
Optimising Quality-of-Service
for the Composition of Electronic Services

vorgelegt von
Diplom-Ingenieur
Michael C. Jäger

Von der Fakultät IV – Elektrotechnik und Informatik –
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Professor Dr. Hans-Ulrich Heiß
Gutachter: Professor Dr. Bernd Mahr

Professor Dr. Robert Tolksdorf

Tag der wissenschaftlichen Aussprache:

1. Dezember 2006

Berlin 2007
D 83

ii

.

iii

.

iv

Zusammenfassung

Kompositionen aus elektronischen Diensten finden in Softwaresystemen Verwen-
dung, die bei der Umsetzung von prozess-orientierten Vorgängen in Unterneh-
men, so-genannten Geschäftsprozessen, zum Einsatz kommen. Dies begründet
sich darin, dass Kompositionen aus elektronischen Diensten und Geschäftsprozesse
gemeinsame Charakteristiken besitzen. Daher sind Dienstkompositionen für die
Realisierung von Geschäftsprozessen besonders geeignet.

Um eine Komposition aus individuellen Diensten zusammen zu stellen, wer-
den Dienstvermittler herangezogen, die anhand von Anforderungsbeschreibungen
geeignete Dienste identifizieren. Dabei können Optimierungskriterien berücksich-
tigt werden, um die Eigenschaften der Komposition zu verbessern. Als Opti-
mierungskriterien dienen in dem berücksichtigten Anwendungsszenario quantifi-
zierbare Dienstgüteigenschaften. Sollen mehrere Kriterien gleichzeitig berück-
sichtigt werden, entsteht ein Optimierungsproblem, das in einem unpraktikablen
Aufwand resultieren kann. Für dieses Problem soll die Anwendbarkeit von heuris-
tischen Algorithmen untersucht werden. Der Ansatz heuristische Algorithmen auf
dieses Problem anzuwenden ist neu und bedarf daher einer Untersuchung: Heu-
ristische Verfahren können die optimale Lösung nicht garantieren. Eine zu beant-
wortende Frage ist daher, welche Eigenschaften Annäherungen im Vergleich zu
einer optimalen Lösung aufweisen.

Zunächst wird ein Verfahren entwickelt, um die Dienstgüteeigenschaften einer
Dienstkomposition zu berechnen. Für die Problemstellung ist dieses Verfahren
notwendig, um bei der Auswahl eines einzelnen Dienstes die Auswirkungen auf
die Komposition zu bestimmen. Basierend auf diesem Verfahren wird ein Modell
für das Problem definiert. Anhand dieses Modells wird der Bezug zu verwandten
Problemstellungen verdeutlicht und der resultierende Aufwand zur Lösung des
Problems diskutiert. Darüber hinaus wird anhand des Problemmodells die An-
wendung der heuristischen Algorithmen erklärt.

Mit der Implementierung einer Simulation wird die Leistungsfähigkeit der heu-
ristischen Algorithmen untersucht. Der Begriff der Leistungsfähigkeit bezieht sich
hierbei auf die Berechnungsdauer und auf die Dienstgüteeigenschaften der Kom-
position resultierend aus der jeweilig ermittelten Lösung bzw. Annährung. Die
Ergebnisse durchgeführter Simulationen ermöglichen eine quantitative Bewertung
der implementierten Algorithmen im Vergleich zueinander als auch den Vergleich
zu einem Verfahren, das die optimale Lösung garantiert.

v

vi

Summary

Electronic services and their composition gain a growing interest from businesses
that intend to implement their processes with software systems. The general char-
acteristics of electronic services resemble the idea of process-orientation as pro-
posed by the business process re-engineering initiative introduced in the 90s. Thus,
the software industry promotes developing service compositions in order to effi-
ciently implement business processes.

The development of service compositions involves service brokers. These bro-
kers implement a trading functionality in order to identify the suitable services
based on requirement descriptions. The trading functionality can also consider dif-
ferent optimisation criteria in order to optimise the resulting composition. In the
proposed application scenario, numerical Quality-of-Service (QoS) characteristics
usually serve as optimisation criteria. When multiple criteria have to be considered
at once, an optimisation problem arises that can result in an unfeasible computa-
tional effort. A novel approach for this problem is to apply heuristic algorithms.
This approach requires a discussion, because heuristic algorithms do not guarantee
to find the optimal solution. The question is how well the approximations compare
with the optimal solution referring to the resulting QoS of the composition.

Based on the characteristics of the application scenario a method is developed
for computing the QoS of compositions based on the QoS statements of the in-
volved services. A QoS-based selection must use such a method in order to deter-
mine the QoS of the entire composition when selecting individual services. Based
on this method, a model for the problem of QoS-based selection is defined. The
model enables the understanding about the problem and it also serves as the refer-
ence for the discussion about the relations to other combinatorial problems. More-
over, the problem model is used for the explanation of the heuristic algorithms
applied to the selection problem.

Based on the problem model and the relevant QoS concepts, the implemen-
tation of a simulation provides the evaluation of the performance of the heuristic
algorithms. The simulation presents measures based on the resulting QoS of the
composition and the computation time. The results from conducted simulation runs
allow the comparison among the algorithms and with a method that always finds
the optimal solution.

vii

viii

Contents

1 Introduction 1
1.1 Service Trading . 4

1.1.1 Trading to Form Compositions 7
1.2 Problem Statement . 10

1.2.1 Research Issues . 11
1.3 Structure of the Thesis . 12

2 Workflows, Business Processes
and Service Compositions 15
2.1 Business Processes . 15

2.1.1 Definition of Business Processes 17
2.1.2 Modelling Business Processes 18

2.2 Workflow Management . 20
2.2.1 Modelling Workflows 22

2.3 Workflows versus Business Processes 24
2.4 Realising Business Processes and Workflows 26

2.4.1 Modelling Service Compositions 27

3 Quality-of-Service in Service Compositions 33
3.1 Exchange of Quality-of-Service Information 35

3.1.1 Quality-of-Service in a Service-Oriented Architecture . . 36
3.1.2 The Role of the Retailer 39

3.2 Quality-of-Service Characteristics 44
3.2.1 Quality-of-Service Characteristics for Web Services . . . 46
3.2.2 Summary of Quality-of-Service Characteristics 49

4 Aggregation of the Quality-of-Service
in Service Compositions 51
4.1 The Business Process Execution Language 52
4.2 Workflow Patterns . 53
4.3 Structural Model of Service Compositions 57
4.4 A Method for Quality-of-Service Aggregation 64

4.4.1 Aggregation of Throughput 66

ix

Contents

4.4.2 Aggregation of Response Time 66
4.4.3 Aggregation of Cost . 67
4.4.4 Aggregation of Availability and Reliability 68
4.4.5 Aggregation of Reputation and Fidelity 69
4.4.6 Aggregation of Encryption Grade 70

4.5 Support of Un-Structured Models 71
4.5.1 Open Elements . 72
4.5.2 Arbitrary Loops . 73
4.5.3 Nested Patterns . 74
4.5.4 Transformations to Structured Workflow Models 74

4.6 Related Methods for Quality-of-Service Aggregation 79
4.7 Aggregation for Quality-of-Service Monitoring 81

4.7.1 Aggregation of Mean Values 83

5 Quality-of-Service-based Selection of Services 85
5.1 Introduction to the Selection Problem 85
5.2 The Problem Model . 91

5.2.1 The Selection Criteria 93
5.2.2 Modelling the Structure 93
5.2.3 Problem Model Summary 94
5.2.4 Aggregation of Multiple Optimisation Criteria 95

5.3 Relations to Other Combinatorial Problems 96
5.3.1 The Knapsack Problem 97
5.3.2 The Project Scheduling Problem 103
5.3.3 Query Planning based on Quality-of-Service 105
5.3.4 Routing in the Internet based on Quality-of-Service 107
5.3.5 Computational Complexity 109

5.4 Heuristic Algorithms . 112
5.4.1 Greedy-based Selection 112
5.4.2 Discarding Subsets . 113
5.4.3 Bottom-Up Approximation 116
5.4.4 Pattern-wise Selection 117
5.4.5 Comparison of the Algorithms 119

6 Evaluation 121
6.1 Simulation Model . 121
6.2 Evaluation Methods and Metrics 123

6.2.1 Statistical Measures . 124
6.3 Parameters and Implementation 125

6.3.1 Quality-of-Service Parameters 126
6.3.2 Implementation . 127
6.3.3 Technical Details . 129

6.4 Simulation Campaigns and their Results 130
6.4.1 Increasing Number of Tasks without Constraint (C1) . . . 131

x

Contents

6.4.2 Increasing Number of Tasks with One Constraint (C2) . . 134
6.4.3 Increasing Number of Service Candidates (C3) 138
6.4.4 Volatility of the Quality-of-Service (C4) 142
6.4.5 Parallel vs. Sequential Composition Structures (C5) . . . 146

6.5 Evaluation Conclusions . 149

7 Developing Service Compositions 153
7.1 Introduction to the Model Driven Architecture 154

7.1.1 Model Driven Development of Web Service Compositions 157
7.2 Model-Driven Development of Service Compositions 158

7.2.1 Modelling the Composition 160
7.2.2 Trading: Matchmaking 163
7.2.3 Trading: Quality-of-Service-based Selection of Candidates 166
7.2.4 Advertisement and Deployment 167
7.2.5 Development as an Iterative Process 169

8 Conclusions 173
8.1 Summary of Main Contributions 175
8.2 Outlook and Future Work . 176

A Specification of the
Hard- and Software Platform 179

B List of Abbreviations 181

xi

Contents

xii

List of Figures

1.1 Service-Oriented Architecture - The RM-ODP view [50] and its
Web service counterparts (shown in grey boxes, cf. WSA [11]). . . 5

1.2 The business roles in the TINA [27] and roles in the domain of
Web service compositions (shown in grey boxes). 8

1.3 A simple example of the QoS-based selection problem. 9

2.1 The roles of a business process model. 18
2.2 The roles of business process and workflow models. 25
2.3 The relation between business process, workflow and service com-

position models. 30
2.4 Release dates of service composition languages. 31
2.5 The role of the service composition model. 32

3.1 Flow of QoS information without involving a broker. 40
3.2 Flow of QoS information involving a broker. 41
3.3 Flow of QoS information involving dedicated brokers. 42

4.1 Composition patterns. 60
4.2 Example of join-relevant aggregation of response time. 61
4.3 Collapsing the graph step by step. 64
4.4 Examples of open parallel structures. 73
4.5 Examples of loops. 74
4.6 Examples of nested patterns. 75
4.7 Open parallel and arbitrary loop structures and possible transfor-

mations. 76
4.8 Structures that contain nested parallelism. 77
4.9 Structures that contain nested parallelism and possible transforma-

tions. 78
4.10 Example for the aggregation based on a critical path. 80

5.1 Relation between the MCKP and the selection problem. 87
5.2 Relation between the MCKP and the integer linear and non-linear

variant of the selection problem. 88
5.3 Composition structure that contains parallelism. 89

xiii

List of Figures

5.4 Relation between the MCKP and the selection problem involving
the number of constraints. 90

5.5 Summary of relations between the MCKP and the selection problem. 91
5.6 Relation between the MCKP, the MMKP and the selection problem. 99
5.7 Graphical representation of the example selection problem (with

candidates in rectangular boxes). 102
5.8 Relation between the RCPSP and the selection problem. 105
5.9 Relation between the QoS-based evaluation of queries and the se-

lection problem. 107
5.10 Reduction of the MCKP to the selection problem. 111
5.11 Example processing order of bottomup heuristic. 116

6.1 Main steps of performing a simulation run. 123
6.2 Relative QoS to constraint selection (C1, with 5 candidates). . . . 132
6.3 Computation times of selection methods (C1, with 5 candidates). . 132
6.4 Histogram of computation times of the pattern method (C1, setup

with 12 tasks). 133
6.5 Histogram of computation times of the global method (C1, setup

with 12 tasks). 133
6.6 Relative QoS to constraint selection (C2, with 5 candidates). . . . 135
6.7 Computation times (C2 with 5 candidates). 135
6.8 Histogram of computation times of the discarding method (C2,

with 12 tasks). 137
6.9 Histogram of computation times of the bottomup method (C2, with

12 tasks). 137
6.10 Relative QoS to constraint selection of optimisation-only methods

(C3). 139
6.11 Relative QoS to constraint selection of constraint-aware methods

(C3). 139
6.12 Computation duration of optimisation-only methods (C3). 139
6.13 Computation duration of constraint-aware methods (C3). 139
6.14 Histogram of computation times for the local method (C3, 11 can-

didates). 141
6.15 Histogram of computation times for the pattern method (C3, 11

candidates). 141
6.16 Rel. QoS to constr. selection: optimisation-only methods (C4). . . 144
6.17 Rel. QoS to constr. selection: constraint-aware methods (C4). . . 144
6.18 Rel. QoS to random selection: optimisation-only methods (C4). . 144
6.19 Rel. QoS to random selection: constraint-aware methods (C4). . . 144
6.20 Computation duration: optimisation-only methods (C4). 145
6.21 Computation duration: constraint-aware methods (C4). 145
6.22 Relative QoS to constr. selection: optimisation-only methods (C5). 148
6.23 Relative QoS to constr. selection: constraint-aware methods (C5). 148
6.24 Computation duration: optimisation-only methods (C5). 148

xiv

List of Figures

6.25 Computation duration: constraint-aware methods (C5). 148

7.1 Separation of the models in the MDA (based on OMG’s MDA doc-
ument [96, section 2.3]). 155

7.2 The evolution of the models in the MDA (based on Bézivin et al. [9]).156
7.3 Main steps of developing service compositions. 159
7.4 First step: modelling the composition. 161
7.5 Proposed taxonomy of service descriptions. 164
7.6 Second step: matchmaking. 166
7.7 Third step: QoS-based selection of candidates. 167
7.8 Fourth step: advertisement and deployment. 168
7.9 The iterative development process. 171

xv

List of Figures

xvi

List of Tables

2.1 Overview: Web service composition languages. 29

3.1 QoS-based trading in the domain of Web services. 38
3.2 QoS characteristics in the domain of Web services. 49
3.3 Summary of QoS characteristics 50

4.1 Workflow patterns [146] and their relevance for the QoS aggregation. 55
4.2 Aggregation rules for throughput. 67
4.3 Aggregation rules for the response time. 68
4.4 Aggregation rules for the cost. 68
4.5 Aggregation rules for the availability. 69
4.6 Aggregation rules for the mean reputation and the encryption level. 71
4.7 Aggregation rules for the mean response time and the mean cost. . 84

5.1 Array values resulting from dynamic programming approach. . . . 103
5.2 Summary of introduced heuristic algorithms. 119

6.1 Availability rates and resulting downtimes by Kenyon [72, p. 411]. 127
6.2 Parameter value ranges of the simulation. 128
6.3 QoS and times, setup with 12 tasks in C1. 132
6.4 QoS and times, setup with 12 tasks in C2. 136
6.5 QoS and times, setup with 11 candidates in C3. 140
6.6 Examples of generated QoS values at different qv. 142
6.7 QoS and times, setup with qv = 2 in C4. 146
6.8 QoS and times, setup with a parallel probability of 100% in C5. . 149

A.1 Specification of the host system. 179

xvii

List of Tables

xviii

Chapter 1

Introduction

The concept of a service covers many domains of application. In computer science,
a couple of attempts to define a service exist in the literature. Often such definitions
use assumed technical characteristics such as “defined interface” or “available in
a network”. However, services exist that are not available in a computer network
and, in general, software components also offer an interface. Such simple examples
make clear that it is difficult to define services by referencing to characteristics of
existing examples. The ISO 9004 standard offers a definition of services that is
free from such references [127, section 3.5]:

[A service represents] the results generated, by activities at the in-
terface between the supplier and the customer and by supplier-internal
activities to meet customer needs.

The title of this work contains electronic services (e-services) denoting a spe-
cial kind of services. The term refers to a service provided by a computer system.
Hull et al. also consider the idea that an e-service provides its operations referring
to a common purpose, meaning that the different operations of an e-service form a
set of interrelated functionality [48]. In addition to these basic characteristics, they
emphasise also the following application of e-services:

... [the goal of e-services is] to have a collection of network-
resident software services accessible via standardised protocols, whose
functionality can be automatically discovered and integrated into ap-
plications or composed to form more complex services.

According to this view, the development and application of e-services also an-
ticipate their composition. E-services and their compositions are supposed to pro-
vide their functionality in a computer network. The Internet represents such a
network or, in other cases, the network remains in an organisational domain, such
as a company. Regardless of organisational boundaries, e-services use protocols
and software compatible with the Internet (cf. Huhn et al. [47]).

1

In the field of service compositions, two main applications are considered: The
development of a component-oriented software system represents a first case. In
this scenario, a software developer arranges individual e-services to create more
complex software. Considering the provision over a network, this application pre-
sumes the ability to discover services in these networks or in the Internet. A soft-
ware developer can consider software components that reside outside his organisa-
tional scope or local facilities. Software developing companies can provide their
software in the Internet using an e-service infrastructure. Then, customers can in-
tegrate these e-services into their software systems. This setup establishes a new
market of e-services offered by service providers and new profit mechanisms. In
a broader sense, it provides customers with a wider range of products. This appli-
cation case represents the motivation for using the Web services proposal by the
World Wide Web Consortium (in short W3C) [11]. The W3C defines a Web service
as follows:

A Web service is a software system designed to support interoper-
able machine-to-machine interaction over a network. It has an inter-
face described in a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner prescribed by
its description using SOAP messages, typically conveyed using HTTP
with an XML serialisation in conjunction with other Web-related stan-
dards.

The Web services from the W3C represent a proposal to develop e-services
using specific XML-based conventions, languages and using Internet protocols.

The second application case targets the software support of existing business
processes or the development of new business processes entirely performing within
computer systems. Business processes are often associated with workflows. In fact,
the Workflow Reference Model published by the Workflow Management Coalition
(WfMC) defines a workflow as the implementation of a business process with com-
puter systems: The goal of establishing workflows is the facilitation or automation
of business processes by using computer systems [45, section 2]. A workflow can
include the participation of humans, usually actors in a business process. This
work, however, will cover only workflows that do not include operations of users,
i.e. do not require human interactions, because e-services represent primarily a
technology aiming at the interoperation of software systems.

The use of e-services has already become reality in today’s businesses: Last
year, a Gartner Group study presented the average numbers of e-services in com-
panies and enterprises [107]. According to this study, an average small company
deploys about 25 e-services, while very large enterprises usually have more than
1000 of them. In such large enterprises, more than 100 clients access these e-
services more than one million times a day.

As one of the first, Bolcer and Kaiser have recognised the rising potential
and introduced a proposal to leverage e-services available in the Internet in or-
der to build workflows [10]. Since then, many publications have mentioned the

2

realisation of workflows as the motivating scenario to develop compositions of e-
services. Ganesarajah and Lupu have developed a workflow management system
based on compositions of Web services [36]. Hull et al. have discussed the theo-
retical foundation of e-service compositions including their application to develop
workflows [48]. Patel et al. have recently introduced their SemWebQ framework
which provides the automated discovery and composition of Web services based
on a approach using metadata about e-services to form workflows [105]. In sum-
mary, existing research work and the application of e-services in today’s businesses
indicate the consensus that software developers can use e-service compositions as
the technical foundation to implement workflows.

Considering the creation of business processes, the motivation arises to ex-
plore techniques to design and develop e-service compositions. For this purpose,
different solutions already exist. In most cases, the products and development en-
vironments cover the currently most popular service architecture: the Web services
architecture from the W3C. This thesis will consider e-services in general and will
mention at certain points available technologies in the Web services domain. In
order to build such e-service compositions, the following main steps are identified:

• Design of the composition. First, a software developer or workflow mod-
eller defines and arranges abstract tasks that provide the desired functionality
to form the composition. The outcome is an execution plan and a description
of the required e-services. For this step, research work and industry consortia
have already proposed composition languages.

• Discovery and selection of e-service candidates. Based on the description
of the required e-services, a discovery process must evaluate available e-
services in terms of their suitability for the composition. If more than one
e-service suits a particular task, a selection should be based on preference
criteria. The Reference Model for Open Distributed Processing (RM-ODP),
published by the ISO, names the entire process – consisting of discovery and
selection – trading [50, section 13]. The trading step results in an assignment
of one or more candidates to the tasks in the composition.

• Provision of the composition. Based on the composition description and
the assignment of available e-services to its tasks, an execution environment
provides the composition by executing the individual e-services in this pre-
defined way. In addition, the composition must be advertised to make future
trading efforts consider the new composed e-service.

This work focusses on the trading of e-services to form compositions. More
specifically, this work will discuss methods and algorithms to perform the selection
of discovered e-service candidates based on preference criteria. The discovery
process aims at identifying the functional suitability of candidates, whereas the
selection assigns the optimal candidates to the tasks of the composition based on
the preference criteria. As criteria the quality-of-service (QoS) is considered.

3

1.1. Service Trading

In general, the design of a system must be concerned with QoS in order to de-
liver dependable and consistent functionality. In a work about QoS in workflow
management systems, Weikum has explained the importance of this issue [138]:
After decades of development and research, database systems offer functionality
with such characteristics. Today, database systems are known for almost never
loosing data, offering uninterrupted availability and a sustained level of high per-
formance. At the time when Weikum has written his text, workflow management
systems did not offer this level of quality and neither do e-services today. This
thesis aims at covering one aspect of QoS of e-services in order to improve their
quality for future applications. A detailed discussion about what QoS represents in
service compositions will be presented in a dedicated chapter. Until then, the ISO
9004 standard also offers a definition that is considered as a starting point [127,
section 3.5]:

[The quality is] the totality of features and characteristics of a
product or service that bear on its ability to satisfy stated or implied
needs.

Another more mundane definition is that the QoS denotes how well a service
provides its functionality. In the remainder of this work e-services will simply be
called services. The reference to electronic services will be taken for granted.

1.1 Service Trading

As for trading of services, this work considers the trading specification of the RM-
ODP [53]. In general, the RM-ODP represents a model of distributed software
systems that is independent of particular technologies. The Web services, men-
tioned in the previous section, can be seen as an implementation of such a system.
Web services represent a popular and widely accepted technology for developing
a distributed system. The W3C has introduced different standards and recommen-
dations that cover the message exchange between the actors, the description of
interfaces, behaviour of actors and many further specific aspects of distributed sys-
tems, such as security, QoS or monitoring. This thesis takes into consideration
Web services in order to provide practical examples in addition to the theoretical
foundations of the RM-ODP.

Although the RM-ODP and the RM-ODP trading specification cover many as-
pects of open distributed systems and of trading services, they do not cover the
trading of different service types at once in order to build compositions of services.
Consequently, trading software referencing the RM-ODP did not focus on this par-
ticular form of trading (cf. Kutvonen [76, chapter 3 and chapter 8]). As the previous
section has explained, the idea to build service compositions came up later with the
development of the Web services idea and the propagation of process-orientation
in businesses.

4

1.1. Service Trading

However, regarding the basic concepts of an open distributed system, RM-
ODP and Web services identify three main actors in a setup that research work
describes as service-oriented architecture (SOA): (1) a service exporter is a party
that provides a service, (2) a service importer invokes a service and (3) a broker
trades services between ex- and importers. The basic procedures within this setup
are as follows:

1. An exporter exports his service description to the broker. A broker is a com-
ponent that implements a trading function and facilitates the matchmaking
between requirements of importers and advertisements of services. The Web
services corner uses the concept of a discovery service to provide a broker.
The service description usually covers the interface and the location of the
service.

2. An importer queries the broker whether a service is available by submitting
a description about his requirements. The broker compares the requirements
with his available service descriptions and – if available – returns the de-
scription and location of the matched services.

3. After receiving the interface and location of a service, the importer starts the
interaction with the matched service. This step is mentioned in the RM-ODP
as importing.

1. Service Export 2. Service Query

3. Service Import
Importer Service

Requester
Exporter Service

Provider

Broker Discovery
Service

Figure 1.1: Service-Oriented Architecture - The RM-ODP view [50] and its Web
service counterparts (shown in grey boxes, cf. WSA [11]).

Figure 1.1 illustrates this arrangement, with the three basic actors and their
relations. To facilitate steps 1 and 2, the proposal of the Web services movement
favours a specification called Universal Description Discovery and Integration pub-
lished by the OASIS (UDDI, [135]). The UDDI proposal represents the idea of a
centralised repository providing broker functionality. Although the UDDI spec-
ification has reached its third revision, software developers still do not use such
facilities. So far, no products or development methodologies utilise the discovery
of services over the Internet. The main problem lies in two aspects: The first aspect
includes an organisational problem. An organisation is not likely to use services

5

1.1. Service Trading

of other organisations revealed by an automated service discovery. Usually, busi-
ness relations need a contract or similar explicit agreement. This problem relates
to reputation, trust and contracting issues in this field.

The second problem is that current broker technologies cannot adequately pro-
cess the requirements of service importers. Different research groups have already
proposed extensions for supporting more sophisticated descriptions about the ser-
vice functionality by using semantic service descriptions (cf. Trastour et al. [134],
Paolucci et al. [102], Akkiraju et al. [1], or Srinivasan et al. [123]). Other work con-
siders QoS requirements as the necessary criteria to identify the suitability of avail-
able services. In the field of Web services, several authors, for example Ran [112]
or Benatallah et al. [6], have already proposed extending brokers with QoS support.

Regardless of currently evolving research to enhance the discovery of services,
the ISO has published a technology-independent foundation for service trading,
namely the trading specification as a part of the RM-ODP [53]. This specification
defines the process of trading as a chain of subsequent isolation operations applied
to the set of available services:

• At the beginning, the set N1 contains all services which the broker has listed.
Speaking of Web services, N1 would consist of all services that some UDDI
service contains.

• The first isolation is represented by the set of candidates N2. This set rep-
resents the result of a search for a keyword or similar search criteria among
N1. In the Web service domain, a UDDI repository could provide this func-
tionality.

• The second isolation is reached by matching functionality. This isolation
results in the third set N3. In this context, matching means comparing de-
scriptions from a service exporter with the requirements of an importer. This
description can cover the interface as well as other metadata like organi-
sational information. UDDI also covers this issue to some extent, and the
above-mentioned research work on semantic descriptions has the goal to im-
prove the efficiency of this step.

• In the third phase, the importer can apply preference criteria, not in order to
form a new subset, but to give an order to N3. Usually, statements about the
required QoS represent common preference criteria. Applying preference
criteria results in a candidate ranking. The outcome of this step is a tuple TO

4

defined by the order O applied to N3: TO
4 = (N3, O).

• The last isolation is the result of applying return policies. For example, a
return policy can restrict the answer to return only one candidate (e.g. the
best according to preference criteria). The result is a set N5 with an order,
which is based on a subset of N3. This can be also seen as a tuple TO

5 with
the same order O, applied to N5: TO

5 = (N5, O).

6

1.1. Service Trading

In summary, the trading specification defines that |N1| ≥ |N2| ≥ |N3| ≥ |N5|.
This definition of trading explains that the QoS-based selection must be performed
after a preceding matchmaking process has determined the functional suitability.
The QoS-based selection results in the decision about which service represents the
optimal choice according to the requirements of the service importer.

1.1.1 Trading to Form Compositions

So far, this introduction has discussed the trading of individual services. However,
in the case of forming a composition of services, the process requires a new ac-
tor. This actor forms the composition by importing services as an importer while
he is also offering the composed service as an exporter. The Telecommunications
Information Networking Architecture (TINA) by the TINA consortium (TINA-C)
provides an existing definition about the roles when composing services [27] and
describes this setup as the TINA Business Model. This model contains the follow-
ing roles:

• A Consumer. According to the TINA architecture, a consumer just imports
services provided by the TINA system. As a consequence, a consumer also
imports a composition of services.

• A Broker. A broker enables stakeholders of the TINA system to find other
stakeholders. In the domain of Web services, the discovery is mainly fo-
cussed on finding service providers or retailers.

• A Retailer. In the TINA sense, a retailer provides consumers the access
to services that are originally provided by 3rd party providers. Thus, a re-
tailer represents the role that provides consumers also with compositions of
individual services from 3rd party providers.

• A 3rd Party Service Provider. A 3rd party service provider offers his ser-
vices to a retailer or other 3rd party service providers. The self-relating link
from a 3rd party provider matches the idea of composing services: A com-
posed service may also integrate other composed services as a part of its
composition.

In addition, the TINA also defines relations among brokers. This relation im-
plies that a broker can contact other brokers to enhance the discovery of services.
Moreover, a retailer can access services provided by other retailers, which, in this
sense, would represent 3rd party providers. Figure 1.2 shows the TINA business
model and points out the analogies to an environment of service compositions.1

1The TINA business model mentions a connectivity provider. In the field of Web services, the
Internet provider represents the connectivity provider. However, the use of services usually does not
interfere with any aspects of the underlying network protocols in the Internet. Thus, the connectivity
provider is neglected in this discussion.

7

1.1. Service Trading

Broker
Broker or
Discovery
Service

Retailer Composition
Designer

3rd Party
Service
Provider

3rd Party
Service
Provider

Consumer Requester

service advertisements

service
query

service query

service
invocation

service
invocation

imports services from other
3rd party service providers

contacts other brokers

Figure 1.2: The business roles in the TINA [27] and roles in the domain of Web
service compositions (shown in grey boxes).

The retailer plays the central role in developing and providing compositions. The
retailer has the following characteristics:

• A retailer imports services from 3rd party service providers to integrate them
in his composition.

• A retailer queries a broker for discovering services. As for his composed ser-
vice, the retailer publishes his offerings of composed services to the broker
as well.

• A retailer provides the composed service to consumers. According to the
business model, the retailer also offers his composed service to other retailers
as a third party provider from their perspective. Considering this distinction,
a consumer represents the concept of an end customer in this setup.

The Special Role of the Retailer

The TINA business model does not mention any role that performs the entire cre-
ation process of a composition. Neither is it discussed which role takes which
responsibility when forming compositions. In this thesis, the creation process is
assigned to the retailer; the retailer represents the developer and provider of the
composition. The previous section has introduced the different steps of trading. A
broker could cover the complete trading functionality as described by these steps.
However, when forming a composition, the trading involves an acting party with
knowledge about the entire composition aiming at optimising the trading result.
The TINA business model provides two actors, the retailer and the broker, for this
trading process. It is clear that a broker is generally capable of trading individual
services.

8

1.1. Service Trading

However, the trading of multiple services to form a composition requires spe-
cial consideration. For example, a retailer can consider the requirement that the
execution of the integrated services will not exceed a given duration. From the lo-
cal perspective of the broker when trading individual services, such trading cannot
meet global requirements. Thus, the retailer must perform the trading of individual
services from a global perspective in order to ensure the desired result. Having
looked at the trading specification and the TINA, the topic of this thesis can be
narrowed down in the following way:

The QoS-based selection involves QoS as preference criteria as a
part of a trading process. If a retailer builds a composition, he can
perform a QoS-based selection on the service candidates in order to
optimise the resulting QoS of the composition.

One issue still remains open: where precisely lies the difficulty of the QoS-
based selection? The before-mentioned argumentation implies that an issue exists
with the trading of services and requires a global view on the composition. The
following example clarifies the difference between trading from a local and from a
global perspective: Figure 1.3 shows a model of an example composition.

Task A

Task D

Task CTask B

Candidate 1:
exec time: 160

cost: 8

Candidate 2:
exec time: 250

cost: 6

Candidate 3:
exec time: 210

cost: 5

Candidate 1:
exec time: 30

cost: 6

Candidate 2:
exec time: 70

cost: 5

Candidate 3:
exec time: 100

cost: 4

Figure 1.3: A simple example of the QoS-based selection problem.

This composition consists of four tasks. After executing the first task A, two
subsequent tasks B and C are executed simultaneously. Then, after both tasks are
finished, a fourth task D is executed. Considering the parallel arrangement of the
two tasks B and C, it is assumed that a preceding matchmaking process has iden-
tified three service candidates for each task, each providing different QoS. In ad-
dition, it is assumed that the optimisation goal is to form the quickest composition
with the lowest cost. In the given example, the quickest candidate for task C needs
longer than any candidate for task B. Consequently, the optimal assignment for
the task C is candidate 3. A selection from a local perspective, as performed by a

9

1.2. Problem Statement

broker without knowledge about the composition, would have identified candidate
2 for task C. Clearly, this would have resulted in a higher cost for the composition.

An approach from a global perspective would consider this potential optimi-
sation. A naı̈ve algorithm simply evaluates all possible combinations. This thesis
explains that a combinatorial problem arises from this strategy. Using a naı̈ve
approach can result in unfeasible efforts. If the number of candidates increases
by one, the number of combinations to evaluate is doubled. More tasks in the
composition will result in a higher number of candidates as well. The quickly
rising computational effort poses a problem for the retailer when performing the
QoS-based selection for larger compositions. Thus, this thesis concentrates on
discussing the problem and on evaluating the application of heuristic algorithms.
Such approaches may identify the optimisation as outlined in the example and lead
to adequate results while showing lower computational efforts in comparison to a
naı̈ve approach.

1.2 Problem Statement

The previous sections explained the motivation of this thesis, narrowed down its
topic and explained the discussed problem. Based on these, a problem statement is
formulated:

A retailer that builds a service composition can improve the pro-
vided QoS of the composition by means of a QoS-based selection that
considers the QoS of the individual service candidates.
The QoS-based selection results in a combinatorial problem of quickly
rising computational efforts for a growing number of candidates. The
development of heuristic methods for solving this combinatorial prob-
lem represents a novel approach. In order to assess the feasibility of
this approach, the performance of the algorithms when applied to the
selection problem must be evaluated.

The foundation for the outlined discussion and assessment is a problem model
of the selection problem. Based on this model, the application heuristic algorithms
can be explained and their efforts can be discussed. The problem model can also
serve as the foundation for the implementation of a simulation for performance
evaluations. In conjunction with the definition of appropriate metrics, the per-
formance penalty of the heuristic approaches can be assessed. This discussion is
based on findings and techniques that require an explanation in advance. Thus, the
argumentation is divided into four steps building on each other:

1. Determining the QoS of Compositions. In order to evaluate the QoS op-
timisation performance of the considered heuristics, a method is presented
that determines the QoS of the composition based on the provided QoS of
the individual services. To ensure its applicability, this method must not be

10

1.2. Problem Statement

limited to specific QoS measures used in particular application cases. More-
over, it must be capable of processing different compositions, referring to
their structure and size.

2. Modelling the Problem of a QoS-based Selection of Services. A problem
model is presented that allows understanding the combinatorial issue with
the QoS-based selection. Based on the problem model, the relation to related
problems can be discussed in a more precise manner.

3. Explanation of the Heuristic Algorithms. Different heuristic algorithms
are proposed and their implementation is discussed. Some heuristic ap-
proaches exist for other combinatorial problems such as the knapsack prob-
lem. The goal of this discussion is the potential evaluation of existing heuris-
tics with regard to their suitability for the problem of QoS-based selection.

4. Evaluation of Heuristic Algorithms. An implementation of the simulation
performs the algorithms for their evaluation. A first part covers the setup of
the simulation and its set parameters. It is expected that the heuristics will
perform differently, depending on, for example, the structural characteristics
of the composition or on the variance of the provided QoS by the service
candidates. Based on this, different simulation campaigns are defined. By
varying parameters and setup, the simulation results indicate specific weak-
nesses or strengths of the heuristics.

1.2.1 Research Issues

The previously explained parts of the argumentation cover different open research
issues. In order to provide the argumentation as outlined, the following crucial
research questions must be covered:

• Aggregation Method. Different methods already exist for the aggregation
of QoS in service compositions. However, these methods either discuss spe-
cific QoS characteristics such as response time or cost (cf. Yu and Lin [158])
or they focus on compositions that consist of a sequential execution of ser-
vices (cf. Lee [78]).

Apart from the composition of services, aggregation methods exist that cover
the execution time of software in real-time environments (cf. Puschner and
Schedl [111]) or the aggregation of the QoS in workflows (cf. Cardoso [15]).
Based on the existing research work, the presented aggregation method sup-
ports different QoS characteristics and is tailored to the possible structures
as found in service compositions.

• Problem Model. Different research work also discusses the combinatorial
problem that arises when a QoS-based selection is performed to form com-
positions (cf. Lee [78], Zeng et al. [159], Yu and Lin [158]). But, similar

11

1.3. Structure of the Thesis

to the aggregation method, existing discussions consider only specific QoS
categories, i.e. response time and cost (cf. Lee [78], Yu and Lin [158]), or
they reduce the problem to a sequential execution of services (cf. Lee [78],
Yu and Lin [158]).

All three mentioned research efforts in this area define the problem of the
QoS-based selection as a variant of a knapsack problem, namely the multiple-
choice knapsack problem (MCKP, cf. Lee [78], Zeng et al. [159], Yu and
Lin [158]). Consequently, the approach is to apply existing solutions to the
MCKP in order to perform the QoS-based selection. This thesis explains,
why this represents a simplification that does not cover all problem cases:
very briefly, the MCKP-approach is tied to QoS characteristics that result in
an integer linear optimisation statements and also covers mainly a sequential
execution of services. In contrast to this, a problem model is defined that
is independent of particular QoS categories, covers different structural ele-
ments found in compositions and, thus, is not equivalent to the MCKP. Then,
existing solutions cannot be applied. As a consequence, the application of
heuristics is discussed as an approach to deliver near-optimal solutions while
requiring reduced efforts as compared to methods that guarantee optimal so-
lutions.

• Simulation Setup. Results from previous research about a simulation en-
vironment for the QoS-based selection have shown that the efficiency of
the applied heuristic algorithms depends on different simulation parameters
(cf. Jaeger and Goldmann [62]). Thus, the goal is to deduce from existing
studies the nature of the needed parameters in order to design realistic simu-
lation conditions.

Furthermore, this thesis identifies the impact of the simulation parameters on
the efficiency of the heuristic algorithms. For this, different simulation cam-
paigns will examine the particular impact of different parameters. Then, the
evaluation of the heuristic algorithms provides more precise findings about
their strengths and weaknesses.

1.3 Structure of the Thesis

The structure of this thesis follows the argumentation of the previous section. Be-
fore the argumentation starts, Chapter 2 clarifies in detail the origin of service
compositions and their main application, which is the implementation of business
processes. It also discusses the relation between workflow and business process
management. Then, different approaches of modelling business processes and
compositions are presented.

Chapter 3 discusses the QoS of service compositions in detail. It begins with
clarifications on the different concepts and on the used terms in this field. Then, it
explains how QoS needs to be processed in order to perform the QoS-based selec-

12

1.3. Structure of the Thesis

tion. Based on these clarifications, Chapter 4 presents the aggregation of QoS. The
chapter is divided into two parts: Its first part covers a structural model indepen-
dent of particular technologies. Its second part deals with the aggregation of QoS
based on this model.

Chapter 5 explains the problem of QoS-based selection and defines a problem
model. Furthermore, this chapter discusses the characteristics of the problem and
continues with the introduction of the heuristic approaches. Chapter 6 explains
the simulations, the different campaigns, and how the simulations are performed.
Then, the chapter also presents the results and discusses their interpretation. The
chapter ends with an analysis of the efficiency of the applied heuristic approaches.

After the discussion of the selection problem, Chapter 7 explains how the QoS-
based selection is integrated into the process of developing service compositions.
The chapter introduces different research works that discuss designing and creating
compositions. Based on the presented contributions, a basic development process
is presented that provides a description about its required activities and facilities.
Then, the chapter identifies at which points the QoS-based selection is performed.
In addition, it clarifies which information the process must provide in order to
perform the QoS-based selection as well as how the output of the selection is used
for subsequent tasks in the process.

Chapter 8 provides a summary of the research contributions provided by this
thesis and presents the conclusions. It also discusses possible improvements and
envisages future directions of this work.

13

1.3. Structure of the Thesis

14

Chapter 2

Workflows, Business Processes
and Service Compositions

This section will introduce background information of the application scenario that
is considered in this work: As briefly mentioned in the introduction, the goal is to
develop business processes and workflows by means of compositions of services.
In such a scenario, software components available as services perform individual
tasks of a business process or a workflow. Such a setup is often embedded into an IT
infrastructure that is tailored to the provision and utilisation of services, the SOA.
This chapter intends to clarify the terms business process and workflow, and their
relation to each other. Because the structure of processes will become important
for the subsequent chapters of this work, this chapter will also introduce different
modelling languages for business processes, workflows and service compositions.

2.1 Business Processes

In the mid-90s, the term “business process (re)engineering” drew attention to a
number of opportunities for optimising the efficiency of enterprises, companies
and other organisations. The work of Hammer and Champy, who promoted the
reengineering of business processes [43], drew the attention of the IT industry to
developing software systems that facilitate the creation and management of busi-
ness processes [86] [34, p. 230].

The basic idea of this initiative is to implement business processes in an ex-
isting organisation in the most modern and optimised way: The business process
reengineering should result in a new and optimal process without any legacy arte-
facts. The basic approach is to start with an evaluation and analysis of the activities
within an organisation. Based on the analysis, the goal is to redesign the activities
and to group them into defined processes. A business process should provide a
clear and unambiguous definition about what it does, what its output is and what
it needs as an input. This represents a clear analogy to computer programs: In
general, they also feature unambiguously defined in- and outputs, as well as a clear

15

2.1. Business Processes

definition about what they do, which is represented by the source code of a pro-
gram. In addition, every business process should have a dedicated customer –
either internal or external of the organisation – and thus, have a clear purpose. By
this way, a process can be clearly oriented to the needs of a customer. And it will
be the client of the process who will pay for the results of its execution. Besides
the consumer, a process should also have an owner, who is in charge and respon-
sible for a particular process, in order to provide customers with a defined point of
contact.

When the business process paradigm was introduced, just the opposite situation
was the reality in companies: Different organisational units where divided by their
functional responsibilities. As a consequence, a process typically crossed many
organisational parts and involved a number of responsible persons. In such con-
stellations, the average process duration slowed down. Thus, in case of problems or
inquiries it was hard to identify a responsible person. Among different motivations
and anticipated benefits from applying the business process reengineering idea, the
main drivers were (cf. Krallmann et al. [34, p. 230]):

• Optimisation of existing activities. The business process reengineering
gives the opportunity to re-evaluate the advantages and disadvantages of
what the actors in the business do and how they do it. The obvious goal is to
optimise existing activities. For example, it is possible to evaluate whether
sequentially performed tasks can be performed in parallel in order to save
time.

• Improved controlling. An organisation might perform many different in-
dividual activities. As a result, common metrics and comparison values are
hard to apply. This makes monitoring and benchmarking efforts more dif-
ficult. Based on the standardised processes, monitoring and benchmarking
the ongoing processes will results in values and findings that are more suit-
able for comparison and analysis. Moreover, controlling efforts to prevent
unintended activities can be reduced.

• Reducing overhead. What applies to the controlling, also applies to when
the process is performed. Based on a exact definition of the processes, mis-
taken activities or misunderstandings between involved actors are reduced
and thus the productivity is improved.

Apart from the evident advantages, analyses of the performed business process
reengineering efforts have also revealed problems that may occur. Most noticeable
is that applying too radical changes in order to establish more efficient processes
will lead to social problems in the organisation [34, p. 239]. Moreover, a strong
focus on the process optimisation also carries the risk of poor improvements on the
quality of the individual activities.

16

2.1. Business Processes

2.1.1 Definition of Business Processes

Like with many terms in the field of IT, there are many definitions available for
the term business process. The general definition of a process provided by the
ISO 9000 standard is that a process “is a transformation that adds value” [128,
section 4.6]. Hammer and Champy [43] define a business process as “a set of
activities that, taken together, produces a result of value to a customer”. Davenport
defines a business process as “an ordering of work activities across and place, with
a beginning, an end, and clearly identified inputs and output” [21]. There are many
more definitions available in various books. When considering the basic attributes
of business processes as discussed in the mentioned literature, they show some
similarities with service compositions:

• Input and output. A process has a defined input and output. This idea
has clear analogies to the compositions of services that provide a defined
input and output as well. A composed service starts and ends each with an
individual service. A service represents a software operation which has input
and output parameters as well.

• Purpose. A process should address at least one goal. This aspect is also
inherent to the composition of services, which must follow a goal as well.

• Responsibility. A process has one responsible person or unit. In the domain
of service compositions, the role of the retailer who provides the composed
service represents this function.

• Recipient. A process has at least one consumer. In this respect it is analo-
gous to the service composition, because the retailer would not provide the
composed service if there were not consumers using the service.

• Activities. A process consists of activities. The idea of activities that to-
gether form a process also resembles the nature of a service composition,
which consists of individual services.

Consumers or clients, i.e. responsible and acting individuals, play defined roles,
which are attached to a process. Besides the general attributes of a process, con-
straints can be also applied. For example, a constraint exists when a process must
generate a positive value or that the goal of the process is to serve a consumer with
a high performance. Furthermore, a business process can be divided among organ-
isations, which increases the efforts to establish and to run the process. The aspect
of covering business processes between organisations also matches the nature of
service compositions: The used techniques and technologies allow involving indi-
vidual services from different organisations as well.

17

2.1. Business Processes

2.1.2 Modelling Business Processes

A model of a business process models a set of activities and its relations. This set
can be described with inputs, outputs and a definition of the involved roles. The
basic idea of the modelling step for the software engineering side, as well as for
the business process engineering mentioned before, is to achieve a clear and com-
mon understanding of what a business process should do and what its benefits are.
A business process model thus can serve as the common point of understanding
between the management and the software developers that are supposed to de-
velop the service composition. Then, the realisation of the process can be planned
and the technical feasibility can be assessed. Business process models are also
the foundation of business process analysis aimed at identifying the potential for
improvements. Possible improvements are automation, elimination of unnecessary
media changes or the reduction of delays. A model can also help to verify processes
in order to prevent live- or deadlocks which prevent the process from terminating
properly. Figure 2.1 shows the basic two roles of a business process model with
respect to the business process and a service composition.

Business
Process Model

Service
Composition

Business
Process

Management Software Development

is a model of is a model for

Figure 2.1: The roles of a business process model.

Since this topic has gained reasonable attention from the industry, the number
of companies that offer products and services for business process (re)engineering
activities has increased. In addition, various languages and methodologies for mod-
elling, managing or performing business processes were introduced. For the mod-
elling, different graphical and textual languages and conventions exist, which can
be used to create diagrams or a description of a business process. Then these de-
scriptions can be interpreted by software systems. Graphical representations can
be flow diagrams, block diagrams, graphs or listings. Considering a basic graph,
a node represents an activity, an event or an entity where directed edges represent
the relations between the elements.

One early graphical language for the modelling of processes is the Event-

18

2.1. Business Processes

Driven Process Chain (EPC) [71]. As the name suggests, the basic element of
the event-driven process chain is the event, which is a defined condition and thus
can be the result of a process, a function or an external event. In addition, events
can also trigger a function. Because the events are not routing the flow, events are
regarded to be passive. Contrary to events, a function is an active element which
describe state changes. The events or functions can be combined with routing oper-
ators. With EPCs, conjunctive (AND), disjunctive (XOR) and adjunctive (AND-OR)
operators are supported. EPCs are suitable for the modelling of control flows that
define the order of occurring events and executed functions. To model the data flow
of a business process (or also the flow of goods) extensions are proposed that ap-
pear in literature as extended EPCs [34, p. 221]. However, modelling the data-flow
is not the focus of this work and therefore not subject to further investigations.

The Business Process Modelling Language (BPML, [29]) is a specification
of the Business Process Management Initiative (BPMI) and is a textual language
for describing business processes. The BPMI represents a non-profit organisation,
with the goal to support and coordinate the advances in business processes among
its members. The BPML is intended to serve as a comprehensive description of a
business process. It consists of different constructs to describe the control flow of a
business process as well as the data flows in it. The standard representation used for
BPML documents is XML. The BPMI has also released a graphical notation called
Business Process Modelling Notation (BPMN, [140]) to provide a set of graphical
symbols and layout conventions for drawing business process models. In addition
to the BPML, the BPMI has also discussed differences of business processes man-
agement when compared to the workflow management (cf. Smith at al. [121, 122]
and van der Aalst [141]). Very briefly, this discussion has revealed that differences
are hard to specify. Rather, business processes and workflow management show
many similarities, as the next section about workflows will point out as well.

Considering another modelling proposal in the field of business processes, the
Business Process Execution Language (BPEL), also named BPEL for Web Ser-
vices (BPEL4WS) and now being renamed to WS-BPEL, represents a special pro-
posal because it specifically covers Web services. Although its name, mentioning
execution, indicates a different scope than BPML, which carries the name mod-
elling in it, both proposals compete with each other. At the moment, a commit-
tee at the Organisation for the Advancement of Structured Information Standards
(OASIS) coordinates the development of BPEL. Before, BPEL was carried out by
a joint venture of mainly IBM, Microsoft and BEA.1 Originally BPEL was the
result of a merger of the Web Services Flow Language by IBM (WSFL, [80]),
which shows influences from IBM’s MQ Series workflow software [143], and
XLANG [129], which was intended to serve as the process modelling language
in Microsoft’s BizTalk middleware. All the three languages are designed for real-
ising the activities or tasks of a process by using Web services. Following the Web

1Today, additional main contributors to the development of the BPEL are the software companies
Siebel and SAP.

19

2.2. Workflow Management

services paradigm, all three proposals define an XML-based notation as well as
cover elements that a process modeller can use to directly refer to WSDL interface
descriptions of involved Web services.

The main difference between the two languages WSFL and XLANG is that
XLANG provides a block-structured flow description whilst a process description
using WSFL is oriented to an unrestricted graph. The main process element found
in XLANG can represent basic structural arrangements like a sequence or a con-
ditional branch. Contrary to that, WSFL covers activities that represent the nodes
in a process flow graph. Then, WSFL provides elements to define the edges in the
graph which denote the invocation order among the activities. Consequently, the
combination of both, BPEL4WS, features both ways to model a business process,
using block-structures as well as a flow-graph. For example, looking at the ele-
ments provided to describe the control flow structure in BPEL4WS: It can be seen
that the element all from XLANG meaning that all activities are supposed to be ex-
ecuted in parallel has been dropped. Contrary to that, the other parallel statements
(pick, while, switch) have survived in BPEL4WS. In addition, the element flow
replaces the element all from XLANG and also introduces the concept of control
links as originally found in WSFL.

Besides the mentioned EPC, BPML, BPEL, WSFL and XLANG, there are
many other approaches to model business processes. In addition, the literature
mentions WSFL, XLANG and BPEL4WS as languages for modelling composi-
tions of Web services, which also indicate that the border between business pro-
cesses and service compositions is becoming blurred. Another proposal for mod-
elling business processes is to use the Unified Modelling Language (UML) from
the OMG, for example by using activity diagrams [100, section 2.13.2.1]. Origi-
nally intended for “software-intensive” systems, as the foreword of the UML spec-
ification says, this approach is used by some software products. This is also pro-
posed in related research works, especially when it comes to the realisation of
business processes. Section 7.1.1 will introduce some efforts in more detail.

