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Abstract

This work studies robust learning in dynamic wireless environments. Modern wireless

data networks are complex and modeling their behavior accurately is difficult. As a

result, machine learning and artificial intelligence have been making significant inroads into

wireless networks. State-of-the-art machine learning algorithms (e.g., neural networks)

assume a stationary learning environment and they generally require large training sets.

However, modern radio access networks (RANs) are dynamic, and by the time a large

training set is collected the environment may have changed so much as to render the

learning useless. Therefore, in dynamic networks learning frameworks must work with

small training sets. Assuming that each training sample is informative, the lack of a

large training set results in uncertainty about the underlying phenomenon/function to

be learned. In light of these facts, we study “hybrid” learning approaches in which the

above-mentioned uncertainty is combated by the inclusion of model based prior knowledge

in the proposed learning frameworks. In Chapter 2 we study cell-load approximation in

RANs using a small sample set and a robust learning framework armed with model based

prior knowledge. To this end, we study the nonlinear load-coupling model and prove some

salient properties of cell-load as a function of user rates. We show how this prior knowledge

can be used to decrease the uncertainty resulting from a small training set. In Chapter 3

we study robust multiuser detection in dynamic wireless networks in which users transmit

sporadically. Though it is known that the optimal multiuser detector is nonlinear, learning

this detector using conventional methods requires a large number of training samples.

Additionally, all nonlinear detectors are sensitive to small changes in the environment.

In modern wireless applications, such as machine-type communications, users transmit

sporadically and as a result performance of nonlinear detectors may deteriorate. To address

this issue, we propose a novel online learning framework that combines the expressive

power of a nonlinear filter with the robustness of a linear filter. The proposed “sum

filter” is designed in a reproducing kernel Hilbert space (RKHS) constructed by taking

the direct sum of an RKHS associated with a linear kernel and an RKHS associated with

a nonlinear kernel. We derive the nonlinear kernel from the multiuser detection model

by exploiting the connection between the optimal nonlinear filter and certain RKHSs.

Working in RKHSs and, in general, Hilbert spaces allows for low-complexity projection
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based algorithms which are well-known for their robustness to noise and their numerical

stability. In Chapter 4 we use the celebrated projection onto convex sets (POCS) technique

to learn probability density functions (pdfs) in a Hilbert space. Here again, we combine

a small training sample set with prior knowledge based on general properties of pdfs. We

then show how to apply our learning framework to distributed multiuser detection in a

cloud RAN network.
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Zusammenfassung

Diese Arbeit untersucht robustes Lernen in dynamischen Umgebungen der drahtlosen

Datenkommunikation. Moderne drahtlose Datennetze sind komplex und die genaue Mo-

dellierung ihres Verhaltens ist schwierig. Infolgedessen haben maschinelles Lernen und

künstliche Intelligenz einen bedeutenden Einzug in drahtlose Netzwerke gehalten. Mo-

derne Lernalgorithmen (z.B. neuronale Netze) setzen aber eine stationäre Lernumgebung

voraus und erfordern in der Regel große Trainingssätze. Funkzugangsnetze (RANs) sind

jedoch dynamisch, und wenn ein großer Trainingssatz gesammelt wurde, kann sich die

Umgebung so stark verändert haben, dass das gelernte Modell unbrauchbar wird. Daher

muss in dynamischen Netzwerken mit kleinen Trainingssätzen gearbeitet werden. Unter der

Annahme, dass jeder Trainingsdatenpunkt informativ ist, führt das Fehlen eines großen

Trainingssatzes zu Unsicherheit über das zu lernende Phänomen/Funktion. Vor diesem

Hintergrund untersucht diese Arbeit “hybride” Lernansätze, bei denen die oben erwähnte

Unsicherheit durch die Einbeziehung von modellbasiertem Vorwissen reduziert wird. In

Kapitel 2 wird die Approximation der Zellenlast in RANs unter Verwendung eines klei-

nen Trainingssatzes und einer robusten Lernmethode untersucht, das mit modellbasiertem

Vorwissen ausgestattet ist. Zu diesem Zweck wird das nichtlineare Lastkopplungsmodell

untersucht und einige hervorstechende Eigenschaften der Funkzellenlast als Funktion der

Benutzerraten bewiesen. Es wird gezeigt wie dieses Vorwissen genutzt werden kann, um

die aus einem kleinen Trainingssatz resultierende Unsicherheit zu verringern. In Kapitel 3

wird die robuste Mehrbenutzer-Demodulation in dynamischen drahtlosen Netzwerken, in

denen Benutzer sporadisch senden, untersucht. Obwohl bekannt ist, dass der optimale

Mehrbenutzer-Demodulator nichtlinear ist, erfordert das Erlernen dieses Detektors mit

herkömmlichen Methoden einen großen Trainingssatz. Darüber hinaus sind alle nichtlinea-

ren Detektoren empfindlich in Bezug auf kleine Änderungen in ihrer Umgebung. In mo-

dernen drahtlosen Anwendungen, wie z.B. in der maschinellen Kommunikation, senden die

Benutzer sporadisch und als Folge davon kann sich die Leistung der nichtlinearen Detek-

tors verschlechtern. Um dieses Problem zu lösen, wird eine neuartige Online-Lernmethode

vorgeschlagen, das die Ausdruckskraft eines nichtlinearen Filters mit der Robustheit eines

linearen Filters kombiniert. Der vorgeschlagene “Summenfunktion” ist in einem reprodu-

zierenden Hilbertraum (RKHS) konstruiert, der aus der direkten Summe eines RKHS, der
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mit einem linearen Kernel assoziiert ist, und eines RKHS, der mit einem nichtlinearen

Kernel assoziiert ist, besteht. Der nichtlineare Kernel wird aus dem Mehrbenutzermodell

abgeleitet, indem eine Zusammenhang zwischen dem optimalen nichtlinearen Filter und

gewissen RKHSs ausgenutzt wird. RKHSs und im Allgemeinen Hilberträumen ermöglichen

die Konstruktion von auf Projektion basierenden Algorithmen mit geringer Komplexität,

die für ihre Robustheit gegenüber Rauschen und ihre numerische Stabilität bekannt sind.

In Kapitel 4 wird die berühmte Projektion auf konvexe Mengen (POCS) Methode ver-

wendet, um Wahrscheinlichkeitsdichtefunktionen in einem Hilbertraum zu lernen. Auch

hier wird ein kleiner Trainingssatz mit modellbasierten Vorwissen kombiniert, welches auf

den allgemeinen Eigenschaften von Wahrscheinlichkeitsdichtefunktionen basiert. Anschlie-

ßend wird gezeigt, wie diese Lernmethode auf die verteilte Mehrbenutzer-Demodulation

in einem Cloud -RAN angewendet werden kann.
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1 Introduction

1.1 Motivation

Driven by new applications and advances in electronics, commercial cellular wireless net-

works have evolved significantly since their humble beginnings in late 1970s. The internet

started out being delivered by wired phone and cable networks. But nowadays internet and

high-speed data is integral to wireless networks. As the growth of wireless infrastructure

allows customers to enjoy ever higher data rates and connectivity, the modeling of these

networks is becoming harder. Users are almost always connected to a wireless network,

but data transmission in many applications (e.g., internet surfing and video streaming) is

bursty in nature and it is initiated randomly. It is well known that, in contrast to voice

traffic, data traffic within a small area (e.g., a cell or a sector) is hard to model and predict.

Models allow engineers to study network behavior and optimize future behavior according

to objectives, such as high data capacity, high connectivity, low transmission delay, and

low energy consumption, to name a few. Unfortunately, the evolution of some aspects of

wireless networks has been faster than the development of accurate models for them. The

reason is that many models are developed based on our understanding of how networks

react to user behavior in the real world. However, behavior of users (e.g., initiation of a

video stream) is difficult to model, especially in new data applications. The lack of accu-

rate models is galling enough for network providers and engineers to look for model-less

data-driven explanation of phenomenon in wireless networks. Luckily, the tools required

in this case, i.e., machine learning and artificial intelligence (AI) have seen an unprece-

dented rise in recent years due to increase in computational power. To some extent, the

lack of accurate models is being compensated by the computation power of AI machines

and availability of historical network performance data.

Machine learning has been around since the advent of function approximation or pa-

rameter estimation by computers. However, recently the terms “machine learning” and

AI have been seized by neural networks, especially deep learning networks. Deep learning

combined with big data has allowed engineers to solve forecasting and complex optimiza-

tion problems in various fields, without necessarily understanding some aspects of these

frameworks mathematically. As a result, deep learning is gradually replacing model-based
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1 Introduction

approximation and optimization in many engineering fields. A typical example is that of

energy optimization in Google’s data centers [EG16]. However, it is generally accepted in

the machine learning community that neural networks and deep learning require large sets

of offline training data [Mar18]. This data can be in some cases shared and reused, and

huge data collection in many applications is not a problem. In fact it has been observed

that, for sufficiently large data sets, deep neural networks outperform classical (nonneural

network based) approximation algorithms. However, in wireless networks, especially radio

access networks (RANs), large data sets may not be available. The reason is that, modern

wireless environments can be considered roughly constant only for a short time [typically

milliseconds to seconds], which can be all the time available to collect training data, train

a machine learning algorithm, and then perform the communication task. If this temporal

aspect is not taken into account, then by the time enough samples are available to train

existing state-of-the-art learning algorithms, the environment may have changed so dras-

tically as to render the training set useless for the current propagation conditions, even if

we ignore the complexity of the training process which can be somewhat compensated by

extra computational power.

1.2 Contributions and Outline

This thesis studies “hybrid” learning techniques in the sense that the gap in knowledge

about the underlying phenomenon, resulting from the unavailability of a large training set

in a dynamic wireless network, is filled by extracting prior knowledge from known models.

Such prior knowledge may consist of properties, such as monotonicity, continuity, positiv-

ity, and membership to certain sets etc., of the underlying function to be approximated.

In other words, we use well-known models only to extract reliable qualitative information

and fundamental insights about the phenomenon that we are interested in learning. Note

that explicit inclusion of prior knowledge in current learning frameworks is in fact not

always encouraged or advisable. This is especially true for deep learning neural networks

due to a lack of sufficient mathematical understanding of some aspects of these frame-

works [Mar18]. Nevertheless, as assumed in these frameworks, if the size of the data set

is sufficiently large then one can reasonably expect that a powerful learning machine can

infer this prior knowledge from the data. In fact explicit inclusion of prior knowledge can

make neural networks inflexible [Mar18]. However, in situations where a large data set is

not available, such as those considered in this thesis, prior knowledge should be included

if it is accurate, and if its efficacy in learning is clearly understood.

In the following we present the main contributions of this thesis that are divided into

three chapters. In this thesis we aim to be self-contained and we provide mathematical
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1.2 Contributions and Outline

proofs wherever they are necessary. Important aspects of the presented learning tech-

niques are that they are numerically robust, they have a low complexity, and they are

well-understood mathematically. From an algorithmic point-of-view, the proposed approx-

imation techniques are deterministic and they are particular cases of classical bounded error

estimation [Wit68,Sch68,NG95] (also known as set-membership estimation [MV91,Cas02]

and robust estimation [MT85]) (which is presented briefly in Section 1.7). Simulations are

performed at the end of each chapter and comparisons with other state-of-art methods are

done wherever appropriate.

In Chapter 2 we study the problem of cell-load approximation in wireless networks.

Cell-load forecast is an important part of network optimization because it provides an

estimate of how much cell traffic will be seen in a given time period as a function of, e.g.,

user rate demand. However, learning of the cell-load in RANs has to be performed within

a short time period. Therefore, we propose a learning framework that is robust against

uncertainties resulting from the need for learning based on a relatively small training

sample set. To this end, we incorporate model based prior knowledge about the cell-load

in the learning framework. For example, an inherent property of the cell-load is that it is

monotonic in downlink (data) rates. To obtain additional prior knowledge, we first study

the feasible rate region, i.e., the set of all vectors of user rates that can be supported by

the network. We prove that the feasible rate region is compact. Moreover, we show the

existence of a Lipschitz function that maps feasible rate vectors to cell-load vectors. With

this prior knowledge in hand, we propose a learning framework which has better robustness

and accuracy than standard multivariate learning techniques, especially for small training

sample sets.

The work presented in Chapter 2 has been partially presented in the conference paper

[ACS18] and in its entirety in the journal paper [ACS19].

In Chapter 3 we tackle the problem of robust multiuser detection that has been a sub-

ject of recent research in the context of non-orthogonal multiple access systems (NOMA).

It is known that the optimal multiuser detector (in terms of the bit error rate of the desired

user) is the maximum a posteriori (MAP) filter. Due to the impracticality of the optimal

MAP filter [it requires complete knowledge of user channels and noise power], various

suboptimal linear and nonlinear receivers have been proposed in the literature. Nonlinear

receivers outperform linear receivers due to their higher resolution, but they lack the ro-

bustness of linear receivers in the presence of sporadic interference. We develop an online

learning based partially linear (or partially nonlinear) receiver consisting of a linear and

a nonlinear component, where the amount of nonlinearity can be adapted based on the

performance of the desired user. Since we work with relatively small training sample sets,

we study the multiuser detection model to incorporate prior knowledge. In particular, we

3



1 Introduction

show that the optimal MAP filter (which is nonlinear) belongs to a certain reproducing

kernel Hilbert space (RKHS), and therefore we design the nonlinear component mentioned

above in this RKHS. We then extend this RKHS by adding linear functions to it which

gives rise to a sum RKHS of partially linear functions. We propose an online learning

framework that has low complexity and it does not require any intermediate parameter

estimation [e.g., user channels] which is a limitation of most of the previous studies.

The work presented in Chapter 3 has been partially published in the conference paper

[ALCYS18] and the book chapter [DCYS19]. The previously unpublished parts in this

chapter are under preparation for submission to a journal [ACS21].

In Chapter 4 we present a novel method to learn probability density functions (pdfs).

Our approximation method is based on projection onto convex sets (POCS) technique,

which means that our method is numerically robust. The convex sets are based on prior

knowledge about pdfs and information extracted from a relatively small sample set. Our

proposed method can work with relatively small number of training sample sets and there-

fore it is suited to real-time applications in dynamic wireless networks. To show the efficacy

of our method, we apply our framework to distributed multiuser detection in a cloud-radio

access network (CRAN).

The work presented in Chapter 4 has been partially published in the conference paper

[ACUS18].

Further Work: The following publications are not part of this thesis.

• The conference publication [ACS16] addresses the problem of minimizing the en-

ergy consumption in large-scale ultra-dense networks (UDNs) by means of a joint

optimization of RAN and multi-hop wireless backhaul network. The objective is to

operate the network with the smallest set of base stations while meeting the qual-

ity of service (QoS) requirements of users. We first pose the optimization problem

as a convex optimization problem. We use a Lagrangian decomposition method to

separate the problem in smaller subproblems, which are then solved using minimax

primal-dual optimization in a distributed manner. By using the proposed method

both the primal and dual problems can be solved at each base station with minimal

information exchange between the neighboring base stations.

• The multiuser detection scheme from Chapter 3 is demonstrated in [MACKS20] in

a joint work with Matthias Mehlhose. In a hardware-in-a-loop system, we perform

comparisons with minimum mean square error (MMSE) and SIC receivers in terms

of symbol error rate (SER) and complexity.
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1.2 Contributions and Outline

• In the coauthored study with Qi Liao [LAS16] we develop an optimization frame-

work for self-organizing networks (SON). The objective is to ensure efficient network

operation by a joint optimization of different SON functionalities, which includes

capacity, coverage and load balancing. Based on the axiomatic framework of mono-

tone and strictly subhomogeneous functions, we formulate an optimization problem

for the uplink and propose a two-step optimization scheme using fixed point iter-

ations: i) per base station antenna tilt optimization and power allocation, and ii)

cluster-based base station assignment of users and power allocation. We then con-

sider the downlink, which is more difficult to handle due to coupled variables, and

show downlink-uplink duality relationship. As a result, a solution for the downlink

is obtained by solving the uplink problem. Simulations show that our approach

achieves a good trade-off between coverage, capacity, and load balancing.
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1.3 Notation and Abbreviations

1.3 Notation and Abbreviations

We use the following notation and abbreviations:

Notation

R,R≥0,R>0 the set of reals, non-negative, and posotive reals, respec-

tively

Z≥0 the set of non-negative integers

N the set of natural numbers (excluding zero)

∥ · ∥ Euclidean norm in Rm or Cm

∥ · ∥∞ l∞ norm in Rm

N1, N2 {N1, N1 + 1, N1 + 2, . . . , N2} ⊂ N
x ∈ X x is an element of X
Y ⊂ X Y is a subset of X
(xn)n∈N ⊂ X a sequence of elements of X
BX (xo, δ) the open-ball of radius δ > 0 centered at xo ∈ X
N (µ, σ) Gaussian (normal) distribution with mean µ and variance σ

PC(x) projection of x onto C

P[A] probability of an event A
card(X ) cardinality of X
span X the linear span of X
X × Y Cartesian product of the sets X and Y
X n nth Cartesian product of X
E[X] the expected value of the random variable X

minX the smallest element of X
maxX the largest element of X
0 the all-zero vector in Rm

(x)+ coordinate-wise max {x,0}, x ∈ Rm

x ≤ y coordinate-wise inequality

inf X the infimum of X
supX the supremum of X
log(·) The base 2 logarithm log2(·)
[x]i or xi the i-th entry of a vector x

[G]i,j the entry in the ith row and jth column of matrix G

]a, b[, [a, b] an open and a closed interval, respectively

]a, b], [a, b[ half-open intervals, which do not contain a or b, respectively

:= equal by definition
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1 Introduction

Abbreviations

APSM adaptive projected subgradient method

AWGN additive white gaussian noise

BER bit error rate

BPSK binary phase-shift keying

LIMF Lipschitz monotone functions

LTE long term evolution

MAP maximum a posteriori

MMSE minimum mean-squared error

OFDMA orthogonal frequency division multiple access

POCS projection onto convex sets

QPSK quadrature phase-shift keying

RAN radio access network

RKHS reproducing kernel Hilbert space

RRM radio resource management

SNR signal-to-noise-ratio

SINR signal-to-interference-plus-noise-ratio

SIC successive interference cancellation

QP quadratic program

LP linear program

1.4 Some Results from Real Analysis

Let S be a normed vector space equipped with a norm ∥ · ∥S and its induced metric

dS : S × S → R≥0 : (so, s) ↦→ ∥so − s∥S . We denote by BS(so, δ) := {s ∈ S|∥s− so∥S < δ}
the open-ball of radius δ > 0 centered at so ∈ S. A sequence (sn)n∈N ⊂ S is said to

converge (in norm) to s ∈ S if ∥sn − s∥S → 0 [Lue97, Page 26]. We now define the

concepts of boundedness, closedness, and compactness.

Definition 1.1 (Boundedness, Closedness, and Compactness). [Lue97, Chapter 2] Con-

sider a set K in the normed space (S, ∥ · ∥S).

a). Boundedness: K is bounded if

(∃L ≥ 0) (∀k ∈ K) ∥k∥S ≤ L.

b). Closedness: K is closed if and only if every convergent sequence (kn)n∈N ⊂ K has a

limit in K.
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c). Compactness: K is compact if every sequence (kn)n∈N ⊂ K has a convergent subse-

quence with a limit in K.

In this thesis we shall consider the space C(X ,Y) of vector-valued continuous functions

mapping X ⊂ RN
>0 to Y ⊂ RM

≥0. For a function g ∈ C(X ,Y) its ith component (i ∈ 1,M)

gi : X → R≥0 is a scalar continuous function. We equip C(X ,Y) with the uniform

norm [Lue97, Page 23]

∥g∥C(X ) = sup
x∈X

max
1≤i≤M

gi(x). (1.1)

If X is compact, then the supremum is attained according to the extreme value theorem

[Mun00] because the max operation1 preserves continuity.

Definition 1.2 (Monotonic Function). Let X ⊂ RN
>0 and Y ⊂ RM

≥0. A function f : X → Y
is said to be monotonic if

(∀x ∈ X ) (∀y ∈ X ) x ≤ y ⇒ f(x) ≤ f(y).

Definition 1.3 (L-Lipschitz function). Consider f ⊂ C(X ,Y) and a vector L := [L1, L2, · · · , LM ]⊺ ∈
RM
≥0. We say that f is L-Lipschitz on X if

(∀i ∈ 1,M) (∀x ∈ X ) (∀y ∈ X ) |fi(x)− fi(y)| ≤ Li ∥x− y∥ .

Definition 1.4 (L-Lipschitz-Monotonic Function). We say that f ⊂ C(X ,Y) belongs to

the class of L-Lipschitz-Monotonic Functions (LIMF) if f is monotonic and there exists

L ∈ RM
≥0 such that f is L-Lipschitz.

Note that a function f ∈ C(X ,Y) is continuous at xo ∈ X if given ϵ > 0, there ex-

ists δxo > 0 such that (∀x ∈ BX (xo, δxo)) ∥f(x) − f(xo)∥ < ϵ. The following concept

of equicontinuity extends the concept of continuity to a collection/set F ⊂ C(X ,Y) of

functions.

Definition 1.5 (Equicontinuity of a Set). [Mun00, Chapter 7] A function set F ⊂ C(X ,Y)

is called equicontinuous at xo ∈ X if for every ϵ > 0 there exists δxo > 0 such that

(∀x ∈ BX (xo, δxo)) (∀f ∈ F) ∥f(x)− f(xo)∥ < ϵ.

1The usage of max in (1.1) is different to the component-wise max in max{x,0}. The distinction between
the two usages shall be clear by the context in which they are used.
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Furthermore, if for every ϵ > 0 there exists δ > 0 such that (∀xo ∈ X ) (∀x ∈ BX (xo, δ))

(∀f ∈ F) ∥f(x)− f(xo)∥ < ϵ, then F is said to be (uniformly) equicontinuous.

The general concept of compactness in normed vector spaces has been introduced in

Definition 1.1. The following Fact, along with Remark 1.1, characterizes compact subsets

of C(X ,Y).

Fact 1.1 (Compact subsets of C(X ,Y)). [Bro14] [Mun00, Corollary 45.5] Let X be

compact. Then,

a). Arzelá-Ascoli’s Theorem: Every bounded and equicontinuous sequence (fn)n∈N ⊂
C(X ,Y) has a convergent subsequence.

b). A set F ⊂ C(X ,Y) is compact if it is bounded, equicontinuous, and closed.

Remark 1.1 (Compactness in Rm and in C(X ,Y)). A subset of a finite dimensional Eu-

clidean space is compact if and only if it is bounded and closed (see Heine-Borel Theo-

rem [Mun00, Theorem 27.3]). However, in C(X ,Y), equicontinuity is required in addition

to boundedness and closedness for compactness.

Now, we present the concept of implicit functions.

Fact 1.2 (Implicit function theorem). [KP03] Consider sets X ⊂ RN , Y ⊂ RM , and

Z ⊂ RM , and a vector-valued continuous function g : Y × X → Z. Denote by (i ∈ 1,M)

gi : Y ×X → R the ith component of g. Now, assume that g is continuously differentiable

in a neighborhood (∃δx, δy > 0) BY(y, δy)× BX (x, δx) of a point (y,x) ∈ Y × X , and that

g(y,x) = 0. Let the Jacobian of g with respect to variables y (i.e., the first argument),

denoted by ∇g
y : Y × X → RM×M and defined as

∇g
y :=

⎛⎜⎜⎝
∂g1
∂y1

∂g1
∂y2

· · · ∂g1
∂yM

...
...

. . .
...

∂gM
∂y1

∂gM
∂y2

· · · ∂gM
∂yM

⎞⎟⎟⎠ ,

be invertible at (y,x). Then, there exists a (unique and continuous) “implicit” function

f : BX (x, δx) → BY(y, δy) such that (∀x ∈ BX (x, δx)) g(f(x),x) = 0. Furthermore, f is

continuously differentiable on BX (x, δx). The value of the Jacobian of f is given by

(∀x ∈ BX (x, δx)) ∇f
x(x) = −

(︁
∇g

y(f(x),x)
)︁−1∇g

x(f(x),x),
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where ∇g
x : Y × X → RM×N is the Jacobian of g with respect to variables x (i.e., the

second argument) given by

∇g
x :=

⎛⎜⎜⎝
∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xN

...
...

. . .
...

∂gM
∂x1

∂gM
∂x2

· · · ∂gM
∂xN

⎞⎟⎟⎠ .

1.5 Reproducing Kernel Hilbert Spaces

Reproducing kernel Hilbert spaces (RKHS) have been extensively used in diverse fields

such as statistics, probability, signal processing, and machine learning, among others

[BTA04, TSY11, STY09, Yuk15a].2 There exists a large introductory as well as detailed

literature on RKHSs; here we only cover aspects that are relevant to this thesis.

Definition 1.6 (Reproducing kernel Hilbert spaces and reproducing kernels (RKHS)).

Let U be an arbitrary nonempty set. A Hilbert space (H, ⟨·, ·⟩H) of real-valued functions

f : U → R is called a reproducing kernel Hilbert space if and only if there exists a positive

symmetric function κ : U × U → R such that:

1. (∀x ∈ U) κ(·,x) ∈ H; and

2. (∀x ∈ U)(∀f ∈ H) f(x) = ⟨f, κ(·,x)⟩H (reproducing property).

The function κ : U × U → R is known as the reproducing kernel of H and it is unique.

Strictly speaking, an RKHS should be denoted by the triplet (H, ⟨·, ·⟩H ,U), where ⟨·, ·⟩H
is given by the kernel of H, unless there is no ambiguity about the domain U . When there

is also no ambiguity about the kernel, then we can use simply H.

Remark 1.2 (RKHS Coordinate System). Note that H in Definition 1.6 is a linear/vector

space. Thinking of an arbitrary member f ∈ H as an infinite-length vector, property (2)

shows that, even if an explicit orthonormal basis for H may be unknown, the reproduc-

ing kernel of H introduces a special coordinate system which can be used to obtain the

coordinate f(x) for every x ∈ U .

Signal processing in an RKHS entails many operations involving the reproducing ker-

nel. Therefore, we now define these special functions and show how to construct RKHSs

using these functions. Since reproducing kernels are the same as positive definite ker-

nels, and it follows that every positive definite kernel is associated with a unique RKHS

[Moore-Aronszajn theorem [Aro50] [BTA04, Ch. 1]], we now formally define positive defi-

nite kernels.
2In this thesis we deal with real Hilbert spaces of real-valued functions, but Definition 1.6 can be naturally
extended to complex Hilbert spaces [BTA04].
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Definition 1.7 (Positive Definite Kernel). Let U be an arbitrary set. We say that κ :

U × U → R is a (real) positive definite kernel if the following properties hold:

a). Symmetry: (∀x ∈ U)(∀y ∈ U) κ(x,y) = κ(y,x)

b). Non-negativity: (∀M ∈ N)(∀(α1, . . . , αM ) ∈ RM )(∀(x1, . . . ,xM ) ∈ UM )

M∑︂
k=1

M∑︂
j=1

αkαjκ(xk,xj) ≥ 0.

An equivalent way of defining kernels is to require κ : U × U → R to satisfy two

properties. First, κ must be symmetric. Second, for arbitrary M ∈ N and (x1, . . . ,xM ) ∈
UM , the matrix K ∈ RM×M with the element in the ith row and jth column given by

[K]i,j := κ(xi,xj) has to be positive semi-definite.3.

In this thesis we take U as a subset of Rm or Cm and we deal with only two reproducing

kernels: the linear kernel κL : U × U → R : (u,v) ↦→ ℜ(uHv) and the Gaussian kernel

κG : U × U → R : (u,v) ↦→ exp
(︂
−∥u−v∥2

2σ2

)︂
with width σ > 0.

For a given kernel κ, we can construct a real vector space H0 with functions of the

following type:

f : U → R ∈ span{κ(·,x) : x ∈ U} =: H0; (1.2)

the sum and real scalar multiplication in H0 are defined in the usual way. To endow H0

with the structure of an inner-product space, let (M,N) ∈ N × N, (x1, . . . ,xM ) ∈ UM ,

(x′
1, . . . ,x

′
N ) ∈ UN , (α1, . . . , αM ) ∈ RM , and (β1, . . . , βN ) ∈ RN be arbitrary. Now,

consider the functions f : U → R : x ↦→
∑︁M

k=1 αk κ(x,xk) and g : U → R : x ↦→∑︁N
j=1 βj κ(x,x′

j). Clearly, both f =
∑︁M

k=1 αk κ(·,xk) and g =
∑︁M

j=1 βj κ(·,x′
j) can be

seen as arbitrary members of H0, and we can consider the inner-product

⟨f, g⟩H0
:=

M∑︂
k=1

N∑︂
j=1

αkβjκ(xk,x
′
j),

which induces the norm ∥ · ∥H0 = ⟨·, ·⟩1/2. Note that (H0, ⟨·, ·⟩H0
) is a pre-Hilbert space

that is not necessarily complete (i.e., Cauchy sequences in H0 may not have a limit in H0).

However, (H0, ⟨·, ·⟩H0
) can be completed4 to become an RKHS (H, ⟨·, ·⟩H = ⟨·, ·⟩H0

) whose

3Some authors further divide kernels into positive definite kernels and positive semi-definite kernels.
However, here we do not make this distinction.

