
Strengthening System Security on the ARMv7
Processor Architecture with Hypervisor-based

Security Mechanisms

vorgelegt von
Julian Vetter (M.Sc.)
geb. in Lindenfels

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:
Vorsitzende: Prof. Dr. Anja Feldmann, Technische Universität Berlin
Gutachter: Prof. Dr. Jean-Pierre Seifert, Technische Universität Berlin
Gutachter: Prof. Dr. Marian Margraf, Freie Universität Berlin
Gutachter: Prof. Dr. Shay Gueron, University of Haifa

Tag der wissenschaftlichen Aussprache: 19.05.2017

Berlin 2017





Publications related to this Thesis

The work presented in this thesis resulted in the following peer-reviewed publica-
tions:

• The Threat of Virtualization: Hypervisor-Based Rootkits on the ARM Archi-
tecture, Robert Buhren, Julian Vetter, Jan Nordholz, 18th International Con-
ference on Information and Communications Security (ICICS), Singapore,
November 29th, 2016

• Uncloaking Rootkits on Mobile Devices with a Hypervisor-Based Detector,
Julian Vetter, Matthias Petschick-Junker, Jan Nordholz, Michael Peter, Ja-
nis Danisevskis, 18th International Conference on Information Security and
Cryptology (ICISC), Seoul, South Korea, November 25-27th, 2015

• XNPro: Low-Impact Hypervisor-Based Execution Prevention on ARM, Jan
Nordholz, Julian Vetter, Michael Peter, Matthias Petschick and Janis Dani-
sevskis, 5th International Workshop on Trustworthy Embedded Devices (CCS
TrustED), Colorado, USA, October 12-16th, 2015

• Undermining Isolation through Covert Channels in the Fiasco.OC Microkernel,
Michael Peter, Matthias Petschick, Julian Vetter, Jan Nordholz, Janis Dani-
sevskis, Jean-Pierre Seifert, 30th International Symposium on Computer and
Information Sciences (ISCIS), London, UK, September 21-25th, 2015

Additionally, Julian Vetter has authored the following publications:

• Fault Attacks on Encrypted General Purpose Compute Platforms, Robert
Buhren, Shay Gueron, Jan Nordholz, Jean-Pierre Seifert, Julian Vetter, 7th
Conference on Data Application Security and Privacy (CODASPY), Scottsdale,
USA, March 22-24th, 2017

• Graphical User Interface for Virtualized Mobile Handsets, Janis Danisevskis,
Michael Peter, Jan Nordholz, Matthias Petschick, Julian Vetter, 4th Interna-
tional Workshop on Mobile Security Technologies (S&P MoST), San Jose, CA,
May 21st, 2015

iii





Abstract

The computing landscape has significantly changed over the last decades. The de-
vices we use today to interact with digital content have shifted away from stationary
computers towards ubiquitous network-connected devices such as mobile phones.
The success was mainly driven by two trends: the fast evolution of communication
and computing hardware and a rapid change of the system software away from
proprietary special purpose operating systems towards open commodity operating
systems. However, this mobile trend also attracted adversaries.
In this thesis, we therefore raise the question whether commodity operating systems
are suitable to protect users of such devices from common attacks; e.g., malware
or rootkits). Arguably, commodity operating systems such as Linux provide an ap-
pealing option because of their extensive hardware device support and their broad
selection of applications. However, they are built around a monolithic kernel and if
a highly privileged component is breached, an adversary can take over the entire
system. This renders them unsuitable for applications that have higher security
demands.
In response, researchers explored several approaches to gain the desired security
properties. Two prime examples are hypervisors and microkernels, both of which
promise a higher degree of isolation between components than is provided by com-
modity operating systems. While most hypervisors also go for a monolithic kernel
design, they achieve the better isolation capabilities through a reduced functionality,
which in turn leads to less complex interfaces and a way smaller trusted comput-
ing base. Microkernel-based systems, on the other, hand achieve their security
properties by putting kernel-level functionality into user processes, thereby also
reducing their trusted computing base, while still providing a similar functionality
as a general purpose operating system such as Linux. Both seem like promising
options to protect the users from attacks. However, as we show in this thesis, both
paradigms have issues if deployed carelessly.
To assure a minimal performance impact when running a hypervisors, hardware
vendors added hardware virtualization extensions to their processors. However,
if the access to these extensions is not properly controlled, they pose a severe
security threat and can be used to subvert the operating system. We show how
the virtualization extensions can be leveraged to take over the highly privileged
hypervisor mode on ARMv7 based devices. Subsequently, we plant into the said
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mode a rootkit, which is very hard to spot and to remove.
As an alternative to a hypervisor-based system architecture, we investigate a widely
used microkernel with respect to the isolation capability it promises. We assess
Fiasco.OC, a microkernel that claims to be suitable for the construction of highly
compartmentalized systems. But even this seemingly secure system software can-
not uphold the promised isolation capabilities. In several scenarios, we show how to
create high-bandwidth covert channels between two user-level entities, undermining
all isolation efforts.
Based on the outcome of our audit, we propose a system architecture for security-
critical devices, based on a small statically partitioned Type-I hypervisor. The only
aspect that speaks against a hypervisor-based design is the coarse-grained isolation
hypervisors in general provide. We bridge this gap with two security mechanisms
embedded into the hypervisor that narrow done the attack surface inside individual
guests. The first mechanism enforces strict memory attributes to prevent common
code reuse attacks. The second mechanism allows us to take snapshots of the
memory of a guest, which is a powerful way to detect the presence of rootkits, which
are, by their nature, otherwise hard to locate.
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Zusammenfassung

In den letzten Jahren hat sich die IT-Landschaft drastisch verändert. Ummit digitalen
Inhalte zu interagieren verwenden wir kaum noch stationäre Computer, stattdessen
verwenden wir ubiquitäre vernetze Geräte (z.B. Smartphones). Neben einer rapiden
Evolution der Hardware, gab es auch drastische Änderungen der Sotftware. Wo
vor einigen Jahren noch proprietäre Lösungen zum Einsatz kamen, heißt es heute
offene Standardbetriebssysteme. Aber gerade die Tatsache das diese offen und
standardisiert sind, heißt auch das sie eben genauso anfällig sind wie bisher nur
Desktop- und Serversysteme.
In dieser Thesis evaluieren wir daher, ob solche Betriebssysteme geeignet sind,
die Nutzer auch in diesen neuen Domänen vor Bedrohungen wie Malware und
Rootkits zu schützen. Linux stellt natürlich eine attraktive Lösung dar. Es verfügt
über exzellente Hardwareunterstüzung und eine große Auswahl an Applikationen.
Allerdings basieren diese Standard-Betriebssysteme auf einem monolithischen Kern.
Wenn also eine hoch privilegierte Komponente von einem Angreifer übernommen
wird, ist automatisch das gesamte System kompromittiert. Durch diese Eigenschaft
sind sie ungeeignet für Systeme die ein höheres Maß an Sicherheit fordern.
Forscher haben sich daher nach anderen Ansätzen umgesehen, um die gewün-
schten Isolationseigenschaften zu erhalten. Zwei bekannte Beispiele hierbei sind
Hypervisor undMicrokerne, beide versprechen einen höheren Grad an Isolation zwis-
chen Systemkomponenten. Während viele Hypervisor auch über einen monolithis-
che Kern verfügen, erreichen sie doch eine bessere Isolation durch eine reduzierte
Anzahl an Funktionen. Diese geringere Komplexität führt zu weniger komplexen
Schnittstellen und eine reduzierte Trusted Computing Base. Microkern-basierte
System erreichen ihre Sicherheitseigenschaften dadurch, dass Kernkomponenten
in Nutzerprozesse ausgelagert werden. Dadurch erreichen sie auch eine reduzierte
Trusted Computing Base und haben doch eine ähnlich vielfältige Funktionalität wie
andere Standardbetriebssysteme wie z.B. Linux. Beide scheinen eine gute Option
zu sein um Nutzer vor Angriffen zu schützen. Allerdings zeigen wir in dieser Thesis,
dass beide Systeme Probleme aufweisen wenn sie unvorsichtig eingesetzt werden.
Um nur minimale Leistungseinbußen beim Einsatz von Hypervisor-basierten Syste-
men zu haben, stellen Hardware Hersteller Virtualisierungserweiterungen für ihre
Prozessoren zu Verfügung. Wenn der Zugriff auf diese Erweiterungen allerdings
nicht korrekt behandelt wird kann dies fatale Folgen für die Sicherheit des Sys-
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tems haben. Wir zeigen auf einer ARMv7-basierten Plattform, dass ein Angreifer
Kontrolle über die Virtualisierungserweiterungen erlangen kann um ein Rootkit im
hoch privilegierten Hypervisor-Modus zu plazieren. Für das Betriebssystem ist das
Aufspüren oder Entfernen eines solchen Rootkits extrem schwierig.
Darüber hinaus, evaluieren wir Fiasco.OC, einMicrokern, welcher einzelne Nutzerkom-
ponenten stärker von einander isoliert. Aber auch dessen Architektur zeigt Schwächen
und erlaubt uns Daten zwischen zwei Nutzerkomponenten auszutauschen, die
eigentlich durch keinen Kommunikationskanal verbunden sind.
Basierend auf dem Ergebnis unserer Evaluation stellen wir eine neue Systemar-
chitektur vor, welche auf einem kleinen statisch partitionierten Type-I Hypervisors
beruht. Da Hypervisor im allgemeinen nur eine grobe Unterteilung von Softwarekom-
ponenten ermöglichen, stellen wir zwei Sicherheitsmechanismen vor, welche in den
Hypervisor eingebettet sind, um diese Lücke zu schließen. Diese sollen mögliche
Angriffsvektoren auf das Gastbetriebssystem minimieren. Der erste Mechanismus
stellt bestimmte Speicherattribute sicher, um bekannte “Code Reuse” Angriffe zu
verhindern. Der zweite Mechanismus ermöglicht das Erstellen von Speicherab-
bildern von Gastspeicher. Ein Satz von Nutzerapplikationen ermöglicht uns dann
Kerndatenstrukturen zu rekonstruieren um Rootkits aufzudecken.
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1Introduction

With the introduction of the first iPhone in 2007, the trend of mobile computing took
its course. The decreasing manufacturing costs and the advances in computing
and communication hardware led to entirely new ways of how we use computers.
Especially ARM-based devices have seen exponential growth since virtually all
mobile systems today are equipped with an ARM-based SoC (System-on-Chip).
But this new form of computing also posed additional requirements on the existing
software stack. To accommodate this increased complexity, the OSs (Operating
Systems) had to evolve. Instead of running a specialized OS, today the majority of
mobile devices run one of two commodity OSs (Google’s Android or Apple’s iOS).
For this discussion we focus on Android, because it is more accessible in terms of
licensing and platform support. Still, no matter which of the two we consider they
share common ground in giving the users the ability to install additional applications
and both support a wide range of connectivity options (e.g. cellular, WLAN, Bluetooth,
etc.). The downside of this trend is that radical changes of that magnitude involve
many security risks. Commodity OSs are complex, provide an enlarged attack
surface and the ubiquitous network connectivity exposes the respective systems to
remote adversaries [110, 37].

Mobile devices nowadays are highly personalized. Users store sensitive data on
them and perform sensitive tasks, e.g., online banking. Still, many users are ei-
ther uneducated or just careless in operating it, e.g., by installing applications from
untrustworthy sources or by not checking the requested permissions of installed
applications. Adversaries quickly adapted to this behaviour and started repackag-
ing existing applications with malware and uploading them to various alternative
stores [75]. But not only alternative stores host malware, adversaries also man-
aged to trick Google’s safeguard [84] and deployed malware in the official store.
It is important to note that even though many users operate their mobile device
carelessly, it is also extremely difficult to decide whether an application is benign or
not (e.g., based on the permissions it requests). Moreover, Android only allows for
very coarse grained assignment of permissions, e.g., access to entire calendar, and
various researchers showed how to circumvent the permission system [2, 43].
But adversaries did not limit their efforts to unsophisticated application-based mal-
ware. Recent incidents revealed that high value targets, e.g, government employees,
were victims of sophisticated attacks targeting their mobile devices [63, 47, 51].
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Adversaries used complex rootkits, which were carefully constructed to not be easily
detectable by application-based anti-malware solutions.

Even though researchers tried to address these issues, already on the Desktop
before, e.g., by implementing more restrict access control mechanisms [16, 114].
These efforts not only proved themself to be difficult due to the monolithic nature
of commodity OS, but also do not prevent sophisticated adversaries from installing
deeply embedded malware (e.g. rootkits) on devices. Thus, a completely revised
system architecture might be favorable.
For several years now virtualization is the most common paradigm on server systems.
It provides two main advantages: first, achieving a better resource utilization of a
physical machine and second, a stronger isolation between software components
and therefore preventing a full system breach if a single component is compromised.
However, in order to implement the virtualization paradigm efficiently, hardware
support is necessary. For the processor architecture dominant in the server domain
(x86), vendors released hardware extensions for their respective processors [108,
96] in 2004.
Researchers then explored the paradigm for a range of other domains [97, 59, 76,
15], mainly for its second attribute – the stronger isolation properties. Among the
proposed systems were also mobile devices. The adoption of virtualization for the
mobile market at that time was however limited, mainly because mobile processors
lacked hardware virtualization support and also because of the increased memory
requirements when running two OS instead of one. Both aspects were problematic,
because system integrators had to draw on para-virtualization, which required them
to make changes to the OS and the memory needs could simple not be served by
the mobile devices at the time.

But virtualization is not the only paradigm that promises a better isolation and an
increased system security. In the past, researchers also studied systems with a
very small TCB (Trusted Computing Base)1 to decrease the attack surface and still
provide strong isolation properties. These microkernels [45, 83] provide functionality
similar to the one provided by commodity OS. They also provide a programming
interface featuring processes and interprocess communication facilities. However,
the microkernel paradigm can maintain a smaller TCB by demanding that the kernel
to be free of policies. This is achieved by removing parts of the kernel code, e.g.,
drivers, memory management from the privileged domain and putting them into
unprivileged user processes. Then, also bug-induced damage cannot affect the
entire system.
The approach has long been acknowledged in academia; yet, its adoption was

1The TCB of a system encompasses all components (software and hardware) that are essential for
its security. That is, if one component of the TCB contains a bug or is vulnerable to attacks the
security of the entire system is at risk.
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limited because porting applications to these new microkernel APIs takes time, and
limited resources prevented a widespread adoption. Still, the microkernel paradigm
found its niche. Notably, the L4 family of microkernels [73] held its ground and
found appliance in some security systems. The commercial derivative OKL4 [57] is
deployed on the secure enclave processor of the latest iPhone [61]. Fiasco.OC [46],
another L4 derivative, attracted system designers because of its open source license
and its ability to run VMs (Virtual Machine) alongside native microkernel processes.
Hence, it found application in a secure mobile architecture [72], combining an
encapsulated Android with native microkernel processes that provide access to
security-critical components, e.g., a smartcard).
When taking a closer look at such a secure mobile architecture, it becomes clear that
the ability to encapsulate Linux in form of Android is a key requirement. But running
Linux on a microkernel is for several reasons ill-advised. Either, the Linux kernel has
to be modified to run on the microkernel API [69] directly, but this not only exposes a
complex interface to the hosted Linux but also requires a considerable porting effort
for every new Linux kernel version. The other option is that the microkernel supports
running VMs. This, however, requires to run a VMM (Virtual Machine Monitor) on
top of the microkernel [72]. The advantage of this approach is that the VMM wraps
the extensive microkernel API and hides it from guest systems. Still, the microkernel
underneath provides a lot of functionality that is not required when only hosting VMs,
making the TCB unnecessarily large.

In other domains such as avionics [89] and automotive [48], system architectures
already feature small TCBs with statically assigned resources (policy free) and
narrow interfaces. This effectively combines the two advantages of HVs (hypervisor)
and microkernels – a small TCB and no policies in the kernel, as demanded by the
microkernel paradigm, with a simple programming interface as provided by most
HVs. However, the separation kernel, proposed by Rushby [93] in 1981, has clearly
specified workloads, which make the implementation of such a design paradigm a
rewarding task for system integrators.
The commodity software solutions today, regardless of their implemented design
principle (microkernel, HV or general purpose OS), not only face entirely different
challenges but also try to be as flexible as possible. In the desktop and server
domain, systems have to be prepared for various types of workloads without prior
knowledge about their resource utilization (memory and CPU time) and, of course,
the solutions want to give the users the full freedom to execute additional processes
or VMs on demand. In the mobile domain, on the other hand, it seems that all efforts
so far to build a secure mobile architecture were either driven by principle instead of
pragmatism or were simply introduced at the wrong time (and then lacking resources
or hardware support).
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1.1 Thesis Motivation

Now the question arises whether an architecture can be designed for mobile devices
patterned after Rushby’s seperation kernel. The foundation is there: ARM released
its VE [79] in 2011, allowing for well performing virtualization on mobile devices.
The goal is to achieve a higher degree of isolation, narrow and simple interfaces, a
very small TCB without any policies inside the system software and still provide the
needed flexibility to fulfill the requirements of the user.

1.1.1 Problem Overview

Given the described issues and taking the blueprint of Rushby’s separation kernel,
it is reasonable to assume that the concept is well applicable to today’s mobile
devices and might provide an appealing option. But first we have to take a look at
the requirements that are imposed on today’s mobile devices.

As already discussed, Linux (in form of Android) is the main OS in the mobile market
because of its versatility (open source, software diversity, hardware support, etc.),
so an essential capability of the envisioned architecture is to encapsulate it.
But unlike on a server, where the HV must spawn new VMs on demand (for load-
balancing and overall hardware utilization), such a feature is barely useful on a
mobile device. Only a predefined set of security-critical services will run on the
device, thus the number of VMs is fixed. This will not change during runtime; nor
will the user want to start additional ones. Of course, inside individual VMs that run
Linux, the user is free to execute additional processes.
Moreover, hardware resources such as main memory can be statically assigned.
Each VM get its fixed share of the memory, making any form of memory management
policy in the HV obsolete. Because, again, it can be determined beforehand how
much memory the security-critical service might need, the rest is then assigned
to Linux. Figure 1.1 briefly depicts our envisioned secure system architecture,
containing a VM hosting the rich OS (e.g. Linux) and an additional VM hosting a
security critical service (might be hosted on Linux, but does not have to).

Such an architecture settles the issue with complex subsystems, confusing or
complicated interfaces and shrinks the TCB. But, depending on the application
the isolation granularity HVs in general provide, it might be too coarse. Unlike
microkernels, which can isolate different processes, HVs only export a CPU-like
interface, thus isolating at VM granularity. Commonly, the security inside individual
VMs is left to security applications in the VM. But, of course, these applications, e.g.,
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Fig. 1.1: Proposed security architecture based on a statically partitioned HV

virus scanner, IDS, firewall, etc., are not afforded any additional protection from an
adversary inside the VM.

1.1.2 Thesis Statement

In this thesis, we investigate a security architecture suitable for mobile devices
that leverages the isolation properties of a HV not only to separate different system
components from each other. We also use the HV as a vehicle to implement defense
mechanisms to increase the security inside individual VMs without giving a potential
adversary inside a VM the chance to outright disable them.

Our design decisions are driven by the following principle. When integrating software
components on a hardware platform, isolation should be a key attribute of the under-
lying system software. This allows not only to isolate security critical components
from the rest of the system but also allows for an integration of defense mechanisms
into the system architecture decoupled from the already complex and vulnerable
rich OS to detect or even prevent intruders from attacking the said.
Therefore, in this thesis, we propose the following statement:

“To integrate several software components on a common [mobile] plat-
form, system designers should utilize small statically partitioned HVs
with well defined and narrow interfaces. Additionally, security features
should be small, modular and transparent to the hosted [rich] operating
systems.”

1.1 Thesis Motivation 7



1.2 Thesis Contribution

In the previous section, we proposed a secure system architecture for mobile devices.
But before we discuss the defense mechanisms we integrated into our hypervisor
(in Part III), we want to substantiate the claim that commodity systems are indeed
ill-suited to build secure system architectures (in Part II).
We examine how common OS expose interfaces to the virtualization extensions
on ARM-based SoCs. We exploit these interfaces to gain higher privileges than
the OS. We then place a rootkit in this highly privileged execution mode to spy on
the OS. Furthermore, we explore vulnerabilities in an existing microkernel solution,
which lead to a denial-of-service attack, and more severely, to high-bandwidth covert
channels. Our findings allow us to undermine all efforts to isolate components in a
system built on top of this kernel.

Our findings substantiate the previously proposed statement to carefully design
narrow interfaces, and not build security- or safety-critical software based on complex
commodity systems. As an alternative, we propose two security concepts integrated
into a statically partitioned HV. Both security mechanism ought to bridge the gap
between the relatively coarse-grained isolation properties provided by the HV and
the process-based isolation provided by the OS running in the VM.
The first security mechanism enforces execution prevention capabilities to rule out
common code reuse attacks. The second mechanism can uncover rootkits that
might have infiltrated the kernel in a VM. Both mechanisms are designed for the
ARMv7 processor architecture. The first mechanism is OS agnostic and can be
configured to work with any OS, whereas the second mechanism is tailored towards
threats imperiling Android systems. Both security mechanisms are part of a statically
partitioned HV and are therefore out of the reach of an adversary who might have
infiltrated the OS kernel in a VM.

1.3 Thesis Structure

This thesis is structured as follows. Part I, apart from this introduction, explains the
technological background required to understand the concepts presented throughout
this thesis. Specifically, in Chapter 2, we will cover the fundamentals of the ARMv7
processor architecture, the different processor modes, device handling and different
processor extensions, along with a survey of related work in Chapter 3.
In Part II, we will substantiate our statement that security-critical systems should
not be built on commodity system software by examining the security of two such
systems. Specifically, in Section 4, we analyze how the Linux kernel handles the
interface to ARM’s hardware VE. With several attack vectors, we show that we can
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take over the HV mode and install a rootkit into it, thereby getting full control over the
OS on the device. In Section 5, we analyze the isolation properties of the Fiasco.OC
microkernel. As a result, we can establish covert channels between two native L4
processes. This suggests that it cannot uphold the said properties.
We demonstrate the feasibility of the previously proposed security architecture in
Part III. In Chapter 7, we present an execution prevention mechanisms that counters
several code reuse attacks common in commodity OS. We show a HV-based rootkit
detection solution in Chapter 6. Both are part of a small statically partitioned HV.
Finally, in Part IV we briefly conclude our research (Chapter 8) and provide directions
for future research (Chapter 9), respectively.
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2ARM Processor Architecture

The following chapter will provide a brief background on the ARMv7 processor
architecture [6]. This information by no means represents a complete overview of
these topics. The specification for the ARMv7 processor architecture is however
publicly available but comprises a large number of documents. Thus, we refer the
interested reader to [7, 12, 9, 10]. We also specifically focus on the Cortex-A7 [27]
and Cortex-A9 [28] processors, respectively.