2.2 Workflow Management

The field of workflows has got a different origin and thus also a different history
than the field of business processes. Not following an application-independent ap-
proach as a general strategy for organisations, first workflow management systems
were applied for specific application cases. One of the systems mentioned as the
first steps in the workflow area is the OfficeTalk software, which came as a part
of the Xerox Star system [68]. The Xerox Palo Alto Research Center (PARC) de-
veloped this system in the 70s. It represented a computer system for working with
electronic documents of different kinds, like texts, memos, messages etc. in a typi-
cal office environment. Such a system does not represent a workflow management
system as it is understood today: Today, many works consider the definition of the
Workflow Management Coalition (WfMC) [45, section 2.1] which says that

20

2.2. Workflow Management

[A workflow represents] the computerised facilitation or automa-
tion of a business process, ...

The way OfficeTalk worked was trying to reflect the way humans would work on
documents without computers and thus it was covering a specific process. This
represented a workflow by realising real-world processes with a computer system.
Clearly, workflow has in this sense a strong relation to support collaboration and
document management.

Other systems that also focussed on the workflow around electronic documents
followed. The primary purpose was to support the creation of documents, to send
them around and to control the evolutions of these. The workflow management
controlled the order in which the users would work on a document. Also the sys-
tems tried to offer a seamless integration with e-mail systems, word processing
applications and input forms in order to standardise the user input. In summary,
workflow management systems optimised the handling of documents in the fol-
lowing ways:

• Prevention of media breaks. When dealing with documents and data, it
happens that the media, which transports the information, changes. E.g. a
document is printed out on paper from an electronic document and needs
to be entered in manually into another system. This is named media break.
It was the hope to reduce such media breaks with workflow management
systems and to come one step closer to the paperless office.

• Accelerated forwarding between tasks. Moving a document from one’s
desk to the next took time and relied on the motivation of the employees.
Workflow management systems can forward documents right after one party
has finished its tasks.

• Controlling. When workflow management systems facilitate or automate a
workflow, data can be derived that allows performance measurements. More-
over, such data can be used to predict future performance for controlling
purposes.

• Automation of tasks. Tasks that do not require an interactive handling can
be automatically executed by a workflow management system and thus ac-
celerate the workflow.

These early workflow management systems developed further. The systems be-
came more sophisticated and more compatible to external systems. An article by
Mahling et al. explains the evolution of workflow management systems by referring
to the Poise system which covers all the industry’s developments since its begin-
ning in the 70s. The first version of the Poise development represented an office
information system supporting tasks that occurred in the handling of documents,
such as entering information or realising static workflows [86]. In the mid-80s,
a subsequent development named Polymer took advantage of the lessons learned

21

2.2. Workflow Management

with Poise: Its main innovation was a more sophisticated concept of modelling
workflows that resulted in more flexible workflows as well as in better coverage
of different application scenarios. Based on the previous products, Polyflow was
introduced in 1995 as an application- and domain-independent workflow manage-
ment system.

Besides the early orientation of workflow management systems to document
management and collaboration, these systems became also more sophisticated in
other aspects. In the beginning, such products were installed in an office environ-
ment. Their architecture followed the classical client-server principle presuming
that clients and server reside within a local network. Today, workflow management
systems provide different versions of client software as well. And, they support dif-
ferent communication protocols to communicate beyond the local network. More-
over, different workflow management systems can interoperate with each other
to support federations of workflow management systems. This scenario becomes
useful, if different workflow management systems serve different organisational or
functional needs but still need to interoperate. The result of these developments is
that workflow management software today represent versatile systems that facili-
tate processes in various application cases.

Among the different products and developments, the WfMC has standardised
the characteristics of workflow management systems in a reference model [45].
The WfMC represents a non-profit organisation that tried to coordinate advances
and developments in the workflow area. Apart from the architectural advances, the
development made progress in the area of modelling workflows, which is the focus
of the next section.

2.2.1 Modelling Workflows

Since the development of workflow management systems begun, most vendors
have provided their own workflow modelling language. And up to today, the com-
munity has the choice between many proposals for workflow modelling by differ-
ent (industry) organisations, software vendors and research groups.

Van der Aalst et al. have introduced a set of product- and vendor-independent
patterns that discusses and compares the structural characteristics of the differ-
ent workflow modelling proposals [146]. Examples of such patterns are different
fork-conditions if the workflow splits into two sub-flows. Another example is the
capability of a workflow management system to process multiple instances of a
workflow at once. As for orientation, the analysis of workflow management sys-
tems conducted by van der Aalst et al. based on the workflow patterns covers about
15 different workflow management systems each with different workflow mod-
elling capabilities [146]. There are more products available, but those 15 can be
considered as the group of popular ones.

Besides workflow management software, vendor-independent approaches exist
as well. Such an effort is represented by the XML Process Definition Language
(XPDL, [87]) published by the WfMC. The XPDL did not convince many software

22

2.2. Workflow Management

vendors to be used [143]. However, contrary to other commercial proposals, the
XPDL represents an effort independent of a particular vendor.

The XPDL serves as a part of the workflow reference model of the WfMC,
because it represents a reference implementation for the process definitions. Based
on this interface, the authors of the XPDL have created a model process defini-
tion on a meta-level. The authors admit that this meta-model will likely not cover
every concept that is found in all the available workflow software products, mod-
elling methodologies and modelling languages. However, their hope is that all
the other players in the field of modelling workflows accept their model as the
minimum consensus. Based on the meta-model of XPDL, an XML representation
exists. The authors have chosen XML because of its wide support among dif-
ferent computing platforms. As a consequence, XPDL was intended to serve as a
platform-independent description language that allows sharing a workflow descrip-
tion between workflow modelling tools and workflow execution environments as
well as the interoperation of different workflow execution environments.

XPDL supports both workflows that require the interaction between human and
machines, as well as entirely automated processes, by supporting concepts for in-
voking external services and execute local software applications. As for the second
version of XPDL, which was released three years later in 2005, the authors propose
XPDL also as the XML notation format for serialising graphical models using the
BPMN [118]. Moreover, the WfMC has changed the used terminology and ex-
plains that XPDL serves as language for modelling business processes whilst the
term workflow slips into the background. These signs indicate that WfMC and
BPMI try to merge their efforts into one common consensus. Looking at the struc-
tural modelling elements, XPDL offers both elements to define block-like struc-
tures, a block-activity, as well as elements to define a graph of activities, using the
concept of an activity-map [118].

Besides these efforts, research work covers also the modelling and specifica-
tion of workflows. Most approaches in the research area consider the application of
event-driven process chains, or formal calculus or (high-level) Petri nets as a foun-
dation for modelling workflows. A Petri net, named after its inventor Petri, is a
convention for modelling and specifying discrete events of dynamic systems. Petri
nets, also named Place-/Transition-Nets (P/T-Nets) have been applied for different
scenarios such as the specification of telecommunication protocols, or in business
applications such as description of a logistic chain. Petri nets were introduced by
Petri in the year 1962. Since then, many extensions and applications were intro-
duced in literature. Today, the ISO covers Petri nets as an industry standard [56].

Janssens et al. have introduced an analysis of existing workflow modelling ef-
forts that use Petri nets [67]. Their analysis covers twelve different major contribu-
tions that have covered research issues of modelling workflows with Petri nets or
Petri net variants. The main reason for using Petri nets for modelling workflows is
that they offer, besides a graphical notation, a formally defined semantic descrip-
tion of the elements. This allows the application of formally proven analysis tech-
niques (cf. Janssen et al. [67] and van der Aalst [142]). Among these contributions,

23

2.3. Workflows versus Business Processes

van der Aalst et al. have defined a popular Petri net variant that they name Work-
flow Net. The workflow net represents a convention for modelling workflows with
Petri nets [148]. Based on this work and the workflow patterns analysis mentioned
at the beginning of this section, van der Aalst et al. have also introduced a work-
flow modelling language named Yet Another Workflow Language (YAWL, [149]).
YAWL represents a language proposal which extends the concepts of Petri nets in
order to support the workflow patterns to their full extend, while keeping a formal
foundation that allows the anticipated verification on modelled workflows.

2.3 Workflows versus Business Processes

The previous sections have introduced two concepts, namely business processes
and workflows, which seem to have many issues in common. Apart from their
origin and their purpose, which showed different roots in the beginning, both have
many research questions in common. For example, in order to specify either pro-
cesses or workflows, common approaches exist that use notation techniques based
on Petri nets or event-process-chains. Considering the execution side, both share
common challenges regarding distributed executions, fault-tolerance or optimisa-
tions. The resulting question is: In what aspects are these fields different? The
reference model of the WfMC defines a workflow as a business process facilitated
by computer systems. This definition, which has been stated in many research
works since 1995, says that any computer system processing business processes
represents in fact a workflow management system.

The two terms are used synonymously sometimes, and many publications do
not mention any difference between the two, suggesting that using either the one or
other is based on historic reasons. However, two main communities exist, one rep-
resenting the workflow side and the other representing the business process com-
munity: the WfMC and the BPMI. In a retroperspective of the workflow reference
model published by the WfMC, the authors acknowledge the growing momentum
of business process management [46]. The WfMC explains that the evolution of
the involved technologies and techniques of workflow management systems meet
today the concept of business process management: Business process management
is supposed to cover accounting issues and the management of resources. Business
processes include both machine and human activities. Consequently, the WfMC
proposes using their original reference model as the foundation for a future refer-
ence model that covers business process management.

Members from the BPMI promote a different view on the relation between the
management of workflows and business processes. Smith and Fingar have initi-
ated a discussion by publishing the statement that a workflow is purely concerned
with process description [122]. According to their view, a comparison between
workflow management systems on the one hand, and business process manage-
ment systems on the other hand, reveals that workflow management systems show
a number of disadvantages that make them less suitable for the new demands of

24

2.3. Workflows versus Business Processes

today’s enterprises. They explain that workflows are more static (i.e. application-
dependent) and do not support modifications of the business process. Common
workflow management systems do not cover the concepts needed for the majority
of business processes and workflow management systems do not refer to a common
model of workflow. This approach of the BMPI has received a response, which has
motivated the authors of the original article to publish clarification [121]. What re-
mains is that, according to the BPMI, workflow represents just one aspect of what
is covered by business process management. In addition to workflows, business
process management covers the integration of different computer systems as well
the non-computerised parts of business processes.

When it comes to the application of the terminology and the referring lan-
guages, the main disadvantage is that a clarification must be made between what
is different and what is only claimed to be different. Considering the presented
overview, the conclusion is that workflow and business processes move together to
become the same. Apparently, the difference between both as they have evolved
until today results from their different origins – on the one side stands a vision
about automating the paperwork in an office environment and on the other side
there is the optimisation of what happens in companies from a business perspec-
tive. The underlying problems, such as the expressiveness of the modelling lan-
guages, how verifications can be applied or which graphical modelling language is
the most efficient, appear to be similar for both fields. Considering the workflow
definition of the WfMC, Figure 2.1 is modified by considering the relation between
workflows and business processes as shown in Figure 2.2.

Service CompositionBusiness Process

Management Software Eingineering

is a model of is a model for

Business
Process Model

Workflow Model

is a
model for

is a
model for

Figure 2.2: The roles of business process and workflow models.

25

2.4. Realising Business Processes and Workflows

2.4 Realising Business Processes and Workflows

After the clarification of the relation between business processes and workflows,
this section summarises how these two fields can benefit from an SOA and the
composition of services. Different research work has analysed the characteristics
of business processes and workflows with regard to service compositions. These
research works also provide several proposals on how to create business process
(and workflows) in an SOA. The main points in favour of using services and com-
positions of them are:

• Technology Independence. (cf. Hunhs and Singh [47], Papazoglou [104],
and Yang [154]) The basic idea behind promoting the SOA architecture is
to establish a middleware that ties together functionality offered by differ-
ent systems, regardless of their hard- and software. Services should use
common interaction protocols as well as common interface descriptions and
platform-independent types. With Web services as an implementation of an
SOA, it appears that is becoming reality: Both, service consumer and service
provider can run on different hardware as well as be implemented in differ-
ent programming languages. However, to a certain extent all the different
players can interoperate.

The role of Web services as the middleware for integration goes even further:
Solutions exist that encapsulate other middleware platforms, which were
originally designed to provide independence from language and hardware as
well. Thus, software products exist that use Web service technologies to pro-
vide a common interface technology for existing technologies, e.g. CORBA,
mainframes, Java component frameworks etc. [109]. Heterogeneous IT sys-
tems are standard in large businesses, because these businesses have usually
started the integration of computer systems at early stages, when the interop-
eration of computer systems was not a major concern. Thus, these different
systems must be integrated into one common platform in a potential business
process reengineering effort.

• Implementation Neutrality. (cf. Dijkmann and Dumas [22], Hunhs and
Singh [47], and Yang [154]) One of the main differences between service-
oriented computing and distributed object computing [4] is that services usu-
ally provide one aggregated interface that might use objects. However, ser-
vices hide the structure of the software that provides the functionality behind
the interfaces. This leads to an encapsulation of underlying objects. As a
consequence, changes applied to the particular implementation do not nec-
essarily result in a change to the service interface and therefore do not require
changes when establishing the interoperation between service requester and
provider. The previous point and this point are covered by the concept of
access transparency defined by the RM-ODP (cf. [50, section 8.1.2]).

26

2.4. Realising Business Processes and Workflows

• Location Transparency. (cf. Bolcer and Kaiser [10], and Papazoglou [104])
Location transparency provides an abstraction of the physical location where
the service is provided in the sense of the RM-ODP (cf. [50, section 8.1.2]).
Today’s SOA implementations support Internet protocols and consumers in
the Internet can invoke services across the local computer, the local network
or the local organisation. Although an organisation might not consider invok-
ing just any service that is available somewhere in the world, using Internet
protocols offers a greater level of flexibility than using runtime environments
that run on specific computers or a federation of computers.

• Loose Coupling. (cf. Hunhs and Singh [47], and Papazoglou [104]) A com-
mon definition for loose coupling does not exist. Usually, in an SOA, loose
coupling means that a service consumer knows what kind of service is re-
quired during design time. However, the binding (“coupling”) to a real avail-
able service takes place during run-time. This does not necessarily imply
that a service consumer will bind services only during run-time. However,
loose coupling enables service consumers to revise existing bindings during
run-time when necessary.

• Process Orientation. (cf. Bolcer and Kaiser [10], and Dijkmann and Du-
mas [22]) Modelling business processes also leads to a description of re-
quired tasks and a specification about the execution order of the tasks. A
composition of services can provide a business process using an SOA envi-
ronment when every task can be provided as a service. This presumes that,
for example, human interaction is not required. The orientation to the service
interfaces stands in contrast to what a set of objects would provide in a dis-
tributed object computing environment. The resulting implementation neu-
trality conforms to the business process paradigms: Like services, business
processes should have a defined input and output, whilst the implementation
of each task in the process becomes secondary.

This list of points represents the motivation that already a couple of products
have been introduced already be software vendors to develop business processes
with forming service compositions. Examples from the Software industry are the
Oracle BPEL Process Manager [117], or the WebSphere Integration Developer by
IBM [85].

2.4.1 Modelling Service Compositions

Based on the modelling languages for workflows and business processes that have
been used so far, different languages have been proposed (and also already been
mentioned) that directly model compositions of services. These languages do not
focus on user interactions and consider mainly automated processes. Most lan-
guages provide direct support for Web services as this represents the major SOA
implementation used today. In this context, support means that languages refer to

27

2.4. Realising Business Processes and Workflows

WSDL or SOAP or other specifications from the field of Web services. Currently,
many different proposals are available to describe compositions of Web services;
similar to what can be observed in the field of workflow or business process mod-
elling. To provide a clear view of the different languages, the following three
groups for these languages are proposed:

• Abstract level languages, Level 1. Languages that are primarily intended to
describe an abstract process with activities. In this case, services might pro-
vide these activities but the reference to concrete services is not mandatory to
make the description complete. If available particular services are not men-
tioned, such a description describes the composition on an abstract level and
handles the activities or involved services as black boxes with technology-
independent interface descriptions.2

• Concrete level languages, Level 3. On the concrete level, the description
involves particular services and a description of each particular service. The
main issue when talking about services is that a service does not represent
only an atomic, stateless operation, but provides a set of different operations.
Depending on the complexity of the service and the composition, a specifica-
tion of a composition must involve this aspect. These languages do not focus
on service compositions, because they can be also applied for describing the
interaction between individual parties on a technical level.

• Languages covering both levels, Level 2. Some proposals clearly focus on
defining the interoperation between service exporter and importer and other
proposals focus more on modelling the process and its activities. As a third
group, some languages are right in the middle of both, not showing a clear
process modelling focus and also not a clear interoperation focus.

It must be noted that this categorisation does not provide a formal basis nor
an argumentation like: If concept x is found in a language then it belongs to level
y. This categorisation only has the purpose of giving a rough orientation. The
two main levels 1 and 3 have their analogies to the items mentioned in Figure 2.2
which has shown the relation between the business process model and the service
composition. In accordance with this figure, an updated version 2.3 shows that
level 1 modelling languages refer to the business process model, while level 3
languages are used to express service composition models. The work of Ouyang
et al. discusses the transformation between process models and models of service
compositions by considering BPMN and UML activity diagrams on the process
side, and BPEL for modelling the service compositions [101].

Table 2.4.1 lists a selection of proposals that were mentioned in the literature
as Web service composition languages, with their acronyms and their proposed

2The term abstract is used in the same sense as in the ISO RM-ODP: The process of suppressing
irrelevant detail to establish a simplified model, or the result of that process [51, section 6.2]

28

2.4. Realising Business Processes and Workflows

categorisation. In addition, Figure 2.4 shows a chronological overview of their
introduction dates. The two BPEL proposals, WSFL and XLANG, were mentioned
already in the Section 2.1.2 about business process modelling. The focus of these
languages lies on the specification of a business process by using available Web
services. A specification using one of these languages forms a composition of
services that is ready for execution. Thus, these candidates can clearly be named
Web service composition languages and would fit into the second group.

Regarding the languages at the first level, Table 2.4.1 mentions XPDL, BPML,
and the Business Process Specification Schema (BPSS). All three offer language el-
ements to directly support the invocation of Web services. However, the invocation
of a Web service is not required in the XPDL for the realisation of an activity [118,
section 7.1.4.1]. The BPSS clearly has the smallest focus on supporting compo-

L. Acronym Full Name, Reference
Supporting Parties, Remarks

1 XPDL XML Process Definition Language [118]
WfMC, contributing authors were from Global 360, FileNet,
Staffware/TIBCO, Prozone and Fujitsu Software

1 BPML Business Process Modelling Language [29]
BPMI, the specification mentions only one contributing author from
Intalio

1 BPSS Business Process Specification Schema [29]
(Part of the ebXML Suite) UN/CEFACT, an United Nations Body
for Electronic Trade and an OASIS Technical Committee, includ-
ing members from Cyclone Commerce, Fujitsu, SAP AG and Sun
Microsystems

2 WSFL Web Services Flow Language [80]
IBM, moved into the BPEL4WS proposal

2 XLANG subtitled ”Web Services for Business Process Design” [129]
Microsoft, merged with the BPEL4WS proposal

2 BPEL4WS Business Process Execution Language for Web Services [31]
IBM, Microsoft and BEA, merged with the WS-BPEL proposal

2 WS-BPEL Web Services Business Process Execution Language [126]
An OASIS Technical Committee involving 18 industry parties,
among them BEA Systems, IBM, Microsoft, Oracle, Sun Microsys-
tems, SAP AG

3 WSCI Web Service Choreography Interface [30]
W3C Note submitted by BEA Systems, Intalio, SAP AG und Sun
Microsystems

3 WS-C Web Service Choreography [14]
W3C Working Group, continuing with the WSCI proposal

Table 2.1: Overview: Web service composition languages.

29

2.4. Realising Business Processes and Workflows

Business Process /
Workflow Model

e.g. using Level 1/2
modelling langauges

Service
Composition Model
e.g. using Level 2/3
modelling languages

Business Process

Management Software Eingineering

is a model of is a model for

Figure 2.3: The relation between business process, workflow and service compo-
sition models.

sitions of services. The BPSS is a part of the ebXML suite, which supports es-
tablishing agreements to facilitate electronic businesses on an inter-organisational
level. The motivation for this effort is to provide a specification for helping de-
veloping countries to participate in electronic commerce without being dependent
on technologies by particular vendors. The ebXML is maintained by the United
Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT) and
a Technical Committee at OASIS. The first release was submitted in 2001. At that
time, compositions of services or an SOA environment was not mentioned at all.

There are two reasons why this work considers BPSS as member in the circle
of the composition languages: At first, it has been mentioned in some publications
as a language for expressing compositions of services (cf. [120, 143, 152]), thus
it is useful to clarify its relation to service composition and the other languages.
However, considering the BPSS as a composition language must take into account
that the specification is independent from particular SOA technologies. To pro-
vide the ties to concrete SOA implementations like Web services, separate speci-
fications named Collaboration Protocol Profile (CPP) and Collaboration Protocol
Agreement (CPA) are proposed. A BPSS document may refer to a CPP or CPA
to provide a description of the involved services. For example, a BPSS document
could refer to a WSDL interface description of a Web service. However, since
the BPSS has clear a focus on enabling international electronic trade, it is not the
preferred candidate to develop business processes in an average company.

The Web Service Choreography Interface (WSCI) represents the foundation
for the third group. Considering a Web service, it usually does not provide atomic
single operations to be invoked but rather a set of operations in a specific order
while capturing the state of the invocation. The WSCI proposal directly focusses
on specifying the needed message flow between Web services resulting from their
offered operations [30]. Consequently, the authors of BPML mention explicitly

30

2.4. Realising Business Processes and Workflows

2

3

1

BPEL4WS

1.0: July 2002 1.1: May 2003

WSFL

1.0: May 2001

Pre-Release: April 2005XLANG

Work in Progress: June 2001

WS-BPEL ("2.0")

Draft: September 2005

20052004200320022001 2006

XPDL

2.0: May 20051.0: October 2002

BPML

Working Draft June 2002
Final 1.0 Novmeber 2002

BPSS

1.0.1: May 2001 1.0.5: July 2002 Public Draft 2.0: April 2005Draft of 1.10: August 2003

WSCI

1.0: August 2002

WS Choreography

Working Draft: March 2004

Figure 2.4: Release dates of service composition languages.

that WSCI and WSDL specification are complementary [29, section 1.2]. The
WSCI has been submitted to the W3C as a technical note in 2002. Since then, this
proposal has not received any further updates. In beginning of 2003, a W3C work-
ing group named Web Services Choreography has begun its work to take the WSCI
proposal as input. Based on the WSCI, the working group continues to work on
this topic [14]. By choreography, the working group refers to the “characteristic of
describing linkages and usage patterns between Web services”. The working group
uses the term choreography in a similar manner as other proposals use collabora-
tion, conversation, coordination or orchestration. Currently, the working group has
released several documents which are under further development.

A criterion for comparing the different languages is not only their application
but also their expressiveness. As expressiveness, not the expressive power but
the convenience to express particular aspects is considered. Such a comparison
has already been conducted by Wohed, van der Aalst et al. [151]. In their work,
they have presented a comprehensive analysis on the structural capabilities of lan-
guages to specify Web service compositions for BPEL4WS, XLANG, and WSFL.
Based on this research work, further work has been published covering BPML
and WSCI [150] and XPDL [143]. The general result of this work is an analy-
sis on which composition language directly supports which (structural) workflow
pattern. By using the patterns, Wohed, van der Aalst et al. give a detailed explana-
tion about the languages’ capabilities and problems and – more importantly – they
also explain how previously introduced workflow modelling languages have coped
with expressing specific aspects. Thus, their summarising conclusion is that Web

31

2.4. Realising Business Processes and Workflows

service composition languages do not offer a greater level of expressiveness when
compared to workflow modelling languages. However, it must be noted that their
primary purpose is to facilitate the development of service compositions. Conse-
quently, Figure 2.3 can be extended as shown in Figure 2.5: The business process
model represents the interface between the organisational side and the software
engineering side. On the software engineering side, the model of a service compo-
sition is used as a model for the required development tasks. The development of
compositions will be the topic of Chapter 7.

Service
Composition Model
e.g. using Level 2/3
modelling languages

Development of

Service
Composition

Business Process /
Workflow Model

e.g. using Level 1/2
modelling langauges

Management Software Eingineering

is a model for

is a model for

Figure 2.5: The role of the service composition model.

Despite of the clarifying statement of this particular research group, the de-
velopment of the different composition languages is ongoing. The OASIS-driven
WS-BPEL effort has currently the largest attention in the area of service composi-
tions. It considers the widely accepted Web services standards and gathers many
industry players providing SOA-based products, such as IBM, Microsoft, Oracle,
SAP AG and Sun Microsystems, together. Besides, the WS Coordination work-
ing group shows ongoing activities. Taking into account that existing documents
published so far have only draft status, they indicate that there is more to expect.
Apart from these languages, which directly focus on Web services, this chapter has
introduced other proposals that focus on different purposes but can be considered
for describing service compositions as well.

32

Chapter 3

Quality-of-Service in Service
Compositions

The introduction has already presented a general definition of the QoS which cites
the ISO 9004 standard [127, section 3.5]. Every system is designed to provide a
certain functionality which represents the functional behaviour of the system. For
example, if a service that performs a mathematical calculation on a given num-
ber is considered, the description and definition of this calculation would cover
the functional behaviour of the system. Nevertheless, a system shows also a non-
functional behaviour. If the example of the calculation service is considered, its
non-functional behaviour can cover the consumption of resources, the time needed
for an operation, or the precision or the delivered result. Such nun-functional is-
sues show a relation to the concept of QoS, which will be elaborated further in
Section 7.2.1 of the chapter that discusses the application of the QoS-based selec-
tion when developing service compositions.

In literature, the two, QoS and non-functional behaviour, sometimes appear
as synonyms (e.g. in the WSA from the W3C [11]), whereas other publications
mention them with clearly separated meanings. In this work, the concept of QoS
is subsumed by the concept of non-functional aspects, which is also the view of
the UML Profile for Modelling Quality of Service and Fault Tolerance Charac-
teristics and Mechanisms (the “UML QoS-Profile”, [99]). In accordance with this
recommendation, the QoS describes quantifiable non-functional characteristics of
a system.

The concept of QoS covers a wide area of aspects. Today, the QoS refers
mostly to the field of telecommunication networks. Besides the functionality that a
telecommunication network provides – the transmission of data – QoS characteris-
tics are inherent properties. Such characteristics can be the delay that occurs when
data is transmitted, or the bandwidth representing the amount of data that can be
transmitted within a given time. A telecommunication network can be seen as a
service that transports data from one point to the other. The concept of QoS can be
easily transferred to the field of the SOA. Looking at the RM-ODP, the standardisa-

33

tion efforts to define what QoS means in a open distributed processing system have
been published as a designated proposal [54], which represents the intended sixth
part of the RM-ODP. The currently available normative reference about QoS by the
ISO is the Quality of Service Framework published in the Information Technology
section [55]. From this reference, this work considers the following selection of
definitions:

QoS characteristic: A quantifiable aspect of QoS, which is defined
independent of the means by which it is represented or controlled.

QoS establishment: The use of QoS mechanisms to create the con-
ditions for some system activity, before that activity occurs, so that a
desired set of QoS characteristics is attained.

QoS mechanism: A specific mechanism that may use protocol ele-
ments, QoS parameters or QoS context, possibly in conjunction with
other QoS mechanisms, in order to support establishment, monitoring,
maintenance, control, or enquiry of QoS.

QoS data: QoS information other than QoS requirements, e.g. warn-
ings, QoS measures and information used in QoS enquiries.

QoS requirement: QoS information that expresses part or all of a
requirement to manage one or more QoS characteristics, e.g. a maxi-
mum value, a target, or a threshold; when conveyed between entities,
a QoS requirement is expressed in terms of QoS parameters.

QoS parameter: QoS information that is conveyed between entities
as part of a QoS mechanism; parameters are classified into require-
ment parameters and data parameters; the information conveyed may
relate to one or more QoS characteristics.

QoS information: Information related to QoS: [...] It is classified into
QoS requirements (if it expresses a requirement for QoS) and QoS data
(if it does not).

There are other recommendations and specifications from industry bodies and
non-profit organisations, such as the UML QoS-Profile [99], which was mentioned
already in this work. The authors have taken both documents from the ISO [55,
54] in account for the specification of this recommendation. In addition to the
documents of the ISO, the UML QoS-Profile provides also definitions for the terms
“QoS characteristic” and “QoS category”, which are considered as the basis for this
work [99, page 10]:

QoS characteristic: A QoS characteristic represents a quantifiable
characteristic of services. A QoS characteristics is specified indepen-
dently of the elements that they qualify. A QoS characteristic is the
constructor for the description of non-functional aspects like: latency,

34

3.1. Exchange of Quality-of-Service Information

throughput, capacity, scalability, availability, reliability, safety, confi-
dentiality, integrity, error probability, (...)

QoS dimension: QoS dimensions are dimensions for the quantifica-
tion of QoS characteristics. QoS characteristics can be quantified in
different ways (e.g., absolute values, maximum and minimum values,
statistical values). For example, the latency of a system can represent
an end-to-end delay of the invocation, the mean time of all invocations,
or the variance of time delay. (...)

QoS category: When the number of QoS characteristics is large, or
they are especially complex, some mechanisms for grouping are re-
quired. Some examples of general groupings of quality attributes are:
i) performance: performance references to the timeliness aspects of
how software systems behave. ii) dependability: (...)

3.1 Exchange of Quality-of-Service Information

Based on these definitions, a model is designed that covers the flow of QoS in-
formation when trading services. The first chapter has defined that the retailer
processes the QoS information covering compositions. However, it remained un-
clear how a retailer will obtain such information and which role is represented by
the broker in such a setup. Different methods exist to exchange QoS information
as introduced by the RM-ODP, the trading specification and the Business Model
of the TINA-C architecture [156]. The trading specification defines that a service
offer includes so-called service properties which subsume the concept of QoS in
this context [53, section 7.2]. The TINA-C Business Model defines a broker that
can involve (QoS) attributes about a service as well [156, section 2.3]. However,
the architecture description of the TINA defines that the QoS is negotiated between
the retailer and the 3rd party service [156, section 3.5]. Telecommunications ser-
vices are regarded as volatile and subject to change to every interoperation between
importer and exporters. Thus, a repeating re-negotiation between retailer and 3rd
party provider is preferred to better cope with this volatility.

The currently available proposals for processing QoS in open distributed pro-
cessing propose a separate, dedicated broker that only processes QoS information.
This is a QoS broker component that is added to the standard setup of an SOA. A
dedicated QoS broker has the advantage that such a software can also perform QoS
monitoring and dynamically trigger QoS improvements if necessary. Research
work in the mid 90s proposed broker architectures to provide a QoS-aware ser-
vice interoperation in the telecommunications domain. The work of Nahrstedt and
Smith represents an example of such an approach [94]. In their work, the QoS
broker is arranged as an “application subsystem”, a tier between the service im-
porter and the underlying communication tiers, to implement a QoS mechanism
and co-ordinate the flow of QoS information.

35

3.1. Exchange of Quality-of-Service Information

Frøhlund and Koistinen have discussed the QoS in open distributed processing
systems [35]. Their contribution is focussed on the specification of QoS infor-
mation and its representation during runtime. Then, a so-called QoS-based trader
establishes the interoperation between service exporter and importer. Apart from
their abstract specification, their work also explains the application of their find-
ings in a CORBA environment. A couple of other research groups have worked
on the QoS-based trading to the CORBA environment. Among them is the work
of Cardoso et al. [16] which covers the implementation of QoS-aware middleware
facilities to provide the optimisation of QoS in workflows.

Besides the workflow domain, the research in the mid-90s discusses multime-
dia applications in telecommunication networks. In this scenario, there is a strong
demand to provide real-time characteristics for the transmission of audio and video
data. Their transmission requires a constant data rate with minimum delays. Oth-
erwise, the service can become useless. For example a telephony service is useless
when the delay resulting from the transmission is too long. Aurrecoechea et al. [3]
have discussed the issues of such applications and their underlying QoS-aware in-
frastructure in a survey that summarises the different approaches in this field.

3.1.1 Quality-of-Service in a Service-Oriented Architecture

A software infrastructure that provides telecommunication services differs from an
SOA. Contrary to the telecommunication domain, the scenario is as such that exist-
ing software and components are integrated into one common invocation middle-
ware that allows to the interoperation of the different applications involved in this
middleware tier. The telecommunication domain is influenced by the ISO Open
System Interconnection Model (ISO-OSI, [57]) that denotes a tiered architecture
in which one tier offers its functionality as a service to the next upper tier.

The functionality of telecommunication services is concerned with the trans-
mission of data, while services in an SOA can provide different functionality that
include telecommunication aspects (e.g. a service that offers to send an e-mail).
The QoS that covers real-time characteristics is not as often considered in an SOA
as for telecommunication services. The main reason is that two of the SOA char-
acteristics imply just the opposite: a) the loose coupling and b) the use of Internet
protocols (cf. Jaeger and Mühl [60]). Because an SOA usually provides a loose
coupling characteristic, the binding operation requires an unpredictable amount of
time. Internet protocols are known for their robustness. However, they do not
guarantee that a connection can be established and can be hold with a constant
QoS level. Thus, for some soft real-time applications such as telephony and video-
broadcast, extensions to the Internet protocols are used which provide reservation
and signalling functionality. In summary, the support for QoS is not as present in
an SOA as it is for telecommunication systems.

36

3.1. Exchange of Quality-of-Service Information

Quality-of-Service with Web Services

Different research groups have worked on how to cover the QoS in an SOA or in
the field of Web service infrastructures. A topic in this field is the discussion about
QoS-based brokers specifically for trading Web services [88, 115, 116, 131, 136].
All works share the idea that a separate dedicated broker processes the QoS in-
formation. Either service providers must submit their QoS parameters as a part of
their advertisement, or the QoS broker obtains the QoS information from a moni-
toring process. The difference between the mentioned works lies in how the QoS
information is modelled and represented during run-time.

The mentioned research works have in common that a shared agreement about
the QoS information is required. This agreement is necessary to enable all involved
parties to exchange this information. Wang et al. and Tian et al. propose each a pro-
prietary XML-based language [136] for the specification of QoS information that
should be used when communicating with a QoS broker. The work of Maximilien
and Singh puts the standardisation of used QoS concepts into an abstract taxon-
omy that appears independent from notation formats such as XML or an XML
Schema [88].

In addition, some approaches exist that extend the common Web service repos-
itory specification UDDI with the capability to process the QoS rather than es-
tablishing separate facilities [2, 78, 112]. Besides the research work, the UDDI
implementation as a part of Microsoft’s server platform allows extensions in or-
der to support the processing of QoS information [93]. The common approach
regarding UDDI repositories is to extend the data model with custom definitions
of certain QoS characteristics. The specification allows extensions to the standard
data structure by supporting the addition of data models, so-called tModels, using
the standard API of a UDDI repository. When querying a service, the query can
include QoS requirements that refer to the added QoS concepts. In this scenario,
a UDDI repository represents the broker role that also processes QoS information.
Then, the broker is involved when establishing the interaction between importer
and exporter.

Besides the broker-oriented approaches, proposals exist for Web services to
negotiate the QoS directly between the importer and exporter. Such proposals con-
sist of a negotiation protocol and a QoS specification language. Menasce has dis-
cussed common issues of this setup in conjunction with Web services [90]; the
basic idea is that the importer negotiates a Service Level Agreement (SLA) with
the exporter. Both parties define in this SLA the QoS that the service exporter
must provide. Examples for SLA languages are the Web Service Level Agreement
Language by IBM (WSLA, [84]), the Web Service Offerings Language by Tosic et
al. (WSOL, [133]) or a similar proposal to express SLAs by Sahai et al. [113]. The
authors of the WSOL have also published a Web Service Offerings Infrastructure
(WSOI, [132]) which explains the use of the WSOL. Generally, the WSOI is not
concerned with the concept of trading services, but with monitoring and managing
services during the run-time. Consequently, the WSOI provides an extended server

37

3.1. Exchange of Quality-of-Service Information

infrastructure to support QoS parameters mainly residing at the service exporter. A
separate component for the QoS-based trading of services using the WSOL is not
offered by the WSOI.

Table 3.1 summarises the different main approaches which are grouped into
three main architectural characteristics: 1) the integration into existing service bro-
kers, 2) the provision of a separate broker architecture and 3) the direct and individ-
ual negotiation. Among these works, the problem exists that the service importer
must have the same understanding about the used QoS characteristics and as the
service importer and the broker.

Research Group Remarks

Integrated Broker, extending a UDDI repository

Ali et al., 2003 [2] Discussion about a general extension to UDDI that supports
properties of service advertisements. Such properties can be
used to denote QoS parameters.

Ran, 2003 [112] Discussion about a model for the integration of QoS information
into a UDDI repository.

Lee, 2003 [78] Discussion about the trading of Web services to form service
compositions; covers the QoS information by extending a UDDI
repository.

Dedicated Broker, separate from a UDDI repository

Wang et al., 2004 [136] Introduction of a framework that adds the support of QoS in an
SOA, as used in a large enterprise. Involves also QoS-based
trading.

Degwekar et al., Discussion about expression of (QoS) constraints using the
2004 [115] WSDL. Proposes to use a separate broker for querying QoS

parameters of services.
Tian et al., 2004 [131] Discussion about a framework that provides a QoS-based bro-

ker for the selection of Web services.
Maximilien, Discussion about issues of service selection
Singh, 2004 [88] performed by autonomous agents.
Yu, Lin, 2005 [157] Broker for dynamic integration of Web services and adaptation

to ensure the QoS during runtime.
Direct Negotiation

Tosic et al., 2002 [133] Language to specify QoS requirements and parameters; later
work covers also management issues.

IBM, WSLA, 2003 [84] Language to specify QoS requirements and parameters; spec-
ification covers also negotiation scenarios and strategies.

Menasce, 2004 [90] Discussion about general QoS and Web services topics while
promoting the SLA-oriented approach.

Table 3.1: QoS-based trading in the domain of Web services.

As mentioned above, Maximilien and Singh [88] propose covering this issue

38

3.1. Exchange of Quality-of-Service Information

with a QoS ontology to provide a common agreement when performing a QoS-
based trading. Their approach discusses two major ontologies: One is called “QoS
upper ontology” which covers general terms such as “Measurement” or “Attribute”.
A definition for such terms is also provided by the QoS-framework published by
the ISO [55] or the UML QoS-Profile from the OMG [99, section 8]. For a more
detailed view, a “QoS middle ontology” defines concrete QoS characteristics and
a hierarchy of QoS categories. A similar hierarchy is also covered by the work
of the ISO and the OMG [99, section 10]. A “QoS lower ontology” is foreseen
to include all application and domain specific details. Section 3.2 will discuss the
QoS characteristics that are relevant for such an ontology.

3.1.2 The Role of the Retailer

The previous section has introduced three basic patterns of processing QoS in the
field of Web services. These can be abstracted for general application in an SOA: a)
using a combined broker, b) using separate brokers or c) direct negotiation between
service importer and exporter. Based on these three main patterns, the processing
of QoS information from the view of the retailer can be discussed. The role of
the retailer is special because he acts as a service importer when importing the
services to form a composition and he acts as a service exporter when he provides
the composition to the consumer. All these patterns have in common that a service
exporter provides his QoS parameters while the submission of QoS requirements
by the service importer is regarded as optional. The three main patterns are as
follows:

• Direct negotiation. The first pattern reflects the proposal of the TINA,
where the QoS information is processed individually and decentrally. In
this scenario, a service importer agrees with the exporter on a service level
agreement. In this agreement a requirement from the importer is optional.
Regarding the QoS requirements, two different cases are possible:

– The retailer receives the requirements and then forms the composition,
i.e. he selects the set of services that result in a composition that meets
the given requirements.

– The retailer has formed a composition that meets internal QoS require-
ments. Then the retailer advertises the composition for export includ-
ing the corresponding QoS statements. Then a consumer can express
his requirements to see whether these requirements are met by retailer
or not.

This setup covers the optimisation of the QoS of the composition with re-
spect to the QoS requirements of the consumer. The retailer performs the
QoS-based selection which is a part of the trading process. Figure 3.1 sum-
marises this setup.

39

3.1. Exchange of Quality-of-Service Information

Retailer 3rd Party
Service Provider

Consumer

QoS
Requirements

(optional)

QoS
Parameters

contacts other brokers

contacts other 3rd
party service providers

service advertisements

service
query

service query

Retailer
imports

exports

imports

exportsQoS
Parameters

QoS
Requirements

(optional)

Broker

Figure 3.1: Flow of QoS information without involving a broker.

• Integrated broker. In the second pattern, a broker component is extended
to also process QoS information when trading services. In the field of Web
services, this setup represents the approaches which provide an extension
to existing UDDI repositories. Contrary to the first pattern, the broker pro-
cesses the QoS parameters provided by a service exporter who advertises
his service. When a trading process takes place, the broker can optionally
process QoS requirements by the service importer.

Since the retailer represents a service importer and exporter simultaneously,
he first queries the broker when forming compositions, optionally with given
QoS requirements. At this point, the QoS-based trading can be performed
by two parties:

– Retailer-sided. The retailer queries the broker for the individual ser-
vices and receives a set of candidate services from which he must per-
form the selection based on QoS criteria. In this case the trading pro-
cess is split between the broker and the retailer.

– Broker-sided. The retailer submits a description of the composition to
the broker. Then, the broker can perform the trading process and the
QoS-based selection of services. Then the broker would return a list of
selected services.

After the retailer has formed the composition, he can advertise the compo-
sition as a new service to export to the broker with the resulting QoS pa-
rameters. Then a consumer can query the broker to find appropriate services
that comply with given QoS requirements. This setup is represented in Fig-
ure 3.1.

• Separate QoS-broker. In the third pattern, a dedicated broker performs the

40

3.1. Exchange of Quality-of-Service Information

Retailer 3rd Party
Service Provider

Consumer

Broker
advertise

query

query

service invocation service invocation

advertise

Retailer
imports

exports

imports

exports

QoS
Requirements

QoS
Parameters

QoS
Requirements

QoS
Parameters

contacts other brokers

imports services from other 3rd
party service providers

Figure 3.2: Flow of QoS information involving a broker.

QoS-based selection of the trading process. From the research presented in
the previous section, there is no rule on when to extend an existing broker
facility and when to establish dedicated structures to process QoS informa-
tion for trading services. A motivation for establishing a separate broker
infrastructure exists, if monitoring and QoS-based optimisation during the
run-time are also required. Then, a service repository could focus on the
discovery part of the trading process while a QoS-broker can also monitor
the provided QoS to apply dynamic adaptations.

Figure 3.3 outlines such a setup with a dedicated broker. In this setup, the
service importer queries the general broker for the desired services and re-
ceives a set of candidates. As a second step, the service importer queries
the QoS of the candidates at the dedicated QoS-broker. Like in the previ-
ous case, either the retailer performs the QoS-based selection or he submits
a description of the composition to the QoS-broker. In the latter case, the
QoS-broker can entirely perform the trading process. After the retailer has
formed the composition, he can advertise the composition as a new service
at the general broker. Then he submits the referring QoS parameters to the
QoS-broker.

These three patterns outline the basic arrangements in a QoS-aware SOA. Of
course, other arrangements are possible. For example in a mixed configuration,
the retailer accepts the direct negotiation with a consumer but queries a dedicated
QoS-repository to search for the QoS parameters of the service candidates. These
mixed-variations were ignored because they would not lead to additional conclu-
sions besides those that are drawn in the remainder of this section. The following

41

3.1. Exchange of Quality-of-Service Information

Retailer 3rd Party
Service Provider

Consumer

General
Broker

advertise

query

query

Retailer
imports

exports

imports

exports

Dedicated
QoS Broker

query advertise

queryadvertise

service invocation service invocation

QoS
Requirements

QoS
Parameters

QoS
Parameters

QoS
Requirements

contacts other brokers

imports services
from other 3rd party

service providers

Figure 3.3: Flow of QoS information involving dedicated brokers.

two characteristics are variable in these three processing patterns when performing
the QoS-based trading:

• Consumer-driven QoS-based trading. The first scenario, which describes
the direct negotiation, describes the case that the consumer submits QoS re-
quirements. Then, the retailer performs the selection that also involves the
requirements of the consumer. In the opposite case, which is the only case
supported when involving a broker, the retailer considers only own require-
ments and advertises the composition as a service with the resulting QoS
parameters.

In the case that QoS parameters are advertised at some party representing a
broker – regardless of whether dedicated for processing QoS information or
not – and no direct negotiation is supported, then the consumer-driven QoS-
based trading cannot be supported: The QoS requirements will be processed
at the broker and will not arrive at the retailer.

• Retailer-driven trading. In the first scenario, which describes the direct
negotiation, the retailer entirely performs the QoS-based trading. In the two
other processing patterns, either the broker or the retailer can perform the
trading. The problem was outlined in the first chapter: The broker would
require information about the composition in order to perform the trading.
From a technical viewpoint, the trading would perform in both cases in the
same way. However, from an organisational point of view two reasons could

42

3.1. Exchange of Quality-of-Service Information

prevent this setup:

1. Performing QoS-based selection to form compositions requires spe-
cial logic that is able of finding solutions for the resulting combinato-
rial problem. Because it is unclear whether existing and future broker
technologies will actually support this functionality, the retailer would
minimise his possibilities to find appropriate services.

2. If the retailer submits information about the business process to the bro-
ker, he shares his intellectual property or information of some business
value. If broker and retailer do not belong to the same organisation,
organisational constraints might prevent such a disclosure of informa-
tion.

Based on this clarification, statements can be derived about how the given QoS
concepts relate to the retailer and the other roles. This model represents an ex-
tended version of the model given in Figure 1.2 of the first chapter. The previous
part has clarified why the retailer represents the predestined party to perform the
QoS-based selection. On the other side, several proposals exist that feature a QoS
broker – either a separate dedicated or extended existing brokers – for trading in-
dividual services. As a conclusion, the retailer processes the QoS information on
a macro-perspective; he processes the QoS-part of the trading in order to form the
composition. A potential dedicated QoS-broker processes the QoS on a micro-
perspective, because he processes individual queries. In summary, the characteris-
tics of the retailer are defined as follows:

The retailer

- performs the QoS establishment of the composition,
- features a QoS mechanism to support this establishment, and
- is capable of processing QoS information to support the QoS es-

tablishment. The QoS information are the QoS requirements of
the consumer and the QoS parameters of individual services pro-
vided either by a broker or directly by 3rd party service providers.

- In case a broker exists that processes the QoS parameters, the
retailer submits them when advertising the composition as a new
service.

The consumer, a broker and the 3rd party provider shall have the following
characteristics:

43

3.2. Quality-of-Service Characteristics

The client

- submits QoS requirements, and
- receives QoS parameters about the offered composition.
- In case a broker exists that processes the QoS parameters, the

QoS information is exchanged with the broker, otherwise the
client communicates directly with the retailer.

The 3rd party service provider

- submits QoS parameters.
- In case a broker exists that processes the QoS parameters the

QoS information is submitted to the broker, otherwise directly to
the retailer.

The broker

- performs the QoS establishment of individual services,
- features a QoS mechanism to support this establishment, and
- is capable of processing QoS information to support the QoS

establishment. The QoS information represents the QoS require-
ments of the client or the retailer, and the QoS parameters of in-
dividual services from 3rd party service providers or aggregated
services (taken as individual) from other retailers.

3.2 Quality-of-Service Characteristics

This section discusses the QoS characteristics in detail. It will explain which par-
ticular QoS characteristics are relevant in an SOA. More specifically – because
the topic of this thesis is QoS-based trading – the goal is to determine which QoS
characteristics are considered as selection criteria for the trading of services. The
first chapter stated that a requirement to the aggregation method is the indepen-
dence from particular QoS characteristics. However, it is still necessary to identify
the relevant characteristics to determine which the trading must support. The QoS
Framework published by the Information and Technology Section of the ISO [52]
presents a comprehensive set of QoS characteristics grouped into various QoS cat-
egories. This standard includes the following categories:

• Time-related. The first category mentioned in this standard covers all QoS
characteristics that use the time as measure, such as the execution time or
the time until the result of a service invocation arrives, which is the response
time. A related characteristic is the delay. The delay denotes the time in
which the request is transported over the network. In addition, the standard

44

3.2. Quality-of-Service Characteristics

mentions the notion of lifetime, which describes the time that a service re-
mains available.

• Coherence. The coherence describes how well a system maintains related
data over temporal or spatial distances. Data must be kept coherent if the
service actually provides various individual operations. In this case, the ex-
changed data must kept coherent during the individual invocations. Spatial
coherence is required in a distributed system, if related data is distributed
among different computers within this system.

• Capacity. The capacity subsumes different QoS categories that describe a
measure for how much data can be processed within a given period. QoS cat-
egories in this sense are for example data capacity, throughput, or process-
ing capacity. Throughput denotes how much data can be processed within a
given amount of time.

• Integrity. The integrity describes aspects of correctness when processing
information. It is related to the concept of accuracy which denotes how
much a result meets the expectations of the requester.

• Safety. The safety subsumes QoS characteristics that describe to which de-
gree the stability of an operation is ensured.

• Security. The security covers different aspects such as the protection of in-
formation which also involves a mechanism for access control, or the ability
to authenticate users of a system.

• Reliability. The term “reliability” subsumes a set of very related QoS char-
acteristics, namely availability, fault containment, fault tolerance, and main-
tainability. For services, the availability represents a measure for how often
a service can be invoked while the reliability describes how often the result
of a service invocation is correct.

This list of categories represents a general set of QoS categories in distributed
systems. Thus, the question rises if all these are relevant for the application in an
SOA, especially for the trading. The UML QoS-Profile of the OMG [99, section
10] provides a narrowed set of common QoS categories. The authors of the UML
QoS profile suggest reusing these for particular QoS modelling efforts. The UML
QoS-Profile considers also the ISO QoS framework as the main reference for the
selection of application-independent categories. Because the UML QoS-Profile
was published six years after the ISO framework, it also reflects, how the different
QoS categories have evolved. It considers the following QoS categories:

• Performance. The UML QoS-Profile does not feature the category “time-
related” as mentioned in the ISO standard. It rather uses the performance
to provide a category that includes the time. Mentioned are: throughput, la-
tency, efficiency, and demand. The latency denotes the time interval between

45

3.2. Quality-of-Service Characteristics

request and response. The efficiency indirectly denotes the consumption of
resources. The demand is a proposed measure for how many times a service
is requested.

• Dependability. In the UML QoS-Profile, the category of dependability is
related to the reliability in the ISO QoS framework. The dependability in-
cludes also the availability.

• Security. Compared with the ISO standard, this category includes in the
UML QoS-Profile the following aspects: the protection in terms of access
and protection against manipulation and the confidentiality of actors.

• Integrity. The integrity is used with the same meaning as presented in the
ISO standard.

• Coherence. Like in the case of the ISO QoS framework, the coherence in
this sense refers to the issue that in distributed systems, data might be locally
distributed and therefore must be kept coherent.

