b), (ũ, b̃) be weak solutions
to (P, ψ, f, b0) and (P, ψ̃, f̃ , b̃0) respectively. If we have b0 ≤ b̃0 almost every-
where in Ω, f ≤ f̃ almost everywhere in QT and ψ̃(r) ≤ ψ(r) for all r ∈ R,
then

u ≤ ũ

holds almost everywhere in QT .

Proof: As in the proof of the corresponding result in the case of a constant
exponent ([68], Lemme 4.3.1., p. 120 and [22], Proposition 4.2., p. 402-416)
we use the doubling of (time) variables: Let t, s denote two variables in [0, T ].
As in the proof of Lemma 4.3.10 and thanks to the integration-by-parts
formula of Lemma 4.2.11 we choose H+

δ (u(t, x)− ũ(s, x)+δζ(x))φ(t)ρn(t−s)
as a test function, where η+

δ is an approximation of the sign+
0 function, ζ ∈

D(Ω) such that 0 ≤ ζ ≤ 1, φ ∈ D([0, T )) such that φ ≥ 0 and (ρn)n is
a sequence of mollifiers. Proceeding with similar arguments as in Lemma
4.3.10 we show that

lim sup
n→∞

∫ T

0

∫
QT

(ψ(u)− ψ̃(ũ))+ρn(t− s)dxdtds ≤ 0. (4.3.70)

The conclusion of the proof is similar to the end of the proof of Lemma
4.3.3.

Thanks to Lemma 4.3.16 there is existence of a weak solution to (P, f, b0)
for L∞-data:

Proposition 4.3.17. For f ∈ L∞(QT ), b0 ∈ D(Aβ,ψ)
‖·‖L1(Ω) ∩ L∞(Ω) there

exists a weak solution (u, b) to (P, f, b0). In particular, b is the mild solution
of (ACP )(f, b0).

Proof: For n ∈ N, we define the continuous, strictly increasing function
ψn : R→ R by

ψn(r) :=
1

n
(arctan(r) +

π

2
), r ∈ R.

Then, by Proposition 4.3.11, there exists a weak solution (un, bn) ∈ (V ∩
L∞(QT )) × C([0, T ];L1(Ω)) to (P, ψn, f, b0) for any n ∈ N. Since Aβ ⊂
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lim infn→∞Aβ,ψn and bn is the mild solution of (ACP )(ψn, f, b0), it follows
that bn converges in C([0, T ];L1(Ω)) to the mild solution b of (ACP )(f, b0)
as n→∞. Since ψn ≥ ψn+1 in R for all n ∈ N, from Lemma 4.3.16 it follows
that un ≤ un+1 almost everywhere in QT for all n ∈ N, hence there exists
a measurable function u : QT → R such that un ↑ u almost everywhere in
QT . Moreover, arctan(r) − π/2 ≤ ψn ≤ arctan(r) + π/2 for all r ∈ R and
all n ∈ N and from Lemma 4.3.16 it follows that uπ/2 ≤ un ≤ u−π/2 almost
everywhere in QT for all n ∈ N where (uπ/2, bπ/2), (u−π/2, b−π/2) ∈ (V ∩
L∞(QT )) × C([0, T ];L1(Ω)) are the weak solutions to (P, arctan +π/2, f, b0)
and (P, arctan−π/2, f, b0) respectively. Therefore u ∈ L∞(QT ) and un → u
weak-∗ in L∞(QT ) for a not relabeled subsequence of (un)n. For δ > 0 we
define φδ : [0, T ] → R by φδ(t) := min(1

δ
max(T − δ − t, 0), 1). Thanks to

the integration-by-parts formula of Lemma 4.2.11, can use φδTk(un) as a test
function and obtain for k = ‖u‖L∞(QT ):

1

δ

∫ T−δ

T−2δ

∫
Ω

∫ bn(t,x)

0

T‖u‖L∞(QT )
◦ (β−1)0(σ)dσ

−
∫

Ω

∫ b0

0

T‖u‖L∞(QT )
◦ (β−1)0(σ)dσ

+

∫
QT

φδ(((a(x,Dun) + F (un)) ·Dun) +
1

n
arctan(un)un)

=

∫
QT

φδun(f − π

2
).