It is important to understand that there is no single ARM system architecture. Be-
cause, unlike Intel or AMD who design and manufacture x86 processors, ARM only
designs and sells IP (Intellectual Property) cores to other companies (e.g. Samsung,
Allwinner, Qualcomm and Apple).
Furthermore, ARM’s system architecture is built in a modular way. So, they not
only design processor cores (e.g. Cortex-A7), but also peripheral components that
are usually tightly integrated into the chip (e.g. UART, interrupt controller, graphics
unit). But, companies that buy the license to manufacture an ARM processor are
not obliged to also use these optional components. Instead, many companies, only
license the ARM processor core and design other components on their own1. The
resulting architecture is called an SoC. The SoC integrates multiple components
along the processor, but depending on the SoC integrator/manufacturer the design
significantly differs.

Moreover, ARM also sells “source” licenses of their IP cores. Effectively, allowing
manufacturers that hold such a license to make changes to the processor’s core
design. Apple and Qualcomm are two prominent representatives to hold such a
license. With the A6 Apple started to use a custom ARM design. All newer Apple
processors up to the Apple A10 Fusion are based on ARM’s IP but with additional
SIMD instructions and undisclosed optimizations. The same applies to Qualcomm.
Qualcomm already started to design their processors in-house with the Scorpion, the
predecessor of their current SoC, the Snapdragon. Thus, both have similarities to
an ARM Cortex processor but are effectively custom chips. This means user space
applications can be compiled using a generic ARM compiler suit. However, system
software developed for an ARM processor might not run on these chips, because
both vendors made changes to the core architecture for optimization purposes.

1Samsung for example uses in some of its Exynos processors a proprietary interrupt controller.
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User mode (usr)

Fig. 2.1: ARMv7 Processor Modes.

Since both designs are proprietary, it is unknown how profound their designs differ
from ARM’s specification. That being said, in this thesis we only focus on systems
with unmodified ARM processors.

In the remainder of the section, we briefly describe important aspects of the ARMv7
processor architecture. All experiments in this thesis were conducted on either one
of the following three ARM-based development boards2:

• Cubieboard 2, Allwinner A20 SoC (2x Cortex-A7, 1000 Mhz), 1GByte RAM [30]
• Cubietruck, Allwinner A20 SoC (2x Cortex-A7, 1000 Mhz), 2GBytes RAM [31]
• Pandaboard, TI OMAP4 SoC (2x Cortex A9, 1200 Mhz), 1GByte RAM [86]

Therefore, we focus this brief introduction on these processor cores. In particular
we describe the execution modes, exception handling, and different processor
extensions which provide, e.g., hardware virtualization support.

2.1 Processor Modes

The ARMv7 processor architecture defines seven execution modes (Fig. 2.1). One
of these (usr) is unprivileged and operates at PL0 (Privilege Level 0), whereas the
other six (svc, sys, irq, fiq, und, abt) are privileged and collectively referred to as
PL1 (Privilege Level 1). Each change from a lower to a higher PL (Privilege Level)
forces the control flow through well-defined entry points [6] called exception vectors.
These exception vectors are located in memory. A system control register holds the
2In is important to mention that the findings and results in this thesis only apply to systems with an
actual ARM core. They may or may not apply to customized ARM-based chips (such as the ones
from Qualcomm or Apple).
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address that points to this exception vector table. The register VBAR points to the
exception vector table for handling transitions from PL0 to PL13. On an exception,
the control flow is diverted from PL0 to PL1, where, depending on the reason for the
transition (e.g. MMU fault, illegal instruction, system call, interrupt, etc.), execution
resumes at the corresponding exception vector (which is an offset from the address
where the VBAR register points to).
Each exception vector is 32bit long, thus for most exceptions, e.g., Linux only
performs a single branch that jumps to the actual exception handler, which is located
somewhere else in memory. Classically there were only two valid locations for the
base address of the exception vectors (referred to as the low vectors at address
0x0 and the high vectors at address 0xffff0000). Since ARMv7 the location can be
configured unrestrained. For legacy reasons, e.g., Linux still uses the high vectors
address location at 0xffff0000. Also, Linux purposely leaves the address 0x0

unmapped to catch null pointer exceptions. Configuring the hardware to use the low
vectors would prevent the OS from doing this.

2.2 Memory Layout

ARMv7 is a 32bit processor architecture. Thus each processor’s physical address
space is 4GBytes. Unlike x86 which features I/O ports to communicate with hardware
peripherals, an ARM-based SoCs features primarily memory mapped hardware
resources. These resources are however not assigned to fixed locations in the
address space. Depending on the SoC, hardware resources are placed in different
locations inside this 4GBytes physical address space.
When looking at the Cubietruck, which features an Allwinner A20 SoC, e.g., the
main memory starts at 0x40000000, and the UART is mapped at 0x01c80000. These
addresses are however arbitrarily chosen by the SoC vendor. So, it is important
to note, that to develop system software for a particular SoC it is necessary to
know these physical addresses in advance. There is nothing like the x86 PCI bus
enumeration mechanism to determine which devices are connected to the SoC at
which address. Thus, reference manuals and sample code are mandatory when
porting system software to a new SoC.
For the ARM architecture, the Linux kernel tried to facilitate the handling of these
highly platform and SoC specific characteristics by introducing the DTS (Device
Tree Source)/DTB (Device Tree Blob) mechanism. It describes hardware resources
assigned to a specific device (e.g., which physical address the device is located at,
which interrupts are assigned to the device, etc.). The components are ordered in a
tree-like structure in a human readable format. So, these files can also be consulted
for the respective information.

3The PL2 (described in Section 2.5) has its own copy called HVBAR.
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2.3 Coprocessor Interfaces

Apart from the previously described memory mapped hardware resources, there is a
number of resources that are addressed using ARM’s coprocessor (cp) interface [6].
These are mainly processor components, but also some peripherals, e.g. ARM’s
architecture timer. ARM provides two 32bit instructions4 and two 64bit instructions5

to communicate with these resources. The bits to select the interface in the op-code
limits the number of available interfaces to 16.
Currently, ARM only leverages a small number of them anyway, with cp15 as the
most prominent one. It provides access to the system control functionality (e.g.
access to the SCTLR - System Control Register, cache and TLB maintenance, branch
predictor configuration, etc.). Other coprocessors (e.g., cp10 and cp11) provide
a control and configuration interface for floating-point and SIMD instructions. The
cp13 provides an interface to ARMs debugging infrastructure (e.g. configuring
breakpoints, halting the system, etc.). All other cp interfaces are reserved for future
use. The specific op-code combinations to communicate with each subsystem can
be obtained from the ARMv7 reference manual [6].

2.4 TrustZone

On x86 platforms, technologies like TPM (Trusted Platform Module) or Intel’s TXT
provide means to attest the authenticity of a platform and its OS. With TZ (Trust-
Zone [3, 12]) ARM introduced a similar technology for its processors. But unlike a
TPM, which is a fixed-function device, TZ represents a much more flexible approach.
ARM’s idea with TZ was to leverage the CPU as a freely programmable trusted
environment. Fig. 2.1 depicts an ARM processor architecture with the TZ extensions.
Orthogonal to the previously described privilege levels, with TZ the architecture is
split into two worlds. The new ”secure world” effectively duplicates the privilege
levels of the classical ”non-secure world”. Additionally, the monitor mode (mon) was
introduced (see Fig. 2.1). It is part of PL1 and was introduced to switch between
the non-secure and secure world.
Architecturally, TZ keeps the non-secure world fully backward compatible. The
separation of both worlds is mostly implemented in hardware to simplify the design
of system software for the secure world. The design of TZ aims at a large degree
of autonomy of both worlds, without a perceived need for close interaction. Only
the secure monitor call instruction transfers the flow of execution to the mon mode.
From there system software can resume the execution in the secure world. Also, the
TZ extensions do not allow to configure instruction traps from the non-secure into
4
mrc (move to register from coprocessor) / mcr (move to coprocessor from register)

5
mrrc / mcrr
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the secure world or any form of nested paging. TZ only provides a coarse-grained
memory partitioning6. Meaning, parts of the main memory can be marked as secure
or non-secure. But many SoC manufacturers use a proprietary TZ controller to
hide their IP and encapsulate hardware interfaces for other peripherals through the
TZ. Therefore, publicly accessible documentation in regards to TZ controllers is
relatively sparse, even though ARM provides a TZ IP core and its specification is
open [8].

2.5 Virtualization Extensions

ARM added full virtualization support as an optional feature in ARMv7. Systems
with these extensions have an additional execution mode, the HV mode (hyp). This
mode is located in the new privilege level PL2, placed below PL0 and PL1, but is
only available in the non-secure world (see Fig. 2.1). The design differs from the
orthogonal VMX-root/non-root model chosen by Intel and AMD for their hardware
VE. PL2 has full access to all system control registers that exist in PL1. But software

Guest Virtual Address (GVA)

Intermediate Physical Address (IPA)

Stage 1 Pagetable
(TTBR)

Stage 2 Pagetable
(VTTBR)

Host Physical Address (HPA)

Fig. 2.2: Translation levels on systems with the ARM VE. The stage 1 PT (referenced by the
TTBR register) is under VM control and translates from GVAs to IPAs, whereas the
stage 2 PT (referenced by the VTTBR register) is under HV control and translates
the IPAs to HPAs.

executing in PL2 can configure additional registers to intercept execution in PL0 and
PL1, e.g. by inserting additional hardware traps for certain operations.
ARM VE also mandate support for nested paging, a feature that was introduced
separately for the x86 architecture. So, with VE two more PTs (Page Tables) are

6The granularity of the memory partitioning highly depends on the used TZ controller.
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introduced in addition to the existing two used for the secure and the non-secure
world. Each PT is referenced by its according register, as shown in Tab. 2.1. Like
the secure and PL0/PL1 part of the non-secure world, the address space of PL2 is
managed by a dedicated PT, which is referenced by the HTTBR register. Enabling
virtualization changes the memory translation regime for PL0 and PL1 by adding a
second translation stage. The guest PT, now called stage 1 PT, still translates GVAs
(Guest Virtual Addresses) into IPAs (Intermediate Physical Addresses). Instead of
putting IPAs directly on the bus, the system subjects them to another translation. The
stage 2 PT, referenced by the register VTTBR, is a PT under HV control, translating
IPAs into HPAs (Host Physical Addresses). The staged translation scheme allows
the HV to assign memory to VMs at page granularity. Fig. 2.2 illustrate the two-stage
memory translation regime. Each stage 2 PT entry has its set of permission bits. If

Processor mode Stage 1 Stage 2

Secure PL0 & PL1 Secure
TTBR

Non-secure PL2 HTTBR

Non-secure PL0 & PL1 Non-secure
VTTBRVirtualization active TTBR

Non-secure PL0 & PL1 Non-secure
Virtualization inactive TTBR

Tab. 2.1: Active PT for different processor modes. The TTBR is a banked register. The
secure world and the non-secure world have their dedicated instance. As HTTBR
and VTTBR are only used in the non-secure world, they do not need to be banked.

the permissions of stage 1 and stage 2 PT entries contradict, the more restrictive
one of the two entries is chosen.
This opens up the opportunity to move security-critical functionality from the complex
guest OS into the HV. Also, some security properties are easier enforced on IPAs
than on GVAs. For example, while access rights to a page can be restricted (read-
only, not executable, either writable or executable but not both, etc.), this restriction is
tied to the virtual address that corresponds to the restricting PT entry. The only way
to defend against less restrictive memory aliases (references to the same physical
page through a different virtual address) is to prevent them from being created. In
contrast, stage 2 permissions apply to IPAs and, if more restrictive, overrule possibly
permissive guest-controlled stage 1 translations.
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3Related Work

In this chapter, we discuss related work concerning security issues in today’s com-
modity system software. In particular, we focus on twomechanisms. One is build into
several commodity systems. The other is part of the Linux kernel. Both, mechanisms
revealed severe and still open security issues when examined by researchers. We
also highlight related work that proposes security mechanisms, which are embedded
into a HV, or microkernel.

3.1 Security of Commodity Systems

Many modern commodity systems (HVs and OSs) leverage a mechanism where
memory pages with the same content are merged into a single physical page to save
system resources. The feature was introduced to address a problem which often
occurs in systems running VMs. A large number of memory pages hold identical
content, but the underlying virtualization solution has no way to let VMs share these
pages.
To address this issue several OSs and HVs introduced features calledContent-based
Page Sharing [112] (VMWare ESX), Difference Engine [55] (Xen), Kernel Samepage
Merging [5] (Linux) and Memory combining [100] (Windows 8 and Windows Server
2012). With these features enabled, the respective system software periodically
scans through the main memory to find pairs of pages holding identical content.
When it finds such a pair, they are merged into a single page and are then mapped
to both locations. The pages are also marked copy-on-write, so the system will
automatically separate them again should one process (or VM) modify the content.
However, in 2011 Suzaki et al. [103] identified flaws in the feature and consequently
were able to exploit them to disclose information of other VMs, effectively breaking
the isolation provided by the system software. Based on these findings, Xiao et
al. [116] were able to construct a covert channel with bandwidths of up to 1000 bits/s.
Further research by Gruss et al. [52] in 2015 and by Bosman et al. [21] in 2016
showed just how relevant this topic still is. Gruss et al. were able not only to
determine which applications are running but also identified user activities (e.g.
whether the victim currently has a particular website open), once a victim accessed
a malicious website and executed some JavaScript code. Bosman et al. showed
how to exploit the memory combining feature on Windows 8 systems to disclose
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memory locations. Based on the gathered information they mounted further attacks
(e.g. based on row hammer).
These examples illustrate that even a simple feature can prompt adversaries to exploit
it and break the system’s isolation. Moreover, the feature even though known to be
vulnerable for several years is still enabled in almost all of the commodity systems
mentioned above. The Linux kernel, for example, has the kernel configuration
option CONFIG_KSM which is set to true, for both x86 and ARM leaving virtualization
solutions that are based on the Linux kernel vulnerable to the above-described
attacks. Microsoft uses the memory combining feature in all newer versions of
Windows. Though, it can be enabled/disabled with the MMAgent. Also, the Xen
HV still provides this functionality through an optional command line option called
tmem_dup.

Another common attack scenario on commodity OSs involves placing malicious
code or data in user space and then redirecting a corrupted kernel pointer back to
the placed user code or data [65]. To prevent the attack, modern processors provide
a mechanism called PXN and PAN, respectively which introduce new page table
permission bits that allow the OS to mark specific pages as non-executable and
non-accessible while running in kernel mode.
But again, a particular design issue in the Linux kernel still allowed researchers to
overcome this page protection. In 2014 Kemerlis et al. [64] proved the vulnerability
with a novel attack vector. Instead of redirecting a pointer to code or data located in
user space they redirect a pointer to point to user code or data aliased in the Linux
kernel’s physmap. The Linux kernel cannot enable the PAN bit for these pages
because it frequently needs write-access to them to interact with the user space.
However, some regions are also mapped executable which is unnecessary in any
case.
Even though in the latest Linux kernel versions this issue has been addressed by
mapping each segment of the physmap with the correct permissions, there still
remains an open issue. The memory page which contains the exception vectors is
part of the Linux kernel binary. During boot up the Linux kernel creates a PT alias
for this page to point to its dedicated location and marks this PT entry as executable.
However, the original page is still part of the physmap. This effectively leads to two
aliases of the vectors page, one alias marked as executable and one alias as part of
the physmap which is writable. An adversary would first have to find a way to write
to kernel memory (to manipulate the writable alias), but once he was able to find a
vulnerability, the fact that this critical page is mapped with these permissions makes
the actual exploit much simpler. Once he was able to manipulate the vectors page
in the physmap, he can execute his code by triggering an arbitrary exception (e.g.
svc).
Yet again, an issue in the Linux kernel known for two years is not entirely resolved,
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giving an adversary an easy way to take over the system software without relying
on more complex attack vectors such as ROP or the like.

The above two examples just represent two rather academic threats commodity
OSs face. But, the number of more profound attack vectors is much larger. For all
major commodity OSs, the CVE (Common Vulnerabilities and Exposures) database
reveals an extensive pool of known vulnerabilities [32, 33, 34].

3.2 Virtualization-based Intrusion Detection and
Prevention

The general idea of migrating systems into VMs to provide additional security mech-
anisms is already more than a decade old. The groundbreaking work “When virtual
is better than real [operating system relocation to virtual machines]“ by Chen et
al. [25] from 2001 already suggested putting OSs and applications deployed on real
machines into VMs. They argue that by relocating an OS into a VM not only provides
a compatibility layer to run software for different OSs on a common platform but
also provides the option of hosting additional security components isolated from
the primary OS. Their initial proposition regarding security mechanisms comprised
of secure logging and intrusion prevention and detection. These early thoughts
encouraged a large number of researchers to investigate into new forms of security
mechanisms based on virtualization.

Soon after Chen’s work, Garfinkel et al. [49] proposed the new concept of VMI
(Virtual Machine Introspection) in 2003. The work of Garfinkel et al. represented the
first virtualization-based IDS (Intrusion Detection System). For this purpose, they
modified the VMware Workstation Type-II HV to allow their IDS to inspect the state
of the monitored VM. They also designed two components. The first one was an OS
interface library which interprets the hardware state exported by the HV and then
provides an OS-level view of the VM. The second component was a policy engine
consisting of a common framework for building policies, and policy modules that
implement specific intrusion detection policies.
In 2007 Jiang et al. [62] coined the term semantic view reconstruction. The main
issue with VMI is to bridge the semantic gap between the HV and the guest OS,
because the HV has only access to the raw memory of the guest, without any infor-
mation regarding guest kernel data structures, etc. Therefore Jiang et al. proposed
mechanisms to reconstruct the guest VM state from the raw memory. The concept
was then transferred to the Xen HV by Hay et al. [56]. They proposed VIX for the
Xen HV, which allows for digital forensic examination of volatile system data in VMs.
They provided a list of tools (e.g. vix-ps), which can be executed in the Dom0. The
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tools perform the same tasks as their Unix counterparts but use the raw memory of a
DomU in Xen to reconstruct the required information. In [44] Dolan et al. presented
an approach for automatically creating introspection tools for security applications,
effectively automating the VMI/Semantic View Reconstruction approach. By analyz-
ing dynamic traces of small programs contained in the target system that compute
the desired introspection information, they were able to produce new programs that
retrieve the same information from outside the target VM. In 2012 Yan et al. [118]
transferred the principle of semantic view reconstruction to the Android OS. The
architecture named DroidScope uses the emulator Qemu. They extended it with
various tracer capabilities to find Malware during runtime.

In 2007, Seshadri et al. [97] were one of the first to propose a HV-based IPS (Intrusion
Prevention System). Their thin HV enforces four properties to ensure that only user-
approved code is executed in kernel mode. Their architecture called SecVisor
only comprises of around ∼1500 SLOC and very closely resembles our envisioned
system architecture. A similar architecture was proposed by Riley et al. [90] in 2008.
An HV-based memory shadowing scheme dynamically copies authenticated kernel
instructions from the standard memory to the shadow memory. Any instruction then
executed in the kernel space is fetched from the shadow memory instead of from the
standard memory. This approach prevents unauthorized code from being executed,
thus protecting against kernel rootkits. Again an architecture resembling the one we
envision, though leveraging TZ instead of the VE, was proposed by Ge et al. [50]
in 2014. Similar to Seshadri et al., they also enforce four properties to rule out a
number of attacks on the Linux kernel. A similar approach was taken by Azab et
al. [14] who also utilize TZ to ensure guest kernel integrity. Their benchmark results
suggest good results, with overhead numbers in the range of ∼0.2% up to ∼7%.
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Part II

Attacks





4Hardware Virtualization-assisted
Rootkits

Similar to the x86 architecture a wide range of rootkits found their way to the ARM
architecture [109, 26, 106, 40]. However, on x86 the adversaries did not stop at
ring-0 (x86’s equivalent to ARM’s PL1) to hide their rootkits. Only a year after
Intel and AMD released their respective VE, Rutkowska [94] proposed her famous
concept of Bluepilling. The attack directly leverages the VE to move a running OS
into a VM on-the-fly. Afterwards, a thin HV-based rootkit is installed to control the
now victim OS. This way, the rootkit has full control over the OS and is hidden from
scanners.

On ARM, on the other hand, only a limited number of rootkits are leveraging such
architectural features to cloak their presence [38, 122]. The CacheKit rootkit [122]
uses the ARM cache lockdown feature to solely stay in the L2 cache. A rootkit
scanner that now scans the main memory is unable to detect the rootkit. However,
the L2 cache controller is highly SoC dependent. Only for the Cortex A8 processor
is this lockdown feature architecturally specified. For all newer ARM processors
(from Cortex A9 onwards), the SoC vendor can decide on which cache controller
to use. Furthermore, the CacheKit relies on changing the VBAR register. As the
address of this and similar structures (e.g. syscall table or vector table) are well
known (or even fixed), a rootkit scanner that checks them would recognize the
changes (see Chapter 6). Moreover, transferring the Bluepilling concept from x86
to the ARM architecture is not trivial. Unlike the x86 architecture which uses a
concept orthogonal to PLs for its VE, the ARM architecture has an additional PL to
run the HV software in (see Chapter 2), which is not accessible from PL1. So, the
adversary faces the challenge of getting yet another PL down into PL2. Therefore,
it is not surprising that such an attack as of yet has not been proposed for the ARM
architecture.

In this chapter, we want to address this open research question. We will evaluate
whether a truly stealthy HV-based rootkit like the one from Rutkowska [94] is feasible
on the ARM architecture. First, we examine the possibility to install a rootkit into the
HV mode. Then we assess its detectability.
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Fig. 4.1: The considered threat model.

4.1 Threat Model

The considered threat model is depicted in Fig. 4.1. An adversary first gains control
of a user-level process (Fig. 4.1 1 ) or tricks the user into installing a malicious
application. Then he manages to exploit a kernel vulnerability (Fig. 4.1 2 ). Vul-
nerabilities in the Linux kernel appear frequently enough [32] to make this a valid
assumption. Once having kernel access, the adversary can load his rootkit, but it is
then still visible to the OS and exposed to scanners executing directly in PL1 or as a
highly privileged process [68, 82, 19]. Therefore, the adversary wants to hide his
rootkit by moving it into the even higher privileged PL2 3 . From there, the rootkit
can put away the OS into a VM, eliminating the risks of being detected by a scanner
in PL1 (Fig. 4.1 4 ). During the infection phase, the rootkit is briefly exposed to a
scanner running in PL1; however, as we show later in this chapter (see Section 4.5),
the time frame is small.