This list of QoS categories differs mainly from what the ISO standard proposes
by subsuming time-dependent and capacity-dependent categories under the main
concept of performance. Time and capacity are similar categories; their subsump-
tion under performance makes sense. However, similar to the categories mentioned
by the ISO standard, the UML QoS-Profile does not explicitly cover the applica-
tion in an SOA. Moreover, not all these categories and mentioned characteristics
are relevant for the trading process. An importer can presume that a service is ca-
pable of processing data coherently and of ensuring the integrity of data. Thus, this
thesis considers only the categories performance (time and capacity), dependabil-
ity (reliability) and security as suitable for trading services from the ISO standard
and the UML QoS-Profile.

3.2.1 Quality-of-Service Characteristics for Web Services

Regarding Web services, Menasce has presented different publications which dis-
cuss QoS issues in Web services. In his work he mentions as the relevant char-
acteristics response time, throughput, security and availability [90]. In further
work he also discusses the response time and the cost in compositions of Web
services in particular [91, 92]. Regarding the composition of Web services, Zeng
et al. have presented a framework for the QoS-aware composition of Web ser-
vices [159]. Their work is closely related to this thesis and therefore it will be
discussed in more detail in future sections. Their discussion covers the QoS char-
acteristics price, duration, reputation, success rate, and availability. The reputation
is a characteristic which is not specifically mentioned by the ISO framework or the
UML QoS-Profile. It represents a rating that is provided by an importer based on
his experience with using a service.

46

3.2. Quality-of-Service Characteristics

Patel et al. discussed the modelling of Web services and the creation of ser-
vice descriptions which involved also a discussion about different QoS character-
istics [105]. Their contribution focusses on a modelling structure for expressing
the QoS of a service. Their selection of QoS characteristics is divided into two
categories: The first category consists of the latency, which is used as a synonym
for response time, throughput, reliability, and cost. The other category is named
internet-specific and consists of availability, security, accessibility and regulatory.
The characteristic regulatory denotes a measure for how well the service complies
with given (organisational) regulations. In addition, Patel et al. define a separate
QoS characteristic named task-specific which denotes how well the returned an-
swer meets the expectations of the importer.

Section 3.1.2 has introduced different research work about processing QoS in
an SOA: One part covers the QoS negotiation based on contracting approaches,
another the extension of existing repositories with the ability to process QoS infor-
mation. A third part discussed dedicated broker architectures. The contributions
from Ludwig et al. (WSLA, [84]) and Tosic et al. (WSOL, [133]) discuss the nego-
tiation of QoS. They do not mention particular QoS categories or characteristics.
The WSOI, based on the WSOL that Tosic et al. have also presented, focusses on
the response time, which measures the time from the submission of the request
until the return of the result when invoking a service [132]. A similar contribution
by Ludwig also discusses how to ensure the negotiated QoS from the perspective
of the service exporter [83]. Regarding the considered QoS characteristics, he dis-
cusses those subsumed by the performance category in the UML QoS-Profile.

In the field of UDDI extensions, Ali et al. have introduced the UDDIe. They
give no particular discussion about QoS characteristics but mention bandwidth as
an example [2]. The bandwidth denotes how many requests a service can process
within a given time and is a synonym for the throughput. Lee, who has also dis-
cussed the approach to extend UDDI for processing QoS, discusses the cost, which
is a synonym for price as used by Zeng et al. [159], and the response time as the rel-
evant characteristics for Web services [78]. Ran provides the most detailed discus-
sion about relevant QoS categories when extending the UDDI specification [112].
He introduces a QoS model for Web services that provides the following four main
categories:

• Run-time related. In the group of run-time related characteristics, Ran sub-
sumes scalability, which describes a measure for transactions per second, and
capacity which denotes the number of concurrent requests. Moreover, Ran
puts performance into this main category, which contains the characteris-
tics response time, latency and throughput. According to his work, response
time denotes the time to process a request. Latency covers the situation that
a request is queued at the side of the provider. Throughput shows a strong
relation to scalability and capacity.

As a third sub-category, Ran introduces the reliability, which contains the
characteristics mean time between failure (MTBF), mean time to failure

47

3.2. Quality-of-Service Characteristics

(MTTF) and mean time to transition (MTTT), of which Ran admits that they
show a strong relation to the concept of availability. MTBF is usually used if
a failure denotes an exceptional state that can be recovered. MTTF refers to
a failure that, in general, cannot be recovered. MTTT represents an unusual
characteristic. It refers to the idea that an entity can show two general states:
a good state and a bad state. Then, the MTTT denotes a measure about how
often a change between the two states occurs [112]. In addition to these three
values, this category contains also the characteristics robustness, exception
handling and accuracy.

• Transaction supporting. With this category, Ran refers to the four main
properties that represent the standard characteristics of a transaction, which
are atomicity, consistency, isolation and durability, often abbreviated with
ACID. Since the characteristics of this category are hard to quantify with
numerical measures, this work interprets them as non-functional character-
istics.

• Configuration- and cost-related. This group of QoS characteristics relates
to organisational issues of the service and its development. These include
“regulatory”, which denotes the compliance with (governmental) regula-
tions, a degree for supporting technology standards, stability, which refers
to a description of how often the provided functionality is updated, as well
as cost, and completeness. This characteristic denotes the completeness of
provided functionality.

• Security. This category subsumes a set of standard security aspects which
include the provided authentication technique, the supported authorisation
mechanism, the facilities to ensure confidentiality, the support accountability
and auditability, the provided degree of data-encryption, and the provided
counter-measures to prevent repudiation after a service invocation.

Compared to the UML QoS-Profile, the set of security characteristics discussed
by Ran is more comprehensive and more specific regarding the SOA. Another dif-
ference is that the main category, named “run-time related”, subsumes also the
category performance along with different other categories like throughput. The
appropriateness of the category for configuration-related QoS characteristics is ar-
guable, because they partially cover functional aspects (e.g. the concept of com-
pleteness) which might not fit into the scenario of trading services: Would a ser-
vice importer query a broker with requirements such as the completeness of the
provided functionality? For this thesis this question is answered negative: Sec-
tion 7.2.2 will explain how a presumed matchmaking of functional suitability cov-
ers this point. As a conclusion, the characteristics found in Ran’s categories “trans-
action supporting” and “configuration”, excluding the cost, are considered not rel-
evant to the trading of services. In summary, the relevant QoS categories presented
by Ran are the run-time related, the cost and the security.

48

3.2. Quality-of-Service Characteristics

The third cluster of research work related to the QoS in an SOA is formed by the
works that propose dedicated brokers for the trading of services. Table 3.2 presents
an overview of the considered QoS characteristics in the field of research on bro-
kers for trading Web services. Regarding the work of Maximilien and Singh [88],
their list of QoS categories and characteristics provides more concepts than listed.
They have been omitted, because they were discussed in the work by Ran. The list-
ing has the purpose to identify the relevant QoS characteristics for the trading of
services as identified by other researchers. In summary, these publications mention
very similar QoS categories. Among the characteristics, the up time and availabil-
ity can be considered equal. The same applies to the pair of MTBF and reliability,
and the pair of timeliness and latency. If all QoS characteristics that were discussed
in at least two of the five mentioned publications are considered relevant, then the
list contains: response time, cost, availability, reliability, and throughput.

Research Group QoS Characteristic

Wang et al., 2004 [136] Categories: performance, reliability, timeliness and se-
curity, which each have one referring characteristic
assigned.

Degwekar, et al., 2004 [115] Response time, cost, and availability.
Maximilien, Response time, cost, latency, throughput,
Singh, 2004 [88] capacity, MTBF, and up time.
Yu, Lin, 2005 [157] Response time, cost, reliability, and availability.
Serhani et al., 2005 [116] Response time, cost, latency, throughput, and availability.

Table 3.2: QoS characteristics in the domain of Web services.

3.2.2 Summary of Quality-of-Service Characteristics

The different fields of research and standards have revealed many similar cate-
gories. From the research work mentioned above, the UML QoS-Profile, which
is based on the ISO QoS framework, the work of Ran and the five publications
mentioned give a broad set of QoS categories. In addition, the previous section
has identified the set of commonly discussed QoS characteristics used for Web ser-
vice brokers. The common QoS characteristics from these three areas are listed in
Table 3.3.

This table mentions the set of common QoS categories that are considered for
the use of service trading: the throughput, the response time, the cost and the
availability. The UML QoS-Profile and the QoS model of Ran also mention the se-
curity which can be considered for trading as well. This aspect has been discussed
by Wang et al. in detail [136]. In addition to the identified set, Zeng et al. consider
the reputation as relevant for trading [159]. As defined by them, the reputation
represents a measure for how well a service performs based on the experiences of
different importers. For this thesis, the reputation is also considered as a measure

49

3.2. Quality-of-Service Characteristics

UML QoS-Profile Ran’s QoS Model Research on Web Services

throughput throughput throughput
latency (response time) response time response time
efficiency (cost) cost cost
availability availability availability
reliability reliability reliability
security security reputation

Table 3.3: Summary of QoS characteristics

to capture non-functional service selection criteria that are usually not expressed
with quantifiable measures. For example, services can be also selected by their or-
ganisational affiliation, if a business would like to prefer selected partners, by the
country from which services are provided, if trade agreements are relevant, or by
an individual measure of how much a service provider is trusted. These examples
make clear that the term reputation is dependent on the view of the user or the party
that assigns reputation values to service providers (cf. Kalepu et al. [69]). The def-
inition of a measure that expresses reputation can involve many input parameters.
For this work, it is assumed that depending on the different mentioned factors, the
reputation results in a absolute value, which is free from a particular value range
(contrary to the repsonse time) or unit.

50

Chapter 4

Aggregation of the
Quality-of-Service
in Service Compositions

Prior to performing the QoS-based selection, a method that allows the aggregation
of the QoS in a composition of services must exist. Based on the given QoS char-
acteristics of the individual services, a statement must be derived that covers the
QoS characteristics of the composition. Otherwise, a selection algorithm could not
determine the result of choosing a particular candidate. In addition, if there are
requirements that the composition must meet, there has to be a method that proves
if the assigned services will provide the required QoS characteristics.

As the first chapter has explained, such an aggregation must involve the struc-
tural arrangement of the services in the composition. Thus, the first step of such a
method is a model that allows the description of the structure. For this model, two
main goals exist:

• Technology independence. The structural model should not rely on existing
languages to describe compositions. Although Section 2.4.1 has indicated
that WS-BPEL might play a more important role in the field of service com-
positions than similar other proposals, such a structural model should not be
limited to this particular proposal. On the other side, the existing composi-
tion languages must be considered to determine the relevant structures that
occur in service compositions.

• Focus on aggregation of QoS. The model must represent an abstraction
from all technical details and focus only on the information that is needed
for aggregating the QoS characteristics. Composition models might include
more than information relevant for designing and running the composition.
Examples are the names of interfaces, the order of exchanged messages
etc., which can be omitted for such a model.

51

4.1. The Business Process Execution Language

4.1 The Business Process Execution Language

WS-BPEL has gained most attention when it comes to the description of service
compositions. This language allows description of abstract service compositions –
or business processes – as well as concrete compositions with individual available
Web services. The basic element in this language is a process that consists of sub-
elements. A sub-element represents a description of a structural part of the process:
which services are involved, what information is exchanged, how the execution can
be compensated in case the invocation is cancelled etc.

The structure of the process is important for the aggregation of the QoS and
thus, where WS-BPEL is concerned, the structural sub-elements of the process
element are relevant. WS-BPEL supports two ways to describe the structure: One
is by using the link and flow elements; these elements allow the definition of a di-
rect precedence between two tasks or services. With the link element, the order of
invocations can be described as a directed graph. The second option supports dif-
ferent building blocks that allow the modeller to form a recursive graph to describe
the structure of the composition. In such a structure, each building block has one
in-going edge and one outgoing edge. Each building block defines an execution
structure (e.g. parallel, sequential etc.) and consists of further building blocks or
individual services. Within a building block, only one execution structure applies,
for example, in a building block denoting a sequence, all enclosed elements are
executed sequentially. In WS-BPEL, the building blocks are named “structured
activities” and support the following execution structures [126, section 12]:

sequence Executes all enclosed elements in a sequence.

if Executes a selection of the enclosed elements according to a
Boolean expression. Compared to the C programming language,
this is similar to an if-then-else statement.

while Executes the enclosed element while a given expression holds.

repeatUntil Executes the enclosed element until a given expression holds.

pick Executes enclosed activities when a defined triggering condition
occurs. Compared to the C programming language this is similar
to a switch statement.

flow Executes the enclosed activities concurrently. Optionally the exe-
cution structure of the enclosed elements can be altered by using
optional link elements, which can be used to define precedence re-
lations between the activities.

forEach Repeats the execution of the enclosed activities for a given num-
ber of times. This element can either execute the given amount of
executions in parallel or in sequential manner.

In addition, the WS-BPEL also provides special elements for interrupting the

52

4.2. Workflow Patterns

execution for a given amount of time (the wait element) and for just doing nothing
(the empty element), which is useful to put an execution on hold until an external
event occurs. The elements to define arbitrary links among the tasks or services
in the composition appear redundant to the building block elements. A modeller
can design a sequential execution of services by either using the sequence element
or by using the flow element with the corresponding link constructs. A sequence
is a very basic structure that a modeller might use often. Thus, the use of such
a basic building block offers a convenient way to describe simple task or service
executions. Another reason for the integration of these two basic ways is the fact
that the predecessor of WS-BPEL, namely BPEL4WS, represents the result of the
merge of the XLANG composition language by Microsoft and WSFL by IBM
(cf. Section 2.1.2). When comparing these two languages, WSFL provides a flow
element with link elements only [80]. Contrary to that, XLANG does not have such
a flow element but only provides basic building blocks (namely sequence, switch,
pick, all, while, empty) [129]. When the two languages were merged in order to
form the BPEL4WS language, obviously the authors have decided to keep both
ways for describing the composition structure.

Kiepuszewski et al. discuss these two different groups of structural modelling
elements for modelling workflows [73]. They distinguish between structured work-
flows, which is similar to what the XLANG represents, and arbitrary workflows,
which have some standardised routing elements (or- and and-split and join opera-
tors) and a defined beginning and ending activity each. Their work explains that the
arbitrary workflows have the advantage that they offer a more intuitive and suitable
way to model workflows to modellers. Structured workflows have the advantage
that less sophisticated verification mechanisms are needed and that they are eas-
ier to implement. The authors mention some examples of workflow management
systems being capable of processing only structured workflows for these reasons.

In addition, Kiepuszewski et al. discuss in their paper possible transformations
from arbitrary to structured workflows. A modeller can use such a transformation
to start the modelling of a composition with more intuitive arbitrary workflows
and then he can transform the model into a structured workflow. The discussion
covers transformations based on the duplication of nodes which represent either
tasks or routing elements and the use of auxiliary variables to decide on additional
branches. Their results show that not all structural occurrences found in an arbitrary
workflow can be transformed into a structured workflow.

4.2 Workflow Patterns

Section 2.1.2 has pointed out that the WS-BPEL represents a popular composition
language in the area of Web services. Thus, the discussion in the previous sec-
tion about the capabilities of WS-BPEL is useful to analyse the state-of-the-art in
composition languages. However, one requirement for the structural model is its
independence from particular languages or standards. An analysis is required that

53

4.2. Workflow Patterns

discusses the structural abilities of different languages available for this purpose.
Section 2.2.1 has already mentioned the work of van der Aalst on the common
structural elements found in composition modelling languages [143]. His work
refers to a prior work by him and his colleagues about common patterns found
in workflow management systems named workflow patterns [146]. The following
part introduces the workflow patterns and discusses which patterns are relevant for
a structural model for the aggregation of QoS.

The workflow patterns were created to define abstract capabilities for the com-
parison workflow management systems. They mainly describe the capability of
executing different workflow structures and the functional behaviour of these sys-
tems. A main benefit of these patterns lies in the ability to compare workflow man-
agement systems by their functional rather by their non-functional aspects (like
platform requirements or usage of hardware resources). Considering the workflow
patterns offers the following advantages for this work:

• Technology independence. The workflow patterns are independent from
particular technologies or composition languages. The workflow patterns
were designed to provide a uniform approach for the comparison of work-
flow management systems and their flow definition languages. Thus, the pat-
terns can be regarded as a comprehensive description of the structural char-
acteristics of different workflow management systems and flow languages.

• Matureness. The first version of the workflow patterns was published in
2000 [145] and were revised since then in 2003 [146]. Also, different re-
searchers and industrial efforts have taken up the patterns.1 Therefore, the
work about the workflow patterns can be regarded as often-reviewed re-
search.

• Service compositions. As pointed out in Section 2.3, the existing compo-
sition languages have their roots in the modelling languages for workflows.
As mentioned, a comparison of these languages based on the workflow pat-
terns already exists [143], as well as a detailed analysis of the flow language
BPEL4WS [151]. In these works, the authors explain the strong similarity
between characteristics of workflows and service compositions.

Regarding the second requirement, which is the focus on QoS aggregation, the
workflow patterns contain many elements that are not relevant for the aggregation
of QoS. For example, the Pattern 19 “Cancel Case” describes the ability to cancel
a running process. The application of the QoS aggregation to perform QoS-based
selection takes place at the design time (cf. Chapter 7); it is about the planning of
the composition. Consequently, the QoS aggregation is not concerned with capa-
bilities such as cancelling a running composition and thus this workflow pattern is

1The research group working on the workflow patterns has published a com-
prehensive overview about the impact and use of their patterns on the Internet at
http://is.tm.tue.nl/research/patterns/impact.htm.

54

4.2. Workflow Patterns

No. Workflow pattern Synonym(s) Rel. Abstraction

Basic control flow patterns
1 Sequence Sequential routing Y Sequence
2 Parallel split AND-split Y AND-split
3 Synchronisation AND-join Y AND-join
4 Exclusive choice XOR-split Y XOR-split
5 Simple merge XOR-join Y General join
Advanced branching and synchronisation patterns
6 Multi-choice OR-split Y OR-split
7 Synchronising merge Synchronising join Y OR-join
8 Multi-merge Y AND-split

with AND-join
9 Discriminator m-out-of-n, partial join Y m-out-of-n
Structural patterns
10 Arbitrary cycles Loop, iteration, cycle Y flow-link, loops
11 Implicit termination Nothing to do anymore N
Patterns involving multiple instances
12 M.I. without synchronisation Y AND-split

with AND-join
13 M.I. with a priori design time knowledge Y represented by

patterns 2-9
14 M.I. with a priori runtime knowledge N
15 M.I. without a priori runtime knowledge N

State-based patterns
16 Deferred choice External choice, Y XOR-split

deferred XOR-split
17 Interlv’d parallel routing Unordered sequence Y Sequence
18 Milestone Test arc, state condition, N

Withdraw message
Cancellation patterns
19 Cancel activity Withdraw activity (Y) Immediate End
20 Cancel case Withdraw case N

Table 4.1: Workflow patterns [146] and their relevance for the QoS aggregation.

ignored in the discussion about QoS aggregation. Regarding the basic control flow
patterns and the advanced branching and synchronisation patterns, these are also
relevant for a structural model to aggregate the QoS. From the section “structural
patterns”, the arbitrary cycles are considered relevant. From that the remaining
sections, starting with “Multiple Instances”, they require an additional discussion.

Table 4.1 summarises the described workflow patterns. In addition, the table
lists also the relevance of a pattern for the QoS aggregation as well as its proposed
structural abstraction. As a main rationale, only patterns are relevant that address
the structure at design time. The identification for some patterns is trivial (e.g. for
the a sequence). For the parallel and conditional routing constructs, basic abstrac-
tion is used: The interpretation of an AND-element is to involve all possible tasks,

55

4.2. Workflow Patterns

whereas the XOR-element involves exactly one possible task. The OR-element
involves less than all but more than one possible task. However, other patterns
require some discussion about the relevance for composition:

• Multi-merge. This pattern describes a specific join operation of parallel
executions in a workflow arriving at the joining point. At this point, for each
execution thread arriving in parallel, the execution environment starts one
following separate thread with execution of the following activities. These
patterns can be simulated in the modelling phase by using AND-splits and
AND-join operations for the QoS-aggregation.

• Arbitrary cycles. This pattern covers the ability to express precedence links
between tasks in the workflow that form a loop. It allows links that go outside
a building block, if a composition language provides the concept of building
blocks. As Kiepuszewski et al. have pointed out, this pattern separates the
structured workflow models from the arbitrary workflows [73]. The simple
loop can be found among the structured activities of WS-BPEL (i.e. while,
repeatUntil). However, the simple loop represents only a special case of what
is covered by this pattern. The support of arbitrary loops will be discussed
in detail in Section 4.5.

• Implicit termination. The implicit termination pattern denotes that an en-
gine is capable of terminating the flow, if no processable data is available
anymore. Whether an end is explicitly stated or ends implicitly does not
have an impact on the aggregation of QoS properties during design time.
Therefore, this pattern is not taken into account.

• Patterns involving multiple instances. This set of patterns generally targets
the run-time abilities of a workflow management system. Therefore, in the
modelling phase, each workflow or each composition can be seen as one
unit for property aggregation. If at design time, the number of instances is
already known, this results in a parallel split (for the workflow patterns 12
and 13) with an open end. If the number of instances is determined during
runtime (workflow patterns 14 and 15) the handling of QoS properties must
be processed by the run-time environment of the composition and therefore
is not taken into account in the modelling process. The result of the QoS
aggregation for this case would be a QoS statement covering one instance.

• Deferred choice. The difference between a deferred choice in workflow
context and the XOR-split is that, in the deferred choice, the split is per-
formed based on external input while the standard XOR-split relies on in-
formation being part of the workflow. In the description of the workflow
patterns, the deferred choice is referred to as a “state based pattern”. Conse-
quently, it is not regarded for having an impact on the modelling phase.

56

4.3. Structural Model of Service Compositions

• Interleaved parallel routing. This pattern describes that involved tasks are
sequentially executed in an arbitrary order. In case of the aggregation of
QoS, this pattern is subsumed by the concept of a plain sequence. The up-
coming Section 4.3 will explain why the order is not relevant for the QoS
aggregation of sequential tasks.

• Milestone. In the case of service compositions, this pattern is not relevant
because describes the ability of a workflow management system to trigger
an external activity once a particular point in the workflow has been reached.
Such a behaviour that does not affect the QoS of the workflow or of the
service composition itself. Furthermore this pattern is also not supported by
any of the flow languages analysed in [143].

• Cancel activity. This pattern describes the functionality to stop the workflow
execution at a given time. Since this pattern can occur at any place in the
workflow, no specific routing element or structural pattern can be given. A
possible solution for the QoS aggregation emulates this behaviour with an
XOR-split and a following link to the end of the workflow. The support of
such a pattern will be discussed in Section 4.5.1.

• Cancel case. This cancellation pattern describes the ability of workflow
management systems to cancel the execution of a workflow. Regarding the
QoS aggregation at design time, this is regarded as exceptional behaviour
and thus not considered relevant.

The abstraction results in three relevant sequential structural patterns: the triv-
ial sequence, an unordered sequence, and a basic loop. For the parallel and condi-
tional cases, the abstraction covers different split and join operations, which can be
summarised mainly in AND-, OR-, and XOR-split and -join operations. The next
section will discuss how these abstractions can be used to form a structural model
of the composition in order to perform the QoS aggregation.

4.3 Structural Model of Service Compositions

Based on the analysis of the workflow patterns in the previous section, a structural
model can be derived that provides the necessary structural elements for modelling
service compositions for the QoS aggregation. The approach transforms a descrip-
tion of a composition into such a model. Then, an algorithm performs the aggrega-
tion on this model. This approach for the aggregation has been already introduced
in previous work (cf. Jaeger et al. [59, 63, 64]).

The introduced model has been build upon on structural patterns rather than
a classification of QoS values. In the previous work, it has been explained that
classification approaches for QoS characteristics are not helpful to establish an ag-
gregation mechanism. Software can use the properties of different characteristics
to consider aspects such as the direction (i.e. either a larger or smaller value denotes

57

4.3. Structural Model of Service Compositions

better QoS), the definition (e.g. average, percentile, fixed value), or the value type
(e.g. relative, absolute). However, QoS characteristics show many different prop-
erties and thus cannot lead to a unified approach as the following points explain:

• A general differentiation between increasing or decreasing directions can be
applied for every QoS characteristic, because it is assumed that every QoS
characteristic provides the concept of better or worse. However, an aggre-
gation rule for one dimension still can be different depending on, whether
relative or absolute numerical values are processed.

• QoS characteristics might have a direction but show only discrete values.
As a consequence, the aggregation requires a different algorithm than for
continuous dimensions: Instead of a calculation particular rules must be per-
formed.

• QoS characteristics might refer to a statistical definition – like the variance,
the mean or percentiles. For example, considering percentiles, the aggrega-
tion must cover specific definitions for aggregation rules covering parallel
arrangements.

• Beyond the three mentioned points, QoS characteristics can have different
measures, making an aggregation also more complicated.

• The definition of QoS characteristics may vary depending on the environ-
ment. Thus, a classification of QoS characteristics for generalisation cannot
be established. Instead, a software environment that performs the aggrega-
tion must cover relevant QoS characteristics for a specific application case
and provide the exact definitions of the aggregation rules for the selected
categories.

Algorithms to aggregate the QoS in compositions already exist. For example,
Zeng et al. have discussed an algorithm which finds the shortest (or longest) path
in a graph in order to determine the maximum response time [159]. However, as
the five points mentioned above indicate, for the different properties that a QoS
characteristic can show, many different algorithms must be implemented in order
to cover the different kinds and facets.

The work of Puschner and Schedl about calculating maximum execution times
of computer programs [111] has already been mentioned as the work that inspired
the idea of aggregating QoS in compositions. In their work, the authors present
two main approaches: one works on the building blocks of a structured model to
calculate execution times and the other is oriented to find a path in a graph-based
structure. A particular graph-based approach by Puschner and Schedl expresses
the problem as an integer linear programming problem, which can be solved with
existing software tools. Besides, their work covers only the execution time and
thus other QoS characteristics are not supported.

58

4.3. Structural Model of Service Compositions

For this work, an approach is preferred that defines aggregation methods for the
basic building blocks found in compositions – depending on the relevant QoS char-
acteristics of the application case. For each of these structural elements – called
composition patterns in the remainder of this work – aggregation rules are defined
for each QoS characteristic. Then, an arrangement of composition patterns can be
used to represent a model of an existing composition. Based on the aggregated
QoS statement for a particular composition pattern, an algorithm can aggregate
each pattern by aggregating sub-patterns until the entire composition is covered. In
addition, such an aggregation method requires some basic assumptions to provide
useful QoS statements as a result (cf. Jaeger et al. [63]):

• Independence. It is assumed that the services in the composition do not
depend on each other regarding their successful execution. This assump-
tion presumes that the result of the execution or the delivered QoS of one
service does not affect the QoS characteristics of other services. Dependen-
cies would occur, for example, if a computer would host multiple services of
the composition and therefore have a common point potential failure which
would affect QoS characteristics, such as the reliability, in a specific way.

• Trust. For the aggregation of QoS it is assumed that the given values of a
service are correct. Trusting the correctness of QoS information represents
a separate issue from the algorithmic aggregation. For the discussion about
the aggregation, it is assumed that the QoS of individual services represents
an already negotiated and accepted agreement between service importer and
exporter.

• Uniformity. For the aggregation, it is assumed that the given values are
compatible to each other. All individual values must conform to a common
group of measures. For example, it is assumed that a property describing
the response time uses compatible measures such as milliseconds, seconds,
or minutes. Furthermore, it is assumed that all given values conform to the
same definition. For example, all services start and end from the same point
of measurements to define the response time, e.g. when the request has been
submitted and the response has been delivered completely.

• Equipartition. The aggregation of QoS for selection of services to form
a composition takes place at the design time. In this phase, it is assumed
that the execution environment executes services in conditional join and split
cases with equal probability. For example, if in the case of an XOR-split the
current flow chooses a service from a number of services, it is assumed that
the execution of the service follows an uniform distribution. The coverage
of other kinds of distributions represents a possible extension to the compo-
sition model.

Based on the workflow patterns and these considerations, a model consisting
of nine basic composition patterns can be derived. Figure 4.1 shows these patterns

59

4.3. Structural Model of Service Compositions

using a simple notation that indicates directed graphs. This notation uses rectangu-
lar boxes to denote a routing element and it uses circles to denote a task. Arrows
define the precedence relations between the tasks and routing elements. From these
patterns, two sequential patterns are defined (cf. Jaeger et al. [63]):

AND
SPLIT

AND
JOIN

(...)

AND
SPLIT

XOR
JOIN

(...)

XOR
SPLIT

XOR
JOIN

(...)

OR
SPLIT

OR
JOIN

(...)

OR
SPLIT

m/n
JOIN

(...)

LOOP
END

(...)

CP4

CP6

CP3

CP7 CP8

CP1 CP2

SEQ
START

SEQ
END

LOOP
START

AND
SPLIT

m/n
JOIN

(...)

CP5

OR
SPLIT

XOR
JOIN

(...)

CP9

Figure 4.1: Composition patterns.

• Sequence of service executions (CP1). A sequence can prescribe a spe-
cific order in which an execution environment executes the services. Al-
ternatively, the execution environment executes the services sequentially in
an arbitrary order. For the aggregation model, the order of the executions
is not relevant. The aggregation rules for the sequence of service execu-
tions, which will be introduced in a subsequent section, entirely operate on
unordered sets, or represent an addition or multiplication of the individual
values. Since a set contains elements without any applied order and the ad-
dition and multiplication shows commutativity, such aggregation rules can
be also applied to any order of execution.

• Simple Loop (CP2). The execution of a service or a sub-arrangement of
services and composition patterns is repeated for a certain amount of times.

For the parallel and conditional patterns, the relevant workflow patterns do not
fit directly into a model for aggregation. The reason is that for the algorithmic
aggregation of values, not only the split but also the join condition must be consid-
ered. This can be shown by the following example: In the example, the minimum
response time is subject for aggregation. If a flow splits into a number of parallel
flows, three join structures could be possible:

60

4.3. Structural Model of Service Compositions

a) joining with synchronisation of all parallel flows or

b) joining with synchronisation of one flow, and

c) allowing joining of more than one flow but less than all flows.

Figure 4.2 shows an example of the three setups with each three services showing a
minim execution of 3, 5 and 7 units. In case a), the minimum response time would
be the minimum response time of the greatest value (the slowest). In case b), the
smallest of the involved values represents the minimum response time possible.
For the case c), the relevant value depends on the number of considered flows for
synchronisation: For example, if two flows are relevant for synchronisation, the
second-smallest value denotes the minimum response time of this structure. It
must be noted that this example presumes that after the synchronising flow has
arrived the other flows are ignored.

AND
SPLIT

7 3

AND
JOIN

AND
SPLIT

7 3

XOR
JOIN

AND
SPLIT

7 3

2/3
JOIN

5 5

a) b) c)

5

Figure 4.2: Example of join-relevant aggregation of response time.

In addition, another reason exists for combining different split and join pat-
terns: A model that consists of composition patterns can be aggregated by a re-
cursively working algorithm. Then, an algorithm must identify independent, self-
contained atomic patterns in the composition. Consequently, each atomic structure
must show a defined start and end of service executions. In the first example, var-
ious combinations between split and join operations are possible. However, only
a part of them make sense in combination. For example, an XOR-split cannot
occur in combination with an AND-join. The following relevant composition pat-
terns were identified from the theoretically possible combinations (cf. Jaeger et
al. [63, 59]:

• XOR-split followed by an XOR-join (CP3). In a parallel arrangement only
one task is started. Thus, the synchronising operation synchronises only the
started task.

• AND-split followed by an AND-join (CP4). From a parallel arrangement
all tasks are started, and all tasks are required to finish for synchronisation.

61

4.3. Structural Model of Service Compositions

• AND-split followed by a m-out-of-n-join (CP5). From a parallel arrange-
ment all n tasks are started, but less m < n tasks are required to finish for
synchronisation.

• AND-split followed by an XOR-join (CP6). From a parallel arrangement
all n tasks are started, but just one task is required to finish for synchronisa-
tion. This pattern has been introduced by Ladner [77] as was then published
as an extension to the original model [63].

• OR-split followed by OR-join (CP7). In a parallel arrangement a subset of
the available tasks is started, and all of the started tasks are required to finish
for synchronisation. For example, from four available services, the run-time
environment starts always three of them which must also finish successfully.

• OR-split followed by a m-out-of-n-join (CP8). In a parallel arrangement
a subset of n tasks of all are started, and m < n tasks are required to finish
for synchronisation. For example, from four available services, the run-time
environment starts always three, of which two must finish successfully.

• OR-split followed by n XOR-join (CP9). In a parallel arrangement a sub-
set of n tasks of all are started, and only one task is required to finish for
synchronisation. This pattern has also been introduced by Ladner [77] as an
extension to the original model of composition patterns.

Based on these elements, a structural model of the composition can be created
that meets the following characteristics:

1. The structural model is a directed graph consisting of nodes which represent
tasks and nodes which represent routing elements.

2. The arrangement of the nodes and routing elements is as such that the entire
model can be collapsed into one node by applying the set of composition
patterns as shown in Figure 4.1. This implies the following points:

• This graph must not contain loops except those matching the loop pat-
tern.

• The routing elements must be used pair-wise as defined in Figure 4.1.

• The graph must start with a routing element that has only one or more
outgoing paths and end with a corresponding routing element that has
only one or more incoming paths.

• Within such pairs of routing elements, the number of outgoing paths of
a splitting or starting element must be equal to the number of incoming
paths of the corresponding joining or ending element.

62

4.3. Structural Model of Service Compositions

3. Besides “normal” tasks and services, empty tasks that do not perform any
functionality are possible. Empty tasks are necessary to form structures that
are not directly supported by the given nine patterns. The application of
these tasks will be explained further in the upcoming Section 4.5. Empty
tasks behave neutral in terms of the applied QoS characteristics, i.e. their
invocation costs nothing, does not take any time etc.

4. For drawing such structures by using the patterns as shown in Figure 4.1,
the sequential pattern elements will be simplified and thus, the starting and
ending element will not be shown. Moreover, empty tasks will not be drawn
but just represent a line between one starting routing element and the corre-
sponding finishing routing element.

The above mentioned description defines a structural model that preserves the
precedence among tasks in a composition structure while conforming to the struc-
tural elements represented by the composition patterns. However, for the aggrega-
tion method, which will be introduced in the next section, the precedence relations
between the elements in a sequence do not have an impact on the aggregation of
the QoS values. An order of the elements is not required for the aggregation, and
thus, the enclosed elements of a sequence can be represented by a set. Since prece-
dence relations do not exist between the elements of parallel structures, a set is
an adequate representation structure for these elements as well. The result from
these considerations is a data structure that represents the composition structure as
follows:

• A composition structure is represented by a set K1.

• The set K1 can contain tasks of the composition t1, . . . , ti or further sub-sets
K2, . . . , Kj .

• Each set Kx has a special type assigned, namely one of the composition
patterns CP1, . . . , CP9.

• Any set Kx can contain tasks or further sub-sets.

This model poses the requirement that a composition structure can be repre-
sented functionally equivalent by the recursive structure of task-pattern-sets. This
limitation prevents the direct application of this structural model to composition
models which allow the use of arbitrary links between the tasks or services. The
concept of flow and link elements found in WS-BPEL represents an example for
such structures. The limitations of such a structured model has been discussed by
Kiepuszewski et al. [73] and the upcoming Section 4.5 will give a further discus-
sion on these limitations.

63

4.4. A Method for Quality-of-Service Aggregation

4.4 A Method for Quality-of-Service Aggregation

The basic approach for the aggregation is to step-wisely collapse a graph represent-
ing the composition structure into a single node by alternately aggregating simple
sequences and parallel service executions. Figure 4.3 outlines this method: An al-
gorithm would identify composition patterns and subsequently perform the aggre-
gation on the level of each pattern until one statement remains. Thus, the algorithm
does not consider the entire graph at once from a global perspective, but rather only
local composition patterns.

}AND
SPLIT

AND
JOIN

AND
SPLIT

m/n
JOIN

XOR
JOIN

XOR
SPLIT

}
AND

SPLIT

m/n
JOIN

XOR
JOIN

XOR
SPLIT

XOR
JOIN

XOR
SPLIT

}
XOR
JOIN

XOR
SPLIT } }

Figure 4.3: Collapsing the graph step by step.

This approach builds on the aggregation of different QoS characteristics for
each set Kx, which is defined to refer to a particular composition pattern. There-
fore, for each characteristic and for each pattern type an aggregation rule must be
defined. A basic set of aggregation rules has already been discussed in previous
work (cf. Jaeger et al. [63, 64]. For this thesis, the discussion is extended and
covers the different QoS characteristics that were mentioned in Section 3.2.

In the following sub-sections, the aggregation of relevant QoS characteristics
is discussed and defined. For the definition, the following notation is used: k rep-
resents the number of services that the considered pattern contains, l represents the
assumed number of repetitions for the loop pattern, xi represents a given value for
each service with index i denoting a particular element, and K is the set containing
all xi. For the case that a set K contains one more sub-sets, the method presumes
that these have been aggregated first and thus are represented in K by a single value
as well. The variable xa represents the aggregated value. In the previous work, n
has been used as the variable that refers to the individual services which collided
with the “m-out-n-join”-constructs from the notation of the composition patterns.

This aggregation model requires two remarks: The first remark covers the loop
pattern and the second covers the OR-split patterns. For the case that the number of

64

4.4. A Method for Quality-of-Service Aggregation

loops will be determined at run-time, the model does not represent the loop pattern
sufficiently. For example in WS-BPEL, the condition of a loop statement is defined
with a Boolean expression (with a while-construct) and consequently the number
of loops can be determined at run-time only. However, an algorithm must know
the number of occurring loops for the aggregation of QoS. Otherwise, the model
represents an estimation about the number of loops. Generally, the aggregation rule
as proposed for the loop case would fit well in monitoring the QoS for analysis.
Nevertheless, it cannot serve as a decision support in the modelling process if the
aggregation task does not know the number of loops at the design time.

To address the OR-splits, an aggregation model must know which paths are
taken into account for this split. To determine the upper and lower bound for QoS
values all combinations of possible splits must be considered. The result is a set of
possible combinations. For example, if a 2-out-of-5-OR-structure has the following
elements K = {x1, x2, x3, x4, x5}, then the possible combinations would be:

KC = {{x1, x2}, {x1, x3}, {x1, x4}, . . . , {x4, x5}}

In general, the resulting set KC contains all relevant combinations of the tasks
depending on the OR-split and -join semantics. Then, an aggregation function can
evaluate the resulting QoS of individual combinations. To simplify the notation
in the tables, a notation is defined that a function fC is applied to the relevant
combinations of elements represented by individual sets in KC :

f(fC(KC)) := f
(
{fC(Ssub),∀Ssub ∈ KC}

)
where Ssub denotes an arbitrary combination in KC .
The introduced model presumes that a transformation transforms the flow de-

scription of a composition into this model of composition patterns. Upcoming
Section 4.5 will discuss such transformations further. Once such a representation
exists, a selection process can perform the aggregation of QoS categories based on
the QoS of the individual tasks.

Regarding the related work, other ideas and proposals for patterns exist to de-
scribe the structural arrangements of service compositions. Specifically for the
compositions of services, Yang et al. have proposed a set of structural patterns to
define the execution flow characteristics of a service composition [155]. Florescou
et al. have developed an XML-based programming language to define execution
statements to form characteristics of Web services [33]. WS-BPEL [126] can be
seen as a general purpose flow language which represents also a structural model
of a flow.

Besides the flow or workflow languages, the Object Management Group (OMG)
has proposed a Unified Modelling Language (UML) which also provides elements
for expressing a flow structure. The UML provides the activity diagram that ser-
vices this purpose [100]. Activity diagrams contain also the concepts of sequences,
parallel splits and joins. All these languages that were identified for describing

65

4.4. A Method for Quality-of-Service Aggregation

compositions have in common that they cover different purposes than the aggrega-
tion of QoS. Such purposes can be, for example, the definition of a control flow in
order to parameterise an execution environment. The composition patterns instead
represent a set of structural elements for modelling compositions specifically de-
signed for the aggregation of QoS values derived from the workflow patterns. The
next sections will explain the aggregation for a selection of QoS characteristics,
which were introduced in Section 3.2: throughput, response time, cost, availability
and encryption grade.

4.4.1 Aggregation of Throughput

The throughput of a service denotes the amount of processable data per time unit.
Usually, the throughput is given in requests per second and is interpreted as an
increasing dimension, which means that a higher value denotes a better quality.
The throughput can also denote the processable amount of data within a given
time. However, the request per time matches better the characteristics of a service
invocation and is thus preferred over the data per time. Otherwise the question rises
if all services with different functionality in the composition process the data in a
comparable way. Then, a detailed discussion for each case is necessary.

In a sequence, the node with the lowest value assigned determines the through-
put for the aggregated property. In a parallel arrangement, it is possible that
processable data splits among the parallel tasks. In this case, the aggregation of
throughput would result in addition of the throughput values of the individual ser-
vices. It is also possible that individual requests are split among the tasks. This
would result in an addition of the given values as well. However, such an arrange-
ment presumes that all the parallel services provide the same functionality. If the
scenario is to implement a business model, it can be presumed that such redundan-
cies are not taken into account on the level of the business model. Thus, such a
redundant arrangement can be considered on an optional basis.

For the aggregation of throughput in parallel cases, the set of starting services
is considered relevant. Otherwise, the server will refuse additional requests, if the
limit of maximum possible requests is exceeded. Therefore, to ensure the success-
ful execution of the composition, all services must be fully capable of accepting the
occurring invocations. The aggregation of throughput is shown in Table 4.2. The
given rules are based on the assumption that a service provider provides statements
about the guaranteed minimum and maximum throughput.

4.4.2 Aggregation of Response Time

Contrary to the throughput, the response time is a decreasing dimension, meaning
that a lower value is preferred. As mentioned in Section 3.2, the response time
and latency or the execution time are used as synonyms. The response time of a
service can be defined as the sum of time to transfer the request and response over
a network and the time for queuing the request on the provider side (latency), and

66

4.4. A Method for Quality-of-Service Aggregation

Comp. Pattern Maximum Throughput Minimum Throughput

1 Sequence xa = min{x1, . . . , xk} xa = min{x1, . . . , xk}
2 Loop xa = x xa = x

3 XOR-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}
4 AND-AND xa = min{x1, . . . , xk} xa = min{x1, . . . , xk}
5 AND-N/M xa = min{x1, . . . , xk} xa = min{x1, . . . , xk}
6 AND-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}

7 OR-OR xa = max
“
min(KC)

”
xa = min{x1, . . . , xk}

8 OR-N/M xa = max
“
min(KC)

”
xa = min{x1, . . . , xk}

9 OR-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}

Table 4.2: Aggregation rules for throughput.

the time to process the request (cf. Ran, introduced in Section 3.2.1):

ttotal = ttransfer + tqueuing + tprocessing

The entire time needed to perform a task, i.e. ttotal, is considered for this work.
Applying the method to the aggregation, a definition for lower and upper bounds
is shown in Table 4.3. In a sequence and a loop, the time is determined by the
sum of the values of each service invocation. In a sequential case, the definitions
for lower and upper bounds are the same. Because the response time represents a
decreasing measure, the largest value in a parallel arrangement of services denotes
the worst case. The nature of the response time also demonstrates that considering
the same split operation (AND), different join operations result in different aggre-
gation rules. To determine the minimum response time in the AND-AND case, the
largest value of all involved services denotes the overall minimum value. However,
for the AND-XOR pattern, the smallest represents the relevant value.

4.4.3 Aggregation of Cost

The cost of a service represents a measure for the resources consumed by a service
execution. Therefore, the cost can be seen as a decreasing dimension, where a
lower value denotes better quality. For the cost, two main models are possible: For
example, Tosic et al. mention two payment methods: a pay-per-use use model that
considers the number of service invocations and a subscription model that allows
consumers to invoke a service on a flat-rate basis [133]. For the aggregation of
cost, it is important that all statements refer to the same payment model.

Table 4.4 shows the aggregation definitions for the upper and lower bounds of
the cost. Contrary to the response time, an aggregation rule must take all started
services into account, regardless of whether they are relevant for the join operation
or not. To cover the OR-split statements, the function sum(. . .) denotes to add the
elements in each of the sets in KC .

67

4.4. A Method for Quality-of-Service Aggregation

Comp. Pattern Maximum Response Time Minimum Response Time

1 Sequence xa =
Pk

i=1 xi xa =
Pk

i=1 xi

2 Loop xa = lx xa = lx

3 XOR-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}
4 AND-AND xa = max{x1, . . . , xk} xa = max{x1, . . . , xk}
5 AND-N/M xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}
6 AND-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}

7 OR-OR xa = max{x1, . . . , xk} xa = min
“
max(KC)

”
1

8 OR-N/M xa = max{x1, . . . , xk} xa = min
“
max(KC)

”
1

9 OR-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}
1For example, considering three tasks out of five, the min of the 3rd quickest is relevant.

Table 4.3: Aggregation rules for the response time.

Pattern Maximum Cost Minimum Cost

1 Sequence xa =
Pk

i=1 xi xa =
Pk

i=1 xi

2 Loop xa = lx xa = lx

3 XOR-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}
4 AND-AND xa =

Pk
i=1 xi xa =

Pk
i=1 xi

5 AND-N/M xa =
Pk

i=1 xi xa =
Pk

i=1 xi

6 AND-XOR xa =
Pk

i=1 xi xa =
Pk

i=1 xi

7 OR-OR xa = max


sum(KC)

ff
xa = min


sum(KC)

ff
8 OR-N/M xa = max


sum(KC)

ff
xa = min


sum(KC)

ff
8 OR-XOR xa = max


sum(KC)

ff
xa = min


sum(KC)

ff

Table 4.4: Aggregation rules for the cost.

4.4.4 Aggregation of Availability and Reliability

Also discussed in Section 3.2, the terms availability and reliability show similari-
ties. The UML QoS-Profile discusses both the reliability and the availability. The
author Ran discusses the availability as a characteristic denoting whether a ser-
vice is present and ready for immediate use (cf. Section 3.2.1). Then, the avail-
ability is defined by the quotient of the available time divided by the total time
considered [112]. For this discussion, the following definition of availability for
repairable systems is considered:

A =
MTTF

MTTF + MTTR

In this equation, MTTR denotes the mean time to repair and MTTF denotes

68

4.4. A Method for Quality-of-Service Aggregation

the mean to failure, defined as MTTF =
∫∞
0 R(t)dt. In this definition the func-

tion R(t) defines the probability that a system fails against the time.
This concept of availability represents an increasing dimension and according

to this definition cannot, it exceed the value of 1. The availability is presented as a
probability, because a service exporter cannot predict whether a failure will happen
with the first or 1000th service invocation. As a consequence, for the aggregation,
the values are also taken as probabilities. For a sequence, this means that the ag-
gregated availability or reliability results from the multiplication of the individual
values. In parallel cases, all invoked services are relevant for the availability, while
for the reliability only the services required for the synchronising operation are
considered. Table 4.5 shows the aggregation rules for the availability. To cover
the OR-split statements, the function prod(. . .) denotes to multiply the elements in
each of the sets in KC .

Comp. Pattern Availability

1 Sequence xa =
Qk

i=1 xi

2 Loop xa = xl

3 XOR-XOR xa = min{x1, . . . , xk}
4 AND-AND xa =

Qk
i=1 xi

5 AND-N/M xa =
Qk

i=1 xi

6 AND-1 xa =
Qk

i=1 xi

7 OR-OR xa = max


prod(KC)

ff
8 OR-N/M xa = max


prod(KC)

ff
9 OR-N/M xa = max


prod(KC)

ff
Table 4.5: Aggregation rules for the availability.

4.4.5 Aggregation of Reputation and Fidelity

Zeng et al. have defined a reputation based on the idea of a user-given ranking, like
the online store Amazon allows ranking of products or the auction platform ebay
allows ranking of the users [159]. Furthermore, as mentioned in Section 3.2.2,
the reputation can be also considered as a measure to capture non-functional ser-
vice selection criteria that are usually not expressed with quantifiable measures.
One reason why the reputation is considered for this thesis is its characteristic:
The reputation represents an increasing dimension that might be an absolute value
(contrary to the availability) but an aggregation rule cannot summarise the values
in a sequential arrangement for example. Thus, it must be aggregated differently as
discussed for the other QoS categories. Kalepu et al. have discussed the reputation
in the sense of the fidelity concept in detail [69]. According to their discussion,

69

4.4. A Method for Quality-of-Service Aggregation

a general concept of reputation suffers from the fact that such a measure depends
on the subjective evaluation of individual users. Such a metric would benefit from
a comprehensive approach which eliminates subjective and counterproductive rat-
ings.

The fidelity denotes a measure for the overall quality of a service execution.
A formal, general definition of the fidelity is not given here, because the nature of
the fidelity depends on many aspects, such as the purpose of the composition, the
application domain, the nature of the output etc. Modelling and measuring the fi-
delity has been discussed for workflow applications (cf. Cardoso et al. [17]). Com-
pared with the reputation, the fidelity represents a more precisely defined measure
whereas the reputation asks for a plain judgement of individual consumers.

For the reputation, different aggregation rules are possible. For this thesis, the
idea has been considered that the reputation represents the mean average of the
ranks given by individual users. This is also the interpretation of Zeng at al. [159].
Consequently, the aggregation of reputation values should represent the average of
the individual services. It is assumed that such an aggregation rule would also suit
an aggregation of the fidelity. Other definitions can consider that the worst repu-
tation value is relevant. For example in ebay, users tend to focus on the negative
ratings while almost ignoring the positive ones. Thus, it is also possible to aggre-
gate reputation by considering the worst values. Table 4.6 shows the aggregation
rules based on the mean-value consideration.

4.4.6 Aggregation of Encryption Grade

The security can be interpreted in many different ways, as the UML QoS-Profile
has explained. Most of the characteristics show a binary nature: Either the service
supports a security characteristic (for example, an authentication method, facilities
to ensure confidentiality etc., as discussed by Ran [112]), or the service does not.
The aggregation of these binary characteristics does not require much convention
that would require a particular aggregation method: If a security characteristic is
required, each of the involved service candidates must provide this characteristic.

The only characteristic that can be described with numerical values is a mea-
sure that determines the length of a key that is used for encryption. Encryption
algorithms use a key either to encrypt data or to create an electronic signature. As
a rule of thumb, the longer an encryption key is the more difficult it is to break the
encryption or to damage the signature. Consequently, this characteristic shows an
increasing direction where a larger size denotes better quality.

For the aggregation of the encryption level in sequential patterns, the weakest
key is considered significant. In the parallel case, the encryption level is a non-
functional characteristic, which must be fulfilled by all significant parallel nodes
in the same manner. However, if the node does not fulfil a demanded level of
encryption, the execution would be worthless. Thus, this dimension is discrete and
the aggregation based on, for example, the average of involved services cannot be
applied. The aggregation for the encryption is listed in Table 4.6.

