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Abstract

The concept of borrowed contexts has opened up graph transformations to the

notion of an external “observer” where graphs (specifying systems) may interact with

an environment in order to evolve. This leads to open systems in which a clear line

delimits internal (non-observable) and external (observable) behavior. The observable

interactions of a graph build up labeled transition systems such that bisimulations

are automatically congruences, which means that whenever one graph is bisimilar to

another, one can exchange them in a larger graph without effect on the observable

behavior. This result turns out to be very useful for model refactoring, since one part

of the model can be replaced by another bisimilar one.

The main goal of this thesis is twofold, namely to further develop the borrowed

context framework and to explore its suitability as an instrument to reason about

behavior preservation in model refactoring.

First we extend the borrowed context framework to handle rules with negative

application conditions, which are often a required feature of nontrivial system spec-

ifications. That is, a rule may only be applied if certain patterns are absent in the

vicinity of a left-hand side. This extension, which is carried out for adhesive cate-

gories, requires an enrichment of the transition labels which now do not only indicate

the context that is provided by the observer, but also constrain further additional

contexts that may (not) satisfy the negative application condition. We have shown

that bisimilarity is still a congruence when rules have negative application conditions.

Experience shows that bisimulation proofs easily become tedious tasks and very

prone to error when done by hand. In order to overcome this problem we have ex-

tended an existing on-the-fly bisimulation checking algorithm to the borrowed context

setting and defined additional procedures to mechanize the verification of graphs for

bisimilarity. This algorithm forms the core of a tool support which will enable us to

come up with behavior analysis tools based on the borrowed context machinery.

Finally, techniques based on borrowed contexts are defined to check model refac-

torings for behavior preservation, which is always a crucial aspect of every refactor-

ing transformation. One technique checks instances of a metamodel for bisimilarity

w.r.t. to a set of productions defining the operational semantics of the metamodel.

Bisimilarity implies preservation of behavior. A more elaborate technique shifts the

behavior-preservation focus from instances of a metamodel to refactoring rules, where

rules are checked for behavior preservation. One of the advantages of these techniques

is that they are not tied up to specific metamodels, but rather can be applied to any

metamodel whose operational semantics can be described by finite graph productions.



Zusammenfassung

Das Konzept von Borrowed-Contexts eröffnete für Graphtransformationen die Mög-

lichkeit eines externen “Beobachters”, wobei Graphen (als Spezifikationen von Syste-

men) mit einer Umgebung kommunizieren können, um sich zu entwickeln. Dies führt

zu offenen Systemen, in denen internes (nicht beobachtbares) und externes (beobacht-

bares) Verhalten unterschieden werden. Die beobachtbaren Interaktionen bilden ein

Transitionssystem derart, dass Bisimilaritäten automatisch Kongruenzen sind. Das

heißt, wenn ein Graph bisimilar zu einem anderen ist, können beide Graphen im

Kontext eines größeren Graphen ohne Auswirkung auf das beobachtbare Verhalten

ausgetauscht werden. Dieses Ergebnis ist sehr nützlich für Modell-Refactoring, weil

ein Teil des Modells durch ein bisimilares Teil ersetzt werden kann.

Das Hauptziel dieser Arbeit besteht darin, den Ansatz von Graphtransformationen

mit Borrowed-Contexts weiter zu entwickeln und auch seine Eignung zur Analyse der

Bewahrung des Verhaltens im Anwendungsgebiet Modell-Refactoring zu erforschen.

Erstens erweitern wir den Borrowed-Context Ansatz auf Regeln mit negativen

Anwendungsbedingungen, die oft in komplexen Spezifikationen verwendet werden.

Dies bedeutet, dass eine Regel nur angewendet werden darf, wenn bestimmte Muster

außerhalb einer linken Seite abwesend sind. Diese Erweiterung, die im Rahmen von

Adhesiven Kategorien durchgeführt wird, erfordert auch eine Erweiterung der Label

des Transitionssystems um negative Anwendungsbedingungen. Als wichtiges Ergeb-

nis zeigen wir, dass die Bisimilarität immer noch eine Kongruenz ist, wenn Regeln

negative Anwendungsbedingungen haben.

Die Erfahrung zeigt, dass Bisimulationsbeweise langwierig und sehr fehleranfällig

werden, wenn sie von Hand durchgeführt werden. Um dieses Problem zu lösen,

haben wir einen bestehenden “on-the-fly” Bisimulations-Algorithmus um zusätzliche

Prozeduren zur Mechanisierung der Überprüfung der Bisimilarität von Graphen im

Rahmen des Borrowed Context Ansatzes definiert. Dieser Algorithmus bildet den

Kern einer Werkzeugunterstützung für die Entwicklung von Techniken zur Verhal-

tensanalyse basierend auf Graphtransformationen mit Borrowed Contexts.

Darauf aufbauend werden Techniken definiert, um die Verhaltensbewahrung im

Anwendungsbereich Modell-Refactoring zu untersuchen. Verhaltensbewahrung ist

immer ein wesentlicher Aspekt jeder Refactoring-Transformation. Eine Technik über-

prüft die Bisimilarität von Instanzen eines Metamodells in Bezug auf Regeln, die die

operationelle Semantik des Metamodells beschreiben, wobei Bisimilarität Verhaltens-

bewahrung impliziert. Eine zweite Technik bezieht sich auf Verhaltensbewahrung von

Refactoring-Regeln. Einer der Vorteile dieser Techniken ist, dass sie nicht an spezifis-

che Metamodelle gebunden sind, sondern auf jedes Metamodell angewendet werden

können, deren operationelle Semantik durch endliche Graphregeln beschrieben wer-

den kann.
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Chapter 1

Introduction

1.1 Motivation

Engineering is a practical application of science in order to fulfill the needs of society.

Its main goal is to produce high quality products at the lowest possible cost. Despite

many advances in the last years Software Engineering still lacks the rigor associated

with other engineering areas which enable them to build quality products effectively.

While most engineering projects do not fail, 70% of software projects fail in some

way [Kik05].

The development of large software systems is always a challenging task [Gib94].

What makes quality software hard to build is its intrinsic essence which is mainly

governed by freedom of choice. Unlike other branches of Engineering, Software En-

gineering is not governed by physical laws. Whenever a bridge has to be built con-

struction engineers must unconditionally obey physical laws, which are models of the

real world in terms of mathematics. Therefore, a bridge is constructed within many

physical world constraints. Physical laws and mathematics form a framework within

which engineers can test their own designs. Construction engineers design a particu-

lar solution to a given problem and physical statements can be tested, i.e., they can

basically “ask” if a certain solution will work without actually building it.

On the other hand, software development is an engineering discipline which builds

on mathematics itself. No physical laws are applicable to software. Thus, software de-

velopment is inherently complex due to the immense degree of freedom engineers have

in their hands to come up with software solutions. Moreover, software is composed

of thousands of unique (and often difficult to analyze) parts rather than repeated

well-known parts as in other engineering disciplines.

The software development life cycle begins with user requirements elicitation and

progresses into the build, test, and acceptance phases. Experience has shown that
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requirement errors detected at late stages of the development process lead to a dra-

matic increase of the software costs [Wes02]. Hence, the most important work in

software development happens before a single line of code is written. In his essay

“No Silver Bullet” [Bro86], Frederick Brooks wrote:

“The essence of a software entity is a construct of interlocking concepts...

I believe the hard part of building software to be the specification, design,

and testing of this conceptual construct, not the labor of representing it

and testing the fidelity of the representation.”