(4.3.71)

We neglect positive terms and use (A1), pass to the limit with δ ↓ 0 and
obtain∫

QT

|Dun|p(x) ≤ C‖u‖L∞(QT )

(∥∥∥|f |+ π

2

∥∥∥
L1(QT )

+ ‖b0‖L1(Ω)

)
, (4.3.72)

where C > 0 is a positive constant not depending on n ∈ N. From (4.3.72) we
get u ∈ V and there exists a (not relabeled) subsequence of (un)n, such that
Dun ⇀ Du weak in (Lp(·)(QT ))N and a(x,Dun) ⇀ Φ weak in (Lp

′(·)(QT ))N

for a function Φ ∈ (Lp
′(·)(QT ))N . Now we can pass to the limit with n→∞

in the weak formulation for (P, f, ψn, b0) and obtain

−
∫
QT

(b− b0)ξt + (Φ + F (u)) ·Dξ =

∫
QT

fξ (4.3.73)

for all ξ ∈ D([0, T ) × Ω). With the same arguments as in the proof of
Proposition 4.3.11 it follows that Φ = a(x,Du) (by Minty monotonicity
argument) and b ∈ β(u) (by a subdifferential argument).
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4.3.4 Proof of Theorem 4.3.1

To conclude the proof of Theorem 4.3.1, we use the ideas developed in [2] and
[68] for the case of a constant exponent. As in the proof of Theorem 3.1.2
for the elliptic case, we will construct monotone sequences of weak solutions
for L∞-data and show convergence (up to a subsequence) to a renormalized
solution. The comparison principles from Lemma 4.3.16 and Lemma 4.3.13
will be a main tool in this approximation procedure.

Approximate solutions and a priori estimates

Let f be in L1(QT ) and b0 ∈ D(Aβ)
‖·‖L1(Ω) . For m,n ∈ N, let fm,n :=

max(min(f,m)),−n), bm,n0 := max(min(b0,m)),−n). Furthermore, we define
ψm,n : R → R by ψm,n(r) := 1

m
max(r, 0) − 1

n
max(−r, 0) for r ∈ R. By

Proposition 4.3.11, (P, ψm,n, fm,n, b
m,n
0 ) has a weak solution (um,n, bm,n) for

all m,n ∈ N. We have ψm,n ≥ ψm+1,n for all n ∈ N and ψm,n ≤ ψm,n+1 on
R. By Lemma 4.3.16 it follows that um,n ≤ um+1,n and um,n+1 ≤ um,n almost
everywhere in QT for any m,n ∈ N. Hence, there exist measurable functions
un : QT → R ∪ {+∞}, u : QT → R such that um,n ↑ un as m → ∞ and
un ↓ u as n→∞ almost everywhere in QT . By Lemma 4.3.13, it follows that
bm,n ≤ bm+1,n and bm,n+1 ≤ bm,n almost everywhere in QT for any m,n ∈ N.
Note that we have also ψm,n(r) ↓ ψn(r) := − 1

n
max(−r, 0) as m → ∞ and

ψn(r) ↑ 0 as n → ∞ for all r ∈ R. Therefore, Aψn,β ⊂ lim infm→0Aψm,n,β
and Aβ ⊂ lim infn→0Aψn,β. By nonlinear semigroup theory it follows that
bm,n ↑ bn as m → ∞ in C([0, T ];L1(Ω)) where bn is the mild solution of
(ACP )(ψn, fn, bn0 ) with ψn(r) := − 1

n
max(−r, 0), fn := max(f,−n), and

bn0 := max(b0,−n) for n ∈ N. Moreover, bn ↓ b as n→∞ in C([0, T ];L1(Ω))
where b is the mild solution of (ACP )(f, b0). In the next steps, we will prove
that (u, b) is a renormalized solution to (P, f, b0). Therefore we need the
following a priori estimate:

Lemma 4.3.18. For m,n ∈ N, f ∈ L1(QT ) and b0 ∈ D(Aβ)
‖·‖L1(Ω) let

(um,n, bm,n) be the weak solution to (P, ψm,n, fm,n, b
m,n
0 ). Then there exists a

constant C > 0 not depending on m,n ∈ N such that∫ T

0

∫
Ω

|DTk(um,n)|p(x)dxdt ≤ Ck(‖f‖L1(QT ) + ‖b0‖L1(Ω)) (4.3.74)

holds for any k > 0 and all m,n ∈ N.