70

4.5. Support of Un-Structured Models

Comp. Pattern Reputation Encryption Grade

1 Sequence xa = 1
k

Pk
i=1 xi xa = min{x1, . . . , xk}

2 Loop xa = x xa = x

3 XOR-XOR xa = 1
k

Pk
i=1 xi xa = min{x1, . . . , xk}

4 AND-AND xa = 1
k

Pk
i=1 xi xa = min{x1, . . . , xk}

5 AND-N/M xa = 1
k

Pk
i=1 xi xa = min{x1, . . . , xk}

6 AND-1 xa = 1
k

Pk
i=1 xi xa = min{x1, . . . , xk}

7 OR-OR xa = 1
k

Pk
i=1 xi xa = min{x1, . . . , xk}

8 OR-N/M xa = 1
k

Pk
i=1 xi xa = min{x1, . . . , xk}

9 OR-1 xa = 1
k

Pk
i=1 xi xa = min{x1, . . . , xk}

Table 4.6: Aggregation rules for the mean reputation and the encryption level.

4.5 Support of Un-Structured Models

The structural model that is used by the aggregation method is not capable of ex-
pressing all possible structures of control flows. As mentioned in Section 4.2, the
structural model considered by the aggregation method is equivalent to a structured
workflow model (SWM), discussed by Kiepuszewski et al. [73]. However, flow
structures are possible that do not conform to SWMs. Kiepuszewski et al. name
them arbitrary workflow models and they define the following characteristics for
them:

1. An arbitrary workflow consists of sets of process elements (i.e. nodes in
a graph) and sets of transitions between process elements (i.e. edges in a
graph). Two types of process elements exist: tasks and a set of routing ele-
ments which are similar to the composition patterns.

2. Regarding the routing elements that split the flow, AND- and OR-splits are
considered. The AND-split has the same semantic as introduced for the com-
position patterns and the OR-split has the same semantic as the introduced
XOR-split.

3. Regarding the routing elements that join paths, AND- and OR-joins are con-
sidered analogously. The OR-join has a different semantic compared with
the XOR-join: For each incoming path, the routing element starts one in-
stance of the following flow. The AND-join has the same semantic as the
AND-join of the composition patterns.

4. Similarly to the composition patterns, process elements that do not have in-
coming paths represent initial items and process elements that do not have
outgoing paths represent final items.

71

4.5. Support of Un-Structured Models

5. Furthermore, Kiepuszewski et al. consider the following additional assump-
tions: For example, all initial activities are supposed to start concurrently,
and the workflow ends when all ending process elements have been reached,
following an “until there is nothing else to do”-idea.

The main characteristic of an arbitrary workflow model is that the process el-
ements that split and join different paths can be arranged with fewer restrictions
compared with an SWM. Considering WS-BPEL as an example, the flow and link
elements allow forming structures that cannot be expressed as an SWM. Contrary
to these two elements, WS-BPEL also includes elements named structured activi-
ties that comply with an SWM. Besides WS-BPEL, the workflow patterns by van
der Aalst et al. indicate that the arbitrary models are considered in the workflow
domain, for example, as indicated by the arbitrary loop pattern. The advantage of
allowing such arbitrary links between tasks and routing elements is obviously a bet-
ter expressiveness in terms of which structural arrangements can be modelled. The
downside of allowing such arbitrary models is that an invalid structural model can
lead to deadlocking situations when the workflow or the composition is executed.

The arguments used in discussion about arbitrary workflows versus SWMs is
related to the classic discussion on the use of go to-statements in program code.
The discussion has influenced the design of programming languages, because ar-
bitrary jumps in a program flow were considered “harmful” (cf. Djikstra [23] and
Knuth [74]): Allowing go to-statements would tempt programmers to write un-
structured, error-prone and hard-to-verify program code. Moreover, many cases
were identified for which programmers use go to-statements, but could have used
more appropriate structures to express an algorithm (e.g. a while-statement). Knuth
drew the conclusion that it depends on individual application cases whether go to-
statements are useful and offer advantages or they can be omitted by more appropri-
ate programming constructs [74]. The same considerations apply when discussing
advantages of SWMs over arbitrary workflow models.

This section will discuss examples that require the use of arbitrary workflow
models. In the following, three main example cases of arbitrary workflows are
presented that do not conform to an SWM: 1) a splitting or joining routing ele-
ment does not have a corresponding closing element, 2) arbitrary loops or go to-
statements and 3) nested patterns where the flow from one pattern is directed inside
another pattern.

4.5.1 Open Elements

The first case occurs if routing elements are not used in pairs or if corresponding
routing elements do not form pairs in terms of the number of outgoing and incom-
ing paths. The graph (a) shown in Figure 4.4 represents such a constellation: An
AND-split element has two outgoing paths and no corresponding join element is
provided. In a similar case, the open AND-split has a number of outgoing paths,
but a corresponding AND-join element has less incoming paths. Because of the

72

4.5. Support of Un-Structured Models

missing joining element or path in this example, the pattern-wise aggregation can-
not be performed.

It must be noted that the diagram (b) shown in Figure 4.4 has the same pattern
of an open AND-split. In this case the solution would be to add the two missing
joining elements. This modification is possible, because a part of the definition for
arbitrary workflows presumes that all final activities must end, in order to deter-
mine the end of the entire flow. Thus, adding the corresponding AND-splits would
not change the operational behaviour. Obviously, the problem of open AND-splits
occurs if this element is placed within another parallel element. In addition, the
problem can occur with open parallel joining elements in the way that the compo-
sition starts at different at once. For these cases it is assumed that all starting nodes
will be invoked at the same time. A corresponding example is shown in graph (c)
of Figure 4.4.

AND
SPLIT

AND
SPLIT

AND
JOIN

AND
SPLIT

AND
SPLIT

1

2

3 75

4 6

(a) (b)

AND
SPLIT

AND
SPLIT

1

2

3 7

5

4

6

AND
JOIN

AND
JOIN

AND
SPLIT

AND
JOIN

AND
JOIN

(c)

Figure 4.4: Examples of open parallel structures.

4.5.2 Arbitrary Loops

In a second case, loops are used in an unstructured manner. Such loops can point
from inside of one pattern element into another pattern element. The diagram (a)
shown in Figure 4.5 has a loop coming from a parallel structure pointing back
to a place outside this structure. The pattern-wise aggregation cannot take place
because of the open AND-split and the open XOR-join structure.

Contrary to that, a loop that occurs inside another pattern still conforms to an
SWM. The graph (b) in Figure 4.5 shows such a structure. A possible transforma-
tion into a structured model can be obtained by replacing the split and join routing
elements with the loop pattern. This case shows that a loop only becomes prob-
lematic for structured models if the enclosing pattern is left.

73

4.5. Support of Un-Structured Models

AND
SPLIT

AND
SPLIT

AND
JOIN

XOR
JOIN

AND
SPLIT

XOR
JOIN

(a) (b)

LOOP
END

LOOP
START

Figure 4.5: Examples of loops.

4.5.3 Nested Patterns

As the third case, a path can leave “its” pattern and point to a joining element of
another pattern. Figure 4.6 shows an example of such a structure with three models
(a), (b) and (c). The example given in (a) has been discussed by Kiepuszewski et
al. [73] and by van der Aalst [144] and it serves as the classic case when it comes
to the discussion of expressiveness among workflow or composition languages.
All splitting and joining routing elements have a corresponding counterpart and all
elements have two outgoing or incoming paths respectively.

The graph (b) also represents a special case, which Kiepuszewski et al. discuss
as a specific overlapping structure. The graph (c) gives also an example for an
occurring deadlock: The main two paths are never followed at the same time but
both are required when the flow arrives at the lower AND-join elements. As a
result, this structure results in a deadlocking situation. In all three cases, a pattern-
wise aggregation cannot be performed, because every pair of AND-split and -join
elements shows a dependency to an element outside of the pattern.

4.5.4 Transformations to Structured Workflow Models

The three cases introduced above represent structural arrangements that cannot be
modelled with SWMs. As a consequence, the proposed aggregation model cannot
be applied. Kiepuszewski et al. [73] have proposed transformations that convert ar-
bitrary workflows into equivalent SWMs in order to cope with this problem. Their
approach is to utilise node duplication and the use of auxiliary variables to form ad-
ditional conditional branches. With node duplication, the invocation of tasks in the
composition is duplicated. The authors have shown the equivalence of an arbitrary
workflow to a corresponding SWM by using a technique named bi-simulation. By
applying the bi-simulation technique, the equivalence of two graphs can be deter-
mined by a node-wise comparison of the possible states. Kiepuszewski et al. have

74

4.5. Support of Un-Structured Models

AND
SPLIT

XOR
JOIN

XOR
SPLIT

XOR
JOIN

AND
SPLIT

XOR
JOIN

AND
SPLIT

AND
JOIN

XOR
JOIN

AND
SPLIT

AND
JOIN

XOR
SPLIT

(b) (c)

AND
SPLIT

AND
JOIN

AND
SPLIT

AND
JOIN

(a)

Figure 4.6: Examples of nested patterns.

shown the following:

• A transformation is always possible if an arbitrary workflow model does
not contain any tasks executed in parallel. For this case, only splits are al-
lowed that branch into exactly one flow. The equivalent structure of the
composition patterns is the combination of XOR-split and -join elements.
Transformations can also applied to structural models that contain an arbi-
trary loop.

• A transformation is not always possible if a model contains a parallel split
or join element without its corresponding element or that contains nested
structures. The authors explain that only models that contain parallel struc-
tures and that overlap in a predefined way (as shown in graph (b) of Fig-
ure 4.6), or do not merge at some point (as shown in graph (b) of Figure 4.4)
can be transformed into an SWM.

Transforming Parallel Cases to Structured Workflow Models

Kiepuszewski et al. have distinguished six sub-cases of parallel flows. For each
it was discussed whether a transformation to an SWM is possible or not. From
these six cases, they have identified four which allow deadlocking flows. Such
structures cannot be transformed into an SWM until this deadlock potential has
been eliminated. The remaining two cases are named parallel exits (cf. Figure 4.4
(a)), and a synchronised entry into a parallel structure (cf. Figure 4.4 (c)). For
these two structures, Kiepuszewski et al. have shown that no transformations into
an SWM are possible.

The case of open parallel structures and the case of arbitrary loops represent
such parallel exits or synchronised entries. They can be modelled as a nested ar-
rangement of parallel structures. For the case of the open parallel structures, it is

75

4.5. Support of Un-Structured Models

assumed that all starting tasks start at the same time. For the ending tasks, it is as-
sumed that all need to end in order to finish the entire composition. Then, an AND-
split or an AND-join respectively can be added as it is shown in Figure 4.7 (a). The
result is a composition structure that shows nested parallel routing elements. This
nested structure is still not compatible with the proposed aggregation method and
thus, the aggregation cannot be performed.

In the case of occurring loops, a loop structure can be unrolled. This is also
named “loop unwinding”. By loop unrolling, the looped part of the execution flow
is written repeatedly for the amount of loops. Of course, this also presumes that
the amount of loops is known at design time or at least a maximum number of
loops can be guessed. In the previous section, it was explained that knowing the
number of occurring loops in advance is necessary to perform the QoS aggregation
in general. Therefore, only this case is considered for the aggregation model. If
the number of loops is known, then the loop can be unrolled: The repeated part
is added to the graph as shown in 4.7 (b). The loop case can also be seen as a
variant of the case of nested parallel routing elements. And as a consequence, the
aggregation cannot be applied as well.

AND
SPLIT

AND
SPLIT

AND
JOIN

(a)

AND
SPLIT

AND
SPLIT

AND
JOIN

XOR
JOIN

(b)

AND
SPLIT

AND
SPLIT

AND
JOIN

AND
JOIN

AND
SPLIT

AND
SPLIT

AND
JOIN

XOR
JOIN

AND
SPLIT

AND
SPLIT

AND
JOIN

AND
JOIN

(...)

Figure 4.7: Open parallel and arbitrary loop structures and possible transforma-
tions.

Kiepuszewski et al. discuss the classical example of nested parallel elements,
which is shown again in graph (a) of the Figure 4.8: In this graph, two pairs of
sequential tasks are executed in parallel. In addition, after the task 1 has been
finished it synchronises with the first task of the other path only. For this case,
Kiepuszewski et al. have proven that it is not possible to transform the arbitrary
workflow into an SWM with equivalent functional behaviour, because the parallel
paths have inter-relating dependencies.

It must be noted that conditional branches do not result in this difficulty: The
case shown in graph (b), without parallel but with conditional branches, can be

76

4.5. Support of Un-Structured Models

AND
SPLIT

3 4

AND
JOIN

AND
SPLIT

AND
JOIN

21

AND
SPLIT

3 4

XOR
JOIN

XOR
SPLIT

AND
JOIN

21

XOR
SPLIT

3 4

AND
JOIN

AND
SPLIT

XOR
JOIN

21

XOR
SPLIT

3 4

XOR
JOIN

XOR
SPLIT

XOR
JOIN

21

(a) (b) (c) (d)

XOR
SPLIT

3 XOR
JOIN

XOR
SPLIT

21

3*

XOR
JOIN

4

Figure 4.8: Structures that contain nested parallelism.

transformed into a structured model using node duplication: The first XOR-split
defines that only one of the outgoing paths is started. Thus, the first XOR-join
after task 1 always has only one possible incoming path. Then, the middle XOR-
join could be dropped and to the XOR-split element, a corresponding XOR-join
element with a duplicated node 3 can be added. Because the given aggregation
rules consider only the selection of a minimum or a maximum value, the additional
node will not change the result of the aggregated QoS as compared with a manual
inspection of the QoS, which would involve the paths (1,3), (2,3), (2,4).

The example shown in graph (c) represents a case which would result in a
deadlock, because the AND-join routing element would wait for both incoming
paths, but only one of them would have been started before. A similar example
is given by graph (d) where the given structure can result in a deadlock: It could
happen that the right path does not arrive at the bottom AND-join element. Both
examples do represent valid workflow models. However, their execution can result
in erratic behaviour. Both examples also show the disadvantage of using arbitrary
structures: It is possible that deadlocking flows can be defined while structured
models prevent any irregular behaviour.

Transforming Parallel Cases to Non-Equivalent SWMs

The goal of the discussion given by Kiepuszewski et al. is to provide transfor-
mations that result in functional equivalence compared with the original arbitrary
workflows. This is a different goal from what is required for the aggregation
method: For the aggregation, structural models are required that result in suit-
able QoS statements referring to the original arbitrary model. Thus, not the func-
tional equivalence is relevant for transformations between arbitrary workflows and
SWMs. The proposed transformation focusses on the main example given in Fig-
ure 4.8(a), because of its relevance for loop-unrolling and open parallel structures.

The proposed transformation is outlined in Figure 4.9 with two examples (a)

77

4.5. Support of Un-Structured Models

AND
SPLIT

3 4

AND
JOIN

AND
SPLIT

AND
JOIN

21

XOR
SPLIT

3 4

XOR
JOIN

AND
SPLIT

XOR
JOIN

21

3 4

AND
JOIN

AND
SPLIT

AND
JOIN

21

(a) (b)

2*

3

4

XOR
JOIN

AND
SPLIT

XOR
JOIN

21

2*

XOR
SPLIT

XOR
JOIN

AND
SPLIT

AND
SPLIT

Figure 4.9: Structures that contain nested parallelism and possible transformations.

and (b). The transformation is performed as follows: For each branch that defines
a dependency, concurrent paths are created that have duplicated nodes. Of course,
applying the aggregation method to the resulting SWM will result in a different
QoS, because the duplicated node also results in a duplicated QoS. For example,
if the cost is relevant, the corresponding QoS statement is counted twice and thus
the resulting cost is higher than in reality. Thus, for each QoS characteristic that
is based on an arithmetic operation (e.g. the addition or the multiplication), the ag-
gregated QoS statement must be corrected by neutralising the corresponding dupli-
cated node. The conclusion is that such a transformation is possible. Nevertheless,
performing the QoS aggregation by this way is more complex than considering
SWM-compatible structures only.

Conclusion

For cases where the composition structure does not conform to an SWM, Kie-
puszewski et al. have shown transformations from specific cases of arbitrary work-
flow models into SWMs. Consequently, the aggregation method can be also per-
formed for these cases. In summary, the introduced transformations allow the sup-
port of the following cases by the aggregation method:

• Arbitrary workflow models without parallelism. Flow models are sup-
ported that conform to the definition of arbitrary workflows and do not con-
tain any tasks that are executed in parallel. For these models, transformations
exist that result in an SWM.

• Arbitrary workflow models with structured parallelism only. If parallel
structures occur in a workflow model, they must form an independent sub-

78

4.6. Related Methods for Quality-of-Service Aggregation

part that conforms to the definition of an SWM. For these models, transfor-
mations can be also applied to achieve a model that can be entirely reduced
into one statement.

• Arbitrary workflow models with special cases of unstructured paral-
lelism. Special cases of parallel flows that do not conform to SWMs can be
transformed into an SWM. The work of Kiepuszewski et al. has discussed
such special cases of unstructured parallelism and showed corresponding
transformations [73].

Regarding the remaining structures, in particular the nested parallelism, a trans-
formation is possible that would result in a functionally different SWM. In addi-
tion, the aggregation method would also require a modification to process the QoS
on the resulting model. Such a method raises the efforts to perform the aggrega-
tion method. The decision that the aggregation method only covers SWMs and the
above mentioned three cases of arbitrary workflow models represents a compro-
mise between support of possible flow models and feasible QoS aggregation.

4.6 Related Methods for Quality-of-Service Aggregation

The work of Puschner and Schedl was already mentioned. Besides their own ap-
proach, the authors mention also a couple of related research efforts in the field
of software development for real-time environments [111]. Contributions to this
field either presume a structured model like SWMs to allow the computation of
response times or propose specific approaches that cover the response time and a
measure for reliability. Thus, these approaches were not regarded as feasible as a
foundation for an aggregation method that covers different QoS characteristics in
service compositions.

Lee discusses the problem of QoS-based selection to form compositions [78].
To achieve QoS statements for the composition, he proposes aggregating cost and
response time by the addition of individual values. This approach does not result in
wrong statements. However, a structure-aware model leads to a more appropriate
statement that will be closer to the delivered QoS during run-time. For example,
only one of the values in parallel XOR-structures is relevant instead of the added
total. An addition of all the response time values presumes that all tasks in the com-
position will be executed in a sequential manner. Thus the proposed aggregation
by forming a sum is limited to covering this case. Yu and Lin [158] also consider a
sequential structure, which includes either a sequence of tasks or, as they mention,
a service composition that shows a sequence of invocations that is considered to be
relevant for the composition. As explained for the aggregation method by Lee, the
resulting QoS statements might not be as close to the run-time QoS as the values
obtained by the pattern-based aggregation for parallel structures.

Zeng et al. present a framework that covers many aspects of forming compo-
sitions while considering the QoS as selection criteria [159]. In their work, they

79

4.6. Related Methods for Quality-of-Service Aggregation

use a more detailed method than the aggregation proposed by Lee. They discuss
a set of QoS characteristics, but they also make clear that their approach is not
limited to these. Their aggregation method specifically considers the execution du-
ration, which is equivalent to the response time mentioned in this thesis. In their
approach, an algorithm identifies a critical path that shows the longest time for the
given setup. Then, the addition of the individual QoS values is taken as the result
for the overall execution of the composition. For the other QoS characteristics, the
proposal is to consider the QoS values of the tasks that belong to the critical path.
For example, to aggregate values for availability, the product of the tasks of the
critical path is relevant. This approach is justified with the assumption that tasks
which do not belong to the critical path will also not affect the resulting QoS during
run-time.

Although this method might deliver appropriate results, an example can be
given where the pattern-based aggregation will lead to a more precise aggregated
statement. This example is shown in Figure 4.10: An arrangement of four tasks
is given from which only one will be invoked at a time (the XOR-split). In this
arrangement, a critical path algorithm considering the execution or response time
would identify the path with task 2. Consequently, the resulting availability for
this statement is 0.98. If it is assumed that the other paths will be taken with a
reasonable frequency, the resulting availability will be lower than 0.98. Thus, the
proposal to consider the average mean results in a statement which is more likely
to reflect the QoS during run-time.

XOR
JOIN

XOR
SPLIT

3

1

2

4

exec time: 170
availability: 0.99

exec time: 210
availability: 0.98

exec time: 40
availability: 0.90

exec time: 100
availability: 0.95

Figure 4.10: Example for the aggregation based on a critical path.

A possible extension to the proposed aggregation method by Zeng et al. would
be to apply the critical path algorithm not only to the execution or response time
but also to the other QoS characteristics. Based on the critical path found for each
QoS characteristic, the product or the sum of the individual values will also lead to
similar results as the pattern-based aggregation does. However, this approach leads

80

4.7. Aggregation for Quality-of-Service Monitoring

to the problem that, for each considered QoS characteristic, an algorithm must be
designed that identifies the critical path. This is considered to be more complex
than the definition of aggregation rules for structured patterns.

Cardoso discusses the aggregation of QoS in the context of workflows [15].
He proposes a structured model as well and accordingly the aggregation method
is based on defined sets of structural patterns. Their contribution also includes
the probability of invocations in conditional parallel structures, which is similar
to the monitoring approach discussed in the previous section. The approach of
Cardoso does not cover the m-out-of-n-joins (and splits) as mentioned among the
workflow patterns by van der Aalst et al. By using only AND- and XOR-elements,
the semantics of the m-out-of-n joins can be simulated as van der Aalst et al. have
shown [146]. However, this equivalent structure, achieved by using the simpler
routing elements, represents an arbitrary workflow model and cannot be covered by
the aggregation method that presumes an SWM. Thus, these additional structures
were added to cover also these patterns. Then, the resulting QoS statement for the
composition will be more precise.

4.7 Aggregation for Quality-of-Service Monitoring

The pattern-based aggregation method can be also applied to values that result
from monitoring the QoS of the composition during run-time. With monitoring
functionality, a retailer can capture the resulting QoS when the particular services
are invoked. For this monitoring process, a centralised, mediator-based structure is
presumed. Different setups of compositions are ignored for this discussion, such
as the brokered composition or a composition in a peer-to-peer environment as
described by Hull et al. [48]. The research conducted in the field of monitoring
workflows is also called workflow history management. Koksal et al. discussed the
motivations for monitoring workflows, and among the main reasons the following
apply as motivation in the field of service compositions [75]:

• Recovery and Balancing. Changes in the delivered QoS are inherent char-
acteristics of open distributed systems [35]. Service importers want to detect
QoS violations during the run-time and establish appropriate recovery activ-
ities. For example, a service invocation might take longer than guaranteed
and then compensation activities must be established. From the perspec-
tive of the service exporter, another motivation for monitoring the QoS is to
ensure different QoS parameters negotiated with different exporters. For ex-
ample, a service exporter must prioritise between different service importers
in case of shortages.

• QoS Analysis. If metrics about the response are captured, it is possible to
check whether services are delivered with the desired QoS or not. However,
monitoring the QoS only applies to metrics that can be directly derived from
the execution, such as response time or availability. For example, capturing

81

4.7. Aggregation for Quality-of-Service Monitoring

the cost during the execution depends on the payment method (flat-rate vs.
per-request).

The response time of the invocation of individual services can be used to
analyse the performance. Then, the main performance bottlenecks of the
composition can be identified. Regarding other QoS characteristics, the
monitored invocation frequency of particular tasks in conditional branches
can lead to a more precise aggregation of other QoS characteristics, such as
the availability.

• Controlling. The intended application of service compositions is the reali-
sation of an entire business process or parts of it. Financial controllers can
benefit from up-to-date information about the progress or running instances
of the composition. By the aggregation of the cost it can be determined, how
many resources were consumed and how many resources might be consumed
within a given time.

To establish recovery tasks when errors occur during the execution or to check
the delivered QoS of individual services, the aggregation of QoS values is not re-
quired. However, to analyse the performance of the composition, and to predict
future characteristics for controlling purposes, the proposed aggregation of QoS
values can be performed to deliver a more accurate estimation of the delivered
QoS.

In order to capture the delivered QoS in a Web service environment, different
approaches that share the mentioned motivations already exist. Then management
infrastructure WSOI developed by Tosic et al. provides the monitoring of the QoS
and that facilitates the exchange of services in case of unfavourable QoS [132].
This contribution targets the first motivation mentioned for monitoring. Techni-
cally, the functionality is achieved with an additional management tier on the side
of the service exporter. A retailer can use such a facility to adapt the QoS param-
eters delivered to the consumer. Erradi and Maheshwari propose a system with
similar objectives, but contrary to the work of Tosic et al., they promote a separate
broker-oriented infrastructure that can cover services of different exporters [28].
This approach results in a new role independent from the retailer and the 3rd party
service provider. Dogdu and Mamidenna specifically discuss such an independent
broker component that performs the invocation instead of the service importer [25].
With such an arrangement, this component can specifically monitor the QoS and
perform balancing among the pending requests, to provide an efficient scheduling
of invocations.

Baresi et al. have also discussed the monitoring of the QoS in service com-
positions [5]. They propose an infrastructure consisting of software components
that a retailer would use. In addition, they provide modules that 3rd party service
providers can integrate into their service infrastructure in order to stay compatible
with the monitoring environment of the retailer.

82

4.7. Aggregation for Quality-of-Service Monitoring

4.7.1 Aggregation of Mean Values

The difference between the aggregation during the modelling or the design time
and run-time lies in the nature of the computed values: The QoS aggregation dur-
ing design time provides proper upper and lower limits of a QoS characteristic,
like cost or response time. For QoS categories that require a mean-oriented aggre-
gation, the aggregation performed at design time represents an estimation. How-
ever, to properly calculate mean values from the given individual QoS statements,
the aggregation rule must know the distribution of task executions in conditional
branches in advance.

During run-time, monitoring facilities can also capture the distribution of ser-
vice executions in branching structures. Based on monitoring data, an aggregation
algorithm can consider the invocation occurrences to apply a weight to the indi-
vidual values. Then, the aggregation would result in an extrapolation of values in
parallel structures. For the given aggregation rules in Table 4.7, the weighted mean
for parallel patterns is considered. The definition distinguishes between the weight
of each value in the split operation gi and the weight of each value in the join op-
eration hi, where the index i refers to the individual service. The aggregation rules
for mean response time and mean cost are given in Table 4.7. To cover the OR-split
statements, the function sum(. . .) denotes to add the elements of the enclosed set,
if this set contains the values. Or it denotes to result in individual sums from the
enclosed set of sets (in the case of sum(KC)).

The aggregation of mean response time represents a special case: An appro-
priate approximation for all parallel patterns except the XOR-XOR combination
cannot be given. The following example explains the reason: A parallel AND-
AND arrangement contains three services. In this case, the distribution for the split
and join condition does not matter. It is assumed that all the services execute either
in 3 or in 7 seconds – each by a probability of 50%. The aggregation for this par-
allel arrangement would result in the value 5. Considering the setup, it is likely (at
a probability of 0, 875%) that at least one of the services would need 7 seconds, so
the mean for the aggregation should result in a value closer to 7 than the value 5.

This example shows that for characteristics that have aggregation rules depend-
ing on the join operation (as the response time), an aggregation method must take
the resulting distribution of the provided QoS into account or as an alternative, it
must capture the delivered QoS directly. This applies to all parallel arrangements
with a synchronising join involving more than one service. The average mean of
the given mean values would lead to a useless calculation. Thus, the proposed ag-
gregation rules can only refer to the upper and lower limits of response time. In
addition, the weighted mean must be interpreted as a statistical measure and thus
the aggregation does not make sense for just covering very few executions.

83

4.7. Aggregation for Quality-of-Service Monitoring

Pattern Mean Response Time Mean Cost

1 Sequence xa =
Pk

i=1 xi xa =
Pk

i=1 xi

2 Loop xa = lx xa = lx

3 XOR-XOR xa = 1
k

Pk
i=1 gixi xa =

Pk
i=1 gixi

4 AND-AND (see text) xa =
Pk

i=1 xi

5 AND-N/M (see text) xa =
Pk

i=1 xi

6 AND-1 (see text) xa =
Pk

i=1 xi

7 OR-OR (see text) xa = 1
|KC |

sum
“
sum(KC)

”
8 OR-N/M (see text) xa = 1

|KC |
sum

“
sum(KC)

”
9 OR-1 (see text) xa = 1

|KC |
sum

“
sum(KC)

”
Table 4.7: Aggregation rules for the mean response time and the mean cost.

84

Chapter 5

Quality-of-Service-based
Selection of Services

The introduction in Chapter 1 has presented the abstract parts of service trading
as specified by the RM-ODP. Performing these parts subsequently narrows down
the set of available services in order to identify the optimal selection of services
to perform the tasks of the composition. According to the trading specification,
these parts are as follows: 1) a keyword-based search among the available services
for a rough pre-filtering, 2) a matchmaking process identifying services that match
the required functionality to perform the according tasks, 3) a selection process
that assigns one candidate for each task in accordance with the selection criteria,
i.e. non-functional or QoS requirements, and 4) the application specific of trading
policies.

This chapter will discuss the third step of these four. It will discuss the selec-
tion process from a combinatorial point of view; the discussion will focus on the
abstract functionality of this process rather than refer to specific technologies. In
the process, the QoS serves as selection criteria and the resulting problem is named
the “QoS-based selection”.

In Section 5.1, an introduction to the selection problem is presented. Based on
the given description of this problem, a problem model will be defined in the subse-
quent Section 5.2. The problem model provides the basis to discuss several aspects
of the selection problem: a) it enables the comparison with other known combina-
torial problems (Section 5.3), b) it is used for the discussion about computational
efforts to solve the problem, given in Section 5.3.5, and c) it is the basis for the
explanation of different heuristics when applied to the problem. The application of
the heuristics will be discussed in Section 5.4 of this chapter.

5.1 Introduction to the Selection Problem

The trading specification provides the foundation for discussion on QoS-based se-
lection in this work. As one of the main presuppositions defined by this specifica-

85

5.1. Introduction to the Selection Problem

tion, it is presumed that the matchmaking process identifies functionally suitable
candidates and that this step results in more than one candidate for a particular
task. Otherwise, if the matchmaking has determined only one candidate for a task,
the selection is trivial and the only one identified service is assigned. Furthermore,
it is assumed that each task requires a different functionality and thus, the service
candidates each represent a candidate for a particular task.

If more than one candidate is available to be assigned to perform a particular
task, a selection must be made among them. As explained in Section 3.1.2, the re-
tailer sets different – at least more than one – QoS requirements that serve as selec-
tion criteria applied to the set of candidates. Two basic kinds of QoS requirements
are possible: Either the retailer sets one or more constraints that refer to a specific
QoS characteristic, or the retailer identifies one or more QoS characteristics that
are subject to optimisation. Chapter 3 has identified different QoS characteristics
relevant for the application in service compositions, which are therefore relevant
for the QoS-based selection. These characteristics are the throughput, the response
time, the cost, the reliability, the availability, security aspects and the reputation of
a service provider.

To explain the nature of the selection problem, the first chapter has presented
a simple example (cf. Section 1.3) of a composition that arranges two tasks in
parallel. In this example the optimisation of response time and cost represented
the selection criteria. The given example has suggested that a problem with the
selection arises in parallel structures with two or more selection criteria. However,
a composition that arranges all involved tasks in a sequence can also result in a
combinatorial problem when the QoS-based selection is applied: As an example, a
sequence of tasks can be considered. For each task, more than one candidate exists.
The optimisation goal is to achieve the lowest response time of the composition.
In addition, a constraint on the cost is set, denoting that the assignment of services
must not exceed a given cost limit.

The problem can be formulated as follows: a represents the number of tasks
and bi represents the number of candidates referring to a particular task denoted by
index i. Then, an integer programming formulation is as follows:

minimise tagg =
a∑

i=1

bi∑
j=1

pijtij

while keeping climit ≥
a∑

i=1

bi∑
j=1

pijcij

and 1 =
bi∑

j=1

pij ∀i ∈ {1, . . . , a}, pij ∈ {0, 1}

In this formula, tij represents the given response time of a candidate and cij

the cost. The variable pij denotes whether a candidate is selected or not. These

86

5.1. Introduction to the Selection Problem

equations were discussed by Lee [78] and also by Yu and Lin [158]. In addition,
these equations are a common representation of the Multiple Choice Knapsack
Problem (MCKP), which is a popular optimisation problem. Section 5.3.1 will
discuss the family of knapsack problems in further detail. Since the problem for-
mulation represents a standard integer linear programming problem, Lee proposes
solving instances of the problem with the help of available off-the-shelf tools for
integer linear programming [78]. Yu and Lin propose performing the selection in
accordance with the given description based on an algorithm by Pisinger for the
MCKP which also builds on this integer programming formulation [158]. Without
formal proof, the described variant of the selection problem can be transformed
into an MCKP. Thus, the selection problem could be reduced to an MCKP and a
solution algorithm for MCKP can be successfully applied to the selection problem.
Figure 5.1 outlines this relation.

MCKP Selection Problem
(so far)

⊇

Figure 5.1: Relation between the MCKP and the selection problem.

However, when it comes to QoS characteristics like the reliability or the avail-
ability, the problem formulation does not result in a linear system of equations. The
aggregation rules given in Section 4.4 define a multiplication of the values and the
problem cannot be solved with linear programming techniques. Thus, Zeng et al.,
who also propose solving the selection problem with integer programming meth-
ods, transform the non-linear equation, resulting from constraints on availability or
reputation for example, into a linear one [159], i.e. that the used variables have an
exponent of 1. Applied to a sequential execution of services, an equation covering
the availability is:

minimise alimit =
a∏

i=1

bi∏
j=1

a
pij

ij

Identical to the equations given before, aij denotes the availability of a given
service and pij denotes whether a candidate is chosen or not. Then, the logarithm
function is applied in the following manner:

ln(alimit) =
a∑

i=1

ln
(bi∏

j=1

a
pij

ij

)

ln(alimit) =
a∑

i=1

bi∑
j=1

pij ln(aij)

87

5.1. Introduction to the Selection Problem

and 1 =
bi∑

j=1

pij ∀i ∈ {1, . . . , a}, pij ∈ {0, 1}

This is a linear equation again and thus can be considered with a integer program-
ming approach. Thus, the transformation as proposed by Zeng et al. makes it
possible to consider QoS characteristics that would normally result in a non-linear
equation. Lee [78] and Zeng et al. [159] have also discussed the hardness of the
problem in terms of its required effort to solve. The hardness will be discussed
further in Section 5.3.5. As for the application to the selection problem, both Lee’s
and Zeng et al.’s approaches propose using the IBM Optimization Solutions and
Library (OSL) which is a software tool for solving integer programming problems.
As a conclusion, non-linear optimisation and constraint statements resulting from
QoS characteristics that require a multiplication for their aggregation can also be
transformed into linear statements and thus be reduced to the linear formulation of
the MCKP. Figure 5.2 outlines this relation.

MCKP
Selection Problem

(so far)⊇

Int. Lin. Non-Int. Lin.

⊇

Figure 5.2: Relation between the MCKP and the integer linear and non-linear vari-
ant of the selection problem.

However, the approach by Lee, Zeng et al., and Yu and Lin is to presume that
a composition can be represented by a sequential arrangement of relevant tasks.
Nevertheless, a composition can also contain parallel structures. In Section 4.6
of the previous chapter, an example has explained that the approach to consider a
single critical service leads to a problem when considering different QoS charac-
teristics. To discuss the impact on the problem formulation, Figure 5.3 shows an
example of a possible composition structure.

The composition structure shown in this figure contains two parallel arrange-
ments. The first defines that one of the parallel task is executed while the second
arrangement defines that all tasks are executed in parallel. The solution proposed
by the mentioned works is to determine the critical path of the execution. Zeng et
al. for example, propose considering the response time as the relevant QoS charac-
teristic to identify the relevant services that form the critical path. Then, as for the
QoS, its aggregation can be performed with one aggregation rule resulting in a lin-
ear or non-linear equation. However, the example makes clear that a more precise
formulation is possible. Regarding the first parallel statement, only one service
will be invoked at a time, but all are considered relevant. Consequently, a simple
multiplication of the value would predict a worse availability that actually deliv-

88

5.1. Introduction to the Selection Problem

XOR
JOIN

XOR
SPLIT

4

2

31 AND
JOIN

AND
SPLIT

8

6

75 9

Figure 5.3: Composition structure that contains parallelism.

ered. For this structure, the assignment that results in the average is considered
relevant.1 Besides statements about response time, cost or other QoS categories,
covering the aggregation of the availability of the first parallel structure results in:

ln(alimit1) =
1
3

∑
i=2,3,4

bi∑
j=1

pij ln(aij)

with 1 =
∑

i=2,3,4

bi∑
j=1

pij

Then, the remaining availability values could be expressed with a single multi-
plication. To provide a more structured form, a detailed expression for the second
parallel structure and the sequential arrangement would be as follows:

ln(alimit2) =
∑

i=6,7,8

bi∑
j=1

pij ln(aij)

with 1 =
bi∑

j=1

pij ∀i ∈ {6, 7, 8}, pij ∈ {0, 1}

ln(alimit3) =
∑

i=1,5,9

bi∑
j=1

pij ln(aij)

with 1 =
bi∑

j=1

pij ∀i ∈ {1, 5, 9}, pij ∈ {0, 1}

These equations do not define a global constraint, and therefore the following
equation must be added in order to express a constraint on the availability that
covers the entire composition:

1As explained in Section 4.3, for the model it is assumed that the services are invoked with equal
probabilities. If necessary, the model could be extended with individual invocation probabilities
which would result in a weighted average.

89

5.1. Introduction to the Selection Problem

maximise ln(alimit) = ln(alimit1) + ln(alimit2) + ln(alimit3)

This case demonstrates that a more precise problem formulation, with the goal
to express a problem instance as a integer programming problem, depends on the
given composition structure. If the selection problem is transferred into this for-
mulation, then this problem formulation does not conform to the MCKP anymore.
Figure 5.4 depicts this relation. In this figure, the selection problem is divided
into four variants resulting from whether a sequential structure is considered and
whether the problem involves non-linear statements which require a transforma-
tion.

Int. Pr. Problem Selection Problem

MCKP
Sequential

Selection Problem
⊇

Int. Lin. Non-Int. Lin.

⊇

⊇
⊇

Figure 5.4: Relation between the MCKP and the selection problem involving the
number of constraints.

The conclusion is that for each problem instance a new set of equations must
be formed. Thus, the approach of this thesis is to express a problem model which
captures the structural differences with their implications of the aggregation of
different QoS categories. Moreover, if multiple criteria are considered for a com-
bined goal function, the different criteria would require particular weights in order
to provide significant solutions. The setting of appropriate weight factors becomes
even more important, if non-linear QoS characteristics require a transformation
involving a logarithmic operation. Then a weight must also compensate the non-
linear operation applied to the QoS values. Because of this characteristic, different
heuristics are discussed as an alternative to the approach of using integer linear
programming. To summarise the discussion above and what has been presented in
previous chapters, the problem model must capture the following characteristics of
a service composition and possible instances of selection problems:

• Multiple Optimisation Criteria. The problem model must allow express-
ing multiple optimisation criteria. For example, a retailer can define two or
more QoS characteristics at once that are subject for optimisation.

90

5.2. The Problem Model

• Multiple Constraint Criteria. In a similar manner, multiple constraint cri-
teria must be possible, i.e. a retailer can define more than one QoS charac-
teristic as a constraint criterion.

• Given Setup of Tasks and Candidates. A preceding matchmaking process
will result in a set of candidates for each task.

• Composition Structure. As the example of this section has shown, the
aggregation of the composition depends on the arrangement of the given
tasks and services. Thus, a problem model must also express these in order
to correctly aggregate the given QoS values.

The different characteristics indicate that a selection problem can also involve
more than one constraint and more than one optimisation goal. This aspect has
been ignored in the previous discussion. Consequently, Figure 5.5 also identifies
the case of one constraint and one optimisation goal as the special case that offers
the transformability to the MCKP.

Int. Pr. Problem Selection Problem

MCKP

Sequential
Selection Problem

⊇

Int. Lin Non-Int. Lin.

⊇⊇
⊇

Seq. Selection Problem
with 1 Constraint and 1 Goal

Figure 5.5: Summary of relations between the MCKP and the selection problem.

5.2 The Problem Model

Based on the requirements on the problem model from the previous section, this
section will introduce a model that allows expressing given instances of a selection
problem. Regarding the setup of the given composition case, this model contains
the following elements:

• Tasks. The model must contain a set of tasks T = {t1, t2, . . . , ta} where the
number a represents the total number of tasks in the composition.

91

5.2. The Problem Model

• Candidates. The output of the matchmaking process is a set of (service)
candidates S = {s1, s2, . . . , sb} where the variable b represents the number
of all candidates. It is presumed that a task potentially requires a different
type of functionality when compared to other tasks. Consequently, available
services will provide a particular functionality and thus may not be suitable
to perform different tasks. If the case occurs that a service can serve two
different types of functionality, a candidate identified for one and another
task is counted twice.

An entire set containing all candidates does not express the described condi-
tions. Therefore, the model is extended in the following way: The outcome
of a discovery process results in a set of candidate-sets U, each holding the
set of candidates Si for a particular task ti ∈ T.

U = {S1, S2, . . . , Sa}
Si = {si1, si2, . . . , sibi

}
i = 1, . . . , a

in this definition, bi denotes the number of candidates found for a particular
task.

• QoS characteristics. For identifying different QoS characteristics, which is
necessary when their values are used in optimisation statements, a number
from 1 to q is used, with q denoting the total number of QoS characteristics.

• QoS vector. If different QoS characteristics are considered, different QoS
values are assigned to the candidate services. Because more than one QoS
value can be assigned for each candidate, a vector is used to represent a can-
didate. This QoS-vector holds the different QoS values denoted by the index
n, n = 1, . . . , q. The index q represents the different QoS characteristics
that are taken into account. The result is a vector

~sij =


sij1
sij2

.

.

.
sijq


with index i = 1, . . . , a denoting the corresponding task and index j =
1, . . . , bi denoting the number of the according candidate at task i. This
resembles the indices as used in the previous section. In summary, the set U
represents a set of sets of vectors.

92

5.2. The Problem Model

5.2.1 The Selection Criteria

The selection of candidates involves the application of selection criteria. QoS char-
acteristics can serve as criteria in an optimisation function. If one or more QoS
characteristics are relevant for optimisation, the corresponding value of the QoS
vector is subject to an optimisation function. This function depends on the direc-
tion of the dimension. For characteristics with a decreasing dimension, meaning
that a lower value denotes a better QoS, such as response time or cost, the function
must minimise the aggregated value. For categories with an increasing dimension,
the function must maximise the value. Considering the aggregation rules that were
presented in the previous chapter, a general formulation of optimisation goals is
defined. The optimisation statement expresses either a minimisation of maximisa-
tion of the resulting QoS value, aggregated by function fn, n ∈ {1, . . . , q} where
n denotes the considered QoS characteristic:

{minimise|maximise}(f(Un)) Un = {s11np11, . . . , sabnpab}

with pij =
{

1 if selected, and
0 otherwise.

By using this notation, it is assumed that a resulting 0 represents a neutral
element with respect to the aggregation function. For aggregation functions that
multiply the given values, the neutral element would be the value 1. The previous
section has given an example that has used the indices i and j in the same manner.

In addition to the optimisation criteria, one or more QoS categories can be
relevant for expressing a constraint on the composition. Depending on the direction
of the considered QoS characteristic with index n, the constraint denotes an upper
or lower bound for the resulting aggregated value:

{cn > |cn <}(f(Un)) Un = {s11np11, . . . , sabnpab}

with pij =
{

1 if selected, and
0 otherwise.

In this definition, the neutral element has the same characteristics as given
above with respect to the considered aggregation operation and to the use of the
indices.

5.2.2 Modelling the Structure

In addition to the modelled sets of tasks and candidates, the discussion has sug-
gested that the structure of the given composition is also relevant for the proper
aggregation of different QoS characteristics. Thus, the problem model must in-
volve a model of the composition structure based on the composition patterns as
introduced in the previous chapter. The structural model is based on the model
used for the aggregation as introduced in Section 4.3. It is defined as follows:

93

5.2. The Problem Model

• A composition structure is represented by a set K1.

• The set K1 can contain tasks of the composition t1, . . . , ta or further sub-sets
K2, . . . , Kj .

• The aggregation method has explained that the precedence relations between
the elements in a sequence are not relevant for the aggregation of the QoS
values. Since, order of the elements is not required for the aggregation, the
enclosed elements of a sequence can be represented by a set Kx. Because
precedence relations do not exist between the elements of parallel structures,
a set is an adequate representation structure for these elements as well.

Consequently, each set Kx has a special type assigned, namely one of the
composition patterns CP1, . . . , CP9.

• In general, any set Kx can contain tasks or sub-sets.

For a formulation of a given selection problem, it is required that the composi-
tion is expressed by using the model as defined above based on the composition pat-
terns. Moreover, since the selection problem focusses on the QoS in a composition,
not required information, such as the precedence relation of tasks in a sequence,
is not covered by this model. If a composition shows elements that not conform
to the definition the above proposed model, the composition must be transformed
first as discussed in the Section 4.5. The definitions of the composition structure
together with the considered QoS characteristics also imply the application of the
aggregation rules as introduced in the previous chapter.

5.2.3 Problem Model Summary

Incorporating all the previously discussed aspects of the selection problem, this
problem can be defined by its following elements:

• T represents the set o tasks t1, . . . , ta, with “a” tasks in total.

• U represents the set of candidate sets S1, . . . , Sa, each containing the candi-
dates assigned to a particular task. Each candidate is represented by vector
of elements that consists of the considered QoS values.

• WO represents the set of optimisation goal functions, which can contain
none, one or more optimisation statements.

• WC represents the set of constraint statements, which can contain none, one
or more optimisation statements.

• A data structure Kx that represents the composition structure containing the
elements of the structural configuration as required for processing the QoS
of the involved services.

94

5.2. The Problem Model

• A valid solution is a list that contains one candidate for each task which
can be expressed as a tuple L, L = (~s1, . . . , ~sa). This tuple represents a
selection of service candidates for which a) the aggregated QoS complies
with the constraint statements of WC and b) the aggregated QoS represents
the optimal solution defined by goal functions in WO.

A valid solution can be also expressed as the an assignment of the integer
variables pij , when the problem is formulated as an integer linear optimisa-
tion problem.

This problem formulation does not presume the use of integer linear statements
to express an integer programming problem. Of course, their expression for a given
problem instance based on this model is possible. Such a formulation can be pro-
vided in the same manner as the aggregation rules are given in Section 4.4: for
each pair of QoS characteristic and structural pattern, a statement is derived. How-
ever, as the previous section has shown, each given instance of a selection problem
results in a different set of equations for expressing constraints and optimisation
statements. Moreover, the application of transformation involving a logarithmic
operation require the setting of appropriate weight factors.

This model does not capture any dependencies between the given QoS values.
Such dependencies can occur if different QoS characteristics form a trade-off cou-
ple. A common trade-off couple is response time and cost where a shorter response
time, i.e. a better quality, usually results in a higher cost. As for the QoS character-
istics discussed in the previous chapter, the cost can form a trade-off couple with
any of the remaining characteristics. A possible trade-off relation is not considered
relevant for the discussion of the model. Instead, algorithms that attempt to solve
a given selection problem can take advantage of such a dependency on an optional
basis.

5.2.4 Aggregation of Multiple Optimisation Criteria

Different QoS characteristics can be considered at once for optimisation. Then, an
aggregated goal function is required that allows to consider the different optimisa-
tion statements WO. When an algorithm tries to solve the problem, this results in
the comparison of different QoS vectors that represent the aggregated QoS of the
composition resulting from a particular assignment. For this comparison, the Sim-
ple Additive Weighting (SAW, [49]) method is proposed, which was introduced in
the context of Multiple Criteria Decision Making (MCDM). The SAW approach
normalises the individual value ranges from different QoS characteristics to value
ranges of values between 0 and 1. For applying the SAW, a QoS vector with in-
dividual QoS values sijn is considered, where n represents a QoS characteristic.
Then, each value sijn is replaced by the normalised value νijn :

95

5.3. Relations to Other Combinatorial Problems

νijn =


max(si1n ,...,sibin

)−sijn

max(si1n ,...,sibin
)−min(si1n ,...,sibin

) for decreasing QoS char., and

sijn−min(si1n ,...,sibin
)

max(si1n ,...,sibin
)−min(si1n ,...,sibin

) for increasing QoS char.,

The internal si1n , . . . , sibin
refers to all values from the considered QoS vectors

referring to the relevant QoS characteristic n. As an example, the following QoS
vectors are given: 200

5
0.99

  250
6

0.98

  150
8

0.95

  220
4

0.955


This could represent the three QoS characteristics response time, cost and avail-

ability. However, the meaning of the values is not relevant for the application of the
SAW. Performing the SAW method replaces every value with a normalised one: 0.5

0.75
1.0

  0.0
0.5

0.75

  1.0
0.0
0.0

  0.3
1.0

0.125


Based on the normalised values, a score σj can be applied to each candi-

date [49], defined as:

σj =
1
q

q∑
n=1

wnνijn

The variable q represents the amount of considered QoS categories. The weight
wn is applied to a particular QoS characteristic by the user’s preference and could
be omitted. The result of this procedure is a score for each candidate service or
QoS vector. The result denotes the better QoS vector when two QoS vectors are
compared. In the example, the resulting scores are in the same order: 0.75, 0.42,
0.33, and 0.52. Thus, presuming a neutral weighting, the candidate or aggregated
QoS associated with the first QoS vector is considered as the best overall QoS.

5.3 Relations to Other Combinatorial Problems

If exactly one QoS characteristic is relevant for the optimisation, a selection algo-
rithm must choose the candidate that provides the optimal value for each task. The
effort for this operation is equivalent to a sort operation and therefore this speciali-
sation of the selection problem can be regarded trivial. If more than one QoS char-
acteristic is relevant for optimisation or for expressing a constraint, the selection
can be regarded as a combinatorial problem. This problem has similarities with
the knapsack problem, to a specific kind of a project scheduling problem (PSP),
the QoS-based routing of packets in the Internet and the QoS-based scheduling of
queries in the field of database systems. The upcoming subsection will explain
their differences to the selection problem.

96

5.3. Relations to Other Combinatorial Problems

5.3.1 The Knapsack Problem

At the beginning, this chapter has already mentioned the relation of the selection
problem with a member of the family of knapsack problems named multiple choice
knapsack problem (MCKP). In the following, this relation will be explained in
more detail. The core knapsack problem is about selecting a subset of available
items for putting them into a knapsack. This problem is based on the simpler
problem named “subset sum”. The subset sum problem is quickly explained: Con-
sidering a set of elements (numbers) s1, s2, . . . , sb ∈ N and a number c ∈ N, the
goal is to find a selection of elements that represents a subset I ⊆ {1, 2, . . . , b} that
fulfils: ∑

∀i∈I
si = c

The knapsack problem represents an optimisation variant of the subset sum
problem. In this problem, each element has two dimensions, a weight si1 and a
value si2 . Instead of the sum that must be identified, the knapsack problem has
got a weight capacity with the goal to select a set of elements while respecting the
given weight limit c. Considering the weight only, this represents a trivial problem:
A solution can be found by sorting all elements by their weight. Then, starting with
the lightest elements, they are added to the selection until the weight is reached.
The problem becomes hard if the additional goal is to maximise the value v of the
selected elements s12 , s22 , . . . , si2 . Then, the knapsack problem is about:

maximise v =
∑
i∈S

si2

while keeping c ≥
∑
i∈S

si1

In other words, the problem is about maximising the value of taken items while
the weight capability of the knapsack does not allow taking all items. Based on this
problem statement, the literature distinguishes the fractional knapsack problem and
the 0/1- or binary knapsack problem. The difference between both is that the 0/1-
knapsack problem defines that splitting the elements is not allowed. Otherwise, an
algorithm could sort all items by their value density si1/si2 and begin to pack the
knapsack starting with the highest value density. Then, if the algorithm meets the
element that would exceed the given limit, only a fraction of this element is taken
that still fits into the knapsack.