A very useful tool to be applied in the development of complex software systems is

formal methods, which makes possible the specification (description) of software in

terms of mathematical entities. Formal methods equip software engineers with the

necessary means to reason about critical aspects of software designs without hav-

ing to build them first. While simulation and testing explore some of the possible

behaviors of the system, formal verification, which is based upon formal methods,

conducts exhaustive exploration of all possible behaviors of the system. Formal ver-

ification consists in proving the correctness of a design with respect to mathematical

properties. The main approaches to formal verification are:

• Model checking [HR04, JGP99] can be seen as an extension of testing, where

given a description of a system and a desired property of the system expressed

as a formula in some temporal logic, then automated tools check whether the

system satisfies the desired property;

• Theorem proving [New01] is a formalization of mathematics in which logic is

applied to characterize mathematical reasoning, and automated formal support

is used to aid the creation and checking of proofs;

• Equivalence checking [HC98] is a verification method to prove that two repre-

sentations of a system, e.g. the specification and its implementation, exhibit

exactly the same behavior w.r.t. some notion of equivalence.

Our focus in this thesis is the equivalence-checking approach, which originally stems

from the field of process calculi, where the foundations of concurrent and mobile

processes are investigated. Process calculi are designed in order to express some

fundamental aspect of computation, and then research is done to investigate the

calculus’ behavioral theory and its expressive power. Examples of process calculi are:

CCS [Mil89], π-calculus [MP92, MPW92, SW01], Ambients [CG98], Fusion [PV98],

Join [FG96] and Spi [AG97], just to cite a few. The underlying theory of such calculi

is often complicated, perhaps because of the various design decisions involved in their

definitions. Process calculi are in essence textual, and therefore must be equipped
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with a structural congruence ≡ to determine processes that are equal even though

they are not syntactically identical. In CCS, for example, P |Q and Q|P should

represent the same process.

Notions of behavioral equivalence are of fundamental importance to compare pro-

cesses. A plethora of process equivalences has been proposed and studied in the

literature, ranging from the coarsest (trace equivalence) to the finest (bisimulation).

The latter is the most widespread notion of behavioral equivalence and makes less

identifications than any of the others. In [Gla01] van Glabbeek shows a lattice con-

taining several equivalences notions ordered by their distinguishing power. In this

thesis we are mainly interested in bisimulation.

Congruence is a very desirable property a behavioral equivalence may have. It al-

lows one to replace a subsystem with an equivalent one without changing the behav-

ior of the overall system, and furthermore helps to make bisimilarity proofs modular.

However, proving that an equivalence is a congruence is by far not an easy task.

A behavioral equivalence can be defined on either reactions rules (also called unla-

beled transitions) or labeled transitions. The main advantage of reaction rules is that

it is often relatively easy to justify their correctness and appropriateness as notions

of equivalence. The main problem is that bisimilarity defined on unlabeled reduction

rules is in general not a congruence. Previous solutions have been to either require

that two processes are related if and only if they are bisimilar under all possible

contexts [MS92] or to derive a labeled transition system manually. The first solution

needs quantification over all possible contexts, so proofs of bisimilarity may quickly

become very complicated. In the second solution, proofs tend to be much easier, but

it is still necessary to show that the labeled transition system is equivalent to the

unlabeled variant.

The idea which was formulated in the papers of Sewell [Sew98, Sew02], Leifer/Milner

[Lei01, LM00] (relative pushouts), Sassone/Sobociński [SS03a] (groupoidal relative

pushouts) and Ehrig/König [EK04, EK06] (borrowed contexts for graph rewriting)

is to automatically derive a labeled transition system (from unlabeled rules) such

that the resulting bisimilarity is a congruence. A central concept of this approach is

to formalize the notion of minimal context which enables a process to reduce. The

first three techniques were developed in the setting of process calculi, whereas the

borrowed context technique was originally defined for graph rewriting.

Graphs, due to their simple but yet powerful visual notation, are a natural way

to explain complex situations on an intuitive level. Graph transformation [Roz97,

EEKR99, EKMR99, EEPT06] is concerned with the rule-based modification of graphs

according to graph transformation rules. Graph transformations are useful to define

the operational semantics of visual models in analogy to the operational seman-

tics of programming languages defined by term rewriting systems [SPvE93]. Among
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the formal approaches to graph rewriting, the double pushout (DPO) can be con-

sidered a standard due to its large amount of theoretical results and applications

[Roz97, EEKR99, EKMR99, EEPT06] in several branches of computing, such as

programming, specification, concurrency, distribution, visual modeling and model

transformation. Furthermore, its implementation called AGG [AGG] provides the

practical means to execute and reason about systems defined as graph transforma-

tions.

In the recent years an area which has consistently profited from the DPO approach

to graph rewriting is model transformation [MG06]. Model transformation concerns

the automatic generation of models from other models according to a transformation

definition, which describes how a model in the source language can be transformed

into a model in the target language. Graph transformation systems (GTS) are well-

suited to model not only model transformation but also model refactoring, where

source and target languages are the same. A GTS specifies model transformation by

defining graph transformation rules to translate one model into another. A crucial

question that must be asked is whether a given refactoring (or model transformation)

is behavior-preserving, which means that transforming one model into another model

does not change the original behavior. In practice, the proof of behavior-preserving

transformations is not an easy task, and therefore one normally relies on test suite

executions and informal arguments in order to improve confidence that the behavior

is preserved.

In this thesis we focus on the DPO approach to graph transformation and its

extension to borrowed context for behavioral analysis of graph systems. The main

advantages of the borrowed context (BC) technique over the others based on relative

pushouts are:

• Process calculi with complex structural equivalences often do not yield the in-

tended results with Leifer/Milner’s relative pushouts. For these cases, groupo-

idal relative pushouts are more suitable but at the cost of a more complex

underlying theory. Whenever a process calculus is encoded as graphs with

interfaces in the BC framework, these issues on structural equivalence are au-

tomatically handled by graph isomorphisms. Many process calculi such as π-

calculus [MP92, MPW92, SW01] and ambient calculus [CG98] can be translated

into graphs and analyzed via borrowed contexts;

• Many complex data structures and also specification languages can be easily

understood by humans via graph-based notations;

• BC machinery to label derivation is based on very simple categorical concepts,

namely pushouts and pullbacks. The relative-pushout techniques per se and

their underlying categorical constructions are by far more complex;
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• Experience shows that label derivation and bisimulation proofs easily become

tedious tasks and very prone to error when done by hand. Therefore, a tool

support is of fundamental importance. Due to its simple constructions the BC

technique lends itself better to mechanize these tasks.

We believe that the borrowed context technique can be a useful instrument to

reason about the behavior of a wide variety of systems. This thesis proposes new

extensions to the BC framework that will help the development of novel behavioral

analysis techniques.

1.2 Aims of the Thesis

The main objective of this thesis is twofold:

1. further develop the borrowed context framework;

2. explore the suitability of borrowed contexts in form of analysis techniques to

reason about behavior preservation in model refactoring.

In early stages of a software development the key concepts of the software are

usually investigated in detail in order to ensure that the future system will work as

expected. Describing software systems as graphs turns out to help bridge the gap

between engineers and the future users of the system (also known as stakeholders).

Due to the intuitive and expressive notation of graphs, system designs given by graphs

are easily understood even by non-experts in computing, such as the stakeholders,

who can understand the design and hence be more proactive during requirements

elicitation.

The DPO approach to graph rewriting already possesses a wide amount of results.