Proof: We fix k > 0. For δ > 0 we define φδ : [0, T ] → R by φδ(t) :=
min(1

δ
max(T−δ−t, 0), 1). Using the integration-by-parts formula of Lemma
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4.2.11 and density arguments, we plug φδTk(um,n) as a test function into
(P, ψm,n, fm,n, b

m,n
0 ). Then, for δ > 0 small enough, we find

I1 + I2 + I3 + I4 = I5, (4.3.75)

where

I1 = −
∫ T−δ

T−2δ

∫
Ω

(φδ)t

∫ bm,n(t,x)

bm,n0

Tk ◦ (β−1)0(σ)dσ

=
1

δ

∫ T−δ

T−2δ

∫
Ω

∫ bm,n(t,x)

0

Tk ◦ (β−1)0(σ)dσ

−
∫

Ω

∫ bm,n0

0

Tk ◦ (β−1)0(σ)dσ. (4.3.76)

By (A1) we get

I2 =

∫
QT

φδa(x,DTk(um,n)) ·DTk(um,n)

≥ γ

∫ T−2δ

0

∫
Ω

|DTk(um,n)|p(x)dxdt. (4.3.77)

Note that applying Gauss-Green Theorem and the boundary condition∫
Ω

F (Tk(um,n(t))) ·DTk(um,n(t)) = 0

for almost all t ∈ (0, T ). Hence,

I3 =

∫ T

0

φδ

∫
Ω

F (Tk(um,n)) ·DTk(um,n) = 0. (4.3.78)

Moreover, by the monotonicity of ψm,n we have

I4 =

∫
QT

ψm,n(um,n)Tk(um,n)φδ ≥ 0,

I5 =

∫
QT

fm,nTk(um,n)φδ ≤ ‖f‖L1(QT )k. (4.3.79)

Now, plugging (4.3.76) - (4.3.79) into (4.3.75) and neglecting non-negative
terms we arrive at

γ

∫ T−2δ

0

∫
Ω

|DTk(um,n)|p(x) ≤ k‖f‖L1(QT ) +

∫
Ω

∫ bm,n0

0

Tk ◦ (β−1)0(σ)dσ

≤ (‖f‖L1(QT ) + ‖b0‖L1(Ω))k. (4.3.80)

for all k > 0 and all m,n ∈ N. For δ ↓ 0, the assertion follows.
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Remark 4.3.19. Using Lemma 4.3.18, we show with analogous arguments as
in the elliptic case (see Remark 3.2.5, Lemma 3.4.11 and the proof of Theorem
3.1.2) that un and u are finite almost everywhere in QT (see also [6], p.2777,
Step 4 of the proof of Theorem 2.6 for the parabolic case with constant
exponent), more precisely there exists a constant C > 0, not depending on
n, l ∈ R such that

|{|um,n| ≥ l}| ≤ Cl−(p−−1), (4.3.81)

and from (4.3.81) it follows that

lim
l→∞
|{|u| > l}| = 0. (4.3.82)

Since bm,n ∈ β(um,n) almost everywhere in QT , it follows with subdifferential
arguments as in the proof of Proposition 4.3.11 that bn ∈ β(un) and b ∈ β(u)
almost everywhere in QT .

Convergence results

Now, applying the diagonal principle and Lemma 4.3.18 we get the following
convergence results:

Lemma 4.3.20. For m,n ∈ N, f ∈ L1(QT ) and b0 ∈ D(Aβ)
‖·‖L1(Ω) let

(um,n, bm,n) be the weak solution to (P, ψm,n, fm,n, b
m,n
0 ). Then, there exists a

subsequence (m(n))n such that setting ψn := ψm(n),n, fn := fm(n),n, b0,n :=

b
m(n),n
0 , bn := bm(n),n, un := um(n),n we have the following convergence results

for n→∞:

i.) fn → f in L1(QT ),

ii.) un → u almost everywhere in QT ,

iii.) b0,n → b0 in L1(Ω), bn → b in C([0, T ];L1(Ω)) and b ∈ β(u) almost
everywhere in QT