4Let RU be the space of all functions f : U → R. Roughly speaking, completion means that we add to
H0 ⊂ RU all the functions in RU that are infinitesimally close to H0.
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members include functions of the type in (1.2). Fact 1.3 shows the remarkable property

of RKHSs that convergence in the RKHS-norm implies point-wise convergence.

Fact 1.3 (Uniform Approximation in an RKHS). [BTA04] Let (H, ⟨·, ·⟩H) be an RKHS

defined over a set U . Then for any sequence (fn)n∈N ⊂ H and a function f∗ ∈ H, if

∥fn − f∗∥H → 0 as n → ∞, then fn(x) = f∗(x) as n → ∞ for every x ∈ U .

1.5.1 Sum Spaces of Reproducing Kernel Hilbert Spaces

We now briefly summarize the ideas originally proposed in [Yuk15a]. Suppose that we

have the task of learning an unknown nonlinear function f : U → R (where U ⊂ RN )

that can be decomposed into Q distinct components, such as high and low frequency

components, linear and nonlinear components, and periodic and aperiodic components. If

each of these components can be well approximated by members of one of the Q RKHSs

(H1, ⟨·, ·⟩H1
), . . . , (HQ, ⟨·, ·⟩HQ

), we can naturally assume that the unknown function f is

a member of the sum space

H :=

⎧⎨⎩∑︂
q∈Q

fq : (∀q ∈ Q) fq ∈ Hq

⎫⎬⎭ ,

where Q = 1, Q. For fixed (strictly) positive weights [w1, . . . , wQ] =: w, we can equip the

space H+ with the (weighted) norm

(∀f ∈ H) ∥f∥2H,w := min

⎧⎨⎩∑︂
q∈Q

w−1
q ∥fq∥2Hq

: f =
∑︂
q∈Q

fq, (∀q ∈ Q) fq ∈ Hq

⎫⎬⎭ , (1.3)

and it can be shown that the resulting normed space is an RKHS (H, ⟨·, ·⟩H,w) associated

with the reproducing kernel κ :=
∑︁

q∈Qwq κq [BTA04, Page 24] [Aro50,Yuk15a].

In applications, without imposing any additional structure on (H, ⟨·, ·⟩H,w), we note

that the decomposition f =
∑︁

q∈Q fq above is not necessarily unique, which in turn

makes the computation of the norm in (1.3) challenging. One notable exception for the

non-uniqueness of the decomposition is the case where the sum space (H, ⟨·, ·⟩H,w) is

constructed with RKHSs (H1, ⟨·, ·⟩H1
), ..., (HQ, ⟨·, ·⟩HQ

) satisfying Hj ∩Hq = {0} if j ̸= q.

In this case, we have

(∀f ∈ H) ∥f∥2H,w =
∑︂
q∈Q

w−1
q ∥fq∥2Hq

(1.4)
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and

(∀f ∈ H)(∀g ∈ H) ⟨f, g⟩H,w =
∑︂
q∈Q

w−1
q ⟨fq, gq⟩Hq

. (1.5)

From a practical perspective, with these sum spaces, algorithms can perform many oper-

ations by simply considering the Hilbert spaces (H1, ⟨·, ·⟩H1
), ..., (HQ, ⟨·, ·⟩HQ

) indepen-

dently and by summing the results. By doing so, hard-to-solve optimization problems,

such as those required for the evaluation of norms in (1.3) are avoided.

1.6 Projections onto Closed-Convex Sets

Let H be a real Hilbert space with an inner-product ⟨·, ·⟩H and an induced norm ∥f∥2H =

⟨f, f⟩. For every x ∈ H, the projection PC(x) : H → C onto a nonempty closed convex set

C ⊂ H is the solution to the problem:

inf
y∈C

∥x− y∥H .

which implies that if y∗ ∈ C is a solution to the above problem, then we have

(∀y ∈ C) ∥x− y∗∥H ≤ ∥x− y∥H ,

In other words, y∗ is the best approximation of x ∈ H from C. Moreover, PC(x) always

exists and it is unique [Lue97, Theorem. 1, Chapter. 3.12]. Note that the above projec-

tion/best approximation is defined only for Hilbert spaces and it is not valid for general

normed spaces.

Next, we show projections onto some simple closed-convex sets used in this thesis.

1.6.1 Projection onto a Hyperplane

Let 0 ̸= a ∈ H and c ∈ R. A hyperplane P ⊂ H is the closed-convex set

P := {h ∈ H : ⟨h, a⟩H = c} ,

and for any function f ∈ H, its projection onto P, denoted by PP(f) : H → P , is given

as [TSY11]

PP(f) = f −
⟨f, a⟩H − c

∥a∥2
a.
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1.6.2 Projection onto a Hyperslab

A hyperslab can be thought of as the space between two hyperplanes. Let 0 ̸= a ∈ H and

(b, c) ∈ R2. A hyperslab S ⊂ H is the closed-convex set

S := {h ∈ H : b ≤ ⟨h, a⟩H ≤ c} ,

and for any function f ∈ H, its projection onto S, denoted by PS(f) : H → S, is given

as [TSY11]

PS(f) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f − ⟨f,a⟩H−c

∥a∥2 a, if ⟨f, a⟩H > c,

f − ⟨f,a⟩H−b

∥a∥2 a, if ⟨f, a⟩H < b,

f, otherwise.

1.7 Bounded Error Estimation

Consider a data set D = {(yi, xi) ∈ R2}ni=1. Suppose there exists a function f⋆ : R → R
such that yi = f⋆(xi) + ni are seen as n noisy observations of f⋆, where ni ∈ R models

noise. Function approximation entails obtaining an approximation g⋆ of f⋆ using D, such

that g⋆(x) estimates f⋆(x) optimally (in some sense).

In function approximation literature, there are various “philosophies” regarding what

constitutes an optimal approximation and how to go about obtaining one. Two well-known

types of function approximation are: stochastic/statistical estimation and bounded error

estimation. Statistical estimation assumes that yi and xi are generated by an underlying

joint probability distribution and the noise sequence (ni)i∈1,N is generated by a known

probability distribution, e.g., a white Gaussian noise distribution. One then considers

a regression model y = f⋆(x) + n, where y, x, and n are now random. In this case, a

popular notion of optimality is that an optimal g⋆ minimizes the mean squared-error

(MSE) between g⋆(x) and y. Under certain assumptions on the involved probability

distributions, the optimal approximation is given by g⋆ : x ↦→ E[Y |X = x], where the

expectation is taken over the conditional distribution p(y|x). Other popular techniques

include maximum likelihood (ML), maximum a posteriori (MAP), and general Bayesian

inference. In general, statistical estimation tends to target the average performance of the

estimator. However, in general, the involved probability distributions are unknown and

their estimation is complex, requiring large data sets.

In bounded error estimation [Wit68, Sch68, NG95] (also referred to as set-membership

estimation [MV91,Cas02] and robust estimation [MT85]), noise is assumed to be unknown

but bounded in a given norm. Note that this includes the case when the observations are
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noiseless provided that no probabilities are attached to yi and xi. In contrast to the

stochastic estimation theory, bounded error estimation is deterministic in the sense that

y, x, and n above are deterministic and g⋆(x) gives a direct estimate y⋆ of y. Of course

the approximation in this case is heavily dependent on the data set D since the prior

statistical information regarding the variables is missing. Therefore, one begins by adding

deterministic prior knowledge to the framework. First, we assume that f⋆ ∈ H, where H
is as yet arbitrary and it is referred to as the problem element set or Hypothesis space,

i.e., all members of H are possible candidates to be g⋆. Then we work with two pieces of

information:

1. Prior knowledge about f⋆ that helps us identify H. In some cases we can restrict f⋆

to smaller subsets of H as shown in Figure 1.1.

2. A sample set D and an (in some cases) an assumption on the worst-case noise bound

that helps us restrict f⋆ further to a sufficiently small F ⊂ H. The set F is referred

to as the feasible solution set.

There are various optimality criteria and algorithms in bounded error estimation literature

based on how one obtains the approximation g⋆ from the set F . Since F contains all

feasible solutions to the approximation problem, any element g ∈ F can be reasonably

seen as an approximation of f⋆ because f⋆ ∈ F . Among point-wise algorithms, i.e.,

algorithms that return a single g⋆ ∈ F , the central algorithms and the projection algorithms

are very popular. In general, bounded error estimation seeks to minimize the worst-

case approximation error under uncertainty, and in this sense it is more “conservative”

as compared to its statistical counterpart. Though this conservatism can be seen as a

drawback, in dynamic systems knowledge about underlying probability distributions is

hard to come by, and their estimation requires large data sets and complexity.
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Figure 1.1: Bounded Error Estimation: The problem element set H, the sample set D,
and the prior knowledge are used to construct the set F to which f⋆ belongs.
An approximation algorithm is then used to obtain g∗ ∈ F .
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2 Robust Cell-Load Approximation

2.1 Introduction

5G networks are based on orthogonal frequency-division multiple access (OFDMA). Due

to inter-cell interference, radio resource management (RRM) and performance optimiza-

tion in these networks are challenging. In fact, many RRM problems in OFDMA-based

networks, such as small-scale optimal assignment of time-frequency resource blocks and

powers to users, have been shown to be NP-hard [WSEA04]. Recent research has therefore

focused on the development of frameworks that capture the essence of OFDMA-based net-

works, while leading to a tractable problem formulation. An example of such a framework

is the non-linear load-coupling model proposed in [Sio12,FF12,MK10]. In this framework

the cell-load at a base station is the fraction of time-frequency resource blocks that are

used to support downlink data rates (henceforth simply rates). With this model, and

given some power budget that can be used for transmission, one can estimate the cell-load

required at each base station to support given rates.

The study in [HYS14] shows the intuitive result that the cell-load is monotonic in rates.

The interference coupling between cells implies that increasing the rates in an arbitrary cell

increases the cell-load at each base station, which also increases the inter-cell interference.1

So, it is important for a base station to have a reliable forecast of the cell-load before serving

higher rate demands from its associated users. Therefore, cell-load learning can be used

to make radio resource management and self-organizing-network (SON) algorithms more

reliable and efficient.

Cell-load learning is also a vital part of energy saving mechanisms in radio access net-

works (RANs). For instance in [SF12], the value of the cell-load is used as an input to

a simple heuristic algorithm that switches off base station antennas when the cell-load

is low. Large gains in energy savings are reported with minimal effect on the cell sum

throughput. The same concept can be used in the case of virtual base station formations

in cloud RANs [WTT+16]. In these virtual systems some power-hungry components of a

RAN (digital signal processors, line cards, fronthaul, etc.) are virtualized in a central loca-

tion, and these components can be allocated on-demand to cells according to the cell-load.

1For brevity, we assume that cells are not mutually orthogonal.
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Cell switch-off (also called carrier switch-off) is a vital energy saving mechanism which

relies heavily on robust approximation of the cell-load in various frequency bands in a base

station site comprising many cells. Therefore, given RAN data traffic (or rates) predic-

tions, the corresponding cell-load forecasts can enable us to proactively manage network

components for energy savings.

2.1.1 The Need for Robust Cell-Load Learning

Note that even though the load-coupling model has been shown to work sufficiently well

in predicting the cell-load in some scenarios [FF12, MNK+07, She15], models are only

idealizations and in general they do not capture all the intricacies of dynamic wireless

environments. Therefore, our objective is to directly learn the underlying function that

maps user rates to cell-load values given a training sample set consisting of rate vectors

and the corresponding measured cell-load vectors. To improve the learning process, we use

the load-coupling model to study some salient aspects of the relationship between rates

and the cell-load. We use these aspects as prior knowledge in the learning process.

Compared to the core network, the RAN data traffic is volatile and it shows irregular

patterns throughout a day because of the unpredictable nature of user activity and rela-

tively fast changes in the network topology [CPS+13]. Therefore, the underlying statistics

(i.e., the joint probability distribution) of rates and the corresponding cell-load values,

which are part of the so-called “learning environment”, can be assumed to remain con-

stant for only a short time. This implies that a training sample set must be acquired

during this short time before the environment changes, since otherwise the sample set can

be rendered useless for predicting future cell-load values. However, in general, the smaller

the sample set, the larger the uncertainty about the underlying phenomenon, which makes

large prediction errors on unseen rates more probable.

In uncertain situations we need robust learning methods that provide a guaranteed

worst-case performance under uncertainty. The objective of this study is to develop such

a robust learning framework. Our method is optimal in the sense that it minimizes the

worst-case or maximum error of approximation which is a classical robust optimization

problem [see, e.g., [Suk92,TW80,GW59,Cal14]]. This means that no matter how small the

training sample set is, we are guaranteed the best worst-case error. Our method involves

only low-complexity and stable mathematical operations and its theoretical properties are

very well understood. The above mentioned optimization problem is solved by explicitly

incorporating prior knowledge regarding the Lipschitz continuity of the function to be

approximated. By incorporating additional prior knowledge concerning monotonicity of

the function, we further reduce the worst-case error.
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2.1 Introduction

We point out that our framework is different to many modern conventional machine

learning frameworks that target mean or average performance rather than the worst-case

performance we consider in this study. The performance of many current complex learning

methods, such as deep neural networks (DNNs), is often dependent on the availability of a

large training (or pre-training) sample set. Including prior knowledge in these frameworks

to reduce the reliance on large training sets is not easy, and it is often discouraged [Mar18].

Even if some prior knowledge could be enforced in neural networks (as in [DRG17]), it is

theoretically unclear whether (or how) this enables neural networks to learn better. This

makes DNNs ill-suited to our setting because we consider learning with very small training

sample sets.

2.1.2 Related Work

The load-coupling model [Sio12,FF12,MK10] is commonly used when designing networks

according to the long-term evolution (LTE) standard. Recently it has also attracted

attention in the context of 5G networks [YYL+18]. More specifically, the load-coupling

model has been used in various optimization frameworks dealing with different aspects

of network design including data offloading [HYS14], proportional fairness [GECS+16],

energy optimization [ACS16,PCS16,RSF14], and load balancing [SY12]. In the context of

energy savings, and by using the theory of implicit functions [KP03], the study in [RSF14]

shows that there exists a continuously differentiable function relating user associations

with the base stations to the cell-load. In contrast to [RSF14], the user association is

assumed to be fixed in this study; we study the relationship between downlink rates

and the cell-load and we incorporate this prior knowledge in our learning framework.

Previous studies dealing with cell-load estimation, for instance, in the context of data

offloading [HYS14] and maximizing the scaling-up factor of traffic demand [SY15], have

used load coupling model driven methods that require information about channel gains,

powers, etc.. Most of these methods employ iterative algorithms to estimate the cell-load

for given downlink rates and other parameters by exploiting the fact that the cell-load

is the fixed point of the standard interference mapping [Yat95] that is constructed using

the network information. In contrast, we directly learn the underlying function that maps

feasible rates, i.e., downlink data rates that can be supported by the network, to the

observed cell-load in the network using a sample training set and prior knowledge. Our

framework, therefore, does not require information about powers, channels, etc.

Incorporating prior knowledge in machine learning algorithms for multivariate data2

with arbitrary dimensions is difficult, and most of the well-known algorithms either do not

2Multivariate data in this context means that the input argument (or domain) of the function to be
approximated has an arbitrary dimension.
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2 Robust Cell-Load Approximation

preserve the “shape” (i.e., known properties such as monotonicity, continuity, etc.) of the

underlying function or they become too complex for high-dimensional data [Bel05]. An

inherent property of the cell-load is that it is monotonic in rates. The study in [Kot16]

shows that monotonicity is difficult to incorporate in popular online learning methods

even in the case of univariate data. In [Bel05] the author proposes a shape preserving

multivariate approximation of scalar monotonic functions that are also Lipschitz. The

author shows that Lipschitz continuity of the function to be approximated allows for

computing tight upper and lower bounds on the function values. Using these bounds one

can obtain an optimal solution in the sense that this solution minimizes a worst-case error

of approximation [Suk92,TW80,GW59]. Furthermore, the approximation preserves both

the monotonicity and the Lipschitz continuity of the underlying function.

2.1.3 Contribution

This chapter deals with the problem of learning cell-load in RANs as a function of downlink

rates given a relatively small training sample set. The assumption of small training sample

sets is crucial because modern RAN networks do not permit a long observation and sample

acquisition period [see Section 2.1.1]. To cope with this limitation, we propose a robust

learning framework that guarantees a minimum worst-case error of approximation. To

achieve robustness we incorporate prior knowledge about the cell-load and its relationship

with rates. We show that the incorporation of prior knowledge enables us to provide

explicit tight bounds that cannot be achieved by using a sample set alone, no matter how

large the sample set is.

We now summarize the main contributions of this chapter. We study the feasible rate

region which is defined as the set of all rates that can be supported by the network. We

shows that the rate region is compact. Morever, we show that there exists a function

that maps rates to the cell-load and this function is monotonic and Lipschitz continuous

over the feasible rate region. With this prior knowledge in hand, we perform robust

learning of the cell-load by using the framework of minimax approximation [Suk92,TW80,

GW59]. In contrast to [Bel05], where the main concern is to preserve the monotonicity,

we show theoretically and by experiments that including the prior knowledge regarding

monotonicity results in reduced uncertainty. Our machine learning framework does not

require network information such as powers and channel gains in contrast to traditional

cell-load approximation methods. The guaranteed performance of our framework with

small sample sets makes it suitable in such scenarios where other learning frameworks

such as DNNs cannot be applied. We perform simulations in the network simulator NS3

to demonstrate the performance of the algorithm in a realistic cellular wireless network.
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2.2 The Load Coupling Model

Table 2.1: List of Variables

Description Symbol

Number of base stations M
Number of users N
Set of base stations M = {1, 2, . . . ,M}
Set of users N = {1, 2, . . . , N}
Set of users for base station i N (i)
Rate of user j rj ∈ R>0

Minimum user rate vector rmin ∈ R>0

Device SNR between base station i and user j γij
Number of resource blocks R ∈ N
Bandwidth of each resource block B ∈ R>0

Cell-load ρ ∈ RM
≥0

Load mapping q : RM
≥0 × RN

>0 → RM
≥0

Base station transmit power p ∈ RM
>0

Path-loss between base station i and user j Gi,j ∈ R>0

Space of continuous functions from X to Y C(X ,Y)
Lipschitz constant L ∈ RM

≥0

Euclidean open-ball centered at x ∈ X BX (x, δ)
Network coherence time Tnet ∈ R>0

Sample acquisition time Tobv ∈ R>0

Sample average time Tavg ∈ R>0

Sample set size K ∈ N

Finally, we compare our framework with standard multivariate learning techniques and

show that our method outperforms these techniques for small sample sizes.

2.2 The Load Coupling Model

We consider an urban cellular base station deployment consisting of M ∈ N base stations

and N ∈ N users. We consider the downlink and we denote by rj ∈ R>0 the rate of user

j ∈ 1, N per unit time. We collect the rates of all users in a vector r := [r1, r2, · · · , rN ]⊺ ∈
RN
>0.

We now present the load-coupling model proposed in [Sio12,HYS14], which has been

shown to be sufficiently accurate in certain scenarios in practice [FF12,MNK+07,She15].

This model is based on the fact that time-frequency resources available at a base station

are divided into physical resource blocks to facilitate resource allocation. The cell-load

(at a base station) is defined to be the fraction of available resource blocks that are

allocated to support the rates of the users associated with the base station. Resource blocks

are allocated to users based on their rates and channel qualities given in terms of their
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2 Robust Cell-Load Approximation

average signal-to-interference-plus-noise ratios (SINRs). In the following we denote by

M := {1, 2, . . . ,M} and N := {1, 2, . . . , N} the set of base stations and users, respectively,

and we denote by N (i) the set of users associated with base station i ∈ M.

Consider the case where base station i ∈ M is serving user j ∈ N (i) and denote by Gi,j

the path-loss between base station i and user j. The load-based SINR model represents the

inter-cell interference from base station k ∈ M\{i} as the product pkGk,jρk ≥ 0, where

pk is the fixed transmit power of base station k per resource block, and where 0 < ρk ≤ 1

denotes the cell-load at base station k [FF12].3 With this model in hand, the network

layer (averaged) SINR of the wireless link between base station i and user j is expressed

as [Sio12,HYS14]

γij(ρ) =
piGi,j∑︁

k∈M\{i} pkGk,jρk + σ2
, (2.1)

where ρ := [ρ1, ρ2, ..., ρM ]⊺ ∈ RN
>0 is the vector of cell-load values at all base stations in the

network and where σ2 denotes noise power. Note that the denominator in (2.1) provides

an interpretation of the cell-load as the probability of inter-cell interference from base

station k [Sio12]. For further details of the model including its strengths and weaknesses

see [Sio12,HYS14].

Let R ∈ N be the total number of resource blocks available at the base station, each

with bandwidth B ∈ R>0. Given SINR γij(ρ), we assume that base station i can reliably

transmit at a rate rsij = B log(1+ γij(ρ)) per resource block to user j. Thus, to “support”

the rate rj , base station i has to allocate ρij =
rj
rsij

resource blocks to user j. Summing

the resource block consumption over all N (i), we obtain the cell-load (in terms of total

resource consumption) of base station i ∈ 1,M

ρi =
1

RB

∑︂
j∈N (i)

rj
log(1 + γij(ρ))

. (2.2)

Note that, we can express the right-hand side of (2.2) for the entire network as a vector-

valued mapping

q : RM
≥0 × RN

>0 → RM
>0

(ρ, r) ↦→

⎡⎢⎢⎣
1

RB

∑︁
j∈N (1)

rj
log(1+γij(ρ))

...
1

RB

∑︁
j∈N (M)

rj
log(1+γij(ρ))

⎤⎥⎥⎦ ,

3Note that the cell-load at an “active” base station is always non-zero, and ρi = 0 implies that base
station i ∈ 1,M is inactive. On the other hand, ρi = 1, in the literature, refers to the case where
“worst-case/maximum” interference is caused by base station i to other base stations.
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2.2 The Load Coupling Model

which we refer to as the load mapping. Given r ∈ RN
>0, it follows from (2.2) that

the cell-load vector is the solution (if it exists) to the fixed point problem: Find ρ∗ =

[ρ∗1, ρ
∗
2, ..., ρ

∗
M ]⊺ ∈ RM

≥0 such that:

ρ∗ = q(ρ∗, r). (2.3)

Since the cell-load is defined as a fraction of the available resources at the base station, a

rate vector is feasible (i.e., there are sufficient resource blocks available at all base stations

to support rate of every user) if the solution (if it exists) to (2.3) satisfies ρ∗ ≤ 1. For

a given supported r ∈ RN
>0, the solution to (2.3) can be obtained by iterative fixed point

algorithms as long as the network information (path-losses, powers, user association, etc.

in (2.2)) required by these algorithms is available. In more detail, given r ∈ RN
>0, the

mapping

Γr : RM
≥0 → RM

>0 : ρ ↦→ q(ρ, r)

is a positive concave mapping, so it also belongs to the class of standard interference

functions [CSS16,Yat95]. Therefore, the following holds:

Fact 2.1 (The unique fixed point solution). [Yat95] Suppose the rate vector r ∈ RN
>0 is

feasible, then the solution set of (2.3) given by

Fix(Γr) :=
{︁
ρ∗ ∈ RM

≥0 | 0 < Γr(ρ
∗) = ρ∗ ≤ 1

}︁
contains one fixed point.

As mentioned previously in Section 2.1.3, we incorporate prior knowledge about the

cell-load in our learning framework presented in Section 2.4 to ensure robust learning. To

this end, Fact 2.2 presents an important property of the cell-load, namely its monotonicity

in the rate vector:

Fact 2.2. [HYS14, Theorem 2] Consider any two feasible rate vectors rk, rj ∈ R and the

corresponding fixed points ρj ∈ Fix(Γrj ) ̸= ∅ and ρk ∈ Fix(Γrk) ̸= ∅. Then

rj ≥ rk =⇒ ρj ≥ ρk.

In the next section we define and study the feasible rate region, which is the set of all

rates supported by the network.

25



2 Robust Cell-Load Approximation

2.3 Properties of the Feasible Rate Region

In light of Fact 2.1 and Fact 2.2, and given the minimum feasible rate vector rmin ∈ RN
>0

(e.g., corresponding to the lowest order modulation and coding scheme in the network)

that induces the cell-load ρmin ∈ RM
>0, we are now in a position to define the feasible rate

region and the set of cell-load vectors over this set.

Definition 2.1 (Feasible Rate Region and the Cell Load Set). The feasible rate region is

defined as

R := {r ≥ rmin ∈ RN
>0 | (∃ ρ∗ ∈ Fix(Γr)) ,ρmin ≤ ρ∗ ≤ 1}.

Similarly, the feasible cell-load set is given by the set of fixed points ([see Fact 2.1]

L :=
{︁
ρ ∈ RM

>0 | (∃ r∗ ∈ R) ,ρmin ≤ Γr∗(ρ) = ρ ≤ 1
}︁
.

In the following we extend the prior knowledge in our learning framework by studying

the feasible rate region R ∈ RN
>0 in Definition 2.1. In particular, we show in Theorem 2.1

that R is compact. The compactness of R is also required for our results in Section 2.4.

Note that R is bounded from below by rmin ∈ RN
>0. Since power, bandwidth, and the

total number of resource blocks are fixed in (2.1) and (2.2), and because the cell-load

is monotonic in the user rate vector by Fact 2.2, arbitrarily large user rates cannot be

supported. We state this fact formally in Lemma 2.1 for completeness. We use this result

to prove compactness of R in Theorem 2.1.

Lemma 2.1. The feasible rate region is bounded.

Proof. The set R is clearly bounded from below. Suppose the set R is unbounded from

above, then there exists at least one unbounded sequence (rn)n∈N ⊂ R. This implies

that at least one component of the vector rn grows unboundedly. Let us denote the

sequence of this component by (rl,n)n∈N and let the corresponding user be associated with

BS i ∈ M. Every unbounded sequence has an increasing subsequence that diverges to

+∞. Let us extract such a subsequence and denote it by (rl,k)k∈K⊂N. Likewise, denote

by (ρi,k)k∈K⊂N the ith component of the subsequence (ρk)k∈K⊂N, where ρk ∈ Fix(Γrk).

It can be verified that, for fixed p and bandwidth resources (RB) in (2.2), we have that

ρi,k = 1
RB

∑︁
j∈N (i)

rj,k
log(1+γij(p,ρk))

≥ 1
RB

∑︁
j∈N (i)

rj,k
log(1+γij(p,0))

≥ 1
RB

rl,k
log(1+γij(p,0))

> 0,

where ρi,k and rj,k are the ith and jth component of vectors ρk and rk, respectively. Now,

note that the lower bound 1
RB

rl,k
log(1+γij(p,0))

grows unboundedly as rl,k → ∞, which in

particular implies that limk→∞ ρi,k = ∞. However, this contradicts the fact that, by our

definition of feasibility, (∀k ∈ K) 0 ≤ ρi,k ≤ 1. Therefore, we conclude that the feasible

set X does not contain any unbounded sequence, so R is bounded.
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2.4 Robust Approximation of Cell-Load

We now present the main result of this section.

Theorem 2.1. The feasible rate region is compact.

Proof. Recall from Definition 1.1(b) that a subset of a normed space is closed if and only if

it contains all of its limit points. We denote by clo(R) the closure of R in Definition 2.1,

which is the smallest closed set in RN
>0 containing R. Similarly, denote by clo(L) the

closure of L in Definition 2.1. Consider an arbitrary sequence (rn,ρn)n∈N ⊂ R × L, of
tuples consisting of feasible rate vectors and the corresponding cell-load vectors. Suppose

(rn,ρn) → (r,ρ) ∈ clo(R) × clo(L). From (2.3) it follows that, given rn, ρn must be the

solution to the fixed point problem with the load mapping q. Therefore, we have

(∀n ∈ N) ρmin ≤ ρn = q(ρn, rn) ≤ 1.

Now, since q is continuous, we have

ρmin ≤ lim
n∈N

ρn = lim
n∈N

q(ρn, rn) ≤ 1

ρmin ≤ ρ = q(ρ, r) ≤ 1

which implies that (r,ρ) ∈ R× L. Thus, every convergent sequence in R has its limit in

R which implies that R is closed. Now, according to Lemma 2.1, R is bounded and recall

from Remark 1.1 that every bounded and closed subset of a finite dimensional Euclidean

space is compact.

2.4 Robust Approximation of Cell-Load

Building upon the results from the previous section we formulate the robust learning of

cell-load. Note that the cell-load is modeled by the load-coupling model in (2.2). This

means that given the network information required by the model, we can calculate the

value of the modeled cell-load. However, as mentioned in Section 2.1.1, dynamic wireless

networks are in general difficult to model accurately. Therefore, in the following we present

a framework to directly estimate the cell-load values in networks that may not follow the

cell-load model accurately. We use the cell-load model in this study only to extract some

useful prior knowledge. In addition to the monotonicity of the cell-load and the compact-

ness of the feasible rate region R established in Theorem 2.1, we show in Theorem 2.2

that the function that maps rates to cell-load is continuously differentiable and therefore

Lipschitz continuous on R. The Lipschitz continuity is then exploited to solve our robust

optimization problem formulated in the following.
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2 Robust Cell-Load Approximation

Let D = {(rk,ρk := f∗(rk)) ∈ R × L, k ∈ 1,K} be a sample set of rates and their

corresponding cell-load values, where f∗ : R → L is assumed to be a continuous but

unknown function, and where R and L are defined in Definition 2.1. In the following

we denote by C(R,L) the space of vector-valued continuous functions mapping R to L,
equipped with the norm defined in (1.1).