Nonetheless, it is well-known that beyond theoretical results, expressive power and

ease-of-use of the notation another fundamental feature of a formal technique is tool

support. Practitioners of graph transformations may design, execute and reason

about properties of their systems with AGG [AGG], which is a graph transformation

engine equipped with a graphical interface developed at TU Berlin.

For the behavioral analysis of systems the borrowed context machinery offers an

uncomplicated way of deriving transition labels which not only smoothly extends

the DPO approach but also has a very constructive nature. Compared to other

approaches (discussed in Chapter 2), where the derivation of labels is a somewhat

complex task, the borrowed context technique is rather straightforward and simple.

However, from applying the BC technique to several examples we have learned that
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the derivation of labels can be often very time consuming. Therefore, the develop-

ment of algorithms to automatize the derivation of labels and bisimulation proofs

is required in order to implement a tool. Bisimulation checking is in general un-

decidable which makes such mechanized proofs be in general very difficult. In this

thesis, though, we show several interesting examples where bisimulation can indeed

be checked automatically.

In contrast to standard DPO to graph rewriting, the borrowed context framework

has not yet been applied to a wide range of examples. In this thesis we also aim at the

development of several examples in order to demonstrate the suitability of borrowed

contexts as a behavior analysis tool. We also develop techniques based on the BC

machinery to reason about behavior preservation in model refactoring.

Last, but not least, the borrowed context framework defined in [EK04, EK06]

handles graph transformation rules with no application condition other than the

gluing condition. Even though the generative power of the DPO approach is sufficient

to generate any recursively enumerable set of graphs, very often extra application

conditions are a required feature of nontrivial specifications. Negative application

conditions (NACs) [HHT96] for a graph production are conditions such as the non-

existence of nodes, edges, or certain subgraphs in the graph G being rewritten, as

well as embedding restrictions concerning the match L → G.

Summarizing, the concrete aims of this thesis are to:

• investigate the viability of using rules with negative application conditions in

the borrowed context framework;

• determine whether bisimilarity for rules with NACs remains a congruence and

under which conditions;

• define up-to techniques to reduce the size of relations needed to define a bisim-

ulation;

• tailor an existing bisimulation checking algorithm to borrowed contexts;

• define the necessary algorithms for the development of a tool support for bisim-

ulation checking;

• investigate and develop techniques based on the BC machinery to reason about

behavior preservation in model refactoring;

• demonstrate the suitability of the BC technique as a tool to analyze behavior

preservation via several examples.



1.3 Main Results 7

1.3 Main Results

The main results achieved in this thesis are summarized as follows:

Borrowed Contexts with NACs: we investigated negative application conditions

in transformations rules and their consequences to the bisimilarity result. We dis-

cussed which problems arise due to the introduction of NACs and how they can be

overcome in order to guarantee that the derived bisimilarities are congruences. The

extension, which is carried out for adhesive categories [LS04], requires an enrichment

of the transition labels which now do not only indicate the context that is provided

by the observer, but also constrain further additional contexts that may (not) satisfy

the negative application condition. That is, we do not only specify what must be

borrowed, but also what should not be borrowed. We prove that the main result

of [EK06] (bisimilarity is a congruence) still holds for our extension. Moreover, as

a straightforward consequence of a technique based on initial pushouts proposed in

[BGK06a] we define the notion of gluing condition for borrowed context rewriting.

Two examples are given to illustrate the theory: a simple example based on process-

ing tasks on servers and a more elaborate one in terms of blade server systems.

Up-to Techniques: up-to techniques [San95] relieve the onerous task of bisimula-

tion proofs by reducing the size of the relation needed to define a bisimulation. They

also provide the means to check bisimilarity with finite up-to relations in some cases

where any bisimulation is infinite. In this thesis we define three up-to techniques

for the BC setting with NACs, namely bisimulation up to isomorphism, context and

bisimilarity. Because graphs in the DPO approach are defined up to isomorphism the

up-to isomorphism technique can be considered the minimal requirement to enable

bisimulation checks in the borrowed context framework. Even though this technique

turns out to be subsumed by the more powerful up-to context technique it is still very

useful in practice since it can be computed much faster with help of graph certificates

[Ren06], which are “signatures” that identify certain properties in graphs such as the

number of nodes and edges with their respective labels.

Algorithms for Borrowed Contexts: we have defined algorithms which pave the

way to the development of a tool to check graphs for bisimilarity. The main algorithms

are:

• partial match finding: this algorithm finds the partial matches between a

graph with interface and left-hand sides of graph rules which lead to borrowed

context steps;
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• label matching: this procedure performs the label matching required by the

bisimulation game;

• up-to techniques: procedures to decide whether a pair of graphs is contained

in relations defining bisimulation up to isomorphism and also up to context;

• bisimulation checking procedure: we extended Hirschkoff’s on-the-fly bisim-

ulation checking algorithm [Hir01] to the borrowed context setting and provided

it with several additional details for the manipulation of the required data struc-

tures;

Apart from the algorithms above we have outlined how to make the bisimulation

checking procedure more efficient with use of graph certificates to alleviate the burden

caused by isomorphism checks. We have also implemented a prototype in a functional

programming language called Objective Caml [OCa] for validation purposes. This

prototype covers the entire process of label derivation, whereas the complete imple-

mentation of the algorithms above is part of our future work.

Behavior Preservation in Model Refactoring: a fundamental question in ev-

ery refactoring is whether the transformations preserve behavior, i.e., do not change

the observable behavior of a model. We define techniques based on the borrowed

context machinery to reason about behavior preservation in model refactoring. The

first technique allows checking instances of a metamodel for bisimilarity w.r.t. a set

of productions defining the operational semantics of the metamodel. Bisimilarity

implies behavior preservation. The second, more elaborate, technique exploits the

fact that observational equivalence is a congruence and hence we show how to check

refactoring rules for behavior preservation. When rules are behavior-preserving, their

application will never change behavior, i.e., every model and its refactored version

will have the same behavior. However, often there are refactoring rules describing in-

termediate steps of the transformation, which are not behavior-preserving, although

the full refactoring does preserve the behavior. For these cases we present a procedure

to combine refactoring rules to behavior-preserving concurrent productions in order

to ensure behavior preservation. These techniques are applied to examples of min-

imization of deterministic finite automata and flattening of hierarchical statecharts.

We believe that such a method will help the user gain a better understanding of

the refactoring rules since he or she can be told exactly which rules may modify the

behavior during a transformation. One of the main advantages of defining behavioral

analysis techniques based on borrowed contexts is that they are promptly available

for every metamodel whose operational semantics can be specified in terms of finite

graph transformation productions.
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Further Examples: we have defined many mid-size examples in this thesis, namely

blade server systems (to illustrate the use of NACs), two refactorings of deterministic

finite automata (minimization of automata by merging equivalent states and deletion

of unreachable states) and flattening of hierarchical statecharts.

1.4 Overview of the Chapters

This thesis is structured as follows:

Chapter 2 (Deriving Bisimulation Congruences) gives an overview about the

issues emerged in the field of process calculi which led to the idea of deriving labeled

transition systems from reaction rules in such a way that the resulting behavioral

equivalence is automatically a congruence. Three techniques to label derivation are

discussed: Sewell’s seminal work, Leifer and Milner’s relative pushouts (RPOs) and

then Sassone and Sobociński’s GRPOs. The double-pushout (DPO) approach to

graph transformations is recalled as well as its extension to borrowed contexts, which

is a natural way to label derivation in the DPO approach and the basis upon which

this thesis is developed.