4.2 Entering PL2

The key observation from Section 4.1 is that the adversary must be able to perform
the transition from PL1 into PL2 (Fig. 4.1 3 ). In the following section, we present
several ways to perform this transition and plant malicious code in PL2. It is suf-
ficient to overwrite the exception vector table address of PL2 so that it points to
our code. Afterwards, we can trigger an exception from PL1 that traps into PL2
which will execute the planted code. Each of the described attack vectors focuses
on overwriting the HVBAR register (see Section 2.5). This enables us to gain control
on the subsequent PL2 exception.
We want to note that there is no inherent flaw in the ARM architecture. Instead, in
many systems, the aspect of locking PL2 is just blithely neglected.
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Linux Hypervisor Stub Current versions of the Linux kernel check which mode they
were booted into. If they find themself in PL2, they install a stub exception vector
table before dropping down to PL1. The purpose of this stub is to allow a Type-II HV
implementation (e.g. KVM) to install its own vector table later. It provides support
for querying and writing the HVBAR register. KVM uses this facility to install its own
HV code. All subsequent calls after this installation procedure are then handled by
KVM’s vector table. Thus KVM has acquired control over PL2 and can use these to
control and switch between VMs.
The installation of the stub vector table depends only on the bootup PL. Linux does
not provide a way to turn it off. If no KVM module is available or the adversary can
mount his attack before KVM is loaded, this provides control over PL2.

KVM Hypercall Function The KVM HV on ARM uses a concept called “split-mode”
virtualization [35, 36], i.e., parts of the HV code run in PL1. Only code that explicitly
needs access to functionality that is only present in PL2 run in that mode. The
component running in PL1 is called “high-visor” and the part running in PL2 is called
“low-visor”. The “host” Linux is still running in PL1. When KVM is loaded, it installs its
own exception vector table, using the HV stub described in the previous section. This
prevents an adversary from planting his own code. However, in order to facilitate
the communication between low-visor and high-visor, the high-visor component
provides a functionality to execute code in the low-visor. The function kvm_call_hyp

takes a function pointer and will execute the code in PL2. There is no well defined
API between low- and high-visor, but upon calling this function in PL1, an aversary
can execute arbitrary code in PL2. Yet again, this mechanism can be used to replace
the exception vector table.

Migrate Linux Some systems run their rich OS (e.g. Android) completely in the
secure world. This facilitates the system deployment because the bootloader does
not have to configure the secure world and then switch to the non-secure world.
When the system does not need the secure world, this seems like a valid scenario.
In the secure world all registers are named exactly the same as their non-secure
counterparts (see Section 2.1). Therefore, an OS can either run in the non-secure or
the secure world without any changes. But the threat that arises in a scenario where
the OS runs in the secure world is the following: on ARMv7, the secure PL1 mode
has full control over the mode registers of PL2. Thus, an adversary who manages
to gain control over the secure PL1 can modify the PL2 registers. However, for the
adversary to gain full control over the OS this is not enough, because the OS still runs
in secure PL1 and PL2 only has control over the non-secure PL1. The adversary
has to migrate the OS to the non-secure world. Migrating the OS involves duplicating
system control register values from the secure to their non-secure counterpart. Also
interrupts have to be rerouted to arrive in the non-secure world. After duplicating

4.2 Entering PL2 25



the system state and installing malicious code into PL2, the adversary can resume
the execution now in the then non-secure PL1.

Vulnerable Secure-world OS Although, the secure world OSs have a reduced attack
surface, because of their small TCB and narrow API and might even be audited,
researchers still discovered a number of vulnerabilities [92, 99, 13]. So, even if PL2
is properly sealed and none of the above attack vectors is applicable, an adversary
can still try to exploit a vulnerability in the secure world OS. Of course the effort is
much higher when attacking such a target, but previous attempts have shown that
even code execution [92, 99] is possible. An adversary capable of exploiting the
secure world OS to gain control over the secure PL1 can configure PL2 and install
malicious code.

Texas Instruments Secure API Some TI SoCs (e.g. TI DRA74x) are deployed with
a secure world OS in place. The rich OS is able to request services from this secure
world OS. Among general functionality, such as cache maintenance, is also an API
to install a HV. An adversary in the kernel can abuse this API to install malicious code
into PL2. The API works through the dedicated secure monitor call instruction [101].
Upon calling this instruction with a specific ID the execution at a specified location
is resumed in PL2. The adversary is then able to install more code into PL2.

Uninitialized PL2 The u-boot [39] is a common bootloader used on a wide range
of embedded devices. When compiling the u-boot to run on an ARMv7 SoC it
enables the hypervisor call instruction by default1. When u-boot now boots the next
bootstage (e.g. next bootloader or OS) it drops down into PL2. This allows Linux
to install the HV stub as described before. However, this HV stub was introduced
in Linux kernel version 3.6-rc6. But many deployed Linux installations run older
kernel versions. So, PL2 stays uninitialized, but nevertheless the hypervisor call
instruction can be executed and can transfer the execution to PL2. To exploit this, an
adversary would need to somehow determine the value of the HVBAR register2. But
the register can only be read from secure PL1 or PL2. To overcome this limitation,
the adversary could guess the value of the register. Based on our observations, the
value in the register is unpredictable. Still, on a system with 2 GB of RAM, there is a
50% chance of the exception vector table address pointing to main memory if the
bit pattern is really uniformly random. If the adversary is able to occupy large parts
of the RAM, he can fill it up with a valid PL2 exception vector table and then execute
the hypervisor call instruction. Depending on the amount of memory he is able to
occupy, there is a good chance that he might hit a valid instruction.

1The configuration option in u-boot which is set for all ARMv7 CPUs is called CONFIG_ARMV7_VIRT.
2The reset value of the HVBAR register is undefined [6].
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4.3 Hypervisor-based Rootkit Requirements

In order to design a rootkit for PL2 we first identified three requirements such a
rootkit would have to fulfill in order to achieve its goals. In particular we identified
the following aspects that define the effectiveness of a HV-based rootkit:

• Resilience – The rootkit needs to be resilient and cannot easily be disabled or
even deleted by a defender.

• Stealthiness – The rootkit must be stealthy and cannot easily be detected by a
scanner residing in a lower privileged execution mode (e.g. PL1 or even PL0).

• Availability – The rootkit must be able to gain control to perform its malicious
behaviour and cannot easily be defeated by a DoS attack.

Each point is addressed in the following section.

4.3.1 Resilience

Even though the rootkit executes in PL2 the code pages of the rootkit are memory
pages managed by the victim OS. To prevent the victim OS from modifying or
removing these pages the rootkit must leverage the staged paging introduced with
the ARM VE (see Section 2.5). The stage 2 PT then contains the entire physical
address space, except for the pages occupied by the rootkit. However, as the victim
OS is unaware that these pages have been repurposed, it might still try to use them.
The rootkit must therefore handle these accesses appropriately. To that end, it has
various options with different advantages and drawbacks:

• The rootkit could back virtual pages with identical contents with only one
physical page, freeing the duplicates for itself. This is similar to the well-
established Kernel Samepage Merging [5]. Accesses to these pages do not
trap and thus perform at native speed; however, the unexpected side-effects
of the duplicity of the pages could lead to confusion or a crash of the victim OS.
However, direct detection of this behaviour by a scanner is time-consuming,
as all pages would have to be scanned in parallel for unexpected write effects.

• The rootkit could leave its own pages unmapped in the stage 2 PT. When the
victim OS then tries to access them, it would lead to a stage 2 data abort,
which transfers control to the rootkit. The rootkit could now return fake data to
the victim OS on a read operation, and ignore write operations to these pages.
Accesses to these pages would however be vastly reduced in performance, and
a write test would reveal the fake. However, timing effects can be hidden (see
Section 4.3.2) and this method can be implemented with minimum complexity.
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• Depending on the system, the platform might contain special-purpose RAM
besides the main DRAM chips. These are minuscule in size and usually
contain small stub routines, e.g., for power management. Depending on the
size of the rootkit, it could execute entirely from such an auxiliary RAM. Our
investigation on the Cubieboard showed that its SRAM is used by Android
to implement different power saving modes. However, the Android standby
code does not even occupy a single page of memory, which leaves more than
enough room in the ∼64KBytes of SRAM for a rootkit to hide.

• The Linux kernel supports in-kernel memory compression [60]. When this
is enabled unused pages are compressed in memory and kept there until
the data is needed again. The rootkit could implement a similar feature to
compress memory pages and free space for its own pages. Access to these
pages would again be reduced in performance, because the rootkit would
have to uncompress these pages on demand.

Depending on the purpose and the stealthiness requirements imposed on the rootkit,
it can employ one of the above memory handling strategies. Each provides a
different trade-off between stealthiness and implementation complexity.

4.3.2 Evading Detection

A sufficiently sophisticated rootkit scanner running in PL1 could detect a rootkit in
PL2 in a number of ways. In this section, we discuss the approaches we could
employ to obfuscate the rootkit and hide it from a scanners.

Performance Counters The ARM performance counters [6, 7] can be programmed
to count instructions executed in a specific processor mode (e.g. hyp mode). They
can also be used to count the number of exceptions taken. Both would reveal the
presence of code running in PL2. However, the ARM architecture allows the PL2 to
trap all coprocessor instructions3, among them the performance counters. To hide
its presence, the rootkit would have to trap and emulate the sensitive performance
monitor registers and provide unsuspicious response values. Then the victim OS
would still be able to use the performance monitor infrastructure, but the presence
of the rootkit would not be revealed.

External Peripherals Mobile devices have a lot of different connected peripherals
(e.g. GPS, network card, graphics card, etc.). If the rootkit would, e.g., want to
use the network card to exfiltrate sensitive data it would have to make sure that
the victim OS can still access the peripheral. If a peripheral is used by both the
3The HDCR.TPM bit enables trapping of all access to the performance monitoring subsystem into PL2.
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rootkit and the victim OS, it might leak state information that could be used to detect
the rootkit. In order to avoid this interference, the device either would have to be
emulated entirely or the state of the device would need to be reset every time the
execution is resumed in the victim OS.

DMA Peripherals Some peripherals have the ability to access memory directly
(DMA). A suspecting victim OS could reprogram hardware peripherals to directly
write to any physical address, effectively bypassing the stage 2 translation. Such
a mechanism threatens the rootkit. On hardware platforms that contain an ARM
System Memory Management Unit (SMMU [79]), the rootkit could prevent DMA
access to its own pages. It would do so by preventing the victim OS to manage the
SMMU, emulating SMMU accesses and then programming the SMMU to restrict
DMA access to those pages still available to the victim OS.
On hardware platforms without an SMMU the rootkit would have to emulate every
DMA-capable device – third-party DMA controllers as well as first-party DMA de-
vices, e.g. SD/MMC controllers – to prevent its memory from being disclosed or
overwritten.

System Emulation Many system control interfaces on ARM platforms are memory
mapped (see Section 2.2). For example, the interrupt controller holds the current
interrupt configuration state. The victim OS could look at the current configuration
and compare it to its expected interrupt state. The rootkit could have, e.g., enabled
the dedicated PL2 timer, which it might employ for its periodic execution. The victim
OS could discover that. In order to hide these activities, the rootkit would need to
emulate the interrupt controller interface as well.

Time Warping As described before, to hide its presence the rootkit could emulate
accesses to certain system control interfaces and peripherals. However, a scanner in
PL1 would then be able to measure the increased access latencies due to emulation.
To prevent this, the rootkit would have to present a virtualized timer to the victim OS.
Newer versions of the Linux kernel already use the ARM PL1 virtual timer interface.
This allows the rootkit to transparently warp the time for the victim OS.
In case the victim OS uses the PL1 mode physical timer, the rootkit would need to
trap all accesses to these timer registers and emulate the “time warp” by reporting
lower values. If auxiliary timers (like additional ARM SP804 [9] peripherals) exist on
the system, the rootkit would need to emulate the access to those as well. Since the
victim OS has no access to an independent clock source on the system, it would not
be able to reliably determine how much time has passed since its last measurement.
The only chance for a scanner to detect the time drift would be to rely on an external
time source (in Section 4.5 we discusses its feasibility).
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Cache/TLB Load ARM allows SoC designers to use several levels of caches. But
common for current SoCs are just two cache levels, a dedicated L1 cache for each
core and a shared L2 cache. To uncover the presence of a rootkit leveraging cache
artifacts, a scanner would need to perform several steps. First, the scanner would
need to fill up the entire cache with data. Then the scanner would need to wait for
a period of time, hoping that the rootkit executes. Afterwards the scanner would
need to measure the access times to the data it previously loaded into the cache. If
it would measure differences, due to entries being served from the main memory
instead of from the cache, the scanner would know that entries have been evicted
due to other code being executed. To ensure that no other core caused the eviction
of cache lines, the scanner would not only need to halt all other cores but also
disable all interrupts. Further, the scanner would need to ensure that no code is
executed in other modes (e.g. secure PL1), because this code could also cause
data to be evicted from the cache. Depending on the behaviour of the rootkit the
system would possibly have to stall for a long time. During normal system execution
the scanner would not be able to distinguish whether the cache was filled by an
ordinary application or the rootkit in PL2.
The same principle applies to the TLB. When the rootkit executes, it naturally fills the
TLB and evicts entries to make space for its own mappings. Moreover, as described
in Section 4.3.1 the rootkit might leverage a stage 2 PT to prevent the victim OS
from accessing the memory pages of the rootkit. These stage 2 PT translations are
cached in a dedicated part of the TLB, the IPA cache. The IPA cache is transparent
and fetches translation just like the normal TLB (for stage 1 PT translations), but only
for stage 2 PT translations. Thus, under the assumption that the rootkit leverages
a stage 2 PT, a scanner would be able to measure artifacts originating from IPA
cache hits or misses. However, certain aspects of the IPA cache design could still
prevent a scanner from detecting the rootkit. To detect a rootkit that leverages the
stage 2 PT, the guest would first need to fill the IPA cache entirely. However, only
the page granularity the rootkit chooses for its stage 2 mappings (4KBytes, 2MBytes
or 1GByte) decides whether the IPA cache can be overflown at all. Whether or not
a rootkit maps the memory using large pages (e.g. 1 GB) depends on the rootkit’s
strategy of avoiding detection (see Section 4.3.1).

4.3.3 Availability

Finally, as every other rootkit, a rootkit in PL2must periodically gain control to perform
its malicious operation. We came up with two modes of operation for the rootkits
which we termed proactive and reactive execution. Whether a rootkit operates in
reactive or proactive mode has again implications on stealthiness, runtime and
implementation complexity:
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Proactive execution In the proactive execution mode, the rootkit would require a
time source to periodically gain control. A periodic timer interrupt that is routed to
PL2 can be configured, so that the rootkit is able to perform its malicious operation.
The interrupt controller however does not provide a mechanism to selectively route
interrupts to different privilege levels. Therefore, in the proactive model, the rootkit
would need to intercept all interrupts. The rootkit then would need to filter out its PL2
timer events and deliver all other interrupts to the victim OS. This approach is more
complex to implement and increases interrupt latency, but it is perfectly suited for
data exfiltration attacks where keystrokes or other user actions are monitored during
phases of platform activity and later transmitted to an external command-and-control
entity when the platform is otherwise idle.

Reactive execution The reactive execution is less invasive, because the rootkit
would only react to certain stimuli from inside the victim OS. However, most traps
that can be configured to target PL2 can only originate in PL1 (and not PL0), e.g.
the hypervisor call instruction. Execution of such an instruction in PL0 is considered
undefined and would simply be reported to PL1. One of the few exceptions is trapping
the deprecated Jazelle4 instructions. These instructions can directly trap from PL0
to PL2. The ARMv7 specification mandates that any system implementing the VE
provides only the trivial (i.e. empty) Jazelle implementation. This implementation
only includes some Jazelle control registers and the bxj instruction. It also mandates
that bxj must behave exactly like a bx instruction. However, an ARMv7 processor
still provides a means to trap attempts to access Jazelle functionality to PL2. Thus, in
the reactive execution mode the rootkit would enable trapping of the bxj instruction
into PL2. Now PL0 application would be able to trigger a PL2 exception by executing
a bxj instruction.

The reactive approach is much easier to implement than the proactive model, and it
has almost zero overhead during regular system activity. However, it is more suited
for externally triggered attacks. For example, an unsuspicious application with
network connectivity could allow an adversary to invade the platform, quickly elevate
his privileges by activating the rootkit, steal sensitive information, and deprivilege
itself again all by signalling the rootkit with the bxj instruction.

4.4 Design Criteria & Implementation

Based on the previously defined requirements on resilience, detectability and avail-
ability we designed a HV-based rootkit. This proof-of-concept implementation

4Jazelle is a special processor instruction set for native execution of Java bytecode found in earlier
ARM cores.
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consists of the code that runs in PL2, a Linux kernel module, and two user space
applications. All components are described in the following section.

Of course a real attack would first contain the transition from PL0 to PL1 (see
Section 4.1), which would rely on a real vulnerability in the Linux kernel. For simplicity
we implemented a kernel module to load our rootkit code directly into PL1. The
kernel module provides a device node where we supply our rootkit binary, along
with a number to signal the kernel module which attack vector to use. The kernel
module then exploits the specified attack vector to deploy the rootkit into PL2.

Once the rootkit is deployed its execution is split into two parts. The initialization
phase starts immediately when it is loaded. Depending on the attack vector the
initialization phase starts in secure PL1 (Attack vector 3) or directly in PL2 (Attack
vectors 1 and 2). After the initialization phase the rootkit enters runtime phase,
where it provides its malicious service.

4.4.1 Initialization Phase

After the rootkit is loaded into secure PL1 or PL2, respectively, it has to perform a
number of operations:

1. Migrate to non-secure mode (Attack vector 3 only).

2. Setup a stage 2 PT.

3. Activate traps of emulated registers.

4. For proactive execution: Configure the interrupt controller and the PL2 mode
timer.

In the first (optional) step the rootkit checks whether the processor’s current security
state is secure. It then migrates the current setup to the non-secure mode. To do so,
all register are copied from the secure to their non-secure counterparts. Additionally,
the interrupt controller is configured in a way that all interrupts are routed to the
non-secure world. To allow the non-secure world to access coprocessor registers,
the NSACR register is configured to allow non-secure access to all coprocessors.
Once the migration is finished, the initialization code goes over to step 2, the setup
of a stage 2 PT.

For our rootkit we decided to go for the first approach discussed in Section 4.3.1.
Our rootkit creates a stage 2 PT which contains translations for the entire physical
address space except the memory pages that contain the rootkit itself. Any access
from the victim OS to a page occupied by the rootkit will result in a trap into PL2,
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which we then emulate. Once the stage 2 PT is setup and activated, step 3 is
performed.

As already described in Section 4.3.2, certain performance monitoring registers can
be configured to reveal the presence of the rootkit. Therefore we trap all accesses
to these registers and emulate their behavior. This way, we are able to filter out
critical events.

This last step is optional, depending on whether the rootkit runs in reactive or
proactive mode. However it also has an influence on the layout of the stage 2 PT. In
reactive mode the rootkit does not need access to the interrupt controller at all, so it
can just forward the interfaces to the victim OS. However, when running in proactive
mode the rootkit has to adjust the memory layout. The interrupt controller is memory
mapped. Thus the rootkit must make sure to not provide the actual interrupt controller
interface to the victim OS. Instead, the rootkit maps the virtual interrupt controller
interface to the address where usually the normal interrupt controller interface in the
victim OS’s address space resides. Then, the rootkit copies the complete state of
the interrupt controller to the virtual interface and then enables the virtual interface.
Finally, the rootkit enables the PL2 timer to gain periodic control.

4.4.2 Runtime Phase

As discussed in Section 4.3.3 we implemented both modes of operation reactive
and proactive. The implications on the overall system performance based on the
execution mode are provided in Section 4.5.

Independent from the fact whether the rootkit runs in proactive or reactive mode, a
number of operations need to be done. First, the cycles the CPU spends in PL2
must not be visible to the victim OS. Recent versions of the Linux kernel already use
the virtual timer infrastructure, which makes it easy to warp the time for the victim
OS. The rootkit warps the guest timer in the following manner: upon each entry
into PL2 mode the current time value is saved. Upon exiting PL2, the rootkit again
reads the current time value. The gap between these values is then stored in the
appropriate offset register. The ARM virtualized timer infrastructure automatically
subtracts the value of this offset register whenever the victim OS reads its “virtual”
time. Thus, the time spent in PL2 is no longer detectable from PL1.

In addition to the time warping, which is necessary in both modes of operation, in
proactive mode, the rootkit also has to handle interrupts. In order to use a dedicated
timer for PL2, all interrupts must be trapped into PL2. Upon each interrupt the rootkit
checks whether the interrupt originated from the PL2 mode timer or not. In the latter
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case, the interrupt is simply forwarded to the victim OS; otherwise the rootkit handles
the interrupt itself and performs its malicious operation. Afterwards, execution is
resumed in the victim OS.

4.5 Evaluation

The effectiveness of any rootkit heavily depends on its stealthiness. As described
in Section 4.3, some transitions from PL1 into PL2 are inevitable. Thus, in this
section we evaluate how long certain operations take and discuss the effectiveness
of scanners trying to detect the presence of the rootkit. All tests were conducted on
a Cubieboard 2 [30].

4.5.1 Startup

While the rootkit is in its initialization phase, it is exposed to rootkit scanners as
the memory pages containing the rootkit are present in the victim OS’s memory
view. However, our measurements show that the startup time for our rootkit is only
∼0.18ms. A scanner that searches the memory for suspicious content would only
be able to detect the presence of the rootkit within this time frame. As the scanner
can not make any assumptions about where in the memory the rootkit is located,
this time frame is sufficiently small to remain stealthy in the presence of such rootkit
scanners.

4.5.2 Benchmarks

In the runtime phase a rootkit scanner could try to uncover the rootkit through the
induced performance overhead (e.g., when the rootkit runs proactive all interrupts
cause the CPU to trap into PL2). Also the 2 stage address translations induces
overhead that a scanner could try to measure. To estimate the effectiveness of
such a scanner we performed a number of standard system benchmarks. With
two benchmarking suites (lmbench [78] and hackbench [123]) we measured the
rootkit’s impact on these low level operations. Table 4.1 shows the results. Column 1
describes the performed benchmark, the other columns show the results in the
respective setups. We performed each benchmark 50 times and calculated the
mean values and their respective standard deviation. The mean values show a
slight, but noticeable performance overhead in the rootkit setups. However, the high
standard deviation values render the mean value difference almost undetectable.
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Benchmark Linux rootkit (proactive) rootkit (reactive)
mean std. dev. mean std. dev. mean std. dev.

58.1050 4.8200 59.2100 5.6957 58.8400 4.6556
64.3100 4.3080 65.8950 5.3935 65.8300 4.3352
64.1968 4.7098 65.3250 5.7011 65.6696 4.4189
66.0458 4.4091 68.2240 5.1715 67.6644 4.3407
68.1260 4.8018 69.6390 5.8112 69.2080 5.1669
0.2785 0.0018 0.2787 0.0007 0.2785 0.0014
0.6623 0.0015 0.6628 0.0015 0.6625 0.0015
0.4779 0.0009 0.4788 0.0010 0.4781 0.0009
12.5509 0.6583 12.6093 0.7291 12.8524 0.8827
15.7479 0.0061 15.7526 0.0074 15.7502 0.0076
3.1301 0.0123 3.1352 0.0129 3.1301 0.0153

Tab. 4.1: lmbench and hackbench benchmarking results (lmbench benchmark results are
in microseconds and hackbench results are in seconds).