Our objective is to learn a function g∗ that approximates f∗(r) for any r ∈ R which is

a classical problem considered in, for example, [GW59, Suk92, TW80]. As mentioned in

Section 2.1.3 we are interested in a robust approximation of f∗. To this end, we consider

the minimax optimization problem that leads to robust solutions under uncertainties:

Problem 2.1. [Suk92, Bel72] Given D = {(rk,ρk) ∈ R × L, k ∈ 1,K}, find g∗ ∈
C(R,RM

≥0) that minimizes the worst-case error4

Ew : C(R,RM
≥0) → R : g ↦→ sup

f∈S
∥f − g∥C(R) , (2.4)

where S := {f ∈ C(R,L) | (∀k ∈ 1,K) f(rk) = ρk}.

It is known that Problem 2.1 can be solved by restricting f∗ to a compact subset of

C(R,L) and computing finite tight upper and lower bounds on the values (∀r ∈ R)

f∗(r) [GW59,Bel06, Bel05]. Note that if the only information available about f∗ is that

it satisfies the interpolation constraints in Problem 2.1, then computing tight bounds

on unseen function values f∗(r) is not possible no matter how large the sample set D
is. However, if we impose an additional restriction on f∗ that satisfies certain properties

[GW59], then we can obtain tight bounds such that

σl(r) ≤ f∗(r) ≤ σu(r),

where the bounds σl(r) and σu(r) can be computed explicitly. An optimal estimation

g∗(r) of f∗(r) is simply given by the central algorithm [Suk92,Bel72]

g∗(r) =
σl(r) + σu(r)

2
,

and the magnitude of uncertainty |σu(r)−σl(r)|
2 is minimal [Cal14]. Note that the central

algorithm is one of the point-wise estimators discussed in bounded error estimation in

Section 1.7. Therefore, no matter how small the sample set D is we are guaranteed the

minimum worst-case error (2.4) for a given D. In other words, the approximation is robust

against the uncertainty resulting from small sample sets.

4The worst-case error is finite because the value of the cell-load cannot exceed 1.
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2.4 Robust Approximation of Cell-Load

It is known that Lipschitz functions in C(R,L) satisfy the required properties mentioned

above, where the Lipschitz continuity plays the role of the nonlinear restriction mentioned

above [see, e.g., [Bel06,Bel05, Suk92]]. Furthermore, the bounds σl and σu can be com-

puted easily for Lipschitz functions. To exploit these facts, we show in Theorem 2.2 that

f∗ belongs to the class of L-Lipschitz-Monotone Functions (LIMF) [see Definition 1.4].

Moreover, Proposition 2.1 shows that this class is a compact subset of C(R,L). We then

use these facts to solve Problem 2.1. The computation of the bounds σ1(r) and σu(r) is

presented in Fact 2.3.

In the following we denote by ˜︁R ⊂ RN
>0 the set of all rate vectors (not necessarily

feasible/supported) for which there exists a fixed point solution of (2.3), i.e., ˜︁R := {r ∈
RN
>0 |(∃ ρ ∈ RM

>0) ρ = q(ρ, r)}. So we have R ⊂ ˜︁R.

Theorem 2.2. Consider the load mapping q : RM
≥0 × RN

>0 → RM
>0 in (2.3).

a). There exists a continuously differentiable function f imp : ˜︁R → RM
>0 such that (∀r ∈˜︁R) f imp(r) = ρ = q(ρ, r).

b). The restriction of f imp to the feasible rate region R ⊂ ˜︁R is a LIMF function.

Proof. a). From the uniqueness of the fixed point solution of (2.3) it follows that, for

two solution pairs (ρ1, r1) and (ρ2, r2), if ρ1 ̸= ρ2, then we must have r1 ̸= r2. Thus,

there exists a function f imp : ˜︁R → RM
>0 : r ↦→ f imp(r) = q(f imp(r), r) that maps every

feasible rate vector to a unique fixed point. We now show that f imp is continuously

differentiable on ˜︁R.

Consider the function g : RN
>0 × RM

>0 → RM defined as

g(r,ρ) := ρ− q(ρ, r),

where q is the load mapping in (2.3). We have

(∀ρ ∈ RM
>0) (∀r ∈ ˜︁R) ρ = f imp(r) ⇐⇒ g(r,ρ) = 0.

We now show that g is continuously differentiable, and the Jacobian matrix ∇g
ρ(r,ρ)

is non-singular (invertible), on ˜︁R×RM
>0 [see Fact 1.2]. To show that g is continuously

differentiable, we show that the Jacobians ∇g
r and∇g

ρ are continuous. The two Jaco-

bians are given in Section 2.7.1 and Section 2.7.2, respectively, and it can be verified

that they are continuous. The invertibility of ∇g
ρ(r,ρ) is shown in Section 2.7.3.

Therefore, according to Fact 1.2, f imp is continuously differentiable.
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b). According to part (a) and Fact 1.2, the Jacobian ∇f imp
r is continuous on ˜︁R. Denote

by f : R → L and ∇f
r, the restriction of f imp and ∇f imp

r , respectively, to the set of

feasible rate vectors R ⊂ ˜︁R. Since R is compact according to Theorem 2.1, ∇f
r is

bounded on R according to the extreme value theorem [Mun00] which implies that

∃L ∈ RM
≥0 such that f is L-Lipschitz on R. Moreover, by Fact 2.2, f is monotonic

on R, so f is a LIMF function [see Definition 1.4].

In the following we denote by F ⊂ C(R,L) the class of LIMF functions f : R → L with

a given L ∈ RM
≥0 [see Definition 1.4]. Before we proceed further, we obtain the following

important result:

Proposition 2.1. The class F ⊂ C(R,L) of LIMF functions, with a given L = [L1, L2, · · · , LM ]⊺ ∈
RM
≥0, is compact.

Proof. The class F ⊂ C(R,L) satisfies the following properties:

a). Boundedness : F is bounded because (∀f ∈ F) ∥f∥C(R) ≤ 1.

b). Equicontinuity : Since F is a set of L-Lipschitz functions, F is an equicontinuous

subset of C(R,L) [see Lemma 2.2 in Section 2.7.4) for a proof].

c). Closedness : The class F can be written as F = FLip
⋂︁
Fmon, where FLip and Fmon

are the sets of L-Lipschitz functions and continuous monotone functions, respectively,

in C(R,L). Recall that the intersection of two closed sets is closed. Therefore, it is

sufficient to show that FLip and Fmon are closed sets. For completeness, we show in

Lemma 2.3 in Section 2.7.5 that Fmon and FLip are closed sets.

The proposition now follows from Fact 1.1.

2.4.1 Minimax Optimal Approximation

We are now in a position to incorporate the prior information obtained in previous sections

into Problem 2.1. Moreover, we formally state the robust learning problem considered in

this chapter as an optimization problem.

Definition 2.2 (Minimax Optimal Approximation). Let D = {(rk,ρk) ∈ R×L}Kk=1 be a

sample set and assume that (∀k ∈ 1,K) ρk := f∗(xk) are values generated by an unknown

function (F ∋) f∗ : R → L, where F ⊂ C(R,L) is a set of LIMF functions with a given

L ∈ RM
≥0. The robust learning problem can be then stated as follows:
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2.4 Robust Approximation of Cell-Load

Problem 2.2. [Suk92,Bel05,Bel72] Find g∗ ∈ F such that

g∗ ∈ argmin
g∈F

Emax(g),

where Emax(g) := maxf∈F ∥f − g∥C(R), such that (∀k ∈ 1,K) f(rk) = g(rk) = ρk.

Note that a solution to Problem 2.2 is “shape preserving” because g∗ ∈ F , i.e., the

approximation preserves the Lipschitz continuity and monotonicity. We show in Proposi-

tion 2.2 that enforcing such shape preservation (based on prior information) results in less

uncertainty compared to the case where this prior information is omitted. To this end, we

first need to show how to solve Problem 2.2.

We use the framework in [Bel05] to obtain a solution to Problem 2.2. The following

fact summarizes the important properties of an optimal solution obtained based on this

framework.

Fact 2.3. [Bel05] Let D = {(rk,ρk) ∈ R × L}Kk=1 be a dataset generated by an un-

known function f∗ ∈ F , where F is the set of LIMF functions with the same L :=

[L1, L2, · · · , LM ]⊺ ∈ RM
≥0. Then, the following holds:

a). A minimax optimal approximation g∗ of f∗ ∈ F can be constructed component-wise

by

(∀i ∈ 1,M) (∀r ∈ R) g∗i (r) =
σi
l(r) + σi

u(r)

2
, (2.5)

where σi
l (r) = maxk{ρki − Li∥(rk − r)+∥}, σi

u(r) = mink{ρki + Li∥(r − rk)+∥}, and
Li ∈ R≥0 is the Lipschitz constant of the ith component f∗

i of f∗.

b). The approximation preserves the L-Lipschitz continuity and monotonicity, i.e., g∗

is L-Lipschitz and monotonic.

c). g∗ interpolates the sample set D.

Remark 2.1 (Prior Knowledge Decreases Uncertainty). The study [Bel05] is concerned with

shape preserving approximation and it does not consider learning from a small sample set.

However, we show in Proposition 2.2 that (except for one particular case) excluding prior

information regarding monotonicity worsens at least one of the bounds in Fact 2.3(a)

during generalization on unseen data and this therefore increases uncertainty. We also

evaluate this fact empirically in Section 2.6.2 in a realistic wireless network.

The lower and upper bounds without monotonicity constraints in Fact 2.3 are given

by (i ∈ 1,M) ηil (r) = maxk{ρki − Li∥rk − r∥} and ηiu(r) = mink{ρki + Li∥r − rk∥}. Let

Umon(r) :=
|σi

u(r)−σi
l (r)|

2 denote the magnitude of uncertainty calculated from the bounds
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2 Robust Cell-Load Approximation

in Fact 2.3, and let U(r) :=
|ηiu(r)−ηil (r)|

2 denote the magnitude of uncertainty without

monotonicity in the framework.

Proposition 2.2. Let r /∈ D = {(rk,ρk) ∈ R×L}Kk=1, where D is the data set in Fact 2.3.

Then Umon(r) ≤ U(r) if

a). (∃ k∗ ∈ argmaxk{ρki − Li∥(rk − r)∥}) rk∗ ≥ r, and

b). (∃ j∗ ∈ argminj{ρji + Li∥(r− rj)∥}) rj
∗ ≤ r.

If a) and b) are not satisfied simultaneously then Umon(r) < U(r).

Proof. Consider two vectors x,y ∈ RN
≥0 such that x ̸= y. If x ≥ y, then ∥(x − y)+∥ =

∥(x− y)∥ and ∥(y − x)+∥ < ∥(x− y)∥. Similarly, if x ≤ y, then ∥(x− y)+∥ < ∥(x− y)∥
and ∥(y − x)+∥ = ∥(x − y)∥. If x and y are incomparable then ∥(y − x)+∥ < ∥(x − y)∥
and also ∥(x− y)+∥ < ∥(x− y)∥.

Now, if conditions a) and b) are satisfied simultaneously, then (by condition a)) for the

lower bound we have

ηil (r) = {ρk∗i − Li∥(rk
∗ − r)∥}

= {ρk∗i − Li∥(rk
∗ − r)+∥}

≤ max
k

{ρki − Li∥(rk − r)+∥}

= σi
l (r).

Similarly, (by condition b)) σi
u(r) ≤ ηiu(r). This proves the first claim of the proposition.

Now suppose condition a) is violated, i.e., either rk
∗ ≤ r or rk

∗
and r are incomparable,

then from the above discussion

ηil (r) = {ρk∗i − Li∥(rk
∗ − r)∥}

< {ρk∗i − Li∥(rk
∗ − r)+∥}

≤ max
k

{ρki − Li∥(rk − r)+∥}

= σi
l (r).

Similarly, if condition b) is violated, σi
u(r) < ηiu(r) and the second claim follows.

The consequence of Proposition 2.2 is that Umon(r) < U(r) whenever r violates either

of the two conditions in Proposition 2.2. Therefore, including prior information regarding

monotonicity provably improves generalization on unseen data in our framework.
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2.4.2 Complexity

The complexity of the closed-form computation (2.5) is linear in the sample size K, i.e.,

the complexity is O(K). Since we consider small sample sizes, this computation is fast.

Moreover, (2.5) has a natural distributed form because (∀i ∈ 1,M) gi(r) can be computed

independently. Therefore, the complexity is independent of the number of base stations

M .

2.5 Implementation in a Wireless Network

We have shown in Theorem 2.2 that there exists an implicit function (∀i ∈ 1,M) fi : R →
]0, 1] mapping every r ∈ R to a cell-load value ρi ∈ ]0, 1] at base station i. Furthermore,

Fact 2.3 shows that given a sample set D(i) = {(rk, fi(rk)) ∈ R× ]0, 1]}Kk=1 (at base station

i) and the knowledge of the Lipschitz constant Li, we can easily approximate the cell-load

value fi(r) for r /∈ D(i). In this section we show how to implement our framework in an

OFDMA-based wireless cellular network. To this end, we first look at how to calculate

the cell-load, and then we show how to obtain an appropriate sample set at a base station.

2.5.1 Cell-load Calculation

In OFDMA-based networks, such as LTE networks, time is divided into fixed length

slots [NS3]. During each slot, if a base station is active, it transmits to one or more

users on a block of frequencies in its cell. Therefore, users are allocated slots in time and

bandwidth in frequency according to their rate requirements. A slot together with its

bandwidth is commonly referred to as a physical resource block. To calculate the cell-load,

we record the fraction of the total available physical resource blocks allocated by a base

station on average during a total time period of Tavg > 0, where Tavg is a design parameter.

2.5.2 Obtaining a Sample Set

We denote by Tnet > 0 the network coherence time during which the environment (network

topology, channels, rate distribution, etc.) is assumed to be constant. Let Tobv < Tnet

denote the sample observation time. We divide Tobv in K ∈ N time windows of duration

Tavg each as shown in Figure 2.1. To obtain a sample set D(i) = {(rk, ρki = fi(r
k))}Kk=1

at each base station i ∈ 1,M , the cell-load values ρki = fi(r
k) can be calculated as in

Section 2.5.1 for each time window k ∈ 1,K. The base stations can exchange the rate

values of users associated with them with other base stations to obtain the rate vectors

rk.
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2 Robust Cell-Load Approximation

Figure 2.1: Learning Timeline: During each slot k ∈ 1,K of length Tavg we obtain a sample
(rk, ρki ) by observing the proportion of resource blocks consumed to support
rate rk on average during Tavg.

In the following we assume that a sample set D(i) = {(rk, ρki = fi(r
k)) ∈ R ×]0, 1]}Kk=1,

is available at time t = Tobv at base station i ∈ 1,M . We also omit the index i since the

same procedure is carried out at each base station.

2.5.3 Obtaining a Compatible Sample Set

Note that the cell-load values calculated in a real network do not follow the cell-load

model exactly. In more detail, instead of the sample set D = {(rk, ρk = f(rk))}Kk=1, we

assume that an inaccurate sample set Derror = {(rk, yk = f(rk) + ϵ(rk))}Kk=1 is available;

ϵ(rk) ≥ 0 is the inaccuracy/error which is bounded for every r.5 As a consequence, for

a given value of the Lipschitz constant L ∈ R≥0, Derror may not be compatible with the

monotonicity of f . Therefore, and if required, it must be smoothed to obtain a compatible

set. Furthermore, in practice the prior information about the Lipschitz constant L is often

unavailable, so its value must be estimated from the set Derror. In more detail, we first

estimate the Lipschitz constant by L̃ := maxk ̸=j
|yk−yj |
∥rk−rj∥ [Str73].6 Given an estimate L̃ of

the Lipschitz constant, we perform monotone-smoothing of Derror. Given an estimate L̃

5Our approximation framework is a special case of bounded error estimation/robust set-membership
estimation [MT85, MV91] which was developed for scenarios where the inaccuracy is unknown but
bounded.

6There exist more sophisticated methods of estimating the Lipschitz constant such as the method proposed
in [Bel05]. But these methods are not the focus of this study and they add substantial complexity to
the algorithm.
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2.5 Implementation in a Wireless Network

Algorithm 1 Cell-load Learning at each Base Station

→ Initialization

• Fix K > 0 and Tavg > 0.

→ Sample Acquisition (while t < Tobv)

• Exchange user rate with other base stations.

• Observe the sample set Dnoise = {(rk, yk = f(rk) + ϵ(rk))}Kk=1 (Section 2.5.2).

→ Training (at t = Tobv)

• Perform the estimation of L (Section 2.5.3).

• Perform data smoothing to obtain a compatible Dcom = {(rk, ρ̃k)}Kk=1 (Section 2.5.3).

→ On-Demand Prediction (at t > Tobv)

• Given a new rate vector r ∈ R, perform the computation (2.5) in Fact 2.3

g(r) =
1

2
(max

k
{ρ̃k − L∥(rk − r)+∥}) +

1

2
(min

k
{ρ̃k + L∥(r− rk)+∥}).

of the Lipschitz constant, we can now consider the monotone-smoothing problem which is

formulated as a standard convex optimization problem.

The author in [Bel05] has shown that a sample set Dcom := {(rk, ρ̃k)}Kk=1 is compatible

with the monotonicity if and only if it satisfies the following set of linear constraints [Bel05,

Proposition 4.1]

(∀k ∈ 1,K) (∀j ∈ 1,K) ρ̃k − ρ̃j ≤ L̃∥(rk − rj)+∥. (2.6)

Given the measured sample set Dnoise = {(rk, yk)}Kk=1, we look for a compatible set Dcom =

{(rk, ρ̃k)}Kk=1 (that satisfies (2.6)) that is closest to Dnoise in the ∥·∥1 sense. In more detail,

let y = [y1, · · · , yK ]⊺ and ρ̃ = [ρ̃1, · · · , ρ̃K ]⊺, then we minimize

∥y − ρ̃∥1 =
K∑︂
k=1

|ρ̃k − yk|. (2.7)

We now formalize this problem as a standard linear program (LP) which can be solved

easily by any standard convex solver. Denote the kth residual in (2.7) by qk := ρ̃k − yk

and split qk into two parts qk+ and qk− such that qk = qk+ − qk−. Substituting (∀l ∈ 1,K)

ql + yl for ρ̃l into (2.6) and (2.7), the monotone-smoothing problem can be written as an
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2 Robust Cell-Load Approximation

LP [Bel05]

minimize
qk+,qk−≥0

K∑︂
k=1

|qk|

subject to (∀k ∈ 1,K) (∀j ∈ 1,K)

qk − qj ≤ yj − yk + L̃∥(rk − rj)+∥, (2.8)

where |qk| = qk++ qk−, and where qk+, q
k
− ≥ 0 are the optimization variables. The smoothed

compatible values follow from ρ̃k = yk + qk.

Note that the complexity of the above LP, among other things, increases with the

number of constraints (K × (K − 1)). Since we consider small sample sizes K and the

constraint matrix, with rows given by (2.8), is sparse, the above LP can be solved fast

with standard convex solvers that exploit sparsity [LPV]. Therefore, the complexity of

the smoothing step, which is performed only once after sample acquisition, is not of a

practical concern.

2.5.4 Algorithm

The robust cell-load learning algorithm is presented in Algorithm 1. Note that Algorithm 1

can be executed independently in parallel at each base station. The Sample Acquisition

step corresponds to the acquisition of the training sample set as explained in Section 2.5.2,

whereas Training refers to Lipschitz constant estimation and the data smoothing process

as presented in Section 2.5.3. The On-Demand Prediction refers to the approximation of

the cell-load value for a new rate vector during time period Tnet−Tobv [also see Figure 2.1].

2.6 Numerical Evaluation

In this section we evaluate the robust learning framework presented in Section 2.4.1 by

simulation. To evaluate the learning techniques in a realistic cellular network, simulations

are performed in the network simulator (NS3) [NS3]. We focus on the following aspects

in this numerical evaluation:

1. We only use the load-coupling model in this study to establish some prior knowledge

about the cell-load in a real cellular network. We show in the simulations that our

learning framework is able to predict the cell-load sufficiently accurately in a realistic

cellular network in NS3. This is significant because models are only idealizations,

and they may not capture the true behavior of cellular networks.
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2. We have shown in Proposition 2.2 that including prior knowledge decreases the un-

certainty. We demonstrate this by comparing our learning framework with full prior

knowledge with the case in which the prior information regarding the monotonicity

of the cell-load with respect to rate is not included in the framework.

3. Finally, we compare our method to standard multivariate regression techniques. We

show the effect of sample size K and the size of the network (i.e., the number of

users N and base stations M) on the quality of approximation.

In the next section, we present the LTE simulation framework in NS3.

2.6.1 Network Simulator (NS3) and Scenario

We perform simulation in NS3 using the LTE model, the details of which can be found

in [NS3]. The load-coupling model is evaluated in the LTE downlink in certain scenarios

in [She15]. Briefly, NS3 is a well-known discrete-event network simulator widely used in

educational research and industry due to its accuracy in simulating computer networks

such as LTE. The granularity of the LTE model in NS3 is up to the resource block level

which allows for accurate packet scheduling and calculation of inter-cell interference. We

chose the round robin scheduler at the MAC layer. The reason is that the fairness in-

herent in the simple cyclic scheduling is more likely to ensure that the minimum data

rate requirement of all users are met, which may not be the case with other more com-

plex scheduling algorithms [DPS14]. The modulation and coding scheme and the resource

block allocation are chosen based on the wide-band channel quality indicator (CQI). The

CQI is calculated based on the average received SINR. An example simulation topology

is shown in Figure 2.2.

Users and base stations are distributed uniformly in the service area of 200 × 200

meters. We perform simulations for M ∈ {3, 5, 6, 7, 8, 9, 10} base stations with N ∈
{30, 50, 60, 70, 80, 90, 100} users. Users are associated with the base station to which they

have the lowest path-loss. To generate training and test data, the data rates are dis-

tributed uniformaly between 0.1×106 bits/s and 1×106 bits/s. The important simulation

parameters are shown in Table 2.2. Other parameters were chosen as default in NS3. The

simulation time was chosen to be 1 second which is equal to the length Tavg of each aver-

aging time slot/window in Figure 2.1 and Algorithm 1. The cell-load values are calculated

according to Section 2.5.1.

2.6.2 Results

We now present our numerical results. We use Algorithm 1 to perform the robust learning

of cell-load proposed in this study. We present the results for cell-load learning at a
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Figure 2.2: NS3 Topology Example: There are 30 users and 3 base stations. Users are
associated to base stations with the least path-loss. Simulations are performed
for the base station located at (0,−150).

single base station. To obtain reliable statistics we consider 50 topologies (with different

user locations, base station locations, and user associations) for each value of N and we

let M = N/10. Note that scaling the number of base stations with an increase in the

number of users is necessary to ensure that rate requirements of users are met. The

objective of the simulation is to observe the effect of sample size and the network size on

the approximation. For each fixed topology, we perform 100 experiments for each value

of K ∈ {10, 20, . . . , 100}. During each experiment, a sample set Derror = {(rk, yk)}Kk=1 is

generated independently at random and the Training Step is performed in Algorithm 2

to obtain a compatible training sample set Dcom. Validation/prediction is performed for

an independent test sample set of size 1000 with rate vectors r /∈ Dcom. All results are

averaged over 100 experiments and then over 50 topologies to obtain reliable statistics.

Effect of Prior Information

In this section we compare our framework’s performance with and without the prior infor-

mation regarding the monotonicity of the cell-road with respect to rate [see Remark 2.1].

For this simulation we consider M = 3 and N = 30. Note that the objective of this rather

theoretical comparison is to confirm the result of Proposition 2.2 in a realistic simulation.

This comparison is performed with an ideal Lipschitz constant Lideal that can be obtained

by using the method in Section 2.5.3 but by using both the training sample set and the

test sample set. This way Lideal is a good approximation of the true Lipschitz constant.

We chose an ideal Lipschitz constant because in this section we want to focus only on
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Table 2.2: NS3 Simulation Parameters

Description Value

Number of base stations M 3
Number of users N 30
Base station height 30 m
User height 1.5 m
Noise figure base station 5 dB
Noise figure user 9 dB
Base station power 46 dBm
Min/Max user rate 0.1× 106/1× 106 bits/s
Simulation area 150× 150 m
Simulation time 1 s
Total bandwidth 10 MHz
Total number of resource blocks 50
Path-loss model Log-Distance Propagation Loss
SRS periodicity 80× 10−3 s
Internet application On-Off with Ipv4

the effect of including prior knowledge regarding monotonicity of the cell-load in rate in

a realistic cellular network, and this requires an accurate calculation of function bounds

in Section 2.4.1. However, the comparison with state-of-art techniques in Section 2.6.2,

which is of a more practical significance, is performed with the Lipschitz constant that is

estimated from only the training data set.
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Figure 2.3: We compare the performance of our framework with the case where prior
knowledge about the monotonicity of the cell-load has not been considered.
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Figure 2.4: We compare the performance of LIMF learning framework with the case where
prior knowledge about the monotonicity of the cell-load has not been consid-
ered.
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We perform the comparison in terms of two metrics, namely the magnitude of uncer-

tainty given as |σu(r)−σl(r)|
2 [see Section 2.4.1], where the rate r is a test sample point and

σu(r) and σl(r) are upper and lower bounds, and the correlation with test sample set that

we measure in terms of the popular Pearson’s correlation coefficient.

The results are shown in Figure 2.3 and Figure 2.4. Figure 2.3 shows that uncertainty

about the cell-load values decreases with the increasing training sample set size K in both

cases. However, we observe that the prior information regarding the monotonicity always

results in less uncertainty than the case where monotonicity of the cell-load is ignored.

The results are therefore of a theoretical significance and they justify the inclusion of

monotonicity as part of the prior knowledge in the framework [see Remark 2.1]. The same

effect is seen in Figure 2.4 where we can clearly see that the case with all prior information

included in the framework results in more correlation with the test sample set.

Comparison with State-of-Art Techniques

In this section we compare our learning framework with some low-complexity state-of-

art techniques for various training sample and network sizes. Throughout this section, we

estimate L from the available training sample set. We compare our method with four mul-

tivariate techniques, namely the state-of-art methods Gaussian process regression (GPR)

and ensemble learning with random forests (ERF), and the simple 2-nearest neighbor in-

terpolation. These techniques are well-known for their ability to approximate continuous

functions defined over compact sets well which is the case with the cell-load function. Note

that, in addition to the state-of-art methods, it is important to compare the performance

with a simple method such as the 2-nearest neighbor interpolation to highlight the diffi-

culty of learning with small sample sets. As we mentioned before, we consider very small

sizes which rules out frameworks such as neural networks.

Figure 2.5 shows a comparison of (linear) Pearson’s correlation coefficient, which is a

popular measure of the strength and direction of the linear relationship between the pre-

dicted and the real test values, for an increasing sample size and fixed number of users

N = 30. In particular, we use this coefficient as a measure of the “quality” of approxima-

tion. A high positive value of Pearson’s correlation coefficient means that the predictions

made by the learning method have a strong linear relationship with the test sample set.

Figure 2.6 shows the maximum or worst-case error encountered while predicting on the

test sample set for an increasing sample size K and fixed number of users N = 30. The

maximum error is more suitable for comparing the robustness of the approximation tech-

niques than some other popular error metrics because it shows that all error residuals

remain below this level. Therefore, the maximum error is a reasonable substitute for the

maximum error of approximation in (2.4) which we cannot compute directly.
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Figure 2.5: We compare the 5 techniques in terms of the linear correlation between pre-
dictions and true values for increasing K.

It is important to analyze maximum error and correlation together to better under-

stand the comparison between our learning framework and other techniques. We observe

that even for an inexact value of Lipschitz constant L, our method outperforms other

techniques. An interesting observation is the fact that the GPR method (with the Gaus-

sian function) and ERF show a relatively good error performance in Figure 2.6 but a

considerably smaller correlation in Figure 2.5 than our method for small sampze sizes

K < 30. This is because of the fact that our method incorporates prior knowledge about

the cell-load and other methods do not. The poorest performance is seen in the case of

the 2-nearest neighbor interpolation whose performance improves slowly with increasing

sample size. Clearly, this shows that we do not have enough samples to perform such a

simple interpolation.

Finally, Figure 2.7 and Figure 2.8 show the effect of network size (in terms of number

of users N) on the performance of all techniques for a small and fixed sample size of

K = 20. We see that there is a gradual degradation of performance for all techniques but

our method outperforms others. In particular, we observe in Figure 2.7 that the GPR

with Gaussian function performs poorly due to insufficient training.
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Figure 2.6: We compare the 5 techniques in terms of the maximum error between predic-
tions and true values for increasing K.
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Figure 2.8: We compare the the 5 techniques in terms of the maximum error between
predictions and true values for increasing network size.
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Figure 2.7: We compare the the 5 techniques in terms of the linear correlation between
predictions and true values for increasing network size.