Chapter 3 (Deriving Bisimulation Congruences in the Presence of NACs)

presents an important and useful extension of the borrowed context framework to

transformation rules with negative application conditions (NACs). That is, a rule

may only be applied if certain patterns are absent in the vicinity of a left-hand side.

This extension is carried out in the setting of adhesive categories, and therefore it

is also available for other adhesive structures than graphs. The main result of this

chapter consists in the proof that the bisimilarity for rules with NACs remains a con-

gruence. The theoretical notions and problems due to NACs are illustrated through-

out this chapter by a simple example which is intuitive and easy to understand. We

also develop up-to techniques to handle NACs and define the gluing condition for

borrowed context rewriting. A more elaborate example in terms of blade server sys-

tems is additionally given to illustrate the theory.

Chapter 4 (Bisimulation Verification) algorithmically describes how graphs can

be checked for bisimilarity using the borrowed context setting. More specifically,

we extend Hirschkoff’s on-the-fly algorithm for bisimulation checking, enabling it to

verify whether two graphs are bisimilar with respect to a given set of productions

(possibly with NACs). We then apply this framework to refactoring problems, where

we check instances of a model and their refactored versions for bisimilarity. Two
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examples are given: the minimization of deterministic finite automata and the flat-

tening of hierarchical statecharts.

Chapter 5 (Behavior Preservation in Model Refactoring) presents novel tech-

niques to reason about behavior preservation in model refactorings. Behavior preser-

vation, namely the fact that the behavior of a model is not altered by the trans-

formations, is a crucial property in refactoring. The most common approaches to

behavior preservation rely basically on checking given models and their refactored

versions, as we showed in Chapter 4 using the borrowed context technique. In this

chapter we move up the abstraction ladder and introduce a more general technique

for checking behavior preservation of refactorings defined by graph transformation

rules. Exploiting the fact that observational equivalence is a congruence, we show

how to check refactoring rules for behavior preservation. An example of refactoring

for finite automata is given to illustrate the theory. Moreover, we also apply this

technique to the statecharts example of Chapter 4.

Chapter 6 (Towards a Tool Support) describes additional algorithms required

by the bisimulation checking procedure of Chapter 4.

Chapter 7 (Conclusion) summarizes the main achievements of this thesis and out-

lines open problems and directions for future work.

Appendices briefly recall some basic categorical concepts required in this thesis.

Furthermore, all proofs of Chapter 3 and additional information about the extension

to NACs can be found here.

1.5 How to Read the Thesis

Finally, we give some suggestions for reading this thesis. The main chapters, namely

3, 4 and 5, are self-contained and can be read independently. The only exception is

the statecharts example of Chapter 5 which requires jumping back to its counterpart

in Chapter 4.

We have in mind three main kinds of readers. Those who are mostly interested in

behavior equivalences theory may profit reading Chapter 3 on the extension to rules

with negative application conditions and also Chapter 5 for an interesting application

of the borrowed context machinery to model refactorings.

For model-refactoring oriented readers the first sections of Chapter 5 give an overall

idea of how to use the borrowed context technique for behavior-preservation purposes
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in model refactoring. Then we suggest the refactoring examples (finite automata

and statecharts) of Chapter 4 and finally, the second part of Chapter 5, where the

technique to check refactoring rules for behavior preservation is presented and applied

to the finite automata and statecharts examples.

Chapters 4 and 6 are for those who are interested in implementing a tool for

bisimulation checking.





Chapter 2

Deriving Bisimulation Congruences

2.1 Motivation

Process calculi have been developed to describe and analyze concurrent systems. A

process calculus is a concise pseudo-programming language which focuses on small

language features for concurrent aspects, such as non-determinism, synchronization,

and communication. The goal is to concentrate on a few basic principles and rea-

soning techniques which provide the means to study and investigate the concurrent

phenomena of systems without the additional burden (e.g. syntactic sugar) of a full

programming language.

The syntax of a process calculus is based upon a language defining a small set

of operators and a few syntactic rules for constructing larger processes from sim-

pler components. Additionally, a process calculus may be equipped with unlabeled

transitions (also called reaction rules), labeled transitions and notions of equivalences.

Unlabeled transitions specify the internal state changes of a process by focusing

on interactions between different parts. They do not require any form of interaction

with the environment, and therefore correspond more closely to the executions con-

ceived by the calculus designer’s. An example of a reaction rule in CCS is a.P → P ,

where the process performs a and becomes P . On the other hand, labeled transitions

characterize the state changes of a process by interacting with the environment. Each

transition has a label specifying the exact interaction with the environment that en-

ables the transition. Hence, a label can be seen as an observation about the behavior

of a process. An example of labeled transition in CCS is a.P
a→ P , where a can be

observed. Labeled transitions describe observable behaviors in a compositional way

and their labels are often not so intuitive in operational terms.

Another ingredient a process calculus may possess consists of notions of preorders

and equivalences to determine when two processes have the same behavior. The
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perspective usually assumed by a behavioral equivalence is that an external observer

compares two open processes by interacting with them over a restricted interface.

The processes are considered to be equivalent when they cannot be distinguished by

the observer. Behavioral equivalences can be classified with respect to the power

that is given to the observer. In Figure 2.1 we show van Glabbeek’s lattice [Gla01]

containing several equivalences notions ordered by their distinguishing power.

bisimulation semantics

²²
ready simulation semantics

²²

''NNNNNNNNNNNNNNNNNNNNNNNNNNNN

readiness semantics

²²
failures semantics

²²

readiness semantics

wwpppppppppppppppppppppppppppp

completed trace semantics

²²
trace semantics

Figure 2.1: The linear time – branching time spectrum.

The behavioral notions in Figure 2.1 range from linear time to branching time equiv-

alences. In the former, a process is determined by its possible executions, whereas

in the latter the branching structure of processes is also taken into account. In

other words, a linear time equivalence concerns a single computation path, whereas a

branching time equivalence considers the paths that are possible. Trace semantics is

the coarsest equivalence and makes the most identifications. The finest equivalence

is bisimulation, which makes less identifications than any of the others.

Congruence is an important desirable property a behavioral equivalence may have.

It allows us to replace a subsystem with an equivalent one without changing the

behavior of the overall system and furthermore helps to make bisimilarity proofs

modular. The same intuition also holds for preorders. However, proving that a

preorder or equivalence is a congruence is by far not a trivial task.

An equivalence semantics can be defined on either reactions rules or labeled tran-

sitions. However, reaction rules may lack compositionality which usually leads to

complex semantic theories. In these cases a bisimulation congruence based on la-

beled transition systems may provide useful proof techniques: bisimulations have the

benefits inherited from coinduction and the closure properties of congruences allow
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compositional reasoning.

For complex process calculi reaction rules are usually easier to define and more

intuitive than labeled transitions. Though the main question is: given a set of reaction

rules is it possible to automatically derive a labeled transitions system such that the

resulting bisimilarity is a congruence? In the following sections we briefly review three

answers to this question. Thereafter we recall the DPO approach to graph rewriting

in Section 2.3 and its extension to borrowed contexts in Section 2.3.2.

2.2 Deriving Bisimulation Congruences

Originally, the operational semantics of simple process calculi (e.g. CCS) was given

by labeled transition systems, where labels describe possible interactions with the

environment, and which forms the basis for the definition of behavioral equivalences.

However, for a more complex calculus, even though its semantics is well understood

it may be difficult to define its labeled transition system (LTS). For example, the π-

calculus [MS92] has two alternative LTS, the early and the late version, each giving

a different bisimulation equivalence.