Fig. 4.2: Detectability of our rootkit in reactive execution based on time drift.

4.5.3 Clock Drift

Another approach is to measure the clock drift that is induced by the rootkit. As
described in Section 4.3.2 the rootkit can hide the clock cycles that the CPU spends
in PL2. Still, in combination with an external time source a scanner could try to detect
the time drift between the local clock and the external clock. Since the scanner can
not know when the rootkit actually executes, it would rely on blindly enforcing traps
into PL2 to reveal the clock drift. This could be done by e.g. multiple executions of
a instruction in the reactive setup or by utilizing a peripheral to trigger a large
number of interrupts in the proactive setup. Fig. 4.2 depicts the drift of the local
clock compared to an external clock, e.g. NTP. Assuming an NTP accuracy of ∼5ms
over an internet connection the clock drift introduced by the rootkit becomes visible
after 60.000 traps into PL2, which could be either an execution of or an interrupt
handled by the rootkit.
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In both cases, a huge number of events is necessary in order to build a scanner
that could reliably discern between a native and a rootkit-infected system. Although
not implemented by us, we argue that the rootkit could be retrofitted with an “alarm
mechanism” that detects unusually large numbers of PL2 entries and activates
appropriate countermeasures to evade detection (e.g. switching from proactive to
reactive execution).
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5Breaking Isolation through Covert
Channels

Covert channels are a well-known threat not only in high-security systems but also
in cloud scenarios [85, 117, 116] or on mobile devices [74, 24]. With a covert
channel, adversaries can covertly exchange data between two entities on a platform
or exfiltrate data to an external agent. The issue came first to public attention
when Lampson described the problem in 1973 [71]. In 1987, Millen [80] came up
with a theoretical approach to estimate the capacity of covert channels and the
US Department of Defense acknowledged the threat in 1993 with a classification
scheme for covert channels [1].

On traditional system architectures (e.g. Linux), something as simple as a file or a
process ID [74] can be used to form a covert channel between two entities in the
system. The topic witnessed a renaissance when the research direction shifted
towards virtualization because the issue is especially delicate in the cloud scenario
where users run software in potentially untrusted environments. There, shared
hardware resources (e.g. cache, RAM, TLB, etc.) naturally leak information to other
entities with access to the same medium [53, 91] and provide excellent means to
form a covert channel.
But also deficiencies in the underlying virtualization solution can lead to covert
channels [103, 116]. For example, the memory deduplication feature in modern
virtualization solutions is exploitable [103], such that it allows to create very high
bandwidth covert channels. Thus, alternative system architectures such as microker-
nels are considered for security critical environments. Their small trusted computing
base and isolation properties promise more security than traditional architectures
and fewer options to form covert channels.

In order to validate that very promise, in this chapters we investigate Fiasco.OC
a microkernel of the L4-family. Contrary to the promised isolation properties we
uncover weaknesses in Fiasco.OC’s kernel memory subsystem. Our findings allow
to undermine all efforts to isolate components in security critical systems built on
top of Fiasco.OC. Subsequently, we develop real-world covert channels based on
those weaknesses found in Fiasco.OC’s kernel memory management. Following
Millen [80] we measure the capacity of the respective channels to gain a better
understanding of their applicability and severity.
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5.1 Attack Model

First, we formulate the assumptions regarding the underlying system architecture
and the assumed capabilities of the adversary. We envision a system as depicted in
Fig. 5.1 with (at least) two compartments where the communication between them
is understood to strictly obey a security policy. The policy may state, e.g., that no
communication between any two compartments shall be possible. The corporate
policy may require that assets are only sent through a secure connection and can
only be processed in a compartment without direct Internet connectivity. Under
these provisions, the confidentiality of assets should be preserved as long as the
isolation between compartments is upheld.

As for the adversary, we consider highly determined adversaries who managed to
place malware into all compartments. To achieve this, the adversaries may either
directly attack Internet-facing compartments or draw on insider support to sneak
in the malware. The adversary has the goal to leak the assets from the isolated
compartment to a compartment with access to the Internet. From there, he can
send the assets to a place of his choice.

Isolating microkernel
(a) Effective isolation.

Isolating microkernel
(b) Ineffective isolation.

Fig. 5.1: An effectively isolating microkernel can prevent data from being passed between
compartments, even if both of them have been compromised by an adversary
(Fig. 5.1a). If the microkernel is ineffective in enforcing this isolation, data may be
first passed between compartments and then leaked out to a third party in violation
of a security policy prohibiting this (Fig. 5.1b).
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Regarding the system, we assume that the microkernel has no low-level implemen-
tation bugs and the system configuration is sound. The system configuration also
does not permit direct communication channels between separate compartments.

5.2 Fiasco.OC Memory Management

Fiasco.OC [46] is a microkernel developed at the TU Dresden (Germany). It is
distributed under the GNU General Public License (GPL) v2 and runs on x86, ARM,
and MIPS-based platforms. It comprises of 20kSLOC to 35kSLOC, depending
on the system configuration. A security model based on capabilities support the
construction of secure systems. As many other microkernels, Fiasco.OC is accom-
panied by a user-level framework called L4Re [70], which provides both libraries and
system components aiding in the construction of highly compartmentalized systems.
As many other L4-like kernels, Fiasco.OC separates its user and kernel memory
management. The entire user-level memory management is handled outside the
kernel. Special root components called Sigma0 and Moe provide initial resources
and exception handling to bootstrap the system. User-level servers can then imple-
ment memory management policies depending on the needs of the applications at
hand. This way the complexity of the kernel is reduced. To that end, Fiasco.OC
provides three mechanisms:

1. Page faults are exported to user-level, usually by having the kernel synthesize
a message on behalf of the faulting thread.

2. A mechanism whereby the right to access a page can be delegated (L4
terminology: map) between tasks.

3. A mechanism to revert that sharing (unmap)1.

The situation is, however different for kernel memory, for which Fiasco.OC does not
provide a direct management mechanism. When user processes want to create
a new kernel object (e.g. IPC gate, thread, etc.) the kernel turns to its internal
allocators to request memory to create the according object. To prevent users
from monopolizing this resource (e.g. by creating a large number of these objects),
Fiasco.OC implements a quota mechanism to divide the kernel memory among
tasks in the system. Every task is associated with a quota object, which represents
the amount of kernel memory that is available for all activities in that task. Whenever
a user activity, e.g. a system call prompts the kernel to create a kernel object,
the kernel first checks whether the current quota covers the requested amount of
memory. If this is not the case, the system call fails. For each initial task the amount
1Since pages can be recursively mapped, the kernel needs to track this operation, otherwise the
unmap might not completely revoke all derived mappings. The kernel data structure used for this
purpose is called mapdb, an abbreviation for mapping database.
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of available kernel memory is specified in a startup script. The system integrator has
to specify quota values whose sum is not larger than the amount of kernel memory
available to the system at hand. Every task is free to split its share of kernel memory
and supply further tasks with it. Thus, the process can be repeated recursively.

5.2.1 Kernel Allocators

At the lowest level, kernel memory is managed by a buddy allocator. Depending on
the amount of main memory in the system, 8% to 16% of the system’s memory is
reserved for kernel use and fed into the kernel’s buddy allocator. Because the size of
kernel objects is not a power of two and also differs among objects, allocating them
directly from the buddy allocator would cause fragmentation over time. Therefore
many objects are not directly allocated from the buddy allocator. Instead, they are
managed through slab allocators, which in turn are supplied with memory from the
buddy allocator. Every slab allocator, eighteen in total, accommodates only objects
of the same type.

5.2.2 Hierarchical Address Spaces

As described before, Fiasco.OC tracks physical pages that are used as user memory
in a structure called mapdb. To store this information efficiently, Fiasco.OC uses a
compact representation of a tree in a depth-first pre-order encoding. Every mapping
can be represented by two machine words holding a pointer to its task, the virtual
address of the mapping and the depth in the mapping tree2. Fig. 5.2 illustrates the
principle. While this representation saves space compared to other implementations
using pointer-linked data structures, it brings about an object that potentially grows
and shrinks considerably depending on the number of mappings of that page. If
the number of mappings exceeds the size identifier of the mapping tree, the kernel
allocates a bigger tree, into which it moves the existing mappings along with the
new one. Conversely, when a thread revokes mappings, the kernel invalidates tree
entries. Shrinking the tree, which involves moving it into a smaller data structure,
takes place when the number of active entries is less than a quarter of the tree’s
capacity.

2Since a page address is always aligned to the page size, the lower bits of the mapping address can
be used for the depth in the mapping tree.
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Fig. 5.2: Mapping tree layout.

id depth virt. address
A 1 0x5000

C 2 0x1000

D 3 0x1000

E 3 0x2000

F 4 0x8000

B 2 0x7000

5.3 Unintended Channels

In this section, we present so far undocumented issues with Fiasco.OC’s kernel
memory management, which can be exploited to open up unintended communication
channels. They were not anticipated by the designers and hence cannot be controlled
by existing mechanisms. As a result, no security policy can be enforced on them.

5.3.1 Allocator Information Leak

As described in Section 5.2, appropriately set quotas should ensure that each task
only consumes the share of kernel memory allocated for it regardless of the activity
of other tasks. However, due to fragmentation, it may happen that the allocators
cannot find a contiguous memory range sufficient to accommodate the requested
object. We will show that the combination of Fiasco.OC’s design and implementation
gives an adversary the opportunity to fragment the kernel memory on purpose. This
allows him to tie down kernel memory far beyond what his quota should allow,
effectively rendering the quota mechanism useless.

While the quota accounts for objects created on behalf of an agent, it does not
capture the unused space in the slabs. It can be assumed that object creation
is random enough that over time all slabs are evenly filled and that configuring a
system with only half of its memory made available by quotas properly addresses
the issue of fragmentation. Yet an adversary is capable of causing a situation where
this empty space accounts for more than 50% by deliberately choosing the order
in which objects are created and destroyed. A graphical illustration of the process
is provided in Fig. 5.3. To illustrate the point, both the adversary’s quota and the
amount of used kernel quota are assumed to be zero. To accommodate the first
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object, the kernel allocates a new slab which is then used for subsequent allocations
of that type (Fig. 5.3 1 ). Then the adversary allocates more objects of the same
type so that the kernel has to allocate a second slab (Fig. 5.3 2 ). It is crucial to
understand which objects are getting released when the adversary destroys a kernel
object. The Fig. 5.3 3 shows two possibilities. If the two remaining objects reside
in the same slab, the second slab is not needed anymore, and its memory can be
reclaimed by the system allocator. In case the objects are allocated in different slabs,
both slabs have to be kept. If repeated, the adversary can cause the system to
enter a state where it is filled with many slabs with only one object. While allocation
requests for objects whose slab caches have nearly-empty slabs can be served
easily, no new slabs for other objects can be allocated.

If objects could be shifted between slabs, system resources could easily be reclaimed
(defragmentation). The memory of the newly freed slabs could be returned to the
underlying system allocator, solving the problem. But, Fiasco.OC does not possess
such a defragmentation ability.

...

t

Kernel memory1 2 3.1

1 2...

3.2

User quota

3.23.1

...

Kernel objectSlab

m
em

or
y

Fig. 5.3: Object placement in slabs. Depending on the order in which objects are created
and destroyed, the number of slabs used to accommodate them can vary.

The amount of memory that can be tied down depends on four factors. The number
of vulnerable slab caches. The number of objects held in their individual slabs
The order in which slabs are attacked, and, for objects with variable size such as
mapping trees, on the minimal size required for the object to stay in a certain slab.
In our experiments, we were able to tie down six times the amount of the assigned
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quota. In a system with two tasks where the available kernel memory is equally
divided, a factor of two is enough to starve the system completely.

5.3.2 Mapping Tree Information Leak

In addition to the allocation channels described in the previous section, there is
another implementation artifact that can be misused as a communication channel.
As outlined in Section 5.2.2, Fiasco.OC tracks user-level pages in tree-like data
structures, so-called mapping trees. Available in various sizes, the mapping tree
data structure grows and shrinks as the page it tracks is mapped into and unmapped
from address spaces. During an unmap, the kernel uses it to find the part of the
derivation tree that is below the unmapped page, if any and unmaps it as well.
Although the mapping tree structure is dynamically resizable, Fiasco.OC limits the
number of mappings that can exist of a physical page to 2047.
At first glance, this might not seem to be an issue because isolated processes are not
meant to share pages. However, L4Re, the user-level OS framework running on top
of Fiasco.OC, provides different services, among them a runtime loader. This loader,
which is not unlike the loader for binaries linked against dynamic libraries on Linux
(ld.so), maps some pages into the address space of every process. Experimentally,
we found that 18 pages are shared this way among all processes that are started
through the regular L4Re startup procedure.

5.4 Channel Construction

In this section, we explain how to construct a high bandwidth covert channel. We
also devise more sophisticated channels to work around problems impeding stability
and transmission rates, which allow us to establish a reliable and fast covert channel
even in difficult conditions. Three of the proposed channels rely on the fact that a
malicious process is able to use up more kernel memory than its quota allows. The
remaining channel exploits the limit in the mapping tree structure.

5.4.1 Page Table Channel

The Page Table Channel (PTC) requires an initial preparation as described in
Section 5.3.1. Following this, the channel can be modulated in two ways: for
sending a 1, the sender allocates PT from the kernel allocator. For transferring a 0,
it waits for one interval. To facilitate PT allocations, the sender creates a helper task
and maps pages into its address space. The sender places these pages in such
a way that each page requires the allocation of a new PT. The receiver can detect
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the amount of free memory in the kernel allocator by performing the same steps as
the sender. The number of PT available to the receiver is inversely proportional to
the number of PT held by the sender. This knowledge can be used to distinguish
between the transmission of a 1 and a 0. At the end of every interval, the sender
has to release the PTs it holds. Unmapping the pages from the helper task is not
sufficient because Fiasco.OC does not release PTs during the lifetime of a task.
Instead, the helper task has to be destroyed and recreated. The implications of this
will be discussed in detail in our evaluation in Section 5.7.

5.4.2 Slab Channel

The Slab Channel (SC) uses contention for object slots in slabs to transfer data. For
this purpose, we set up the channel as described in Section 5.3.1 and subsequently
perform channel specific preparations. One slab is selected to hold mapping trees
for the transmission. This slab is filled with mapping trees until only one empty slot
remains, which sender and receiver then use for the actual communication. Fig. 5.4
shows the principle. To transfer a 1, the sender needs to fill this last slot. Assuming
a slab of size 4KB for the transmission, it causes a mapping tree residing in a slab
of 2KB to grow, until it exceeds its maximum size. The kernel will then move it
into a bigger slab – the one intended for transmission. The receiver can determine
which bit was sent by performing the same operation as the sender. If this fails, the
receiver interprets this as a 1 and as 0 otherwise.

Sender Receiver

Mapping tree
Slab

X

02

Sender Receiver

Sender Receiver

Initial state

receive 12
receive

Fig. 5.4: Transmission in the slab channel. The sender fills or leaves empty the last spot in
a slab; the receiver reads the value by trying to move an object into that spot and
checking the return code indicating the success or failure of the operation.
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5.4.3 Mapping Tree Channel

As described in Section 5.3.2, L4Re maps 18 read-only pages into each application’s
address space. Like every other page, a mapping tree (Section 5.2.2) tracks these
pages. The Mapping Tree Channel (MTC) exploits this fact.

When the mapping tree reaches its maximum depth of 2048, any attempt to create
new mappings of the page will fail. In the most basic form, the communication
partners agree on one shared page, which they then use as a conduit. In the
preparatory phase, one of the conspirators fills the mapping tree of the chosen page
such that only room for a single entry remains. Creating these mappings is possible
because the shared pages are regular and are not subject to mapping restrictions3.
To transfer a 1, the sender creates a mapping of the chosen shared page, maxing
out its mapping count. The receiver, concurrently trying to create a mapping, fails
as a result. Conversely, by not mapping the page, the sender transfers a 0, so that
the receiver’s operation succeeds. Compared to the other two channels, the MPC
incurs low overhead. Unlike the SC, an MPC transmission requires at most three
operations. In contrast to the PTC, no costly task destruction is necessary.

5.5 Channel Optimizations

Since, Fiasco.OC’s 1000Hz timer resolution limits the step rate of clock-synchronized
channels, the only path to higher bandwidths is to increase the number of bits
transmitted per step. To that end, we devised two methods that allow for increased
channel bandwidth at the cost of higher CPU utilization.

One of the conspirators can trivially boost the bandwidth by increasing the number of
sub-channels. The underlying assumption here is that several of them are available.
Fiasco.OC maintains multiple slabs, each of which can constitute a channel. An
adversary can now choose between using a slab for tying down kernel memory or
use it as a communication channel. Likewise, the adversary can exploit multiple of
the existing shared pages.

A different approach is to transmit multiple bits per channel and step. For that,
a channel needs to be capable of holding 2n states, n being the number of bits4.
Channel levels can be realized by occupancy levels, assuming the adversary can
allocate the underlying channel resources in increments. The number of operations
3There are regions in Fiasco.OC tasks, such as the UTCB that, while being accessible, cannot be
mapped.

4 The levels can be spread over multiple channels, so as to be more flexible regarding the levels
required per channel.
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to bring up and sense these levels grows exponentially with the number of bits. For
that reason, multi-channel schemes, where the number of operations increases
linearly with the number of bits, might be preferable. However, the number of
available sub-channels is limited.

5.6 Transmission Modes

Under clock synchronization, two agents make use of a shared clock to synchronize
their execution. The sender and receiver share a notion of points in time where they
have to be done with certain actions. It is the responsibility of either party to make
sure that its activity (writing to the channel or reading from it) is completed before
the next point is reached as there are no additional synchronization mechanisms
whereby the other party could detect that its peer’s activity was not finished.
Fiasco.OC provides a sleep mechanism with a 1ms wake-up granularity. Moreover,
Fiasco.OC exposes the current system time through the KIP (Kernel Interface Page)
a page that can be mapped into every task. This global clock is very helpful for
scenarios with long synchronization periods that consist of multiple 1ms ticks.
On systems under heavy load, there is no guarantee that conspiring threads are
executed frequently enough as they compete with other threads for execution time.
Whenever either party misses an interval, bits are lost, and the transmission becomes
desynchronized. To alleviate this problem, we can either incorporate error correction
into the channel – at the cost of the bit-rate – or we can design our channel to be
independent of a common clock source.

Under the self-synchronizing regime, sender and receiver do not observe a shared
clock. Instead, they dedicate some of the available data channels to synchronization,
effectively turning them into spinlocks. Using this mechanism, we can ensure that
sender and receiver can indicate to each other whether the other party is ready to
write to or from the channel.
One drawback of self-synchronization is that at least two data channels have to
be set aside for lock operations, reducing the number of the channels for data
transmission. Especially in setups where data channels are rare, this can be a
serious issue. We take a look at the achievable bit rates in Section 5.7.2.

5.7 Evaluation

To evaluate the feasibility of our approach and to measure the achievable band-
width of the various channel configurations, we ran a number of experiments on a
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Pandaboard (for a detailed specification of the board refer to Chapter 2). For all
experiments we used Fiasco.OC/L4Re [46, 70] version r54.

In our measurement setups, we use two agents (sender and receiver) implemented
as native L4Re applications. Our setup does not permit any direct communication
channel between them. Unless stated otherwise, the sender transmits packets of
four bytes. The first byte holds a continuously-incrementing counter value followed
by three bytes with a CRC checksum. The receiver feeds the received bits into a
queue and checks whether the latest 32 bits contain a valid CRC checksum. All
transmission rates reported in this section reflect the number of bits transmitted per
time interval, including the checksum bits. The “channel states” row in our tables
indicate the number of states n a channel needs to support to transmit log2 n bits
per interval.

5.7.1 Clock-synchronized Transmission

In this section, we evaluate all clock-synchronized channels (Section 5.5). We
first assess the basic capacities we observed and then investigate the effects of
individual improvements, such as transmission with multiple channels or multiple
bits at a time. Finally, we take a look at the CPU utilization of our transmissions and
what conclusions we can draw from these numbers.

Our first setup implements the PTC (Section 5.4.1) as our most basic transmission
method. During our experiments, we noticed that enabling SMP support results in
lower bit rates when compared to UP setups. This counter-intuitive observation can
be explained by taking a closer look at the time required to perform the individual
operations for sending and receiving data through the PTC. On SMP enabled setups,
the destruction of the helper task takes significantly longer. The reason lies within the
internals of Fiasco.OC. Destroying a task in an SMP enabled configuration employs
an RCU [77] cycle (a synchronization mechanism which incurs a small overhead
while also being simple). The downside of this approach is an additional latency
for individual operations because it can only terminate after a grace period has
elapsed. In Fiasco.OC, this grace period is 3ms long. In an SMP setup, this affects
clock-synchronized transmission methods that involve frequent object destructions,
such as destroying a task. The PTC, in particular, suffers from this circumstance
and achieves on an UP system more than twice the bitrate compared to an SMP
system. Tab. 5.1 therefore only contains UP results. With the PTC we are able to
transmit data at a constant rate of 500bits/s.

The SC (Section 5.4.2) operates in principle similar to the PTC but does not require
a potentially costly object destruction. The transmission rate is solely limited by the
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Channel Channel states Period Throughput
(#) (clock ticks) (bits/s)

PTC 2 2 500
SC 2 2 500

MTC (2 channels) 2 2 1000
MTC (8 channels) 2 4 2000

Tab. 5.1: Capacity results for the three basic channels (PTC, SC and MTC with different
numbers of channels).

number of mappings that can be created and deleted within a transmission interval.
Thus, the SC channel scales better in SMP setups, while still achieving the same
rate of 500bits/s as the PTC in UP setups.

Since the amount of data that can be transmitted per time interval determines
the maximum bit rate, we introduced multi-bit transmission (Section 5.5). The
MTC (Section 5.4.3) leverages this multi-bit transmission by opening up multiple
sub-channels. This optimization along with the MTC’s distinguished reliance on a
different Fiasco.OC mechanism for transmission makes it the fastest of our clocked
channels. Tab. 5.1 shows that we can achieve a maximum bit rate of 2000bits/s
when employing eight sub-channels.

5.7.2 Self-synchronized Transmission

In this section, we examine the self-synchronizing transmission method (Section 5.6).
All tests use the MTC for both synchronization and data transfer. The results
(Tab. 5.2) show that the channel capacity, of course, grows with the number of
channels. But the channel capacity does not scale linearly, because transmitting
a single bit requires either two or three operations, depending on the value to be
transmitted. Moreover, the synchronization overhead for two transmission steps is
five operations.
We also observed that the channel capacities scale much poorer with the number of
CPU cores used. We attribute this to resource conflicts in the memory subsystem
(cache, memory bandwidth) as each operation has to scan through a 16KBytes
mapping tree. Still with the self-synchronized transmission, leveraging both CPU
cores, we can achieve a bandwidth of ∼12kbits/s.