and the uniform renormalized condition

lim
l→∞

sup
n

∫
{l<|un|<l+1}

a(x,Dun) ·Dun = 0 (4.3.83)

holds true. Moreover, for any k > 0, we have

iv.) Tk(un) ⇀ Tk(u) in Lp
−

(0, T,W
1,p(·)
0 (Ω)),

v.) DTk(un) ⇀ DTk(u) in (Lp(·)(QT ))N ,
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vi.) a(x,DTk(un)) ⇀ a(x,DTk(u)) in (Lp
′(·)(QT ))N ,

vii.) a(x,DTk(un)) ·DTk(un) ⇀ a(x,DTk(u)) ·DTk(u) weak in L1((0, τ)×Ω)
for any 0 < τ < T .

Proof: i.) - v.) are direct consequences of the approximation procedure,
Lemma 4.3.18 and Remark 4.3.19. To prove the uniform renormalized condi-
tion, we take Tk(un)φδ, φδ(t) := min(1

δ
max(T − δ− t, 0), 1) as a test function

and apply Lemma 4.2.11 in the weak formulation for (P, ψn, fn, b
n
0 ). By

Gauss-Green Theorem for Sobolev functions and the boundary condition, we
have ∫

Ω

F (un(t)) ·DTk(un(t))dx = 0

almost everywhere in (0, T ), hence the
”
convection“ term vanishes. Then we

set k = l + 1 and after k = l. Subtracting the corresponding equalities and
neglecting positive terms we obtain∫

{l<|un|<l+1}
φδa(x,Dun) ·Dun ≤

∫
{|un|>l}

|f |+
∫

Ω

∫ |b0|
0

Gl((β
−1)0)(s)ds

(4.3.84)
where Gl = Tl+1−Tl and the uniform renormalized condition follows applying
(4.3.81) in (4.3.84). It is left to show that vi.) and vii.) hold. From Lemma
4.3.18 and (A2) it follows that for any k > 0 there exists Φk ∈ (Lp

′(·)(QT ))N

such that a(x,DTk(un)) ⇀ Φk weak in (Lp
′(·)(QT ))N as n → ∞. To prove

that Φk = a(x,DTk(u)), we proceed as in [68], p. 122-127 for the case of
a constant exponent (see also [13] for variable exponent and [22], Theorem
3.6., p. 394-398, [2], [6], [21] for constant exponent) and define a special
time regularisation of Tk(u) by the regularisation method of Landes ([54]).
For µ > 0, we denote this time regularized function by (Tk(u))µ : QT → R
defined by

(Tk(u))µ(t, x) := µ

∫ t

−∞
eµ(s−t)Tk(u(s, x))ds (4.3.85)

where, for s ≤ 0 and µ > 0 we extend u(s, x) by a function ωµ0 ∈ W
1,p(·)
0 (Ω)∩

L∞(Ω) such that (ωµ0 )µ is a sequence of functions with ‖ωµ0‖L∞(Ω) ≤ k for all
µ > 0, 1

µ
‖ωµ0‖W 1,p(·)

0 (Ω)
→ 0 as µ→∞, ωµ0 → Tk(u0) almost everywhere in Ω

as µ → ∞ and u0 : Ω → R is a measurable function such that b0 ∈ β(u0)
almost everywhere in Ω. We can easily check that (Tk(u))µ ∈ V ∩ L∞(QT )
is the unique solution of the equation

∂t(Tk(u))µ + µ((Tk(u))− Tk(u)µ) = 0
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in D′(QT ) satisfying the initial condition (Tk(u))µ(0, x) = ωµ0 almost every-
where in Ω. In particular, (Tk(u))µ is differentiable for almost every t ∈ (0, T )
with ∂t(Tk(u))µ = µ(Tk(u) − (Tk(u))µ) ∈ V ∩ L∞(QT ). Moreover, we have
D(Tk(u))µ = (DTk(u))µ in D′([0, T )×Ω), ‖(Tk(u))µ‖L∞(QT ) ≤ k for all µ > 0,
(Tk(u))µ → Tk(u) almost everywhere in QT , weak-∗ in L∞(QT ) and strongly
in V as µ→∞. Now, for κ ∈ D+([0, T )) we show that

lim sup
µ→∞

lim sup
n→∞

∫
QT

κa(x,DTk(un)) ·D(Tk(un)− (Tk(u))µ) ≤ 0. (4.3.86)