For complex calculi (e.g. ambient calculus [CG98]) it is usually easier and more

natural to define their operational semantics in terms of unlabeled transitions which

specifies the possible reductions of a process without considering the environment.

The main problem is that a bisimulation defined on unlabeled reduction rules is

usually not a congruence, that is, it is not closed under the operators of the process

calculus. The first solutions to tackle this problem have been to either require that two

processes are related if and only if they are bisimilar under all possible contexts [MS92]

or to derive a labeled transition system by hand. The former needs quantification

over all possible contexts, and hence proofs of bisimilarity can become very complex.

In the latter proofs are usually easier, but it is still necessary to prove that the labeled

transition system is equivalent to the unlabeled variant, which is often an ad hoc task

for each calculus.

So the idea formulated in the papers of Sewell [Sew98, Sew02], Leifer/Milner [Lei01,

LM00], Sassone/Sobociński [SS03a] and Ehrig/König [EK04, EK06] is to automati-

cally derive a labeled transition system (from unlabeled rules) such that the resulting

bisimilarity is a congruence. A key concept of this approach is the formalization of

a minimal context which enables a process to reduce. For example, given the CCS

process a.P , it reduces when inserted into the contexts | ā.Q and | ā.Q | b.R.

However, the second context provides too much information which is not required to

trigger the reduction. Hence, the first context is in some sense more adequate and

then yields the labeled transition
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a.P
| ā.Q→ P | Q

saying that a.P inserted into this context reacts and reduces to P | Q.

2.2.1 Sewell’s Dissection Lemmas

In his seminal work [Sew98, Sew02] Sewell’s goal was to derive a labeled transition

system directly from reaction rules such that useful LTS based equivalences, including

bisimilarity, are automatically congruences. He proposed several ways of doing this

for restricted classes of term rewriting systems. The fundamental idea is that terms

give rise to labeled transitions, where each label is a context which allows the term

to react. In other words, whenever a term receives from the environment a particular

context then the rewrite of the term inside this context should be possible in the

underlying rewriting semantics. Additionally, these labels should be the smallest

contexts that trigger the rewriting of a particular term. The notion of “smallest” was

later on elegantly expressed in categorical terms by Leifer and Milner.

Sewell defined a series of dissection lemmas to analyze a term’s structure and

determine the missing triggers, if any. The proofs that bisimulation is a congruence

on the resulting LTS is simple in the case of free syntax. However, they easily become

very complicated for non-trivial structural congruences. Already for rules defining

parallel composition Sewell’s method becomes quite complex.

2.2.2 Leifer and Milner’s Relative Pushouts

A generalized approach to Sewell’s method was developed by Leifer and Milner

[LM00], where the notion of smallest context is formalized as the categorical con-

cept of relative pushout.

Leifer and Milner consider categories in which arrows are terms and composition

is substitution. In such a framework a process a evolves to a′ (depicted as a → a′)
when inserted into a context F which provides the missing parts to trigger a reaction

rule (l, r), as shown in the commuting square below. In this case there also exists an

arrow D such that a = Dl and a′ = Dr.

l
²²

a //

F
²²

D
//

Hence, given a process a and the left side l of a reaction rule (l, r) the idea is to

find arrows D and F such that D,F are the minimal arrows that make the diagram
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above commute, i.e., Dl = Fa. In this case a labeled transition a
F→ a′ is derived.

The notion of minimal context is captured by relative pushouts as in Definition 2.2.1,

where h1, h0 in Diagram (2.2) are minimal with respect to the original square in

Diagram (2.1).

Definition 2.2.1 (Relative Pushout). In any category C, consider a commuting

square as shown in Diagram (2.1) such that g0; f0 = g1; f1. A relative pushout for

this commuting square is a triple h0, h1, h satisfying the following two properties:

(i) commutation: h0; f0 = h1; f1 and h; hi = gi for i = 0, 1 (see Diagram (2.2));

(ii) universality: for any h′0, h
′
1, h

′ satisfying h′0; f0 = h′1; f1 and h′; h′i = gi for i =

0, 1, there exists a unique mediating arrow k such that h′; k = h and k; hi = h′i
(see Diagram (2.3)).

f0 //

f1

²²
g0

²²
g1

//

(2.1)

f0 //

f1

²²

g0

²²

h0

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

h

ÂÂ?
??

??
??

g1

//

h1
??ÄÄÄÄÄÄÄ

(2.2)
f0 //

f1

²²

g0

²²

h0

wwooooooooooooo

h′0ÄÄÄÄ
ÄÄ

ÄÄ
Ä

h ''OOOOOOOOOOOOO k //
h′

ÂÂ?
??

??
??

g1

//

h1
??ÄÄÄÄÄÄÄ

h′1

77ooooooooooooo

(2.3)

Leifer and Milner [LM00] showed that labeled transition systems with labels ob-

tained via the relative pushout technique lead to observational equivalences that

are congruences. They showed in [LM00, Lei01] that bisimilarity, trace and failures

equivalences are congruences.

One of the greatest advantages of the relative pushout technique is that its under-

lying theory is defined in terms of categorical concepts. By using category theory

constructions and proofs are performed on an abstract level and so can be “reused”

across a variety of models, where each model forms a category possessing relative

pushouts.

2.2.3 Sassone and Sobociński’s G-Relative Pushouts

An important feature a process calculus may be equipped with is some notion of struc-

tural congruence ≡ to determine equivalence of processes that are not syntactically

identical.

Sassone and Sobociński observed that the technique to label derivation based

on relative pushouts fails for process calculi with even simple structural congru-

ences [SS03b]. In Leifer and Milner’s approach if arrows are quotiented by a structural
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congruence then too much information is lost and the derivation of labels via relative

pushouts does no longer yield the expected results. Sassone and Sobociński depict

this problem by showing a very simple calculus with an associative and commutative

parallel operator [SS03b]. In this example the relative pushout technique is not able

to “remember” the place within a term where a reaction takes place, which is an

essential information to the derivation of a sensible labeled transition system.

A similar problem also occurs with algebraic structures such as action graphs [Mil96]

and bigraphs [Mil01]. For these structures due to the problem of locating reactions,

sufficient relative pushouts do not exist [Lei01, Mil01]. Sewell [Sew02] tackles this

problem for syntactic terms by using a notion of coloring, as Leifer [Lei02] proposes

an abstract approach by adding support to the category (via precategories).

Sassone and Sobociński’s approach extends the relative-pushout technique to group-

oidal relative-pushouts (G-RPO for short), which are basically relative pushouts in

2-categories. This richer underlying category makes possible keep track of the ap-

plication of structural congruence rules (as 2-cells). Hence, more sensible labeled

transition systems can be obtained via G-RPOs than by applying other approaches

which forget where the reactions take place.

Sassone and Sobociński also lifted the G-RPO technique to a class of cospan bi-

categories over adhesive categories, which allows the derivation of labeled transition

systems for every model based on such bicategories. Interesting examples of cospan

categories are Milner’s bigraphs [Mil01] and the extension of the double-pushout ap-

proach to borrowed contexts [EK04, EK06].

2.3 Graph Transformations

Graph transformation is concerned with the rule-based modification of graphs accord-

ing to graph transformation rules. Graph grammars, which consist of graph rules and

a start graph, are very useful to generate graph languages by Chomsky grammars

in formal language theory. Furthermore, graphs can be used to model states of

systems and graph transformations to describe state changes of these systems. Es-

pecially, graph transformation has been investigated as a fundamental concept for

programming, specification, concurrency, distribution, visual modeling and model

transformation.