5.7.3 Impact of System Load

We performed all previous experiments on a system without any additional load.
As real-world systems are usually not idling all the time, the question arises as to
how load on the system impacts the throughput of the covert channels. To answer
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CPU cores Nr. of channels Throughput Gain
(#) (#) (bits/s) (%)

1

1 3511 -
2 5408 54
4 7449 38
8 9207 24
16 10457 14

2
1 5605 -
2 8782 51
4 12166 43

Tab. 5.2: Throughput depending on the number of transmission channels.

System load Throughput
(%) (bits/s)
95 455
75 2292
50 4589
25 6892
5 8742
0 9207

Tab. 5.3: Throughput under load. Self-synchronized transmission with the MTC (8 channels).
Sender, receiver, and the additional load all run on the same CPU core.

this question, we designed an experiment where we run a process that generates
additional load and measure the channel throughput under the given circumstances.
For all experiments with system load, we used the self-synchronized transmission
with the MTC (8 channels). We used Fiasco.OC with the fixed-priority scheduler,
so that load could be easily generated by a highly-prioritized thread that alternates
between busy looping and sleeping. We also pinned sender, receiver, and the
additional load all to the same CPU. We verified the correctness of this behavior by
reading this thread’s execution time, an information provided by Fiasco.OC.
As the results in Tab. 5.3 show, the achievable throughput is directly proportional to
the CPU time available to the conspiring agents. In keeping with the expectation for
self-synchronized transfers, all data arrived unscrambled.
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6Uncovering Mobile Rootkits in
Raw Memory

The majority of security solutions for ARM-based devices are tailored to the mobile
market and focus on the detection of rather unsophisticated application-based
malware. But the risk of such a device being used in a targeted attack can not be
dismissed. Besides, the fact that a large fraction of ARM-based devices run a Linux
kernel (the same kernel that is running on many desktop computers) renders them
just as vulnerable to rootkits [18]. Even worse adversaries can choose from an
already existing arsenal of attack vectors [32].

To counter the threat of a rootkit infection there exist a lot of application-based rootkit
detectors [82, 19, 120, 105, 68]. Even though some of the detectors cloak their
presence in the system, they still run with the same privileges as the rootkit itself,
and therefore might be disabled by a sophisticated one. So, under the assumption
that an adversary succeeds in implanting a kernel rootkit into a system, the chances
of reliably detecting and removing it in a conventional – that is, non-virtualized –
system are low. The underlying fundamental reason is that within a monolithic
kernel, modularization is by convention only. There are no hardware mechanisms
that would hinder a determined adversary with sufficient knowledge to arbitrarily
modify kernel code and data structures with the goal of thwarting any detection and
removal attempt.

To overcome the problem to reliably detect a rootkit without the rootkit having the
chance to interfere with the detector, earlier attempts on the x86 architecture utilized
virtualization technology. VMI is a concept first proposed by Garfinkel et al. [49] in
2003, where a dedicated detector VM runs side-by-side with a host VM that might
be infected with a rootkit. The HV exports the system state of the host VM to the
detector VM, who can then check this system state for discrepancies. A major
obstacle however remained with this approach. Unlike a detector that directly runs
inside the kernel, this external detector VM has to reconstruct the system state of
the host VM from raw memory. This means the detector VM has to overcome the
semantic gap. A solution was proposed in the year 2007 by Jiang et al. [62], who
introduced the term semantic view reconstruction. The authors showed several
techniques how to reconstruct kernel data structures from raw memory. Over the
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years the concept evolved and even tools like ps or lsmod were recreated to provide
the according information only based on a raw memory snapshot [56].

Due to concerns over the complexity of the resulting system architecture the concept
was not yet considered on mobile devices. But in this chapter we show that a
lightweight rootkit detector can be constructed with an off-the-shelf ARM-based
device utilizing the ARM VE. The advantage of the resulting architecture is twofold.
First, by running the rootkit detector in a dedicated VM, we make sure that an
adversary cannot outright disable it. Second, the virtualization layer provides a
snapshotting mechanism whereby the detector can capture the complete, untainted
state of the host VM, comprising the architectural registers and physical memory,
at a given time and run extensive analyses on it without having to halt the VM.
Additionally, the snapshotting mechanism is generic in that a detector can strike the
balance between thoroughness and runtime overhead that is best suited for its use
case.

6.1 Mobile Rootkits

The term rootkit as defined by Hoglund [58] is a kit consisting of small programs
that allow an adversary to gain (and maintain) root, the most powerful user in a
system. But over the years rootkits evolved. Nowadays, instead of maintaining root,
most rootkits directly reside in the OS kernel. The infection phase then involves
loading the rootkit into the said. Traditionally, adversaries used LKMs (Loadable
Kernel Module) [81] on Linux to infect the system. But loading a LKM requires the
adversary to have root privileges in the system. Therefore, adversaries try to exploit
vulnerabilities in applications or services on the system that run with root privileges
to abuse those privileges to install the rootkit. The drawback of this approach is that
it leaves footprints in the system (i.e., the kernel module containing the rootkit), thus
exposing itself to detectors. As a consequence, rootkits started to adopt techniques
as proposed in [95, 107, 119] to modify data structures in kernel memory directly
via interfaces like /dev/mem and /dev/kmem or to simply hook existing LKMs. Once
the OS is successfully infected, the rootkit serves as a stepping stone for future
attacks.

Tab. 6.1 gives an overview of rootkits for the Linux kernel. Since rootkits often
manipulate very low-level data structures of the kernel, most of them are hardware
platform dependent. We list only rootkits that work on the ARM architecture.

We selected a number of exemplary rootkits from different categories. Cloaker [38]
and CacheKit [122] are two academic rootkit that leverage novel mechanisms to
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Cloaker (PoC) X
CacheKit X
Phrack issue 58 X
Phrack issue 61 X X
Phrack issue 68 X X
Suterusu X X
XOR.DDoS X X X X

Tab. 6.1: List of existing rootkits that target ARM-based devices and the features they use.

hide itself from detectors. Both use architectural features of the ARM processor
architecture to make a detection harder. We also list the concepts described in the
Phrack magazine [95, 107, 119]. Even though these are not rootkits for themself, but
they describe mechanisms that rootkits have adopted. Finally, we list two real world
rootkits, XOR.DDoS [109] and Suterusu [81]. XOR.DDoS is a sophisticated binary
only malware which was first spotted in the wild in September 2014. It consists
of a malware core with an optional rootkit component. It tries to determine the
Linux kernel version it is currently running on. This information is transmitted to a
command-and-control server, which then tries to build a module for this specific
kernel. If it is successful, the compiled module is sent back and loaded into the
victims kernel; otherwise XOR.DDoS operates just as user space malware. If
XOR.DDoS is able to inject the module, it provides the classical rootkit services
(process hiding, file/directory hiding, LKM hiding, etc.). Suterusu on the other hand
is an open-source rootkit that works on a variety of processor architectures (ARM,
x86, x86-64) and provides services similar to the one provided by XOR.DDoS.

6.2 System Architecture

Before we present our rootkit detector in the next section, we will describe our system
architecture. Our architecture is based on a Type-I HV called Perikles which was
developed at the chair of SecT (TU Berlin). We have extended it with a mechanism
whereby a VM can take a snapshot of another VM, comprising both (guest physical)
memory as well as the full architectural register state. The architecture is depicted in
Fig. 6.1. We run two VMs under control of the Perikles HV: the host VM, a full Android
stack, and the detector VM, a minimal Linux with a special cross-VM inspection
driver and our inspection tools. The detector VM can initiate a state snapshot of

6.2 System Architecture 55



Host physical memory

Snapshot
space

Perikles

Copy-On-WriteGuest
space

Host VM Detector VM

Fig. 6.1: System architecture.

the host VM, which is stored in a dedicated memory region, the snapshot space.
The snapshot buffer appears as a special (guest physical) memory region in the
detector VM, from where a kernel driver exports it via a device in the devfs. The
detector runs as a user-space process and can perform the usual operations on the
device (open, read, seek, etc.) Note that the right to take a snapshot does not entail
the privilege to change the state of the host VM.

Since taking a memory snapshot involves copying large amounts of data, we use a
copy-on-write (COW) mechanism to incrementally copy the entire memory of the
host VM. That way, the operation of the host VM is only slightly slowed, but not
suspended for an appreciable duration. Our implementation leverages the fact that
the stage 2 page table, can specify access rights.

To initiate a snapshot, the access rights in the stage 2 page table of the host VM
are set to read only while it keeps executing. Whenever a (guest) physical page for
which no snapshot copy is taken yet is modified, an abort is raised in the Perikles
HV, which makes a copy and sets the stage 2 permissions back to read-write. In
addition the detector VM can also issue a hypercall to copy specific pages to the
snapshot space or enforce the completion of a consistent snapshot. This is because
relying only on the COW mechanism to finish the snapshot might take a while. Both
operations are executed in the context of the detector VM and accounted to its
processing time by the system scheduler.

In addition to the memory snapshot, we also take a snapshot of the architecture
state. This gives us access to control registers of the target which are crucial in
reconstructing the system state, e.g. TTBCR, TTBR0, and SCTLR.
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6.3 Rootkit Detector

The snapshotting mechanism described in Section 6.2 alone is not capable of
detecting a rootkit by itself. In this section, we will describe the detector we have
developed.

6.3.1 Checking the Kernel’s Integrity

Once a rootkits managed to exploit a vulnerable kernel interface, it starts manipu-
lating kernel data structures to hide its presence and also to stay in control. In this
section we examine how they specifically do this when loaded into the Linux kernel
on the ARMv7 architecture.

Syscall table Processes can request services from the Linux kernel, via the kernel’s
syscall interface. The process loads a value into a designated register1 before issuing
the supervisor call instruction which traps into the kernel. The value in the register
is then used as an index into the syscall table, which holds function pointers to the
kernel functions implementing the requested service. Modifying the syscall table
is thus a convenient target for a rootkit because it allows to hide malicious code,
potentially without disrupting normal functionality. But in order to overwrite entries in
the syscall table the rootkits faces the challenge of finding the location of the syscall
table in memory. As opposed to some older versions of the Linux kernel, current
versions used for Android do not export the sys_call_table symbol through the
file /proc/kallsyms. There are still two ways to obtain the location of the syscall
table. Either the adversary has access to the exact kernel image that is running on
the device at hand, then he can retrieve the location from the image and program
it directly into his rootkit. The other option is obtaining the address during runtime
as described by [119, 54]. On ARM, every syscall enters the kernel via a software
interrupt (SWI). SWIs are routed from the user to the kernel via the vectors page.
The actual handler for SWIs is located at a fixed location (0xffff0420) Inspecting
the follow up memory and identifying the case where a specific syscall is handled
(e.g., the sys_fork syscall) allows the rootkit to calculate the base address of the
syscall table. To detect rootkits that manipulate the syscall table our detector stores
a hash of the initial syscall table in the detector VM and then periodically computes
a new hash from the snapshot memory, and compares it with the initial one. As
we exactly know which Linux kernel image runs in the host VM we can obtain the
location of the syscall table in the same way as a rootkit would have to obtain it (by
analyzing the kernel image).

1The ARM EABI uses the register r7.
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Vectors page Apart from the syscall table adversaries often target the vectors page.
Every transition from PL0 to PL1 diverts the flow of execution to the vectors page
(see Section 2.1) and overwriting one of the vectors gives the rootkit control on
every exception of that type. An academic rootkit by David et al. [38] even relocates
the original vectors page to a different memory location and places its own copy.
Therefore, we do not only check the actual memory location of the vectors page
but also the registers that control its location (SCTLR and VBAR). Luckily, Linux sets
the vectors page to a fixed location (see Section 2.1) and never changes it during
runtime. For our detector to uncover such a rootkit, we therefore not only validate
the content of the vectors page. We also validate its location by taking a snapshot
of all privileged architectural registers, which include SCTLR and VBAR.

Arbitrary code changes Finally, the rootkit could opt to overwrite selected functions
in the kernel so as to redirect the control flow. Such manipulations can be detected by
computing a hash over the kernel’s text section and comparing it to a pre-computed
one. The only issue that remains is, in certain configurations, the Linux kernel
patches its text section during startup as part of its normal operation. This renders
precomputed hashes of the text section useless. But, under the assumption that
during boot, the kernel is still unmanipulated (e.g., the bootloader could check its
integrity), we trust the kernel in this early stage to send a notification to the detector
after it has set up itself. The detector then computes a checksum over the text
section, which is later used for comparison.

6.3.2 Reconstructing Hidden Kernel Objects

Aside from detecting the rootkit itself as described in the previous section, undoing
the cloaking that is performed by the rootkit might be another goal of a detector. In
this section, we describe which hidden objects can be recovered by our detector.

Modules A common way whereby rootkits infect the kernel is loading a kernel
module. Naturally, they seek to hide the module’s presence afterwards. The Linux
kernel exports the list of modules through the subfolder /sys/modules. Tools such
as lsmod then use this sysfs directory to display the loaded modules in a human-
readable representation. Now to hide its presence a rootkit tries to overwrite entries
in the inode_operations structure belonging to the module sysfs_dirent structure
of the /sys/modules folder. To uncover such manipulations, our detector performs
three steps. First, it searches through the memory snapshot based on specific
patterns to identify all modules in the /sys/module folder. Second, it iterate over the
memory snapshot again and searches for a pattern that matches the module data
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structure. Finally, it verifies that the inode operations for the module are correct and
have not been overwritten.

Processes To generate the list of currently running applications, tools like ps or top
read the procfs top level directory. This directory again contains directories named
by the PID of all currently running processes. Now, some Linux rootkits, such as
[119, 106, 81], modify the functionality of the proc filesystem (procfs) to hide se-
lected processes. To that end, they usually overwrite the file_operations.read()

function of the procfs top level directory. Because, once an application reads the top
level directory of the procfs the list of running processes is created on the fly. The
read function in the kernel iterates through the list of task_struct and creates the
directories of the procfs top level directory dynamically. The rootkit only minimally
changes the functionality. It just skips over some task_struct such, that their direc-
tories in the procfs top level directory are not created. But processes can also be
identified without directly iterating through the task_struct. Instead, our detector
works as follows: Each process contains a kernel stack. These stacks are aligned
to 2KBytes. On a specific offset of that kernel stack is the process’ thread_info
structure located. This thread_info structure has a pointer to its corresponding
task_struct structure. The task_struct structure in turn contains a pointer back
to the beginning of the process’ stack. Our detector iterates through the snapshot
memory in 2KBytes increments, and tries to find such relations. Once it found a
matching pattern we use the identified task_struct structure to extract all required
information (e.g. PID, name of the process, etc.). We compare this manually created
list with the one provided from within the host VM, if there are any discrepancies we
identified a hidden process (and a potential rootkit infection).

Sockets Given the goal of long-term intelligence gathering, an advanced rootkit
is likely to communicate with an outside party over a network socket. The rootkit
wants to hide this socket as well. While reconstructing the process list from the
structure task_struct, we are also able to identify open files and more important
open sockets, which are always associated with processes. Every process has a
member called files_struct *files, which represents the list of files (and sockets)
associated with this process. By looking up the kernel socket_file_ops structure
and comparing it with the actual f_ops structure of the currently investigated file, we
are able to determine whether the handle is for a file or a socket connection. If the
entry is a socket, the socket structure provides us with information about the network
connection. Again the list of open sockets is compared with the one from the procfs
directory (using the tool netstat). If we identify any discrepancies between the
two lists, we have uncovered a hidden network connection (and a potential rootkit
infection).
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Operation Rootkit DetectorSuterusu PoC
vector page manipulation x
vector page relocation x
syscall table manipulation x x
function hooking x x
function pointer manipulation x (x)

Tab. 6.2: A list of common manipulations. The Suterusu rootkit and a PoC rootkit perform a
number of manipulations. Our detector is capable to detect each one.

Files Typically, rootkits serve as a means of hiding the infiltration of a system
and ensure its persistence. Often, further activities require data to be deposited
in the file system in an undetectable way. Instead of changing the entries for the
relevant syscalls – which is easily detected –, an adversary may choose to replace
function pointers in struct file_operations pointed to by struct file [81]. For
the adversary, this approach has the advantage that file objects are dynamically
allocated, which makes their detection more complicated.

6.4 Evaluation

The evaluation section is split into three parts. First we evaluated how reliably our
detector can detect a rootkit. In the second part (Section 6.4.2), we measured the
time the detector needs for a reconstruction of specific elements. We performed
multiple Android benchmarks as well as LMBench to measure the virtualization
overhead and the overhead induced by the snapshotting mechanism (Section 6.4.3).
All experiments were conducted on a Cubietruck (Allwinner A20, 2x1.06GHz CPU,
2GB RAM) running Android 4.4.2 on a Linux 3.4.0 kernel.

6.4.1 Detector Efficacy

To test the efficacy of our solution, we have tested it against two exemplary rootkits:
Suterusu [81] and a nameless proof of concept rootkit [40]. The results are shown
in Tab. 6.2 and Tab. 6.3.

Our detector picks up manipulation to and relocation of the vectors page. Since
neither of the two specimen under test manipulates the vectors page. We tested
this ability with a small extension to Suterusu. Also, changes to the syscall table
are detected. Function hooking, overwriting function code, causes changes in the
checksum of the kernel text section, which our detector notices. As yet, we do
not check the integrity of genuine kernel modules, though. Unlike the processes

60 Chapter 6 Uncovering Mobile Rootkits in Raw Memory



Operation Rootkit DetectorSuterusu PoC
module hiding x x x
process hiding x x
connection hiding x x
file hiding x x

Tab. 6.3: Object reconstruction.

and connections, for which the underlying kernel data structures are guaranteed
to be memory resident, file-associated data structures may or may not reside in
memory. As such, our detector cannot reconstruct them from a snapshot of the
guest’s physical memory.

6.4.2 Kernel Object Reconstruction

Tab. 6.4 gives a short description for each tool we used in our analyses. We
describe its purpose and examined property and list the required runtime to extract
the respective properties. The reconstruction of some kernel structures is rather
costly because we have to iterate through the memory snapshot multiple times.

Tool Description Time (in sec.)
gsnps_procfs Check procfs fops 0.3790
gsnps_proc Extract task_struct process list 0.1350
gsnps_sysfs Extract sysfs module list 20.1980
gsnps_mod Extract module structures 17.3520
gsnps_sock Extract socket list 0.2130
gsnps_exec Hash kernel .text section 0.5689

Tab. 6.4: Runtime of tools to extract specific information from the memory snapshot.

To check the integrity of the kernel text section, we used the mbed TLS library [11]
and computed a SHA1 hash over the text section.

6.4.3 Application Benchmarks

We evaluated our snappshotting mechanism with a number of performance bench-
marking suits. We used the well established LMBench (v3) suite for Linux and the
two Android benchmarking suites Antutu (v5.7) and Geekbench (v3.3.2).
All benchmark results can be obtained from Tab. 6.5. As for LMBench, we ran a
number of relevant latency and bandwidth benchmarks. In most of the benchmarks,
the virtualized setups show only slight performance degradations. The bandwidth
benchmark showed good results, during the time of taking a snapshot. This is due
to the fact that the majority of copy operations is performed by the copy thread on
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the secondary CPU core, and not as a reaction to a COW-incurred page fault on the
host VM. Though, the host VM still has to trap into the HV to flush the TLB, which
explains the small, but noticeable increase in execution time.
The Antutu benchmark results revealed that the snapshotting only has a small
impact on all but I/O intensive apps. Taking a snapshot incurs a notable impact of
∼ 20% on the RAM Speed benchmark. This is not surprising as this benchmark
excessively accesses main memory which then collides with the main memory
accesses originating from the snapshotting operations.
On the other benchmarks the snapshotting showed only a marginal performance hit.
The results show that the performance is almost on par with the HV measurements
taken when no snapshot operation is in progress. Worth mentioning is also that the
memory footprint of the Android system is quite large. After performing a single
Antutu benchmark run, ∼75% of the memory pages were copied due to COW alone.
The results for Geekbench can be obtained from Tab. 6.5. The results of the sce-
narios Perikles + Android (nosmp, mem=768) and Perikles + Android (snapshot)
again show a ∼3% performance penalty due to the virtualization. Apart from that,
the numbers are in line with the expected results.
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7
Hypervisor-based Execution
Prevention

Mobile devices have become versatile, because of their move away from propriatary
OSs towards an open system architecture. The downside of this development is the
dramatic growth in software complexity. As with desktop computers and servers
before, this complexity renders mobile devices vulnerable to malware.

As is to be expected in an arms race, the complexity of cyber-attacks increases con-
stantly, with rootkits as particular menacing. By undermining the OS, kernel rootkits
subvert the system in such a way that they are in position to potentially disable any
countermeasure taken against them. The reason behind that lies in the monolithic
structure of all currently used mainstream OS kernels, which cannot afford address
space protection for kernel subsystems. Once a rootkit has penetrated the kernel,
no anti-malware measure can trust kernel services, which it needs to function. As
efforts to reduce or even weed out kernel vulnerabilities are unlikely to succeed for
the foreseeable future, architectural changes are the only effective counter-strategy.
Indeed, virtualization-based approaches [90, 97] have shown promise as rootkit
mitigation.

In this chapter, we present an extension to the Perikles HV that effectively blocks
attack vectors commonly used by kernel rootkits: unapproved kernel code (either
injected or modified) and execution of user code with kernel privileges.

7.1 Assumptions and Threat Model

In this section, we discuss the assumptions we make regarding the initial system
state. Afterwards, we present our threat model and the defense capabilities provided
by our mechanism.

65



7.1.1 Assumptions

We assume a trusted system boot procedure that ensures the authenticity of the HV,
the system configuration description, all guest boot images including accompanying
components such as initial ramdisks. For the guests, we assume a standard boot
sequence: after the boot image and the ramdisk are loaded, control is transferred to
an entry point along with boot parameters. At this point paging may not be activated
within the VM. The guest decompresses the kernel, relocates it, creates PT for the
decompressed kernel image, and activates paging before calling the kernel entry
point. From this moment on, the location and size of the different kernel regions
(.text, .rodata, and .data) are known and fixed. Furthermore, the code executed
before paging is enabled depends only on the boot control arguments. These are
passed to the kernel by the bootloader through the atags structure or a device tree.
We therefore argue that these data structures along with the code that parses them
can be considered safe and uncompromised, their integrity being guaranteed by
one of the trusted boot mechanisms [4, 104, 42].

7.1.2 Considered Attacks

We consider two attack vectors, the return-to-user (ret2usr) [65], and the more recent
return-to-direct-mapped memory (ret2dir) [64]. Both are advanced code injection
attacks, which aim at the manipulation of a kernel pointer to gain control over the
flow of execution. Depending on the attack, the shellcode is placed in user or in
kernel memory. In the classical ret2usr attack, an adversary tries to jump to code in
the user memory (Fig. 7.1 1 ). However, advances in processor architectures have
brought protection against this type of attack (Fig. 7.1 2 ). On ARM the feature is
called Privileged Execute Never (PXN) [6]. In a ret2dir attack, instead of jumping to
shellcode placed in user memory, the adversary jumps to code in the kernel memory
(Fig. 7.1 3 ). The adversary exploits the fact that the Linux kernel has the physical
memory mapped into its own virtual address space (called physmap). Shellcode
placed in user memory is thus also accessible through a kernel alias. The adversary
avoids the jump into user memory, circumventing the existing countermeasures.