A further variant of the 0/1-knapsack problem is the Multiple Choice Knapsack
Problem (MCKP). In this problem, the items for selection are sorted into a ∈ N
classes and associated to each class is a set of items Si which has got bi = |Si|
number of elements. The goal of the MCKP is to select exactly one item of each
set while keeping the constraints and maximise or minimise the optimisation goals.
A model for problem would be as follows:

97

5.3. Relations to Other Combinatorial Problems

maximise vagg =
a∑

i=1

bi∑
j=1

pijtij

while keeping climit ≥
a∑

i=1

bi∑
j=1

pijcij

and 1 =
bi∑

j=1

pij ∀i ∈ {1, . . . , a}, pij ∈ {0, 1}

These are the same equations as given at the beginning of this chapter, where it was
also mentioned that Lee [78] and Yu et al. [158] have already discussed the MCKP
in the context of the QoS-based selection of services to form compositions. The
only difference is that mostly the MCKP considers a value that is about to be max-
imised while the selection problem as discussed by Lee and Tao et al. considers a
time measure which is considered for minimisation. The difference between either
minimising or maximising a value is considered as irrelevant when discussing the
combinatorial issue.

To involve multiple constraints, the problem can be modelled as a Multiple
Dimension Knapsack Problem (MKP), where – literally spoken – the knapsack has
more than one limiting dimension. Such limiting dimensions could be the volume
and weight of a knapsack and can be denoted by an index 1, . . . , q. This represents
also a specific variant of the 0/1-knapsack problem. Then, the constraint to hold
can be expressed as:

a∑
i=1

bi∑
j=1

pijsijn ≤ cn ∀n ∈ 1, . . . , q

pij ∈ {0, 1} identifies the selected elements/candidates.

This combination between the MKP and the MCKP is known in the literature as
Multiple Choice Multiple Dimension Knapsack Problem (MMKP). In Figure 5.6
this relation is outlined. Contrary to previous figures, the distinction between in-
teger programming statements and non-linear statements that must be transformed
differently is not depicted.

The following discussion will explain why the structure of the selection prob-
lem cannot be ignored and consequently the application of algorithms for the
MCKP does not necessarily solve the selection problem: The example given in
Figure 5.3 has shown that the parallel structures require a different model than the
MCKP. From the interpretation of the problem formulation as given in the litera-
ture (e.g. Dudzinski and Walukiewicz [26], or Pisinger [108]), the MCKP covers
only the scenario of an (unordered) sequence of service executions. A composi-
tion consisting of services all arranged into a parallel AND-split with AND-join

98

5.3. Relations to Other Combinatorial Problems

Selection Problem

Sequential
Selection Problem

Seq. Selection Problem
with Mult. Constraint and 1 Goal

Int. Pr. Problem

MMKP

MCKP
⊇

⊇

⊇

Seq. Selection Problem
with 1 Constraint and 1 Goal

Figure 5.6: Relation between the MCKP, the MMKP and the selection problem.

arrangement is not covered. A solution denoting a selection of services found for
a parallel arrangement would be different than for an unordered sequence. More-
over, as the example has explained, a given selection problem would result in a
set of varying integer programming statements which puts the equivalence of the
selection problem to the MCKP into question. This issue allows the assumption
that the selection problem is at least as hard as the MCKP. However, considering
the structural arrangements and different QoS characteristics, it requires a differ-
ent problem model. Therefore, algorithms for finding or guessing solutions to a
MCKP will not result in the same level of performance when applied to the selec-
tion problem.

To discuss the difference, a popular solution algorithm to the MCKP will be
considered: A strategy for solving knapsack problems is known in literature as dy-
namic programming. The idea of dynamic programming is that a problem adheres
to a basic principle of optimality which has been introduced by the mathematician
Bellmann. This principle describes that the optimal solution to a problem can be
represented by the combination of the optimal solutions to its sub-problems. If the
determined partial solutions overlap and are stored, an algorithm can save efforts
from the overlapping partial solutions.

The solution approach for applying the dynamic programming algorithm to
the (basic) 0/1-knapsack problem is as follows: For a knapsack with given size
constraint c, there is a selection I ⊆ {s1, . . . , sm} that fulfils the constraint criteria.
Then, for each element, si ∈ I holds that a partial problem with a smaller knapsack
c′ = c− si1 has the solution I− si. In this case, si1 represents the weight and si2

the value of the element. Based on this idea, an algorithm can determine the value
v for a given set and sub-value as follows [114]:

f(si, c
′) =


0 if i = 0

f(si−1, c
′) if i > 0, si1 ≥ c′

max
{

f(si−1, c
′), f(si−1, c

′ − si1) + si2

}
else

99

5.3. Relations to Other Combinatorial Problems

By this definition, an algorithm can be derived. Such an algorithm operates on
a numbered set of elements and starts with the elements with index i, showing the
following behaviour:

• The first statement covers that no element is available for putting into the
knapsack. Then, a value of zero is returned.

• The second statement covers that an element exists but the weight of the cur-
rent element is larger than the remaining volume allows. Then, the function
is invoked recursively with the previous element.

• In all other cases, the function chooses the maximum resulting value of either
considering the actual element – and adding the value – or skipping the actual
element. In both cases, the function is invoked with the previous element.

Based on this procedure, the algorithm creates a two dimensional array [0..i, 0..c].
For each pair of item and weight (i, c′), the algorithms computes the value accord-
ing to this definition. The effort to create the array is just i by c′ resulting in the
worst-case effort of O(n2) added to the effort needed to perform the calculation of
v for each table entry. The entry that shows the highest value v represents the solu-
tion. Such an approach results in a so-called pseudo-polynomial effort: Counting
the computational steps results in a polynomial effort, while ignoring the effort to
process the calculation of a table entry. As a consequence, for small values of i and
c′, such an algorithm usually shows acceptable performance.

In order to apply the dynamic programming approach to the MCKP, this algo-
rithm must be modified to take at least one element of each class. The algorithm
must class-wisely process the selection of candidates. The basic structure of the
definition remains valid. However, it applies only to the selection of elements
belonging to a particular class i. Dudziński and Wolukiewicz have proposed a dy-
namic programming algorithm for a MCKP [26]. At first, for a partial MCKP with
a partial constraint cpt can be formulated as follows:

maximise vi(cpt) =
a∑

i=1

bi∑
j=1

pijtij

while keeping cpt ≥
a∑

i=1

bi∑
j=1

pijcij

and 1 =
bi∑

j=1

pij ∀i ∈ {1, . . . , a}, pij ∈ {0, 1}

v0(cpt) = 0 for cpt ≥ 0

vi(cpt) = −∞ for

{
cpt ≤ 0 and i > 0, or

cpt < 0 and i = 0

100

5.3. Relations to Other Combinatorial Problems

then

vi(cpt) = max
∀j,j=1,...,bi

{
tj + vi−1(cpt − cj)

}
By this definition, a partial MCKP is defined in the same way as an entire

MCKP. For performing this algorithm, this definition also provides a statement that
covers the iteration through the classes: If the algorithm reaches the class with the
identifier “zero” but the constraint cpt is greater or equal zero – the knapsack has
some space left – then the resulting value is set to zero. If the resulting constraint
cpt is below zero, then the algorithm has encountered a class where all elements
would violate the constraint. Thus, in this case, the resulting value is set to an
infinite negative value denoting an invalid solution.

An algorithm based on this definition iterates through all elements of a class. It
starts with the last class. If all elements of this class were tested, it proceeds with
the previous class. The algorithm would calculate an array entry for each element.
Since the creation of the array still results in a quadratic effort, this represents a
pseudo-polynomial algorithm as well.

Applying this algorithm to a given selection problem can result in non-optimal
solutions, because – besides the idea that it does not consider the composition
structure – it presumes the same type of definition for aggregation of the QoS
values (addition and subtraction) regardless of the required aggregation method,
depending on the structure. Moreover, the structural requirements require the eval-
uation of several classes at once (for example, in a parallel arrangement), which
cannot be performed with a recursive approach. A simple example clarifies this
issue, considering a selection problem instance with the following characteristics:

• T = {t1, t2, t3}

• U =



S1 =
{
~s11 =

(
1
5

)
, ~s12 =

(
2
2

) }
,

S2 =
{
~s21 =

(
6
4

)
, ~s22 =

(
7
1

) }
,

S2 =
{
~s31 =

(
2
5

)
, ~s32 =

(
3
1

) }
,


The upper value of each candidate can be seen as the response time and the
lower the cost.

• WO = {(min(f(Si2)) ∀ Si ∈ U)} which means that the cost, the sec-
ond value, is about to be minimised. it must be noted that in the domain
of knapsack problems, such an optimisation criterion is named “negative
value”. Accordingly, the recursive definition requires a function that seeks
the minimum instead of the maximum.

101

5.3. Relations to Other Combinatorial Problems

• WC = {(c = 10 ≥ f(Si1)) ∀ Si ∈ U)} which represents a constraint
statement about the response time, the first value, not being allowed to ex-
ceed the value of 10.

• G represents the graph consisting of pattern elements and tasks. The graph
consists of one parallel pattern element which holds all the three tasks. The
structure of this graph is depicted in Figure 5.7

AND
JOIN

AND
SPLIT

3

1

2

time: 1
cost: 5

time: 2
cost: 2

time: 6
cost: 4

time: 7
cost: 1

time: 2
cost: 5

time: 3
cost: 1

Figure 5.7: Graphical representation of the example selection problem (with can-
didates in rectangular boxes).

According to the definition of the algorithm for the MCKP, the algorithm would
create a two-dimensional array which has c-number columns and has

∑a
n=1 |Sn|

rows. Because the algorithm needs to keep the weight resulting from the selection,
each entry consists of a tuple of (cost, time). The algorithm fills out the table start-
ing from i = 1 and j = 0 and ends with i = 6 and j = 10 following the previously
given definitions. If the algorithm encounters an already computed value vij , this
is adopted from the table. Because the MCKP defines that one task needs to be
taken from each group, a solution is found only in the rows that represent the last
group involving a selection from the other group. Since the goal is to find the low-
est cost while not exceeding the response time of 10 units, the tuple for i = 6 and
j = 10 represents the optimal result. The combination resulting from this selection
is (s11, s21, s31).

With this result, it is clear that such an algorithm does not find the optimal
solution, because it ignores the parallel structure in which the tasks are arranged.
The optimal selection for this example would be the candidates (s12, s22, s32) with
a cost of 6 units and a response time of 7 units. In the example, the maximum
value is relevant for the response time in a parallel arrangement. Of course, the
definition of the recursive max{. . .} could be modified to cover the parallel case.
Consequently, sequential arrangements would not be possible. To solve this issue,
the definition could be conditionally adapted depending on whether a parallel struc-
ture or a sequential structure needs to be processed. However, this would not cover

102

5.3. Relations to Other Combinatorial Problems

i\j 0 1 2 3 4 5 6 7 8 9 10

1 −∞ (5,1) (5,1) (5,1) (5,1) (5,1) (5,1) (5,1) (5,1) (5,1) (5,1)
2 −∞ (5,1) (5,1) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2)

3 −∞ −∞ −∞ −∞ −∞ −∞ −∞ (9,7) (6,8) (3,9) (3,9)
4 −∞ −∞ −∞ −∞ −∞ −∞ −∞ (9,7) (6,8) (6,8) (6,8)

5 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ (14,9) (13,10)
6 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ (10,10)

Table 5.1: Array values resulting from dynamic programming approach.

the case that parallel and sequential structures would occur in the same problem
instance.

The conclusion is that an algorithm known to find an optimal solution to any
MCKP, if a solution exists, does not guarantee finding an optimal solution to a
given selection problem. Thus, the MCKP is different from the selection problem.
It can be assumed that the principle of optimality does not apply to the selection
problem as it is modelled in this work. The structural characteristic of the selection
problem requires considering a selection of tasks at once for a decision. Thus, split-
ting the problem into sub-problems by classes or tasks does not cover the structural
characteristic of the given composition case.

5.3.2 The Project Scheduling Problem

If multiple QoS characteristics are subject to the optimisation or if they are con-
sidered to form a constraint, the selection problem is similar to a Resource Con-
strained Project Scheduling Problem (RCPSP). A project scheduling problem oc-
curs when resources (usually humans) must be distributed to jobs of a project. The
most common optimisation goal of the basic RCPSP is to reduce the duration of
the project while spending as few resources as possible. Two types of RCPSPs are
distinguished: One is named Single Mode RCPSP and the other is known as Multi-
Mode RCPSP (MRCPSP). The single mode RCPSP only deals with fixed values
for the duration and the cost of a task. In an MM-RCPSP, a job can be done by
using different modes which vary in cost and duration. Therefore, an MM-RCPSP
is primarily considered as relevant in comparison to the selection problem. In ad-
dition to its mode, an RCPSP can be classified by a couple of other characteristics.
Based on an overview about RCPSPs by Yang et al. a selection problem seen as
RCPSP has the following characteristics [153]:

• Objective. Objectives are distinguished by being regular or irregular. Reg-
ular objectives do not interfere with the goal to minimise the duration of the
project, while irregular objectives allow following another objective – for
example to equalise the consumed resources among involved parties [153].

103

5.3. Relations to Other Combinatorial Problems

Applied to the selection problem, the RCPSP has a non-regular objective be-
cause depending on the considered QoS categories and the applied weight; a
worse duration can be considered better if, for example, the cost is reduced
accordingly. The objective can be defined as an optimisation function, as
given in Section 5.2.1.

• Precedence Relation. Two types of precedence relations are discussed in
the literature. Either a task can be started with a specified time window after
a preceding task has finished or a succeeding task can start any time after
the preceding task has finished. Regarding a composition of services, the
common case is that a task is started immediately after the preceding task
finished.

The constraint for the precedence in service compositions can be defined as
follows: αibi+1 is the start time of a candidates sibi+1 ∈ Si of task i, i =
1, . . . , n, and ωibi

the finish time of a candidate sibi
∈ Si−1 for the preceding

task i− 1. Then, the precedence constraint is:

αibi+1qibi+1 ≥ ωibi
qibi

with qibi+1, qibi

{
1 if selected
0 otherwise

Between two tasks, a time delay might occur, because an execution environ-
ment cannot execute a task at exactly the same moment when another task
has finished. However, this technical issue is ignored in this discussion.

• Preemption. If preemption is allowed, the execution of a task can be sus-
pended in order to execute another task in the meantime. This is useful if
some resources are only available within a specific period and other tasks
can be suspended then. Since the invocation of services in the context of
a composition usually is an atomic operation, preemption is not considered
possible.

• Resource requirements per period. In the domain of project scheduling,
using resources at different times can result in different costs. For example,
performing a task at night results in higher payments for night shifts. For
computer systems, a similar idea can be applied: The execution of a service
gets more expensive at peak hours. However, since currently no such exam-
ple exists in the domain of electronic services, this aspect is ignored in the
further discussion.

• Trade-offs. In the context of RCPSPs, the trade-off is characterised by two
criteria, where an optimisation of the one means a change to the worse for
the other. An algorithm must find a counterbalanced solution. A usual trade-
off pair is formed by time and cost, whereas the cost and the time should be
kept both as low as possible. Possible trade-off couples can be formed for
the selection problem of cost vs. one of the other mentioned categories, in

104

5.3. Relations to Other Combinatorial Problems

the sense that a higher quality results in a higher cost. However, a trade-off
couple could be also time vs. availability, for example for a provider, where
services usually execute very quickly but may fail.

These points show that the selection problem can be transformed into an RCPSP
that resembles the precedence relations by the execution graph and does not allow
preemption. The relation between the two problems is outlined in Figure 5.8: With-
out giving a formal proof, the given description explains that the selection problem
can be reduced to an RCPSP. A large number of heuristics are already available
for RCPSPs [153]. Not every approach can be applied to the selection problem:
RCPSPs and service compositions cover the execution order of tasks differently.
In compositions, the order is in most cases pre-defined by a flow description, while
the tasks of a project are subject to precedence relations, which may allow to push
a particular task for- or backwards in order to optimise the utilisation of resources.

Selection Problem

PSP
RCPSP

SMPSP

⊇RCPSP without
Preemption

Figure 5.8: Relation between the RCPSP and the selection problem.

5.3.3 Query Planning based on Quality-of-Service

The work of Naumann and Leser discusses the optimisation of queries to a federa-
tion of data sources by using the QoS as criteria [95]. The authors have introduced
an approach to optimise the QoS of a set of queries by two steps: First, data sources
are sorted out which would result in a bad QoS in any case. Then, different com-
binations of querying data sources, which provide the same required information,
are compared in terms of their resulting QoS.

The basic setup is as follows: A mediator serves as a front-end to users. The
mediator represents a similar role as the retailer for the selection of services; a
mediator wraps different data sources for the end-user. These data sources can
either provide similar or different data and are all described with QoS characteris-
tics. Accordingly, a query by the user (user query, UQ) submitted to the mediator
is translated into queries to the wrapped data sources (wrapper queries, WQ). The
general approach is to define such translations between UQs and WQs with Query
Correspondence Assertions (QCA). Because the available data sources can provide

105

5.3. Relations to Other Combinatorial Problems

overlapping or similar data sets, a user query can result in different possible QCAs
and combinations of them. Then, each set of QCAs, which completely answers
the UQ, can be ranked based on the aggregated QoS provided by the involved data
sources.

The result of their approach is the identification of query plans that provide the
optimal QoS. Naumann and Leser present a set of QoS characteristics which are
tailored to the application of database systems. This set includes characteristics
which have been also discussed in Chapter 3 (e.g. response time, availability or
cost). Other characteristics hardly fit into the domain of services, which are “ease-
of-understanding” or “completeness”. The completeness denotes the level of how
well a data source meets the information required for a possible UQ. Nevertheless,
for a discussion of the combinatorial problem, the interpretation of the numerical
values does not have any impact on the hardness of the problem.

The combinatorial issue with this approach is the evaluation of possible query
plans, meaning that valid sets of QCAs must be determined. Naumann and Leser
explain that the theoretical effort to determine all resulting possible WQs is NP -
complete [95]. The number of possible queries to evaluate is reduced by grouping
WQ to the building blocks which refers to the concept of QCAs. Still, the number
of possible QCA-sets answering a UQ rises exponentially with a rising numbers of
QCAs.

To cope with this problem, the authors propose a three-staged approach. In the
first stage, an algorithm sorts out data sources that offer a generally bad quality.
In the second stage, Leser has discussed an algorithm that efficiently identifies
only those QCA-sets that would also answer the UQ [79]. In the third stage, a
comparison algorithm determines the QoS of all remaining queries and applies a
ranking that allows the identification of the optimal QCA-set.

Comparing this approach with the selection problem reveals that the basic prin-
ciple of the both is the same: First, a query or execution plan is determined and
then the QoS for this plan is aggregated. At third, the resulting QoS is put into
a ranking to identify which execution plan results in the optimal QoS. For both,
the combinatorial problem lies in the generation of valid query or execution plans.
However, the query optimisation is different in two points and these make clear
that the selection problem requires a different approach:

• Overlapping Data Sources. The algorithm that determines valid sets of
QCAs considers the case, for example, that a data source can deliver the
same information as two other data sources. This results in two different
QCAs and thus the algorithm evaluates one data source against two com-
posed others. The selection problem as discussed here does not consider this
case, because it is presumed that the decision about this would have been
taken in the matchmaking process of the composition (cf. Section 7.2).

• Parallel Queries. The mediator is allowed to execute different queries to the
data sources resulting from a QCA set entirely in parallel. As for the MCKP

106

5.3. Relations to Other Combinatorial Problems

which essentially handles all services executed sequentially, this would mean
that all services are executed in parallel. Considering that this problem could
be expressed as a integer programming problem, if the relevant QoS charac-
teristics allow, then, the problem expression would cover only one structural
case, namely the parallel arrangement. In other words, the problem model
given for the QoS-based query planning by Leser and Naumann does not
capture any specific structural arrangements as they occur in service compo-
sitions.

If an instance of a selection problem arranges all tasks in an AND-AND par-
allel pattern, then this instance can be transformed into the problem of finding the
optimal query set. In accordance with this special case, Figure 5.9 shows the re-
duction relation between the two problems. However, it must be noted that the
QoS-based query planning involves also the identification of feasible query sets in
advance. Thus, the selection can be reduced only to a part of the problem which is
described by Naumann and Leser.

Selection Problem

Selection Problem
with 1 Parallel Structure

QoS-based
Evaluation of Queries ⊇

Figure 5.9: Relation between the QoS-based evaluation of queries and the selection
problem.

5.3.4 Routing in the Internet based on Quality-of-Service

Routing in the Internet today has the goal to identify feasible paths for sending
packets among different networks from one location to another. The routing is
performed by routers that implement a routing algorithm. The routing in the Inter-
net follows in most cases a best-effort strategy, meaning that every router tries to
deliver the best service possible according to a single metric. As metrics, routing
algorithms can consider the cost for transferring the data or the number of routers
to pass, which is considered as the number of hops. The resulting algorithmic is-
sue is to identify the shortest path in a graph where nodes represent routers and
the edges represent their connection, weighted according to the considered metric.
This routing scheme has proven its reliability in the past. However, it does not
address the demands of QoS-dependent services, such as telephone applications or
video broadcasts over the Internet. Such applications require a routing mechanism
that is capable of ensuring a particular QoS level. For example, broadcasting video
data requires a constant amount of bandwidth on all connections between involved

107

5.3. Relations to Other Combinatorial Problems

routers in order to transmit a continuous amount of data. Otherwise, the user will
experience interruptions when watching the video and will likely reject the service.

The Internet Engineering Task Force (IETF) has published a document that dis-
cusses a general framework for the QoS-based routing (cf. RFC number 2386 [20]).
This documents defines the following primary goals: a) enhancing the standard
routing process by providing mechanisms to ensure the given requirements with
respect to different QoS characteristics, b) utilising the given resources more ef-
ficiently, and c) recognising QoS violations and establishing compensation activi-
ties. The QoS-based routing plays a complementary role to (signalling) protocols
that offer resource reservation in order to express demands for a particular QoS
level. While resource reservation covers static agreements between sender and
receiver, QoS-based routing dynamically determines feasible paths in order to pro-
vide the requested QoS.

Therefore, the combinatorial issue of QoS-based routing is to identify a feasible
path in a graph with involving multiple QoS constraints. In this field, the literature
distinguishes between additive QoS, where the individual values are added, and
multiplicative QoS, where the aggregation of values is performed by a multipli-
cation [139]. A QoS characteristic that is neither additive nor multiplicative but
requires identifying the lowest value is named concave, e.g. as for the bandwidth.
Wang and Crowcroft present a proof that finding feasible paths is NP -complete
when either two additive or two multiplicative constraints are considered [137].
In addition, they proof that a combination of one additive and multiplicative con-
straint is NP -complete as well. If the application of the logarithmic function to
multiplicative constraint statements is considered as discussed at the beginning
of this chapter, such constraints become also additive, which was pointed out by
Yang [139].

In addition, Wang and Crowcroft discuss the routing problem with one addi-
tive constraint in conjunction with the concave bandwidth [137]. For this con-
stellation, the authors propose an algorithm with quadratic worst-case effort that
finds the optimal solution. As Yang also has pointed out, an algorithm can cover
non-additive characteristics as the bandwidth by first sorting out unfeasible paths
in a pre-processing step. Then, the algorithm must optimise for only one QoS
constraint for which well-known finding-shortest-path algorithms can be applied.
Thus, the problem issue with QoS-based routing in IP network is similar to the
QoS-based selection of services: A combinatorial problem arises if multiple QoS
characteristics must be considered at once. However, the problem of multi-criteria
QoS-based routing shows different aspects when considering the following points:

• Sequences Only. One obvious difference lies in the considered structure for
IP networks. Contrary to a composition, at the beginning the relation be-
tween the nodes does not require a direction and thus no precedence relation
among the involved nodes is given. The algorithm has the goal to identify
precedence statements between the nodes that resemble a routing path. The
precedence relations of the selection problem are defined by a graph. Con-

108

5.3. Relations to Other Combinatorial Problems

sequently, the graph is a part of the problem formulation and not part of the
solution as with the QoS-based routing.

Moreover, if such a routing path is found, each involved node has exactly
one incoming path and one outgoing path, meaning that a solution is not
allowed to show any parallel forking and joining elements. In other words,
the considered structure for the routing does not cover the structure of service
compositions.

• Different Number of Hops. Like the MCKP, the QoS-based selection re-
quires that the number of selected services stays constant because of the pre-
defined number of tasks. The number of selected routers can vary depending
on the given QoS. An algorithm that attempts to solve a given MCKP or
QoS-based selection can presume from the beginning that, from certain sets
of services, at least one must be selected; an algorithm that identifies optimal
paths among the router candidates cannot make such presumptions.

As stated for the QoS-based query planning, the problem of the QoS-based
routing does not match the selection problem regarding the problem model and
solution strategies.

5.3.5 Computational Complexity

Considering the model introduced in Section 5.2.3, the possible combinations re-
sult from the Cartesian product of the candidate sets in U:

S1 × . . .× Sa

This product results in a set of a-tuples where the number of elements repre-
sents the number of possible combinations:

|S1 × . . .× Sa| = |S1| · . . . · |Sa| =
a∏

i=1

|Si|

This indicates the resulting exponential effort for a rising number of tasks if an
algorithm potentially evaluates all possible combinations. Thus, the computational
complexity of the naive algorithm can be formulated using the big-O notation as
O(mn) where n represents the number of tasks and m denotes the maximal number
of candidates for a task.

The exponentially rising number of combinations poses the question whether
an algorithm is required to evaluate all combinations to find the optimal solution.
The resulting consequence would be that the selection problem requires an algo-
rithm that always shows an exponentially rising effort. For business processes
of 25 tasks with five candidates each, the resulting number of combinations is
525 ∼ 9 · 1013. Processes of 25 tasks seem to be exceptionally large. However, if
the structure must be transformed before, using the node duplication technique as
discussed in Section 4.5 of the previous chapter, such sizes are likely to occur.

109

5.3. Relations to Other Combinatorial Problems

NP-Hardness of the Selection Problem

For this discussion, the concept of a polynomial reduction between encoding alpha-
bets associated with a problem is used (cf. Garey and Johnson [37, section 2.5]).
Let two languages LA and LB represent the encoding schemes of the two prob-
lems A and B. If language LA can be transformed into LB then each instance of a
problem A can also be expressed as a problem instance of B. The conclusion from
a possible reduction is then that problems of LB are at least as hard as problems
of LA. The concept of the polynomial reduction requires that a transformation
between the two languages can be achieved by an additional machine which also
performs within a polynomial bounded amount of time. Problems with a poly-
nomial upper bound show the characteristic that combining them in sequence will
result in a new problem with a polynomial upper bound as well. Thus, if a language
LA associated with a polynomial problem A can be transformed with polynomial
effort into LB , B is a problem requiring at least polynomial worst case effort.

This relation applies also to problems that can be solved by a non-deterministic
touring machine in a polynomial bounded amount of time, so-called NP -problems.
Because of this argumentation it can be determined if a problem is NP -hard, mean-
ing at least as hard as another NP -problem. A language LB is named NP -hard,
if

LA ≤p LB for LA ∈ NP

where the relation ≤p denotes that LA transforms polynomial to LB and NP
denotes the class of NP -hard problems.

The polynomial transformability between the knapsack problem and an MCKP
has been discussed by Pisinger [108, pages 107-108]. Any knapsack problem rep-
resents a special case of an MCKP: Every knapsack problem instance can be trans-
formed into an MCKP instance by setting the number of elements within one class
to bi = 1. This can be easily understood by considering the formulation given for
the MCKP in the previous Section 5.3.1. If bi = 1 then the inner sum becomes
obsolete and the selection variable will be pij = 1 in all cases. As a result, the
MCKP-compliant formulation of the instance is equal to the formulation of the
knapsack problem. And regarding the knapsack problem, a proof exists that it is
a NP -hard problem (cf. Garey and Johnson [37, section A6]). A transformation
from an MCKP problem formulation to the formulation of the selection problem
can be given in the following way 5.2:

• The set of classes is modelled as T = {t1, . . . , ta} where a denotes the
number of items.

• Each Si representing the elements of a class in the MCKP sense is put into
the set U.

• The value of each item vij is set to one element of the referring candidate

110

5.3. Relations to Other Combinatorial Problems

vector ~sij , and the weight cij is analogously set to the other element:

~sij =
(

vij

cij

)

• The set WO of optimisation functions contains for the MCKP case just one
statement (|WO| = 1):

WO =
{

f(U1) =
a∑

i=1

∑
~sij∈Si

pij~sij1

}

• The set WC of constraint functions also contains for the MCKP case just one
statement (|WC | = 1):

WC =
{

c2 ≥
a∑

i=1

∑
~sij∈Si

pij~sij2

}

• The structure Kx that arranges all task nodes arbitrarily in a sequence.

• The solution is a selection which conforms to the optimisation function given
by WO and the constraint given by WC , which is the same integer program-
ming formulation as for the MCKP (cf. Section 5.3.1).

It is obvious that this transformation can be performed with polynomial bounded
effort. Then, any instance of an MCKP can be transformed into an instance that
conforms to the presented model of the selection problem. Contrary to the Fig-
ure 5.1 presented at the beginning of this chapter, the selection problem outlined
in this figure denotes all variants that were discussed so far. The conclusion of the
reducibility of the MCKP to the selection problem is that the selection problem is
NP -hard. The resulting direction of the reduction is depicted in Figure 5.10. Due
to this discussion, it becomes clear that the given model of the selection problem
generalises the MCKP with regard to two aspects: First, it covers not only se-
quences but also parallel, conditional or combined structures. In addition, it covers
multiple optimisation or constraint criteria.

MCKP Selection
Problem

⊆

Figure 5.10: Reduction of the MCKP to the selection problem.

111

5.4. Heuristic Algorithms

5.4 Heuristic Algorithms

In the selection process, an available candidate is assigned to each task. The sim-
plest approach represents an algorithm with a greedy behaviour which evaluates
the assignment from a local perspective: Such an algorithm determines each as-
signment for each task individually and thus ignores possible assignments of other
tasks in combination. However, the previous discussion has pointed out that such
an approach would not result in the optimal solution. The question is how much
worse such an approach would be when compared to an algorithm that always finds
the optimal solution.

Building onto the analogies between the combinatorial problems and the se-
lection problem as explained in the previous section, the approach of this work is
to discuss and evaluate the application of heuristics. In the following subsections,
different approaches are explained and compared. A representation in pseudo-code
notation of the discussed algorithms is given. The presentation of the algorithms
in pseudo-code provides a more transparent discussion about the resulting compu-
tational complexity. The used pseudo-code notation requires some remarks:

• The inputs and outputs of the algorithms are given only in a schematic way:
For each algorithm, the relevant data from a selection problem formulation
according to the model is given. An implementation would require particular
input and output parameters of potential operations, which are omitted if they
do not improve understanding of the algorithm.

• The variable a represents the number of tasks; the counters i, j have the same
meaning as used in the preceding discussion.

• The initialisation of variables as required in most programming languages is
omitted for the same reason as with the input and output parameters.

• Variables are not typed. Thus, integer or floating point numbers and other
data types share a common notation.

5.4.1 Greedy-based Selection

For a greedy selection, a value vij computed by function fsaw(~sij) represents the
selection criteria. This function can implement the SAW method to assign a score
for each candidate sij ∈ S. The QoS characteristics relevant for the SAW cal-
culation are denoted by the optimisation statements denoted by fn ∈ WO. The
algorithm starts with calculating the value for each candidate. Then it assigns the
candidate with the highest value for each task. Thus, the graph G is not considered.
The algorithm is described in listing 1.

The effort for this algorithm is O(n) + O(n log n) + O(n) = O(n log n). The
algorithm shows two for-loops which would indicate a quadratic effort, but in
fact, the algorithm just iterates through all candidates. Assuming that b denotes the

112

5.4. Heuristic Algorithms

Data: T, U, WO, WC

Result: array of candidates l[], |l[]| = a
begin

foreach Si ∈ U do1

foreach ~sij ∈ Si do2

v[i][j]← fsaw(~sij , Si)3

end
end
l[i]← ~sij , ~sij | fv(sij) == max(v[i][1], . . . , v[i][j])4

end

Algorithm 1: Greedy heuristic applied to the selection problem.

number of candidates, the effort is linear depending on the input size. The effort for
the sort operation is added and the effort for assigning the candidates is considered
linear. The sort results in the significant effort of O(n log n). For this greedy im-
plementation, the use of a sort algorithm with the worst-case effort of O(n log n)
is assumed. Such algorithms usually require extra memory to achieve this logarith-
mic class of effort, otherwise the worst case effort of common sorting algorithms is
O(n2). The best case effort is Ω(n log n) as well, because the algorithm performs
the sort in any case.

The clear downside of this approach is that it is not possible to consider a
global constraint while optimising the overall QoS. As an alternative, a greedy-
based algorithm can also support one constraint criteria without optimising for the
QoS. The algorithm starts sorting the candidates not by the score but by the relevant
constraint criteria denoted by a function in cn ∈ W. Then, the algorithm assigns,
for each task, the candidate that offers the best value of the constraint criteria.
If a solution exists that complies with the constraint, it is found with this step.
Clearly, this approach does not optimise the overall QoS of the compositions. In
the remainder of this work, the two resulting QoS optimising algorithms will be
named “Greedy” and the single-constraint aware algorithm “Constraint”.

5.4.2 Discarding Subsets

This algorithm represents a backtracking-based approach. It uses a search tree
which consists of nodes, each representing a possible pair of a candidate and a
task. Each level of the tree holds pairs of a particular task only, resulting in a tree
having the same number of levels as tasks. Each path, starting from the root and
ending at a leaf, represents a possible assignment of candidates. The advantage of
this algorithm, in comparison to a straight global selection, lies in the idea to cut
sub-trees representing unfavourable combinations to save computational efforts.

Such an approach normally identifies the optimal solution and therefore cannot

113

5.4. Heuristic Algorithms

be regarded as a heuristic. When applied to the selection problem, as described this
work, this approach results in a heuristic, because the cutting rule must be based
on an estimation. The reason is explained as follows: Considering the time, the
cutting rule is clear. If a complete combination has already been determined that
shows a lower (better) time as the partial combination processed at some moment,
the algorithm cuts the corresponding sub-tree. Each additional candidate would
worsen the time in any case.

Contrary to that, for categories where the aggregation calculates the arithmetic
mean, a rule cannot determine whether the QoS gets worse or better. The reputation
and the availability represent examples for such a QoS characteristic. Applied to
the selection problem, the discarding subsets algorithm considers two cutting rules:

1. A partially evaluated combination already violates a constraint. Thus, the
algorithm cuts the sub-tree.

2. The algorithm compares the aggregated QoS of the partial combination with
the aggregated QoS of already processed complete combinations. However,
for this comparison the QoS categories involving a mean-based aggregation
are ignored. This strategy does not find the optimal result necessarily, be-
cause the cutting rule represents an estimation.

The algorithm operates on a tree structure, which results from the structure Kx

that can contain tasks and further substructures. It performs the following steps as
given in the listing 2. The listing includes functions which represent the following
functionality: fcon tests a proposed solution to determine whether the required
constraints hold or not, fagg aggregates the QoS resulting from a proposed solution,
and fsaw performs a SAW-based comparison (cf. Section 5.2.4) with a number
as an output: If the number is greater than zero, the right argument represents a
better QoS, otherwise vice versa. It must be noted that the comparison could be
based either on one aggregated QoS characteristic or on many; either way this does
not require a modification to the algorithm. The same applies to the check if a
constraint is violated or not: This check can involve either one or more constraints.

The worst-case effort of this approach is the same as for the brute-force strategy
to evaluate all possible combinations, thus O(mn). The best-case effort occurs if
the first combination found represents the optimal combination and all other sub-
trees are cut. Then, the algorithm walks through all levels of the tree and evaluates
at least all tasks of the current level of the tree. The resulting effort for this would
be n resulting in the effort class of Ω(n2): On each task level, the algorithm would
evaluate combinations resulting from applying other candidates. The number of
task-candidate-pairs could be represented by a 2-dimensional matrix.

114

5.4. Heuristic Algorithms

Data: T, U, WO, WC , Kx

Result: array of candidates l[], |l[]| = a
initialisation: pos← 0
discarding(Kx, test[], pos)
begin

if | test[] | == a then1

if | l[] | == 0 then2

if fcon(test[]) then3

l[]← test[]4

end
else

y ← fagg(l[])5

x← fagg(test[])6

z ← fsaw(y, x)7

if z > 0 then8

l[]← test[]9

end
return10

end
end
foreach element ∈ Kx do11

if element == ti, ti ∈ T then12

foreach sij ∈ Si do13

test[]← test[] + sij14

y ← fagg(l[])15

x← fagg(test[])16

z ← fsaw(y, x)17

if z > 0 then18

if fcon(test[]) then19

discarding(Kx, test[], pos + 1)20

else
return21

end
end

end
else

discarding(Kx, test[], pos + 1)22

end
end

end

Algorithm 2: Discarding heuristic applied to the selection problem.

115

5.4. Heuristic Algorithms

5.4.3 Bottom-Up Approximation

Looking at the similarity of the selection problem to RCPSPs, it turned out that
several approaches for solving RCPSPs work on a precedence model which does
not allow the application to the selection problem. The resulting problem is that a
solution space is created which allows the rearrangement of tasks. The resulting
bounding rules cannot be applied efficiently to the selection problem.

In previous research work, the application of an heuristic algorithm for solving
a RCPSPs, which was introduced by Yang et al. [153], was discussed (cf. Jaeger
et al. [61]. The approach presumes that constraint and optimisation criteria form a
trade-off couple, i.e. the quicker a task is performed the more it will cost. More-
over, it supports only one constraint criteria. It will first sort the candidates by
the constraint criteria. Then it will improve the QoS of individual tasks by replac-
ing the original candidate with the candidate that offers the next worse constraint
value. Considering the trade-off relation, the idea is that the QoS is improved by
worsening the constraint value until it reaches the limit.

The algorithm is given in the listing 3. At first, it sorts the candidates by the
(one) constraint QoS characteristic. In other words, it performs a constraint-based
selection. Then, it assigns, for each task, the candidate with the next worse con-
straint. A proposed solution is kept, if the constraint still is not violated (cf. line
10). Figure 5.11 outlines how this algorithm proceeds, based on the tasks and
candidates of the example given in Section 5.3.1.

3

1

2

time: 1
cost: 5

time: 2
cost: 2

time: 6
cost: 4

time: 7
cost: 1

time: 2
cost: 5

time: 3
cost: 1

1

2

3
4

5

6

tasks candidates
constraint-best

candidates
constraint-2nd-best

Figure 5.11: Example processing order of bottomup heuristic.

The algorithm tries to improve the QoS until it has gone through all tasks and
did not find any improvement, when the counter z has reached the number of tasks
(cf. line 13). Then, the algorithm stops the approximation to the optimum. Thus,
it does not necessarily find the optimal solution: It might have approached a lo-
cal maximum in this case. Theoretically, the algorithm has a worst case effort of
O(m · n), resulting in the effort class O(n2). In this case, it might evaluate all
combinations denoted by the two-dimensional matrix. The best case effort is at

116

5.4. Heuristic Algorithms

Data: T, U, WO, WC

Result: array of candidates l[], |l[]| = a
begin

m← 01

foreach Si ∈ U do2

candi[]← fsort(y, Si)3

l[i]← candi[m]4

end
repeat

m← m + 15

for i = 0 to a do
test[i]← candi[m]6

y ← fagg(l[])7

x← fagg(test[])8

x← fsaw(y, x)9

if x > 0 ∧ fc(test[]) then10

l[]← test[]11

z ← 012

else
z ← z + 113

end
end

until z == a

end

Algorithm 3: Bottomup heuristic applied to the selection problem.

Ω(n log n), because it at least performs a constraint-selection, which is basically a
greedy algorithm.

5.4.4 Pattern-wise Selection

To address the particular problem occurring in parallel arrangements as explained
at the beginning of this chapter, a selection algorithm is proposed that takes ad-
vantage of the fact that the composition can be modelled by using the composition
patterns. As explained before, the parallel cases in a composition are one aspect
of the selection problem. Thus, the proposed heuristic algorithm evaluates possi-
ble combinations for each identified parallel pattern. This algorithm has already
been introduced in previous work about the use of QoS when composing services
(cf. Grønmo and Jaeger [39]).

A pseudo-code implementation of the algorithm is given in the listing 4. This
algorithm acts from a pattern-perspective. It walks recursively into the structure

117

5.4. Heuristic Algorithms

and identifies pattern elements that do not contain any sub-patterns (cf. line 5).
For all tasks within this element, all sets of candidate assignments are evaluated.
If the optimal solution for a particular pattern is determined (cf. line 8), the algo-
rithm walks one level upwards to evaluate the assignment within the super-pattern.
The aggregated QoS of contained sub-patterns is taken as a fixed value (cf. lines
5 to 7). The pattern-wise optimisation and aggregation are performed until the
entire composition is covered and one aggregated QoS is returned. For determin-
ing the optimal solution, the listing mentions the function doGlobalSearch which
performs a naive evaluation of all possible combinations.

Data: T, U, WO, WC , Kx

Result: array of candidates l[], |l[]| = a
pattern(Kx, WO, WC)
begin

m = |E|1

foreach Ky ∈ Kx do2

if fsym(e) == ti, ti ∈ T then3

U′ ← Si4

else
xk ← pattern(Ky, WO, WC)5

S′k ← xk6

U′ ← S′k7

end
end
l[]← doGlobalSearch(T, U′, WO, WC)8

end

Algorithm 4: Pattern heuristic applied to the selection problem.

Since this algorithm operates on each pattern element, this approach cannot
guarantee to meet global constraints. Furthermore, the fact that the algorithm takes
previously aggregated sub-patterns as fixed values also decreases the potential for
optimisation for these cases. Thus, this algorithm can only be regarded as heuristic.
The main motivation for the algorithm lies in the assumption that the number of
tasks within a pattern element will grow more slowly with an increasing total num-
ber of tasks. It is assumed that larger compositions will rather likely contain more
pattern elements. Therefore, the algorithm might scale better than a brute-force
approach, which will be analysed in an evaluation presented in the next chapter.

However, the resulting worst-case effort for this algorithm is O(mn) as well.
The example given in Figure 5.3 of Section 5.1 shows a composition of nine tasks:
Assuming that for each task 5 candidates have been found, the number of com-
binations that the algorithm will evaluate is 53 + 53 + 53 = 375 vs. all possible
combinations which is 59 = 1, 953, 125. The effort is basically reduced to the

118

5.4. Heuristic Algorithms

sub-element containing the highest number of tasks: O(mnsub−max), which has
not effect on the worst case effort.

The best case for this algorithm occurs, if each pattern element consists of a sin-
gle task. The pattern-wise selection would perform a comparison of the candidates
by their overall QoS and assign the resulting best candidate. Then, the theoreti-
cally lowest effort possible is equivalent to a sort operation which is considered
O(n log n).

5.4.5 Comparison of the Algorithms

Table 5.2 lists the basic attributes of the proposed heuristic algorithms from the
previous section. These basic attributes are: whether it supports one or many global
constraints, the best and worst case computational complexity and if it always finds
the optimal solution.

Algorithm Supports Effort Effort Guaratees
Name Constraint Best case Worst case Optimum

Greedy Selection No Ω(n log n) O(n log n) no
Constraint Selection Yes, 1 Ω(n log n) O(n log n) no
Discarding Subsets Yes, ≥ 1 Ω(n2) O(mn) no
Bottom-Up Approx. Yes, ≥ 1 Ω(n log n) O(m · n) no
Pattern-wise Selection No Ω(n log n) O(mn) no

Table 5.2: Summary of introduced heuristic algorithms.

119

5.4. Heuristic Algorithms

120

Chapter 6

Evaluation

The model of the selection problem and the algorithms as given in the previous
chapters provide the basis for an implementation that simulates the QoS-based se-
lection by the heuristic algorithms. Based on the simulation software and its setup,
different simulation campaigns are introduced. These campaigns are designed to
evaluate particular aspects of the simulated QoS-based selection. The campaigns
will give the opportunity to explore the strengths and weaknesses of the considered
heuristics under special conditions.

To determine the simulation parameters, related research work and publica-
tions in the field of service compositions are considered sources for common value
ranges of the involved QoS characteristics, as well as sources for the setup of the
simulated example compositions. Based on a summary of the related work, this
chapter will explain how the basic parameters for the simulation are set. At the
end, the results from the simulation campaigns will be presented and discussed.

6.1 Simulation Model

The basic idea of the simulation is to generate problem instances of the previously
presented problem and then let the implementation of the heuristic algorithms solve
these instances. In this simulation, a solution is an assignment of the chosen candi-
dates to the tasks. The simulation will capture the time taken to compute a solution
and the aggregated QoS resulting from the assignment. While best and worst case
efforts of the proposed heuristic algorithms are given in Section 5.4.5, a simulation
of real world conditions reveals the typical required effort. In order to evaluate
the implemented algorithms under different influences, “the” simulation consists
of several elements:

• Campaigns. The entire simulation is divided into simulation campaigns.
Each campaign investigates the influence of a particular parameter on the
performance of the algorithms. For example, a simulation campaign tests
how the performance of the algorithms develops, if the number of tasks is
increased while the other parameters are kept constant.

121

6.1. Simulation Model

• Setups. Each campaign is divided into a number of setups. While one or
more parameters are varied in a campaign in order to investigate their effect
on the algorithms, a setup denotes a particular setting of parameters.

• Runs. A setup consists of runs. A particular setup is repeated for a number
of runs. The repetition is necessary for the analysis of the results, because
some parameters require a stochastic parameterisation.

For all simulations, the parameters cover the generation of the problem in-
stances; no parameters are set for the implemented algorithms. Depending on the
simulation setup, some of them are fixed, some are step-wisely increased and some
are randomly set. Considering the problem model, the elements of a problem in-
stance are generated in the following way:

• Tasks and candidates. If a problem instance is generated, only the amount
of tasks and candidates is relevant. The simulation ignores particular func-
tionality of possible tasks or possible composition goals, because the focus
on this evaluation is the QoS of the candidates only. In the simulation, the
amount of tasks and candidates is either step-wisely increased or set to fixed
value.

• Quality-of-Service. The QoS values of the candidates are stochastically
generated. Section 6.3.2 explains the generation mechanism and the value
ranges.

• Optimisation goals. In the entire simulation, the optimisation goals remain
the same and all generated problem instances have the requirement to opti-
mise four QoS characteristics. These characteristics will be discussed further
in Section 6.3.1.

• Constraints. Since the simulation evaluates the optimisation capabilities,
a fixed constraint is set on an optional basis for the evaluation of heuristic
algorithms that are capable of meeting constraints.

• Structure. The structure of a composition is generated stochastically. How-
ever, to evaluate the influence of the structural arrangement, the likeliness of
generating particular structural elements (i.e. parallel vs. sequential) can be
varied.

In summary, performing the simulation, i.e. performing a run, is divided into
three main steps. First, a problem instance is generated, then the implemented
heuristic algorithms try to solve the given problem and then the taken computation
time and the resulting QoS are evaluated. Figure 6.1 outlines these steps.

122

6.2. Evaluation Methods and Metrics

generate problem
instance, depending

on setup

problem
instance

time and
chosen

candidates

run heuristic
algorithms to solve

given instance

evaluate
results

Figure 6.1: Main steps of performing a simulation run.

6.2 Evaluation Methods and Metrics

Besides capturing the computation time of the algorithms, the simulation also com-
pares the aggregated QoS of the composition resulting from the task-candidate as-
signments. A comparison makes sense, because the proposed heuristics do not
guarantee finding the optimal solution. Then, a quantitative analysis of the result-
ing QoS shows how much worse a heuristic algorithm is as compared to others. A
quantitative statement is achieved by computing a score for the resulting QoS of
each selection method. For this score the SAW method is used, which has been
introduced in the previous chapter (cf. Section 5.2.4). By this method, one se-
lection method serves as a reference and resulting scores for the other methods
indicate their relative QoS improvement or relative loss. For example, if the re-
sults in the upcoming sections will present a QoS ratio of 1.20 this means that a
method has resulted in a “20%” better QoS when compared to the reference selec-
tion. For this comparison, the different QoS categories are aggregated considering
equal weights. In summary, the concept of performance covers two measures:
the computation time of the performed algorithm and resulting aggregated quality
compared to a reference method.

The simulation implements the presented simulation model and performs the
introduced heuristics on randomly generated problem instances. In order to com-
pute a QoS ratio independent from a heuristic method, the simulation provides
additional methods to provide references to an optimal solution and to a non-
optimised result:

• Constraint-based. This method implements the simple case of optimising
with regard to a single QoS characteristic. The algorithm shows a greedy
behaviour: For each individual task, it chooses the candidate offering the best
QoS with respect to the considered constraint characteristic. This algorithm
can be used to meet a constraint based on a single QoS characteristic while
ignoring other characteristics for optimisation.

• Random selection. By this selection, a candidate is randomly assigned to a
task. Thus, this method completely ignores the QoS. It simulates the case in

123

6.2. Evaluation Methods and Metrics

which the candidates are chosen by other criteria, such as by their organisa-
tional affiliation or by a first-found policy.

• Global search. The global selection evaluates all possible combinations and
then determines the best resulting assignment. This method shows the worst
result in terms of its computation time. However, it determines the best
QoS result possible. Therefore, this method serves as a reference for how
closely the heuristic algorithms approach the optimal result. This method can
optimise different QoS values and it can additionally consider constraints.

In addition to these methods, the discarding subsets method has been imple-
mented in two ways: One variant optimises for different QoS categories and an-
other can take one or more constraints into account. In summary, considering the
selection methods for reference and the heuristics as mentioned in the previous
chapter, the software simulation implements the following methods:

Algorithm, constraint capability

Constraint (yes) Random (no)
Global Constraint (yes) Global Optimisation (no)
Discarding Constraint (yes) Discarding Optimisation (no)
Bottom-Up Approach (yes) Pattern-based Selection (no)

Local (no)

6.2.1 Statistical Measures

As mentioned in the previous section, the simulation software captures two main
measures of each run: the score of the aggregated QoS relative to a reference QoS,
the QoS ratio, and the computation time. The result of the simulation will be sets of
samples that represent a population of these two values (QoS ratio and computation
time) for each selection method. Because this work cannot list all the generated
and captured data of all campaigns, the results of each campaign are presented in
the following way: For each campaign, diagrams will show the average QoS and
computation time of each selection method captured for each setup.