Table 2.3: Training Time Comparison on a standard PC

Technique Average Training Time

LIMF 10× 10−3 seconds
Nearest Neighbor not applicable
GPR 80× 10−3 seconds
ERF 60× 10−3 seconds

2.7 Supplementary Material and Proofs

2.7.1 First Jacobian of g

The entry [∇g
r (r,ρ)]i,j of the M ×N Jacobian ∇g

r (r,ρ) is given by

[∇g
r (r,ρ)]i,j =

{︄
− 1

RB log(1+γij)
, if j ∈ N (i)

0, otherwise

where γij :=
piGi,j∑︁

k∈M\{i} pkGk,jρk+σ2 .
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2.7.2 Second Jacobian of g

The entry [∇g
ρ(r,ρ)]i,k of the M ×M Jacobian ∇g

ρ(r,ρ) is given by

[∇g
ρ(r,ρ)]i,k =

{︄
−
∑︁

j∈N (i)

ln(2)
rj
RB

piGi,j
pkGk,j

ln2(1+γi,j)(γ
−2
i,j +γ−1

i,j )
, if i ̸= k

1, if i = k

where γij :=
piGi,j∑︁

k∈M\{i} pkGk,jρk+σ2 .

2.7.3 Invertibility of the Jacobian

We follow the analysis in [RSF14] which exploits the sufficient conditions for invertibility

of a generalized diagonal dominant matrix [BP94] on the whole domain. In more detail, we

show that the matrix ∇g
ρ(r,ρ) is invertible because it is an invertible generalized diagonal

dominant matrix. For any ρ ∈ RM
>0

[∇g
ρ(r,ρ)]iρ = ρi −

∑︂
j∈N (i)

rj
RB log(1 + γi,j)

×

∑︁
k∈M\{i} ρkpkGk,j

piGi,j

ln(1 + γi,j)(γ
−2
i,j + γ−1

i,j )
,

where [∇g
ρ(r,ρ)]i is the ith row of ∇g

ρ(r,ρ).

Now, since
∑︁

k∈M\{i} ρkpkGk,j

piGi,j
<

∑︁
k∈M\{i} ρkpkGk,j+σ2

piGi,j
= γ−1

i,j and ln(1+γi,j)(γ
−2
i,j +γ−1

i,j ) >

γ−1
i,j [RSF14], we have

∑︂
j∈N (i)

rj
RB log(1 + γi,j)

×

∑︁
k∈M\{i} ρkpkGk,j

piGi,j

ln(1 + γi,j)(γ
−2
i,j + γ−1

i,j )
<

∑︂
j∈N (i)

rj
RB log(1 + γi,j)

= ρi

which implies that [∇g
ρ(r,ρ)]iρ > 0. Since the off-diagonal entries are all non-positive and

diagonal entries are all non-negative, ∇g
ρ(r,ρ) satisfies the sufficient conditions for it to

be an invertible generalized diagonal dominant matrix [RSF14,BP94].

2.7.4 Equicontinuity of L-Lipschitz functions

Lemma 2.2. Let F ⊂ C(R,L) denote the set of L-Lipschitz functions with L := [L1, L2, · · · , LM ]⊺ ∈
RM
≥0. The set F is an equicontinuous subset of C(R,L).
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Proof. Since each component of f ∈ F is Lipschitz on R ⊂ RN
>0, we have that

(∀x,y ∈ R) (∀i ∈ 1,M) |fi(x)− fi(y)| ≤ Li ∥x− y∥ .

Define Lmax := maxi∈1,M Li and note that

(∀x,y ∈ R) ∥f(x)− f(y)∥∞ ≤ Lmax ∥x− y∥ .

From the equivalence of norms in finite dimensional normed spaces it follows that (∃C > 0)

such that

∥f(x)− f(y)∥ ≤ C ∥f(x)− f(y)∥∞ ≤ C Lmax ∥x− y∥ . (2.9)

Given ϵ > 0 and for every xo ∈ R, choose δ := ϵ
Lmax C as the radius of BR(xo, δ). We

have from (2.9) that

∥f(x)− f(xo)∥ ≤ C Lmax ∥x− xo∥ < ϵ, (2.10)

whenever ∥x− xo∥ < δ. We have shown that δ can be chosen independently of xo. Now

since (2.10) holds for every f ∈ F , the proof is complete.

2.7.5 Closedness of Fmon and FLip

Lemma 2.3. Consider the space C(X ,Y).

a). The set of monotonic functions Fmon in C(X ,Y) is closed.

b). The set of L-Lipschitz functions FLip in C(X ,Y) is closed.

Proof. a). Let (fn)n∈N ⊂ Fmon ⊂ C(R,L) be an arbitrary convergent sequence of contin-

uous monotone functions converging to some g ∈ C(R,L). Then from Definition 1.2,

and the fact that inequalities are preserved in the limit, it follows that:

(∀x,y ∈ R) x ≤ y =⇒ (∀n ∈ N) fn(x) ≤ fn(y)

(∀x,y ∈ R) x ≤ y =⇒ lim
n→∞

fn(x) ≤ lim
n→∞

fn(y)

(∀x,y ∈ R) x ≤ y =⇒ g(x) ≤ g(y),

which means that g ∈ Fmon. Since (fn)n∈N was chosen arbitrarily, the above holds

for every sequence in Fmon showing that Fmon is closed.

b). Following the same idea as above, we show that the limit function g ∈ C(R,L)
of an arbitrary sequence (fLipn )n∈N ⊂ FLip ⊂ C(R,L) is Lipschitz with the same
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L, i.e., g ∈ FLip also. Note that ∥fLipn − g∥C(R) → 0 if and only if (∀i ∈ 1,M)

∥fiLipn − gi∥C(R) → 0. Therefore, it suffices to show that (i ∈ 1,M) gi, the limit of

the sequence (fi
Lip
n )n∈N, is Lipschitz with Li, the ith component of L.

Now, since fi
Lip
n → fi uniformly, for some ϵ > 0 there exists N ϵ

1 ∈ N such that

(∀x ∈ R) |fi(x) − fi
Lip
Nϵ

1
(x)| < ϵ which implies that there exists N ϵ > N ϵ

1 such that

(∀x ∈ R) |fi(x)− fi
Lip
Nϵ (x)| < ϵ/2. Then,

(∀x ∈ R) (∀y ∈ R) |fi(x)− fi(y)| = |fi(x) + fi
Lip
Nϵ (x)

− fi
Lip
Nϵ (x) + fi

Lip
Nϵ (y)

− fi
Lip
Nϵ (y)− fi(y)|

< ϵ/2 + ϵ/2 + Li∥x− y∥

= ϵ+ Li∥x− y∥.

Since the above holds for all ϵ > 0, it follows that

(∀x ∈ R) (∀y ∈ R) |fi(x)− fi(y)| ≤ Li∥x− y∥.
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3 Robust Multiuser Detection

3.1 Introduction

Solutions to problems concerning multiuser communication in wireless systems are typi-

cally based on models that require, channel state information, knowledge of interference

patterns, and information about the phase of desired users, to name a few examples. As

a result, before data communication over the wireless channel, receivers traditionally es-

timate many model parameters. However, this approach has two major drawbacks that

can severely impair the performance of communication systems. First, perfect estimation

of user parameters is impossible in general because of noise, a limited number of training

samples, and the complexity of the algorithms. Second, models themselves are only ide-

alizations and they are based on simplifying assumptions about the wireless environment.

It is often unclear how well they can capture the true behavior of real systems, especially

in modern dynamic wireless networks.

To mitigate the above handicaps of model based receivers, recently machine learning

based alternatives have been proposed. The idea is to replace some building blocks of

conventional receivers by learning algorithms in order to reduce the number of assumptions

required by the models and the complexity of estimation. However, the resulting reduction

in model knowledge brings many technical challenges. In particular, some state-of-the-art

learning tools, such as those based on neural networks, require large training sets and a

long training time [Mar18]. However, in the physical layer, channels or their statistics

can be considered roughly constant only for few milliseconds, which can be all the time

available to collect training pilots, train a machine learning algorithm, and then perform

the communication task. If this temporal aspect is not taken into account, then by the time

enough samples are available to train existing state-of-the-art algorithms, the environment

may have changed so drastically as to render the learning useless for current propagation

conditions. As a result, learning techniques must work with small training sets and they

have to deal with the uncertainty resulting from small training sets.

The above-mentioned uncertainty can be reduced by combining model based prior

knowledge about the function (in this case a good multiuser receiver) to be approxi-

mated with knowledge obtained from a given training sample set (see e.g., [MIM+18,
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ACS19,DRG17]). For example, it is known that the optimal multiuser detector (which

minimizes the bit error rate (BER) of the desired user) is the nonlinear maximum a pos-

terior (MAP) filter [Ver98,MP94,CHW04]. Ideally, in a dynamic environment we would

like to approximate the MAP filter with a relatively small number of training samples

employing, preferably, low-complexity learning techniques. However, in modern wireless

networks, such as massive machine-type communications (mMTC), users transmit spo-

radically. In these systems, unlike linear filters, nonlinear receive filters suffer from the

lack of robustness against sporadic interference [STY09]. In order to achieve a balance

between performance and robustness, we develop online learning based partially linear

receiver consisting of a nonlinear and a linear component, where the nonlinear component

is an approximation of the maximum a posterior (MAP) filter. Before we discuss our

contributions in detail, we discuss some related work in the next section.

3.1.1 Related Work: Machine Learning Receivers

It is known that the optimal multiuser detector (which minimizes the BER of the desired

user) is the nonlinear maximum a posterior (MAP) filter [Ver98,MP94,CHW04]. Since the

optimal MAP filter has a complexity that is exponential in the number of users, several

studies have considered either suboptimal linear receivers or suboptimal machine learning

based nonlinear receivers. We shall discuss three conventional receivers including the op-

timal MAP receiver in Section 3.2. Here, we briefly discuss nonlinear receivers that are

based on nonlinear neural networks. The use of neural networks in multiuser communica-

tion goes back to [APO92], where the authors have designed a multilayer perceptron for

detection in CDMA systems. The authors show that this neural network can match the

performance of the optimal MAP filter. Neural networks based on radial basis function

(RBF) networks have also been proposed based on the fact that the optimal MAP filter has

an RBF structure [MP94,CHW04]. However, these techniques approximate the optimal

MAP filter by estimating the parameters (e.g., the centers for the involved RBF func-

tions) required for its implementation. For other techniques, involving neural networks

[both deep and shallow networks] see [IN07] and references therein. To summarize, the

main limitations of these studies is that a large number of samples are generally needed

to obtain acceptable performance and, because these receivers are nonlinear, they are not

robust against sporadic interference and other small variations in the environment.

Traditional offline learning techniques acquire a training sample set and they approxi-

mate the underlying true function by minimizing an empirical loss function defined over

the training sample set. The quality of approximation depends on, of course, how well the

approximation generalizes on unseen data. In online learning, which is more suited to real-

time applications, the sample set is acquired in a sequential manner and therefore a loss
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function over the entire sample set cannot be defined. In this case, we need online adaptive

algorithms that minimize time-changing and sequentially arriving loss functions. Adaptive

learning algorithms in reproducing kernel Hilbert Spaces (RKHSs) have been applied to

the multiuser detection problem in [TSY11,STY09]. These studies design a nonlinear re-

ceive filter in an infinite-dimensional RKHS using a criteria/loss function that is related to

the BER of the desired user. The algorithm is an online version of the celebrated Polyak’s

subgradient algorithm. To achieve robustness against sporadic interference, the algorithm

uses prior knowledge about the angles of arrival of the desired users. The authors show

that this method outperforms a conventional linear method. No comparison with any

nonlinear technique is presented, but the algorithm requires relatively small number of

samples to achieve a good BER. In contrast, we do not assume any knowledge about user

channels or angles of arrival because their estimation is prone to errors. .

In the remainder of this chapter, to align our terminology with that of the studies

[STY09,TSY11], we will use the words “filter” and “function” interchangeably.

3.1.2 Contribution

We consider a challenging scenario in which the number of antennas available at the base

station may be smaller than the number of active users. As an example, such a situation

is likely to arise in the mMTC use-case in 5G and beyond networks. Our proposed method

is an online partially linear receive filter that learns to detect symbols of a desired user

without requiring any intermediate user parameter estimation (e.g., channel estimation),

and it shows good robustness against sudden changes of the wireless environment. Our

work is mainly inspired by the studies [STY09, TSY11] in which a nonlinear multiuser

detection filter is designed in an infinite-dimensional RKHS. These studies show that

working in certain RKHSs is particularly suited to real-time nonlinear adaptive filtering

applications because the approximation can be carried out using low-complexity online

algorithms. Moreover, the particular deterministic projection based learning approach

tends to work well with a relatively small number of training samples. Since user parameter

estimation is prone to errors, in contrast to [STY09, TSY11], rather than assuming the

knowledge of the angles of arrival of the desired users, we provide our design with additional

robustness by considering partially linear filters, as proposed in [Yuk15a] in a different

application domain. In multiuser systems, such as power-domain NOMA systems, users

of interest are multiplexed in the signal-to-noise ratio (SNR) domain. This means that

the desired user set can be seen as having weak users, strong users, and intermediate users

according to their respective SNRs. In general, if a strong user is to be detected, then a

linear filter should suffice, while for the weak user we may need nonlinearity because this

user suffers from excessive multi-access interference. Based on this intuition, we design a
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Table 3.1: List of Variables

Description Symbol

Number of Antennas M ∈ N
Number of users K ∈ N
Convex set at time t ∈ N Ct

Hilbert Space with inner-product ⟨·, ·⟩H (H, ⟨·, ·⟩H)
Gaussian kernel with width σ > 0 κσG
RKHS of Gaussian kernel with width σ > 0 Hσ

G

RKHS of Gaussian kernel with weight wG Hσ
G,wG

Linear kernel κL
RKHS of Linear kernel with weight wL HL,wL

Channel coherence time Tblock ∈ N
Sample acquisition time Ttrain ∈ N

partially linear filter which consists of weighted linear and nonlinear components. Note

that, generally, the more nonlinear a receiver becomes, the less robust such a receiver is

against sporadic interference. Therefore, for strong users highly nonlinear filters may be

an overkill. In our framework the nonlinearity of the aggregate filter can, in priciple, be

adapted according to the situation of the desired user (also see [?] which has demonstrated

our design in a hardware-in-a-loop system), e.g., the SNR or BER performance of the

desired user.

In Section 3.2 we present the multiuser detection system model and we look at various

conventional detection techniques including the optimal MAP filter. In Section 3.3 we de-

sign the above mentioned nonlinear component of the aggregate filter. To add model based

knowledge to our design, we show how to adaptively learn a nonlinear filter that mim-

ics the optimal MAP filter using a low-complexity adaptive learning algorithm. Previous

studies have shown that the optimal MAP filter has a form of a Gaussian RBF network.

We show that the optimal MAP filter belongs to certain RKHSs. The significance of this

fact is that it allows us to use a low-complexity algorithm to obtain a good approximation

of the above-mentioned nonlinear filter, using a relatively small training sample set, di-

rectly without any intermediate user parameter estimation. In Section 3.4 we present our

aggregate (partially linear) filter design with weighted linear and nonlinear components

by extending the RKHS of nonlinear functions from Section 3.3 to now also include linear

functions. We also show how the complexity and memory requirements of the aggregate

filter can be reduced to make it suitable for real-time online applications. In Section 3.5

we simulate various aspects of the filter design and we compare the performance with some

conventional techniques.
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3.2 Multiuser Detection

3.2 Multiuser Detection

Consider the multiuser uplink shown in Figure 3.9, where a base station with M ∈ N
antennas receives signals from K ∈ N simultaneously transmitting single-antenna users.

We assume that the received baseband signal (with symbol-rate sampling) at the base

station at (symbol) time t ∈ N is given by [see, e.g., [CHW04,TV05]]

r(t) :=
K∑︂
k=1

√︁
pk(t)bk(t)hk(t) + n(t) ∈ CM , (3.1)

where pk(t) ∈ ]0 ∞[, bk(t) ∈ C, and hk(t) ∈ CM are the power, the modulation symbol,

and the channel, respectively, for user k ∈ 1,K, and where n(t) ∈ CM denotes additive

noise. Traditionally, one assumes that the noise is additive white Gaussian noise (AWGN)

with zero mean and variance E[n(t)n(t)H] = 2σ2
nI with I the M ×M identity matrix.

Desired User

Intra-cell/Intra-

cluster Interference Inter-cell 

Interference

Figure 3.1: Multiuser uplink: The received base band signal r(t) consists of the desired
signal and noise plus interference from other users in the same cell and also
users from other cells.

3.2.1 Optimal Multiuser Detection

Without loss of generality, assume in the following that the multiuser receiver at the base

station wants to detect the data of user k = 1. For simplicity, we make the common

assumption that (∀t ∈ N) (∀k ∈ 1,K) hk(t) := hk and pk(t) := pk, i.e., the channels

and powers of users remain constant. Let P := [
√
p
1
h1,

√
p
2
h2, · · · ,

√
p
K
hK ] ∈ CM×K

and b(t) := [b1(t), b2(t), · · · , bK(t)]⊺ ∈ CK . Then, we can rewrite (3.1) as [see the matrix
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channel model [Hon08, Section 1.2]]

r(t) = Pb(t) + n(t).

:= r̄(t) + n(t), (3.2)

where r̄(t) := Pb(t) is the noiseless multiuser signal. In the following, for simplicity, we

assume that the system modulation scheme is BPSK, i.e., (∀k ∈ 1,K) bk(t) = ±1.1

Note that r(t) in (3.2) belongs to a finite set. In more detail, since (∀k ∈ 1,K) bk(t) ∈
{+1,−1}, the cardinality of the finite set from which b(t) = [b1(t), b2(t), · · · , bK(t)]⊺ takes

its values is Nmod := 2K . Let bq denote the qth possible value of b(t), i.e., (∀t ∈ N)
(∃q ∈ 1, Nmod) bq = b(t), then r̄(t) belongs to the finite set

X̃ := {r̄q = Pbq, 1 ≤ q ≤ Nmod} ⊂ CM , card(X̃ ) = Nmod. (3.3)

Given a received signal r(t), the (single-user) optimal multiuser receiver performs the

MAP decision based detection of b1(t). This detection is optimal in the sense of minimizing

the BER of user 1. The MAP receiver consists of the MAP receive filter followed by a hard-

decision. In more detail, the MAP receive filter f⋆ is given by [see, e.g., [Ver98,CHW04]]

(∀t ∈ N) f⋆(r(t)) :=

Nmod∑︂
q=1

vq exp

(︄
∥r(t)− r̄q∥2

2σ2
n

)︄
, (3.4)

where

(∀q ∈ 1, Nmod) vq =
sgn(bq1)

Nmod(2πσ2
n)

M
, (3.5)

and where bq1 is the component of bq corresponding to user 1. The hard-decision is given

by

(∀t ∈ N) b̃1(t) :=

⎧⎨⎩+1, f⋆(r(t)) ≥ 0,

−1, f⋆(r(t)) < 0.
(3.6)

3.2.2 Suboptimal Multiuser Detection

In the previous section we discussed the optimal MAP filter that achieves the best per-

formance for each user in terms of the BER under AWGN assumption. However, the

optimal MAP filter requires the knowledge of the center set X̃ in (3.3). Obviously, this

exact knowledge can be replaced by an estimation to obtain suboptimal performance.

However, for a large number of users the complexity of this receiver is impractical because

1The modulation symbols (and the centers in (3.3)) are assumed to be equiprobable.
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the cardinality of X̃ increase exponentially with number of users K. Therefore, in the

following we discuss some suboptimal receivers that are commonly considered instead of

the optimal MAP filter. We once again assume AWGN and equiprobable BPSK signaling

in the following.

Minimum Mean-Squared Error (MMSE) Receiver

The (linear) minimum mean-squared error (MMSE) filter is a widely used suboptimal

receiver due to its relatively low complexity. The MMSE receiver consists of an MMSE

filter followed by the hard-decision in (3.6). A common assumption when using the MMSE

filter is that M > K, i.e., the number of receive antennas exceeds the number of users, and

that there exists sufficient disparity among user channels such that they can be linearly

separated.

With the received signal defined in (3.2), the linear MMSE filter given by [CHW04,TV05]

fMMSE(r(t)) := wHr(t) = wHr̄(t) +wHn(t), (3.7)

where

w = (PPH + 2σ2
nI)

−1 p1 ∈ CM , (3.8)

with p1 ∈ CM the first column of P in (3.2), minimizes the mean squared error

E
[︂
|b1(t)− fmmse(r(t))|2

]︂
.

Note that, given the signal-plus-noise covariance matrix PPH + 2σ2
nI and p1, the MMSE

filtering is simply a matrix inversion and multiplication operation. In practice, the matrix

PPH + 2σ2
nI is replaced by its empirical estimate obtained by using training pilots.

Remark 3.1 (Robustness of Linear Filters). It can be easily seen by (3.7) that (due to

the linearity of the MMSE filtering) if a user k ̸= 1 leaves the system, the SINR of

user k = 1 improves. In other words, traditional linear receive filters are robust against

sporadically transmitting interference sources. However, this does not hold in general for

the nonlinear optimal MAP filter. In fact, all nonlinear receivers, besides being generally

more complex than linear receivers, lack the robustness of their linear counterparts in

dynamic environments.
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Successive Interference Cancellation (SIC) Receiver

In contrast to the MMSE receiver, the MMSE with (symbol-level) successive interfer-

ence cancellation (SIC) receiver (also known as the MMSE-SIC receiver) performs joint

successive detection of all users in the decreasing order of their received SNRs.

In more detail, the users are ordered according to their received SNRs. The SIC proce-

dure is illustrated in Figure 3.2 for up to the first 3 users in the SIC order. The modulation

symbol of the user with the best SNR is detected first using the MMSE filter on the re-

ceived signal r(t) in (3.1), and by treating interference from other users as noise. For every

subsequent user in the SIC order, the interference contributions from all previous users

are subtracted from the received signal. Then the MMSE filtering is performed on the

residual received signal by treating the interference from remaining users as noise.

MMSE

MMSE

MMSE

SIC 

SIC 

User 2 Data

Received Signal

Residual

Residual

Interference User 1

User 1 Data

Interference User 2

Hard 

Decision

Hard 

Decision

Hard 

Decision

User 3 Data

Figure 3.2: SIC receiver: The received base band signal r(t) consists of the desired signal
and noise plus interference from other users. Here we show the MMSE-SIC
procedure for the first 3 users. For the second user, the residual signal is
given by r(t) − √

p1b1(t)h1, and for the third user the residual is given by
r(t)−√

p1b1(t)h1 −
√
p2b2(t)h2.

Note that we would expect the nonlinear MMSE-SIC to outperform the MMSE receiver

as long as there exists sufficient disparity among user channels resulting in perfect SIC.

However, the MMSE-SIC receiver is clearly more complex than the MMSE receiver and

it also suffers from the lack of robustness [see Remark 3.1] in dynamic environments.

Remark 3.2. (Parameter Estimation) In literature, various methods have been developed

to obtain estimations to the signal-plus-noise covariance matrix PPH +2σ2
nI and the user

channel matrix P in (3.8). Before, actual data communication can begin, conventional

receivers carry out estimation of required parameters with the help of training pilots. In
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this sense, the actual detection of b1(t) is “indirect” and it suffers from errors in parameter

estimation.

3.2.3 An Online Learning Receiver

In this section we briefly present the general concept of the online learning based multiuser

detection [see, e.g., [STY09,ALCYS18,ACS19]]. This receiver is the focus of this chapter

and the details are provided in Sections 3.3 and 3.4.

Without any loss of generality, suppose that the receiver is interested in the modulation

data (b1(t))t∈N of user k = 1 in (3.1). As common in literature, we further assume that the

channels between the users and the base station undergo Rayleigh block fading [DV17].

Under this assumption, channels remain constant for a block of complex channel symbols

known as the coherence block. More precisely, let tb ∈ N denote the start of the coherence

block b ∈ N, where |tb − tb+1| := Tblock is the coherence block size. Then, (∀k ∈ 1,K)

(∀t ∈ tb, tb+1 − 1)(∃hb
k ∈ CM ) hk(t) = hb

k; i.e., h
b
k is the fixed channel of user k for the

coherence block b, which lasts from time t = tb to time t = tb+1 − 1. In conventional

receivers, (b1(t))t∈N is detected “indirectly” in the sense that the receivers first perform

parameter estimation (user channels, SIC order, signal-plus-noise covariance matrix etc.)

before data communication is carried out. This parameter estimation is carried out by

using training pilots and therefore it is prone to errors. In contrast, the goal here is to learn

to detect (b1(t))t∈N from the received signals (r(t))t∈N directly without any intermediate

parameter estimation.

For clarity, assume in the following discussion that the modulation scheme is BPSK,

i.e., (∀t ∈ N) b1(t) ∈ {+1,−1} [note: the ideas can be extended to higher modulation

schemes as shown in Section 3.4]. In mathematical terms, the algorithm should ideally

approximate a function g⋆ : CM → R such that [STY09,ALCYS18,ACS19]

(∀t ∈ N) g⋆(r(t)) = b1(t). (3.9)

Obviously, the objective is too optimistic because there is always noise at the receiver. To

include the effect of noise, akin to the classical bounded error estimation techniques [see

Section 1.7], the optimization goal is relaxed by introducing a noise-tolerance parameter

ϵ > 0. The optimization goal now becomes to find g : CM → R such that

(∀t ∈ N) |g(r(t))− b1(t)| ≤ ϵ. (3.10)

To this end, at the start of each coherence block b, the desired user sends Ttrain < Tblock

training symbols (b1(t))t∈tb,tb+Ttrain−1, which are also known to the base station. With the
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corresponding received signals (r(t))t∈tb,tb+Ttrain−1, a training set

S :=
{︁
(r(t), b1(t)) , t ∈ tb, tb + Ttrain − 1

}︁
is constructed that is used to approximate the function g in (3.10). Denoting the approx-

imation by f we use (f(r(t))t∈tb+Ttrain,tb+1−1 as the estimates of the information symbols

(b1(t))t∈tb+Ttrain,tb+1−1 in the coherence block b. In the remainder we consider a single

coherence block starting at t = tb = 1.

Remark 3.3 (Online Learning). Unlike traditional batch learning methods, the online

method considered in this chapter improves the estimates of the ideal function g as soon

as a training sample is obtained; i.e., it does not wait for the acquisition of the whole

S to start the learning process. By doing so, detection of information symbols can start

almost immediately after the last training sample of the set S becomes available, which is

an important feature in high data rate systems.

We now briefly outline our online learning goal before moving on to the details in

Sections 3.3 and 3.4. First, we assume that g ∈ H, where (H, ⟨·, ·⟩H) is a suitable RKHS

associated with the kernel κ : CM × CM → R [see Section (1.5)]. We refer to H as the

problem element set because we restrict our search for g satisfying (3.10) to this set. Using

the reproducing property of H, we can rewrite (3.10) as

(∀t ∈ N) Ct := |⟨g, κ(·, r(t))⟩H − b1(t)| ≤ ϵ, (3.11)

which is a closed convex set of functions in H [STY09]. An appropriate and computation-

ally convenient objective is to find a function g⋆ ∈
⋂︁

t≥to
Ct, for some to ∈ N, as considered

in [TSY11, STY09], which satisfies (3.11) for every t ≥ to under the assumption that⋂︁
t≥to

Ct ̸= ∅. In other words, g⋆ belongs to all (infinite in number) but a finite number of

sets Ct in (3.11). Note that,
⋂︁

t≥to
Ct ⊂ H can also be seen as the feasible solution set in

the context of convex feasibility and set theoretic problems [BB96,Com93].

Before we close out this section, Observation 3.1 shows that our online framework ex-

hibits some robustness properties and that there is a well-defined notion of optimization

attached to our framework. Furthermore, this connection enables us to use a numerically

robust online learning algorithm.

Observation 3.1 (Connection with Robust Support Vector Regression (SVR)). To align

our work with conventional loss function based learning, we note that if (∀t ∈ N) g⋆ ∈ Ct

(i.e., g⋆ ∈
⋂︁

t∈NCt) then [STY09,The15]

(∀t ∈ N) g⋆ ∈ argmin
f∈H

Lt(f(r(t)), b1(t)) := max {0, |⟨f, κ(·, r(t))⟩H − b1(t)| − ϵ} ,
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where Lt : R × R → R is the well-known linear ϵ-insensitive loss function used in the

canonical form of robust support vector regression (SVR) [Vap95,SS04]. It is well-known

that function approximation with this loss function is robust against outliers and uncer-

tainty about the underlying noise distribution. From this perspective, our online framework

can be seen as an online version of unregularized SVR [the loss functions Lt are infinite

in number and they arrive in a sequential manner in contrast to SVR]. Moreover, since

Lt are continuous and convex, we can use a numerically robust online learning algorithm

to approximate g⋆ ∈
⋂︁

t≥to
Ct for some to ∈ N.