Therefore, we choose κhl(un)(Tk(un)−(Tk(u))µ as a test function in (P, ψn, fn, b
n
0 )

and obtain
I1 + I2 + I3 + I4 + I5 = I6, (4.3.87)

where
I1 = 〈(bn − bn0 )t, κhl(un)(Tk(un)− (Tk(u))µ)〉 (4.3.88)

and 〈·, ·〉 denotes the duality pairing between V ′+L1(QT ) and V ∩L∞(QT ),

I2 =

∫
QT

κhl(un)a(x,Dun) ·D(Tk(un)− (Tk(u))µ),

I3 =

∫
QT

κh′l(un)(Tk(un)− (Tk(u))µ)a(x,Dun) ·Dun,

I4 =

∫
QT

κF (un) ·D(hl(un)(Tk(un)− (Tk(u))µ)),

I5 =

∫
QT

κhl(un)ψn(un)(Tk(un)− (Tk(u))µ),

I6 =

∫
QT

κfnhl(un)(Tk(un)− (Tk(u))µ).

Now, we want to pass to the limit with n → ∞ and then with µ → ∞. To
handle I2, we choose l > k and apply the uniform renormalized condition.
It is easy to see that I6, I5 and I4 tend to 0 as n → ∞, µ → ∞. Using
the uniform renormalized condition (4.3.83), it follows that I3 ≤ ω(l, k) and
ω(l, k)→ 0 as l→∞. To handle the parabolic term I1, we need the following

Lemma 4.3.21.

lim inf
n→∞

lim inf
µ→∞

〈(bn − bn0 )t, κhl(un)(Tk(un)− (Tk(u))µ)〉 ≥ 0 (4.3.89)
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Proof: The proof is similar to the proof of the corresponding result in the
case of a constant exponent (see [13] for the case of a variable exponent and
[68], [22], [2], [6], [21], [11] for the case of a constant exponent).

If (4.3.86) holds, then, by (A3) it follows that

lim sup
n→∞

∫
QT

κa(x,DTk(un)) ·D(Tk(un)− (Tk(u))) ≤ 0 (4.3.90)

and vi.) follows from (4.3.90) by the standard Minty-Browder argument. vii.)
follows from (4.3.90) by choosing κ to be a smooth approximation of χ(0,τ)

for 0 < τ < T .

Conclusion of the proof of Theorem 4.3.1

Now, we are able to conclude the proof of Theorem 4.3.1: By Remark 4.3.19
and Lemma 4.3.20 it follows immediately that (P1), (P2) and (P3) hold
for all k > 0. For h ∈ C1

c (R) and ξ ∈ D([0, T ) × Ω) we can plug h(un)ξ
into (P, ψn, fn, b

n
0 ) by the integration-by-parts formula of Lemma 4.2.11 and

obtain
I1 + I2 + I3 + I4 = I5, (4.3.91)

where

I1 =

∫
QT

ξt

∫ bn

bn0

h ◦ (β−1)0(s)ds,

I2 =

∫
QT

a(x,Dun) ·D(h(un)ξ),

I3 =

∫
QT

F (un) ·D(h(un)ξ),

I4 =

∫
QT

ψn(un)h(un)ξ

I5 =

∫
QT

fnh(un)ξ.

Thanks to the convergence results of Lemma 4.3.20, we can pass to the limit
with n→∞ in I1, . . . , I5: It follows immediately that

lim
n→∞

I1 =

∫
QT

ξt

∫ b

b0

h ◦ (β−1)0(s)ds. (4.3.92)
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Now we choose M > 0 such that supph ⊂ [−M,M ]. Next, we write

I2 = I2,1 + I2,2, (4.3.93)

where

I2,1 =

∫
(0,τ)×Ω

h′(TM(un))ξa(x,DTM(un)) ·DTM(un),

for 0 < τ < T is such that supp ξ ⊂ [0, τ) × Ω. By Lemma 4.3.20, vii.),
a(x,DTM(un)) ·DTM(un) ⇀ a(x,DTM(u)) ·DTM(u) weak in L1([0, τ)×Ω).
Since h′(un)ξ → h(u)ξ almost everywhere in QT and ‖h(un)ξ‖L∞((0,τ)×Ω ≤
‖h‖L∞(QT )‖ξ‖L∞(QT ), we may pass to the limit in I2,1 and obtain

lim
n→∞

I2,1 =

∫
QT

h′(u)ξa(x,Du) ·Du. (4.3.94)