7.1.3 Threat Model

The guest OS kernel is considered trusted only in the early system bootup phase and
untrusted afterwards. We do not expect it to withstand attacks that aim at gaining full
control of the guest kernel. Under these conditions PT-based security mechanisms
(Non-executable, read-only) cannot be relied on. We assume an adversary will
attempt to install function hooks in the kernel to gain control in opportune moments.
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Fig. 7.1: Operation of ret2dir and ret2usr attacks on the Linux kernel.

For that, he will either overwrite existing kernel code or change function pointers
so that they point either to injected kernel code or user code. We note that such a
need exists in most kernel rootkits today.

We do not consider control flow manipulation attacks. This means that it is possible
for an adversary to launch a ROP [98] attack by using only existing kernel code
snippets. However, for that matter we refer to the fact that without its own kernel code,
this type of attacks tends to have limited functionality. Any attempt to introduce own
code into the kernel should be defeated by our mechanism Additionally, orthogonal
security solutions exist for protecting control flow integrity [113].

Also, we do not consider attacks whereby devices are used to overwrite critical
memory regions (e.g., DMA attacks [17, 102, 20]). The issue of secure device
virtualization is orthogonal to the examined problem of rootkit defense.

7.2 Execution Prevention

In this section, we discuss the four design goals we have specified for an execution
prevention mechanism. Then, we present our formal definition and the require-
ments that have to be fulfilled in order to achieve the desired security properties.
Finally, we describe how our execution prevention uses existing hardware protection
mechanisms to achieve effective privileged execution prevention for unapproved
code.

7.2.1 Design Goals

In addition to our main goal – allowing only authorized code to be executed with
kernel privileges – we had four design goals:
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Small size For security sensitive systems, it is crucial that their TCB is as small as
possible. The rational behind this requirement is that only with small code sizes it
will be possible to thoroughly audit the source code in order to gain confidence in its
correctness. Prospectively, using formal methods also place limits as to the size of
the examined source code.
This requirement automatically applies to the most privileged layer in the system
architecture, in our case the HV. It follows that the number of services offered is small,
smaller than those offered by other solutions with a focus on rich functionality.

Minimal guest changes Adding new mechanism to a system might require changes
to the guest OS. We aimed at keeping the modification needed for guest systems
as low as possible. Full (CPU) para-virtualization was dismissed as too intrusive.
Conveniently, most current ARM processors support VE so that hardware-supported
virtualization was chosen as a starting point.

Good performance We set the goal to keep the incurred runtime penalty as small
as possible. It was deemed acceptable to employ para-virtualization for selected
functionality if that helps to cut down on a performance bottleneck.

Scalable architecture Themechanism aims to be compatible with a range of system
architectures, including those that structure the system by leveraging multiple VMs.
This goal of scalability rules out solutions that are limited in the number of supported
domains, such as TZ.

7.2.2 Definition

Linux enforces the access permissions in the following way. While running in PL0,
applications can access (read/write) data that is part of their user memory. Of
course they cannot read/write memory belonging to the kernel. On the other hand,
the kernel needs access to user memory for operations such as copy_from_user

or copy_to_user. Looking at the execution permissions reveals the same picture.
Ordinary applications are not able to execute arbitrary kernel code. Again, the
contrary is not true. While running in PL1, kernel code (e.g. a driver) can execute
code residing in user memory. Thus, a malicious kernel subsystem can manipulate
the execution flow to execute code from user memory. However, unlike the access
permissions, which are required by the Linux system, executing user code while
running in PL1 is never necessary and should be prevented.

Our execution prevention ensures that the execution permissions are confined. While
executing in PL1, no user code can be executed. Furthermore, to prevent all attacks
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Fig. 7.2: A generic stage 2 PT memory layout. All entries are writable and executable.
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Fig. 7.3: The two different stage 2 PT layouts as enforced by our execution prevention.

described in Section 7.1, the enforced permissions are even more restrictive. Only
parts of the kernel memory that hold genuine kernel code are executable. However,
enforcing this system behaviour by a higher privileged entity requires tracking the
memory layout of the guest OS. In the general case this is difficult, because the HV
cannot make any assumptions about the memory layout of the guest OS. Therefore
usually all pages in the stage 2 PT are writable and executable (Fig. 7.2). The
hatched segment shows the .text section of the Linux kernel.
With our execution prevention mechanism Perikles imposes restrictions on exe-
cutable regions depending on the PL. We have created two memory layouts, en-
forced by the stage 2 PT as illustrated in Fig. 7.3a for PL0 and in Fig. 7.3b for PL1.
Fig. 7.3a shows that only the user memory is marked as executable and writable in
the stage 2 PT, whereas kernel memory is not. This is a property already guaranteed
by the Linux kernel. However, to rule out implementation bugs this is additionally
enforced by our mechanism. A more critical situation arises when the system ex-
ecutes in PL1. As illustrated by Fig. 7.3b, the kernel’s text section is executable
and not writable while everything else is writable (to support copy_from_user and
copy_to_user) but not executable (to rule out ret2usr and ret2dir attacks).

7.3 Implementation

In the following section we discuss the implementation of our design. Our prototype
was build for the Cubieboard 2.
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7.3.1 XN Enforcement

ARMs stage 2 PT format contains an XN bit, which renders pages non-executable
when set. In order to enforce the previously defined properties, the PT entries must
have set this bit on different memory regions depending on the PL. There are two
ways to implement this. We can either rewrite the PT to mark the kernel memory as
non-executable when executing in PL0 and vice versa when executing in PL1. This
has however serious performance implications. The other approach is to maintain
two distinct PT, one for PL0 and one for PL1. The increased memory footprint to
store two stage 2 PTs for every VM is a trade off we make for better performance.

Upon bootup, the memory that must be executable in PL1 encompasses two regions.
The first memory region is the exception vectors page. The address of the exception
vectors can be inferred by the HV by reading the VBAR and SCTLR registers of the
guest. The exception vectors page is 4KBytes in size. The second region is the
.text section of the Linux kernel. The start and size of the .text section depends
on the number of features built into the kernel. It can be extracted from the Linux
kernel binary. Defining the memory region that must be executable while in PL0
only requires the HV to know what virtual memory split Linux is using. The split
can be obtained from the Linux .config file or also from the Linux kernel binary.
The addresses in the binary are already virtual addresses and depending on the
memory split, start at 0x40000000, 0x80000000, or 0xc0000000. Everything below
this start address is user memory.

When setting up the system to run with two sets of PT, each transition from PL0 to
PL1 or from PL1 to PL0 involves a trap into the HV. This is because transitions from
PL0 to PL1 use the exception vectors page, but the exception vectors page is not in
the executable set of PL0, thus generating a prefetch abort. The HV then checks
the address where the fault occurred and the PL at the time of the fault. Based on
this information, the HV decides whether the guest user application performed a
valid kernel entry. If the PL matches the address the guest tried to execute from,
the HV loads stage 2 PT for PL1 and resumes the execution of the guest. Then
transition in the other direction (from PL1 to PL0) works in the same way. When the
guest system executes in PL1 and wants to exit the kernel to continue the execution
of a user application, the attempt to execute the first PL0 instruction also generates
a prefetch abort which again traps into PL2. The HV then again checks the address
that caused the fault and the PL. If both match the HV switches to the stage 2 PT of
PL0 and resumes the execution of the guest.
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7.3.2 TLB Management

The TLB caches PT translations to avoid costly PT walks for every memory access.
As the MMU fetches PT entries when needed, adding rights to a PT entry does
not need further attention. But when the rights of a PT entry get reduced, the TLB
needs to be informed so that an old cached entry gets purged. This means it is the
obligation of the OS kernel to keep the TLB and the active PT consistent.

As loading PT entries into the TLB is expensive, it is desirable to avoid reloading as
much as possible. However, it has to be ensured that only entries belonging to the
currently active context are used to translate virtual addresses. In order to mitigate
the impact of frequent MMU switches on the TLB, the ARM architecture includes an
ASID into each entry. A memory context is identified through a PT base address
and an ASID, both of which are held in a register, the TTBR. Only entries whose ASID
matches the currently valid ASID are used for translations. The advantage of this
scheme is that a memory context has its TLB entries retained in the TLB even over
context switches. When the context gets reactivated, it finds its now again active
entries in the TLB and does not need to reload them from slow memory.

With VE, ARM introduced another identifier, the VMID. In addition to the address of
the currently active PT, the VTTBR also holds this VMID. Before the HV executes a
guest, the VTTBR is loaded with the stage 2 PT associated with this guest along with
a VMID assigned to that guest VM. As with ASIDs, by using multiple VMIDs, the TLB
can hold entries of multiple VM contexts. For the guest, TLBmaintenance operations,
in particular TLB entry invalidations, work as in a non-virtualized environment. When
the guest kernel executes such an operation (e.g. TLBIALL or TLBIASID) only entries
from the currently active VMID are removed from the TLB.

To efficiently enforce different execution rights depending on the guest privilege level,
it is opportune to use two different VMIDs. The translation from IPAs to HPAs is
identical; however, the execution rights differ. With different VMIDs, it is possible to
hold PL0 and PL1 TLB entries with the correct execution permission in parallel in the
TLB. But now all TLB maintenance operations must be synchronized and executed
for both VMIDs. However, guest TLB operations are limited to the current VMID,
which leaves flushing guest PL0 TLB entries (which are tagged with a different
VMID) to the HV.

To achieve the synchronization, we have investigate two strategies:

• fully virtualized MMU (fvMMU) The VE allow for trapping different instruction
classes, among them TLB maintenance operations. On an intercept, the HV
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evicts all TLB entries of the guest that match the invalidation criterion1. While
this approach is transparent for the guest, it is also slow because each TLB
invalidation traps into the HV. Worse yet, if an entry associated with PL0 has
to be evicted, two slow VMID reloads are necessary. The HV has to activate
the PL0 VMID, evict the TLB entry, and switch back to the PL1 VMID, because
VMID-selective TLB invalidations are not supported.

• para-virtualized MMU (pvMMU) Instead of having all TLB operations trap,
the intercept is disabled and the guest kernel is modified to cooperate with the
HV. PL1 TLB flushes do not need HV support and are executed directly. PL0
TLB flushes are recorded on a page registered with the HV. As the HV gains
control on the next transition from PL1 to PL0, it processes all queued TLB
operations with the VMID set to PL0. These batched TLB updates cut down
on the number of both entries into the HV and VMID changes.

7.4 Evaluation

Our extension to the Perikles HV that enforces the previously described properties
is implemented in 280SLOC. For the pvMMU implementation we generated a patch
for the Linux kernel, which consists of another 100SLOC.

To evaluate the feasibility of our approach, we ran a number of benchmarks on the
Cubieboard 2 [31]. We conducted the experiments on the Perikles HV with a VM that
runs Linux kernel version 3.4.90-r1. We disabled all power management or frequency
scaling features in the guest VM (e.g. CONFIG_CPU_FREQ and CONFIG_PM_RUNTIME,
etc.). Across all scenarios, we set the Linux preemption model to Preemptible

Kernel (Low-Latency Desktop).

7.4.1 Low-level Benchmarks

The results of LMBench show that running a virtualized Linux on top of a HV does not
induce too much overhead. The entire set of results can be obtained from Table 7.1.
The first column contains the results from a native Linux. The second column
contains the results of an unmodified Linux kernel running on Perikles without the
PT protection. The two remaining columns contain the results of a system running
with the execution prevention, with the fvMMU and the pvMMU implementation as
described in Section 7.3.2.

1Single virtual address, ASID or all
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Benchmark Native Linux Perikles Perikles Perikles
(no sep.) (fvMMU) (pvMMU)

lat pipe 19.68 22.37 45.35 34.03
lat fork + exit 765.37 1110.40 1526.50 1384.50
lat fork + execve 3095.00 4036.50 5135.00 5203.00
lat select 17.38 17.47 18.60 18.84
lat read syscall 0.66 0.67 2.79 1.95
lat write syscall 0.82 0.88 3.95 3.90
lat open/close 6.83 10.67 14.34 19.27
bw mem rdwr 813.77 733.80 729.58 729.36
bw mem bcopy 663.75 570.37 569.03 565.97
bw pipe 331.92 299.41 283.02 235.71
bw unix sock 274.15 251.13 224.46 225.57

Tab. 7.1: LMBench results on the Cubieboard2

The benchmark results show that different syscalls (e.g. read or write) show almost
no overhead on a Linux system running on a HV. However, the PT protection induces
some overhead due to the fact that on a syscall, the system traps into the HV to
switch the PT. Thus, the additional latency comes from at least one HV roundtrip
and an additional TLB operation. The other benchmarks (e.g. a select syscall) are
only marginally slower than their native counterpart. This can simply be explained
by the fact that they do not need a HV roundtrip. The application benchmarks in
Section 7.4.2 show that the impact on real world scenarios is much lower.

In addition to the system level benchmarks, we performed the Integer Arithmetic
performance benchmark Dhrystone. As we passed the FPU through to the guest
VM without HV interception, we suspected almost no performance degradation in
the virtualized setups. The benchmark was performed, as ARM suggests [41], in
order to get meaningful results. Table 7.2 shows the results of the benchmark. Our
assumption was right. Indeed, the Dhrystone benchmark shows similar results on
all five system configurations.

Scenario Dhrystones/sec Dhrystones/sec DMIPS(Average) (Standard deviation)
Native 1266408.71 1135.71 721Linux
Perikles 1264685.21 364.01 720no sep.
Perikles 1264377.26 492.56 720fvMMU
Perikles 1264061.20 246.70 719pvMMU

Tab. 7.2: Dhrystone benchmark on the Cubieboard2
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7.4.2 Application Benchmarks

We performed two application benchmarks. We extracted a Linux kernel archive
(tar xJf linux-3.17.tar.xz), and built a Linux kernel with make allnoconfig &&

make. The overall runtime of the operations was measured using the Linux tool time.
The results can be obtained from Table 7.3. The archive extraction benchmarks

Scenario
Operation

Extract xz Build kernelarchive
Native 7.38 11.74Linux
Perikles 9.95 14.70no sep.
Perikles 10.0 19.57fvMMU
Perikles 10.1 14.87pvMMU

Tab. 7.3: Application benchmarks on the different scenarios (time in minutes - lower is
better)

shows overall low overhead across all scenarios. The gap to Linux baseline is∼26%.
Among the virtualization solutions, the overhead is only ∼6% compared to Perikles
without separation. This indicates that the slowdown is not primarily down to our
implementation but can attributed to general virtualization overhead.

Taking Perikles without separation as a baseline and comparing it to the scenarios
that are equipped with execution prevention shows that this feature only leads to a
∼1.5% performance degradation. Building a Linux kernel reveals that it is worth the
effort to para-virtualize selected functionality – in our case the TLB operations – to
increase the performance. This reduces the performance overhead compared to our
baseline configuration from 33% (with the fvMMU) to ∼1.5% (with the pvMMU).
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8Conclusions

In this thesis we demonstrated that applications should not rely on the isolation
properties provided by commodity system software, when a high degree of security
is demanded. These commodity systems lack proper isolation capabilities, due to
complicated subsystems and complex kernel interfaces. We showed that both can
be used to break the systems isolation and/or give an adversary full control over the
system.
Instead, we postulated in this thesis that in domains where usability and security
converge (e.g., mobile devices), system designers should leverage small statically
partitioned HVs to properly isolate security or safety critical components from the
rest of the system. Moreover, the HV’s programming interface should be narrow,
only exposing CPU-like interfaces. To accommodate for the coarse grained isolation
that HVs provide, additional security components should be build into the HV in a
modular and transparent way.
To demonstrate the feasibility of such an architecture we extended a small statically
partitioned HV with two modular defense mechanisms that prevent or uncover
attacks on the guest OS kernel. The first mechanism prevents code-reuse attacks
by enforcing specific properties (non executable) on guest memory regions. The
second mechanism provides the capability to snapshot a guest OS. The guest
memory can then be inspected with a set of user space tools to uncover rootkits.
Both mechanisms are designed in a modular way, only marginally increase the code
base of the HV, and expose only a very simple interface.
Especially on mobile devices where the resource utilization is more predictable
and on-demand starting and stopping of VMs is not a requirement our proposed
architecture shows its strength.

In the remainder of the chapter we conclude each topic covered in this thesis
individually. We recap on the design of the rootkit we presented in Chapter 4. We
discuss the underlying issue that led to us being able to install our rootkit into the
HV mode. Then we elaborate how the covert channels we found (Chapter 5) can be
prevented. We again also analyse the underlying issue, that ultimately led to these
covert channels in the first place. We conclude this chapter by evaluating our two
defense mechanisms (discussed in Chapter 6 and 7). We briefly look into, how both
mechanisms can be extended and how they could be combined to achieve a higher
threat coverage.
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Hardware Virtualization-assisted Rootkits In Chapter 4 we elaborated on the fea-
sibility of gaining control over the VE and its highly privileged processor mode to
install a rootkit into it. We showed the delicacy of the issue, by pointing out several
attack vectors, whereby adversaries are able to subvert the OS kernel and install
such a rootkit. Once installed, the rootkit is very hard to spot and to remove because
it has full control over all system resources and can easily spy on the OS kernel as
well as user applications. We implemented a full prototype rootkit, to demonstrate its
feasibility. We evaluated our rootkit in terms of stealthiness and showed that many
detection mechanisms (e.g. time drift, memory access times, etc.) would not work
to detect it.

This issue raises the question whether we can deter an adversary from misusing
the VE in the first place. It depends whether an already deployed system should be
changed to lockdown the VE or if redeployment of the system software is an option
to be able to make more profound changes.
If the user has full control over the platform, and the system firmware boots into the
secure world, the secure world OS can prevent the hypervisor call instruction from
getting enabled. Successive calls of the hypervisor call instructions would simply
cause an exception. A more elaborate approach is to switch into the non-secure
world in one of the earlier bootstages, giving Linux no chance to install its HV stub
vectors, effectively locking down the VE.
The above fixes however require changes to the boot chain, which is usually un-
der vendor control. Additionally, the early bootstages would already have to know
whether VE lockdown is desired. This however would require an appropriate mecha-
nism to signal whether to enable the VE or not, e.g., a runtime secure world service
which irrevocably disables the VE until reset.
If the VE are still accessible when the bootstage leaves the secure world and the
general purpose OS starts up, it is difficult to get them locked down. Moreover, it
is remarkable that, there is no general mechanism to disable the VE other than
disabling the hypervisor call instruction.

Disabling the hypervisor call instruction and not setting the HV’s exception vectors
to a valid address effectively disables the VE. But in scenarios where the users do
not have access to one of the early bootstages to perform the needed steps, users
can still try to make the VE unusable. These efforts are however flawed, and still
run the risk of being subverted.
One approach is to use the Linux kernel’s HV stub to set the HV’s exception vectors
to an invalid memory location. As there might be no way for the user to disable the
hypervisor call instruction during runtime, the approach still leaves the adversary
with the opportunity for a DoS attack, as executing the hypervisor call instruction
then would lead to an endless exception loop.
An other approach comprises of installing a “nop” vector table, which just executes
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the exception return instruction for every exception it receives. This solution however,
suffers from the same problem as the KVM exception vector. The location containing
these instructions is backed by physical memory. Yet, all physical memory is
accessible to the OS, thus an adversary who managed to take over the OS kernel,
could still find the location of this “nop” table, overwrite its entries, and gain control
over the VE again.
To improve this effort the defender could create a stage 2 PT of his own to protect
his “nop” vector table from being manipulated from code in the OS kernel. Accesses
to this range would then either result in stage 2 page faults, which the ”nop” vector
table could reflect back to the OS, or could be backed by invalid physical addresses
or emulated so that the OS just sees invalid data. This solutions effectively leads to
running a very small HV that just returns to the OS kernel once called.

In summary, most of our attack vectors exist because the user does not have control
over all bootstages (see Section 4.2). On the Jacinto6 board TI installs its own
secure world OS, and a kernel process can always call the secure monitor call
instruction to request the installation of a HV. To prevent this attack vector, several
approaches can be used. The non-secure world bootloader could call the secure
monitor call instruction to install a lockdown HV as described above. Then the
Linux kernel can run as usual but with a slightly reduced amount of memory. A few
memory pages must be reserved for the stage 2 page table and for the stub HV
code (∼12KBytes).

The Linux HV stub was added to the kernel soon after Linux kernel release v3.6.
Many Android devices still run kernel versions lower then v3.6 (e.g. v3.0 or v3.4).
These devices then have a completely uninitialized PL2 mode. To prevent an
adversary from exploiting this entry (see Section 4.2), an administrator or a user
can seal PL2 as described for attack vector 1.

Breaking Isolation through Covert Channels In Chapter 5 we examined the Fi-
asco.OC microkernel. We depicted that it cannot deliver the promised isolation
properties in the face of a determined adversary. We identified two shared facilities
whose control mechanisms can be rendered ineffective (kernel allocator, object
slabs) and a third, who lacks them entirely (mapping trees). In our experiments, we
showed the feasibility of using them to form covert channels and achieved maximal
channel capacities of up to ∼10000bits/s. Further experiments indicated that with
additional refinements the achieved channel capacities could be more than doubled.
Moreover, processing power increases, which accommodates the channel capaci-
ties. Therefore, to counter at least a few of our covert channels it seems advisable
to introduce a mechanism whereby the switch rate between isolated domains can be
controlled, like proposed by Wu et al. [115]. This would prevent our clock synchro-
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nized channels to work or at least impact its bandwidth. Because for these channels
to function correctly, both conspirators (sender and receiver) have to execute within
a specific time frame one after the other. We however have to acknowledge that
such a scheme may have a negative impact on system performance.

But apart from these very low-level mechanisms that allowed us to build our covert
channels, there is also an issue with how Fiasco.OC encapsulates Linux and thus
endows it with its full microkernel API. We acknowledge that there is no doubt about
the need for the ability to encapsulate Linux instances. However, it seems ill-advised
to offer Linux the full microkernel API, as the offered feature set is not fully needed,
yet grows the attack surface.
This again reinvigorates the debate about whether system design shall be driven by
pragmatism or principle. While proponents of Fiasco’s pragmatism often point to the
wide range of functionality it provides. Indeed, its multi-processor support, its ability
to host Linux [69] on platforms without virtualization support, and the availability of
a user-level framework [70] make for a system that lends itself to a wide range of
applications.
In contrast, seL4 [67, 45, 66] is the first general purpose kernel for which a formal
correctness proof was produced. This brings prospects within reach that systems
can be constructed on error-free kernels. That said, it should be kept in mind that as
of yet the seL4 ecosystem is in certain important aspects rather limited. For example,
although multiprocessor support has been considered a multiprocessor version of
seL4 is not available. Moreover, the discussed clustered multi-kernel model raises
questions as to the implications on the user-level programming model. In a similar
vein, the VMM shipping with seL4 [23] does not support the ARM architecture, which
renders it unsuitable for mobile devices. In any event, it will be interesting to examine
seL4 and watch its ecosystem evolve.