3.3 Nonlinear Adaptive Multiuser Detection

In this section we design the nonlinear component of the partially nonlinear filter intro-

duced in Section 3.1.2. For simplcity and to avoid technical digressions, we assume once

again that the receiver is interested in the modulation data of user 1 and that the modula-

tion scheme is BPSK. Recall from Section 3.2.3 that our objective is a good approximation

of the “ideal” function in (3.9). However due to noise in the system, we relax the objective

to (3.10) which, roughly speaking, keeps the filter output close to the desired b1(t). Now,

let us fix ϵ < 1 in (3.11) and note that if we find some function g ∈ H satisfying (3.11),

the hard-decision (3.6) will determine b1(t) correctly for every t ∈ N. This means that the

BER in this case shall be 0 and g is optimal in the sense of minimizing the BER.

We start by assuming that the unknown noise sequence (n(t))t∈N in (3.1) is bounded,

which makes our approximation framework a particular case of bounded error estimation

presented in Section 1.7. Formally, we make the following assumption:

Assumption 3.1 (Bounded Noise). The unknown noise sequence (n(t))t∈N in (3.1) sat-

isfies

(∃Wnoise ∈ R) (∀t ∈ N) ∥n(t)∥ ≤ Wnoise. (3.12)

Note that Assumption 3.1 in fact always holds in practical systems involving measure-

ments with electrical circuits for obvious reasons. Under Assumption 3.1, the sequence

(n(t))t∈N may be assumed to be sampled from a bounded distribution, e.g., a truncated

Gaussian distribution, which is a particularly useful assumption in cases where the mea-

surements are bounded (see [CK94] for a detailed analysis). In particular, note that if

one assumes that (n(t))t∈N is sampled from an AWGN (which is a typical assumption in

wireless communications), and one discards measurements that do not satisfy (3.12) for

a fixed Wnoise, then the remaining measurements can be seen as being sampled from a

truncated Gaussian distribution.2

2Note that, for a sufficiently large value of the truncation Wnoise, the truncated Gaussian distribution
can approximate the AWGN reasonably well.
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3 Robust Multiuser Detection

In the following, define by X ⊂ CM the input space of received vectors in (3.1). Note

that we have not yet specified the RKHS H to which a good filter g satisfying (3.11)

belongs. The choice of an appropriate H is crucial, and it may depend on many things,

such as any prior knowledge we may have about g or the “richness” of H (note: a rich

space may ensure the existence of g satisfying (3.11)). For example, if we choose H to be

the space of all linear functions, then the conventional linear MMSE filter fMMSE, which

minimizes the mean squared error between the filter response and b1(t), belongs to H.

However, if M < K or there does not exist sufficient disparity among user channels, then

there may not exist fMMSE ∈ H satisfying (3.11) for a sufficiently small ϵ. The reason is

that in this case user signals may become linearly inseparable in H. It has been observed

that, even in the linearly separable scenarios, a better choice for H is a space of nonlinear

functions [CHW04]. Among the candidates for a suitable nonlinear filter, the nonlinear

MAP filter defined in (3.4) is a natural choice. The reason is that even though the optimal

MAP filter works with the AWGN assumption, it should also work well with truncated

Gaussian noise based on the discussion above. In the following, we do not make this

distinction explicitly to avoid notational clutter, and we continue to refer to f⋆ defined in

(3.4) as the optimal MAP filter. As a result, we may assume that, for given a sequence

(r(t))t∈N ⊂ X in (3.1), the goal of the proposed algorithm is to find a g⋆ such that

(∀t ∈ N) g⋆(r(t)) ≈ f⋆(r(t)), (3.13)

where f⋆ is the nonlinear MAP filter given by the expression in (3.4). We refer to g⋆ as

the proxy optimal filter in the sequel, and we implicitly assume that such a g⋆ satisfies

(3.11).

In light of the above, an appropriate choice ofH is the space to which f⋆ belongs. Adding

this model based prior knowledge has several advantages. In particular, one can show

that H can be an RKHS that exhibits very attractive approximation and computational

properties. To this end, in Section 3.3.1 we present our results regarding the RKHS H
to which f⋆ belongs. In Section 3.3.2 we show that f⋆ belongs to an intersection of

certain closed convex sets in H. Utilizing these results, in Section 3.3.3 we study how a

proxy optimal filter can be approximated by using the online learning rationale presented

in Section 3.2.3. Because purely nonlinear filters are not robust in a dynamic wireless

environment, we show in Section 3.4 how to extend the space H to also include linear

functions, which adds robustness to the aggregate filter.
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3.3 Nonlinear Adaptive Multiuser Detection

3.3.1 A New Look at the MAP Filter

The MAP filter f⋆ : X → R in (3.4), defined over X , is given by

(∀x ∈ X ) f⋆(x) :=

Nmod∑︂
q=1

vq exp

(︄
−∥x− r̄q∥2

2σ2
n

)︄
, (3.14)

where the centers r̄q ∈ X̃ ⊂ X and the constants vq are given in (3.3) and (3.5), respec-

tively.

Observation 3.2 (Required Knowledge for the MAP filter). The exact representation of

f⋆ requires:

1. the knowledge of the set

X̃ := {r̄q, 1 ≤ q ≤ Nmod} ⊂ CM , card(X̃ ) = Nmod, (3.15)

which contains the centers r̄q in (3.14);

2. the knowledge of the noise parameter σ2
n.

Observation 3.2 shows that approximation of f⋆ requires an estimation of the set X̃
which is complex for a large number of users. In contrast, our results in the following

show that the approximation of f⋆ can be carried out using low-complexity algorithms in

the RKHS to which f⋆ belongs.

The MAP Filter and RKHSs

We now present our results regarding the function spaces to which the MAP filter belongs.

In particular, we show that it belongs to certain RKHSs. Note that by defining κσn
G (·, ·) :=

exp
(︂
−∥·−·∥2

2σ2
n

)︂
), we can write f⋆ in (3.15) as f⋆ =

∑︁Nmod
q=1 vq κσn

G (·, r̄q).

Lemma 3.1. Suppose the input space Int(X ) ̸= ∅, i.e., X has nonempty interior. Then,

the optimal MAP filter f⋆ =
∑︁Nmod

q=1 vq κσn
G (·, r̄q) belongs to Hσ

G (i.e., the RKHS associated

with the Gaussian kernel (∀u ∈ X ) (∀v ∈ X ) κσG(u,v) := exp
(︂
−∥u−v∥2

2σ2

)︂
), if 0 < σ <

√
2σn.

Proof. Since f⋆ =
∑︁Nmod

q=1 vq κσn
G (·, r̄q), it suffices to show that (∀q ∈ 1, Nmod) (∃r̄q ∈ X̃ ⊂

X ) κσn
G (·, r̄q) ∈ Hσ

G because Hσ
G is a vector space. We have (∀r ∈ X ) exp

(︂
−u∥·−r∥2

2σ2

)︂
∈ Hσ

G

if and only if 0 < u < 2 [Min10, Theorem 3]. So by letting σn := σ√
u
we get the desired

result that σ must satisfy 0 < σ <
√
2σn.
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Note that according to Lemma 3.1, f⋆ ∈ Hσn
G has a representation as a finite sum of

Gaussian kernels in Hσn
G , i.e.,

(∀x ∈ X ) f⋆(x) =

Nmod∑︂
q=1

vq κσn
G (x, r̄q), (∀q ∈ 1, Nmod) r̄q ∈ X̃ ⊂ X , (3.16)

where vq is defined in (3.4) and X̃ is the set of unknown noiseless centers (3.3). We make

the following two important observations with regards to approximation of f⋆:

1. Lemma 3.1 shows that f⋆ ∈ Hσn
G can also be approximated in Hσ

G for a sufficiently

small σ if 0 < σ <
√
2σn. Therefore, we can (in principle) obtain a function g⋆ =∑︁∞

i=1 αi κσG(·,ui) ∈ Hσ
G satisfying (3.13), for given (ui)i∈N and (αi)i∈N, without

the centers ui being equal to centers r̄q in (3.16). Therefore, the exact knowledge

of X̃ (the size of which increases exponentially with number of users K) is not

required. Furthermore, working in RKHSs is computationally attractive because, as

we shall see later, these spaces allow for low-complexity approximation algorithms

based primarily on easy-to-compute inner-products.

2. Since the approximation requires the width of the Gaussian kernel to satisfy 0 < σ <√
2σn, a good approximation of the noise power 2σ2

n should suffice. An important

fact, which will be utilized in Section 3.4, is that the RKHS Hσ
G does not contain

any polynomials (including the linear and the nonzero constant functions) [Min10].

3.3.2 The MAP Filter Output with Bounded Noise

In the previous section we have shown that the optimal MAP filter f⋆ belongs to the

space Hσ
G if 0 < σ <

√
2σn. Therefore, the RKHS H can be chosen to be the RKHS

(Hσn
G , ⟨·, ·⟩Hσn

G
), i.e., in (3.13) we can take g⋆ ∈ Hσn

G . Next, we restrict f⋆ to a feasible

solution set contained in Hσn
G under Assumption 3.1. To this end, Lemma 3.2 provides

a bound on the distance between the output of f⋆ and the modulation symbol of the

desired user (i.e., the desired output) reminiscent of (3.10). The proof is provided in

Appendix 3.6.1. We will show later that this bound enables us to restrict f⋆ to an inter-

section of sequentially arriving closed convex sets. Consequently, since this intersection is

nonempty, we can apply the online learning rationale of Section 3.2.3.

Lemma 3.2. Suppose Assumption 3.1 holds and that

(∀p ∈ X̃ ) (∀q ∈ X̃\{p}) ∥r̄p − r̄q∥
2

:= αp,q
disparity ≥ Wnoise, (3.17)

62



3.3 Nonlinear Adaptive Multiuser Detection

where X̃ is the set of noiseless centers (3.3). Define

ϵ1 :=

⃓⃓⃓⃓
1− exp

(︃
−W 2

noise

2σ2
n

)︃ ⃓⃓⃓⃓
, ϵ2 := max

q∈1,Nmod

⃓⃓⃓⃓
⃓⃓ Nmod∑︂
p=1,p ̸=q

exp

(︄
−
(αp,q

disparity)
2

2σ2
n

)︄ ⃓⃓⃓⃓
⃓⃓ (3.18)

Then, the optimal MAP filter f⋆ satisfies

(∀t ∈ N) |f⋆(r(t))− b1(t)| ≤ ϵ1 + ϵ2 =: ϵ, (3.19)

where (b1(t))t∈N ⊂ {+1,−1} are the modulation symbols of the desired user and (r(t))t∈N ⊂
X are the received vectors.

Remark 3.4 (Example: A BSPK Scenario). In Lemma 3.2 ϵ1 bounds the desired part of

the filter output that only depends on the bound on the noise sequence, while ϵ2 provides

a worst-case bound on the unwanted residual interference part. The constant ϵ2 depends

on the disparity between user channels so it is determined by the scenario. In multiuser

systems, such as NOMA systems, users are multiplexed in the SNR domain by keeping

some disparity between users [WRS+16,DLK+17]. Furthermore, users are generally also

separated in the spatial domain. This means that ϵ2 is generally small. For example, in

a standard BPSK system (depicted in Figure 3.5 with the desired user 1 in the middle)

with K = 5 users, M = 2 antennas, SNRs (in dBs) equal to {10, 13, 16, 19, 22}, angles
of arrival given as {50◦, 70◦, 60◦, 40◦, 30◦}, and the noise parameter σn =

√
0.1, users

are linearly inseparable. The channel for the kth user is given by (∀k ∈ 1,K) hk :=

[1, eπj cos θk , . . . , eπj(M−1) cos θk ]⊺ ∈ CM , where θk is the angle of arrival (in radians). In this

case ϵ2 = 0.0726. If we assume a reasonably large bound Wnoise = 2σn then from (3.18)

we get ϵ1 = 0.8647. For reliable BPSK detection this satisfies the condition ϵ1+ϵ2 = ϵ < 1

in (3.10).

In the following, we define σ := σn for notational simplicity. Using the reproducing

property of (Hσ
G, ⟨·, ·⟩Hσ

G
), we can rewrite (3.19) as

(∀t ∈ N)
⃓⃓⃓
⟨f⋆, κσG(·, r(t))⟩Hσ

G
− b1(t)

⃓⃓⃓
≤ ϵ. (3.20)

Furthermore, the set

(∀t ∈ N) Ct :=
{︂
f ∈ Hσ

G :
⃓⃓⃓
⟨f, κσG(·, r(t))⟩Hσ

G
− b1(t)

⃓⃓⃓
≤ ϵ
}︂
⊂ Hσ

G (3.21)

is a closed convex set of functions in Hσ
G also known as a hyperslab and in particular

(∀t ∈ N) f⋆ ∈ Ct. We can now obtain the following result which shows that fixing an
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ϵ > 0 in (3.19) restricts f⋆ to an intersection of certain closed convex sets under certain

technical assumptions.

Theorem 3.1. Let the RKHS (Hσ
G, ⟨·, ·⟩Hσ

G
) associated with the Gaussian kernel κσG satisfy

the condition in Lemma 3.1. Fix ϵ > 0 and suppose that ϵ > ϵ2 and that (3.17) is satisfied.

Then,

a). (∀to ∈ N) (∀t ≥ to) f
⋆ ∈

⋂︁
t≥to∈NCt ⊂ Hσ

G.

b). (∀to ∈ N) (∀t ≥ to) Ct :=
{︂
f ∈ Hσ

G :
⃓⃓⃓
⟨f, κσG(·, r(t))⟩Hσ

G
− b1(t)

⃓⃓⃓
≤ ϵ
}︂
̸= ∅.

Proof. Note that ϵ2 is determined by the system (see Remark 3.4) because it depends on

the set X̃ containing the noiseless centers. Then by fixing ϵ > 0, the value Wnoise = W ϵ
noise

can be calculated by (3.18) if ϵ > ϵ2. If (3.17) is satisfied for this Wnoise, then Lemma 3.2,

(3.20), and (3.21) yield (∀t ∈ N) f⋆ ∈ Ct. Therefore, (∀t ∈ N) Ct ̸= ∅, which implies both

(a) and (b).

3.3.3 Online Approximation of the Proxy Optimal Filter

In light for Theorem 3.1, we consider approximating a proxy optimal filter (Hσ
G ∋) g⋆ :

CM → R satisfying (∀t ∈ N) g⋆(r(t)) ≈ f⋆(r(t)), which has the general form given by

g⋆ =
∑︁∞

i=1 αiκ
σ
G(·, r(t)), where the coefficients (αi)i∈N ⊂ R and centers (xi)i∈N ⊂ CM are

determined by the proposed learning algorithm. If for the fixed ϵ above, the conditions

in Theorem 3.1 are satisfied we have that (∀t ∈ N) f⋆ ∈ Ct and therefore f⋆ ∈
⋂︁

t∈NCt,

where the sets Ct are defined in (3.21). The online nature of the problem means that the

sets Ct arrive sequentially. Ideally, we would like to obtain some function g⋆ ∈
⋂︁

t∈NCt

because f⋆ ∈
⋂︁

t∈NCt, and therefore g⋆ is a good approximation of f⋆ because it agrees

with all the information we have about f⋆ [BB96,Com93]. In the following, we relax our

approximation problem to finding a function in
⋂︁

t≥to
Ct, for some to ∈ N, i.e., we find a

point in the intersection of all (infinite in number) but some finite number of information

sets (also see Section 3.2.3). The advantage of this technical relaxation (which should

not affect the quality of approximation significantly) is that we can use a computationally

convenient and robust algorithm. To this end, in the following we discuss the proposed

online learning algorithm and some of its important features.

Canonical HyperSlab APSM-based Algorithm

Since hyperslabs are closed convex sets, we can use a particular version of APSM [YO05]

that we refer to as the HyperSlab APSM (see, e.g., [STY09, CSTY13, CYM09, CYS04,
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CYY05,CYM09]). In an online setting, at any time t, we have access to training samples

S(i) := {(r(i), b1(i))}i∈1,t or equivalently the training hyperslabs (Ci)i∈1,t by, for example,

storing the past samples in the memory. HyperSlab APSM allows us to use a finite

number of hyperslabs to be used concurrently during a single iteration of the algorithm.

This has been shown to accelerate the convergence of the iterate towards
⋂︁

t≥to
Ct [The15,

Chapter 8]. In more detail, denote by Jt ⊂ N the indices of the sets in (Ci)i∈1,t that we

intend to process at iteration/time t of the training procedure. Starting from an arbitrary

f1 ∈ Hσ
G, the simplified HyperSlab APSM iteration is given by [?]

(∀t ∈ N) ft+1 =
∑︂
j∈Jt

qtj PCj (ft), (3.22)

where PCj (ft) is the projection of ft onto the set Ct, and where (qtj)j∈Jt are nonnegative

weights satisfying
∑︁

j∈Jt
qtj = 1. It is important to mention that PCj (ft) has a closed-

form (see, e.g., [The15]) because Ct is a hyperslab. So the iterations (3.22) have a low

complexity.

Convergence, Monotonicity, and Robustness of the HyperSlab APSM

Informally, the proposed HyperSlab APSM iterative online algorithm improves the current

estimate, that we denote by ft, as soon as Ct arrives, i.e., it does not wait for the acquisition

of the whole training sample set to start the learning process. This property means that the

detection of b1(t) can start immediately starting at some t = Ttrain+1 which is vital in high

data rate systems [see also Section 3.2.3]. Note that the asymptotic convergence of (3.22)

to a point in
⋂︁

t∈NCt can be established under certain assumptions [YO05, Theorem 2],

but we are interested in the behavior of the algorithm for a finite training time.

In Theorem 3.2, we use a result from [YO05, Theorem 2(a) and 2(b)] which provides

the sufficient conditions under which the monotonicity of the general APSM iteration is

established. For completeness, we provide a proof for the fulfillment of these conditions in

our setting in Section 3.6.2. The proof, which follows from examples in [YO05], serves a

dual purpose in that it also shows how the iteration (3.22) can be obtained from the general

APSM algorithm [YO05]. In Section 3.6 we demonstrate Theorem 3.2 by simulation in a

standard multiuser scenario.

Theorem 3.2. [YO05] If f⋆ ∈
⋂︁

t∈NCt, then for the APSM iteration (3.22) it holds that,

if (∀t ∈ N) ft /∈ ∩j∈JtCj,

(∀t ∈ N) ∥f⋆ − ft+1∥Hσ
G
< ∥f⋆ − ft∥Hσ

G
.
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It is known that the APSM iteration in (3.22) is robust against a finite number of

excessive noise events ∥n(t)∥ > W ϵ
noise which may result in the violation of the condition

(3.17) and therefore also of Theorem 3.1(a) for our choice of ϵ. To be more precise, suppose

at some iteration t = to, ∥n(t)∥ > W ϵ
noise. Then, if f

⋆ ∈
⋂︁

t>to
Ct we have [YO05,TSY11]

(∀t > to) ∥f⋆ − ft+1∥Hσ
G
< ∥f⋆ − ft∥Hσ

G
;

i.e., the algorithm “resets” and starts moving toward f⋆ again.

3.4 Robust and Practical Implementation

In Section 3.3 we have presented our results regarding adaptive approximation of a good

nonlinear filter in an RKHS that only contains nonlinear functions. In this section, in

order to add robustness to our design, we will extend our filter design by adding a linear

component. This is achieved by extending the RKHS by adding linear functions to it.

Furthermore, we present a practical implementation of an online learning based multiuser

receiver, taking into consideration complexity and memory aspects.

Before we proceed, we summarize the practical considerations in implementing the online

algorithm presented in Section 3.3.3:

1. Lemma 3.1 shows that the width of the Gaussian kernel should be chosen such that it

satisfies 0 < σ <
√
2σn, where σn is the noise standard deviation. This, in particular,

implies that an arbitrarily small nonnegative σ can be chosen. In Section 3.4.1, we

argue that σ should be chosen such that it is close to σn which requires a rough

estimation of the receiver noise variance.

2. The extension to higher modulation schemes (e.g., the quadrature phase-shift keying

(QPSK)) requires filtering in complex-valued Hilbert spaces because the output of

any receive filter is generally complex-valued, while the canonical HyperSlab APSM

in (3.22) works with real-valued Hilbert spaces.

3. The MAP receiver is nonlinear and, like all nonlinear receivers, it is sensitive to

changes in the environment. For example, in 5G machine-type dynamic environ-

ments devices transmit sporadically which means that users enter and leave the en-

vironment intermittently [also see Remark 3.1]. This may degrade the performance

of a purely nonlinear receiver in dynamic environments.

4. Since the algorithm in Section 3.3.3 is of an online nature, the complexity and

memory aspects need to be taken into account.
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3.4.1 Selection of the Gaussian RKHS

In general the selection of a suitable approximation space, which we refer to as the problem

element set H, is a nontrivial problem. In Example 3.1 we discuss this general problem

briefly in classical learning theory by omitting unnecessary mathematical details. See

[NG96,CS02,Pon03] for further details.

Example 3.1 (A Balancing Act). Suppose we are given a training sample set D consisting of

noisy observations of some unknown function fρ. We seek to approximate fρ from a class of

functions H by, e.g., minimizing the empirical risk/error. The empirical risk/error, given

D, can be decomposed into the approximation bias error and the sample error (also known

as estimation error). The approximation bias error depends on the learning capacity of

H, while the sample error depends on both H and the size of D. The richer/larger the

class H is, the smaller the approximation bias error but larger the sample error tends to

be. Generally, one can then improve the sample error only by increasing the number of

samples. Therefore, there exists a balancing act in the sense that one should select an H
that is not unnecessarily large or, in other words, “it is just rich enough” to obtain a good

approximation of fρ without requiring a very large D.

We have shown in Lemma 3.1 that the optimal MAP filter f⋆ belongs to certain special

Gaussian RKHSs associated with certain Gaussian kernels. Lemma 3.1 shows the range

in which the width σ of the Gaussian kernel, which is associated to a unique RKHS

(Hσ
G, ⟨·, ·⟩Hσ

G
), may be chosen in relation to σn to ensure f⋆ ∈ Hσ

G. In particular, Lemma 3.1

shows that any 0 < σ <
√
2σn (where σn is the noise standard deviation) will do the job

which means that any arbitrarily small 0 < σ < σn may be chosen. It is known that for

two widths σ1 and σ2, if σ2 < σ1 < 1, then Hσ1
G ⊂ Hσ2

G [Bel18], i.e., decreasing the width

of the Gaussian kernel expands the functions space by adding new functions. But note

that we know that f⋆ ∈ Hσn
G , which is unlike the general learning problem mentioned in

Example 3.1 where no such information is available for function fρ. Therefore, we do not

need a larger space thanHσn
G , and operating in a larger space of functions is likely to require

more samples to approximate f⋆. In other words, though “narrower” Gaussian kernels

are more expressive, they may also require more samples to approximate functions. To

conclude, a good approximation of receiver noise power is required for a good detection

performance with a relatively small sample size. In this sense, the information about

receiver noise power adds to our overall model based knowledge. We shall demonstrate

this observation by simulation in Section 3.5.

In the next section we show how our method described in previous sections can be

extended to higher modulation schemes (e.g., QPSK) requiring complex modulation sym-

bols.
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3.4.2 Detection in Real-Valued RKHS

We use the approach described in [STY09], which exploits the bijection between Cm and

R2m to estimate complex symbols with real RKHSs. For each t ∈ N, we split r(t) ∈ CM

in (3.1) into two 2M -dimensional vectors given by

r1(t) :=

[︄
ℜ(r(t))⊺

ℑ(r(t))⊺

]︄
∈ R2M , r2(t) :=

[︄
ℑ(r(t))⊺

−ℜ(r(t))⊺

]︄
∈ R2M .

Similarly, the complex symbols (b1(t))t∈N of the desired user are mapped to vectors[︄
b1,1(t)

b1,2(t)

]︄
:=

[︄
ℜ(b1(t))
ℑ(b1(t))

]︄
∈ R2.

Our task is to learn a function f : R2M → R that operates on r1(t) and r2(t) separately

as illustrated in Figure 3.3. The relation between f and its complex-valued counterpart

f c : CM → C is given by

(∀t ∈ N) f c(r(t)) = f(r1(t)) + if(r2(t)), (3.23)

where i is determined by i2 = −1. To handle the BPSK case, assumed throughout in

Section 3.3, we simply set f(r2(t)) = 0 during detection.

To simplify notation in the discussion that follows, we define:

(∀t ∈ N) (∀l ∈ 1, 2) n := 2t+ l − 2,yn = y2t+l−2 := rl(t), and sn = s2t+l−2 := b1,l(t).

The advantage of using this simplified notation is that we have natural mappings from

natural numbers to the real and imaginary parts of the complex symbols (b1(t))t∈N and

the complex received signals (r(t))t∈N.

Note that, since we have transformed the received vectors from CM to R2M , we also

transform the set of centers X̃ ⊂ CM and the set of received signals X ⊂ CM in Sec-

tion 3.3.3, to sets R̃ ⊂ R2M and R ⊂ R2M , respectively. With this transformation, and

under Assumption 3.1 (∀n ∈ N) yn ∈ R, and we refer to R as the input space of received

signals.

3.4.3 Robust Partially Linear Filtering

Two important qualities of an ideal receive filter are a “high resolution” and “robustness”

against changes in the environment. Having a high resolution means that the receiver is

able to detect users well even if they are not separated well in space. Generally, nonlinear
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Filter Function

f : R2M → R

Receive FilteringPreprocessing

M Antennas

n1(t) n2(t) nM (t)

r(t) ∈ CM

r1(t) =

[︃
ℜ(r(t))⊺
ℑ(r(t))⊺

]︃
∈ R2M

r2(t) =

[︃
ℑ(r(t))⊺
−ℜ(r(t))⊺

]︃
∈ R2M

[︃
f(r1(t))

⊺

f(r2(t))
⊺

]︃
∈ R2

Output

Figure 3.3: Uplink Detection: The received base band signal r(t) is split into two real parts
r1(t) and r2(t) to enable real processing. Note that the illustration shows the
processing for a single desired user, but the same processing is applied to every
desired user in parallel.

filters have a higher resolution than their linear counterparts for the same number of receive

antennas. In [STY09] the authors design a nonlinear receive filter (which they refer to as

a nonlinear beamformer) in an infinite-dimensional RKHS associated with the Gaussian

kernel. The employed method is the HyperSlab APSM in Section 3.3.3 (with closed-convex

sets similar to those in (3.21) for a fixed value of ϵ) and the modulation scheme is BPSK.

In contrast to our work, the authors, however, do not provide a specific reason for using a

Gaussian kernel besides the fact that the resulting filter design is nonlinear. The Gaussian

kernel is one of the most widely used kernels in nonlinear regression due to its powerful

approximation properties. Interestingly, we have shown [see Lemma ??] that, in fact,

the choice of a (certain) Gaussian kernel is indeed well-motivated if the objective is to

minimize the BER of the desired user.

Unfortunately, one of the main drawbacks of all nonlinear filters (including the optimal

MAP filter) is that they tend to be less robust than linear filters against changes in the

environment. For instance, in the case of linear filtering, if a user leaves the system during

detection, the SINRs of the remaining users improve. However, this property cannot

be ensured in general with nonlinear filters. The performance may in fact deteriorate. In
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systems where users transmit sporadically, such as massive machine-type communications,

robustness and reliability are important requirements. In [STY09], robustness is achieved

by incorporating the knowledge about the angles of arrival of user signals. Since we do

not assume any information about user channels or their angles of arrival, we consider an

alternative approach to achieving robustness.

To achieve the robustness of conventional linear filters and the high resolution of the

nonlinear filters simultaneously, we can naturally assume that an ideal filter should have a

linear component fL and a nonlinear component fG. Recall that the theory in Section 1.5.1

has been developed for these kind of scenarios. Furthermore, the nonlinear part should be

an approximation of the proxy optimal filter g⋆, with the complex-to-real transformation

defined in (3.23). In more detail, we propose to work with a function space that contains

functions of the type f := fL+fG, where ideally we want fG to be the proxy optimal filter

g⋆. To this end, we propose to work in the sum space of a linear and a Gaussian kernel.

The kernels are given by

(∀u ∈ R) (∀v ∈ R) κL(u,v) := uTv and κG(u,v) := exp

(︄
−
∥u− v∥2Rl

2σ2

)︄
,

respectively, where 0 < σ <
√
2σn. The kernels κL and κG are known to be reproducing

kernels associated with RKHSs (HL, ⟨·, ·⟩HL
) and (HG, ⟨·, ·⟩HG

), respectively. Fact 3.1

shows that this is equivalent to extending HG to the RKHS H that now also contains

certain linear functions.

Fact 3.1 (Sum RKHS). [Min10,Yuk15a] Denote by H := HL+HG the sum space RKHS

associated with the kernel κ := wL κL + wG κG, where wL, wG > 0. With this particular

sum space H, if Int(R) ̸= ∅, then

HL ∩HG = {0},

which implies that HG does not contain any linear functions including nonzero constant

functions.

As a result of Fact 3.1, norms and inner-products in the Hilbert space (H, ⟨·, ·⟩H,w),

where w := [wL, wG], can be easily computed as shown in (1.4) and (1.5). If we use

convex weighting, i.e., wL = 1 − wG, with wG ∈ ]0, 1[, then wG controls the nonlinearity

of the aggregate filter.