Where Du denotes the generalized gradient in the sense of Remark 4.2.4.
By Lebesgue Dominated Convergence Theorem it follows that h(TM(un))→
h(TM(u)) as n→∞ in Lp(·)(QT ). Using Lemma 4.3.20, vi.), we can pass to
the limit in

I2,2 =

∫
QT

h(TM(un))a(x,DTM(un)) ·Dξ, (4.3.95)

and find

lim
n→∞

I2,2 =

∫
QT

h(u)a(x,Du) ·Dξ. (4.3.96)

Next we write I3 = I3,1 + I3,2 where

I3,1 =

∫
QT

h′(TM(un))ξF (TM(un)) ·DTM(un),

I3,2 =

∫
QT

h(TM(un))F (TM(un)) ·Dξ

Since h′(TM(un))F (TM(un)) converges to h′(TM(u))F (TM(u)) in (Lp
′(·)(QT ))N

as n→∞ using Lemma 4.3.18, v.) we have

lim
n→∞

I3,1 =

∫
QT

h′(u)ξF (u) ·Du (4.3.97)

and moreover

lim
n→∞

I3,2 =

∫
QT

h(u)F (u) ·Dξ. (4.3.98)
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Note that

|I4| ≤
M

n
‖h‖L∞(QT )‖ξ‖L∞(QT ) → 0 (4.3.99)

for n→∞. Finally, we have

lim
n→∞

I5 =

∫
QT

fh(u)ξ (4.3.100)

and from (4.3.91)-(4.3.100) it follows that (u, b) satisfies the renormalized
formulation (P4). (P5) follows from the uniform renormalized condition
(4.3.83) and Lemma 4.3.20, vii.).

4.4 Extensions and open problems

4.4.1 Strong L1-convergence

We can improve the convergence result from Lemma 4.3.20, vii.). For 0 <
τ < T and for any k > 0 from (4.3.90) it follows that

lim
n→∞

∫ τ

0

∫
Ω

(a(x,DTk(un))−a(x,DTk(u))) · (DTk(un)−DTk(u)) = 0 (4.4.1)

and since the integrand in (4.4.1) is nonnegative, this implies

lim
n→∞

(a(x,DTk(un))− a(x,DTk(u))) · (DTk(un)−DTk(u)) = 0 (4.4.2)

almost everywhere in QT . If the function a is strictly monotone (this is
true in the case of the p(x)-Laplacian), it is well known that DTk(un) →
DTk(u) almost everywhere in QT . For the proof we refer to [13] in the case
of the p(x)-Laplacian, [27], [4] in the case of a constant exponent and [50]
for a proof using Young measures in the case of a constant exponent. If the
function a is only monotone and we have the convergence a(x,DTk(un)) ·
a(x,DTk(un)) → a(x,DTk(u)) · a(x,DTk(u)) as n → ∞ almost everywhere
in QT , from Lemma 4.3.20, vii.) and [41], Lemma 8.4, p. 1099 it follows
that a(x,DTk(un)) · a(x,DTk(un)) → a(x,DTk(u)) · a(x,DTk(u)) strong in
L1((0, τ)× Ω) for 0 < τ < T .

4.4.2 A regularity result

We have an additional regularity result for the special case β = I if we assume
2− 1

N+1
< p− ≤ p+ < N :
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Lemma 4.4.1. Let p ∈ C(Ω) with 2 − 1
N+1

< p− ≤ p+ < N and let γ > 0.
Then there exists a constant c > 0, depending on γ, such that, for any
function g ∈ Lp−(0, T ;W

1,p(·)
0 (Ω)) ∩ L∞(0, T ;L1(Ω)) with

‖g‖L∞(0,T ;L1(Ω)) = ess sup
t∈(0,T )

∫
Ω

|g(t, x)|dx ≤ γ, (4.4.3)

and

sup
l≥0

∫ ∫
Bl

|Dg|p(x) dxdt ≤ γ, (4.4.4)

where, for l ≥ 0, Bl = {l ≤ |u| ≤ l + 1}, it follows that

‖g‖
Lq− (0,T ;W

1,q(·)
0 (Ω))

≤ c, (4.4.5)

for all continuous functions q(·) on Ω satisfying

1 ≤ q(x) <
N(p(x)− 1) + p(x)

N + 1
for all x ∈ Ω. (4.4.6)

Proof: See [13] for the case of a variable exponent and also [24] for the
case of a constant exponent.