In addition to the diagrams, a table will list the results for one particular setup
that represents a typical output of other setups within a campaign. For example, if a
campaign tests for different setups with an increasing numbers of tasks, a separate
table will present the results of one setup with a particular number of tasks. The
tables will present following statistical measures derived from the captured data:1

• Arithmetic mean. The arithmetic mean is interpreted as the average of a
set of values. The used definition for the arithmetic mean x is as follows:
x = 1

n

∑n
i=1 xi

1The definitions that follow represent basic knowledge in the field of statistics; the Handbook of
Mathematics by Bronstein et al. serves as a reference [13].

124

6.3. Parameters and Implementation

• Standard deviation. Besides the arithmetic mean, the standard deviation
is a measure for how far or how close the individual values occur around
the arithmetic mean. For this work, the following definition for the standard

deviation s is considered: s =
√

1
n

∑n
i=1(xi − x)2 with xi representing an

individual sample, n the count, and x the arithmetic mean of the samples.

In addition, the simulator performs a simple test to determine if the samples
are distributed around the given arithmetic mean. For this test, the software
determines the percentage of the samples contained in 1|s|, 2|s| and 3|s| of
the mean. If the distribution show a similarity to the percentage of 66%, 95%
and 99% for 1s, 2s and 3s around the mean, this indicates that the distribu-
tion is shows a concentration around the given mean value. For the interpre-
tation of the results, this test provides an indication about the performance
behaviour of a selection method. A method can either show a performance
which oscillates around an average, or it can show a split performance. i.e. it
performs either very badly or very well.

• 95%-Confidence interval. It is assumed that the measured computation
times and the resulting QoS represent a population parameter with a specific
distribution. Thus, the calculated arithmetic mean covers only the captured
part of the entire population.

The confidence interval denotes an interval in which the arithmetic mean
of the entire population resides subject to a probability of correctly captured
samples. In this simulation sciences, the considered probability is set at 95%.
The denotes that 5% of the values are taken as wrong values resulting from
errors in the simulation setup or the method to capture the results. Different
definitions for the confidence interval exist. These depend on the count of
samples. Because the setup will be designed to contain between 50 and 1000
runs, the following definition of the confidence interval is used:[

x− z
(
1− α

2

) s√
n

;x + z
(
1− α

2

) s√
n

]
The variable α represents the likeliness of failure. For a 95%-confidence
interval the assumed failure is 5%. The term z(x) refers to the quantile of
the normal distribution. The other variables refer to the same definition as
previously given.

6.3 Parameters and Implementation

One of the first parameters to set for the simulation is the size of a typical composi-
tion structure. The Gartner Group has presented a study about the average number
of services found in companies and enterprises. This gives a rough overview about
the dimensions to consider [107]. According to this study, small companies deploy

125

6.3. Parameters and Implementation

about 25 services on average while very large enterprises deploy a total amount of
more than 1000 services. In such very large enterprises, more than 100 clients ac-
cess these services on a daily average. This study has also revealed that the services
in very large enterprises are usually invoked among all units but entirely within the
organisation. From these numbers, no concrete estimation is possible. It is possible
to estimate that, on average, a client accesses 10 services which indicates roughly
the size of possible compositions. The number of 1000 services represents a direc-
tion for how many services may be considered by a broker. However, assumptions
about how many services candidates result for each task cannot be made.

Besides the numbers from this analysis, scientific publications provide indica-
tions about possible sizes of service compositions. Van der Aalst et al. describe
the application of workflow modelling techniques to the process of granting a loan
for a Danish bank company. In their example, 8 tasks are identified that together
form a complete business process [147]. The evaluations of workflow management
facilities of Heinis et al. [44] and Cranford et al. [19] mention workflows that usu-
ally consist of up to 25 individual tasks or activities. Regarding the typical size
of workflows or business processes, medium sized compositions can have about
ten tasks, while large compositions can be around 25 tasks in size. It must be
also considered that a composition might require a transformation before it can be
processed by the aggregation method. Section 4.5 has mentioned these transforma-
tions, which involve the duplication of nodes. Consequently, the resulting number
of tasks to process by selection algorithms might be larger than the number found
in the original business process.

6.3.1 Quality-of-Service Parameters

Regarding the response time, measurements of the invocation of Web services can
be considered because Web services represent the most popular SOA implementa-
tion today. Tosic et al. have introduced an infrastructure to evaluate the provision of
policy-aware Web services [132], which also provides a quantitative measurement
of Web service invocation times. In their work, they have performed experiments
to execute Web services while providing an adaptive solution to cover dynamic
changes in the given QoS. Their experiments show that a standard setup in a local
network resulted in a lowest response time of about 150 milliseconds of plain test
Web services. Therefore, for this work a value of 150 milliseconds is regarded as
the lower end of response time values.

Gillmann et al. have evaluated in their work the typical duration of activities
in a workflow. The workflow scenario represents a realistic application of service
compositions. According to their evaluation, automatic (non-interactive) activities
take from around 2 to 12 seconds [38]. Chandrasekaran et al. have introduced
a simulation environment for processes based on Web service compositions [18].
Their measurements show which parts of the service invocation take which amount
of time: the queuing of the request, its processing or the transfer over the network.
According to their measurements, the service invocations range between 400 mil-

126

6.3. Parameters and Implementation

liseconds and 2.6 seconds.
Regarding the availability of services, the work of Gillmann et al. considers

a typical downtime in the area of 20 minutes each day in their evaluation [38].2

This would result in an availability of 0, 985%. Kenyon presents in his book a
very detailed discussion about typical availability rates in service architectures [72,
p. 411]. The data is summarised in Table 6.1. Based on these values, it can be
concluded that an availability value close to 99% represents a lower limit for the
business minded provision of services. Values above the high-availability can be
ignored from Table 6.1, because for most cases it can be assumed that the underly-
ing software platform, computer hardware and network connection provide a lower
availability.

. .System class Availability Yearly Downtime Daily Downtime

. .Unmanaged 90.00000% 876.00 h 2.40 h
Managed 99.00000% 87.60 h 14.40 h
Well-Managed 99.90000% 8.76 h 1.44 m
Fault-Tolerant 99.99000% 52.56 m 8.64 s
High-Availability 99.99900% 5.26 m 863.99 ms
...

...
...

...

Ultra-Availability 99.99999% 3.15 s 8.64 ms

Table 6.1: Availability rates and resulting downtimes by Kenyon [72, p. 411].

Regarding the cost and the reputation, an evaluation of existing work would not
result in any benefit for this simulation: Cost and reputation are individually set.
Moreover, their definitions can vary as explained in Section 4.4.3. For example,
the cost depends on the payment model or the considered currency. An amount of
a particular currency could require a transformation into another. Regarding the
reputation any scale used for setting scores can be considered. For this work, for
both categories arbitrary absolute values within a reasonable range are considered.
The value ranges of the other values – i.e. the response time, number of tasks
and candidates, and availability – are based on the previously given discussion of
existing literature. Table 6.2 summarises the value ranges for the parameters of the
simulation.

6.3.2 Implementation

The simulation software generates arbitrary problem instances which includes struc-
tures and QoS values of the candidates to apply each of the different selection
methods. The software considers the four QoS characteristics as described in the

2It must be noted that this number represents a simplified assumption of their failure model as
explained in [38]. However, for the use in this work such a statement is regarded as sufficient to get
an impression about typical dimensions.

127

6.3. Parameters and Implementation

Parameter, value range

Number of tasks [4 . . . 50] incremented by 1 or fixed value
Number of candidates [2 . . . 50] incremented by 1 or fixed value
Response time [150 . . . 9999] randomly chosen
Cost [0 . . . 9999] randomly chosen
Reputation [0 . . . 10] randomly chosen
Availability [0.9750 . . . 0.9999] randomly chosen

Table 6.2: Parameter value ranges of the simulation.

previous section: the maximum response time, the maximum cost, the reputation
based on the mean-aggregation and the availability. The generation of problem
instances involves a number of steps each covering a randomly generated aspect:

1. To build up the composition structure, the software determines a root struc-
ture chosen from the composition patterns with equal probability. To build
“deep structures”, the software first chooses a composition pattern as a root
structure. Within this root and inside further structural elements, the simula-
tor chooses with equal probabilities to either generate a task or to generate a
structural element that may contain tasks and other structural elements.

The simulator considers only seven composition patterns from the nine in-
troduced in Section 4.3. This represents a simplification of the composition
patterns. It merges the patterns CP5 with CP6, and CP8 with CP9, to one
new pattern each. Which particular element is generated is chosen with equal
probability of 14.28% for each. Thus, the generated structures statistically
contain more parallel arrangements, because the considered patterns consist
of five parallel patterns and two sequential patterns (71.43% versus 28.57%).

2. The software generates candidate services with random QoS values. To en-
sure a realistic QoS variance of the candidates, the software randomly as-
signs, for each task, an optimal cost and response time with uniform distri-
bution, from the following intervals:

QoS Characteristic, value range

Response Time [150 . . . 2000] uniformly distributed
Cost [0 . . . 1000] uniformly distributed

Based on the optimal value qoptimal, the actual value for each candidate is
determined by adding a randomly determined percentage between 0 and 100
with uniform distribution. In short the generated QoS value qg is:

qg = qoptimal · (1 + x) 0 ≤ x ≤ 1, x ∈ R

128

6.3. Parameters and Implementation

To form a trade-off couple between the response time and cost, the two are
set as follows: The value x1 added to the optimal response time is taken to
calculate the value x2 added to the optimal cost, with x1 + x2 = 1. Thus,
the better the response time is, the worse the cost and vice versa.

3. Contrary to the previous characteristics, the software does not generate an
optimal value for generating the reputation values. The reputation is gener-
ated by taking a base value of 5 and adding a value 0, . . . , 10 ∈ N, which is
chosen with uniform distribution, to this base value. Regarding the availabil-
ity, the algorithm considers the interval [0.975 . . . 0.999] as given in Table 6.2
and chooses, with uniform distribution, a value between these two borders.

4. After the structure and candidate QoS values have been determined, a con-
straint is determined by running the constraint selection first. In the simu-
lation campaigns, the cost is the considered constraint characteristic. The
aggregated value is increased by a set percentage (for example by 20%) and
then taken as the constraint that has to be met by the other selection methods.

After the creation of the problem instance, the software performs the selection
methods on this setup. For each run, the software captures the resulting aggregated
QoS and the computation time in microseconds. The computation is the time that
an algorithm needs to determine the solution, based on a given problem instance.
Thus, the generation of the instance including the candidates with their QoS values
is not captured by the measurements.

6.3.3 Technical Details

Since the computation times are captured to compare the computational efforts of
the particular selection methods, the absolute performance of the used hard- and
software platform is generally irrelevant for the validity of the results. However,
it was necessary to ensure that the simulation host computer kept its condition
throughout all the campaigns and that no other processes running in parallel affect
the measurements. Consequently, only operating system and a software run-time
environment was installed on the host computer, keeping it clean at “factory set-
tings”.

The simulation software is a custom implementation and no external software,
libraries and tools were integrated. All selection methods ran in the same environ-
ment under the same conditions working on the same data structure in the com-
puter’s main memory. Java was chosen as the implementation language for the
simulation software because of its availability on many platforms. Thus, for the
distribution of the software, it is ensured that it will be able to run on different
hardware platforms and operating systems. Since Java 2 Standard Edition (J2SE)
5.0, the API provides the operation System.nanoTime(), which offers a more pre-
cise time measurement as the operation System.currentTimeMillis() provided by
previous versions of the Java platform as the only operation of this kind. It turned

129

6.4. Simulation Campaigns and their Results

out that measurements in the magnitude of milliseconds did not capture the com-
putation time from the random, constraint and local selection methods. Therefore,
the version 5.0 of the J2SE is the required run-time environment for the simulation
software. Setting the parameters to create the problem instances involved the gen-
eration of random numbers. Accordingly, the pseudo-random number generator
implementation of the class java.util.Random (with default seed) was used for this
purpose.

The entire simulation was performed on the same computer keeping the same
software platform. As a computer, standard PC hardware with the Windows 2000
operating system was used. The operating system was kept at its default state,
meaning that no additional driver software was installed and no settings were made
to additionally configure the computer. As a consequence, the computer did not
maintain any network connection and ran in standard 680 by 480 graphics mode
with 16 colors. The only software that was installed is the Java virtual machine to
let the computer run the simulation software. Further technical specifications about
the computer are given in the Appendix A.

6.4 Simulation Campaigns and their Results

In the following, different simulation campaigns are described in which influence
of a particular parameter on the resulting performance of the algorithms is investi-
gated. For example, it is obvious that a rising number of tasks will result in a rising
computational effort. However, regarding a raising number of candidates with a
fixed number of tasks, one can guess that the algorithms scale differently because
of different upper bounds of complexity. Another question is how much potential
for optimisation exists for a given problem instance, since this potential depends
on the variance of the provided candidate QoS. To cover these considerations, the
following different simulation campaigns have been designed that allow the evalu-
ation of different performance factors:

Simulation campaigns, short description

C1 Increasing number of tasks without constraint
C2 Increasing number of tasks with constraint
C3 Increasing number of service candidates with a fixed number of tasks
C4 Volatility of the QoS among the candidates
C5 Parallel vs. sequential composition structures

In the following sections, these campaigns are discussed and their results are
analysed. Regarding the simulation setup, two general issues have been set that
apply to all campaigns. The number of conducted runs per setup was set to 200
times. From preliminary tests, it turned out that for this number of runs it is ensured
that a campaign will result in similar statistical results when run again. Because
the “exponential” selection methods are indeed very time-consuming to simulate,

130

6.4. Simulation Campaigns and their Results

the software skips a method if the average time has exceeded a certain limit. For
the campaigns, the simulator has skipped a method if its average computation time
in a run has exceeded 500 seconds.

6.4.1 Increasing Number of Tasks without Constraint (C1)

As a start, this simulation campaign has the goal to test the resulting performance
with an increasing number of tasks. For this campaign, the number of candidates
is kept constant. Regarding the setup of the QoS, this campaign does not set any
constraints but it considers the four QoS characteristics for optimisation. As ex-
plained in the previous section, the response time and cost will form a trade-off
couple, meaning that optimising one generally results in making the other worse.

The reference method for comparing the resulting QoS will be set to the con-
straint-based selection. Although there is no constraint to meet, this method opti-
mises for just one QoS characteristic and thus serves as a simple QoS optimisation
approach. Because, contrary to the local and pattern optimisation, the bottomup
optimisation considers also constraints, this method will be skipped for this cam-
paign and explored in the next one. In summary, this campaign uses the following
setup:

C1 Parameters and Setup, values

Number of tasks [4 . . . 50], each setup incrementing by 1
Number of candidates 5, constant
Candidate QoS as given in Table 6.2, randomly set,

uniformly distributed
Constraint no constraint set
Involved methods constraint, random, global, discarding,

local and pattern
Reference method constraint

Expectations

This campaign will evaluate how the different heuristics perform when faced with
the problem of optimising for different QoS characteristics while two of them form
a trade-off couple. A constraint is not considered. Generally, this campaign will
evaluate how well the heuristics optimise a given setup when compared with the
three reference methods.

Results

The results of this simulation campaign are shown in Figures 6.2 and 6.3. In ad-
dition, Table 6.3 shows the results of the setup with 12 tasks. Figure 6.2 shows
the average resulting aggregated QoS performing the selection methods relative to
the constraint selection. Figure 6.3 shows the average computation times of the
different selection methods for problem instances with increasing number of tasks;

131

6.4. Simulation Campaigns and their Results

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

 5 10 15 20 25 30 35 40 45 50

qo
s

ra
tio

 (c
on

st
ra

in
t =

 1
)

number of tasks

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.2: Relative QoS to constraint
selection (C1, with 5 candidates).

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09

 5 10 15 20 25 30 35 40 45 50

tim
e

in
 m

icr
os

ec
on

ds

number of tasks

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.3: Computation times of selec-
tion methods (C1, with 5 candidates).

this diagram has a logarithmic scale on its y-axis. Table 6.3 lists the arithmetic
mean, the standard deviation and the confidence interval. Based on the standard
deviation, the table shows how many percent of the samples are within one, two or
three standard deviations around the mean.

Average Standard % % %
Method Mean x Deviation s in 1s in 2s in 3s 95%-Conf.

Overall QoS relative to constraint selection

Constraint 1.0 0.0 0.0 0.0 0.0 ± 0.0
Random 0.9808 0.0937 76.50 96.00 98.50 ± 0.0110
Glob O. 1.2463 0.0988 73.00 94.00 99.50 ± 0.0116
Disc O. 1.2398 0.1022 72.00 93.00 100.00 ± 0.0120
Local 1.2110 0.1068 73.00 95.50 99.00 ± 0.0125
Pattern 1.2303 0.1019 71.00 94.00 99.50 ± 0.0120
Computation duration, in microseconds

Constraint 23 51 98.50 98.50 98.50 ± 6.0040
Random 8 1 23.50 69.00 95.00 ± 0.1177
Glob O. 831,559,679 211,098,114 69.00 95.00 100.0 ± 24,485,178
Disc O. 285,281,163 184,650,968 21.00 84.00 87.00 ± 21,738,258
Local 48 46 98.50 98.50 98.50 ± 5.4154
Pattern 263,332 2,098,027 98.50 98.50 99.00 ± 246,992

Table 6.3: QoS and times, setup with 12 tasks in C1.

Both the pattern and the local method show a resulting average QoS perfor-
mance that is very close to the algorithm that always finds the optimal solution.
In all runs, the pattern method shows the better resulting QoS when compared to
the local method. The gap between the pattern method and the local method is
relatively small. The discarding method shows almost the same QoS performance
as the global method.

132

6.4. Simulation Campaigns and their Results

Regarding the computing duration, the constraint, random and local methods
show a slow increase – as expected. The results for the pattern method show that,
with a growing number of tasks, its computation exceeds the given time limit and
thus was skipped after the setup with 25 tasks. However, its computation times
climb slower than the times of the global or the discarding method. Compared to
the global method, the pattern method performs significantly better: The average
computation time for a setup of 12 tasks is less than 0.1% of the average computa-
tion time for the global selection.

The histogram of the computation times in Figure 6.4 explains the behaviour
of the pattern method more closely. For more than 40% out of the 200 samples,
the algorithm executes faster than 0.001 seconds. However, for 7% of the samples
the algorithm takes more than 0.1 seconds for execution. This shows the volatility
of the required computational efforts by this method. For comparison, Figure 6.5
shows the histogram of the computation duration of the global method. Although
the values are larger than those resulting from the pattern method, they do not show
that large variance.

 0

 20

 40

 60

 80

 100

 120

 140

102 103 104 105 106 107 108 109 1010

oc
cu

rre
nc

es

time in microseconds

Figure 6.4: Histogram of computation
times of the pattern method (C1, setup
with 12 tasks).

 0

 20

 40

 60

 80

 100

 120

 140

102 103 104 105 106 107 108 109 1010

oc
cu

rre
nc

es

time in microseconds

Figure 6.5: Histogram of computation
times of the global method (C1, setup
with 12 tasks).

Interpretation

This campaign has evaluated the performance of the three heuristics, the discard-
ing, local and pattern methods. The results allow the following interpretation about
these three:

• Discarding. This method results in almost the same QoS performance as the
global method that always finds the optimal solution. However, this cam-
paign shows that the bounding ability of this heuristic cannot save enough
efforts to show a substantial difference. The results show that for larger
number of tasks, the bounding saves more than 50% of the computational

133

6.4. Simulation Campaigns and their Results

effort, but the effort still rises exponentially. Accordingly, its computational
performance can be regarded as poor.

Looking at the results for very small composition sizes, the discarding method
takes even longer time than the global method. Obviously, the discarding
method cannot save more time by bounding sub-trees than it consumes more
for testing for bounding after each step.

• Local. The locally optimising method shows a QoS performance that comes
very close to the pattern, global and discarding methods. From the generated
data of this campaign, which is not entirely presented here, the local method
showed that in about 95% of the runs, this selection method results a mini-
mum QoS of about 15% worse than the average of the optimal solution. As
expected, it performs with a negligible computational effort.

• Pattern. The results from this campaign, especially the histogram shown in
Figure 6.4, allow the conclusion that the algorithm strongly depends on the
given structure of the composition. The computational effort grows expo-
nentially for the evaluation of the combinations within a pattern. If a pattern
consists of many tasks to evaluate, the number of possible combinations rises
exponentially. The simulation has shown that these cases occur and they re-
sult in an extremely large computational effort. Compared with the two other
heuristics tested here, this method shows a QoS performance between the lo-
cal and the discarding methods.

6.4.2 Increasing Number of Tasks with One Constraint (C2)

This simulation campaign has the goal to test the resulting performance with an
increasing number of tasks. For this campaign, the number of candidates per task
is kept constant. The particular QoS characteristics are generated using a normal
distribution. Consequently, each of the values within the range is possible with
equal probabilities. For the constraint, one QoS characteristic is chosen. Then, the
required constraint value is set to 20% above the best value possible. The reference
method for comparing the resulting QoS will be set to the constraint-based selec-
tion. In summary, this campaign uses the following setup:

C2 Parameters and Setup, values

Number of tasks [4 . . . 50], each setup incrementing by 1
Number of candidates 5, constant
Candidate QoS as given in Table 6.2, randomly set,

with uniform distribution
Constraint 1 characteristic, 20% worse than best possible for

constraint-aware methods
Involved methods constraint, random, global, discarding

and bottomup
Reference method constraint

134

6.4. Simulation Campaigns and their Results

Expectations

The expectations are similar as in the previous campaign except that this campaign
involves a constraint and thus, instead of the local and pattern heuristics, the focus
lies on the discarding and bottomup heuristics. The anticipated result is a quantita-
tive evaluation about how well each of the algorithms scales with a rising number
of tasks and if the resulting QoS of particular algorithms will decrease. Obviously,
a larger composition structure will include a higher number of branches, which
could result in more potential to optimise. On the other hand, a larger number of
tasks will reduce the optimisation level, because the QoS increase of a particular
task will be relatively low compared to the aggregated QoS of the entire composi-
tion.

Simulation Results

The results of this campaign are shown in Figures 6.6 and 6.7. In addition, Ta-
ble 6.4 shows the results of the setup with 12 tasks.Figure 6.6 shows the average
resulting aggregated QoS performing the selection methods, relative to the con-
straint selection. Figure 6.7 shows the average computation times of the differ-
ent selection methods for problem instances with increasing number of tasks. It
must be noted that its y-axis has a logarithmic scale. Table 6.4 lists the arithmetic
mean, the standard deviation and the corresponding confidence intervals. Based on
the standard deviation, the table shows also how many percent of the samples are
within one, two or three standard deviations around the mean.

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

 5 10 15 20 25 30 35 40 45 50

qo
s

ra
tio

 (c
on

st
ra

in
t =

 1
)

number of tasks

Constraint
Random

Global
Discarding
Bottumup

Figure 6.6: Relative QoS to constraint
selection (C2, with 5 candidates).

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09

 5 10 15 20 25 30 35 40 45 50

tim
e

in
 m

icr
os

ec
on

ds

number of tasks

Constraint
Random

Global
Discarding
Bottumup

Figure 6.7: Computation times (C2 with
5 candidates).

The results show that the exponentially time-bounded methods indeed show a
steep increase in the computational duration. Compared to these, the quadratic bot-
tomup method shows a relatively slow increase. Table 6.4 shows that the discarding
method has a high volatility regarding its duration, while the global seems to op-
erate on constant level. In fact, the confidence intervals show that the given mean

135

6.4. Simulation Campaigns and their Results

Average Standard % % %
Method Mean x Deviation s in 1s in 2s in 3s 95%-Conf.

Overall QoS relative to constraint selection

Constraint 1.0 0.0 0.0 0.0 0.0 ± 0.0
Random 0.9808 0.0937 76.50 97.50 98.50 ± 0.0110
Glob Co. 1.2154 0.0899 73.00 94.50 99.00 ± 0.0105
Disc Co. 1.2089 0.0934 72.00 94.00 99.00 ± 0.0110
Bottomup 1.0655 0.0603 83.00 96.00 98.00 ± 0.0070
Computation duration, in microseconds

Constraint 23 51 98.50 98.50 98.50 ± 6.0040
Random 8 1 23.50 69.00 95.00 ± 0.1177
Glob Co. 750,982,559 207,036,882 68.00 95.00 100.00 ± 24,373,668
Disc Co. 309,828,060 176,015,663 19.50 81.50 84.50 ± 20,721,656
Bottomup 268 98 84.00 94.00 95.00 ± 11.537

Table 6.4: QoS and times, setup with 12 tasks in C2.

value for the duration is not representative and the occurring values are widely
spread. To examine this behaviour further, Figure 6.8 shows a histogram of the
computation times for the discarding method. Each bar shows the time in mi-
croseconds. It must be noted that the x-axis in this diagram has a logarithmic scale.
From this histogram it can be seen that about 50% of the runs perform faster than
100 seconds while the average is at 309 seconds due to some runs with require a
high effort.

The bottomup method shows a relatively large standard deviation and confi-
dence interval of its duration. Also when observing the complete results, which are
not listed, the confidence interval decreases from 1/10th of the mean (at 12 tasks)
to 1/20th of the mean (at 40 tasks). To provide additional insights on the resulting
population, the histogram of duration from the bottomup method is given in Fig-
ure 6.9. The histogram shows an accumulation around the average. However, in
some cases the values are three times larger. The computation times of the random
and constraint selection are relatively low and therefore is ignored in the further
discussion.

Regarding the resulting QoS, the global and the discarding selection are on the
same level, indicating that the discarding method results in almost the same QoS
as the global selection. The bottomup method shows a decreasing level of perfor-
mance with a rising number of tasks when compared to the constraint selection.
The 95%-confidence interval values, as given in the table, indicate that the average
closely represents the actual performance of the selection methods.

Interpretation

Comparing the constraint selection and the global selection reveals that, on av-
erage, the overall QoS can be improved by about 25% − 30% when considering

136

6.4. Simulation Campaigns and their Results

 0

 20

 40

 60

 80

 100

 120

 140

101 102 103 104 105 106 107 108 109

oc
cu

rre
nc

es

time in microseconds

Figure 6.8: Histogram of computation
times of the discarding method (C2, with
12 tasks).

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800

oc
cu

rre
nc

es

time in microseconds

Figure 6.9: Histogram of computation
times of the bottomup method (C2, with
12 tasks).

the setup of QoS values as expected. The global and discarding methods show an
exponentially rising computational effort with a larger number of candidates and
therefore can be regarded as unfeasible. The results allow the following interpreta-
tion about the two evaluated heuristics:

• Discarding. The selection by discarding subsets results in the best QoS pos-
sible, while still meeting the constraint for the setups. The heuristic aspect of
the discarding subset algorithm, as discussed in Section 5.4.2, is very small;
rather this method resulted in almost the same QoS as an algorithm that is
guaranteed to always find the optimal solution.

Regarding the computational duration, this selection method has an unattrac-
tive scaling. Obviously the time performance is highly volatile and seems to
depend strongly on the generated example problem instances: In one third
of the cases, this method solves the problem within a negligible effort while
in 15% of the cases, the duration is about 100-times as high. A future simu-
lation campaign with the focus on different structures should to examine this
aspect further.

• Bottomup. The bottomup selection results in the second worst QoS, com-
pared to the other heuristics. The results for the QoS values show that
the bottomup method reaches about one third of the optimal performance
achieved by the global selection. However, it meets the constraint and shows
a low computational effort and scales well with a rising number of tasks. The
bottomup method shows feasible efforts even for larger composition struc-
tures.

In summary, this campaign has confirmed that the branch-and-based approach
is not guaranteed to save computational efforts in special cases. But it resulted

137

6.4. Simulation Campaigns and their Results

in almost the best QoS possible. The bottomup method behaves in the opposite
way: It has low computational requirements combined with a relatively low QoS
performance.

6.4.3 Increasing Number of Service Candidates (C3)

For this campaign, the number of tasks in a problem instance is kept constant for
each test run. Like for the previous campaign, the particular QoS categories are
generated using a normal distribution - thus this means that each of the values
within the range are chosen with equal probabilities. A constraint is considered for
this campaign by the constraint-aware methods.

C3 Parameters and Setup, values
Number of tasks 8, constant
Number of candidates [2 . . . 50]
Candidate QoS as given in Table 6.2, uniform distribution
Constraint 20% worse cost than best possible for constraint-

aware methods
Involved methods constraint, random, global (two), discarding (two),

bottomup, local and pattern
Reference method constraint

Expectations

The expected result is a quantitative analysis of how well each of the algorithm
scales with a rising number of candidates. Compared with the rising number of
tasks, increasing the number of candidates results in an effort bounded by a poly-
nomial, because the number of tasks is kept constant. For the calculation of the
worst-case effort, the number of tasks goes into the exponent of a time-bounding
function, as explained in Section 5.3.5. For this campaign, the exponent is kept at
8. Therefore, the worst-case effort for this setup results in the class of O(n8) where
n represents the number of candidates. A statement is expected on how the poly-
nomial computational efforts will compare to the setup of the first two campaigns
with an exponentially bounded effort.

Results

Figures 6.10 and 6.11 show the average aggregated QoS performing the selection
methods relative to the constraint selection. Figures 6.12 and 6.13 show the aver-
age computation times of the involved selection methods. In addition, Table 6.5
shows the results of the setup with 11 candidates, because this setup still involves
the global and discarding selection methods. For setups with more than 11 can-
didates, the global selection was skipped. The table lists the arithmetic mean, the
standard deviation and the corresponding confidence intervals. Based on the stan-
dard deviation, the table shows how many percent of the samples are within one,

138

6.4. Simulation Campaigns and their Results

two or three standard deviations around the mean.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

 5 10 15 20 25 30 35 40 45 50

qo
s

ra
tio

 (c
on

st
ra

in
t =

 1
)

number of candidates

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.10: Relative QoS to constraint
selection of optimisation-only methods
(C3).

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

 5 10 15 20 25 30 35 40 45 50

qo
s

ra
tio

 (c
on

st
ra

in
t =

 1
)

number of candidates

Constraint
Random

Global Constr
Disc Constr

Bootomup

Figure 6.11: Relative QoS to constraint
selection of constraint-aware methods
(C3).

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09

 5 10 15 20 25 30 35 40 45 50

tim
e

in
 m

icr
os

ec
on

ds

number of candidates

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.12: Computation duration of
optimisation-only methods (C3).

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09

 5 10 15 20 25 30 35 40 45 50

tim
e

in
 m

icr
os

ec
on

ds

number of candidates

Constraint
Random

Global Constr
Disc Constr

Bottomup

Figure 6.13: Computation duration of
constraint-aware methods (C3).

Regarding the QoS performance, all methods show an increase with a rising
number of candidates when compared to the constraint selection. The previous
campaigns have shown that an increasing number of tasks resulted in a decreasing
behaviour of the QoS performance, compared with the constraint selection. In this
campaign, all methods have shown an improving QoS performance for a rising
number of candidates when compared to the constraint selection. The results also
show a rather steep slope at the beginning, which seems to lower for larger number
of candidates.

Regarding the computational efforts, the results show a similar development
than in the previous two campaigns. The constraint, the random and local selection
show at seldom runs a computation time of about 400 microseconds. In general

139

6.4. Simulation Campaigns and their Results

Average Standard % % %
Method Mean x Deviation s in 1s in 2s in 3s 95%-Conf.

Overall QoS relative to constraint selection

Constraint 1.0 0.0 0.0 0.0 0.0 ± 0.0
Random 0.9715 0.1028 70.00 97.00 98.50 ± 0.0121
Glob O. 1.4114 0.1403 75.50 94.50 98.50 ± 0.0165
Glob Co. 1.3304 0.1339 75.00 93.50 99.50 ± 0.0157
Disc O. 1.4074 0.1404 75.00 95.00 98.50 ± 0.0165
Disc Co. 1.3243 0.1331 74.50 94.00 99.50 ± 0.0156
Local 1.3801 0.1448 75.00 95.00 98.00 ± 0.0170
Bottomup 1.1062 0.1050 83.50 96.50 98.00 ± 0.0123
Pattern 1.4005 0.1407 74.00 95.00 98.00 ± 0.0165
Computation duration, in microseconds

Constraint 24 44 98.50 98.50 98.50 ± 5.1799
Random 8 28 99.50 99.50 99.50 ± 3.2963
Glob O. 544,394,247 125,620,708 68.00 93.00 100.0 ± 14,788,850
Glob Co. 454,826,580 122,039,371 67.00 94.00 100.0 ± 14,367,230
Disc O. 103,781,595 220,063,566 87.00 92.50 94.00 ± 30,498,693
Disc Co. 147,531,815 250,731,490 81.00 89.00 95.00 ± 34,748,973
Local 67 54 96.50 97.00 97.00 ± 6.3572
Bottomup 304 54 85.50 94.00 94.50 ± 12.125
Pattern 3,687,662 27,872,646 98.00 99.00 99.00 ± 3,281,341

Table 6.5: QoS and times, setup with 11 candidates in C3.

these three methods showed a rather continuous computation duration within one
setup which usually varies for a couple of microseconds. However, for a few runs,
the results show an abnormality. A histogram of computation times by the local
method shown in Figure 6.14 shows that most values are within the range of few
microseconds. It can be assumed that these captured “break-out” times resulted
from temporary anomalies of the testing platform. The referring histogram in Fig-
ure 6.15 shows that the captured values are widely distributed. Furthermore, the
histogram shows the pattern of an discrete distribution. It must be noted that the
y-axis of this histogram has a logarithmic scale.

Interpretation

Although the worst case effort of the algorithms is polynomial bounded, the com-
putation time of the algorithms increases as fast as for the previous two campaigns.
Since the number of possible combinations rose by n8, the computation time for
the first five setups rose quicker than for the setups with rising number of tasks
and a fixed number of 8 candidates. The results show that even for relatively low
composition sizes the global method results in an intolerable effort. Regarding the
involved heuristics, the following conclusions can be drawn:

• Discarding. Like in the previous campaigns, this heuristic results in a QoS

140

6.4. Simulation Campaigns and their Results

 0

 20

 40

 60

 80

 100

 120

 140

 40 45 50 55 60 65 70

oc
cu

rre
nc

es

time in microseconds

Figure 6.14: Histogram of computation
times for the local method (C3, 11 can-
didates).

 0

 20

 40

 60

 80

 100

 120

 140

101 102 103 104 105 106 107 108 109

oc
cu

rre
nc

es

time in microseconds

Figure 6.15: Histogram of computation
times for the pattern method (C3, 11
candidates).

performance that is similar to the global selection. However, the quickly
rising duration makes clear that its application is unfeasible.

• Local. The local method shows a resulting QoS that is very close to the
global method. Considering the resulting QoS from the pattern method, this
approach offers similar QoS performance while showing negligible compu-
tational efforts.

An interesting phenomenon is the rising QoS performance with a higher
number of candidates when compared to the constraint selection. With a
rising number of tasks (as performed in the previous campaign), the results
showed a decreasing performance: The impact when optimising a single
critical task becomes relatively small with a larger total number of tasks. A
fixed number of tasks provides a constant optimisation impact when improv-
ing a single critical task. In addition, a higher number of candidates seems
to result in a higher potential to improve the QoS.

• Bottomup. The bottomup method confirms its good computational perfor-
mance. Regarding the QoS performance, the improvements are clearly not
as good as for the other heuristic methods; it seems to achieve 1/3 of the
performance of the other methods.

• Pattern. The pattern selection results in a QoS performance that is higher
than that of the local selection, but not as good as that of the discarding
selection. Like in previous campaigns, the pattern method shows an unfeasi-
ble effort with a rising number of candidates, even when considering that it
performs by magnitudes quicker than the discarding selection. In addition,
this method shows an increasing QoS performance with a rising number of
candidates as well, confirming the assumption that the optimisation potential
generally improves regardless of the considered method.

141

6.4. Simulation Campaigns and their Results

The pattern method showed also a distribution of captured computation times
that looks similar to a discrete distribution (cf. Figure 6.15). It can be as-
sumed that the computation times are directly dependent on the randomly
generated number of tasks found within a single pattern. Considering the
bars given in Figure 6.15, the rightmost could result from compositions
where a pattern with 8 tasks was generated, the second-right results from
a pattern with 7 tasks etc.

6.4.4 Volatility of the Quality-of-Service (C4)

For this campaign, the number of tasks and candidates of a problem instance is
kept constant for each test run. Like for the previous campaign, the particular QoS
categories are generated using an uniform distribution. In addition, the volatility
of the QoS values of the candidates is varied: The goal is to test setups in which
the QoS values show large differences among the candidates. In contrast to this,
the obtained results will be compared to setups in which the QoS values among the
candidates remain almost the same.

To create the variation among the generated QoS values, an additional factor,
the variance factor qv, is included when the QoS of the candidates is generated.
Based on the QoS generation explained in the previous Section 6.3, the generated
QoS value is:

qg = qoptimal · (1 + qvx) x = 0, . . . , 1

For the simulation, the different setups were performed with different values of
qv starting from 0.1 and incremented by about 0.16 for 50 times. The Table 6.6
shows examples for generated QoS values at different values of qv. It must be
noted that each set of 10 example candidates refers to a different task with different
best QoS value. This campaign is different from the previous campaigns, because
the simulator repeated the simulation test setup at different levels of qv, and not
different amounts of candidates or tasks.

qv = 0.1 qv = 1.0 qv = 4.0
1762.0 264.0 5.0 0.998 1844.0 1085.0 5.0 0.991 4564.0 1185.0 17.0 0.988
1742.0 267.0 5.0 0.999 1523.0 1232.0 6.0 0.998 2072.0 2949.0 12.0 0.995
1709.0 272.0 5.0 0.998 2312.0 0872.0 6.0 0.993 1648.0 3249.0 7.0 0.956
1753.0 265.0 5.0 0.999 2330.0 0864.0 10.0 0.997 1477.0 3370.0 5.0 0.954
1742.0 267.0 5.0 0.997 1491.0 1247.0 8.0 0.981 1990.0 3007.0 17.0 0.929
1714.0 271.0 5.0 0.998 2028.0 1001.0 5.0 0.976 2345.0 2755.0 18.0 0.995
1710.0 272.0 5.0 0.999 1940.0 1042.0 5.0 0.999 1107.0 3632.0 13.0 0.930
1804.0 257.0 5.0 0.997 2045.0 0994.0 9.0 0.981 4210.0 1436.0 13.0 0.978
1769.0 263.0 5.0 0.998 1668.0 1166.0 7.0 0.996 2648.0 2541.0 11.0 0.905
1704.0 273.0 5.0 0.999 2307.0 0874.0 9.0 0.990 4310.0 1365.0 13.0 0.900

Table 6.6: Examples of generated QoS values at different qv.

142

6.4. Simulation Campaigns and their Results

C4 Parameters and Setup, values
Number of tasks 8, constant
Number of candidates 5, constant
Candidate QoS value range altered by qv, from 0.1 to 8, by incre-

ments of 0.16, uniform distribution
Constraint 20% worse cost than best possible for constraint-

aware methods
Involved methods constraint, random, global (two), discarding (two),

bottomup, local and pattern
Reference method constraint and random selection

Expectations

The expected result for this campaign differs much from the other. The expectation
is to evaluate changes in the QoS performance of an algorithm if the volatility of the
generated QoS increases. Moreover, the selection methods are expected to show
individual changes in their QoS performance: A heuristic method might result
in poor performance compared to the optimal solution if the setup offers a high
optimisation potential.

Results

Figure 6.16 shows the average resulting aggregated QoS performing the selection
methods that are capable of optimisation only (e.g. the local method) relative to
the constraint selection. In the case that no constraint must be hold, the constraint
selection just optimises for one QoS characteristic. Figure 6.17 shows the same for
the constraint-aware selection methods (e.g. the bottomup method) with a given
constraint. In addition to the these diagrams, Figures 6.18 and 6.18 show the QoS
ratio relative to the random selection. In the same manner, Figures 6.20 and 6.21
show the average computation times. It must be noted that the y-axis has a log-
arithmic scale in both figures. Table 6.7 lists the arithmetic mean, the standard
deviation s and the corresponding confidence intervals for the setup with qv = 2.
Based on the standard deviation, the table shows how many percent of the samples
are within one, two or three standard deviations around the mean.

The results in Figures 6.20 and 6.21 show that an increasing qv results in a
slight decrease of the computation time for the methods based on a branch-and-
bound approach. These methods also show a strong volatility of the computation
time (cf. Table 6.7). However, except from the discarding methods, the variation
of the qv does not appear to have an impact on the times. The pattern method
shows an intense oscillation around a fixed level. In comparison, the values given
by Table 6.7 show a high deviation and a high confidence interval, indicating that
the given average values are highly volatile. The level of typical computation times
of the pattern selection appears to be two magnitudes lower than the corresponding
levels of the discarding and global selection.

The results regarding the QoS performance show that most selection methods

143

6.4. Simulation Campaigns and their Results

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

 0 1 2 3 4 5 6 7 8

qo
s

ra
tio

 (c
on

st
ra

in
t =

 1
)

variance factor qv

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.16: Rel. QoS to constr. selec-
tion: optimisation-only methods (C4).

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

 0 1 2 3 4 5 6 7 8

qo
s

ra
tio

 (c
on

st
ra

in
t =

 1
)

variance factor qv

Constraint
Random

Global Constr
Discarding Constr

Bottomup

Figure 6.17: Rel. QoS to constr. selec-
tion: constraint-aware methods (C4).

1.00

1.10

1.20

1.30

1.40

1.50

1.60

 0 1 2 3 4 5 6 7 8

qo
s

ra
tio

 (r
an

do
m

 =
 1

)

variance factor qv

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.18: Rel. QoS to random selec-
tion: optimisation-only methods (C4).

1.00

1.10

1.20

1.30

1.40

1.50

1.60

 0 1 2 3 4 5 6 7 8

qo
s

ra
tio

 (r
an

do
m

 =
 1

)

variance factor qv

Constraint
Random

Global Constr
Discarding Constr

Bottomup

Figure 6.19: Rel. QoS to random selec-
tion: constraint-aware methods (C4).

become worse with a rising qv when compared to the constraint selection (cf. Fig-
ures 6.16 and 6.17). However, the decrease of the random selection indicates that
the constraint selection performs exceptionally well with a rising qv. For that rea-
son, a relative comparison of the selection methods to the random selection is given
in Figures 6.18 and 6.19. From this point of view, all selection methods except
the local selection show an increasing QoS performance with a rising qv. Among
them, the constraint method shows the strongest climb. The local method shows a
decrease of the QoS performance when compared with any of the other selection
methods. For high values of qv, it decreases down to the level of the constraint se-
lection. Comparing the bottomup with the discarding method in Figure 6.19 shows
that the QoS performance of the bottomup method climbs slightly stronger than the
other. From the values given in Table 6.7 it can also be seen that the performance
shows the smallest deviation. The pattern method shown in Figure 6.18 appears
to result in a noticeable decrease of the QoS performance when compared to the

144

6.4. Simulation Campaigns and their Results

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07

 0 1 2 3 4 5 6 7 8

tim
e

/ m
icr

os
ec

on
ds

variance factor qv

Constraint
Random

Global

Discarding
Local

Pattern

Figure 6.20: Computation duration:
optimisation-only methods (C4).

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07

 0 1 2 3 4 5 6 7 8

tim
e

/ m
icr

os
ec

on
ds

variance factor qv

Constraint
Random

Global Constr

Disc Constr
Bottomup

Figure 6.21: Computation duration:
constraint-aware methods (C4).

global and discarding selection.

Interpretation

Compared to the random selection, the global methods (the optimising only and the
constraint aware) show a rising QoS performance when the variance of the QoS
values increases among the candidates. This allows the conclusion that a higher
variance creates a higher potential for optimisation. Considering only one QoS
characteristic, the QoS optimisation potential rises even stronger when compared
to the global selection.

• Discarding. The discarding selection results in small savings regarding the
computational efforts for small values of qv and larger savings for a higher
value of qv, when compared to the global selection. Obviously, this method
is able to skip combinations more efficiently the more the QoS is varied.

• Local. For small values of qv, the local method shows a high QoS perfor-
mance when considering the global selection as reference. For high values
of qv, the local selection shows no difference in the overall QoS when com-
pared to the constraint selection, which optimises only by one characteristic.

The simulations also show that optimising one QoS category, which is done
by the constraint selection, has almost no effect on the overall QoS for low
values of qv. However, it must be noted that a constraint regarding one QoS
category can be taken into consideration.

• Bottomup. Regarding the computation times, the bottomup method con-
firms the impression of the previous campaigns. It results in low efforts and
keeps constant throughout the different setups. It shows a relatively low QoS
performance, like in other campaigns. However, it must be noted that com-

145

6.4. Simulation Campaigns and their Results

Average Standard % % %
Method Mean x Deviation s in 1s in 2s in 3s 95%-Conf.

Overall QoS relative to constraint selection

Constraint 1.0 0.0 0.0 0.0 0.0 ± 0.0
Random 0.9720 0.1052 76.00 97.00 98.50 ± 0.0123
Glob O. 1.2458 0.1053 72.50 95.50 98.50 ± 0.0124
Glob Co. 1.1826 0.0940 75.00 95.50 98.50 ± 0.0110
Disc. O. 1.2427 0.1072 73.00 94.50 98.50 ± 0.0126
Disc. Co. 1.1768 0.0933 74.50 95.50 98.50 ± 0.0109
Local 1.1914 0.1207 74.00 95.50 98.50 ± 0.0142
Bottomup 1.0691 0.0787 91.50 96.00 98.00 ± 0.0092
Pattern 1.2266 0.1132 70.50 95.50 98.50 ± 0.0133
Computation duration, in microseconds

Constraint 17 33 99.00 99.00 99.00 ± 3.8849
Radom 7 0.0 0.0 0.0 0.0 ± 0.0
Glob O. 968,646 225,758 65.50 95.50 100.0 ± 26,577
Glob Co. 810,440 217,805 66.00 95.00 100.0 ± 25,641
Disc. O. 680,862 721,339 83.50 94.50 98.50 ± 84,920
Disc. Co. 592,478 642,166 80.50 96.50 98.00 ± 75,599
Local 34 47 98.00 98.00 98.00 ± 5.5331
Bottomup 159 88 92.50 93.00 93.00 ± 10.359
Pattern 9,488 42,495 97.00 97.00 99.00 ± 5,002.7

Table 6.7: QoS and times, setup with qv = 2 in C4.

pared to the other selection methods, except the constraint selection, it keeps
an acceptable level.

• Pattern. The pattern selection shows a smaller decrease of the QoS perfor-
mance for larger values of qv when compared to the local selection. The
small gap between this and the local selection that was noticed in the pre-
vious campaigns becomes larger with a higher variance among the offered
QoS. This campaign has also confirmed the volatile behaviour of the pattern
heuristic regarding its computational efforts.

6.4.5 Parallel vs. Sequential Composition Structures (C5)

As mentioned in the introduction on the QoS-based selection in Section 5.1, a
specific characteristic of the selection problem lies in determining the combination
of candidates in the parallel arrangements. This campaign will vary the structural
elements used for the problem instances to evaluate the performance of the different
algorithms with an increasing number of parallel arrangements.

The first setup starts with all-sequential structures. For the subsequent setups,
the simulator generates parallel patterns with increasing probability. A probability
value of 20% means that there is a 20% probability that a parallel pattern is cre-
ated, and an 80% probability that a sequential only is created. The last setup is

146

6.4. Simulation Campaigns and their Results

performed at a probability value of 100%. In this case, the generated structures
consist entirely of parallel patterns.

C5 Parameter / Setup (Value)
Number of tasks 8, constant
Number of candidates 5, constant
Candidate QoS as given in Table 6.2, uniformly distributed
Constraint 20 % worse cost than best possible for constraint-

aware methods
Involved methods constraint, random, global (two), discarding (two),

bottomup, local and pattern
Reference method constraint
Structure starting with sequential structures with rising proba-

bility of parallel structures, incrementing each setup
by 2%

Expectations

The expected result from this campaign is a qualitative statement about how the
QoS and computational performance of the selection methods depend on the struc-
ture of the composition. For example, for all-sequential structures, an algorithm
might perform very fast when compared to parallel structures. Regarding the QoS
performance, this campaign will show if any of the proposed heuristics will per-
form worse or better with a rising ratio of parallel patterns.

Results

The results regarding the QoS performance are shown in Figures 6.22 and 6.23.
The computation times are given in Figures 6.24 and 6.25. In all figures, the dashed
lines indicate the probability value that was applied in the four previous campaigns.
In addition, Table 6.8 shows the results of the setup with a probability value of
100%.

The global selection and the three heuristics show an increase of the QoS per-
formance with a rising number of parallel structures. Because the global selection
results in the optimal solution, this indicates that the potential for the optimisation
of the QoS increases with the ratio of parallel structures. As a qualitative statement,
the local and the pattern selection show similar improvements while the pattern se-
lection results in approx. 3 − 4% better QoS performance compared to the local
method. Like the global selection, the discarding selection shows a steeper increase
of the QoS performance when compared to the two other heuristics.

Regarding the computation time, all three selection methods show similar re-
sults as in the previous campaign. The discarding selection requires for sequential
structures almost the same efforts as the global method. For all parallel structures
it performs almost three times as fast. It must be noted that after a 100% proba-
bility of generating parallel structures, no further improvements can be achieved.
Therefore, the values for the 100% probability represent a maximum of the indi-

147

6.4. Simulation Campaigns and their Results

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

 0 20 40 60 80 100

qo
s

ra
tio

 (c
on

st
ra

in
t =

 1
)

parallel probability %

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.22: Relative QoS to constr.
selection: optimisation-only methods
(C5).

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

 0 20 40 60 80 100

qo
s

ra
tio

 (c
on

st
ra

in
t =

 1
)

parallel probability %

Constraint
Random

Global Constr
Disc Constr

Bottomup

Figure 6.23: Relative QoS to constr. se-
lection: constraint-aware methods (C5).

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07

 0 20 40 60 80 100

tim
e

/ m
icr

os
ec

on
ds

parallel probability %

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.24: Computation duration:
optimisation-only methods (C5).

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07

 0 20 40 60 80 100

tim
e

/ m
icr

os
ec

on
ds

parallel probability %

Constraint
Random

Global
Discarding

Bottomup

Figure 6.25: Computation duration:
constraint-aware methods (C5).

cated direction. Like in the previous campaign, the pattern selection shows a larger
volatility of its computational duration than the other selection methods.

Interpretation

The results show generally the larger potential for QoS optimisation if a composi-
tion structure contains parallel structures. Moreover, the three heuristics, the dis-
carding, local and pattern selection, show also QoS performance improvements
with a larger ratio of parallel structures. The constraint and the random selection
show constant QoS performance. Therefore, such methods do not appear to per-
form well with parallel structures when compared to the other methods.

The computation time stays almost constant for all methods, except for the
discarding selection, which shows poor time performance for sequential structures
while its performance improves for a rising ratio of parallel structures. As in previ-

148

6.5. Evaluation Conclusions

Average Standard % % %
Method Mean x Deviation s in 1s in 2s in 3s 95%-Conf.