70



3.4 Robust and Practical Implementation

Based on the results in Section 3.3, we assume that the sum filter belongs to closed

convex sets given by

(∀n ∈ N) Cn :=
{︂
g ∈ H : |g(yn)− sn| = | ⟨g, κ(yn, ·)⟩H,w − sn| ≤ ϵ

}︂
,

where ϵ ∈ ]0 ∞[ is the noise-bound parameter, and yn ∈ R is the real received signal.

With these sets, similar to Section 3.3.3, we pose the learning problem as follows:

find f ∈ H such that f ∈
⋂︂

n≥No

Cn, (3.24)

under the assumption that
⋂︁

n≥No
Cn ̸= ∅, for some n ≥ No.

We can solve (3.24) by using the HyperSlab APSM introduced in Section 3.3.3) under

certain assumptions [YO05]. Denote by Jn ⊂ N the indices of the sets in (Cn)n∈N that we

intend to process at iteration n ∈ N of the training procedure. Starting from f1 = 0 ∈ H,

the HyperSlab APSM produces a sequence of filters (fn)n∈N in H with the iterations given

by

(∀n ∈ N) fn+1 =
∑︂
j∈Jn

qnj PCj (fn), (3.25)

where PCj (fn) = fn + βn
j κ(yj , ·) = fn + βn

j (wL κL(yj , ·) + wG κG(yj , ·)) is the projection

of fn onto the set Cj , with βn
j given by [see Section 1.6.2]

βn
j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sj−⟨fn,κ(yj ,·)⟩H,w−ϵ

κ(yj ,yj)
, if ⟨fn, κ(yj , ·)⟩H,w − sj < −ϵ,

0, if | ⟨fn, κ(yj , ·)⟩H,w − sj | ≤ ϵ,
sj−⟨fn,κ(yj ,·)⟩H,w+ϵ

κ(yj ,yj)
, if ⟨fn, κ(yj , ·)⟩H,w − sj > ϵ,

and where (qnj )j∈Jn are nonnegative weights satisfying
∑︁

j∈Jn
qnj = 1. The monotonicity

of iteration (3.25) follows directly from Theorem 3.2:

(∀f⋆ ∈
⋂︂
n∈N

Cn) ∥fn+1 − f⋆∥ < ∥fn − f⋆∥,

if fn /∈
⋂︁

j∈Jn
Cj .

3.4.4 Practical Issues

Next, we look at issues related to the implementation of (3.25). The first issue is the

selection of an appropriate set Jn. A reasonable and simple way of selecting the sample

set Jn is to include the W ∈ N most recent samples. More precisely, at time n ∈ N, we
define Jn as the set given by Jn := n−W + 1, n if n ≥ W , or Jn := 1, n otherwise. The
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window size W is a design parameter chosen based on the available computational power.

Larger sizes typically improve the performance at the cost of increased computational

complexity.

The second issue pertains to the memory requirement and complexity of the learning

framework. To understand the main challenges, let us look at how the algorithm in (3.25)

proceeds. At time n ∈ N, we can show that the filter estimate generated by 3.25 is given

by

fn =
n−1∑︂
i=1

γ
(n)
i κ(yi, ·),

where (γ
(n)
i )i∈1,n−1 are real coefficients that depend on the sets (Cn)n∈N [TSY11].

Since fn is expressed as a linear combination of the elements in the set

Dn−1 := {κ(y1, ·), κ(y2, ·), . . . , κ(yn−1, ·)}, (3.26)

fn belongs to a subspace Hn−1 ⊂ H spanned by Dn−1. Note that Hn−1 is also a Hilbert

space if equipped with the same inner-product of the sum RKHS H. In the following we

will refer to the set (3.26) as the learning dictionary.

At each iteration n ∈ N of the algorithm a new element κ(yn, ·) = wL κL(yn, ·) +
wG κG(yn, ·) is admitted, and the dictionary is extended to Dn = Dn−1 ∪ {κ(yn, ·)}. It

follows that Hn−1 ⊂ Hn ⊂ H, and the extended space Hn is spanned by Dn. Therefore,

to evaluate fn+1(y) (by using the reproducing property discussed in Section 1.5), we need

to store Dmem
n := {y1,y2, . . . ,yn} along with the coefficients γ

(n+1)
1 , γ

(n+1)
2 , . . . , γ

(n+1)
n in

the memory of the receiver [note: Dn ⊂ H can be trivially recovered from Dmem
n ⊂ R2M ].

Moreover, the coefficients γ
(n)
i , the number of which increases with n, are required at each

iteration n by the projections (j ∈ Jn) PCj (fn−1) in (3.25). This fact shows that the

memory requirements and the computational complexity may become prohibitive when

n becomes sufficiently large. To keep the complexity and the memory requirements of

the learning algorithm at manageable levels, we need to use online dictionary learning

techniques, as explained below.

3.4.5 Online Dictionary Learning

It follows from Section 1.5.1 that the filter estimate fn at time n ∈ N can be uniquely

decomposed as the sum of its linear and Gaussian components as follows:

fn :=

n−1∑︂
i=1

γ
(n)
i κ(yi, ·) := fL,n + fG,n = wL

n−1∑︂
i=1

γ
(n)
i κL(yi, ·) +wG

n−1∑︂
i=1

γ
(n)
i κG(yi, ·), (3.27)
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where fL,n ∈ span(DL,n−1) and fG,n ∈ span(DG,n−1), and where (∀k ∈ N) DL,k =

{wL κL(·,y1), . . . , wL κL(·,yk)} and DG,k = {wG κG(·,y1), . . . , wG κG(·,yk)}. To curb

the growth of the dictionaries DL,n and DG,n as a function of n in a way to have a minor

impact on the performance of the filter fn, we use dictionary sparsification, as explained

below.

Dictionary sparsification has its origins in the seminal work in [EMM04], but here we

use an approach similar to that proposed in [Yuk15b], which handles the linear and Gaus-

sian components of the sequence (fn)n∈N of filters separately. In our approach we use

admission control to verify whether the most recent inputs wL κL(yn, ·) and wG κG(yn, ·)
should be added to the dictionaries DL,n−1 and DG,n−1, respectively. Briefly, the idea is

to check if wL κL(yn, ·) and wG κG(yn, ·) can be approximated (in some sense) by a linear

combination of elements previously admitted in dictionaries DL,n−1 and DG,n−1, respec-

tively. Newly arriving elements are only added to the dictionary if such an approximation

is not possible. The particular techniques for dictionary sparsification of the linear and

Gaussian components of the proposed filter are described in the next two subsections.

Dictionary for the Linear Component

Admission control for the linear part can be easily done as follows. Since HL is nothing

but the Euclidean space R2M , it is spanned by the Euclidean basis

DL := {wL κL(e1, ·), wL κL(e2, ·), . . . , wL κL(e2M , ·)} ,

where em ∈ R2M is a vector having a one at the mth index and zeros elsewhere. So, every

κL(yn, ·) can be expressed as wL
∑︁2M

m=1[yn]mκL(em, ·), with [yn]m the mth entry of yn.

As a result, the linear component

(∀n ∈ N) fL,n = wL

n−1∑︂
i=1

γ
(n)
i κL(yi, ·) = wL

2M∑︂
m=1

γ(L,n)m κL(em, ·)

consists of only 2M basis functions with their coefficients γ
(L,n)
m updated by each projection

(j ∈ Jn) PCj (fn) in (3.25), and we also have (∀n ∈ N) DL,n = DL and HL,n = HL. With

the proposed sparsification technique for the linear component, note that the memory and

computational requirements of fL,n do not increase with n.

Dictionary for the Gaussian Component

The proposed sparsification technique for the dictionary DG,n is based on the studies

in [EMM04,ST08], and it can be summarized as follows. Suppose that we start with the
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dictionary DG,1 = {wG κ(y1, ·)}. At time n ≥ 2, we have the dictionary DG,n−1, and

the objective is to determine whether the newly arriving element wG κG(yn, ·) should be

added to DG,n−1 to construct DG,n.

Informally, if wG κG(yn, ·) can be well approximated by any vector in the subspace

span(DG,n−1), then functions in span(DG,n−1 ∪ {wG κG(yn, ·)}) can also be well approxi-

mated by functions in span(DG,n−1), so wG κG(yn, ·) does not need to be added to DG,n−1.

As commonly done in approximation theory in Hilbert spaces, we can define as the best

approximation of wG κG(yn, ·) in the subspace HG,n−1 := span(DG,n−1) the projection

PHG,n−1
(wG κG(yn, ·)). With this definition the squared norm

dn :=
⃦⃦
wG κG(yn, ·)− PHG,n−1

(wG κG(yn, ·))
⃦⃦2
HG

of the residual wG κG(yn, ·) − PHG,n−1
(wG κG(yn, ·)) serves as a measure to indicate

how well the best vector PHG,n−1
(wG κG(yn, ·)) in the subspace span(DG,n−1) is able to

approximate wG κG(yn, ·). Therefore, we can update the dictionary as follows:

DG,n =

⎧⎨⎩DG,n−1, if dn ≤ α,

DG,n−1 ∪ {wG κG(yn, ·)}, otherwise,

where α > 0 is a design parameter. For completeness we show the steps required for the

computation of dn in Section 3.6.3.

The Proposed Learning Algorithm

Applying the sparsification techniques above to the algorithm in 3.25, we obtain the fol-

lowing iterations:

fn+1 = PHn

(︂ ∑︂
j∈Jn

qnj PCj (fn)
)︂
,

= PHn

(︂
fn +

∑︂
j∈Jn

qnj βjκ(yj , ·)
)︂
,

= fn +
∑︂
j∈Jn

qnj βjPHn(κ(yj , ·)), (linearity of orthogonal projections)

(3.28)

where f1 = 0 ∈ H,

PHn(κ(yj , ·)) = PHL,n
(wL κL(yj , ·)) + PHG,n

(wG κG(yj , ·)).
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Algorithm 2 Online Adaptive Filtering Algorithm

Initialization: Fix ϵ > 0, training block length Ttrain ∈ N, W ∈ N, α > 0, D0 := ∅,
and f1 = 0.
At n ≥ 1 Repeat:

1. Sample Update: The training samples {(yj , sj) : j ∈ Jn} are available. Set (∀j ∈
Jn) q

n
j = 1/|Jn|, where |Jn| is the cardinality of Jn.

2. Dictionary Update: Follow the procedure in Section 3.4.5 to update Dn−1.

3. Adaptive Learning: Follow the procedure in Section 3.4.5 to calculate fn+1.

The projection PHL,n
(wL κL(yj , ·)) is given by

PHL,n
(κL(yj , ·)) = wL

2M∑︂
m=1

[yj ]mκL(em, ·),

and details of the projection PHG,n
(wG κG(yj , ·)) are given in Section 3.6.3. Note that the

projections PHn(κ(yj , ·)) in (3.28) ensure that fn+1 ∈ Hn meaning that we can track fn+1

using Dn. We summarize the algorithm in Algorithm 2.

Figure 3.4: Dictionary Learning: The illustration of Algorithm 2.
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Weight Tuning, Complexity, and Parallel Computation

In this section we discuss the effect of the Gaussian weight wG = 1−wL on the nonlinearity

and the complexity of the filter estimate in (3.28). In more detail, increasing the weight

wG makes the sum filter f = fL + fG more complex and nonlinear. In situations were the

desired user faces strong interference from other users, we require the sum filter to be highly

nonlinear which means that fG should dominate the linear part fL. On the other hand, if

the desired user has a high SNR then a linear filter should suffice. However, it is unclear

how these intuitions in static scenarios carry over to dynamic environments. Therefore,

the best performance based criteria for the weights should be the BER. If for the desired

user the BER performance is not satisfactory we can alter wG to improve performance.

In the case when the estimation of BER is not available at the receiver, the weight tuning

can be done in the following simple way which adds to the complexity of the framework.

Let wmax
G be the maximum Gaussian weight value. We can start by some w1

G > 0 and

BER threshold υBER and perform the learning until time t = Ttrain. We can then estimate

the BER by calculating the error rate υw
1
G over the set S :=

{︁
(r(t), b1(t)) , t ∈ 1, Ttrain

}︁
which is available at Ttrain. If υw

1
G > υBER, then we can increase the weight w1

G by some

prefixed amount to w2
G > w1

G and perform the learning again with S. Since the set S
is relatively small, a few iterations over a discrete weight set {w1

G, w
2
G, . . . , w

max
G } values

should suffice or we can be stop when the weight wmax
G is reached. Note that this heuristic

method can also be performed in parallel over the set {w1
G, w

2
G, . . . , w

max
G } using parallel

computation and running Algorithm 2 in parallel for each value in {w1
G, w

2
G, . . . , w

max
G }.

Furthermore, many operations of Algorithm 2 can be performed in parallel on modern

graphical processing units (GPUs) that increases the speed of Algorithm 2 substantially.

Complexity of Algorithm 2 is dominated by the dictionary sparsification step that has a

quadratic complexity in the current dictionary size. However, since the dictionary size

is upper bounded by the available memory size S, the complexity is upper bounded by

O(S2). Once the dictionary size exceeds S, we have to drop older samples to accommodate

new ones.

3.5 Numerical Evaluation

Recall that our robust partially linear filter design in (3.27) consists of a linear compo-

nent and a nonlinear component. The nonlinear component (which is crucial for a good

performance) should ideally be a good approximation of the optimal MAP filter (3.14).

We referred to this approximation as the proxy optimal filter in Section 3.3. In the first

part of our numerical evaluation, which is of a rather theoretical nature, we simulate the

performance of the proxy optimal filter based on the theory presented in Section 3.3 in
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a simple nondynamic scenario. In Section 3.4, we have extended the filter design from

Section 3.3 by adding a linear component in order to make the overall design robust in

dynamic environments. Moreover, we have made the canonical Hyperslab APSM algo-

rithm [see Section 3.3.3] amenable to a practical implementation. In the second part of

the numerical evaluation we simulate the performance of this robust multiuser detection

framework in a more realistic and dynamic setting. Below we provide a summary of the

results:

1. In Section 3.5.1 we consider a purely nonlinear design, i.e., f = fG, based on the

theory presented in Section 3.3. For these results, we consider BPSK modulation,

AWGN channels, and a simple nondynamic/static simulation scenario. The first

result shows that by using the canonical HyperSlab APSM algorithm (3.22) we can

approximate the nonlinear optimal MAP filter (3.14) well. We then compare the

performance of this approximation with that of the optimal MAP filter in terms of

the BER under AWGN. We simulate the observation in Section 3.4.1, to demonstrate

the efficacy of using model based prior knowledge regarding the width of the Gaussian

kernel. Moreover, we also compare the performance with a purely linear design f =

fL, MMSE, and MMSE-SIC in a scenario where the desired user faces considerable

multiuser interference.

2. In Section 3.5.2 we perform simulations to show the performance of the robust par-

tially linear filter developed in Section 3.4 in a dynamic environment with sporad-

ically transmitting interfering users. In this case, we consider QPSK modulation

with Rayleigh block fading channels to show the performance in a realistic wireless

setting. In particular, we compare the performance of our design with a purely

nonlinear filter, and we show that our partially linear design is more robust against

changes in the environment than a purely nonlinear design.

3.5.1 Performance of Proxy Optimal MAP Filter

In this section we consider a simple channel model illustrated in Figure 3.5. This sim-

ple channel model was considered in similar studies in [STY09,CHW04] to focus on the

performance of nonlinear filtering. We consider a BPSK system with K = 5 users. The

desired user 1 is situated in the middle and it has the lowest receive SNR. The channel

for the kth user is given by

(∀k ∈ 1,K) hk := [1, eπj cos θk , . . . , eπj(M−1) cos θk ]⊺ ∈ CM ,
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Figure 3.5: Users are separated in space in terms of their angle of arrivals and also in terms
of SNRs. User 1 is the worst user with the lowest SNR and it is situated in
the middle. User 5 is the best user with the best SNR.

where θk is the angle of arrival (in radians) and the distance between the antenna elements

is λ/2. The received signal is given by [STY09,CHW04]

r : N → CM : t ↦→
K∑︂
k=1

√
pkbk(t)hk + n(t),

where pk ∈ ]0∞[ and bk(t) = {±1} are the power and the modulation symbol, respectively,

for user k ∈ 1,K, and where n(t) ∈ CM denotes additive noise. Note that if we fix the

noise variance σ2
n then pk can be chosen based on the SNR difference between user k and

user 1 by first fixing p1 = 1.

Approximation of Optimal MAP Filter

Recall that in Section 3.3.3 we presented the canonical HyperSlab APSM algorithm that

can be used to approximate the optimal MAP filter [we refer to the approximation as

the proxy optimal filter] under the assumption that receiver noise is bounded. We fix

the number of antennas to M = 2 < K = 5. To satisfy Assumption 3.1, for the first

simulation, we “truncate” AWGN of mean 0 and variance σ2
n = 0.1 to a reasonably large

bound (∀t ∈ N) ∥n(t)∥ ≤ Wnoise = 2σn in Lemma 3.2. This truncated Gaussian/Normal

noise can be generated by using the standard method in [Bot16]. The power of the desired

user is set to p1 = 1 in the simulation setup of Figure 3.5 [also see the discussion following
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Assumption 3.1]. User SNRs in dBs are equal to {10, 13, 16, 19, 22} in that order, while

the angles of arrival are {50◦, 70◦, 60◦, 40◦, 30◦}. With this setting the system parameter

ϵ2 in Lemma 3.2 which is used to calculate the hyperslab width ϵ is ϵ2 = 0.0726. The

parameter ϵ1 = 1− exp(− (Wnoise)
2

2σ2
n

) equals ϵ1 = 0.1353. If we fix ϵ = 0.25 > ϵ1+ ϵ2 then all

assumptions and conditions in Lemma 3.2 and Theorem 3.1 are satisfied. Since the width

of the Gaussian kernel is equal to the noise AWGN standard deviation σn (and we operate

in the associated RKHS Hσn
G ), we can compute the relative error of approximation given

by
∥f⋆ − g⋆∥Hσn

G

∥f⋆∥Hσn
G

, (3.29)

where f⋆ is the optimal MAP filter (3.14) and g⋆ := ft=Ttrain is the proxy optimal filter

obtained by the canonical HyperSlab APSM iteration (3.22). Note that both f⋆ and g⋆

have finite known representations in Hσn
G and this allows us to calculate

∥f⋆ − g⋆∥Hσn
G

= ⟨f⋆ − g⋆, f⋆ − g⋆⟩1/2Hσn
G

, ∥f⋆∥Hσn
G

= ⟨f⋆, f⋆⟩1/2Hσn
G

.

Figure 3.6 shows the relative error of approximation (3.29) as a function of training time

Ttrain. We observe that, under the bounded noise assumption, increasing the training time

decreases the error monotonically [see Theorem 3.2]. Note that since Hσn
G is an RKHS,

the relatively small error in Figure 3.6 implies that the filter output g⋆(r(t)) is close to

f⋆(r(t)) for every r(t) ∈ CM .

The proxy optimal filter was designed based on the prior knowledge about the optimal

MAP filter. In particular, the choice of the Gaussian kernel width σ plays a deciding role

in the approximation being carried out in the best RKHS Hσ
G. According to Lemma 3.1,

the Gaussian kernel width must satisfy 0 < σ <
√
2σn, where σn is the AWGN standard

deviation. However, in Section 3.4.1 we have reasoned that σ should be a good approxi-

mation of σn because setting σ < σn results in an unnecessary enlargement of the RKHS

[in the sense that if σ < σn then Hσn
G ⊂ Hσ

G]. In this regard, Figure 3.7 shows the efficacy

of including accurate prior knowledge in the framework. In the case when σ ̸= σn, we

cannot compute the error (3.29) because we do not know the representation of f⋆ in Hσ
G.

But since we know that f⋆ is optimal under AWGN assumption, we can use BER as a

substitute for error (3.29) under AWGN. For this simulation, the noise in the system is

therefore AWGN with variance σ2
n = 0.1. In this case the weakest desired user k = 1 in

Figure 3.5 is linearly inseparable from other users. The hyperslab width is set to ϵ = 0.95.

Figure 3.7 shows an empirical demonstration of our observation in Section 3.4.1 and it

shows that σ should be a good estimation of σn because this results in a better perfor-
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Figure 3.6: The relative error of approximation 3.29 using the APSM iteration (3.22) and
operating in RKHS Hσn

G .

mance that is closer to the optimal f⋆. In particular, we see that an arbitrarily small value

of σ > 0 should not be chosen.

Comparison with Other Techniques

In this section we compare the performance of the proxy optimal filter with other conven-

tional techniques in terms of BER. We consider AWGN channel between users and the

base station receiver in Figure 3.5.

The first result in this section compares the performance of the proxy optimal filter

with that of the optimal MAP filter, the adaptive linear filter, the linear MMSE filter,

and the nonlinear MMSE-SIC filter. The adaptive linear filter can be designed by using

a purely linear kernel κL in our framework in Section 3.4, i.e., a filter of the form fL =∑︁2M
i=0 γL,i κL(·, ei). We fix the number of antennas to M = 2 in the simulations. User

SNRs in dBs are equal to {10, 16, 13, 19, 22} in that order, while the angles of arrival

are {50◦, 70◦, 60◦, 40◦, 30◦}. In this case the weakest user k = 1 in Figure 3.5 cannot be

linearly separated from other users. The results are shown in Figure 3.8. We see clearly

that the proxy optimal filter (with width σ = σn) outperforms other techniques and it

shows a comparable performance to optimal MAP filter with sufficient training. Note

that, in contrast to the optimal MAP filter, that has complete user knowledge, the proxy
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Figure 3.7: Different line plots show effect of the Gaussian kernel width σ which plays a
deciding role in the selection of the suitable RKHS.

optimal filter only works with the training samples. The MMSE and MMSE-SIC filters

also have complete knowledge of user channels and powers.

The second result compares the performance of the above mentioned techniques when

the system gradually becomes linearly separable. We achieve this by increasing the number

of receive antennas M = {2, 3, 4, 5, 6} at the receiver. User SNRs in dBs are equal to

{10, 16, 13, 19, 22} in that order, while the angles of arrival are {60◦, 90◦, 75◦, 45◦, 30◦}.
The size of the training sample set is fixed at Ttrain = 250 samples. The results are shown

in Figure 3.9. We see that as the system becomes linearly separable all techniques show a

good performance.

BER - Worst User

Figure 3.9: Comparison between different filtering techniques with an increasing training
time Ttrain in terms of the BER of user 1.
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Figure 3.8: Comparison between different filtering techniques with an increasing training
time Ttrain in terms of the BER of user 1.

The next two results compare the performance of the proxy optimal filter with that

of 3 state-of-art nonlinear networks. For the first state-of-art technique, we consider the

recursive adaptive RBF detector proposed in [CHW04]. Similar to the proxy optimal

filter, this method is also online and training is performed sequentially. This method

[also discussed in Section 3.1.1] is based on robust k-means clustering combined with the

recursive least squares technique. Similar to the optimal MAP filter, the RBF detector

has the form of an RBF network given by
∑︁2K

i=1 βi exp
(︂
−∥·−ci∥2

2σ2
n

)︂
. Robust k-means

clustering is used to estimate the optimal centers ci ∈ CM , while the recursive least squares

algorithm is used to calculate the coefficients βi ∈ R. We simulate this filter for step-size

values {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} required for the k-means clustering algorithm, and we

show the best achieved results. The other 2 techniques we consider are based on fully-

connected 2-layer feed-forward neural networks [see also the discussion in Section 3.1.1].

The first neural network uses the ReLu transfer function in the hidden layer, while the

second network uses the Gaussian radial basis transfer function. Since BPSK detection is

a 2-class classification problem, both networks use the softmax activation in the output

layer. An important parameter for neural networks is the width (i.e., the number of

neurons) of the hidden layer. We perform simulations with various layer sizes in the set

{8, 16, 24, 32, 40, 48, 56, 64, 72, 80}, and we show the best achieved performance. Moreover,

the networks are trained using state-of-art batch methods (in contrast to adaptive online
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training required by our application), and therefore the performance may not be achieved

in practice.

We simulate two cases. In the first case, shown in Figure 3.10, user SNRs (in dBs) are

equal to {10, 16, 13, 19, 22} (in that order), while the angles of arrival are {50◦, 70◦, 60◦, 40◦, 30◦}.
In the second case, shown in Figure 3.11, we reduce the multi-access interference by in-

creasing the angular separation to {90◦, 150◦, 120◦, 60◦, 30◦}. In both cases the desired

user is situated in the middle and it has the worst SNR. All results are an average of

100 experiments. We see that in both cases the proxy optimal filter achieves the best

performance requiring the least number of samples. The largest performance gap is seen

around the Ttrain = 300 mark. This clearly demonstrates the suitability of proxy optimal

filter for real-time applications with a small number of samples.
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Figure 3.10: Comparison between different filtering techniques with an increasing training
time Ttrain in terms of the BER of user 1.
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Figure 3.11: Comparison between different filtering techniques with an increasing training
time Ttrain in terms of the BER of user 1.

3.5.2 Performance of the Robust Partially Linear Filter

In this section, we evaluate the performance of our proposed partially linear adaptive filter

and its practical implementation presented in Section 3.4. In this case, our adaptive filter

consists of a linear and a nonlinear component with kernel weights wL = 0.1 and wG = 0.9,

respectively, fixed. Note that ideally wG ≈ 1, however a highly nonlinear filter does not

react to a change in the environment well. To make the simulations more realistic than the

setting considered in the last section, we consider QPSK modulation and Rayleigh block

fading on the channels between users and the base station receiver. We use the algorithm

in Algorithm 2 to perform online learning with dictionary sparsification. The learning is

shown for Ttrain = 2000 channel symbols and the BER performance is evaluated in intervals

of 100 training symbols. The dictionary novelty factor is set to α = 0.1. The window size

is fixed at W = 50 and we use ϵ = 0.1. Note that in a real system, the training can be

stopped at any point and data communication could be started. The training can then

restart when the environment (e.g., the channel) has changed significantly. To simulate a

real system, we change the channel independently at random after 500 symbols and then

continue the training. All results are a uniform average of 100 experiments. For results in

this section we show average BER of the 5 users.
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Figure 3.12: Performance Comparison: Comparison between the partially linear adaptive
filter (PLAF) and the (symbol-level) MMSE-SIC filter for different number
of users. The number of receive antennas is fixed at M = 3.

The first result in Figure 3.12 shows that the robust partially linear filter outperforms

the nonlinear MMSE-SIC receiver (which we assume has very good estimations of user

channels and the covariance matrix). We perform the comparison with nonlinear MMSE-

SIC receiver because this receiver performs better than the linear MMSE and other linear

receivers. Note that we do not compare the performance with the optimal MAP filter

because in this section we only consider practical receivers and the optimal MAP filter is

not implemented in practice. But it is clear that the optimal MAP filter should outperform

the partially linear filter in a fixed static environment with full and perfect user knowledge.

We fix the number of antennas at the receiver to M = 3 and simulate an increasing number

of users K ∈ {3, 4, 5}. Note that as the number of users becomes larger than the number

of receive antennas, we expect the system to become linearly inseparable.

The second result in Figure 3.13 compares the performance of the partially linear adap-

tive filter with that of the purely nonlinear filter (with wG = 1). After a block of 500

symbols, the Rayleigh fading channel is changed to a new random independent value and

a new set of active devices is selected randomly with probabilities ρ ∈ {0.7, 0.8, 1}. The

training is continued after this change. The scenario models the dynamic environment of,

for example, 5G massive machine-type communication systems. Our objective here is to
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Figure 3.13: Performance Comparison: Comparison between the partially linear adaptive
filter (PLAF) and the purely nonlinear adaptive filter (NLAF) for different
user activation probabilities ρ. The number of receive antennas is fixed as
M = 3.

show that the partially linear filter is robust against the changes in the environment. It

can be seen that the “jumps” in the BER are smaller as compared to the purely nonlinear

filter. Also note that the purely non filter requires larger number of training samples to

reach the same BER level as compared to the partially linear filter. In other words, it

adapts comparatively slower to the new environment. The reason is that the partially lin-

ear filter f = fL + fG has a significant linear part while the purely nonlinear filter fG has

a nonlinear part only which requires more training to achieve the same BER performance.

Of course for a sufficiently long training, the purely nonlinear filter will out perform the

partially linear filter if the environment during this time remains fixed.
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3.6 Supplementary Material and Proofs

3.6.1 Proof of Lemma 3.2

The output of the optimal MAP filter is given by

(∀t ∈ N) f⋆(r(t)) :=

Nmod∑︂
q=1

vq exp

(︄
−∥r(t)− r̄q∥2

2σ2
n

)︄
,

where

vq =
sgn(bq1)

Nmod(2πσ2
n)

M
=

bq1
Nmod(2πσ2

n)
M
.

Proof. We have (∀t ∈ N)

|f⋆(r(t))| ≤

⃓⃓⃓⃓
⃓⃓Nmod∑︂
q=1

bq1
Nmod(2πσ2

n)
M

exp

(︄
−∥r(t)− r̄q∥2

2σ2
n

)︄⃓⃓⃓⃓
⃓⃓ ,

and

⃓⃓⃓⃓
f⋆(r(t))− b1(t)

Nmod(2πσ2
n)

M

⃓⃓⃓⃓
≤

⃓⃓⃓⃓
⃓⃓ Nmod∑︂

q=1

bq1
Nmod(2πσ2

n)
M

exp

(︄
−∥r(t)− r̄q∥2

2σ2
n

)︄
− b1(t)

Nmod(2πσ2
n)

M

⃓⃓⃓⃓
⃓⃓ .