From Lemma 4.4.1 it follows that if u is a renormalized solution to
(P, f, u0) with a variable exponent such that 2 − 1

N+1
< p− ≤ p+ < N

and β = I, then u is in Lq
−

(0, T ;W
1,q(·)
0 (Ω)) for all continuous functions q(·)

on Ω satisfying 1 < q(x) < N(p(x)−1)+p(x)
N+1

for all x ∈ Ω.

4.4.3 Entropy solutions

In the case of a constant exponent, a notion of entropy solution for the
classical p-Laplacian problem

(Lc, f, u0)


ut − div(|Du|p−2Du) = f in QT ,

u = 0 on ΣT ,

u(0, ·) = u0(·) in Ω

has been introduced in [63]. The next definition will be a straightforward
generalisation for the parabolic p(x)-Laplacian equation

(L, f, u0)


ut − div(|Du|p(x)−2Du) = f in QT ,

u = 0 on ΣT ,

u(0, ·) = u0(·) in Ω.
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Definition 4.4.1. For k > 0, let us define θk : R → R by θk(r) :=∫ r
0
Tk(σ)dσ, r ∈ R and

E := {φ ∈ V ∩ L∞(QT );φt ∈ V ′ + L1(QT )}.
An entropy solution to (L, f, u0) is a measurable function u : QT → R such
that

i.) Tk(u) ∈ V for all k > 0,

ii.) The mapping

[0, T ] 3 t→
∫

Ω

θk(u− φ)(t, x)dx

is a.e. equal to a continuous function for all k > 0 and all φ ∈ E,

iii.) If 〈·, ·〉 is the duality pairing between V ′ + L1(QT ) and V ∩ L∞,∫
Ω

θk(u− φ)(T )−
∫

Ω

θk(u0 − φ)(0) + 〈φt, Tk(u− φ)〉

+

∫
QT

|Du|p(x)−2Du ·DTk(u− φ) ≤
∫
QT

fTk(u− φ)
(4.4.7)

holds for all k > 0 and all φ ∈ E.

The following result is known for (Lc, f, u0) and can be easily generalized:

Proposition 4.4.2. A function u is a renormalized solution to (L, f, u0) iff
it is an entropy solution.

The proof of Proposition 4.4.2 follows the same lines as the proof of
the corresponding result in the case of a constant exponent (see [42]). In
particular, we use the same arguments as in the proof of Lemma 7.1 in [42]
to show that the following integration-by-parts-formula holds true:

Lemma 4.4.3. Let f : R → R be a continuous piecewise C1 function such
that f(0) = 0 and f ′ is zero outside a compact set of R. Let us denote
F (s) =

∫ s
0
f(r)dr. If u ∈ V is such that ut ∈ V ∗+L1(QT ) and if ψ ∈ C∞(QT ),

then we have

〈ut, f(u)ψ〉 =

∫
Ω

F (u(T ))ψ(T )dx−
∫

Ω

F (u(0))ψ(0)dx−
∫
QT

ψtF (u), (4.4.8)

where 〈·, ·〉 denotes the duality pairing between V ∗+L1(QT ) and V ∩L∞(QT ).

A natural way to generalize the notion of entropy solution of Definition
4.4.1 to the problem (P, f, b0) is to exchange θk by the function θk,β defined

by θk,β(r) :=
∫ r

0
Tk ◦ (β−1)0(σ)dσ for r ∈ R(β). More precisely, we write

θk,β(b − φ) instead of θk(u − φ) with b ∈ L1(QT ) such that b ∈ β(u) almost
everywhere in Definition 4.4.1. It is an open problem to show equivalence
between renormalized and entropy solutions to the general problem (P, f, b0).
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