Uncovering Mobile Rootkits in Raw Memory Our first defense mechanism, com-
prises of a snapshotting mechanism that allows us to capture both a memory and
architectural register state of a VM. To demonstrate the feasibility of our architecture,
we designed and built a complementary rootkit detector. In contrast to most of
the existing VMI solutions that are based on existing HVs and use their API, our
rootkit detector is as an extension to the HV developed at the chair of SecT. This
allowed us to extend functionality and expose specific architectural components (e.g.
critical system registers and address vectors) of the guest system to our detector
VM. As a result, we can inspect additional components apart from the pure guest
memory. Several rootkits use exactly these architectural components to hide their
presence, and with our scheme we are able to detect them. Additionally, to the best
of our knowledge, this is the first research that proposes an architecture specifically
designed for ARM devices and covers mobile specific threats.
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Owing to ARM’s virtualization technology, our architecture provides solid perfor-
mance and is non-intrusive, allowing to run unmodified guest OSs. The argument
that virtualization incurs too much performance degradation on mobile platforms
has been proven to be unfounded as various benchmarks showed only a minor
performance impact.

In line with our initial statement (see Chapter 1.1) the mechanism provides a very
simple interface to expose the memory of the host VM to the detector VM. Moreover,
the detector VM is only able to read from the memory snapshot but cannot change
anything.

Hypervisor-based Execution Prevention We introduced a mechanism that effec-
tively protects against attack vectors used by kernel rootkit: kernel code injection,
kernel code modification, and execution of user code with kernel privileges. Our
architecture is based on a slim statically partitioned HV running on an ARM Cortex
A7 with hardware VE. The key idea of the execution prevention mechanism is to
leverage the VMID feature, originally intended to isolate different VMs from each
other, to enforce different execution permissions for PL0 and PL1. The changes
necessary for the guest are minimal and only require trivial changes, which allows
us to retrofit older OS versions with ease. Our experiments indicated that the in-
curred overhead, while significant on micro-benchmarks, is below 3% in application
benchmarks. With our architecture, we have demonstrated that virtualization does
not only offer strong isolation between VMs but can also be leveraged to bolster
security within a VM. Also, our work shows that virtualization on mobile devices is
feasible and has good chances to proliferate as soon as more devices are equipped
with processors featuring ARM VE.

Since porting a guest is uncomplicated, the execution prevention mechanism might
even be an alternative to retrofitting security functionality directly into older kernels,
some of which might be in use for years after their active development has ceased.
As a case in point, researchers demonstrated that Linux’ support for Privileged
Execute Never (PXN) [6] is insufficient [64], leaving all currently deployed Linux
versions up to version 3.18 vulnerable to kernel code execution attacks. With our
execution prevention, we were able to prevent that attack scenario even for older
kernels that lack PXN support completely, by retrofitting a PXN-like mechanism and
limiting the executable pages to only genuine kernel code pages, requiring only
minimal changes to the guest.
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9Future Work

The ARM processor architecture steadily evolves, and ARM constantly pushes
updates for its processors. In 2011, ARM announced a new processor generation
– ARMv8. It provided 64 bit support, consolidated the processor modes, and also
updated the hardware VE. The first device with an ARMv8 SoC arrived in 2013
(the iPhone 5s), the first development board with an ARMv8 based SoC followed
in 2015. Just recently in 2016, with the announcement of processor generation
ARMv8.3, ARM added not only hardware support for nested virtualization but also a
pointer authentication security mechanism [88], suggested by Qualcomm. Also, the
first processor (Cortex-R52) with real-time capabilities and hardware VE entered
the market. This constant stream of innovations and novel mechanisms gives the
community (SoC integrators, hard- and software developers, and product designers)
new ways and opportunities to bring devices with improved security to the market.
Especially, by equipping an increasing number of its processors with hardware VE,
ARM created a solid foundation where system designers can build upon to create
secure systems without terribly impacting the performance.
But, extending the hardware alone is not enough. To protect the users from attacks,
it is important that future OSs leverage these facilities to prevent further growth in
the number of machines infected by malware.

When we recap the topics discussed in this thesis and analyze whether the issues
we point out in Chapters 4 and 5 have been addressed since we first uncovered
them, it becomes clear that the systems are as vulnerable as its predecessors.
The attacks on the virtualization layer when running a Linux OS (discussed in
Chapter 4) have already been further explored for the ARMv8 processor architecture
in the paper this chapter is based on [22]. We show that all attack vectors (except
for one) work on an ARMv8-based system in the same manner as on the ARMv7
architecture. Only the attack vector where Linux is migrated from the secure to the
non-secure world is prevented. While consolidating the processor modes, ARM
moved the mon mode into a new privilege level (EL3) while; the secure svc mode is
still part of EL1. A seamless switch between secure svc mode and mon mode (as
was possible on ARMv7) is not possible anymore, thus preventing the attack vector.
As for the covert channels discussed in Chapter 5, further refinements already
suggest that we can increase the bandwidth of the covert channels in the future.
Also, in this thesis we only discussed covert channels between native L4 processes
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built with L4Re. However, in the paper this chapter is based on [87], we show that
we can form similar covert channels between L4Linux entities.
Moreover, some of our covert channels scale very well on SMP systems and the
trend to faster processors with more cores suggests that the capacity of the described
channel types will only grow in the future. At the time of the experiments with these
covert channels, most ARM-based devices had a maximum of two CPU cores.
Nowadays the, e.g., Cortex-A73 has four CPU cores, and can even be integrated
in a big.LITTLE manner, in combination with a Cortex-A53 or Cortex-A35, which
leads to ARM-based systems with up to eight cores. Utilizing a device with such
a processor system would probably result in very high bandwidth covert channels,
giving the conspirators the opportunity to exchange huge amounts of data in a very
short time frame.

The above examples illustrate that there is still need for security mechanisms in
today’s OS. On the other hand, the defense mechanisms discussed throughout
this thesis focus on the ARMv7 processor architecture which is already declared
as “superseded” by ARM. Its market share will shrink, while an increasing number
of devices will feature an ARMv8 processor. In the future for these mechanisms to
provide a relevant solution a port to a device with an ARMv8 processor, generation
is indispensable.
The challenges of porting the execution prevention (described in Chapter 7) to a
device with an ARMv8 processor, concerns adapting the mechanism to the new
ARMv8 Stage 2 page table format. Also, currently the mechanism is tailored towards
Linux and the virtual address space of a 64 bit Linux is laid out differently than on a
32 bit Linux. Thus the execution prevention would also need to adapt to these new
parameters. However, both are only minor implementation changes and in general,
do not hinder the execution prevention mechanism to work on an ARMv8 device.
Porting the rootkit detection (described in Chapter 6) would comprise a bigger
challenge. The mechanism relies on specific Linux kernel data structures to be
identified in raw memory, and it remains to be analyzed in the future on how far
these structures differ between a 32 and 64 bit Linux kernel. Consequently, the set
of user space tools that work on the raw memory snapshot of a VM would need to
be reworked towards the specific quirks of a 64 bit Linux kernel.

Apart from porting the mechanisms to the ARMv8 processor architecture, both
prototypes can be evolved into the following directions. The data-only malware
proposed by Vogl et al. [111] builds on the ROP [98] mechanism and also achieves
persistence while the system is running. Our execution prevention mechanism
cannot prevent an adversary from performing a ROP attack in the kernel because
the adversaries still executes genuine kernel code. Once the adversary was able to
locate a vulnerability in a kernel interface (e.g. driver, kernel subsystem, etc.) that
allows him to divert the flow of execution, he can launch a ROP attack. Neither of
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our security mechanisms can prevent control flow hijacking attacks; it remains an
open issue. In the future, it would be interesting to pair our execution prevention
with a control-flow integrity mechanism [121, 29] to rule out ROP attacks. Also,
combining our orthogonal rootkit detector with the execution prevention and testing
the resulting architecture against real-world rootkits still stands out.

85





Bibliography

[1] A Guide to Understanding Covert Channel Analysis of Trusted Systems (Light Pink
Book). Rainbow Series;NCSC-TG-030. Computer Security Center (CSC), Department
of Defense (DoD). Nov. 1993 (cit. on p. 37).

[2] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng Wang,
Xiaoyong Zhou, Wenliang Du, and Michael Grace. „Hare Hunting in the Wild Android:
A Study on the Threat of Hanging Attribute References“. In: Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security. ACM. 2015,
pp. 1248–1259 (cit. on p. 3).

[3] Tiago Alves and Don Felton. „TrustZone: Integrated Hardware and Software Security“.
In: ARM white paper 3.4 (2004), pp. 18–24 (cit. on p. 14).

[4] William A. Arbaugh, David J. Farber, and Jonathan M. Smith. „A Secure and Reliable
Bootstrap Architecture“. In: In Proceedings of the 1997 IEEE Symposium on Security
and Privacy. IEEE Computer Society, 1997, pp. 65–71 (cit. on p. 66).

[5] Andrea Arcangeli, Izik Eidus, and Chris Wright. „Increasing memory density by using
KSM“. In: Proceedings of the Linux Symposium. Citeseer. 2009, pp. 19–28 (cit. on
pp. 17, 27).

[6] ARM Architecture Reference Manual. ARMv7-A and ARMv7-R edition. Whitepaper.
ARM Limited, July 2012 (cit. on pp. 11, 12, 14, 26, 28, 66, 81).

[7] ARMArchitecture ReferenceManual ARMv8, for ARMv8-A architecture profile. Whitepa-
per. ARM Limited, July 2014 (cit. on pp. 11, 28).

[8] ARM CoreLink TZC-400 TrustZone Address Space Controller - Technical Reference
Manual. Whitepaper. ARM Limited, July 2013 (cit. on p. 15).

[9] ARM Dual-Timer Module (SP804). Technical Reference Manual. ARM Limited, Jan.
2004 (cit. on pp. 11, 29).

[10] ARM Generic Interrupt Controller. Architecture version 2.0. Whitepaper. ARM Limited,
July 2013 (cit. on p. 11).

[12] ARM Security Technology - Building a Secure System using TrustZone Technology.
Whitepaper. ARM Limited, Apr. 2009 (cit. on pp. 11, 14).

[13] Lev Aronsky. KNOXout - Bypassing Samsung KNOX. Whitepaper. Viral Security
Group, Oct. 2016 (cit. on p. 26).

87



[14] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. „Hypervision across worlds: Real-time kernel
protection from the arm trustzone secure world“. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM. 2014, pp. 90–
102 (cit. on p. 20).

[15] Ken Barr, Prashanth Bungale, Stephen Deasy, Viktor Gyuris, Perry Hung, Craig
Newell, Harvey Tuch, and Bruno Zoppis. „The VMware Mobile Virtualization Platform:
Is that a Hypervisor in your Pocket?“ In: ACM SIGOPS Operating Systems Review
44.4 (2010), pp. 124–135 (cit. on p. 4).

[16] Mick Bauer. „Paranoid penguin: an introduction to Novell AppArmor“. In: Linux Journal
2006.148 (2006), p. 13 (cit. on p. 4).

[17] Michael Becher, Maximillian Dornseif, and Christian N Klein. „FireWire: all your
memory are belong to us“. In: Proceedings of CanSecWest (2005) (cit. on p. 67).

[18] Jeffrey Bickford, Ryan O’Hare, Arati Baliga, Vinod Ganapathy, and Liviu Iftode. „Rootk-
its on Smart Phones: Attacks, Implications and Opportunities“. In: Proceedings of
the Eleventh Workshop on Mobile Computing Systems & Applications. HotMobile ’10.
ACM, 2010, pp. 49–54 (cit. on p. 53).

[20] Adam Boileau. „Hit by a bus: Physical access attacks with Firewire“. In: Presentation,
Ruxcon (2006), p. 3 (cit. on p. 67).

[21] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. „Dedup Est
Machina: Memory Deduplication as an Advanced Exploitation Vector“. In: Secu-
rity and Privacy (SP), 2016 IEEE Symposium on. IEEE. 2016, pp. 987–1004 (cit. on
p. 17).

[22] Robert Buhren, Julian Vetter, and JanNordholz. „The Threat of Virtualization: Hypervisor-
based Rootkits on the ARM Architecture“. In: 18th International Conference on Infor-
mation and Communications Security (ICICS2016). Springer. 2016 (cit. on p. 83).

[24] Swarup Chandra, Zhiqiang Lin, Ashish Kundu, and Latifur Khan. „Towards a system-
atic study of the covert channel attacks in smartphones“. In: International Conference
on Security and Privacy in Communication Systems. Springer. 2014, pp. 427–435
(cit. on p. 37).

[25] Peter M Chen and Brian D Noble. „When virtual is better than real [operating sys-
tem relocation to virtual machines]“. In: Hot Topics in Operating Systems, 2001.
Proceedings of the Eighth Workshop on. IEEE. 2001, pp. 133–138 (cit. on p. 19).

[27] Cortex-A7 MPCore. Technical Reference Manual. ARM Limited, May 2012 (cit. on
p. 11).

[28] Cortex-A9. Technical Reference Manual. ARM Limited, June 2012 (cit. on p. 11).

[29] John Criswell, Nathan Dautenhahn, and Vikram Adve. „KCoFI: Complete Control-
Flow Integrity for Commodity Operating System Kernels“. In: Proceedings of the 2014
IEEE Symposium on Security and Privacy. SP ’14. IEEE Computer Society, 2014,
pp. 292–307 (cit. on p. 85).

[35] Christoffer Dall and Jason Nieh. „KVM/ARM: Experiences Building the Linux ARM
Hypervisor“. In: (2013) (cit. on p. 25).

88 Bibliography



[36] Christoffer Dall and Jason Nieh. „KVM/ARM: The Design and Implementation of the
Linux ARM Hypervisor“. In: (2014), pp. 333–347 (cit. on p. 25).

[37] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.
„Privilege Escalation Attacks on Android“. In: International Conference on Information
Security. Springer. 2010, pp. 346–360 (cit. on p. 3).

[38] Francis M David, Ellick M Chan, Jeffrey C Carlyle, and Roy H Campbell. „Cloaker:
Hardware supported rootkit concealment“. In: Security and Privacy, 2008. SP 2008.
IEEE Symposium on. IEEE. 2008, pp. 296–310 (cit. on pp. 23, 54, 58).

[41] Dhrystone Benchmarking for ARM Cortex Processors. Whitepaper. ARM Limited,
July 2011 (cit. on p. 73).

[42] Kurt Dietrich and Johannes Winter. „Towards Customizable, Application Specific
Mobile Trusted Modules“. In: Proceedings of the Fifth ACM Workshop on Scalable
Trusted Computing. STC ’10. Chicago, Illinois, USA: ACM, 2010, pp. 31–40 (cit. on
p. 66).

[43] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S Wallach.
„QUIRE: Lightweight Provenance for Smart Phone Operating Systems.“ In: USENIX
Security Symposium. Vol. 31. 2011 (cit. on p. 3).

[44] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke Lee.
„Virtuoso: Narrowing the semantic gap in virtual machine introspection“. In: Security
and Privacy (SP), 2011 IEEE Symposium on. IEEE. 2011, pp. 297–312 (cit. on p. 20).

[45] Kevin Elphinstone and Gernot Heiser. „From L3 to seL4 What Have We Learnt in 20
Years of L4 Microkernels?“ In: Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles. SOSP ’13. Farminton, Pennsylvania: ACM, 2013,
pp. 133–150 (cit. on pp. 4, 80).

[48] Simon Fürst, Jürgen Mössinger, Stefan Bunzel, ThomasWeber, Frank Kirschke-Biller,
Peter Heitkämper, Gerulf Kinkelin, Kenji Nishikawa, and Klaus Lange. „AUTOSAR–A
Worldwide Standard is on the Road“. In: 14th International VDI Congress Electronic
Systems for Vehicles, Baden-Baden. Vol. 62. 2009 (cit. on p. 5).

[49] Tal Garfinkel, Mendel Rosenblum, et al. „A Virtual Machine Introspection Based
Architecture for Intrusion Detection.“ In: NDSS. Vol. 3. 2003, pp. 191–206 (cit. on
pp. 19, 53).

[50] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. „Sprobes: Enforcing kernel
code integrity on the trustzone architecture“. In: arXiv preprint arXiv:1410.7747 (2014)
(cit. on p. 20).

[52] Daniel Gruss, David Bidner, and Stefan Mangard. „Practical Memory Deduplication
Attacks in Sandboxed JavaScript“. In:European Symposium on Research in Computer
Security. Springer. 2015, pp. 108–122 (cit. on p. 17).

[53] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. „Cache template attacks:
Automating attacks on inclusive last-level caches“. In: 24th USENIX Security. 2015,
pp. 897–912 (cit. on p. 37).

[55] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C Snoeren,
George Varghese, Geoffrey M Voelker, and Amin Vahdat. „Difference Engine: Har-
nessing Memory Redundancy in Virtual Machines“. In: Communications of the ACM
53.10 (2010), pp. 85–93 (cit. on p. 17).

Bibliography 89



[56] Brian Hay and Kara Nance. „Forensics Examination of Volatile System Data Using
Virtual Introspection“. In: SIGOPS Oper. Syst. Rev. 42.3 (Apr. 2008), pp. 74–82 (cit. on
pp. 19, 54).

[57] Gernot Heiser and Ben Leslie. „The OKL4 microvisor: convergence point of micro-
kernels and hypervisors“. In: Proceedings of the first ACM asia-pacific workshop on
Workshop on systems. ACM. 2010, pp. 19–24 (cit. on p. 5).

[58] Greg Hoglund and Jamie Butler. Rootkits: Subverting the Windows Kernel. Addison-
Wesley Professional, 2005 (cit. on p. 54).

[59] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju Park, Jae-Min Ryu,
Seong-Yeol Park, and Chul-Ryun Kim. „Xen on ARM: System virtualization using Xen
hypervisor for ARM-based secure mobile phones“. In: Consumer Communications
and Networking Conference, 2008. CCNC 2008. 5th IEEE. IEEE. 2008, pp. 257–261
(cit. on p. 4).

[62] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. „Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction“. In: Proceedings of the 14th
ACM conference on Computer and communications security. ACM. 2007, pp. 128–
138 (cit. on pp. 19, 53).

[63] Kaspersky Security Bulletin 2014 – A Look into the APT Crystal Ball. Whitepaper.
Kaspersky Lab, Dec. 2014 (cit. on p. 3).

[64] Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D. Keromytis. „ret2dir:
Rethinking Kernel Isolation“. In: 23rd USENIX Security Symposium (USENIX Security
14). San Diego, CA: USENIX Association, Aug. 2014, pp. 957–972 (cit. on pp. 18,
66, 81).

[65] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis. „kGuard:
Lightweight Kernel Protection against Return-to-User Attacks“. In: Presented as part of
the 21st USENIX Security Symposium (USENIX Security 12). Bellevue, WA: USENIX,
2012, pp. 459–474 (cit. on pp. 18, 66).

[66] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell,
Rafal Kolanski, and Gernot Heiser. „Comprehensive Formal Verification of an OS
Microkernel“. In: ACM Trans. Comput. Syst. 32.1 (Feb. 2014), 2:1–2:70 (cit. on p. 80).

[67] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al.
„seL4: Formal Verification of an OS Kernel“. In: Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles. SOSP ’09. Big Sky, Montana,
USA: ACM, 2009, pp. 207–220 (cit. on p. 80).

[68] Tobias Klein. Rootkit Profiler LX. Tech. rep. www.trapkit.de, Apr. 2007 (cit. on pp. 24,
53).

[71] Butler W. Lampson. „A note on the confinement problem“. In: Commun. ACM 16.10
(Oct. 1973), pp. 613–615 (cit. on p. 37).

[72] Matthias Lange, Steffen Liebergeld, Adam Lackorzynski, AlexanderWarg, andMichael
Peter. „L4Android: a generic operating system framework for secure smartphones“.
In: Proceedings of the 1st ACM workshop on Security and privacy in smartphones
and mobile devices. ACM. 2011, pp. 39–50 (cit. on p. 5).

[73] Jochen Liedtke. On micro-kernel construction. Vol. 29. 5. ACM, 1995 (cit. on p. 5).

90 Bibliography



[74] Yuqi Lin, Liping Ding, Jingzheng Wu, Yalong Xie, and Yongji Wang. „Robust and
Efficient Covert Channel Communications in Operating Systems: Design, Implemen-
tation and Evaluation“. In: Software Security and Reliability-Companion (SERE-C),
2013 IEEE 7th International Conference on. IEEE. 2013, pp. 45–52 (cit. on p. 37).

[75] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick Fratan-
tonio, Victor Van Der Veen, and Christian Platzer. „Andrubis–1,000,000 Apps later:
A view on current Android malware behaviors“. In: Building Analysis Datasets and
Gathering Experience Returns for Security (BADGERS), 2014 Third International
Workshop on. IEEE. 2014, pp. 3–17 (cit. on p. 3).

[76] Miguel Masmano, Ismael Ripoll, Alfons Crespo, and J Metge. „Xtratum: a hypervisor
for safety critical embedded systems“. In: 11th Real-Time Linux Workshop. Citeseer.
2009, pp. 263–272 (cit. on p. 4).

[77] Paul E. Mckenney, Jonathan Appavoo, Andi Kleen, O. Krieger, Orran Krieger, Rusty
Russell, Dipankar Sarma, and Maneesh Soni. „Read-Copy Update“. In: In Ottawa
Linux Symposium. 2001, pp. 338–367 (cit. on p. 47).

[78] Larry W McVoy, Carl Staelin, et al. „lmbench: Portable Tools for Performance Analy-
sis.“ In: USENIX annual technical conference. San Diego, CA, USA. 1996, pp. 279–
294 (cit. on p. 34).

[79] Roberto Mijat and Andy Nightingale. „Virtualization is coming to a platform near you“.
In: ARM White Paper (2011) (cit. on pp. 6, 29).

[80] Jonathan K Millen. „Covert Channel Capacity.“ In: IEEE Symposium on Security and
Privacy. 1987 (cit. on p. 37).

[83] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,
Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. „seL4: from general purpose
to a proof of information flow enforcement“. In: Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE. 2013, pp. 415–429 (cit. on p. 4).

[84] Jon Oberheide and Charlie Miller. „Dissecting the android bouncer“. In: Summer-
Con2012, New York (2012) (cit. on p. 3).

[85] Keisuke Okamura and Yoshihiro Oyama. „Load-based Covert Channels Between
Xen Virtual Machines“. In: Proceedings of the 2010 ACM Symposium on Applied
Computing. SAC ’10. Sierre, Switzerland: ACM, 2010, pp. 173–180 (cit. on p. 37).