Note that for every t ∈ N there exists q ∈ 1, Nmod such that bq1 = b1(t) and r̄q+n(t) = r(t).

Then separating the qth center from the remaining centers we have (∀t ∈ N)⃓⃓⃓⃓
f⋆(r(t))− b1(t)

Nmod(2πσ2
n)

M

⃓⃓⃓⃓
≤

⃓⃓⃓⃓
⃓ b1(t)

Nmod(2πσ2
n)

M
exp

(︄
−∥r(t)− r̄q∥2

2σ2
n

)︄
− b1(t)

Nmod(2πσ2
n)

M

⃓⃓⃓⃓
⃓

+

⃓⃓⃓⃓
⃓⃓ Nmod∑︂
p=1,p ̸=q

bp1
Nmod(2πσ2

n)
M

exp

(︄
−∥r(t)− r̄p∥2

2σ2
n

)︄ ⃓⃓⃓⃓
⃓⃓ .

Leaving out the scalar normalization Nmod(2πσ
2
n)

M and using the triangular inequality

we get

(∀t ∈ N) | f⋆(r(t))− b1(t) | ≤

⃓⃓⃓⃓
⃓ exp

(︄
−∥r(t)− r̄q∥2

2σ2
n

)︄
− 1

⃓⃓⃓⃓
⃓⏞ ⏟⏟ ⏞

noise term

+

⃓⃓⃓⃓
⃓⃓ Nmod∑︂
p=1,p ̸=q

exp

(︄
−∥r(t)− r̄p∥2

2σ2
n

)︄ ⃓⃓⃓⃓
⃓⃓ .⏞ ⏟⏟ ⏞

interference term

(3.30)
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Since (∀t ∈ N) ∥r(t)− r̄q∥ = ∥n(t)∥ ≤ Wnoise by Assumption 3.12, for the noise term

above we have

(∀t ∈ N) ϵ1 =
⃓⃓⃓⃓
exp

(︃
−W 2

noise

2σ2
n

)︃
− 1

⃓⃓⃓⃓
≥

⃓⃓⃓⃓
⃓ exp

(︄
−∥r(t)− r̄q∥2

2σ2
n

)︄
− 1

⃓⃓⃓⃓
⃓ .

Now suppose that (∀p, q ∈ 1, Nmod) (p ̸= q)
∥r̄q−r̄p∥

2 := αq,p
disparity ≥ Wnoise, then due to

Assumption 3.12 (∀t ∈ N) ∥r̄q − r̄p∥ ≥ αq,p
disparity + ∥n(t)∥ =⇒ ∥r̄q − r̄p∥ − ∥n(t)∥ ≥

αq,p
disparity.

Due to triangular inequality it can be verified that ∥r̄q − r̄p + n(t)∥ ≥ ∥r̄q − r̄p∥−∥n(t)∥
which implies that ∥r(t)− r̄p∥ ≥ αq,p

disparity for every term in the interference term in (3.30).

We have ⃓⃓⃓⃓
⃓⃓ Nmod∑︂
p=1,p ̸=q

exp

(︄
−
(αq,p

disparity)
2

2σ2
n

)︄ ⃓⃓⃓⃓
⃓⃓ ≥

⃓⃓⃓⃓
⃓⃓ Nmod∑︂
p=1,p ̸=q

exp

(︄
−∥r(t)− r̄p∥2

2σ2
n

)︄ ⃓⃓⃓⃓
⃓⃓

for the interference term in (3.30). If we define the worst case bound as

ϵ2 := max
q∈1,Nmod

⃓⃓⃓⃓
⃓⃓ Nmod∑︂
p=1,p ̸=q

exp

(︄
−
(αp,q

disparity)
2

2σ2
n

)︄ ⃓⃓⃓⃓
⃓⃓ ,

then for the interference part in (3.30) we get the desired bound

(∀t ∈ N) ϵ2 ≥

⃓⃓⃓⃓
⃓⃓ Nmod∑︂
p=1,p ̸=q

exp

(︄
−∥r(t)− r̄p∥2

2σ2
n

)︄ ⃓⃓⃓⃓
⃓⃓ .

3.6.2 Proof of Theorem 3.2

Let (Θt)t∈N, Θt : H → R, be a sequence of continuous convex functions. For an arbitrary

f1 ∈ H, the sequence (ft)t∈N ⊂ H of the APSM algorithm is given by [YO05]

ft+1 :=

⎧⎨⎩ft − Θt(ft)

∥Θ′
t(ft)∥

2Θ
′
t(ft), if Θ′

t(ft) ̸= 0,

ft, otherwise.
(3.31)
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Now, define (∀t ∈ N) Θt(·) :=
∑︁

j∈Jt
qtj d(·, Cj), where (∀f ∈ H) (∀Ct ⊂ H) d(f, Ct) :=

infy∈Ct ∥y − f∥H = ∥f − PC(t)(f)∥H, and where Jt ⊂ N are the indices of the sets in

(Ci)i∈1,t that we intend to process at iteration/time t. The functions Θt(·) are continuous

and convex, and a subgradient is given by

Θ′
t(f) :=

∑︂
j∈Jt

qtjd
′(f, Cj), (3.32)

where

d′(f, Cj) :=

⎧⎪⎨⎪⎩
f−PCj

(f)⃦⃦⃦
f−PCj

(f)
⃦⃦⃦
H

, if f /∈ Cj ,

0, otherwise.

(3.33)

Replacing d′(f, Cj) in (3.32) by (3.33), we get

Θ′
t(f) :=

∑︁
j∈Jt

qtj(f −PCj (f))

Θt(f)

Finally, by replacing Θt(ft) and Θ′
t(ft) in (3.31), we get the iteration (3.22). We are now

in the position of proving the claim in Theorem 3.2.

Proof. Recall from Section 1.6 that, because Ct is convex, the projection PCt(f) is the

minimizer of d(f, Ct). Then, (∀f ∈
⋂︁

j∈Jt
Cj) Θ′

t(f) = 0. In other words, the set Ωt :=⋂︁
j∈Jt

Cj is the set of minimizers of Θt. Clearly, Θt(f) = 0 for any f ∈
⋂︁

j∈Jt
Cj . Now

since (∀t ∈ N) f⋆ ∈ Ωt (because (∀t ∈ N) f⋆ ∈ Ct) this implies that f⋆ ∈
⋂︁

t∈NΩt so⋂︁
t∈NΩt ̸= ∅. Now since all required conditions in [YO05, Theorem 2((a) and (b))] have

been fulfilled, the claim follows.

3.6.3 Derivation of the Projections onto the Subspace spanned by the

Nonlinear Dictionary

Let DG,n−1 denote the Gaussian dictionary at time index n− 1 and let Sn−1 := |DG,n−1|
denote its cardinality. Denote by Ψn−1

l ∈ DG,n−1 the lth element of DG,n−1. We denote

by Kn−1 ∈ RSn−1×Sn−1 the standard Gram matrix at time n− 1, with its ith row and the

jth column given by

(∀i ∈ 1, Sn−1) (∀j ∈ 1, Sn−1) Kn−1 :=
⟨︂
Ψn−1

i ,Ψn−1
j

⟩︂
HG

.
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Note that Kn−1 is positive definite because the elements (Ψn−1
l )l∈1,Sn−1

of the Gaussian

dictionary DG,n−1 are linearly independent by assumption (see Section 3.4.5). As a result,

the inverse K−1
n−1 exists.

The projection κG(yn, ·) on the linear closed subspace HG,n−1 ⊂ HG spanned by DG,n−1

is given by [ST08]

PHG,n−1
(κ(yn, ·)) =

Sn−1∑︂
l=1

ζnyn,lΨ
n−1
l ,

where ζnyn
∈ RSn−1 is given by ζnyn

= K−1
n−1ξ

n
yn
; the vector ξnyn

is given as

ξnyn
=

⎡⎢⎢⎢⎣
⟨︁
κG(yn, ·),Ψn−1

1

⟩︁
HG

...⟨︂
κG(yn, ·),Ψn−1

Sn−1

⟩︂
HG

⎤⎥⎥⎥⎦ .

Suppose now that K−1
n−1 is given, then the distance of κG(yn, ·) from DG,n−1 is the

solution to [ST08]

d2n := κG(yn,yn)− (ξnyn
)⊺ζnyn

.

Given dn, ξ
n
yn
, and ζnyn

the inverse K−1
n−1 is updated for the next iteration n to K−1

n which

further enables us to calculate ξn+1
yn+1

, ζn+1
yn+1

, and dn+1 in that order. In more detail, we

initialize the inverse by K−1
1 := 1/κG(y1,y1). For n ≥ 2 if κG(yn, ·) is admitted to the

dictionary, i.e., if DG,n = DG,n−1 ∪ {κG(yn, ·)}, then

K−1
n :=

⎡⎣K−1
n−1 +

ζn
yn (ζ

n
yn )

⊺

d2n
−ζn

yn

d2n

− (ζn
yn )

⊺

d2n

1
d2n

⎤⎦ ,

otherwise K−1
n := K−1

n−1.

Now we look at how to calculate PHG,n
(κ(yj , ·)) for each j ∈ Jn. We start by consider-

ing the latest training sample j = n. If κG(yn, ·) ∈ DG,n then obviously PHG,n
(κG(yn, ·)) =

κG(yn, ·), otherwisePHG,n
(κG(yn, ·)) = PHG,n−1

(κG(yn, ·)). The projectionPHG,n−1
(κG(yj , ·))

in (3.6.3) is already available to us because ζnyn
and DG,n−1 are both known to us from

the dictionary update step (see Section 3.4.5 and Algorithm 2). It follows that (∀n ∈ Z≥0)

(∀j ∈ Jn), either PHG,n
(κG(yj , ·)) = κG(yj , ·) or PHG,n

(κG(yj , ·)) = PHG,n−1
(κG(yj , ·)).
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Density Functions

4.1 Introduction

An important problem in unsupervised learning, adaptive signal processing, Bayesian

approximation, and many other engineering fields is the approximation of probability

density functions (pdfs). In the first part of this chapter we present a method that uses

prior knowledge and training sample sets to approximate pdfs. In contrast to many existing

techniques that use well-known loss functions, our proposed method is based on the set-

membership or set-theoretic paradigm [Com93]; it is particularly suited to applications

where a large sample set is not available. Briefly, we incorporate all available information

about the underlying pdf in the form of closed convex sets in a Hilbert space. The

intersection of all of these information sets forms a feasible solution set, which contains

valid and reasonable solutions to the pdf approximation problem. In more detail, recall

that pdfs are well-behaved functions in the sense that they must be nonnegative and

they must integrate to unity. We incorporate these two properties as prior knowledge

in our framework, and we approximate the pdf of a random source X given a training

sample set DX := {x1, x2, . . . , xN} ⊂ R consisting of i.i.d. realizations of X. Our iterative

approximation method is based on the POCS technique which means that our method is

numerically robust with convergence guarantees. Furthermore, the involved projections

on convex sets can be performed in parallel to increase speed. Results show that our

proposed method can work well with relatively small number of samples, and therefore it

is suited to dynamic wireless scenarios where large sample sets are not available.

In the second part of this chapter we apply our approximation method to approxima-

tion of likelihood functions in a cloud-radio access network (CRAN) to perform distributed

multiuser detection/demodulation. CRAN is envisaged to be a key enabler of cell-less1

uplink because of its low cost and spectrum efficiency [TTQL17, CCY+15]. In conven-

tional CRAN joint baseband processing at centralized cloud processors or a central unit

is performed on behalf of distributed remote radio heads (RRHs). This migration of pro-

1In a cell-less system a user transmits to multiple (generally close-by) base stations simultaneously.
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cessing is made possible by deploying fronthaul links between RRHs and the central unit

[see Figure 4.2]. Under the assumption of high-capacity fronthaul links, the cost reduction

by using low-complexity RRHs is complemented by performance benefits emanating from

joint detection/processing at the central unit [NAY+17]. The conventional CRAN with

the common public radio interface (CPRI) specification prescribes simple scalar quanti-

zation for fronthaul links, but the performance of this approach degrades in the presence

of stringent fronthaul capacity constraints [PSSS14]. It has been shown that, in contrast

to conventional CRAN, it maybe advantageous to apply pre-processing (which in our case

consists of detection using a multiuser receive filter) locally at the RRHs followed by fu-

sion and maximum likelihood-based decision at the CU [USDP17]. Following this idea,

we develop a learning-based “detect and forward” scheme, whereby the likelihood ratios

associated with local detection are combined at the CU to obtain the final estimate. We

note that, whereas in some Bayesian detection techniques the likelihood information may

come naturally, in non-Bayesian methods considered here, this is not the case. In this

way, existing detection methods (e.g., the one developed in Chapter 3) can be extended

to the cell-less CRAN setting.

4.1.1 PDFs and Likelihoods

Let (W,F ,P) be a probability space, with W the sample space, F the space of all events,

and P : F → [0, 1] the probability measure. We denote by fX : R → R, the Lebesgue-

integrable pdf of a continuous real-valued random variable X : W → R. Then, the

probability that X(ω) ∈ A, where A ⊂ R, is given by

P[ X ∈ A ] := P{X ∈ A} =

∫︂
A
fX(x)dx,

where here and in the remainder we use the universal shorthand {X ∈ A} := {ω ∈ W :

X(ω) ∈ A}.
Likelihood functions serve as the basis for the classical maximum likelihood estimation

method and they are also an important part of general Bayesian inference. In more detail,

we use the following interpretation of Likelihood functions as parametrized pdfs when the

data is generated by a real and continuous random source X that depends on a parameter

b. Suppose b has a uniform (or an unknown) distribution and X = x ∈ R is a given

realization, then

L(b;x) := φX(x|b) ∝ φ(b|x)

is the likelihood of the data x being generated by X with parameter b fixed, where φX(·|b) :
R → R is a function of x when the parameter b is held fixed, and where φ(b|·) : R → R is
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the posterior density function for b. We can view φX(·|b) as the likelihood distribution of

X when b is held fixed.

4.1.2 Related Work

The approximation of pdfs is a well-studied topic. Here we discuss two classical and widely

used algorithms for density approximation. First, we discuss the classical kernel density

estimation method which is a (quasi) nonparametric method. Kernel density estimators

are by far the most popular and well-studied methods. Their mathematical properties are

well-understood, and due to their nonparametric nature, they tend to be more flexible

than their parametric counterparts [BGK10].

Suppose we are given a univariate data set D := {x1, . . . , xN} ⊂ R of i.i.d. samples of a

random source X with an unknown density f∗
X : R → [0, 1]. The Parzen-Rosenblatt kernel

density estimator of f∗
X is given by

fh
X =

1

Nh

N∑︂
i=1

κh(x, xi), (4.1)

where κh : R × R → R is referred to as the kernel (function) which satisfies certain

properties [Sil86,BGK10, Sch11], and the parameter h ∈ R is the bandwidth parameter.

A well-known kernel is the Gaussian kernel

(∀x ∈ R)(∀y ∈ R) κσ(x, y) =
1√
2πσ2

exp

(︃
−|x− y|2

2σ2

)︃
.

The Gaussian kernel is widely used due to its inherent smoothness, convenient mathe-

matical properties, and its universal approximation property [MXZ06]. Note that there

also exist many other kernels with good approximation behavior. The differences among

various kernels are not significant in terms of the quality of approximation, and therefore

a particular kernel is mainly chosen based on its convenient mathematical properties such

as its smoothness [WJ94]. Once a kernel has been chosen, the approximation of f∗
X boils

down to the choice of the kernel bandwidth parameter h which has a significant effect on

the performance [Sil86]. Unfortunately, there exists no universally accepted procedure to

select h [Sch11]. In more detail, there exist two popular criteria to judge how well fh
X

approximates f∗
X, namely, the integrated squared error and the mean integrated squared

error [note: the plugin estimators [SJ91] are based on the second criteria and they are pre-

ferred in practice to cross-validation methods that consider the integrated squared error].

However, both these criteria involve the unknown f∗
X or its derivatives, so only data-driven

methods can be used to estimate h. If one assumes that f∗
X is normal and a Gaussian
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4 Robust Approximation of Probability Density Functions

kernel is used in (4.1), then Silverman’s rule of thumb bandwidth selector is optimal in

terms of mean integrated squared error. A survey of bandwidth selection can be found

in [Sch11].

Note that once h and the kernel are fixed in (4.1), kernel density estimator is non-

parametric,2 as no further adaptation of parameters is required and the number of kernel

terms increases with sample data. The resulting approximation is of a low complexity but

it may require a large number of samples to achieve acceptable performance [Fro13]. In

more detail, most (if not all) of the bandwidth estimation methods show that the optimal

bandwidth h is inversely proportional to N . So for a small number of samples, h should be

relatively large which could be problematic if f∗
X has significant “local features” and fh

X is

oversmoothed. There exists other well-known problems with kernel density estimators in

the case of relatively small sample sets. In particular, they tend to work poorly when the

support of the underlying pdf is compact such as in the case of the uniform distribution.

This is due to absence of sufficient sample data around the boundaries so that kernel

density estimators penalize this lack of data and the approximation decays fast near the

boundary. These problems are significant enough to warrant a large body of research work

that has tried to alleviate them. Unfortunately, most of the these methods tend to either

require a large amount of sample data, or they do not produce “proper” density functions

in the sense that the approximations may not be nonnegative or they may not integrate

to unity [BGK10]. To the best of our knowledge, one of the most popular and widely

used kernel density estimators is the one studied in [BGK10]. This density estimator has

low complexity and it also deals with the boundary problem well if the support of the

underlying pdf is known. Significantly, this plug-in method also produces a good estimate

of the bandwidth which works well in practice, and in contrast to previous methods, it

does not require any assumptions regarding the underlying pdf.

Nonparametric models are generally employed when no information, e.g., the shape or

functional form, can be assumed about the underlying pdf and therefore the approximation

needs to be sufficiently flexible. However, in some cases, especially when the sample set

is small, it is useful to assume that the underlying pdf f∗
X can be written as a sum of

individual parametrized component pdfs, i.e., as a finite mixture model. More precisely,

one assumes that

f∗
X ∈ G :=

{︄
f : f =

M∑︂
i=1

wi fi(·; θi), wi ≥ 0, θi ∈ Rn,

M∑︂
i=1

wi = 1

}︄
,

2By nonparametric models one means that the number of parameters to be learned is not fixed, and it
generally increases with the number of samples.
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where M is a fixed number of mixture components, fi are component densities, and θi

are parameters of fi. The question now becomes, first, how to choose the components fi

and, second, whether there exists a low-complexity estimation of the parameters θi. In

absence of any information on the underlying f∗
X, the choice of fi should be such that

their mixture can approximate an arbitrary f∗
X sufficiently well. A popular choice are the

Gaussian mixtures, i.e.,

f∗
X ∈ G :=

{︄
f : f =

M∑︂
i=1

wi κ
σi(·, xi), σi > 0, wi ≥ 0, xi ∈ R,

M∑︂
i=1

wi = 1

}︄
;

κσi(x, xi) =
1√
2πσ2

exp
(︂
−|x−xi|2

2σ2
i

)︂
; wi, σi, and xi are parameters to be determined. Gaus-

sian mixtures can approximate any L2(R) density sufficiently well if the number of samples

becomes sufficiently large and all σi become equal and vanish [PH00]. Due to their pop-

ularity, Gaussian mixtures have been well-studied and over the years many methods have

been developed to estimate the model parameters. Among these, maximum-likelihood

estimation of the parameters is the most popular technique due to its computational effi-

ciency. The expectation-maximization (EM) algorithm is the dominant method to learn

Gaussian mixtures and it has a relatively low complexity. However, the quality of solu-

tion provided by this algorithm is unknown as the algorithm obtains a local maxima of

the likelihood function with high probability; especially for small sample sizes the likeli-

hood function has many local maxima and the log-likelihood value at these points can be

arbitrary worse than the global value [see, e.g., [JZB+16]].

4.1.3 Contribution

Our method, detailed in Section 4.2, can be seen as a hybrid between kernel density esti-

mation and Gaussian mixture model but it alleviates the problems encountered by both

methods. In more detail, a limitation of kernel density estimators is that every kernel

function centered at the samples xi is equally weighted by the factor 1
Nh in (4.1), which

means that the weights are nonadaptive. Kernel density estimators do not make use of

samples of f∗
X which, as we show in Section 4.2, can be extracted from the sample set

D := {x1, . . . , xN} ⊂ R using statistical methods. As a result, kernel density estimators

lack local adaptivity. Adaptive kernel estimators use a variable bandwidth [each kernel

term in (4.1) has its own bandwidth] but these methods are either too complex or they may

not produce proper pdf approximations [BGK10]. We propose to use the low-complexity

bandwidth estimator developed in [BGK10] that works well in practice, but any reliable

method can be used to fix the bandwidth in our framework. Following the bounded error

estimation/set-theoretic estimation theory [see Section 1.7], i.e., we construct a feasible
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Table 4.1: List of Variables

Description Symbol

Probability of an event A P[ A ]
Projection of f onto a set C PC(f)
Number of RRHs R ∈ N
Number of users K ∈ N
Number of sample sets Q ∈ N
Received signal at lth RRH rl(t) ∈ R2M
Filter at lth RRH fl : R2M → R
Likelihood funcion at lth RRH φl(·|b) : R → R
Likelihood at lth RRH Ll(·; ·)
Sample set for random variable X DX ⊂ R
Size of sample set N ∈ N
Space of square-integrable function L2 := L2(R)
Gaussian mixture set G ⊂ L2

Gram matrix G ∈ RN
≥0 × RN

≥0

Channel coherence time Tblock ∈ Z>0

Training time Ttrain ∈ Z>0

solution set consisting of certain Gaussian mixtures that agree with the prior informa-

tion about f∗
X and the information extracted from a given sample set. We consider any

point in the feasible solution set as a valid and reasonable approximation of f∗
X. The

algorithmic framework is robust, it solves a convex problem, and it provides convergence

guarantees in contrast to, e.g., the EM method. Furthermore, it works well with relatively

small sample sets and deals with the aforementioned boundary problem in an efficient

way without requiring an explicit knowledge of the support of the underlying pdf. The

resulting approximation is a proper pdf, and its evaluation in real-time applications has

low complexity.

In Section 4.3 we apply our pdf approximation method to approximate likelihood func-

tions in a cloud-radio access network (CRAN) to perform distributed multiuser detec-

tion/demodulation.

4.2 Set-Theoretic Density Approximation

In this section we present a low-complexity technique for obtaining a reliable approxima-

tion of the pdf of a random source X given an i.i.d. sample set. We denote the pdf of

a random source X by φX, and perform a set-theoretic approximation of φX based on

closed convex information sets.

The information sets are constructed from:
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4.2 Set-Theoretic Density Approximation

1. Prior knowledge about general properties of pdfs.

2. A sample set

DX := {x1, x2, . . . , xN} ⊂ R,

which we assume to consist of i.i.d observations of X.

We start by assuming that φX ∈ L2(R), where L2(R) (henceforth denoted by simply

L2) is the Hilbert space of square Lebesgue-integrable functions equipped with the inner-

product

(∀f ∈ L2) (∀g ∈ L2) ⟨g, f⟩L2 :=

∫︂
R
g(x)f(x)dx, (4.2)

and the norm

∥f∥2L2 = ⟨f, f⟩L2 < ∞.

Given the samples (xi)i∈1,N ⊂ R, and the bandwidth σ > 0, we assume that φX belongs

to a closed subspace G ⊂ L2 defined as follows. Consider the Gaussian function

(∀x ∈ R) (∀y ∈ R) κ(x, y) :=
1√
2πσ2

exp

(︃
−|x− y|2

2σ2

)︃
,

with σ > 0, and now define

G := span {κ(·, x1), . . . , κ(·, xN )}

=

{︄
φ ∈ L2 : φ =

N∑︂
i=1

wi κ(·, xi), N ∈ Z≥0, (∀i ∈ 1, N) wi ∈ R}

}︄
. (4.3)

To give G a Hilbert space structure, we equip it with the inner-product ⟨h, p⟩G = ⟨h, p⟩L2

and the norm ∥f∥2G = ⟨f, f⟩G . With this construction, it is well-known that G is a finite-

dimensional Hilbert subspace of L2 [SSM98,OY17].

There are several reasons for working in the subspace G ⊂ L2:

1. Note that G can be considered as a space of certain N -component Gaussian mix-

tures. Gaussian mixtures are well-known for their ability to approximate well any

L2 density function [PH00].

2. In contrast to [SYY98, Ch. 6.5], rather than estimating the value f(x) ∈ R, for

each real-time input x ∈ R, we approximate the pdf f uniformly in G. In this way,

we require to run the approximation algorithm only once after the sample set D is

available. This makes our approach well suited to real-time applications. Note that

L2 is a space of equivalence classes of functions rather than a space of functions. As
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a consequence, (∀f ∈ L2) f(x) is not well-defined unless we regard f ∈ G, i.e., as an
element of the class G in (4.3) in which case the values f(x) are defined as

((wi)i∈N ⊂ R) ((xi)i∈N ⊂ R) (∀x ∈ R) f(x) :=
N∑︂
i=1

wi κ(x, xi).

An approximation of f ∈ G therefore entails determination of the weights wi.

3. The inner-product (4.2) has a closed-form solution, which is very convenient for set-

theoretic projection-based algorithms that are well-known for their simplicity and

nice convergence properties [CCC+12].

In light of the above, the objective now becomes to find a φ∗ ∈ G that is in agreement

with all the available information we have about φX. More precisely, suppose that the

available information amounts to the fact that φX is a member of Q closed-convex sets,

i.e.,

(∀q ∈ 1, Q) φX ∈ Cq ⊂ G.

Then an approximation of φX is a solution to the classical problem [see, e.g., [CCC+12]]:

Problem 4.1 (Set Feasibility Problem). Find φ∗ ∈ G such that φ∗ ∈
⋂︁Q

q=1Cq.

Obviously, the “quality” of the solution to Problem 4.1 depends on the accuracy of

the information on which the sets Cq are based on, while the complexity depends on

the adopted algorithmic approach. Set feasibility problems such as Problem 4.1 can be

solved by a plethora of projection-based algorithms and their complexity depends on

the complexity of calculating the projections PCq [Com93]. In the following, we present

construction of the sets Cq and the details of the adopted projection algorithm.

4.2.1 Construction of Closed Convex Sets

Consider the event {aq ≤ X ≤ bq} [X is the random variable defined above] where the

probability of this event

P[ aq ≤ X ≤ bq ] = pq

is unknown. Given a sample set DX := {x1, x2, . . . , xN}, we can divide the range of values

in DX in intervals (∀q ∈ 1, Q) [aq, bq], where Q is a design parameter. Because the intervals

[aq, bq] are calculated from DX, which is random, pq is a random variable. We adopt the

approach in [SYY98, Ch. 6.5] to calculate the 95% confidence intervals Pq := [PL
q , P

H
q ] for

each pq such that

(∀q ∈ 1, Q) P[ PL
q ≤ pq ≤ PH

q ] ≈ 0.95.
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4.2 Set-Theoretic Density Approximation

These calculations are computationally inexpensive and their details are provided in Sec-

tion 4.5.1.

Since φX is the pdf of X, it must be a member of each set Cq given as

Cq :=

{︄
φ ∈ G : P[ aq ≤ X ≤ bq ] =

∫︂ bq

aq

φ(x)dx ∈ Pq

}︄
,

which also implies that φX ∈
⋂︁

q∈1,QCq ⊂ G. Furthermore, φX must also satisfy the

“necessary” conditions for pdfs:

1. Normalization: (∀x ∈ S)
∫︁
S φX(x)dx = 1; S ⊂ R is the support of φX.

2. Non-negativity: (∀x ∈ S) φX(x) ≥ 0.

We assume that S is a bounded interval in R, i.e., S is finite. We denote by CQ+1 and

CQ+2, the sets of functions that satisfy the two necessary conditions, respectively, and

note that we now must have that

φX ∈
⋂︂

q∈1,Q+2

Cq ⊂ G.

In the next section we present an iterative algorithm to obtain an approximation φX ∈⋂︁
q∈1,Q+2Cq ⊂ G.

4.2.2 The Parallel Projection Algorithm

It can be verified that the sets CQ+1 and CQ+2 are non-empty closed convex subsets of G.
The sets C1, C2, . . . , CQ are closed-convex but they may be empty if the intervals [aq, bq]

are set too small. To ensure that these sets are nonempty and they contain a sufficient

number of samples, we can make the intervals [aq, bq] sufficiently large [an appropriate

choice is to select the length equal to
√
2σ, where σ > 0 is the width of the Gaussian

kernel]. Then we can simply leave out the empty sets from the sequence C1, C2, . . . , CQ.