Overall QoS relative to constraint selection

Constraint 1.0 0.0 0.0 0.0 0.0 ± 0.0
Random 0.9799 0.1005 67.50 96.00 99.50 ± 0.0118
Global O. 1.2705 0.1209 71.00 92.50 99.50 ± 0.0142
Global Co. 1.2212 0.1169 71.00 97.00 100.00 ± 0.0137
Disc. O. 1.2619 0.1261 71.00 93.00 99.00 ± 0.014
Disc. Co. 1.2127 0.1184 70.00 97.50 100.00 ± 0.013
Local 1.2300 0.1278 73.00 95.50 99.90 ± 0.015
Bottomup 1.0843 0.0868 88.50 95.00 97.50 ± 0.010
Pattern 1.2545 0.1225 71.00 92.00 99.50 ± 0.014
Computation duration, in microseconds

Constraint 16 28 99.50 99.50 99.50 ± 3.296
Random 7 0.0 0.0 0.0 0.0 ± 0.0
Global O. 787,800 182,108 66.00 96.50 100.00 ± 21,438
Global Co. 675,092 170,954 65.50 97.50 100.00 ± 20,125
Disc. O. 232,417 348,351 85.50 94.00 98.00 ± 41,010
Disc. Co. 261,742 406,588 86.50 93.00 98.00 ± 47,866
Local 28 2 64.50 95.50 98.50 ± 0.235
Bottomup 137 70 96.50 97.00 97.00 ± 8.240
Pattern 13,902 1,407,168 95.50 98.50 98.50 7,864

Table 6.8: QoS and times, setup with a parallel probability of 100% in C5.

ous campaigns, the pattern selection shows a highly oscillating computation time,
indicating a strong dependency on the composition structure.

6.5 Evaluation Conclusions

The first three campaigns have tested the heuristics with a rising number of tasks
and candidates. As discussed in the previous chapter, the global selection results in
quickly rising computation times. These results confirm that the straight-forward
evaluation of all candidates represents an intolerable approach. The campaigns
also show that an increasing number of candidates is not preferable to an increasing
number of tasks for the global selection under the simulation conditions. Although
an increasing number of candidates results in efforts that can be bounded by a
polynomial, the results show that only small compositions can be solved in feasible
time by such brute-force approaches.

The campaign that increases the deviation of the QoS values demonstrates that
the more the QoS values differ among the candidates, the more increases the po-
tential to improve the overall QoS. This potential is identified by the global, dis-
carding, bottomup and pattern methods when compared to the random selection,
which ignores the QoS. However, the heuristic local selection shows a decreasing
performance which has indicated that this method performs worse the stronger the

149

6.5. Evaluation Conclusions

QoS values among the candidates vary. In contrast, the heuristics reveal a good
performance close to the optimal solution in cases where the QoS of candidates
show relatively low differences.

The campaign that tests for the performance differences when either process-
ing parallel or sequential structures demonstrates that, with a rising ratio of parallel
structures, the optimal QoS identified by the global selection increases. Contrary
to the preceding campaign, all the heuristics show a slight increase of the QoS
performance when the ratio of parallel structures rises. Accordingly, the structural
arrangement of the composition has in impact on the QoS performance of the dif-
ferent methods. However, all methods show a similar level of improvement and no
method reveals a particular weakness or strength in this campaign.

Referring to the four evaluated heuristics, the following conclusions can be
drawn:

• Discarding. The discarding selection method can be considered unfeasi-
ble. It performed about two to three times faster in comparison to the global
method, however it still showed an exponentially increasing effort for the
given problem instances. Obviously, the given setup of QoS values and
composition structures do not allow the algorithm to bound sub-trees very
often. Regarding the QoS performance, the discarding selection resulted in
the same QoS as the global selection in the tests.

• Local. The local heuristic represents a simple approach that consumes al-
most no computational efforts. The required efforts are in the same range as
the constraint or the random selection. Considering that an assignment must
be performed in any case, the efforts for the local selection are negligible.
The campaigns have shown that this method usually resulted in more than
4/5 of the full QoS optimisation potential when considering the interval be-
tween the optimal solution and the QoS-ignoring result. Further tests have
shown that this method becomes noticeably weaker the more the QoS values
differ among of the candidates.

• Bottomup. The bottomup selection has shown a negligible computational
effort. This method scales well with both a rising number of candidates and
tasks. However, the QoS performance can be regarded as weak when com-
pared to the local or pattern selection. In the campaigns, it reached about
1/2 to 2/3 of the QoS optimisation potential, referring to the interval be-
tween optimal and QoS-ignoring solution. Moreover, its QoS performance
decreases for a rising number of tasks. However, this approach is capable of
considering constraints. Thus, it has an advantage over the local and pattern
selection.

• Pattern. Compared with the bottomup and the local methods, the pattern
selection showed the best QoS performance. However, a small fraction of
the performed runs has resulted in an unfeasible computational effort that

150

6.5. Evaluation Conclusions

makes the application of this method difficult. As discussed in the previous
chapter, the algorithm performs badly if a structural pattern contains a large
number of tasks. Although this constellation can be regarded as unlikely, the
random setups have encountered these at significant amount of times. As a
conclusion for future work, the pattern method could be combined with a
local approach: Then, a combined algorithm can switch to a faster algorithm
if a composition structure is identified to produce high efforts, e.g. a single
pattern that contains a relatively high number of tasks.

In summary, the campaigns have shown that the heuristic have a good perfor-
mance under special conditions. As for other cases, the following basic trade-off
couples apply: If an heuristic performs quickly, its QoS performance is poor. If an
algorithm shows a good QoS performance, it shows an unfeasible worst-case ef-
fort. As an inspiration for future work, a hybrid heuristic might be able to combine
the good elements of the tested approaches. For example, such an heuristic could
choose an appropriate strategy based on key parameters determined for a particular
problem instance.

151

6.5. Evaluation Conclusions

152

Chapter 7

Developing Service Compositions

As Chapter 2 has explained, different modelling languages exist: Some of them fo-
cus on modelling business processes and ignore specific SOA technologies, while
others are specifically designed to cover specific technical platforms, for example
Web services. In addition, Chapter 2 has defined a relation between business pro-
cess models, composition models and a service composition. The development
process of a service composition must cover the entire chain – from processing a
business process model as an input, up to the output of an execution description
that allows the service provider to run the composition.

Since the development of composition starts with a model of a process, the lit-
erature discusses methods and solutions that take advantage of the proposed Model
Driven Architecture (MDA) introduced by the Object Management Group (OMG).
The OMG represents a non-profit standardisation organisation with the goal of de-
veloping object-oriented technologies. Briefly explained, the MDA proposal bun-
dles a set of standards to facilitate the software development with the focus on
modelling languages and modelling tools. In an MDA-based development effort,
not writing source code but expressing models represent the centre development
effort. It is desired that the source code is automatically generated from a set of
models that cover the structure and the behaviour of the software. In the context
of service compositions, the MDA provides an infrastructure that allows directly
taking a model of the business process as the starting point for the development of
a composition of services that facilitate the process. Many software vendors and
initiatives support this approach with available integrated development environ-
ments (IDEs). Examples are the software development tools of Borland, as well
as EclipseUML, which is based on the Eclipse open source project; IBM offers
a suite named WebSphere portfolio that supports the entire chain of development
from business process modelling to a service with monitoring facilities [85].1

This chapter will introduce the basic elements that such a development process

1Borland provides the Together Suite which covers general software development efforts includ-
ing the composition of Web services. A development environment that has a direct focus on the
realisation of business processes from IBM is the WebSphere Integration Developer.

153

7.1. Introduction to the Model Driven Architecture

must involve; however, it will not cover and discuss specific development process
methodologies such as the popular waterfall methodology or newer use-case-driven
or extreme programming approaches. It will focus on the issues of trading when
developing compositions. Because the MDA is not a part of this focus area, this
chapter tries to avoid details about the MDA. It will not present a complete view on
the MDA and concepts like the model hierarchy, for example, are ignored in this
discussion.

The goal is to give the reader an orientation about the development of compo-
sitions and to explain how processing QoS will enhance the output of the develop-
ment process. The remainder of this chapter will start with a brief introduction to
the MDA and introduces service-composition-related applications from the litera-
ture. Subsequent to that, the main steps in the development of compositions will
be discussed; this work is partially based on previously published research work
about building compositions of Web services (cf. Grønmo and Jaeger [39], [40]).

7.1 Introduction to the Model Driven Architecture

The general objective of the MDA is to separate the specification of the system
functionality from specific platform technology [96]. Figure 7.1 shows the basic
separation of different categories for models that occur in this architecture. The
separation is the result of an abstraction that separates the technical details in a
model from the functional aspects of a system. Accordingly, one kind of model
is proposed that does not refer to any technical specific artefacts. Such a model is
named Platform Independent Model (PIM). Based on the PIM, a Platform Specific
Model (PSM) is foreseen. Besides a PIM and a PSM, the development can option-
ally involve a model of the domain concepts that describe the actors and entities
found in the application domain. Such a model can provide a view on the system
that is independent from any functional or computational details.

The MDA approach anticipates that developers start to design their software
with a PIM that does not cover any technology-specific aspects. When this model
is finished, it represents the basis for deriving a PSM. Therefore, the choice for a
specific technology is deferred until the PSM is created. The authors of the MDA
anticipate that these transformations happen automatically and thus let the devel-
oper focus on modelling the functionality rather than writing code. Consequently,
the model becomes an asset of the development process. With the adoption of the
MDA, three main advantages are anticipated by the OMG [96]:

• The same system functionality, once modelled, can be reused for different
target platforms. This flexibility is often required, because the IT landscape
in businesses consists of many heterogeneous platforms and software sys-
tems as already explained in Section 2.4.

• A separate model of the system functionality allows a more efficient vali-
dation. If the model is free from technical details, there is less to consider

154

7.1. Introduction to the Model Driven Architecture

for validation tools. Moreover, the software specification and development
will likely result in different models at different levels of abstraction. With
defined transformations between the different levels of abstraction, tools can
ensure the consistency between these models.

• The creation of the system can be guaranteed to be free from technical arte-
facts that a specific technology would imply. Thus, a platform-independent
model offers a better foundation for the desired functionality.

Model of Business
Process / Workflow

Abstraction

Platform Independent
Component View (PIM)

Model of the Domain
(optional)

Computation Independent
Business Model

Model of Service
Composition

Platform Specific
View (PSM)

Figure 7.1: Separation of the models in the MDA (based on OMG’s MDA docu-
ment [96, section 2.3]).

Besides the MDA proposal, the OMG has also standardised several related
technologies. The Meta Object Facility (MOF, [98]) represents the most funda-
mental standard. It defines how to specify modelling languages. Usually, a soft-
ware developer is not concerned with the MOF. Instead, it is a standard used by
modelling language designers and tool manufacturers. A well-known modelling
language is the Unified Modelling Language (UML, [100]). Software developers
use the UML to express models of software systems or parts of a software system.
And as mentioned in Section 2.1.2, a part of the UML, the activity diagram, is also
considered for modelling business processes.

The main research challenge in the field of the MDA is the model transfor-
mation technology that transforms PIMs into PSMs. Furthermore transformation
should provide the generation of source code or execution descriptions from PSMs.
Source code or similar descriptions can be seen as textual models in this context.
Several software products and tools using the UML and the MDA are already avail-
able for the creation of business processes. However, the goal that has not been
reached so far is a fully automated tool chain. The vision is that software engineers
can focus on the business process model and automated transformations provide
the generation of the source code.

155

7.1. Introduction to the Model Driven Architecture

PSM 1

PSM 2

PSM n

PIM 1

PIM 2

PIM n

(...)

(...)

Business Process Model
(System Functionality)

+ Profile of Service
(QoS) Aspects

+ Profile of
Security Aspects

Model of Middleware
(e.g. Web Services)

Model of
Implementation
Language (e.g. Java)

Model of Implem.
Environment
(e.g. Axis)

Target Platform
(Source Code or
Interface Desc)

Abstraction

System Detail

Figure 7.2: The evolution of the models in the MDA (based on Bézivin et al. [9]).

In the context of MDA, a problem is that a single modelling language does
not cover all the aspects needed to create models of the entire problem domain.
This applies especially to the topic of this work, the creation of business processes
with service compositions. Chapter 2 has already introduced several modelling
languages, which are at different levels of abstraction. Some languages focus on
modelling abstract business processes and some languages involve Web service
standards which refers to PIMs. An ideal MDA environment would support the
transformation of models between different levels of abstraction and it would en-
sure the consistency between them. Besides the transformation issues, several fur-
ther aspects should be covered like security, QoS or organisational constraints. This
results in different views on the system. To cover this problem, current research
efforts evaluate how to mark up models with aspects based on extensions, named
UML profiles. UML profiles allow extending the modelling concepts found in the
UML.

Figure 7.2 outlines different levels of abstraction, with possible examples of
PIMs and PSMs. This figure has been presented by Bézivin et al. [9]. It shows
that a model of the business process is assigned to the group of PIMs. Additions to
this model, such as the specification of QoS aspects or security constraints, result
in a less abstract PIM. A model that directly refers to a specific component or SOA
technology represents a PSM. A further specialisation, in the sense of being less

156

7.1. Introduction to the Model Driven Architecture

abstract, is the coverage of specific SOA platforms. Then, possible transformations
result in further detailed models up to the source code or interface descriptions.

7.1.1 Model Driven Development of Web Service Compositions

The adoption of the MDA to develop service compositions or business processes
has been already covered by research work. In the following, three research efforts
are introduced, which have applied the MDA for the creation of business processes
with SOA technologies. These three efforts are considered to be representative
for this field and to reflect the state-of-the-art. The first cited work covers the
aspects of supporting Web services in an MDA-based development. The second
effort plays in the same field but focusses more on how the transformations will
be created. The third work covers the consistency between the models of different
levels of abstraction. These three research works also demonstrate the feasibility
of adopting the MDA to develop service compositions in order to develop business
processes.

• Web service compositions in UML (Skogan et al. [120]) The authors pro-
pose UML activity models to design a Web service composition. Using
MDA techniques, an UML activity diagram can be transformed into different
Web service composition languages. Based on the activity models, the gen-
eration of executable models using the composition languages BPEL4WS
and WorkSCo is described. WorkSCo is part of a framework for realising
workflows with services.

UML activity diagrams are used as platform independent composition mod-
els. The contribution of the authors lies in the special coverage of the Web
services technology. It proposes the integration of WSDL descriptions into
an UML diagram in order to generate the interface description for the result-
ing composition, which is also seen as a new service. Most other approaches
presume that the WSDL file can or must be – depending on the applica-
tion scenario – generated by an UML class diagram in order to complete the
composition model. Generally, the authors propose to integrate existing Web
services. Thus their WSDL descriptions can be reused.

• B2B Applications in the context of MDA (Bézivin et al. [9]). The work of
Bézivin et al. covers the transformation of UML models into two target plat-
forms: One is the Microsoft .NET framework and the other is a BPEL4WS
execution environment for Web service compositions. As an intermediate
step for the generation of BPEL4WS descriptions, the output of WSDL is
provided. Further contributions covers the transformation originating from
different PIMs to a Java-based Web service environment without the inter-
mediate step of a composition model in BPEL4WS [8]. The research group
of Bézivin et al. have put a special emphasis on the development of a ded-
icated transformation language that they name Atlas Transformation Lan-

157

7.2. Model-Driven Development of Service Compositions

guage (ATL, [7]). The language allows definitions for transformation rules
between the abstract elements of a PIM and the abstract elements of a PSM.

• The medini platform (Kath et al. [70]). The foundation of this research ef-
fort is the modelling environment named medini. Medini provides a set of
tools to establish a tool chain for MDA-based software development. In ad-
dition, it features a model repository that stores the software models, which
are seen as an asset of the development process. The tools provide verifica-
tion functionality to ensure the consistency of the models at different levels
of abstraction. The medini architecture consists of three tiers: the modelling
tools, the model repositories and the transformation tools. To ensure in-
teroperability with other development software, the elements of the medini
platform are designed to conform to the MOF standards for open interfaces
and model repositories.

One application of the medini platform is the transformation of EDOC mod-
els to PSMs that target a CORBA middleware environment. EDOC stands
for Enterprise Distributed Object Computing and represents a profile for the
UML that covers the modelling of distributed enterprise systems. A transfor-
mation tool is capable of performing a transformation from EDOC models
to PSMs suited for the CORBA Component Model (CCM, [97]). Another
transformation tool covers the generation of interface descriptions of Web
services. In addition to the service interface descriptions, medini also pro-
vides support for behaviour models that resemble a process. The behaviour
models are EDOC choreographies on the PIM-side and BPEL4WS descrip-
tions on the PSM-side.

7.2 Model-Driven Development of Service Compositions

The previous sections have explained that the MDA proposal by the OMG and
the related research work provide methods and technologies that cover the specific
characteristics of developing service compositions. The forthcoming sections will
outline at what point in a model-driven development effort the trading of services,
especially the QoS-based selection will take place. The trading identifies services
in order to integrate them into the composition. As briefly explained in Section 1.1,
it covers two main parts: One part represents the functional matchmaking of avail-
able candidate services and the other facilitates a selection among potential service
candidates in order to optimise the resulting QoS of the composition.

However, this discussion does not cover the roles, the behaviour and the collab-
oration of actors who might participate in such a development process. Thus, this
discussion cannot serve as a development methodology. The goal in this discus-
sion is to identify at which points the trading and especially the processing of QoS
enhances the output of intermediate steps in the development process. Moreover,
the upcoming sections will also explain which facilities are required to perform

158

7.2. Model-Driven Development of Service Compositions

the trading and to process QoS information. As explained in the introduction, it is
assumed that the retailer of the composition also represents the modeller and the
developer of the composition. As introduced in the Section 1.1, he acts also as
the service importer when contacting other service brokers and 3rd party service
providers.

3. Trading: Selection 4. Deploying and Publishing

2. Trading: Matchmaking1. Modelling

Composition
Model (PIM)
with Tasks

Composition
Model (PSM)
with selected

Services

Export
Executable

Specification

Design the
Composition

Discovery and
Matchmaking

Service
Selection

Activity Model Description or Document

Desciption of
Candidate
Services

Executable
Specification,
Descriptions

Figure 7.3: Main steps of developing service compositions.

Figure 7.3 outlines the tasks of an abstract development process that consists of
four main steps. This figure and all the following use elements related to the flow
chart notation: The trapezoid-shaped boxes indicate an activity. Activities can
directly follow each other or have documents (descriptions) or models as an output
or input. Documents are represented by a rectangular box that has a wave-shaped
lower bound, and models are represented by ovals. Relations between subsequent
activities, as well as input and output directions, are shown with arrows.

The first step covers the modelling of an abstract composition consisting of
tasks. It can be left open whether this model is part of the development or represents
an externally provided process model. Besides, it must be noted that the flow of
information will not be elaborated in this work because this represents the main
contribution of the research works presented in Section 7.1.1 and in Section 2.4.1.
Very briefly, the particular steps are as follows:

• 1. Modelling. As a first step, either the retailer or any other party defines
a new service composition by creating a PIM that defines the control flow
between the tasks. Then, the retailer annotates the tasks with descriptions to
identify the functional requirements. In addition to the functional descrip-
tion, the retailer determines the required QoS for each of the identified tasks
and for the entire composition. Adding the functional description and defin-

159

7.2. Model-Driven Development of Service Compositions

ing the QoS requirements can be done in parallel since they do not depend
on each other. The outcome of the first step is an abstract composition model
(a PIM) that contains all the required information for the discovery and se-
lection of services.

• 2. Trading: matchmaking of functionality. The second step covers the
first part of the trading, which is the discovery of suitable services. This part
of trading is usually based on matchmaking between the functional descrip-
tions of services and the functional requirements. MDA techniques trans-
formed the interface descriptions from the model and the task annotations
into a textual description. This description can serve as an input for an auto-
mated search and matchmaking process evaluating services offered by other
retailers or service brokers. The outcome of this step is a list of candidate
services for each task.

• 3. Trading: QoS-based selection. In this step, the set of candidate services
undergo a selection, which is based on the QoS requirements. This repre-
sents the second part of trading. QoS requirements can be used in two ways:
Either requirements can represent a global constraint that the resulting com-
position must meet or QoS categories can be used as optimisation criteria.
The QoS-based selection will result in a ranked list of candidates for each
task. Then, the retailer can choose a concrete service for each task and adds
the corresponding description to a new software model. The resulting model
is a PSM. Depending on the anticipated level of detail, this description can
include interface descriptions, functional descriptions as well as QoS state-
ments.

• 4. Assembly, deployment and publishing. In the fourth and last step, the
PSM is used to generate different descriptions: a) a document describing
the interface to advertise the composition for future trading processes, b)
an executable flow description to deploy the composition in an execution
environment and c) a description defining the offered QoS of the entire com-
position.

7.2.1 Modelling the Composition

The goal of the first step is to provide the necessary information for the subsequent
trading processes. This means that the modeller defines the requirements resulting
from the needed tasks. Based on these requirements, services must be found that
fulfil them. A detailed model of the first step is given in Figure 7.4. The develop-
ment starts with an abstract model of the business process. Chapter 2 has already
discussed possible languages for this purpose. Depending on the organisational
circumstances, either the modeller of the composition performs the modelling or
an existing business process model is taken as the basis of the composition model.
In the Web service domain, the case is possible that a modeller receives a model

160

7.2. Model-Driven Development of Service Compositions

expressed in the EPC notation of a business process. Then, based on the EPC de-
scription, an UML activity diagram must be created to continue the development in
the MDA environment. Depending on the available facilities, the modeller can take
advantage of existing transformations. Such transformations convert the existing
model into a new one using a modelling language of the development environment
(cf. Kath et al. [70]).

Importing Relevant
Domain Models

Designing the
 Composition

Modelling
Functional

Requirements

Determining
relevant QoS
Categories

Compoposition
Model (PIM x)

Modelling QoS
Requirements

Activity Model

Compoposition
Model (PIM y)

Merge Models
(optionally)

Compoposition
Model (PIM z)

Business
Process Model
(optional input)

Figure 7.4: First step: modelling the composition.

To deliver the requirement descriptions for the trading, the existing model must
be enhanced. Depending on the kind of requirements, this can cover the functional
descriptions of the tasks or statements about the required QoS. The functional de-
scription can include a description of the interface or a description of the behaviour
of the service. The state-of-the-art focuses on the interface description where two
main approaches exists: In one approach, the interface is described on a syntactic
level and in the other description of the semantics of the service elements can also
be used for this purpose. Examples for a syntactic description are interface de-
scriptions using the WSDL for Web services or the Interface Definition Language
(IDL) in a CORBA environment.

The general problem with interface descriptions is that labels and data types
used do not provide an unambiguous definition of the interpretation of these el-
ements. To make such implicit information explicit, the common approach is to
provide a semantic description of the service. A semantic description means that
the described elements are linked to concepts that have a defined interpretation.
Such a set of interpretations is named ontology; this ontology is subsumed by the
concept of the domain model on top of the PIM in a MDA as presented in Sec-
tion 7.1. Then, adding such a description provides a more precise definition of
the task or service. This represents the main motivation for expressing the desired
functionality with a semantic description.

To create a semantic description of the interfaces, the designer must first iden-

161

7.2. Model-Driven Development of Service Compositions

tify appropriate ontologies (domain models) that provide a definition of the con-
cepts required to describe the service semantically. In the domain of Web services,
such domain models are usually represented in textual descriptions using ontol-
ogy languages, e.g. the Web Ontology Language (OWL, [89]). In the case that
the MDA environment does not directly support the used language of the domain
model, automated transformations can help to convert these into the required rep-
resentation. In order to apply this technique to develop compositions of Web ser-
vices, Djuric has the corresponding transformation methods for importing OWL
ontologies into UML models [24].

A basic solution for the semantic description of the behaviour is the reference
to a service type. Such a service type can be referenced to a standardised tax-
onomies of services. As an example, the United Nations Standard Products and
Services Code (UNSPSC, [110]) provides such a directory. Using this directory,
the modeller describes a service with an unambiguous key that refers to an abstract
service functionality. More sophisticated approaches aim at describing conditions
that must hold before, during, and after the invocation of the service. Sycara et
al. have discussed the matchmaking of services involving statements about condi-
tions [125]. Other research efforts have discussed the required interaction when
invoking interface. The approach is to model patterns of interaction with process
algebra or state machines. Then, a matchmaking between the patterns of offered
services and the patterns of requested services can identify a compatibility on the
level of possible interactions (cf. Bordeaux et al. [82], and Wombacher et al. [152]).

Besides domain models and the modelling facilities an MDA environment
might provide, some dedicated proposals exist for the semantic descriptions. The
currently most popular are OWL Services (OWL-S, [130]), the Web Service Mod-
elling Ontology (WSMO, [32]) and the semantic extension to Web service interface
definitions (WSDL-S, [119]). All these proposals involve Web service standards as
this represents the currently most popular implementation of an SOA. In the recent
past, a unification effort has started and an interest group at the W3C discusses
the three proposals.2 The advantage for the modeller of the composition is that
these semantic description languages cover the specific characteristics of a service.
The UML for example, is intended for the general design of software systems and
thus, less suitable for modelling the semantics of a service. Moreover, research
work about existing trading facilities, which will be introduced in the next section,
is also based on these three proposals. However, using these languages results in
additional effort regarding their integration in an MDA environment. Either trans-
formations must exist to import and export the dedicated semantic description of
services [41] or specific modelling tools must be integrated into the MDA environ-
ment.

In addition to the interface description, the modeller must determine the re-
quirements on the QoS. The process begins with the selection of the relevant QoS

2This is the Semantic Web Services Interest Group hosted by the W3C. This group has the primary
goal to share findings and activities about semantic description of Web services [12].

162

7.2. Model-Driven Development of Service Compositions

characteristics. This depends on the nature of the given requirements as well as
which characteristics are supported by trading facilities and the service providers.
As Chapter 3 has explained, the modeller can query other retailers and brokers in
order to identify the characteristics that can be used to specify the requirements.
An additional problem is the definition of the measures; one approach is to refer to
a commonly agreed definition of the relevant QoS characteristics, for example as
published by standard bodies. This particular issue has been discussed in Chapter 3
and was also mentioned as one of the prerequisites to perform the aggregation in
the beginning of Chapter 4.

Currently, there is no de-facto standard present for representing QoS charac-
teristics in the Web service domain as well as in other component middleware.
When using UML in an MDA-based environment, the representation of QoS re-
quirements in the model can follow the UML QoS-Profile [99]. This UML profile
defines a set of QoS categories with their interpretation and their notation. It al-
lows the modeller to express QoS statements as annotations in UML models. Since
UML is a graphical language, the UML QoS-Profile represents a preferred choice
for use in a MDA environment (cf. Grønmo and Jaeger [39]).

Figure 7.5 summarises the considered aspects of service description in a simple
hierarchy. The basic separation identifies a functional and a non-functional part. In
the field of non-functional descriptions, this hierarchy distinguishes between QoS
and non-QoS. For non-QoS characteristics different definitions exist; for this work,
it is assumed that they do not represent numeric measures, such as the country from
where the service is provided (cf. the beginning of Chapter 3). The functional part
has two main sub-parts, one covers the behaviour and another the interface.

The outcome is a composition model that contains all the needed semantic and
syntactic description of the interface for performing service discovery. Thus, it
provides the necessary information for the next step. An additional outcome is
a model that covers also QoS requirements. This represents the required input
for the third step in the development, the selection of services. Optionally, these
two aspects can merge into one model. However, this represents a methodological
consideration that is not the focus of this discussion. Besides, it is open whether
the requirements are expressed in a graphical model or in a textual description.
Since the MDA anticipates the use of transformations to convert between both, it
is presumed that the graphical representation provided by an MDA environment
represents the preferred interface for the composition modeller.

7.2.2 Trading: Matchmaking

The second step covers the discovery of services. The discovery of services is a
trading process that preceeds the selection of services. The discovery has the goal
to identify services that meet the functional demands. The idea is to deliver a set of
services that would generally fulfil the desired task regardless of any non-functional
preference. The identification process is based on matchmaking descriptions of in-
terface and service functionality. To perform the matchmaking, it is assumed that a

163

7.2. Model-Driven Development of Service Compositions

Service
Description

Functional

Non-Functional

Interface

Behaviour

QoS

Non-QoS

Syntactic

Semantic

e.g. service
category

e.g. cost,
execution time

e.g. security,
country

e.g. data types

e.g. interpre-
tation of inputs

Categorisation

Conditions and
Effects

e.g. rule-based
expressions

Figure 7.5: Proposed taxonomy of service descriptions.

service broker has access to the syntactic and optionally to the semantic description
of the service and its elements. The necessary description can be derived from the
model that the previous step has produced. Grønmo et al. have presented transfor-
mations from composition models into a semantic description language for Web
services [41]. The authors explain how semantic service descriptions modelled in
an UML model can be extracted to generate a description document compliant to
OWL-S in order to discover Web services.

The generated documents represent semantic descriptions of requested tasks
for which candidate services must be identified. The subsequent discovery process
involves querying brokers to identify these candidates. For this step, syntactic
and semantic interface descriptions are used. A matchmaking process compares
the interface signature between the required tasks and available candidates. As
mentioned in the previous section, such a description does not sufficiently describe
the functionality. In any case, matchmaking must consider the syntactic (interface)
description. If a service does not match the required interface on the syntactic
level, it would be regarded as incompatible anyway. Thus, the matchmaking of
the semantic description represents always an addition to the matchmaking of the
syntactic description.

The goal of the semantic matchmaking is to identify the relation between a
requested and an offered entity, which are described by concepts defined in an
ontology. A matchmaking process can identify three main relations between the
concept representing the required entity and the concept representing the offered
entity (cf. Jaeger et al. [65, 66]):

• No Match. The matchmaking process cannot identify any relation between
both concepts. This can have many reasons. Most likely the two concepts

164

7.2. Model-Driven Development of Service Compositions

are indeed different. Another problem that is inherent to the matching is that
the ontology used by one semantic description does show any relation to the
ontology used by the other. In this case, the two concepts could match in
reality. However, a match cannot be determined by the software.

• One Concept Subsumes the Other. If one concept subsumes the other, the
matchmaking process has identified that one concept denotes a more general
entity than the other does. This is similar to what can be found in object
hierarchies of object oriented programming languages: From two classes,
one can represent a super-class of the other representing a more general type.

Since most services are implemented by using object-oriented programming
languages, previous research work has explained that the general subsump-
tion relation must consider the direction of the subsumption relation between
service importer and exporter [65]: For the syntactic convention in program-
ming languages, the contravariance must hold. In common object-oriented
programming languages, the sub-class relation represents a contravariance
because a subclass provides all characteristics of its super-class plus addi-
tional one.

Ensuring the contravariance means that an interface is defined to expect a
type that shows all needed characteristics for the operation, even if the ser-
vice importer invokes the service with a more special type. This direction
is applied vice versa to the returned types: The service exporter can return
a type that shows the same characteristics as required by the importer re-
quires or a more special one. This ensures that the returned type provides
all required characteristics and does not violate any requirements. Other re-
search work has also discussed that with reverse subsumption relations, a
matched service could still be used. In this case, the partially matched ser-
vices can be used with additional services that together ensure that the given
functional requirements are met (cf. the plug-in case described by Li and
Horrocks [81]).

• Match. The matchmaking process identifies that the concept representing
the offered entity is equivalent with the concept representing the required
entity. Of course, this represents the desired result of a matchmaking pro-
cess.

In the field of Web services, available proposals cover the mentioned descrip-
tion languages OWL-S, WSMO and WSDL-S. For the OWL-S language, several
works have introduced matchmaking algorithms [66, 65, 81, 106], as well as exten-
sions to trading infrastructure namely the UDDI discovery services [1, 103, 124].
Mainly these works focus on the semantic description of the parameter types and
matching service categories (i.e. WSDL-S), while the semantic description of the
service behaviour is partially covered by expressing conditions based on rule ex-
pressions (in OWL-S and WSMO).

165

7.2. Model-Driven Development of Service Compositions

Search and
Matchmaking

Description of
matched
Services

Manual
Investigation

Description of
Service

Candidates

Activity Description/Document

Semantic
Descriptions

of Tasks

Figure 7.6: Second step: matchmaking.

However, if a matchmaking algorithm identifies clear matches for all the as-
pects, a seamless interoperation of the involved candidates cannot be guaranteed.
To cope with this issue, further reasoning is necessary. The matchmaking of syntac-
tic and semantic interface descriptions will improve the precision of the discovery,
but it will not remove the need for manual investigation of the discovered services
to assure the compatibility. Otherwise, the accurate interoperation of the service
in the composition cannot be guaranteed. Figure 7.6 summarises this step: Based
on the semantic descriptions of the required tasks, a matchmaking process tries
to identify service candidates. The state of the research shows that these service
candidates must undergo an additional review in order to ensure their functional
suitability. The anticipated outcome of this step is at least one service candidate
per task.

7.2.3 Trading: Quality-of-Service-based Selection of Candidates

In this step, the selection of the services takes place; the goal of this step is to
identify the best selection among the candidate services for the tasks of the compo-
sition with respect to selection criteria. This work considers the QoS as selection
criteria. Because this step represents the main topic of this work, it was covered
in the previous chapters. This section will just discuss the basic activities of this
development step, as outlined in Figure 7.7.

Based on the identified set of candidates from the previous step, the QoS of
the candidates must be processed. Either the QoS of each candidate is part of the
available descriptions, or the QoS must be retrieved from the service providers.
Depending on what has been defined in the first step, the QoS requirements can
deal with two aspects which were also parts of the problem model for the QoS-
based selection: constraints and optimisation goals. A constraint requirement can,
for example, cover statements like the maximum response time of the entire com-
position. The other aspect covers optimisation criteria. An example is to reduce
the amount of resources for executing the composition.

The selection process determines the best possible selection of services de-
pending on the requirements and the offered QoS of the considered candidates.
The simplest approach that was discussed in this thesis for performing the selection

166

7.2. Model-Driven Development of Service Compositions

Composition
Model (PSM) with
Selected Services

Import QoS and
Description of
Selected Serv

Retrieve QoS
offered

Description of
Selected
Services

Sets of appr.
Services with
Offered QoS

Description of
Candidate
Services

Activity Model Description/Document

QoS Req. of
Abstract

Composition

QoS-based
Selection

Figure 7.7: Third step: QoS-based selection of candidates.

operates on a local perspective: Such an algorithm selects a candidate by compar-
ing the QoS among all candidates for a particular task and chooses the candidate
that provides the best QoS. This case represents the state-of-the-art of available
broker implementations and trading functionality. The previous chapters have also
explained that a better QoS is obtained with an algorithm that considers the entire
composition or sub-parts of the composition, rather than optimising the QoS for
each task in isolation. Thus, the QoS-based selection takes place at this stage in
the development process.

After the QoS-based selection has been performed, the modeller can add the
QoS of the selected services to form a new version of the model – a platform-
specific model of the composition. Based on the QoS of the individual services, an
algorithm can compute a resulting QoS statement for the composition by using the
aggregation method that was introduced in Chapter 4. The selection process might
not only choose the optimal service among the candidates, it can also determine
the ranking of the available candidates based on the relevant criteria. Depending
on the return policies, the process can result in more than one ranked service for
each task. Choosing more than one service for each task could increase the relia-
bility of service executions by providing a redundant arrangement (cf. Jaeger and
Ladner [58, 59]). The outcome of this step is the generated platform-specific model
involving the chosen services. This model can be enhanced by importing the of-
fered QoS values of each chosen service and the aggregated QoS for the resulting
composition.

7.2.4 Advertisement and Deployment

The fourth step builds upon the output of the previous phases, which are the as-
signment of at least one service to the tasks, their semantic description and the
QoS resulting from the assignment. The modeller can import all information for

167

7.2. Model-Driven Development of Service Compositions

Deploy
Composed

Service

QoS Offered
of Composition

Executable
Specification of

Composition

Create Executable
Specification

of Composition

Create Interface
Description of
Composition

Interface
Description of
Composition

Create QoS
Offered of

Composition

Create Semantic
Description of
Composition

Semantic
Description of
Composition

Activity Model Description/Document

Composition
Model (PSM) with
Selected Services

Service Brokers
(optionally with

Interface, Semantic,
QoS Descriptions)

Figure 7.8: Fourth step: advertisement and deployment.

the particular models onto one unifying model by using software transformations.
This step has the goal to create the necessary information to advertise the compo-
sition as a new service. Another goal is to generate an executable specification in
order to perform the composition.

Figure 7.8 outlines the general activities of this step: Based on the exist-
ing PSM and optional additional descriptions, four main descriptions are created.
Since they do not depend on each other, these activities can be performed in arbi-
trary order or in parallel. These descriptions are the following:

• Interface Description. Based on the design of the composition, the overall
input and output parameters can be defined and exported. If the interface
description uses a standardised description format, the composition can be
advertised and executed as a service for the consumers. In the field of Web
services this would also cover a WSDL description. An example for the
MDA-based generation of WSDL files from service compositions has been
introduced by Grønmo et al. [42].

• QoS Description. The previous step has already mentioned that, based on
the QoS of the involved services, the QoS of the overall composition can be
aggregated. Such a description can use the same languages which the 3rd
party providers use for their service advertisements.

• Semantic Description. A semantic description of the service interface can
be derived from the semantic descriptions of each task as created in the

168

7.2. Model-Driven Development of Service Compositions

first step of the development. The part that covers the behaviour of the ser-
vice must involve additional modelling because the composition represents a
functionality that was not available before. Thus, this part cannot be derived
from the description of the involved services.

Regarding the semantic description of the interfaces, Grønmo et al. have
already discussed an approach based on transformations between UML and
OWL Services [41].

• Executable Specification. Automated transformations can create an exe-
cutable specification from the control specification expressed in the PSM.
Runtime environments can use this executable specification to invoke the
available services in the defined order. Such a specification could use WS-
BPEL or BEPL4WS in order to define compositions of Web services. Kath et
al. [70] and Skogan et al. [120] have explained the generation of BPEL4WS
descriptions to execute compositions of Web services. Examples of run-
time environments that are capable of BPEL4WS are the IBM WebSphere
Server [85] or the Oracle BPEL Server [117].

Finally, the composed service composition can be deployed and published. The
generated descriptions can be passed to service brokers in order to advertise the
service. At the end, the retailer can offer the service ready for the invocation by
consumers.

7.2.5 Development as an Iterative Process

Like other design and creation processes in the engineering and computer sciences,
the creation of the composition is an iterative and heuristic process that assumes the
ability to go back and forth to the different activities. The heuristic nature is as such
that by undergoing these procedures in iterations, the result becomes better with
each iteration. Different reasons exists for why the development process requires
an iterative procedure, among them are the following:

• No matched services. It can happen that the matchmaking process does not
identify suitable service candidates. In this case, the retailer has two options:
The development process can be interrupted and the required service can be
implemented. Alternatively, he can modify the composition design in order
to adapt the required services to the available services that were previously
excluded. Then, the modeller must redesign the composition.

• Discovery as inspiration. During the matchmaking and reengineering pro-
cess, the retailer can discover that his abstract composition is not the optimal
design. Most likely, the retailer can experience this situation during the as-
sessment of suitable service candidates. For example, a new kind of service
might inspire the composition modeller to restructure the existing tasks of
the composition. Then, the development starts over with the redesign of the
composition as well.

169

7.2. Model-Driven Development of Service Compositions

• Too restrictive QoS. The selection can reveal that the matched candidates
cannot satisfy the requested QoS. Alternatively, some of the selected candi-
dates do not provide any statements about the considered QoS characteris-
tics. In both cases, the result is that no services that meet the QoS require-
ments are available. In the first case, the retailer needs to adjust the state-
ment of the corresponding QoS characteristic, if loosening the requirements
is possible. Then, the selection process can be performed again among the
candidate services. If the retailer cannot weaken the requirements or aban-
don any QoS characteristic, the situation is similar to the first point: Either a
new service is created or the functionality of the tasks is adapted.

• Too many candidates. Contrary to the previous scenarios, the selection
process might reveal that too many services meet the QoS requirements. Of
course, this case does not represent a problem. However, the retailer can take
this as an opportunity to improve the QoS. Obviously, the candidate services
would allow even stronger requirements and a better QoS can be achieved.
The retailer can perform the activities of the first step again to re-define the
QoS requirements. Then, the retailer can repeat the selection of the third
step.

The above-mentioned issues occur during the development of the composi-
tion. Monitoring and analysing the composition during the run-time can also lead
further iterations of the development process. At run-time, a composition can be
monitored to measure the resulting QoS. The QoS at run-time can differ from the
advertised QoS. Thus, the retailer might consider measuring the execution with
respect to the relevant QoS criteria. The goal of such an analysis is to identify
potential weak or critical services in the composition. The retailer has three main
options when a weak or critical service is revealed:

• Replacing. He can replace the particular service with other identified candi-
dates that were ranked lower than the chosen service. However, the service
was originally sorted out by a selection process. Consequently, this modifi-
cation results in a worse QoS prediction for the composition.

• Acquiring new services. As an alternative, the discovery must be repeated
and the “bad” service must be excluded. The modeller can perform a new
attempt a new service discovery to find services that were previously not
available.

• Redesigning the composition. Like for the iteration in the development
process, the modeller can try to redesign or rearrange the required function-
ality to avoid the problem of insufficient QoS. In this case, a new iteration of
the development process is started.

The retailer will continuously need to optimise the composition in order to
approach the optimal setup. One reason is the general volatility of the QoS, which

170

7.2. Model-Driven Development of Service Compositions

is a characteristic of distributed systems. Another reason is that new services will
appear, as well as other services will disappear. To guarantee a constant QoS level
of the entire composition, a new selection must take place when the QoS of the
involved services changes. To ensure that new, possibly QoS-improving services
are utilised, the process steps from performing the discovery can be repeated at a
regular basis. Figure 7.9 outlines the relations of the main steps with the run-time
part. In this figure, the activity with the grey border represents the selection. The
diagram shows that the selection is performed each time the set of involved services
or their QoS has changed. A repeated selection always requires the activities of the
fourth step.

4: Deploying and
Publishing

2: Trading:
Matchmaking

1: Modelling

No Services
Found

Inspiration

Too Restrictive
QoS Constraints

Too Many
Candidates

Critical Service /
Possible Improvements
Identified

Regular Update
of Available Services

Service with
Weak QoS Identifed

Runtime:
Monitoring

3: Trading:
Selection

Figure 7.9: The iterative development process.

171

7.2. Model-Driven Development of Service Compositions

172

Chapter 8

Conclusions

The application of heuristic algorithms to the problem of the QoS-based selection
when forming service compositions was explained and analysed. In addition, the
implementation of a simulation in order to analyse the performance of the con-
sidered algorithms was presented. The results from conducted simulations allow
quantitative statements about the feasibility of the heuristic algorithms when com-
pared to algorithms that guarantee to solve the problem in an optimal way.

The concept of QoS as preference criteria for the service selection covers many
aspects. The definition from the ISO 9004 standard [127] on services and quality
allows many possible application scenarios. To sharpen the focus of this work, the
scenario of realising business processes was presented as the main application case.
The motivation for this application case lies in the presented commonalities of busi-
ness processes with the characteristics of service compositions (cf. Section 2.4).

The application scenario influenced the direction of the discussion on QoS in
distributed systems (cf. Chapter 3). Thus, also particular QoS issues in the field
of SOAs and Web services were presented. For the subsequent QoS-aggregation,
existing research works on QoS issues in these fields were also assessed. Then, a
uniform approach for aggregating the QoS was defined and explained for process-
ing the QoS of individual services in compositions. The approach presumes that
the composition can be described by using a specific structural model. Based on
the structural model and the corresponding aggregation rules, the presented method
can determine the resulting QoS of service compositions. This functionality repre-
sents the foundation for the QoS-based selection of service candidates.

After this first part, which presented the necessary foundations, an analysis of
the QoS-based selection problem was given which resulted in a problem model.
This model enabled an analysis on the relations to other combinatorial problems.
The considered problems were the multiple choice knapsack problem, the resource-
constrained project scheduling problem, the QoS-based query planning for queries
to database systems, and the QoS-based routing in computer networks. In addi-
tion, the problem model served also as the foundation for a discussion about the
hardness of the QoS-based selection problem. It was shown that the presented

173

problem model for the QoS-based selection describes a problem that is NP -hard.
The NP -hardness is shown by reducing the multiple choice knapsack problem to
the selection problem (cf. Section 5.3.5). In addition, the comparison with the
MCKP has revealed that the approaches as presented in the related work based on
the MCKP do not cover all aspects of the QoS-based selection problem.

This represents the motivation to evaluate heuristic algorithms for the selection
problem as an alternative to algorithms that guarantee to find the optimal solution.
A selection of heuristic algorithms was explained and their advantages and disad-
vantages were discussed. To provide quantitative results, an evaluation of these
heuristics was also presented (cf. Chapter 6). The evaluation was performed by
software that simulates the application of these heuristics on randomly generated
problem instances. The goal of the simulation was to capture two aspects of the per-
formance of the heuristics: Their QoS performance and their computational time
performance. Based on the quantitative results, also the weaknesses and strengths
of the heuristics were revealed and discussed. In summary, the evaluation revealed
the following insights about the heuristic algorithms:

• The discarding heuristic showed an unattractive consumption of the compu-
tation time under real-world conditions. This shows that a branch-and-bound
strategy is not able to efficiently save computational efforts. However, this
approach results in the almost optimal QoS for the composition.

• The bottomup heuristic required very few computational efforts. However,
the resulting QoS reaches only 1/3 to 1/2 of the best QoS possible in the
different simulation campaigns. Thus, its application must take a clear QoS
penalty into account.

• The local heuristic, which implemented a greedy strategy to solve the given
problem, resulted in very attractive QoS (about 4/5 of the optimal) while
requiring low computational efforts. However, it is not able to consider con-
straints. Moreover, it showed weaknesses for problem instances with very
diverse QoS offers.

• The pattern-based heuristic showed a QoS performance between the local
and discarding heuristic. However, it scales unattractive with larger problem
instances under real-world conditions. Although, it consumes only a fraction
of computation time when compared to the discarding method, it requires
unattractive computation times for problem instances with a larger number
of candidates or tasks.

The presentation about the abstract development process at the end has clarified
the role of the QoS-based selection when creating compositions of services. By ex-
plaining this development process it was made clear at which points in the process
the QoS-based selection must take place. Moreover, the development process has
also explained the motivation for the following preconditions for the QoS-based
selection:

174

8.1. Summary of Main Contributions

• Functional compatibility. For the application of the QoS-based selection,
the considered candidates have been proven functionally compatible to the
tasks. Besides the practical benefit of this step, the advantage is that sorting
out service candidates in advance results in fewer candidates to evaluate.

• Uniformity of QoS characteristics. The other main presumption is the uni-
formity of the QoS characteristics: The retailer who performs the selection
process must have the same understanding of the considered QoS character-
istics as the service providers who offer their candidates with QoS promises.
Chapter 3 has also discussed related research work that considers this prob-
lem. Since the focus of this thesis lies on the combinatorial aspect of the
problem, the QoS uniformity among the involved parties was not further dis-
cussed.

8.1 Summary of Main Contributions

The previous section has summarised the main contribution of this work which is
the discussion and evaluation of the heuristic algorithms. Thus, it directly cov-
ers the problem statement given in the first chapter. Besides the evaluation re-
sults about the heuristic approaches, the following scientific contributions were
presented:

• Assessment about the QoS in service compositions. The first part of this
thesis has provided a survey about the existing research work and clarified
relevant QoS concepts for the use in service compositions. The outcome
is an assessment about relevant QoS characteristics, as given in Section 3
and an assessment about the resulting value dimensions when the relevant
characteristics are applied in the field of services and service compositions
to determine the simulation parameters (cf. Section 6.3.1).

Moreover, Chapter 7 has explained the issues of aggregating QoS and per-
forming the QoS-based selection in a development process for building ser-
vice compositions.

• An aggregation model. The next contribution is a structural model an a
method that enables the aggregation of QoS in service compositions, based
on the QoS of individual tasks or candidates. Besides the application of
this model to perform the QoS-based selection, this approach has been also
applied in related work about improving the QoS by applying redundant ser-
vices structures [58, 59]. The proposed approach presumes that the compo-
sition can be expressed by using this structural model. This thesis has dis-
cussed the expressiveness and limitation of this structural model. Based on
an analysis of the identified limitations, the application of existing transfor-
mations (cf. Kiepuszewski et al. [73]) was proposed to cover not conforming
compositions with this structural model.

175

8.2. Outlook and Future Work

• The problem model. Besides the structural model to perform the aggre-
gation, another model describes the selection problem itself. The problem
model uses the structural model of the aggregation method to describe the
structure of the occurring problem instances. In addition, the rules of the ag-
gregation model were used to derive statements that express constraints and
optimisation goals.

The problem model provides the foundation for three aspects: 1) a clarifi-
cation of the characteristics of the problem and its relation to existing prob-
lem models, 2) a discussion about the effort to solve the problem and 3) a
blueprint for the implementation of the simulation in order to achieve the
quantitative results.

• Development of the simulation. The presented performance evaluation re-
quired the implementation of a simulation. Existing works about QoS in ser-
vice compositions were assessed in order to determine the parameterisation
of the setup. The results from performed simulations made clear that a vari-
ation of different parameters results also in a variation of the performance.
Thus, the assessment of existing work was necessary to deliver a realistic
simulation setup that would result in realistic performance evaluations.

The structural model and the problem model were also the foundation for the
analysis about the related work in the field of QoS aggregation (cf. Section 4.6) and
in the field of QoS-based selection (cf. Section 5.1). The problem model served
as a reference to show the differences to existing related work about the QoS-
based selection that has considered the multiple choice knapsack problem as the
appropriate problem model.

8.2 Outlook and Future Work

Because the definition of services and their composition by the ISO 9000 and 9004
standards [128, 127] is considered for this work, the discussed combinatorial prob-
lem can be applied outside an SOA and Web service infrastructures as well. The
given discussion can be transferred to other domains. A possible application would
be the production of goods where a product is comprised of different sub-products
and services of different suppliers. For example, the production of a car represents
such a scenario. The involved sub-products and services are applied in a certain
order, and require a time to perform. Products cost a particular amount of money
and everything operates at a certain level of reliability. The optimisation of quan-
tifiable measures as presented in this work is also relevant for other domains which
have the goal to implement a process.

Besides other potential applications of QoS-based selection in the industry,
the simulations have shown in general that the optimisation of the QoS provides
significant advantages in terms of cost, response time, and availability: The eval-
uation of the (QoS-ignoring) random and global selection methods have resulted

176

8.2. Outlook and Future Work

in quantitative statements about the improvements when the QoS is optimised. All
considered measures represent relevant objectives for optimisation in today’s IT
infrastructures when it comes to saving money and efforts (or the amount of work)
and to provide systems that are more reliable.

This work has also mentioned that QoS-aware development tools are currently
not widely used. Besides research prototype work (for example, presented by
Grønmo and Jaeger [39]), no commercial product was identified that provides the
support for the QoS of services when developing service compositions. The imple-
mented simulator represents a solution that has proven to be capable of processing
the QoS of service candidates, performing the aggregation and has demonstrated
the application of different selection algorithms. This implementation serves as
proof of concept for the proposed QoS-based selection. It can be further devel-
oped for the integration into software packages to create service compositions in
the sense of the SOA. This thesis proposes how the discussed approaches find their
way into software products, service brokers or development environments in order
to create compositions as discussed in Chapter 7.