[87] Michael Peter, Matthias Petschick, Julian Vetter, Jan Nordholz, Janis Danisevskis,
and J-P Seifert. „Undermining Isolation through Covert Channels in the Fiasco.OC
Microkernel“. In: Information Sciences and Systems 2015. Springer, 2016, pp. 147–
156 (cit. on p. 84).

[88] Pointer Authentication on ARMv8.3 - Design and Analysis of the New Software
Security Instructions. Whitepaper. Qualcomm Technologies, Inc., Jan. 2017 (cit. on
p. 83).

[89] Paul J Prisaznuk. „ARINC 653 role in integrated modular avionics (IMA)“. In: 2008
IEEE/AIAA 27th Digital Avionics Systems Conference. IEEE. 2008, 1–E (cit. on p. 5).

[90] Ryan Riley, Xuxian Jiang, and Dongyan Xu. „Guest-transparent prevention of kernel
rootkits with vmm-based memory shadowing“. In: Recent Advances in Intrusion
Detection. Springer. 2008, pp. 1–20 (cit. on pp. 20, 65).

Bibliography 91



[91] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. „Hey, you,
get off of my cloud: exploring information leakage in third-party compute clouds“. In:
Proceedings of the 16th ACM conference on Computer and communications security.
ACM. 2009, pp. 199–212 (cit. on p. 37).

[92] Dan Rosenberg. „QSEE TrustZone kernel integer over flow vulnerability“. In: Black
Hat conference. 2014 (cit. on p. 26).

[93] John M Rushby. Design and verification of secure systems. Vol. 15. 5. ACM, 1981
(cit. on p. 5).

[94] Joanna Rutkowska. „Introducing blue pill“. In: The official blog of the invisiblethings.
org 22 (2006) (cit. on p. 23).

[96] Secure Virtual Machine Architecture Reference Manual. Whitepaper. AMD, May 2005
(cit. on p. 4).

[97] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. „SecVisor: A Tiny Hypervisor
to Provide Lifetime Kernel Code Integrity for Commodity OSes“. In: Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating Systems Principles. SOSP ’07.
Stevenson, Washington, USA: ACM, 2007, pp. 335–350 (cit. on pp. 4, 20, 65).

[98] Hovav Shacham. „The Geometry of Innocent Flesh on the Bone: Return-into-libc
Without Function Calls (on the x86)“. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security. CCS ’07. Alexandria, Virginia, USA: ACM,
2007, pp. 552–561 (cit. on pp. 67, 84).

[99] Di Shen. „Exploiting Trustzone on Android“. In: Black Hat conference. 2015 (cit. on
p. 26).

[102] Patrick Stewin and Iurii Bystrov. „Understanding DMA malware“. In: Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 2012, pp. 21–41
(cit. on p. 67).

[103] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and Cyrille Artho. „Memory Deduplication
As a Threat to the Guest OS“. In: Proceedings of the Fourth European Workshop
on System Security. EUROSEC ’11. Salzburg, Austria: ACM, 2011, 1:1–1:6 (cit. on
pp. 17, 37).

[104] TCG Mobile Trusted Module Specification. White Paper. Specification Version 1.0.
Trusted Computing Group, June 2008 (cit. on p. 66).

[108] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando Martins, Andrew V
Anderson, Steven M Bennett, Alain Kägi, Felix H Leung, and Larry Smith. „Intel
virtualization technology“. In: Computer 38.5 (2005), pp. 48–56 (cit. on p. 4).

[110] Timothy Vidas, Daniel Votipka, and Nicolas Christin. „All Your Droid Are Belong to
Us: A Survey of Current Android Attacks“. In: WOOT. 2011, pp. 81–90 (cit. on p. 3).

[111] Sebastian Vogl, Jonas Pfoh, Thomas Kittel, and Claudia Eckert. „Persistent data-only
malware: Function Hooks without Code“. In: Symposium on Network and Distributed
System Security (NDSS). 2014 (cit. on p. 84).

[112] Carl A Waldspurger. „Memory Resource Management in VMware ESX Server“. In:
ACM SIGOPS Operating Systems Review 36.SI (2002), pp. 181–194 (cit. on p. 17).

92 Bibliography



[113] Zhi Wang and Xuxian Jiang. „Hypersafe: A lightweight approach to provide lifetime
hypervisor control-flow integrity“. In:Security and Privacy (SP), 2010 IEEESymposium
on. IEEE. 2010, pp. 380–395 (cit. on p. 67).

[114] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-
Hartman. „Linux Security Modules: General Security Support for the Linux Kernel.“
In: USENIX Security Symposium. Vol. 2. 2002, pp. 1–14 (cit. on p. 4).

[115] Jingzheng Wu, Liping Ding, Yuqi Lin, Nasro Min-Allah, and Yongji Wang. „Xenpump:
a new method to mitigate timing channel in cloud computing“. In: Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on. IEEE. 2012, pp. 678–685
(cit. on p. 79).

[116] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang. „Security implications of
memory deduplication in a virtualized environment“. In: Dependable Systems and
Networks (DSN), 2013 43rd Annual IEEE/IFIP International Conference on. IEEE.
2013, pp. 1–12 (cit. on pp. 17, 37).

[117] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen, and
Richard Schlichting. „An Exploration of L2 Cache Covert Channels in Virtualized
Environments“. In: Proceedings of the 3rd ACM Workshop on Cloud Computing
Security Workshop. CCSW ’11. Chicago, Illinois, USA: ACM, 2011, pp. 29–40 (cit. on
p. 37).

[118] Lok-Kwong Yan and Heng Yin. „DroidScope: Seamlessly Reconstructing the OS and
Dalvik Semantic Views for Dynamic Android Malware Analysis.“ In: USENIX Security
Symposium. 2012, pp. 569–584 (cit. on p. 20).

[121] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen McCa-
mant, Dawn Song, and Wei Zou. „Practical Control Flow Integrity and Randomization
for Binary Executables“. In: Proceedings of the 2013 IEEE Symposium on Security
and Privacy. SP ’13. IEEE Computer Society, 2013, pp. 559–573 (cit. on p. 85).

[122] Ning Zhang, He Sun, Kun Sun, Wenjing Lou, and Y Thomas Hou. „CacheKit: Evading
Memory Introspection Using Cache Incoherence“. In: European Symposium on
Security and Privacy, 2016, IEEE. IEEE. 2016 (cit. on pp. 23, 54).

Online

[11] ARM Ltd. mbed TLS. Accessed: 2015-05-26. Jan. 2013. url: https://tls.mbed.
org/ (cit. on p. 61).

[19] Michael Boelen. Rootkit Hunter. Accessed: 2017-02-15. Apr. 2015. url: http://
rkhunter.sourceforge.net/ (cit. on pp. 24, 53).

[23] CAmkES. Accessed: 2017-02-15. July 2014. url: https://wiki.sel4.systems/
CAmkES (cit. on p. 80).

[26] Michael Coppola. Suterusu Rootkit: Inline Kernel Function Hooking on x86 and ARM.
Accessed: 2016-03-08. Jan. 2013. url: http://poppopret.org/2013/01/07/
suterusu-rootkit-inline-kernel-function-hooking-on-x86-and-arm/ (cit.
on p. 23).

Online 93

https://tls.mbed.org/
https://tls.mbed.org/
http://rkhunter.sourceforge.net/
http://rkhunter.sourceforge.net/
https://wiki.sel4.systems/CAmkES
https://wiki.sel4.systems/CAmkES
http://poppopret.org/2013/01/07/suterusu-rootkit-inline-kernel-function-hooking-on-x86-and-arm/
http://poppopret.org/2013/01/07/suterusu-rootkit-inline-kernel-function-hooking-on-x86-and-arm/


[30] Cubieboard 2. Accessed: 2015-05-06. url: http://cubieboard.org/model/cb2/
(cit. on pp. 12, 34).

[31] Cubietruck. Accessed: 2015-05-18. url: http://cubieboard.org/model/cb3/
(cit. on pp. 12, 72).

[32] CVE Details: The ultimate security vulnerabilty datasource. Linux Kernel: Vulnerability
Statistics. Accessed: 2016-03-29. Mar. 2016. url: https://www.cvedetails.com/
product/47/Linux-Linux-Kernel.html?vendor_id=33 (cit. on pp. 19, 24, 53).

[33] CVE Details: The ultimate security vulnerabilty datasource. Microsoft Windows :
Security Vulnerabilities. Accessed: 2017-02-10. Feb. 2017. url: https : / / www .
cvedetails . com / vulnerability - list / vendor _ id - 26 / product _ id - 3435 /

Microsoft-Windows.html (cit. on p. 19).

[34] CVE Details: The ultimate security vulnerabilty datasource. XEN : Security Vulner-
abilities. Accessed: 2017-02-10. Feb. 2017. url: https://www.cvedetails.com/
vulnerability-list/vendor_id-6276/XEN.html (cit. on p. 19).

[39] denx - software engineering. Das U-Boot – the Universal Boot Loader. Accessed:
2016-04-29. Apr. 2016. url: http://www.denx.de/wiki/U-Boot (cit. on p. 26).

[40] Hitesh Dharmdasani. Android-Rootkit. Accessed: 2015-04-13. 2015. url: https:
//github.com/hiteshd/Android-Rootkit (cit. on pp. 23, 60).

[46] Fiasco.OC website. Accessed: 2016-09-05. June 2016. url: http://os.inf.tu-
dresden.de/fiasco/ (cit. on pp. 5, 39, 47).

[47] Michael Flossman. ViperRAT: The mobile APT targeting the Israeli Defense Force
that should be on your radar. Accessed: 2017-04-03. Lookout, Inc. Feb. 2017 (cit. on
p. 3).

[51] Dan Goodin. Found: Quite possibly the most sophisticated Android espionage app
ever. Accessed: 2017-04-10. Apr. 2017. url: https://arstechnica.com/security/
2017/04/found-quite-possibly-the-most-sophisticated-android-espionage-

app-ever/ (cit. on p. 3).

[54] Sebastian Guerrero. Getting sys_call_table on Android. Mar. 2013. url: https:
//www.nowsecure.com/blog/2013/03/13/syscalltable- android- playing-

rootkits/ (cit. on p. 57).

[60] In-kernel memory compression. Accessed: 2016-05-26. url: https://lwn.net/
Articles/545244/ (cit. on p. 28).

[61] iOS Security (iOS 9.3 or later). Accessed: 2016-10-11. May 2016. url: https://www.
apple.com/business/docs/iOS_Security_Guide.pdf (cit. on p. 5).

[69] L4Linux - Running Linux on top of L4. Accessed: 2017-02-15. May 2014. url: http:
//l4linux.org (cit. on pp. 5, 80).

[70] L4Re Runtime Environment. Accessed: 2017-02-15. May 2014. url: http://os.inf.
tu-dresden.de/L4Re (cit. on pp. 39, 47, 80).

[81] mncoppola. An LKM rootkit targeting Linux 2.6/3.x on x86(_64), and ARM. Accessed:
2015-04-13. Sept. 2014. url: https://github.com/mncoppola/suterusu (cit. on
pp. 54, 55, 59, 60).

94 Bibliography

http://cubieboard.org/model/cb2/
http://cubieboard.org/model/cb3/
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-3435/Microsoft-Windows.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-3435/Microsoft-Windows.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-3435/Microsoft-Windows.html
https://www.cvedetails.com/vulnerability-list/vendor_id-6276/XEN.html
https://www.cvedetails.com/vulnerability-list/vendor_id-6276/XEN.html
http://www.denx.de/wiki/U-Boot
https://github.com/hiteshd/Android-Rootkit
https://github.com/hiteshd/Android-Rootkit
http://os.inf.tu-dresden.de/fiasco/
http://os.inf.tu-dresden.de/fiasco/
https://arstechnica.com/security/2017/04/found-quite-possibly-the-most-sophisticated-android-espionage-app-ever/
https://arstechnica.com/security/2017/04/found-quite-possibly-the-most-sophisticated-android-espionage-app-ever/
https://arstechnica.com/security/2017/04/found-quite-possibly-the-most-sophisticated-android-espionage-app-ever/
https://www.nowsecure.com/blog/2013/03/13/syscalltable-android-playing-rootkits/
https://www.nowsecure.com/blog/2013/03/13/syscalltable-android-playing-rootkits/
https://www.nowsecure.com/blog/2013/03/13/syscalltable-android-playing-rootkits/
https://lwn.net/Articles/545244/
https://lwn.net/Articles/545244/
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://l4linux.org
http://l4linux.org
http://os.inf.tu-dresden.de/L4Re
http://os.inf.tu-dresden.de/L4Re
https://github.com/mncoppola/suterusu


[82] Nelson Murilo and Klaus Steding-Jessen. chkrootkit - locally checks for signs of
a rootkit. Accessed: 2017-02-15. Apr. 2015. url: http://www.chkrootkit.org/
(cit. on pp. 24, 53).

[86] PandaBboard Technical Specs. Accessed: 2017-02-15. May 2014. url: http://
pandaboard.org/content/platform (cit. on p. 12).

[95] sd and devik. Linux on-the-fly kernel patching without LKM. Accessed: 2017-02-15.
Dec. 2001. url: http://phrack.org/issues/58/7.html (cit. on pp. 54, 55).

[100] Steven Sinofsky. Reducing runtime memory in Windows 8. Accessed: 2017-02-14.
Oct. 2011. url: https://blogs.msdn.microsoft.com/b8/2011/10/07/reducing-
runtime-memory-in-windows-8/ (cit. on p. 17).

[101] Lennart Sorensen. TI SMC call. Accessed: 2016-05-12. Texas Instruments. 2015.
url: https://git.ti.com/ti-linux-kernel/ti-linux-kernel/blobs/master/
arch/arm/mach-omap2/omap-headsmp.S\#line60 (cit. on p. 26).

[105] Trend Micro Inc.OSSEC. Accessed: 2017-02-15. Apr. 2015. url: http://www.ossec.
net/?page_id=19 (cit. on p. 53).

[106] trimpsyw. adore-ng - linux rootkit adapted for 2.6 and 3.x. Accessed: 2015-04-13.
Oct. 2014. url: https://github.com/trimpsyw/adore-ng (cit. on pp. 23, 59).

[107] truff. Infecting loadable kernel modules. Accessed: 2017-02-15. Aug. 2003. url:
http://phrack.org/issues/61/10.html (cit. on pp. 54, 55).

[109] unixfreaxjp. MMD-0028-2014 - Fuzzy reversing a new China ELF "Linux/XOR.DDoS".
Accessed: 2016-03-08. Sept. 2014. url: http://blog.malwaremustdie.org/2014/
09/mmd-0028-2014-fuzzy-reversing-new-china.html (cit. on pp. 23, 55).

[119] dong-hoon you. Android platform based linux kernel rootkit. Accessed: 2017-02-15.
Apr. 2011. url: http://phrack.org/issues/68/6.html (cit. on pp. 54, 55, 57, 59).

[120] Zeppoo. Zeppoo - Anti Rootkit Software. Accessed: 2015-05-21. May 2013. url:
http://sourceforge.net/projects/zeppoo/ (cit. on p. 53).

[123] Yanmin Zhang. Hackbench. Accessed: 2016-09-06. 2008. url: https://people.
redhat.com/mingo/cfs-scheduler/tools/hackbench.c (cit. on p. 34).

Online 95

http://www.chkrootkit.org/
http://pandaboard.org/content/platform
http://pandaboard.org/content/platform
http://phrack.org/issues/58/7.html
https://blogs.msdn.microsoft.com/b8/2011/10/07/reducing-runtime-memory-in-windows-8/
https://blogs.msdn.microsoft.com/b8/2011/10/07/reducing-runtime-memory-in-windows-8/
https://git.ti.com/ti-linux-kernel/ti-linux-kernel/blobs/master/arch/arm/mach-omap2/omap-headsmp.S\#line60
https://git.ti.com/ti-linux-kernel/ti-linux-kernel/blobs/master/arch/arm/mach-omap2/omap-headsmp.S\#line60
http://www.ossec.net/?page_id=19
http://www.ossec.net/?page_id=19
https://github.com/trimpsyw/adore-ng
http://phrack.org/issues/61/10.html
http://blog.malwaremustdie.org/2014/09/mmd-0028-2014-fuzzy-reversing-new-china.html
http://blog.malwaremustdie.org/2014/09/mmd-0028-2014-fuzzy-reversing-new-china.html
http://phrack.org/issues/68/6.html
http://sourceforge.net/projects/zeppoo/
https://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
https://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c




Acronyms

ARM Advanced Risk Machines
ASID Address Space IDentifier
CPSR Current Processor Status Register
CPU Central Processing Unit
FPU Floating Point Unit
GIC Generic Interrupt Controller
HV Hyper Visor
IDS Instrusion Detection System
IPA Intermediate Physical Address
IPS Instrusion Prevention System
KIP Kernel Info Page
KSM Kernel Same-Page Merging
KVM Kernel-based Virtual Machine
LKM Loadable Kernel Module
LLC Last Level Cache
MMU Memory Management Unit
OS Operating System
PC Programm Counter
PID Process IDentifier
PL Privilege Level
PT Page Tables
RCU Read Copy Update
SGX Software Guard Extensions
SMP Symmetric Multi Processing
SOC System On Chip
TCB Trusted Computing Base
TLB Translation Lookaside Buffer
TPM Trusted Platform Module
TZ Trust Zone
UP Uni Processing
UTCB User-level Task Control Block
VM Virtual Machine
VMI Virtual Machine Introspection
VMID Virtual Machine IDentifier
VMM Virtual Machine Monitor
VCPU Virtual CPU
VE Virtualization Extensions

97





List of Figures

1.1 Proposed security architecture based on a statically partitioned HV . . 7

2.1 ARMv7 Processor Modes. . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Translation levels on systems with the ARM VE. The stage 1 PT (ref-

erenced by the TTBR register) is under VM control and translates from
GVAs to IPAs, whereas the stage 2 PT (referenced by the VTTBR register)
is under HV control and translates the IPAs to HPAs. . . . . . . . . . . 15

4.1 The considered threat model. . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Detectability of our rootkit in reactive execution based on time drift. . . 35

5.1 An effectively isolating microkernel can prevent data from being passed
between compartments, even if both of them have been compromised
by an adversary (Fig. 5.1a). If the microkernel is ineffective in enforcing
this isolation, data may be first passed between compartments and
then leaked out to a third party in violation of a security policy prohibiting
this (Fig. 5.1b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Mapping tree layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Object placement in slabs. Depending on the order in which objects

are created and destroyed, the number of slabs used to accommodate
them can vary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Transmission in the slab channel. The sender fills or leaves empty
the last spot in a slab; the receiver reads the value by trying to move
an object into that spot and checking the return code indicating the
success or failure of the operation. . . . . . . . . . . . . . . . . . . . . 44

6.1 System architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1 Operation of ret2dir and ret2usr attacks on the Linux kernel. . . . . . . 67
7.2 A generic stage 2 PT memory layout. All entries are writable and

executable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3 The two different stage 2 PT layouts as enforced by our execution

prevention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

99





List of Tables

2.1 Active PT for different processor modes. The TTBR is a banked regis-
ter. The secure world and the non-secure world have their dedicated
instance. As HTTBR and VTTBR are only used in the non-secure world,
they do not need to be banked. . . . . . . . . . . . . . . . . . . . . . . 16

4.1 lmbench and hackbench benchmarking results (lmbench benchmark
results are in microseconds and hackbench results are in seconds). . 35

5.1 Capacity results for the three basic channels (PTC, SC and MTC with
different numbers of channels). . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Throughput depending on the number of transmission channels. . . . 49
5.3 Throughput under load. Self-synchronized transmission with the MTC

(8 channels). Sender, receiver, and the additional load all run on the
same CPU core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 List of existing rootkits that target ARM-based devices and the features
they use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 A list of common manipulations. The Suterusu rootkit and a PoC rootkit
perform a number of manipulations. Our detector is capable to detect
each one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Object reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Runtime of tools to extract specific information from the memory snapshot. 61
6.5 Benchmark results for the different system configurations . . . . . . . 63

7.1 LMBench results on the Cubieboard2 . . . . . . . . . . . . . . . . . . 73
7.2 Dhrystone benchmark on the Cubieboard2 . . . . . . . . . . . . . . . 73
7.3 Application benchmarks on the different scenarios (time in minutes -

lower is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

101




	Titlepage
	Publications
	Abstract
	I Preliminaries & Assumptions
	1 Introduction
	1.1 Thesis Motivation
	1.1.1 Problem Overview
	1.1.2 Thesis Statement

	1.2 Thesis Contribution
	1.3 Thesis Structure

	2 ARM Processor Architecture
	2.1 Processor Modes
	2.2 Memory Layout
	2.3 Coprocessor Interfaces
	2.4 TrustZone
	2.5 Virtualization Extensions

	3 Related Work
	3.1 Security of Commodity Systems
	3.2 Virtualization-based Intrusion Detection and Prevention


	II Attacks
	4 Hardware Virtualization-assisted Rootkits
	4.1 Threat Model
	4.2 Entering PL2
	4.3 Hypervisor-based Rootkit Requirements
	4.3.1 Resilience
	4.3.2 Evading Detection
	4.3.3 Availability

	4.4 Design Criteria & Implementation
	4.4.1 Initialization Phase
	4.4.2 Runtime Phase

	4.5 Evaluation
	4.5.1 Startup
	4.5.2 Benchmarks
	4.5.3 Clock Drift


	5 Breaking Isolation through Covert Channels
	5.1 Attack Model
	5.2 Fiasco.OC Memory Management
	5.2.1 Kernel Allocators
	5.2.2 Hierarchical Address Spaces

	5.3 Unintended Channels
	5.3.1 Allocator Information Leak
	5.3.2 Mapping Tree Information Leak

	5.4 Channel Construction
	5.4.1 Page Table Channel
	5.4.2 Slab Channel
	5.4.3 Mapping Tree Channel

	5.5 Channel Optimizations
	5.6 Transmission Modes
	5.7 Evaluation
	5.7.1 Clock-synchronized Transmission
	5.7.2 Self-synchronized Transmission
	5.7.3 Impact of System Load



	III Defenses
	6 Uncovering Mobile Rootkits in Raw Memory
	6.1 Mobile Rootkits
	6.2 System Architecture
	6.3 Rootkit Detector
	6.3.1 Checking the Kernel's Integrity
	6.3.2 Reconstructing Hidden Kernel Objects

	6.4 Evaluation
	6.4.1 Detector Efficacy
	6.4.2 Kernel Object Reconstruction
	6.4.3 Application Benchmarks


	7 Hypervisor-based Execution Prevention
	7.1 Assumptions and Threat Model
	7.1.1 Assumptions
	7.1.2 Considered Attacks
	7.1.3 Threat Model

	7.2 Execution Prevention
	7.2.1 Design Goals
	7.2.2 Definition

	7.3 Implementation
	7.3.1 XN Enforcement
	7.3.2 TLB Management

	7.4 Evaluation
	7.4.1 Low-level Benchmarks
	7.4.2 Application Benchmarks



	IV Epilogue
	8 Conclusions
	9 Future Work
	Bibliography
	Acronyms