Best engineering practices have distinctly demonstrated that visual notations take

a huge advantage over textual descriptions as they are more succinct and easily

understood by humans. Graphs are a natural way to explain complex situations

on an intuitive level. For this reason graphs are widely used almost everywhere in

computer science, e.g. as data and control flow diagrams, entity relationship and UML
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diagrams, Petri nets, visualization of software and hardware architectures, evolution

diagrams of nondeterministic processes, SADT diagrams and many more.

The research area of graph transformations dates back to the early seventies and

since then many approaches, methods, techniques and results have been developed.

In volume 1 of the Handbook of Graph Grammars and Computing by Graph Transfor-

mation [Roz97] one can find a detailed presentation of different graph transformation

approaches. A state-of-the-art report for applications, languages and tools for graph

transformation as well as results for concurrency, parallelism and distribution can be

found in volumes 2 [EEKR99] and 3 [EKMR99].

A graph transformation rule (also called production) p = (L,R) is a pair of graphs

(L,R), called left-hand side L and right-hand side R. A graph transformation occurs

when for a given source graph G and a graph rule p we find a match of L in G which

leads to the replacement of L by R in the graph G giving rise to the target graph H.

This notion of transformation usually leads to technical problems on how to connect

R with the context in the target graph, which gives rise to many approaches to handle

them. The graph transformation approaches are summarized below.

1. The node label replacement approach, mainly developed by Rozenberg, Engel-

friet and Janssens, allows a single node, as the left-hand side L, to be replaced

by an arbitrary graph R. The connection of R with the context is determined

by an embedding relation depending on node labels.

2. The hyperedge replacement approach, mainly developed by Habel, Kreowski and

Drewes, has as left-hand side L a labeled hyperedge, which is replaced by an

arbitrary hypergraph R with designated attachment nodes corresponding to the

nodes of L. The gluing of R with the context at the corresponding attachment

nodes leads to the target graph without using an additional embedding relation.

3. The algebraic approach is based on pushout constructions, where pushouts

model the gluing of graphs. In fact, there are two main variants: the dou-

ble and the single pushout approach. The double pushout approach, mainly

developed by Ehrig, Schneider and the Berlin and Pisa groups, is the formal

basis for the work presented in this thesis.

4. The logical approach, mainly developed by Courcelle and Bouderon, allows ex-

pressing graph transformation and graph properties in monadic second-order

logic.

5. The theory of 2-structures was initiated by Rozenberg and Ehrenfeucht as a

framework for decomposition and transformation of graphs.
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6. The programmed graph replacement approach of Schürr combines the gluing

and embedding aspects of graph transformation. Moreover, it uses programs in

order to control the nondeterministic choice of rule applications.

2.3.1 Double-Pushout Approach

Here we briefly recall the double-pushout (DPO) approach which is one of the stan-

dards for graph transformations. The DPO approach was originally introduced in

the seventies to formalize a way of performing rewriting on graphs. Today it al-

ready has a great amount of theoretical results and applications in several areas

[Roz97, EEKR99, EKMR99, EEPT06].

The DPO approach is not restricted to simple graphs, but has been generalized to a

large variety of different types of graphs and other kinds of high-level structures such

as labeled graphs, typed graphs, hypergraphs, attributed graphs, petri nets [Rei85]

and algebraic specifications [EM85, EM90]. This extension from graphs to high-level

structures led to the theory of high-level replacement (HLR) systems [EEPT06]. Later

on the concept of high-level replacement systems was joined with that of adhesive

categories, introduced by Lack and Sobociński in [LS04], leading to the concept of

adhesive HLR categories and systems, which enables reusing constructions and results

across a wide range of structures.

We begin by defining graphs and graph morphisms that will be used throughout

this thesis. The categorical notions required by this section are given in Appendix A.

A more detailed exposition and the proofs of the results stated in this section can be

found in [EEPT06].

Definition 2.3.1 (Graph and Graph morphism). A graph G = (V, E, s, t, lv, le)

consists of a set V of nodes, a set E of edges, two functions s, t : E → V (source

and target) and two labeling functions for nodes and edges lv : V → ΩV , le : E → ΩE,

where ΩV and ΩE are node and edge labels.

A graph morphism f : G1 → G2 is a pair of functions f = (fE : E1 → E2, fV : V1 →
V2), which is compatible with source, target and labeling functions of G1 and G2, i.e.,

fV ◦ s1 = s2 ◦ fE, fV ◦ t1 = t2 ◦ fE, le2 ◦ fE = le1 and lv2 ◦ fV = lv1.

ΩE E1

le1oo

fE

²²
=

s1 //
t1

// V1

fV

²²

lv1 // ΩV

E2

le2

aaBBBBBBBB
s2 //
t2

// V2

lv2

>>||||||||

Fact 2.3.2 (Composition of Graph Morphisms). Given two graph morphisms

f = (fV , fE) : G1 → G2 and g = (gV , gE) : G2 → G3, the composition g ◦ f =

(gV ◦ fV , gE ◦ fE) : G1 → G3 is again a graph morphism.



2.3 Graph Transformations 21

Proof. See Fact 2.5 in [EEPT06] (page 22).

Graph transformation is based on graph productions that describe in a general way

how graphs can be transformed. The application of such a production to a graph is

called a direct graph transformation.

Definition 2.3.3 (Graph Production). A graph production p = L
l← I

r→ R

consists of graphs L, I and R, called left-hand side, gluing (or interface) graph and

right-hand side respectively, and two graph morphisms l and r.

We also call a graph production as graph (transformation) rule.

Definition 2.3.4 (Graph Transformation). Given a graph production p as in

Definition 2.3.3, a graph G and a graph morphism m : L → G, called match. A

direct graph transformation G
p,m
=⇒ H from G to a graph H is given by the double-

pushout (DPO) diagram below, where (1) and (2) are pushouts.

L

m

²²
(1)

I

(2)

loo

²²

r // R

²²
G Coo // H

A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of direct graph transformations is called graph

transformation and is denoted by G0 ⇒∗ Gn.

Now we define graph transformation systems, graph grammars and the language

derived from a start graph and a set of graph rules.

Definition 2.3.5 (GT System, Graph Grammar and Language). A graph

transformation system GTS = (P ) consists of a set P of graph productions. A

graph grammar GG = (GTS, S) is a graph transformation system GTS equipped

with a start graph S. The graph language L of a graph grammar GG is defined by

L = {G | ∃ graph transformation S ⇒∗ G}.

2.3.1.1 Construction of Graph Transformations

We recall the conditions under which a graph production p = L ← I → R can

be applied to a graph G via a match m : L → G. In general, the existence of a

context graph C is required, leading to a pushout. This allows the construction of

first pushout square in a direct graph transformation G
p,m
=⇒ H, where in a second

step the graph H is built by gluing C and R via I.

Definition 2.3.6 (Applicability of Productions). A graph production p = L
l←

I
r→ R is applicable to a graph G via a match m : L → G if there exists a context

graph C such that (1) is a pushout.
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L

m

²²
(1)

I
loo

²²

r // R

G Coo

Definition 2.3.6 gives no criterion for deciding whether p is applicable or not,

whereas this can be easily checked via the gluing condition. Both concepts are equiv-

alent, as shown in Fact 2.3.8.

Definition 2.3.7 (Gluing Condition). Given a graph production p = L
l← I

r→
R, a graph G and a match m : L → G with X = (VX , EX , sX , tX) for all X ∈
{L, I, R, G}, we can state the following definitions:

• The gluing points GP are those nodes and edges in L that are not deleted by

p, i.e., GP = lV (VI) ∪ lE(EI) = l(I).