Besides the application in the software industry, the main contributions of this
thesis also enable different opportunities for further research work. Possible areas
of further research based on this work are:

• Developing more heuristics. Along with the given analysis of the four
heuristics, a combined heuristic approach can be derived from further re-
search in the field of related combinatorial problems. The result could be
a hybrid approach as mentioned in Section 6.5. For example, the QoS per-
formance of the pattern selection can be combined with the computational
performance of the local selection by applying the local selection for the rare
cases that pose difficulties to the pattern selection.

• Designing campaigns. Besides the evaluation of additional heuristics, dif-
ferent simulation campaigns can be also considered in order to explore more
aspects of the heuristics. For example, a different setup could vary how many
tasks a structural element contains on average.

• Other approaches. Besides the heuristics, another research opportunity
would be the creation of an algorithm that derives the appropriate set of inte-
ger programming formulations according to a given instance of the selection
problem. Such an algorithm could be based on defined transformations that
transform each pair of QoS characteristic and composition pattern into a cor-
responding formula. Then, software tools for integer programming solving
could be applied and the performance of such an approach can be compared
with the performance of the heuristics.

• Optimisation Prediction. Based on the simulation results and the problem
model, a functionality can be established that predicts the optimisation po-
tential of a given composition setup. The goal of this function is to quickly

177

8.2. Outlook and Future Work

predict the QoS optimisation potential. Based on this prediction, a QoS-
based broker can decide whether to run a time-consuming selection algo-
rithm or to prefer a heuristic algorithm.

178

Appendix A

Specification of the
Hard- and Software Platform

The entire simulation presented in this work was performed on standard PC hard-
ware running a Microsoft Windows 2000 operating system. Table A.1 lists the
detailed specifications of the computer.

CPU Intel Pentium IV CPU
2.4GHz, 512KB level-2 cache, 533MHz FSB
(family 15, model 2, stepping 9)

Hardware Intel i865 chipset with integrated graphics controller
512 MB DDR333 main memory, 40GB hard disk

OS Microsoft Windows 2000
(version 5.0.2195, service pack 4, build 2195)
performance setting “optimised for applications”

Java VM Sun’s Java HotSpot Client VM 1.5.0 06-b05
default settings (i.e. for heap sizes)

Table A.1: Specification of the host system.

Apart from the technical specifications, the performance of the simulation host
platform is also interesting in order to compare the results with future or external
research. An official Java benchmark does not exist. However, different (research)
groups have developed and published software that performs typical scientific cal-
culations and captures the computational performance.

Among these efforts, “SciMark 2.0” has been chosen to measure the perfor-
mance of the computer used for the simulation runs. SciMark was developed by
Roldan Pozo, and Bruce Miller at the National Institute of Standards and Tech-
nology (NIST). The software is freely available at http://math.nist.gov/scimark2/.
Running the benchmark tool in the command line of the host system resulted in the
following output:

179

SciMark 2.0a
Composite Score: 187.41090663144433
FFT (1024): 83.56844871970135
SOR (100x100): 322.88120458089793
Monte Carlo : 24.54603686755795
Sparse matmult (N=1000, nz=5000): 127.85017738323931
LU (100x100): 378.20866560582505
java.vendor: Sun Microsystems Inc.
java.version: 1.5.0_06
os.arch: x86
os.name: Windows 2000
os.version: 5.0

The captured composite score of 187 compares well with the given results from
other computers available on the home page of SciMark: Different other Pentium
IV-based machines at 2.4Ghz clock rate resulted in the score of 187 as well.

180

Appendix B

List of Abbreviations

BPEL4WS Business Process Execution Language for Web Services
BPMI Business Process Management Initiative
BPML Business Process Modelling Language
BPMN Business Process Modelling Notation
BPSS Business Process Specification Schema
CPA Collaboration Protocol Agreement
CPP Collaboration Protocol Profile
CPU Central Processing Unit
CORBA Common Object Request Broker Architecture
CCM CORBA Component Model
ebXML Electronic Business using eXtensible Markup Language
EDOC Enterprise Distributed Object Computing
EPC Event-driven Process Chain
XML Extensible Markup Language
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IDL Interface Definition Language
ISO International Organization for Standardization
IETF Internet Engineering Task Force
ISO-OSI ISO Open System Interconnection Model
J2SE Java 2 Standard Edition
MDA Model-Driven Architecture
MTBF Mean Time Between Failure
MTTT Mean Time to Transition
MOF Meta Object Facility
MCDM Multiple Criteria Decision Making
MCKP Multiple-Choice Knapsack Problem

181

MKP Multiple-Dimension Knapsack Problem
MMKP Multiple-Dimension Multiple-Choice Knapsack Problem
OMG Object Management Group
OASIS Organization for the Advancement of Structured Information Standards
OWL-S OWL Services
PC Problem Carrier
PIM Platform Independent Model
PSM Platform Specific Model
QoS Quality of Service
RM-ODP Reference Model for Open Distributed Processing
RCPSP Resource Constrained Project Scheduling Problem
SLA Service Level Agreement
SOA Service-Oriented Architecture
SAW Simple Additive Weighting
SWM Structured Workflow Model
TINA Telecommunications Information Networking Architecture
W3C The World Wide Web Consortium
TINA-C TINA Consortium
UML Unified Modelling Language
UN/CEFACT United Nations Centre for Trade Facilitation and Electronic Business
UNSPSC United Nations Standard Products and Services Code
UDDI Universal Description, Discovery, and Integration
OS Operating System
OWL Web Ontology Language
VM Virtual Machine
WSCI Web Service Choreography Interface
WSLA Web Service Level Agreement Language
WSMO Web Service Modelling Ontology
WSOI Web Service Offerings Infrastructure
WSOL Web Service Offerings Language
WSDL-S Web Service Semantics
WS-BPEL Web Services Business Process Execution Language
WS-I Web Services-Interoperability
WSDL Web Services Description Language
WSFL Web Services Flow Language
WfMC Workflow Management Coalition
WorkSCo Workflow with Separation of Concerns
XPDL XML Processing Description Language
YAWL Yet Another Workflow Language

182

183

184

Bibliography

[1] Rama Akkiraju, Richard Goodwin,
Prashant Doshi, and Sascha Roeder. A
Method for Semantically Enhancing
the Service Discovery Capabilities of
UDDI. In Proceedings of the Workshop
on Information Integration on the Web,
pages 87–92, August 2003.

[2] Ali Shaikh Ali, Omer F. Rana, Rashid
Al-Ali, and David W. Walker. UDDIe:
An Extended Registry for Web Services.
In Proceedings of the 2003 Symposium
on Applications and the Internet Work-
shops (SAINT’03 Workshops), page 85,
Orlando, Florida, USA, January 2003.
IEEE Press.

[3] Cristina Aurrecoechea, Andrew T. Camp-
bell, and Linda Hauw. ”a survey of qos ar-
chitectures”. Multimedia Systems, Special
Section on Quality of Service Architec-
tures for Multimedia Systems, 6(3):138–
151, May 1998.

[4] Sean Baker and Simon Dobson. Compar-
ing Service-Oriented and Distributed Ob-
ject Architectures. In Proceedings of the
International Symposium on Distributed
Objects and Applications (DOA’05), Agia
Napa, Cyprus, November 2005. Springer
Press.

[5] Luciano Baresi, Sam Guinea, and Pier-
luigi Plebani. WS-Policy for Service
Monitoring. In 6th VLDB Workshop
on Technologies for E-Services (TES’05),
volume LNCS 3811. Springer Press,
September 2005.

[6] Boualem Benatallah, Marlon Dumas,
Marie-Christine Fauvet, F. A. Rabhi, and
Quan Z. Sheng. Overview of Some
Patterns for Architecting and Managing
Composite Web Services. In ACM SIGe-
com Exchanges, pages 9–16. ACM Press,
August 2002.

[7] Jean Bézivin, Grégoire Dupé, Frédéric
Jouault, Gilles Pitette, and Jamal Eddine
Rougui. First experiments with the atl
model transformation language: Trans-
forming xslt into xquery. In 2nd OOP-
SLA Workshop on Generative Techniques
in the context of Model Driven Architec-
ture, Anaheim, California, USA, 2003.

[8] Jean Bézivin, Slimane Hammoudi, Deni-
valdo Lopes, and Frédéric Jouault. Ap-
plying mda approach for web service plat-
form. In Proceedings of the Eighth IEEE
International Enterprise Distributed Ob-
ject Computing Conference (EDOC’04),
pages 58–70, Monterey, California, USA,
September 2004. IEEE Press.

[9] Jean Bézivin, Slimane Hammoudi, Deni-
valdo Lopes, and Frédéric Jouault. B2B
Applications, BPEL4WS, Web Services
and dotNET in the Context of MDA. In
Proceedings of the International Confer-
ence on Enterprise Integration and Mod-
elling Technology (ICEIMT’04), Toronto,
Canada, October 2004. Springer Press.

[10] Gregory Alan Bolcer and Gail Kaiser.
SWAP: Leveraging the Web to Manage
Workflow. In IEEE Internet Comput-
ing, pages 85–88. IEEE Press, January-
February 1999.

[11] David Booth, Hugo Haas, Francis Mc-
Cabe, Eric Newcomer, Michael Cham-
pion, Chris Ferris, and David Or-
chard. Web Services Architecture.
http://www.w3c.org/TR/ws-arch/, Febru-
ary 2004.

[12] Carine Bournez and Hugo Haas. Seman-
tic Web Services Interest Group Char-
ter. http://www.w3.org/2003/10/swsig-
charter, October 2003.

[13] Ilja N. Bronstein, Konstantin A. Se-
mendjajew, Gerhard Musiol, and Heiner
Mühlig. Taschenbuch der Mathematik.

185

Bibliography

Harri Deutsch Verlag, Frankfurt am Main,
Germany, 4. edition, 1999.

[14] David Burdett and Nickolas Kavantzas
(Eds.). WS Choreography Model
Overview, W3C Working Draft 24
March 2004. Technical report, W3C,
http://www.w3.org/TR/ws-chor-model/,
2004.

[15] Jorge Cardoso. Quality of Service and Se-
mantic Composition of Workflows. PhD
thesis, Department of Computer Sci-
ence, University of Georgia, Athens, GA
(USA), 2002.

[16] Jorge Cardoso, Amit Sheth, and Krys
Kochut. Implementing QoS Management
for Workflow Systems. Technical report,
LSDIS Lab, Computer Science, Univer-
sity of Georgia, Athens, GA – USA, 2002.

[17] Jorge Cardoso, Amit Sheth, and John
Miller. Workflow Quality of Ser-
vice. In Proceedings of Interna-
tional Conference on Enterprise Inte-
gration and Modeling Technology and
International Enterprise Modeling Con-
ference (ICEIMT/IEMC’02), Valencia,
Spain, April 2002. Kluwer Academic
Publishers.

[18] Senthilanand Chandrasekaran, Gregory S.
Silver, John A. Miller, Jorge Cardoso,
and Amit P. Sheth. XML-based Model-
ing and Simulation: Web Service Tech-
nologies and their Synergy with Simula-
tion. In Jane L. Snowdon and John M.
Charnes, editors, Proceedings of the 34th
Winter Simulation Conference: Explor-
ing New Frontiers, pages 606–615, San
Diego, California, USA, December 2002.
ACM Press.

[19] Jonathan Cranford, Ravi Mukkamala, and
Vijayalakshmi Atluri. Modeling and
evaluation of distributed workflow algo-
rithms. In Proceedings of the World
Multiconference on Systemics, Cybernet-
ics and Informatics: Information Systems
Development (ISAS-SCI), pages 183–188,
Orlando, Florida, USA, July 2001. IIIS.

[20] Eric Crawley, Raj Nair, Bala Rajagopalan,
and Hal Sandick. A Framework for QoS-
based Routing in the Internet. Informa-
tional RFC 2386, Internet Engineering
Task Force (IETF), 1998.

[21] Thomas H. Davenport. Process Inno-
vation. Harvard Business School Press,
Boston, MA, USA, 1992.

[22] Remco M. Dijkman and Marlon Du-
mas. Service-Oriented Design: A Multi-
Viewpoint Approach. International Jour-
nal of Cooperative Information Systems
(IJCIS), 13(4):337–368, 2004.

[23] Edsger W. Dijkstra. Go To Statement
Considered Harmful. Communications of
the ACM, 11(3):147–148, March 1968.

[24] Dragan Djuric. MDA-based Ontology
Infrastructure. Computer Science Infor-
mation Systems (ComSIS), 1(1), February
2004.

[25] Erdogan Dogdu and Venkata Mamidenna.
Efficient Scheduling Strategies for Web
Services-based E-Business Transactions.
In 6th VLDB Workshop on Technologies
for E-Services (TES’05), volume LNCS
3811, pages 113–125. Springer Press,
September 2005.

[26] Krzysztof Dudziński and Stanislaw
Walukiewicz. Exact Methods for the
Knapsack Problem and its Generalisa-
tions. European Journal of Operations
Research, 28(2):3–21, 1987.

[27] Lill Kristiansen (Ed.). TINA-C De-
liverable: Service Architecture, Ver-
sion 5.0. TINA consortium website:
http://www.tinac.com/, June 1997.

[28] Abdelkarim Erradi and Piyush Mahesh-
wari. wsBus: QoS-aware Middleware
for Reliable Web Services Interactions.
In Proceedings of the 2005 IEEE Inter-
national Conference on e-Technology, e-
Commerce and e-Service (EEE’05), pages
634–639, Hong Kong, China, March
2005. IEEE Press.

[29] Assaf Arkin et al. Business Process Mod-
eling Language (BPML). Technical Re-
port Version 1.0, BPMI.org, 2002.

[30] Assaf Arkin et al. Web Service Choreog-
raphy Interface (WSCI) 1.0. Technical re-
port, W3C, http://www.w3.org/TR/wsci,
2002.

[31] Tony Andrews et al. Business Process Ex-
ecution Language for Web Services Ver-
sion 1.1. Technical report, BEA Systems,
IBM Corp., Microsoft Corp., http://www-
106.ibm.com/developerworks/webser-
vices/library/ws-bpel/, 2003.

186

Bibliography

[32] Cristina Feier and John Domingue. D3.1
WSMO Primer. WSMO Final Draft,
DERI International, April 2005.

[33] Daniela Florescu, Andreas Gruenhagen,
and Donald Kossmann. XL: an XML
Programming Language for Web Service
Specification and Composition. In Pro-
ceedings of the 11th international con-
ference on World Wide Web (WWW’02),
pages 65–76. ACM Press, May 2002.

[34] Helmut Frank, Norbert Gronau, and Her-
mann Krallman. Systemanalyse im Un-
ternehmen. 3. Edition. Oldenbourg Ver-
lag, München, Germany, October 2000.

[35] Svend Frølund and Jari Koistinen. Quality
of Service Aware Distributed Object Sys-
tems. In Proceedings in 5th USENIX Con-
ference on Object-Oriented Technologies
and Systems (COOTS’99), pages 69–84,
San Diego, California, USA, May 1999.
USENIX.

[36] Dinesh Ganesarajah and Emil Lupu.
Workflow-based Composition of Web-
services: A Business Model or a Pro-
gramming Paradigm? In Proceed-
ings of 6th International Enterprise Dis-
tributed Object Computing Conference
(EDOC’02), pages 273–284, Lausanne,
Switzerland, September 2002. IEEE CS
Press.

[37] Michael R. Garey and David S. Johnson.
Computers and Intractability A Guide to
the Theory of NP-Completeness. W. H.
Freeman and Company, New York, NY,
USA, 1979.

[38] Michael Gillmann, Gerhard Weikum, and
Wolfgang Wonner. Workflow Manage-
ment with Service Quality Guarantees. In
Proceedings of the 2002 ACM SIGMOD
International Conference on Management
of Data, pages 228–239, Madison, Wis-
consin, USA, June 2002. ACM Press.

[39] Roy Grønmo and Michael C. Jaeger.
Model-Driven Methodology for Building
QoS-Optimised Web Service Composi-
tions. In Proceedings of the 5th IFIP
International Conference on Distributed
Applications and Interoperable Systems
(DAIS’05), pages 68–82, Athens, Greece,
May 2005. Springer Press.

[40] Roy Grønmo and Michael C Jaeger.
Model-Driven Semantic Web Service

Composition. In The 12th ASIA-
PACIFIC Software Engineering Confer-
ence (APSEC’05), pages 79–86, Taipei,
Taiwan, December 2005. IEEE CS Press.

[41] Roy Grønmo, Michael C Jaeger, and
Hjørdis Hoff. Transformations be-
tween UML and OWL-S. In Euro-
pean Conference on Model Driven Archi-
tecture – Foundations and Applications
(ECMDA’05), volume 3748 of LNCS,
pages 269–283, Nuremberg, Germany,
November 2005. Springer Press.

[42] Roy Grønmo, David Skogan, Ida Sol-
heim, and Jon Oldevik. Model-Driven
Web Service Development. Interna-
tional Journal of Web Services Research
(JWSR), 1(4), Oct-Dec 2004.

[43] Michael Hammer and James Champy.
A Manifesto for Business Revolution.
Harper Business, 1993.

[44] Thomas Heinis, Cesare Pautasso, and
Gustavo Alonso. Design and evalua-
tion of an autonomic workflow engine.
In Proceedings of the Second Interna-
tional Conference on Autonomic Com-
puting (ICAC’05), pages 27–38, Seat-
tle, Washington, USA, June 2005. IEEE
Press.

[45] David Hollingsworth. The Workflow Ref-
erence Model. Technical Report TC00-
1003, Workflow Management Coalition,
Lighthouse Point, Florida, USA, 1995.

[46] David Hollingsworth. The Work-
flow Reference Model 10 Years On.
(extracted from “Workflow Handbook
2004”), Workflow Management Coali-
tion, Lighthouse Point, Florida, USA,
February 2004.

[47] Michael N. Huhns and Munindar P. Singh.
Service-oriented computing: Key con-
cepts and principles. IEEE Internet
Computing, January and February:75–81,
2005.

[48] Richard Hull, Michael Benedikt, Vas-
silis Christophides, and Jianwan Su. E-
Services: A Look Behind the Curtain. In
Proceedings of the 22nd ACM SIGACT-
SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems (PODS’03),
pages 1–14, San Diego, California, USA,
June 2003. ACM Press.

187

Bibliography

[49] Ching-Lai Hwang and K. Paul Yoon, edi-
tors. Multiple Attribute Decision Making:
Methods and Applications, volume 186 of
Lecture Notes in Economics and Mathe-
matical Systems. Springer Press, March
1981.

[50] ISO/IEC. ITU.TS Recommendation
X.902 — ISO/IEC 10746-1: Open Dis-
tributed Processing Reference Model -
Part 1: Overview, August 1996.

[51] ISO/IEC. ITU.TS Recommendation
X.902 — ISO/IEC 10746-2: Open Dis-
tributed Processing Reference Model -
Part 2: Foundations, August 1996.

[52] ISO/IEC. ISO/ITU-T Recommendation
X.641 — ISO/IEC 13236: Information
Technology - Quality of Service - Frame-
work, 1997.

[53] ISO/IEC. ITU.TS Recommendation
X.950 — ISO/IEC 13235-1: Trading
Function: Specification, August 1997.

[54] ISO/IEC. CD 15935 Information Tech-
nology: Open Distributed Processing -
Reference Model - Quality of Service.
(CD Ballot), October 1998.

[55] ISO/IEC. ITU-T Recommendation X.641
— ISO/IEC 13236: Information Tech-
nology - Quality of Service: Framework,
1998.

[56] ISO/IEC. ISO/IEC 15909-1: High-level
Petri nets – Part 1: Concepts, Definitions
and Graphical Notation. Published Stan-
dard, December 2004.

[57] ITU-T. ITU-T Recommendation X.200
— ISO/IEC 7498-1: Open Systems Inter-
connection – Basic Reference Model: The
Basic Model, July 1994.

[58] Michael C. Jaeger and Hendrik Lad-
ner. Improving the QoS of WS Com-
positions based on Redundant Services.
In The 2005 International Conference
on Next Generation Web Services Prac-
tices (NWeSP’05), pages 189–194, Seoul,
South-Korea, August 2005. IEEE CS
Press.

[59] Michael C. Jaeger and Hendrik Ladner.
A Model for the Aggregation of QoS in
WS Compositions Involving Redundant
Services. Journal of Digital Information
Management, 4(1):44–49, March 2006.

[60] Michael C. Jaeger and Gero Mühl. Soft
Real-Time Aspects for Service-Oriented
Architectures. In Proceedings of the
IEEE Joint Conference on E-Commerce
Technology (CEC’06) and Enterprise
Computing, E-Commerce and E-Services
(EEE’06), pages 22–29, San Francisco,
California, USA, June 2006. IEEE Press.

[61] Michael C. Jaeger, Gero Mühl, and Se-
bastian Golze. QoS-aware Composition
of Web Services: An Evaluation of Se-
lection Algorithms. In Proceedings of
the Confederated International Confer-
ences CoopIS, DOA, and ODBASE 2005
(OTM’05), volume 3760 of LNCS, pages
646–661, Agia Napa, Cyprus, November
2005. Springer Press.

[62] Michael C. Jaeger and Gregor Rojec-
Goldmann. SENECA – Simulation of Al-
gorithms for the Selection of Web Ser-
vices for Compositions. In 6th VLDB
Workshop on Technologies for E-Services
(TES’05), volume 3811 of LNCS, pages
84–97, Trondheim, Norway, September
2005. Springer Press.

[63] Michael C. Jaeger, Gregor Rojec-
Goldmann, and Gero Mühl. QoS
Aggregation for Service Composition
using Workflow Patterns. In Proceedings
of the 8th International Enterprise Dis-
tributed Object Computing Conference
(EDOC’04), pages 149–159, Monterey,
California, USA, September 2004. IEEE
Press.

[64] Michael C. Jaeger, Gregor Rojec-
Goldmann, and Gero Mühl. QoS
Aggregation in Web Service Compo-
sitions. In Proceedings of the 2005
IEEE International Conference on e-
Technology, e-Commerce and e-Service
(EEE’05), pages 181–185, Hong Kong,
China, March 2005. IEEE Press.

[65] Michael C. Jaeger, Gregor Rojec-
Goldmann, Gero Mühl, Christoph
Liebetruth, and Kurt Geihs. Ranked
Matching for Service Descriptions using
OWL-S. In Kommunikation in verteil-
ten Systemen (KiVS 2005), Informatik
Aktuell, pages 91–102, Kaiserslautern,
Germany, February 2005. Springer Press.

[66] Michael C. Jaeger and Stefan Tang.
Ranked Matching for Service Descrip-
tions using DAML-S. In Proceedings

188

Bibliography

of CAiSE’04 Workshops, pages 217–228,
Riga, Latvia, June 2004. Riga Technical
University.

[67] Gerrit K. Janssens, Jan Verelst, and Bart
Weyn. Techniques for modelling work-
flows and their support of reuse. In
Business Process Management – Models,
Techniques, and Empirical Studies, vol-
ume 1806 of LNCS, pages 1–15, Berlin,
Germany, February 2000. Springer Press.

[68] Jeff Johnson, Teresa L. Roberts, William
Verplank, David C. Smith, Charles Irby,
Marian Beard, and Kevin Mackey. The
Xerox Star: A Retrospective. Computer,
22(9):11–26,28–29, September 1989.

[69] Sravanthi Kalepu, Shonali Krish-
naswamy, and Seng Wai Loke. Reputa-
tion = f(user ranking, compliance, verity).
In Proceedings of the IEEE International
Conference on Web Services (ICWS’04),
pages 200–207, San Diego, California,
USA, July 2004. IEEE CS Press.

[70] Olaf Kath, Andrei Blazarenas, Marc
Born, Klaus-Peter Eckert, Motoshisa Fun-
abashi, and Chiaki Hirai. Towards Ex-
ecutable Models: Transforming EDOC
Behavior Models to CORBA and BPEL.
In Proceedings of the 8th International
Enterprise Distributed Object Computing
Conference (EDOC’04), pages 267–274,
Monterey, California, USA, September
2004. IEEE Press.

[71] Gerhard Keller, Markus Nüttgens, and
August-Wilhelm Scheer. Semantische
Prozeßmodellierung auf der Grundlage
Ereignisgesteuerter Prozeßketten (EPK).
Veröffentlichungen des Instituts für
Wirtschaftsinformatik (IWi) 89, Uni-
versität des Saarlandes, Saarbrücken,
Germany, 1992.

[72] Tony Kenyon. Data Networks: Routing,
Seurity, and Performance Optimization.
Digital Press, 1. edition, June 15th 2002.

[73] Bartek Kiepuszewski, Arthur H. M. ter
Hofstede, and Christoph Bussler. On
Structured Workflow Modelling. In Pro-
ceedings of the 12th International Con-
ference on Advanced Information Systems
Engineering (CAiSE’00), volume 1789 of
LNCS, pages 431–445, Stockholm, Swe-
den, June 2000. Springer Press.

[74] Donald E. Knuth. Structured Program-
ming with go to Statements. ACM Com-
puting Surveys, 6(4):261–301, December
1974.

[75] Pinar Koksal, Sena Nural Arpinar, and
Asuman Digac. Workflow History Man-
agement. SIGMOD Record, 27(1):67–75,
1998.

[76] Lea Kutvonen. Trading Services in Open
Distributed Environments. PhD thesis,
Department of Computer Science, Uni-
versity of Helsinki, Helsinki, Finland,
1998.

[77] Hendrik Ladner. Methoden zur Opti-
mierung der Dienstgüte von Web Ser-
vice Kompositionen. diploma thesis,
Berlin University of Technology, Faculty
of Electrical Engineering and Computer
Science, October 2005.

[78] Juhnyoung Lee. Matching Algorithms
for Composing Business Process Solu-
tions with Web Services. In Proceed-
ings of the 4th International Conference
on E-Commerce and Web Technologies
(ECWEB’03), pages 393–402, Prague,
Czechoslovakia, October 2003. Springer
Press.

[79] Ulf Leser. Combining Heterogeneous
Data Sources through Query Corre-
spondence Assertions. In Fereidoon
Sadri, editor, CIKM’98 First Workshop
on Web Information and Data Manage-
ment (WIDM’98), pages 29–32, Bathesda,
Maryland, USA, November 1998. ACM
Press.

[80] Frank Leymann. Web Services Flow
Language (WSFL 1.0). Technical report,
IBM Software Group, http://www-
4.ibm.com/software/solutions/webser-
vices/pdf/WSFL.pdf, 2001.

[81] Lei Li and Ian Horrocks. A Software
Framework For Matchmaking Based on
Semantic Web Technology. In Proceed-
ings of the 12th International Conference
on World Wide Web (WWW’03), pages
331–339. ACM Press, May 2003.

[82] Lucas Bordeaux and Gwen Salaun and
Daniela Berardi and Massimo Mecella.
When are two web services compatible?
In Revised Selected Papers of the 5th
International Workshop on Technologies

189

Bibliography

for E-Services (TES’04), volume 3324 of
LNCS, pages 15–28, Toronto, Canada,
August 2004. Springer Press.

[83] Heiko Ludwig. Web Services QoS: Exter-
nal SLAs and Internal Policies Or: How
do we deliver what we promise? Keynote
Speech at the WISE Workshop on Web
Services Quality, December 2003.

[84] Heiko Ludwig, Alexander Keller, Asit
Dan, Richard P. King, and Richard
Franck. Web Service Level Agree-
ment (WSLA) Language Specification.
http://www.research.ibm.com/wsla/WSL
ASpecV1-20030128.pdf, January 2003.

[85] Ed Lynch and Chandra Venkatapathy.
Sustaining your Advantage with Business
Process Integration based on Service Ori-
ented Architecture. White Paper, October
2005.

[86] Dirk E. Mahling, Noel Craven, and
W. Bruce Croft. From Office Automation
to Intelligent Workflow Systems. IEEE
Intelligent Systems, 10(3):41–47, June
1995.

[87] Mike Marin, Justin Brunt, Wojciech
Zurek, Tim Stephenson, Sasa Bojanic,
and Gangadhar Gouri. Workflow Pro-
cess Definition Interface – XML Process
Definition Langauge, Version 1.0. Tech-
nical Report WFMC-TC-1025, Workflow
Management Coalition, Lighthouse Point,
Florida, USA, October 2002.

[88] E. Michael Maximilien and Munindar P.
Singh. A Framework and Ontology for
Dynamic Web Services Selection. In
IEEE Internet Computing, pages 84–93.
IEEE Press, September-October 2004.

[89] Deborah L. McGuinness and Frank
van Harmelen. OWL Web Ontol-
ogy Language Overview. Technical re-
port, W3C, http://www.w3.org/TR/owl-
features/, 2004.

[90] Daniel A. Menasce. QoS Issues in Web
Services. In IEEE Internet Comput-
ing, pages 72–75. IEEE Press, November-
December 2002.

[91] Daniel A. Menasce. Composing Web
Services:A QoS View. In IEEE Inter-
net Computing, pages 88–90. IEEE Press,
November–December 2004.

[92] Daniel A. Menasce. Response-Time
Analysis of Composite Web Services. In
IEEE Internet Computing, pages 90–92.
IEEE Press, January–February 2004.

[93] Microsoft. Enterprise UDDI Services: An
Introduction to Evaluating, Planning, De-
ploying, and Operating UDDI Services,
February 2003.

[94] Klara Nahrstedt and Jonathan M. Smith.
The QoS Broker. IEEE MultiMedia,
2,(1):53–67, Spring 1995.

[95] Felix Naumann, Ulf Leser, and Jo-
hann Christoph Freytag. Quality-driven
integration of heterogenous information
systems. In Proceedings of 25th Inter-
national Conference on Very Large Data
Bases (VLDB’99), pages 447–458, Ed-
inburgh, September 1999. Morgan Kauf-
mann.

[96] Object Management Group (OMG).
Model Driven Architecture. ormsc/2001-
07-01, August 2001.

[97] Object Management Group (OMG).
CORBA Components. OMG formal
document/02-06-65, 2002.

[98] Object Management Group (OMG). Meta
Object Factility Specification. OMG for-
mal document/2002-04-03, April 2002.

[99] Object Management Group (OMG).
UML Profile for Modelling Quality of
Service and Fault Tolerance Character-
istics and Mechanisms. ptc/2004-06-01,
June 2004.

[100] Object Management Group (OMG). Uni-
fied Modeling Language: Superstructure.
OMG formal document/05-07-04, August
2005.

[101] Chun Ouyang, Marlon Dumas, Stephan
Breutel, and Arthur H.M. ter Hofstede.
Translating Standard Process Models to
BPEL. In Proceedings of the 18th In-
ternational Conference on Advanced In-
formation Systems Engineering, Luxem-
bourg, June 2006. Springer Press.

[102] Massimo Paolucci, Takahiro Kawamura,
Terry R. Payne, and Katia Sycara. Im-
porting the Semantic Web in UDDI. In
Revised Papers from the International
Workshop on Web Services, E-Business,
and the Semantic Web, pages 225–236,
Toronto, Canada, May 2002. Springer
Press.

190

Bibliography

[103] Massimo Paolucci, Takahiro Kawamura,
Terry R. Payne, and Katia Sycara. Seman-
tic Matching of Web Service Capabilities.
In Proceedings of 1st International Se-
mantic Web Conference. (ISWC’02), vol-
ume 2342 of LNCS, pages 333–347, Sar-
dinia, Italy, June 2002. Springer Press.

[104] Mike P. Papazoglou. Service-Oriented
Computing: Concepts, Characteristics
and Directions. In Proceedings of
the Fourth International Conference on
Web Information Systems Engineering
(WISE’03), pages 3–12, Roma, Italy, De-
cember 2003. IEEE CS Press.

[105] Chintan Patel, Kaustubh Supekar, and Yu-
gyung Lee. Provisioning Resilient, Adap-
tive Web Services-based Workflow: A Se-
mantic Modeling Approach. In Proceed-
ings of the IEEE International Conference
on Web Services (ICWS’04), pages 480–
487, San Diego, California, USA, July
2004. IEEE CS Press.

[106] Terry R. Payne, Massimo Paolucci, and
Katia Sycara. Advertising and Matching
DAML-S Service Descriptions. In Posi-
tion Papers for SWWS’01, pages 76–78,
Stanford, USA, July 2001. Stanford Uni-
versity.

[107] Massimo Pezzini. SOA Beyond Hype
and Disillusionment – A Strategic Per-
spective. Key Note given at the SOA Days
2005 Technology Conference, September
2005.

[108] David Pisinger. Algorithms for Knapsack
Problems. PhD thesis, Dept. of Com-
puter Science, University of Copenhagen,
Copenhagen, Denmark, February 1995.

[109] IONA Technologies PLC. Ar-
tix: the Extensible Enterprise Ser-
vice Bus (ESB). product website,
http://www.iona.com/products/artix/,
2005.

[110] United Nations Development Programme.
United Nations Standard Products and
Services Code. organisation website,
http://www.unspsc.org/, 2005.

[111] Peter Puschner and Anton Schedl. Com-
puting Maximum Task Execution Times
- A Graph-Based Approach. Journal
of Real-Time Systems, 13(1):67–91, July
1997.

[112] Shuping Ran. A Model for Web Services
Discovery with QoS. SIGecom Exch.,
4(1):1–10, 2003.

[113] Akhil Sahai, Anna Durante, and Vijay
Machiraju. Towards Automated SLA
Management for Web Services. Technical
Report HPL-2001-310, Software Tech-
nology Laboratory, HP Laboratories Palo
Alto, Palo Alto, California, USA, 2002.

[114] Uwe Schöning. Theoretische Informatik
- kurz gefasst. Spektrum Akademischer
Verlag, Heidelberg, Germany, 3. edition,
1999.

[115] Seema Degwekar and Stanley Y. W. Su
and and Herman Lam. Constraint spec-
ification and processing in web services
publication and discover. In Proceedings
of the IEEE International Conference on
Web Services (ICWS’04), pages 210–217,
San Diego, California, USA, June 2004.
IEEE CS Press.

[116] Mohamed A. Serhani, Rachida Dssouli,
Houari Sahraoui, Abdelghani Benharref,
and M. E. Badidi. QoS Integration in
Value Added Web Services. In Proceed-
ings of the Second International Confer-
ence on Innovations in Informal Technol-
ogy (IIT’05), September 2005.

[117] Dave Shaffer and Brian Dayton. Or-
chestrating Web Services: The Case for
a BPEL Server. Technical report, Ora-
cle Corporation, Redwood Shores, Cali-
fornia, USA, June 2004.

[118] Robert Shapiro, Mike Marin, Justin
Brunt, Wojciech Zurek, Tim Stephenson,
Sasa Bojanic, and Gangadhar Gouri. Pro-
cess Definition Interface – XML Process
Definition Language, Version 2.0. Tech-
nical Report WFMC-TC-1025, Workflow
Management Coalition, Lighthouse Point,
Florida, USA, October 2005.

[119] Kaarthik Sivashanmugam, Kunal Verma,
Amit P. Sheth, and John A. Miller. Adding
Semantics to Web Services Standards. In
Proceedings of the International Confer-
ence on Web Services (ICWS ’03), pages
395–401, Las Vegas, Nevada, USA, June
2003. CSREA Press.

[120] David Skogan, Roy Grønmo, and Ida
Solheim. Web Service Composition in
UML. In Proceedings of the 8th IEEE

191

Bibliography

Intl Enterprise Distributed Object Com-
puting Conf (EDOC’04), pages 47–57,
Monterey, California, USA, September
2004. IEEE Press.

[121] Howard Smith and Peter Fingar. Busi-
ness Process Fusion Is Inevitable. Busi-
ness Process Trends, Columns and Arti-
cles, March 2004.

[122] Howard Smith and Peter Fingar. Work-
flow is just a Pi Process. Business Pro-
cess Trends, Columns and Articles, Jan-
uary 2004.

[123] Naveen Srinivasan, Massimo Paolucci,
and Katia Sycara. Adding OWL-S to
UDDI, Implementation and Throughput.
In Proceedings of Semantic Web Service
and Web Process Composition 2004, San
Diego, California, USA, July 2004.

[124] Katia Sycara, Massimo Paolucci, Julien
Soudry, and Naveen Srinivasan. Dynamic
Discovery and Coordination of Agent-
Based Semantic Web Services. IEEE In-
ternet Computing, 8(3):66–73, May, June
2004.

[125] Katia Sycara, Seth Widoff, Matthias
Klusch, and Jianguo Lu. LARKS: Dy-
namic Matchmaking Among Heteroge-
neous Software Agents in Cyberspace.
Autonomous Agents and Multi-Agent Sys-
tems, 5(2):173–203, 2002.

[126] OASIS WS-BPEL TC. WS-BPEL Speci-
fication Editors Draft. http://www.oasis-
open.org/committees/download.php/127
91/wsbpel-specification-draft-May-20-
2005.html, December 2005.

[127] Technical Committee ISO/TC 176, Qual-
ity Management and Quality Assurance.
Quality Managemant and Quality System
Elements; Part 2: Guidelines for Services,
1991.

[128] Technical Committee ISO/TC 176, Qual-
ity Management and Quality Assurance.
Quality Management and Quality Assur-
ance Standards; Part 1: Guidelines for Se-
lection and Use, 1994.

[129] Satish Thatte. XLANG - Web Ser-
vices for Business Process Design.
http://www.gotdotnet.com/team/xml
wsspecs/xlang-c/default.htm, 2001.

[130] The OWL Services Coalition. OWL-
S: Semantic Markup for Web Services.

Technical report, The DARPA Agent
Markup Language (DAML) Program,
http://www.daml.org/services/, 2004.

[131] Min Tian, A. Gramm, Hartmut Ritter, and
Jochen H. Schiller. Efficient Selection
and Monitoring of QoS-aware Web ser-
vices with the WS-QoS Framework. In
The 2004 IEEE/WIC/ACM International
Conference on Web Intelligence (WI’04),
pages 152–158, Beijing, China, Septem-
ber 2004. IEEE Press.

[132] Vladimir Tosic, Wei Ma, Bernard
Pagurek, and Babak Esfandiari. Web
Service Offerings Infrastructure (WSOI)
– A Management Infrastructure for XML
Web Services. In Proceedings of the
IEEE/IFIP Network Operations and
Management Symposium (NOMS’04),
pages 817–830, Seoul, South Korea,
April 2004. IEEE Press.

[133] Vladimir Tosic, Kruti Patel, and Bernard
Pagurek. WSOL – Web Service Offerings
Language. In Proceedings of the Work-
shop on Web Services, e-Business, and
the Semantic Web - WES (at CAiSE’02),
volume 2512 of LNCS, pages 57–67,
Toronto, Canada, May 2002. Springer
Press.

[134] David Trastour, Claudio Bartolini, and
Chris Preist. A Semantic Web Approach
to Service Description for Matchmaking
of Services. In Proceedings of the 11th
international conference on World Wide
Web (WWW’02), pages 89–98, Honolulu,
USA, May 2002. ACM Press.

[135] UDDI Spec Technical Committee. UDDI
Version 3.0.1. http://uddi.org/pubs/uddi-
v3.0.1-20031014.pdf, 2003.

[136] Guijun Wang, Alice Chen, Changzhou
Wang, Casey Fung, and Stephen Uczekaj.
Integrated Quality of Service (QoS) Man-
agement in Service-Oriented Enterprise
Architectures. In Proceedings of the 8th
International Enterprise Distributed Ob-
ject Computing Conference (EDOC’04),
pages 21–32, Monterey, California, USA,
September 2004. IEEE Press.

[137] Zheng Wang and Jon Crowcroft. Quality
of Service Routing for Supporting Multi-
media Applications . IEEE Journal of Se-
lected Areas in Communications (JSAC),
14(7):1228–1234, September 1996.

192

Bibliography

[138] Gerhard Weikum. Towards Guaranteed
Quality and Dependability of Information
Systems. In 8th GI Fachtagung: Daten-
banksysteme in Buero, Technik und Wis-
senschaft, pages 379–409, Freiburg, Ger-
many, March 1999. Springer Press.

[139] Wen-Lin Yang. Optimal and heuris-
tic algorithms for quality-of-service rout-
ing with multiple constraints. Perfor-
mance Evaluation, 57(3):261–278, Jan-
uary 2004.

[140] Stephen A. White. Business Process
Modeling Notation (BPMN). Technical
Report Working Draft (1.0), BPMI.org,
August 2003.

[141] Wil M. P. van der Aalst. Why workflow is
NOT just a Pi-Process. Online Edition at
BPTrends, BPMI.org, February 2004.

[142] Wil M.P. van der Aalst. Workflow Ver-
ification: Finding Control-Flow Errors
Using Petri-Net-Based Techniques. In
Business Process Management – Mod-
els, Techniques, and Empirical Studies,
volume 1806 of LNCS, pages 161–183,
Berlin, Heidelberg, New York, February
2000. Springer Press.

[143] Wil M.P. van der Aalst. Don’t go with the
flow: Web services composition standards
exposed. Jan/Feb 2003 Issue of IEEE In-
telligent Systems, pages 72–76, January
2003.

[144] Wil M.P. van der Aalst. Pi calculus ver-
sus petri nets: let us eat humble pie rather
than further inflate the pi hype. BPTrends,
3(5):1-11, May 2005.

[145] Wil M.P. van der Aalst and Arthur H.M.
ter Hofstede and Bartek Kiepuszewski
and Alistair P. Barros. Advanced Work-
flow Patterns. In 7th International Con-
ference on Cooperative Information Sys-
tems (CoopIS’00), volume 1901 of LNCS,
pages 18–29, Berlin, Germany, 2000.
Springer Press.

[146] Wil M.P. van der Aalst and Arthur
H.M. ter Hofstede and Bartek Kie-
puszewski and Alistair P. Barros. Work-
flow Patterns. Distributed and Parallel
Databases, 14(1):5–51, 2003.

[147] Wil M.P. van der Aalst and Jens B.
Jørgensen and Kristian B. Lassen. Let’s
Go All the Way: From Requirements

Via Colored Workflow Nets to a BPEL
Implementation of a New Bank System.
In Proceedings of the Confederated In-
ternational Conferences CoopIS, DOA,
and ODBASE 2005 (OTM’05), volume
3760 of LNCS, pages 22–39, Agia Napa,
Cyprus, November 2005. Springer Press.

[148] Wil M.P. van der Aalst and Kees M. van
Hee and G. J. Houben. Modelling Work-
flow Management Systems with high-
level Petri Nets. In G. De Michelis and C.
Ellis and G. Memmi, editor, Proceedings
of the second Workshop on Computer-
Supported Cooperative Work, Petri nets
and related formalisms, pages 31–50,
1994.

[149] Wil M.P. van der Aalst and Lach-
lan Aldred and Marlon Dumas and
Arthur H.M. ter Hofstede. Design
and implementation of the YAWL
system. Technical Report FIT-TR-2003-
07, Centre for IT Innovation, QUT,
http://www.tm.tue.nl/it/research/patterns,
2004.

[150] Wil M.P. van der Aalst and Marlon Du-
mas and Arthur H.M. ter Hofstede and
Petia Wohed. Pattern Based Analysis of
BPML (and WSCI). FIT Technical Report
FIT-TR-2002-05, Queensland University
of Technology, Brisbane, Australia, 2002.

[151] Petia Wohed, Wil M.P. van der Aalst,
Marlon Dumas, and Arthur H.M. ter
Hofstede. Pattern Based Analysis of
BPEL4WS. Technical Report FIT-TR-
2002-04, QUT, Queensland University of
Technology, Queensland, Australia, 2002.

[152] Andreas Wombacher, Peter Fankhauser,
Bendick Mahleko, and Erich Neuhold.
Matchmaking for business processes
based on choreographies. International
Journal of Web Services Research,
1(4):14–32, October-December 2004.

[153] Bibo Yang, Joseph Geunes, and
William J. O’Brien. Resource Con-
strained Project Scheduling; Past Work
and New Directions. Technical Report
Research Report 2001-6, Department
of Industrial and Systems Engineering,
University of Florida, 2001.

[154] Jian Yang. Web Service Componenti-
zation. Communications of the ACM,
46(10), October 2003.

193

Bibliography

[155] Jian Yang, Mike P-Papazoglou, and
Willem-Jan van den Heuvel. Tackling
the Challenges of Service Composition in
E-Marketplaces. In Proceedings of the
12th International Workshop on Research
Issues in Data Engineering (RIDE’02),
pages 125–133. IEEE, February 2002.

[156] Martin Yates, Wataru Takita, Rickard
Jansson, Laurence Demounem, and Harm
Mulder. TINA-C Deliverable: TINA
Business Model and Reference Points.
http://www.tinac.com/, May 1997.

[157] Tao Yu and Kwei-Jay Lin. A Broker-
Based Framework for QoS-Aware Web
Service Composition. In Proceedings
of the 2005 IEEE International Confer-
ence on e-Technology, e-Commerce, and
e-Services (EEE’05), pages 22–29, Hong
Kong, China, March 2005. IEEE Press.

[158] Tao Yu and Kwei-Jay Lin. Service Se-
lection Algorithms for Web Services with
End-to-End QoS Constraints. In Proceed-
ings of the 2005 IEEE International Con-
ference on e-Technology, e-Commerce
and e-Service (EEE’05), pages 129–136,
Hong Kong, China, March 2005. IEEE
Press.

[159] Liangzhao Zeng, Boualem Benatallah,
Anne H.H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. QoS-
Aware Middleware for Web Services
Composition. IEEE Transactions on Soft-
ware Transactions, 30(5):311–327, May
2004.

194

Nachwort

Die Anfertigung einer Dissertation scheint die Charakteristik aufzuweisen, dass
sich der Autor in die Arbeit stürzt, dazu tendiert, gesellschaftliche Aktivitäten zu
reduzieren, und sich im permanenten Stresszustand befindet, weil der Eindruck
besteht, dass die unerfreulichen Einsichten während der Anfertigung überwiegen.
Umso mehr danke ich Paola dafür, dass sie mir mit einem Mittelweg aus Kon-
frontation und Verständnis begegnete und mich dazu ermahnte, mich während der
Arbeit in einem vertretbaren Modus zu bewegen. Um die Ausmaße zu verdeut-
lichen, möchte ich erwähnen, dass mein Verhalten eine befreundete Sprachlehrerin
inspirierte, eine Figur zu erfinden: Stefan, ein Statistiker, un secchione, der den
ganzen Tag aufgeregt über Zahlenreihen sitzt. Er ist verlobt mit einer Italienerin,
die gerne kocht . . . (vgl. Langenscheidt Sprachkalender Italienisch 2008).

Ich hatte das besondere Glück, dass mir Unterstützung nicht nur aus einer, son-
dern aus zwei Arbeitsgruppen (FLP und BKS) zuteil wurde. Vielen Dank daher an
Chunyan, Malte, Sebastian B., Steffen, Sebastian G., Jens, Michael A., Narcisse,
Helge, Matthias und Tina. Wer die Zwischenstände meiner Arbeit gesehen oder
vorgetragen bekommen hat, wird sicherlich bestätigen, dass die Diskussionen und
Anregungen mit und von meinen Kolleginnen und Kollegen für mich sehr hilfreich
waren. Ganz besonderer Dank gebührt natürlich Gero Mühl, der mich mit großer
Initiative und seinen humorvollen Darstellungen unterstützt und motiviert hat. In
ähnlicher Form muss ich mich bei James und Gregor für deren außergewöhnliche
Hilfsbereitschaft bedanken. Gerhard, Michael P. und Annelie danke ich für Rat
und Tat in der Mathematik und im Englischen.

Bernd Mahr danke ich für die Betreuung meiner Dissertation; Kollegen schrie-
ben zu einem ähnlichem Anlass: “. . . zu deren Entstehung . . . Bernd mit seiner
großen Begabung in sokratischer Hebammentechnik hilfreich beigetragen hat.”
Treffender kann ich es nicht formulieren. Ich möchte mich an dieser Stelle auch bei
Herrn Tolksdorf bedanken, der sich bereit erklärte, die Rolle des zweiten Gutachters
zu übernehmen. Ebenfalls bedanke ich mich bei Herrn Heiss, der den Vorsitz im
Ausschuss übernommen hat. Last but not least, möchte Kurt Geihs meinen Dank
aussprechen – bei ihm als Mitarbeiter am Lehrstuhl für verteilte Systeme an der
TU Berlin hat alles angefangen.

Berlin, Dezember 2006.

195

(the end)

196

	Introduction
	Service Trading
	Trading to Form Compositions

	Problem Statement
	Research Issues

	Structure of the Thesis

	Workflows, Business Processes and Service Compositions
	Business Processes
	Definition of Business Processes
	Modelling Business Processes

	Workflow Management
	Modelling Workflows

	Workflows versus Business Processes
	Realising Business Processes and Workflows
	Modelling Service Compositions

	Quality-of-Service in Service Compositions
	Exchange of Quality-of-Service Information
	Quality-of-Service in a Service-Oriented Architecture
	The Role of the Retailer

	Quality-of-Service Characteristics
	Quality-of-Service Characteristics for Web Services
	Summary of Quality-of-Service Characteristics

	Aggregation of the Quality-of-Servicein Service Compositions
	The Business Process Execution Language
	Workflow Patterns
	Structural Model of Service Compositions
	A Method for Quality-of-Service Aggregation
	Aggregation of Throughput
	Aggregation of Response Time
	Aggregation of Cost
	Aggregation of Availability and Reliability
	Aggregation of Reputation and Fidelity
	Aggregation of Encryption Grade

	Support of Un-Structured Models
	Open Elements
	Arbitrary Loops
	Nested Patterns
	Transformations to Structured Workflow Models

	Related Methods for Quality-of-Service Aggregation
	Aggregation for Quality-of-Service Monitoring
	Aggregation of Mean Values

	Quality-of-Service-based Selection of Services
	Introduction to the Selection Problem
	The Problem Model
	The Selection Criteria
	Modelling the Structure
	Problem Model Summary
	Aggregation of Multiple Optimisation Criteria

	Relations to Other Combinatorial Problems
	The Knapsack Problem
	The Project Scheduling Problem
	Query Planning based on Quality-of-Service
	Routing in the Internet based on Quality-of-Service
	Computational Complexity

	Heuristic Algorithms
	Greedy-based Selection
	Discarding Subsets
	Bottom-Up Approximation
	Pattern-wise Selection
	Comparison of the Algorithms

	Evaluation
	Simulation Model
	Evaluation Methods and Metrics
	Statistical Measures

	Parameters and Implementation
	Quality-of-Service Parameters
	Implementation
	Technical Details

	Simulation Campaigns and their Results
	Increasing Number of Tasks without Constraint (C1)
	Increasing Number of Tasks with One Constraint (C2)
	Increasing Number of Service Candidates (C3)
	Volatility of the Quality-of-Service (C4)
	Parallel vs. Sequential Composition Structures (C5)

	Evaluation Conclusions

	Developing Service Compositions
	Introduction to the Model Driven Architecture
	Model Driven Development of Web Service Compositions

	Model-Driven Development of Service Compositions
	Modelling the Composition
	Trading: Matchmaking
	Trading: Quality-of-Service-based Selection of Candidates
	Advertisement and Deployment
	Development as an Iterative Process

	Conclusions
	Summary of Main Contributions
	Outlook and Future Work

	Specification of the Hard- and Software Platform
	List of Abbreviations