In light of the above, we may use the standard (sequential) projection onto convex sets

(POCS) algorithm [SYY98, Theorem 2.5-1] to find a

φ∗ ∈
⋂︂

q∈1,Q+2

Cq,

assuming that
⋂︁

q∈1,Q+2Cq ̸= ∅. However, in some cases we may have that
⋂︁

q∈1,Q+2Cq =

∅, in which case an approximation φ yielded by sequential POCS may not be sufficiently

close to, in particular, the “necessary sets” CQ+1 and CQ+2. To deal with this problem,
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we use the parallel projection algorithm [see Definition 4.1] which guarantees convergence

to a point that minimizes the weighted sum of minimum distances defined in (4.4) from

each Cq. Note that if
⋂︁

q∈1,Q+2Cq ̸= ∅, both the sequential and parallel methods converge

to a point φ∗ ∈
⋂︁

q∈1,Q+2Cq.

Definition 4.1 (Parallel Projection Algorithm). [SYY98, Corollary 2.10-1]. Consider

the distance

ϕ(φ) :=

Q+2∑︂
q=1

βq
⃦⃦
φ−PCq(φ)

⃦⃦2
G . (4.4)

For every choice of φ(0) ∈ G and every choice of (βq)q∈1,Q+2 ⊂ R>0 such that
∑︁Q+2

q=1 βq = 1,

the sequence φ(n) generated by

φ(n+1) =

Q+2∑︂
q=1

βqPCq(φ(n))

converges to a φ∗ ∈ argminϕ(φ) ∈ G ⊂ L2.

The design parameters βq assign priorities to sets Cq. Therefore, it is intuitive to set

(∀q ∈ 1, Q) βQ+2 = βQ+1 > βq. In the following section we show how to calculate each

PCq(φ(n)) above.

4.2.3 Details of the Projections

As mentioned previously, all the required inner-products in the following have well-known

closed-form solutions. Before we proceed further, we provide some basic results pertaining

to the subspace G in (4.3) to be utilized in this section. Denote by G ∈ RN×N
>0 the Gram

matrix with entries given by

(∀i, j ∈ 1, N) [G]i,j := ⟨κ(·, xi), κ(·, xj)⟩G ,

which is symmetric and positive-definite.

• Projection onto G: For a function h ∈ L2, define a vector-valued mapping

ξ : h ↦→ [⟨h, κ(·, x1)⟩G , . . . , ⟨h, κ(·, xN )⟩G ]⊺ ∈ RN .

The projection of h onto the subspace G ⊂ L2 in (4.3) denoted by PG(h) (also

referred to as the closest-point to h in G) is given as

PG(h) =

N∑︂
i=1

ζi(h)κ(·, xi),
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where ζi(h) ∈ R is the ith component of the vector ζ(h) that is determined by

Gζ(h) = ξ(h) [Lue97, Ch. 6.9 , Ch. 3.6]. Note that G is always invertible since it

is positive-definite but it still may be ill-conditioned. Therefore, one should use the

pseudo-inverse of G instead of the inverse to determine ζ(h).

• Inner-products in G: For two functions h =
∑︁N

i=1 viκ(·, xi) and f =
∑︁N

i=1wiκ(·, xi),
their inner-product is given by

⟨h, f⟩G = v⊺Gw,

with v := [v1, · · · , vN ] ∈ RN and w := [w1, · · · , wN ] ∈ RN .

Let φ(0) =
∑︁N

i=1w(i,(0))κ(·, xi), with (∀i ∈ 1, N) w(i,(0)) ∈ R arbitrary, in Definition 4.1.

We now show how to calculate each PCq(φ(n)) in the parallel projection algorithm in

Definition 4.1.

1. Sample Sets: As discussed above, we must have that

(∀q ∈ 1, Q)

∫︂ bq

aq

φ(x)dx =

∫︂ ∞

−∞
1q(x)φ(x)dx ∈ Pq,Pq = [PL

q , P
H
q ],

where

1q(x) :=

⎧⎨⎩1, x ∈ [aq, bq],

0, otherwise.

The projection PCq(φ(n)) onto the closed-convex set (a hyperslab)

Cq :=

{︃
φ ∈ G : ⟨PG(1

q), φ⟩G =

∫︂ ∞

−∞
1q(x)φ(x)dx ∈ Pq

}︃
is given as [see Section 1.6.2]

PCq(φ(n)) =

{︄ φ(n) −
qq−PH

q

∥PG(1q)∥2G
PG(1

q), if qq − PH
q > 0,

φ(n) −
qq−PL

q

∥PG(1q)∥2G
PG(1

q), if qq − PL
q < 0,

φ(n), otherwise,

where qq := ⟨PG(1
q), φ(n)⟩G and its computation is shown in Section 4.5.2.
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2. Normalization: As discussed above, we must have that∫︂ ∞

−∞
1S(x)φ(x)dx = 1,

where

1S(x) :=

⎧⎨⎩+1, x ∈ S,

0, otherwise.

The projection PCQ+1
(φ(n)) onto the closed-convex set [a hyperplane]

CQ+1 :=

{︃
φ ∈ G : ⟨PG(1

S), φ⟩G =

∫︂ ∞

−∞
1Sφ(x)dx = 1

}︃
,

is given by [see Section 1.6.1 and Section 4.5.1]

PCQ+1
(φ(n)) =

{︄
φ(n) −

⟨PG(1
S),φ(n)⟩G−1

∥PG(1S)∥2G
PG(1

S).

3. Non-Negativity: Recall that φ(n) has the general form ((vi)i∈1,N ⊂ R) φ(n) =∑︁N
i=1 viκ(·, xi). A sufficient condition for nonnegativity of φ is that (∀i ∈ 1, N)

vi ≥ 0. Ensuring this condition entails projection onto the set

CQ+2 =

{︄
φ ∈ G : φ =

N∑︂
i=1

wiκ(·, xi), (∀i ∈ 1, N)wi ≥ 0

}︄
,

which is a closed convex cone [BBW18].

Now we discuss two methods of calculating the projection PCQ+2
(φ(n)) which does note

have a closed-form solution because PCQ+2
(φ(n)) is the solution of the following quadratic

program (QP) as shown in Proposition 4.1. The proof is shown in Section 4.5.3.

Proposition 4.1. Let v = [v1, v2, · · · , vN ]⊺ ∈ RN and φ(n) =
∑︁N

i=1 viκ(·, xi). The pro-

jection PCQ+2
(φ(n)) is given as PCQ+2

(φ(n)) =
∑︁N

i=1wiκ(·, xi), where (i ∈ 1, N) wi ≥ 0 is

the ith component of

w∗ ∈ argmin
w≥0

1

2
w⊺Gw −w⊺Gv.

Note that the above QP is always feasible since CQ+2 is nonempty and the projection

onto PCQ+2
(φ(n)) always exists. QPs can be solved using standard convex solvers and
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many efficient open-source solvers exist. The above QP is also equivalent to the classical

nonnegative least squares problem so a large body of research work has been carried out

to solve it efficiently and fast. These include interior point methods, active set methods,

and various accelerated versions of the gradient descent method. The complexity of the

above QP is not an issue because N is assumed to be small.

Nevertheless, in Proposition 4.2 we provide another method to compute PCQ+2
(φ(n))

which consists of a simple iterative fixed point algorithm.

Proposition 4.2. [BFN15] Let v = [v1, v2, · · · , vN ]⊺ ∈ RN and φ(n) =
∑︁N

i=1 viκ(·, xi).
Let E+ := G+ I, E− := G− I, with I the identity matrix and b = 2Gv. The projection

PCQ+2
(φ(n)) is given as PCQ+2

(φ(n)) =
∑︁N

i=1wiκ(·, xi), where (∀i ∈ 1, N) wi ≥ 0 is the

ith component of the limit of the sequence generated by the iteration

E+w
k+1 := −E−

⃓⃓⃓
wk
⃓⃓⃓
− b,

where (∀k ∈ N)
⃓⃓
wk
⃓⃓
:= [|wk

1 |, |wk
2 |, . . . , |wk

N |]⊺ ∈ RN and w1 ∈ RN is arbitrary. The

following error bound holds

(∀k ∈ N)
⃦⃦⃦
w −wk

⃦⃦⃦
≤ ∥E∥

1− ∥E∥

⃦⃦⃦
wk+1 −wk

⃦⃦⃦
. (4.5)

where ∥E∥ < 1 is the maximum (in moduli) singular value of E.

Proof. The proof in [BFN15] (that deals with Euclidean spaces) can be easily adjusted to

fit our needs in G by noting the fact that the set {κ(·, xi), . . . , κ(·, xN )} plays the role of

basis in G with the Gram matrix G.

The bound in (4.5) means that we can use
⃦⃦
wk+1 −wk

⃦⃦
< ϵ as a stopping criteria,

where ϵ is a given accuracy of the solution.

4.2.4 Adding Boundary Correction

Consider, without the loss of any generality, the uniform density with support S := [−2, 2].

Suppose we have N = 50 samples from this uniform density. Figure ?? illustrates the

boundary problem with kernel density estimators. In this example we concentrate on the

Gaussian kernel and show a general kernel density estimator [for this we used Matlab’s

ksdenisty estimator with default settings] and the kernel density estimator of [BGK10].

We assume that we do not have the explicit knowledge of S. We see that the Gaussian

kernel density estimate decays too fast near the boundaries of S because of the lack of the

data around the boundaries.
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4 Robust Approximation of Probability Density Functions

Before we present our boundary correction technique that is based on the classical

boundary reflection method [Jon93], we discuss how this simple method works as proposed

in [Jon93]. A simple way to deal with the lack of the data around the boundaries is to

reflect the data on either side of S and add this artificial data to the sample set. Then

a new kernel density estimate is obtained for this new data set. In more detail, denote

by DX := {x1, x2, . . . , xN−1, xN} the original sample set. The new sample set of size 3N

is given asD := {x−1 , x
−
2 , . . . , x

−
N−1, x

−
N , x1, x2, . . . , xN−1, xN , x+1 , x

+
2 , . . . , x

+
N−1, x

+
N}, where

(∀i ∈ 1, N) x−i = 2(minDX)−xi and x+i = 2(maxDX)−xi. The kernel density estimation

based on the new sample set is shown in Figure 4.1. We see that though the estimate now

is “flatter” near the boundary, there is loss of mass on S because the total mass is now

spread over a larger region. Note that even the original estimate shown in Figure ?? does

not integrate to unity on S so in this sense it is not a proper pdf. Nevertheless, we can see

that most of the mass lies within S which shows that Gaussian kernel density estimators

can naturally “sense” the support of the underlying density.

A particular inelegant solution to compensate for the loss of mass on S in Figure 4.1 is

to multiply the estimate by some number, e.g., 3. Doing this increases the mass somewhat

on S but it generally gives a bad approximation of the underlying density. Furthermore,

increasing the size of the sample set to 3N by reflecting all of the data clearly increases the

complexity in our framework. In our case, we have an explicit normalization constraint

[see Section 4.2.1] which means that we can always normalize the density on the original

support. We propose to reflect a small percentage of data (e.g., 10-20%) on both sides

of the compact support and then feed the new data set to the algorithm. Since we do

not know S we can obtain a rough estimation from DX. In this sense, our method is

an improved boundary reflection method that furnishes proper pdfs while not drastically

increasing the complexity. In Section 4.4.1 we show the efficacy of our simple yet effective

method for some typical pdfs.
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4.3 Detection in CRAN Systems with a Limited-Capacity

Fronthaul

We consider a CRAN system [CCY+15,USDP17] comprising R RRHs, where each RRH

has M antennas. A system with 3 RRHs is shown in Figure 4.2. An RRH is connected

to a central unit by a capacity-limited and interference-free fronthaul link whose capacity

is bounded above by Bp bits per packet. We consider the uplink where K single-antenna

devices broadcast their data to the RRHs [HGW+17,Hua16,NAY+17].

The techniques presented below work in real Hilbert spaces but they can also be used

in the complex case by using a bijection [see Section 3.4.2] between an M -dimensional

complex vector and 2M -dimensional real vectors. For clarity of presentation, we consider

BPSK modulation in the following. The techniques can be extended to higher modulation

schemes by following the discussion in Section 3.4.

At time t ∈ Z≥0, the received signal (sampled at a fixed symbol rate and assuming

non-dispersive channels) at RRH l ∈ 1, R is given by,

rl : Z≥0 → R2M : t ↦→
K∑︂
k=1

√
pkbk(t)h

l
k(t) + nl(t), (4.6)

where bk(t) ∈ {+1,−1} and pk ∈ R are, respectively, the BPSK symbol and the (fixed)

transmit power of device k ∈ 1,K. The vectors hl
k(t) ∈ R2M and nl(t) ∈ R2M denote

the channel signature of device k and additive noise at RRH l, respectively. Note that

all real vectors are obtained from the original complex vectors by using the bijection in
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4 Robust Approximation of Probability Density Functions

Section 3.4.2. Akin to the previous chapters, and because our work is a special case of

bounded error estimation, we assume that the noise is bounded, i.e., (∀l ∈ 1, R) (∃W l ≥ 0)

(∀t ∈ Z≥0) ∥nl(t)∥ ≤ W l.

Figure 4.2: CRAN: A CRAN system with 3 RHHs having different distances and channels
to the users. The fronthaul can be wired or wireless.

Learning under Small-Scale Fading

Note that the channel signature hl
k(t) contains the path-loss, the receive antenna array

signature, and small-scale fading. As common in the literature, in which small-scale fading

is taken into account, we further assume that the channels between the users and the RRHs

undergo Rayleigh block fading [MH99]. Under this assumption, channels remain constant

for a block of complex channel symbols known as the coherence block. More precisely, let

(B ∈ N) tB ∈ N denote the start of the coherence block B, where |tB − tB+1| := Tblock is

the coherence block size. Then,

(∀k ∈ 1,K) (∀t ∈ tB, tB+1 − 1) (∃hB
k ∈ CM ) hk(t) = hB

k ;

i.e., hB
k is the fixed channel of user k for the coherence block B, which lasts from time

t = tB to time t = tB+1 − 1.

Many mobile communication systems perform channel estimation or learning of other

parameters before the actual data communication [ALCYS18,DV17,WWJ+16]. Under the

106



4.3 Detection in CRAN Systems with a Limited-Capacity Fronthaul

assumption of Rayleigh block fading, learning (through training) and data communication

is performed within each coherence block which is defined as a block of channel symbols

over which the channel is assumed to be constant. We assume that the first Ttrain < Tblock

channel symbols are used for training. In the remaining time period of Tblock − Ttrain,

data communication can be performed provided that there exists a detection filter fk
l :

R2M → R to detect the modulation symbol of device k ∈ 1,K reliably. This means that

any learning algorithm has to work with relatively short training, i.e., a small sample set,

before the channel changes to a new independent value rendering the training process

useless for the next coherence block.

In the following, we omit the index k since the same processing is applied to each device

in parallel. Moreover, we also omit the coherence block index B because the same learning

method is performed in each coherence block.

4.3.1 Learning-Based Detect-and-Forward Strategy

In the conventional CRAN, the received signal (4.6) is simply quantized and forwarded

to the central unit for centralized processing. We refer to this strategy as quantize-and-

forward (Q&F) in the remainder.

In contrast, we study a learning-based detect-and-forward (D&F) approach which con-

sists of the following steps illustrated in Figure 4.3:

1. Training: During time period Ttrain, each RRH l ∈ 1, R performs the training to

learn a detection filter fl such that

(∀t ∈ Z≥0) fl(r
l(t)) = b(t) + ˜︁n(t), (4.7)

where ˜︁n(t) is the residual multiuser interference and noise. The training is performed

using a training sequence (rl(t), b(t))t∈1,Ttrain
. It is important to mention here that

fl can be any appropriate continuous detection function/method, and in the simula-

tions later we use the method presented in Section 3.4.3 which serves as an example

of a learning-based method. Note that since rl(t) in (4.7) is random and bounded,

fl(r
l(t)) as defined in (4.7) is also random and bounded.

Additionally, each RRH learns likelihood functions [see also Section 4.1.1]

φl(fl(r
l(t))|+ 1) = p(+1|fl(rl(t))) and φl(fl(r

l(t))| − 1) = p(−1|fl(rl(t))),
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4 Robust Approximation of Probability Density Functions

where p(+1|·) : R → R and p(−1|·) : R → R are the posterior distributions for

b(t).3 The approximation of these likelihood functions (which can be seen as pdfs

because their values are equal to the posterior pdfs) can be performed by using the

set-theoretic approximation developed in Section 4.2).

The sample set for likelihood function approximation [see Section 4.2] can be gener-

ated by observing the response of the (trained) filter fl to the training sample set,

after the training has been completed. For example, let φX := φl(·|+ 1) denote the

likelihood function of the filter response given b(t) = +1, and recall that a training

sequence (r(t), b(t))t∈1,Ttrain
is known at the RRH at t = Ttrain. Then, we can extract

a sample set

DX := {fl(r(t)) : b(t) = +1, t = 1, Ttrain} ⊂ R

for φX. The same applies to the case when φX := φl(·| − 1).

2. Data Communication: During data communication, the RRH calculates two like-

lihood values

Ll(+1; rl(t)) := φl(fl(r
l(t))|+ 1) and Ll(−1; rl(t)) := φl(fl(r

l(t))| − 1).

3. ML Estimation at the CU: The central unit performs a maximum likelihood

estimation of b(t) given by4

b̂(t) = sgn

(︄
R∑︂
l=1

log
Ll(+1; rl(t))

Ll(−1; rl(t))

)︄
, (4.8)

where

sgn(x) :=

⎧⎨⎩+1, x ≥ 0,

−1, x < 0.

3We assume modulation symbols are equiprobable. Furthermore, the channel of each device to each RRH
is assumed to be uncorrelated.

4The log-likelihood ratios in (4.8) can be combined at the central unit by using various methods including
consensus and optimal log-likelihood quantization approaches [CSY14,Rav09].
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Figure 4.3: Detect & Forward (D&F): The steps of the process.

4.4 Numerical Evaluation

4.4.1 Performance of the PDF Estimation Method

In this section, we illustrate the performance of the set-theoretic pdf approximation

method developed in Section 4.2. We compare the performance of our method with that

of the kernel density estimator studied in [BGK10] that is a state-of-the-art fast kernel

density estimator, and also with that of the kernel density estimator with simple boundary

correction technique. We did not consider the EM technique for Gaussian mixture because

we observed a poor/unreliable performance by using a popular open-source solver [Che19].

We conjecture that this is due to insufficient number of available samples and numerical

problems inherent in this method [also see Section 4.1.2]. We compare the performances of

the techniques on 3 types of pdfs that are typically used for visual performance evaluation:

1. Uniform distribution defined on [−2, 2].

2. Beta distribution f(x) = xα−1(1−x)β−1, with α = 1 and β = 5 which is only defined

on the interval [0, 1].

3. Normal multimodal distribution with means µ1 = 0, µ2 = 35, and µ3 = 55, and

standard deviations σ1 = 1, σ1 = 1, and σ1 = 2.

Note that these 3 pdfs are chosen based on the observation that these generally require a

large number of samples to obtain a good approximation, especially on the boundaries.

The simulation parameters are shown in Table 4.2. The bandwidth σ of the Gaussian

kernel is calculated as in [BGK10] because this purely data-driven method does not make
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4 Robust Approximation of Probability Density Functions

Table 4.2: Simulation Parameters for Pdf Approximation

Parameter Calculation/Value

Number of Samples N ∈ {50, 100, 150, 200}
Bandwidth σopt [See [BGK10]]
Length of Sample Sets 5σopt
Sample Range Range = max(DX)−min(DX)

Support Estimate S =
[︂
min(DX)− Range

20 ,max(DX) + Range
20

]︂
Number of Convex Sets Q = max(D)−min(D)

5σopt
+ 2

Boundary Reflection 10%
Number of POCS Iterations 20
QP Solver Matlab’s Interior Point, Tolerance 10−12

any assumption on the underlying pdf. We assume that the support S of the underlying

pdf is unknown. We obtain a simple estimate of S as

S =

[︃
min(DX)− Range

20
,max(DX) +

Range

20

]︃
,

where Range = max(DX)−min(DX) is the range of the samples in the sample set DX. We

apply the boundary correction as discussed in Section 4.2.4 where the reflection percentage

is fixed at 10%. For our method we set (∀x /∈ S) f(x) = 10−6 [values on points outside

the support] and note that this has no effect on the approximation on S.

Note that the purpose of this evaluation is to show that our method addresses the

problems faced by present kernel density estimators using Gaussian kernels. Note that

the state-of-the-art method of [BGK10] also applies boundary correction in the case when

S is explicitly known. However, we assume that S is unknown because we do not assume

knowledge of the underlying pdf including its support. Nevertheless, we noticed that the

method in [BGK10] does not produce satisfactory performance for small sample sizes, e.g.,

N = 50 even if S is known explicitly. The results our shown in Figure 4.4, Figure 4.5, and

Figure 4.6. We observe that our method shows an overall comparable performance to the

method in [BGK10] but the performance on the boundaries of the uniform and the beta

distributions is significantly improved.

110



4.4 Numerical Evaluation

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5
Uniform Density [-2 2] Approximation with 50 Samples

Underlying Density

Kernel Density Estimation

Set-Theoretic Approximation

Simple Boundary Reflection

(a) N=50

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5
Uniform Density [-2 2] Approximation with 100 Samples

Underlying Density

Kernel Density Estimation

Set-Theoretic Approximation

Simple Boundary Reflection

(b) N=100

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5
Uniform Density [-2 2] Approximation with 200 Samples

Underlying Density

Kernel Density Estimation

Set-Theoretic Approximation

Simple Boundary Reflection

(c) N=200

Figure 4.4: Uniform Distribution
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Figure 4.5: Beta Distribution
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Table 4.3: Simulation Parameters

Parameter Value

Number of RRHs R ∈ {2, 3, 4}
Number of antennas at each RRH M ∈ {1, 2, 3, 4, 5, 6}
Number of users K ∈ {4, 6, 8, 10}
Fronthaul quantization bits Bq ∈ {2, 4, 6, 8, 10}
Quantization Max-Llyod
User SNR {−3,−2, . . . , 9, 10} dB
Channels Rayleigh block fading
Noise power 0.1 Watts
Gaussian kernel with width for filtering σn 0.05
Gaussian kernel width for pdf estimation Silverman’s rule of thumb
Test Sample Set 104 − 105

Epsilon ϵ 0.95
Modulation QPSK
Number of experiments 100
Linear kernel weight wL = 0.20
Gaussian kernel weight wG = 0.80

4.4.2 Performance of the CRAN System

In this section we first compare the effect of CRAN fronthaul capacity on the two CRAN

strategies for QPSK modulation. Moreover, we demonstrate the diversity gains offered by

cell-less CRAN framework that can acheived using our likelihood estimation method. The

device SNRs (k ∈ 1,K) γk at each RRH are chosen independently at random from the

set {−3 dB,−2 dB, · · · , 9 dB, 10 dB}. We observed that for SNR values in this range, the

device has a strong enough signal at the receiver to be detected.

Simulation of the D&F strategy

We first discuss the D&F strategy. To perform training for D&F, we use Algorithm 2

to perform multiuser demodulation [see Section 3.4.5 Chapter 3]. As mentioned before,

we can use any filtering/detection algorithm, but we chose the multiuser filtering method

in Chapter 3 because it is suitable for the case when the number of antennas satisfies

M < K; this is indeed the case here. After the training phase, we use the algorithm in

Definition 4.1 to approximate likelihood functions. The values in the sample set DX =

{x1, x2, · · · , xN} [see Section 4.3.1] are used for the parameters xi for functions κ(x, xi) :=

(1/
√
2πσ2) exp

(︂
−|x−xi|2

2σ2

)︂
. Furthermore, we used Q = 10 intervals in Section 4.2.1 and ran

20 iterations of the algorithm in Definition 4.1. We observed a good performance for these

heuristics. The obtained functions are then quantized by using the Max-Llyod algorithm
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for quantization bits satisfying Bq ≤ 4. For quantization bits satisfying Bq > 4, we use

uniform quantization. The ML decision is performed at the CU by forwarding of likelihood

ratios associated with the local detection by each RRH, as explained in Section 4.3.1.

Simulation of the Q&F strategy

For Q&F, we first collect the training data at each RRH (l ∈ 1, R) (rl(t), b(t))t∈1,Ttrain
.

We then estimate and quantize the pdfs of received vectors by the same process as in the

D&F case above. The quantized received vectors from all RRHs are stacked to construct

(quantized) received vectors rCU(t) := [r1(t), · · · , rR(t)]⊺ ∈ R2RM . In this way, we have

a distributed multiple antennas system at the CU where the quality of the training set

(rCU(t), b(t))t∈1,Ttrain
fed to the filtering algorithm Algorithm 2 depends on the level of

quantization. The learning and detection is then performed at the CU by using Algo-

rithm 2 to perform multiuser demodulation [see Section 3.4.5 Chapter 3]. During the

detection, received vectors are quantized and forwarded to the CU by following the same

procedure as during the learning.

Results

In Figure 4.7 we simulate a single cluster of size K = 6 with M = 3 < K antennas

at each RRH. Figure 4.7 shows the average (Gray-coded) BER for QPSK modulation for

increasing values of fronthaul packet lengths which result in quantization bits Bq = Bp/2K

per user in the D&F case, and Bq = Bp/2M per receive vector component in the Q&F

case. We compare D&F (in solid-lines) and Q&F (in dashed-lines) forwarding strategies

for different values of number of RRHs R. The D&F strategy developed in this chapter

clearly outperforms the Q&F one for a low fronthaul capacity. On the other hand, Q&F

is more suited to situations with a large fronthaul capacity.

In Figure 4.8 we compare the performance of a single centralized BS/RRH as in (CS)

(dashed-lines) with a D&F CRAN system (solid-lines) with R = 3 and Bq = 4 for in-

creasing values of training time Tt and cluster size K. The results show that, in the case

of a single RRH, the method in Section 3.4.5 Chapter 3 performs poorly even for large

values of Ttrain. The spatial diversity inherent in the cell-less CRAN framework results

in a much better performance over the range of Ttrain. This shows that the training time

in modern communication systems can be significantly reduced by adopting the cell-less

CRAN architecture and using a robust and reliable likelihood estimation method.
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4.5 Supplementary Material and Proofs

4.5.1 Calculation of Confidence Intervals

See [SYY98, Ch. 6.5] for more details of the following. Given the i.i.d sample set DX =

{x1, . . . , xN} divide this set in Q intervals [aq, bq]. Fix q ∈ 1, Q and define Bernoulli

random variables Yi, . . . ,YN

(∀i ∈ 1, N) Yi :=

⎧⎨⎩1, xi ∈ [aq, bq]

0, otherwise;

each Yi has mean pq and variance pq(1 − pq). Note that even though Yi is in fact a

mapping, the above “abuse of notation” is standard in engineering literature.

Now, define another random variable W as

W :=

√
N(Ỹ − pq)√︂
Ỹ(1− Ỹ)

,

where Ỹ = 1/N
∑︁N

i Yi. If N is sufficiently large, W → N (0, 1), i.e., W is normally

distributed, which implies that there exist real numbers zα and −zα (dependent on α ∈ R)
such that

P[ −zα ≤ W ≤ +zα ] = 1− α.

If we let

pLq := Ỹ −
zα

√︂
Ỹ(1− Ỹ)
√
N

pHq := Ỹ +
zα

√︂
Ỹ(1− Ỹ)
√
N

then it can be verified that

P[ pLq ≤ pq ≤ pHq ] ≈ 1− α.

Therefore, Pq = [pLq , p
H
q ] is an approximate 100(1− α)% confidence interval for pq.
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4.5.2 Required Integrals and Inner-Products

1. Let φ =
∑︁N

i=1wi κ(·, xi) and [aq, bq] ∈ R. The inner-product ⟨PG(1
q), φ(n)⟩G =∫︁ bq

aq
φ(x)dx is given as

N∑︂
i=1

wi

{︃
1

2
erf

(︃
aq − xi√

2σ

)︃
− 1

2
erf

(︃
bq − xi√

2σ

)︃}︃
.

2. By letting [aq, bq] := S above we obtain ⟨PG(1
S), φ(n)⟩G .

4.5.3 Proof of Proposition 4.1

Proof. Let v = [v1, v2, · · · , vN ]⊺ ∈ RN and φ(n) =
∑︁N

i=1 viκ(·, xi). Now let

k = [κ(·, xi), · · · , κ(·, xN )]⊺

such that the Gram matrix for G is given by (∀i, j ∈ 1, N) [G]i,j := ⟨[k]i, [k]j⟩G . The

projection of φ(n) = v⊺k onto the closed-convex cone Cq+2 ⊂ G is the solution to

PCq+2(φ(n)) = argmin
φ∈Cq+2

1

2

⃦⃦
φ(n) − φ

⃦⃦2
G .

Now let (w ∈ RN
≥0) φ = w⊺k and note that⃦⃦

φ(n) − φ
⃦⃦2
G = ⟨φ(n) − φ,φ(n) − φ⟩G

= ⟨v⊺k−w⊺k,v⊺k−w⊺k⟩G
= ⟨v⊺k,k⊺v⟩G − ⟨v⊺k,k⊺w⟩G − ⟨w⊺k,k⊺v⟩G + ⟨w⊺k,k⊺w⟩G
= v⊺Gv − 2v⊺Gw +w⊺Gw. (4.9)

Now since the factor v⊺Gv in (4.9) is independent of w, the claim follows.
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