• The identification points IP are those nodes and edges in L that are identified

by m, i.e., IP = {v ∈ VL | ∃w ∈ VL, w 6= v : mV (v) = mV (w)}∪{e ∈ EL | ∃f ∈
EL, f 6= e : mE(e) = mE(f)}.

• The dangling points DP are those nodes in L whose images under m are the

source or target of an edge in G that does not belong to m(L), i.e., DP = {v ∈
VL | ∃e ∈ EG \mE(EL) : sG(e) = mV (v) or tG(e) = mV (v)}.

The production p and the match m satisfy the gluing condition if all identification

and all dangling points are also gluing points, i.e., IP ∪DP ⊆ GP .

Fact 2.3.8 (Existence and Uniqueness of Context Graph). Given a graph

production p = L ← I → R (l is injective), a graph G and a match m : L → G then

it holds: there exists a context graph C such that (1) in the diagram of Definition 2.3.6

is a pushout if and only if the gluing condition is satisfied. If C exists, it is unique

up to isomorphism.

Proof. See Fact 3.11 in [EEPT06] (page 45).

In the following we show how a direct transformation is constructed.

Fact 2.3.9 (Construction of Direct Graph Transformation). Given a graph

production p = L
l← I

r→ R and a match m : L → G such that p is applicable to a

graph G via m, then we construct the direct graph transformation in two steps:

1. Delete the nodes and edges from G that are reached by the match m but keep

the ones in I, i.e., C = (G \m(L))∪m(l(I)). More precisely, we construct the

context graph C and the pushout (1) such that G is the gluing of L and C along

I.
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2. Add the nodes and edges that are created in R, i.e., H = C
¦∪ (R \ r(I)), where

the disjoint union
¦∪ makes sure that the elements of R \ r(I) are added as new

elements. More precisely, we build the pushout (2) such that H is the gluing of

R and C along I.

This construction is unique up to isomorphism.

L

m

²²
(1)

I

(2)

loo

²²

r // R

²²
G Coo // H

Proof. See Fact 3.13 in [EEPT06] (page 46).

2.3.2 Double-Pushout with Borrowed Contexts

Finally, we recall the DPO extension to borrowed contexts [EK04, EK06]. In standard

DPO [CMR+97] productions rewrite graphs with no interaction with any other entity

than the graph itself and the production. In the DPO with borrowed contexts [EK06]

graphs have interfaces and may borrow missing parts of left-hand sides from the

environment via the interface. This leads to open systems which take into account

interaction with the outside world.

The borrowed context framework was originally defined for the category of graph

structures, but, as already stated in [EK04, EK06], its results can be automatically

lifted to adhesive categories [LS05] since the corresponding proofs only use pushout

and pullback constructions which are compliant with adhesive categories. In this

section we present the borrowed context setting for the category of labeled graphs

(as defined in Appendix A).

Now define the notion of graphs with interfaces and contexts, followed by the defi-

nition of a rewriting step with borrowed contexts as defined in [EK06] and extended

in [Sob04].

Definition 2.3.10 (Graphs with Interfaces and Contexts). A graph G with

interface J is a morphism J → G and a context consists of two morphisms J → E ←
J . The embedding of J → G into a context J → E ← J is a graph with interface

J → G which is obtained by constructing G as the pushout of J → G and J → E

(see diagram below).

J //

²²
PO

E

²²

Joo

¡¡
G // G
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The embedding is defined up to isomorphism since the pushout object is unique up

to isomorphism. Moreover, embedding/insertion into a context and contextualization

are used as synonyms.

Definition 2.3.11 (Rewriting with Borrowed Contexts). Given a graph with

interface J → G and a production p : L ← I → R, we say that J → G reduces to

K → H with transition label J → F ← K if there are graphs D, G+, C and additional

morphisms such that the diagram below commutes and the squares are either pushouts

(PO) or pullbacks (PB) with injective morphisms. In this case a rewriting step with

borrowed context (BC step) is called feasible: (J → G)
J→F←K−−−−−→ (K → H).

D //

²²
PO

L

²²
PO

Ioo //

²²
PO

R

²²
G //

PO

G+

PB

Coo // H

J

OO

// F

OO

Koo

OO >>

We also call transition labels as (derived) labels.

In the diagram above the upper left-hand square merges L and the graph G to

be rewritten according to a partial match G ← D → L. The resulting graph G+

contains a total match of L and can be rewritten as in the standard DPO approach,

producing the two remaining squares in the upper row. The pushout in the lower

row gives us the borrowed (or minimal) context F , along with a morphism J → F

indicating how F should be pasted to G. Finally, we need an interface for the resulting

graph H, which can be obtained by “intersecting” the borrowed context F and the

graph C via a pullback. Note that the two pushout complements that are needed in

Definition 2.3.11, namely C and F , may not exist. In this case, the rewriting step is

not feasible.

Sassone and Sobociński [SS05] found out that in Definition 2.3.11 some morphisms

can also be non-injective, namely the morphisms depicted as→ in the diagram below.

However, in this thesis we consider all morphisms in Definition 2.3.11 to be injective.

D // //
²²
²² PO

L
²²
²² PO

Ioo //
²²
²² PO

R
²²
²²

G // //

PO

G+

PB

Coo // H

J

OO

// // F

OO

Koo

OO >>

A bisimulation is an equivalence relation between states of transition systems, as-

sociating states which can simulate each other.
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Definition 2.3.12 (Bisimulation and Bisimilarity). Let P be a set of productions

and R a symmetric relation containing pairs of graphs with interfaces

(J → G, J → G′). The relation R is called a bisimulation if, whenever we have

(J → G)R (J → G′) and a transition

(J → G)
J→F←K−−−−−→ (K → H),

then there exists a graph with interface K → H ′ and a transition

(J → G′) J→F←K−−−−−→ (K → H ′)

such that (K → H)R (K → H ′).

We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that relates

the two graphs with interface. The relation ∼ is called bisimilarity.

In order to state Theorem 2.3.14 we have to close a relation under all possible

contexts.

Definition 2.3.13 (Closure under Contexts). Let R be a relation containing

pairs of graphs with interfaces as in Definition 2.3.12. By R̂ we denote the closure

of R under contexts, i.e., R̂ is the smallest relation that contains, for every pair

(J → G, J → G′) ∈ R and for every context of the form J → E ← J , the pair of

graphs with interface (J → G, J → G
′
) which results from the insertion of J → G

and J → G′ respectively into J → E ← J , as in Definition 2.3.10.

A relation R is a congruence, i.e., closed under contexts whenever R̂ = R.

Theorem 2.3.14 (Bisimilarity is a Congruence). Whenever R is a bisimulation,

then R̂ is a bisimulation as well. This implies that the bisimilarity relation ∼ is a

congruence.

Proof. See Theorem 4.3 in [EK06].

In practice, we can decide whether two graphs with interface J → G and J → G′

are bisimilar w.r.t. a set P of graph productions by deriving their corresponding

transition labels via Definition 2.3.11 and trying to match them in the bisimulation

game of Definition 2.3.12. An algorithm to mechanize this process is presented in

Chapter 4. Also the fact that bisimilarity is a congruence will be exploited by the

techniques developed in this thesis in order to reason about behavior preservation in

model refactoring.

The borrowed context framework was originally defined in [EK04, EK06], but it has

been extended and applied to several cases studies in the more recent years. Below

we summarize the main results:
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1. Deriving Process Congruences from Reaction Rules [SS05, Sob04]: Sassone and

Sobociński showed that the borrowed context framework to label derivation is

an instance of their theory of groupoidal relative-pushouts (G-RPOs). This

close connection allows the transfer of results to the BC framework, namely

the use of certain non-injective morphisms in Definition 2.3.11 (rewriting with

borrowed contexts) and also their results on other operational equivalences such

as traces and failures equivalences;

2. Composition and Decomposition of DPO Transformations with Borrowed Con-

text [BEK06a, BEK06b]: in this work, focusing on the situation in which the

states of a global system are built out of local components, it is shown that

DPO transformations with borrowed context defined on a global system state

can be decomposed into corresponding transformations on the local states and

vice versa;

3. Process Bisimulation via a Graphical Encoding [BGK06a, BGK06b]: here it is

illustrated that the BC framework is a suitable tool to analyze process calculi.

Milner’s CCS is encoded as graphs with interfaces, labels are derived using

the BC machinery and finally it is proved that the bisimilarity on processes

obtained via BCs coincides with the standard strong bisimilarity for CCS;

4. Bisimulation Verification for the DPO Approach with Borrowed Contexts

[RKE07]: Hirschkoff’s on-the-fly bisimulation checking algorithm is extended

to the BC setting. This algorithm is employed to check refactoring steps for

bisimilarity, more specifically to check that a deterministic finite automaton is

bisimilar to its refactored version after merging equivalent states. More details

can be found in Chapter 4 of this thesis;

5. Deriving Bisimulation Congruences in the Presence of Negative Application

Conditions [RKE08a, RKE08b]: negative application conditions (NACs) are

essential to restrict the applicability of a rule and to model complex systems.

In this work the BC framework is extended to handle NACs. The extension,

which is carried out for adhesive categories, requires an enrichment of the labels

which now do not only indicate the context that is provided by the observer, but

also constrain further additional contexts that may (not) satisfy the negative

application condition. That is, we do not only specify what must be borrowed,

but also what must not be borrowed. It has been shown that the main result

of [EK06] (bisimilarity is a congruence) still holds for this extension. The theory

was illustrated by an example in terms of blade server systems. More details

can be found in Chapter 3 of this thesis;
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6. Behavior Preservation in Model Refactoring Using DPO Transformations with

Borrowed Contexts [RLK+08a, RLK+08b]: borrowed contexts are used, and,

exploiting the fact that observational equivalence is a congruence, it is shown

how to check refactoring rules for behavior preservation. If rules are behavior-

preserving, their application will never change behavior, i.e., every model and

its refactored version will have the same behavior. However, there might exist

refactoring rules that are not behavior-preserving, even though the full refactor-

ing preserves the behavior. For these cases a technique to combine refactoring

rules to behavior-preserving concurrent productions is presented in order to

ensure behavior preservation. These techniques are applied to an automaton

example. More details can be found in Chapter 5 of this thesis as well;

7. Parallel and Sequential Independence for Borrowed Contexts [BGH08]: the con-

cepts of parallel and sequential independence of DPO transformations are lifted

to the BC setting. Moreover, it is show that the local Church-Rosser and

parallelism theorems guarantee local confluence and the parallel execution of

independent borrowed context steps.

The items 4, 5 and 6 above form the core of this thesis.





Chapter 3

Deriving Bisimulation Congruences

in the Presence of NACs

3.1 Motivation

Bisimilarity is an equivalence relation on states of transition systems, associating

states that can match each other’s moves. In this sense, bisimilar states can not

be distinguished by an external observer. Bisimilarity provides a powerful proof

technique to analyze the properties of systems and has been extensively studied in

the field of process calculi since the early 80’s. Especially for CCS [Mil89] and the

π-calculus [MP92, MPW92] an extensive theory of bisimulation is now available.

Congruence is a very desirable property that a bisimilarity may have, since it allows

the exchange of bisimilar systems in larger systems without effect on the observable

behavior. Unfortunately, a bisimulation defined on unlabeled reaction rules is in gen-

eral not a congruence. Hence, Leifer and Milner [Lei01, LM00] proposed a method

that uses so-called idem pushouts (IPOs) to derive a labeled transition system from

unlabeled reaction rules such that the resulting bisimilarity is a congruence. Mo-

tivated by this work, Ehrig and König proposed in [EK04, EK06] an extension to

the double pushout approach (DPO, for short) called DPO with borrowed contexts

(DPO-BC), which provides the means to derive labeled transitions from rewriting

rules in such a way that the bisimilarity is automatically a congruence. This has

turned out to be equivalent to a technique by Sassone and Sobociński [SS05, Sob04]

which derives labels via groupoidal idem pushouts. In all approaches the basic idea

is the one suggested by Leifer and Milner: the labels should be the minimal contexts

that an observer has to provide in order to trigger a reduction.

The DPO with borrowed contexts works with productions consisting of two arrows

L ← I → R where the arrows are either graph morphisms, or—more generally—



30 Deriving Bisimulation Congruences in the Presence of NACs

arrows in an adhesive category. Even though the generative power of the DPO ap-

proach is sufficient to generate any recursively enumerable set of graphs, very often

extra application conditions are a required feature of nontrivial specifications. Neg-

ative application conditions (NACs) [HHT96] for a graph production are conditions

such as the non-existence of nodes, edges, or certain subgraphs in the graph G being

rewritten, as well as embedding restrictions concerning the match L → G. Similar

restrictions can also be achieved in Petri nets with inhibitor arcs, where these arcs

impose an extra requirement to transition firing, i.e., a transition can only be fired if

certain places are currently unmarked.

Graph transformation systems, which are our main focus, are often used for spec-

ification purposes, where—in contrast to programming—it is quite convenient and

often necessary to constrain the applicability of rules by negative application con-

ditions. We believe that this is a general feature of specification languages, which

means that the problem of deriving behavioral equivalences in the presence of NACs

may occur in many different settings.

In this chapter we extend the borrowed context framework to handle productions

with negative application conditions. The extension, which is carried out for adhesive

categories, requires an enrichment of the labels which now do not only indicate the

context that is provided by the observer, but also constrain further additional contexts

that may (not) satisfy the negative application condition. That is, we do not only

specify what must be borrowed, but also what should not be borrowed. We prove that

the main result of [EK06] (bisimilarity is a congruence) still holds for our extension.

Moreover, we further develop up-to techniques in order to cope with NACs and apply

the up-to context to examples.

The work presented in this chapter is based on our paper [RKE08a, RKE08b], and

structured as follows. Section 3.2 briefly reviews the DPO approach with borrowed

contexts. In Section 3.3 we discuss the problems which arise due to productions

with NACs and how they can be overcome in order to guarantee that the derived

bisimilarities are congruences. Section 3.4 presents proof techniques for our extension.

Finally, we present two examples in terms of graph transformation: a small one in

Section 3.5 and a more elaborate one in Section 3.6, where blade server systems are

presented. Additional proofs and further information about the examples can be

found in Appendix B.

3.2 Double-Pushout with Borrowed Contexts

In this section we lift the DPO approach with borrowed contexts [EK04, EK06]

already shown in Section 2.3.2 for the category of graphs to the general framework of
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adhesive categories [LS05]. Furthermore, we define the gluing condition for borrowed

context steps.

In standard DPO [CMR+97], productions rewrite graphs with no interaction with

any other entity than the graph itself and the production. In DPO with borrowed

contexts [EK06] graphs have interfaces and may borrow missing parts of left-hand

sides from the environment via the interface. This leads to open systems which take

into account interaction with the outside world.

The DPO-BC framework was originally defined for the category of graph structures,

but, as already stated in [EK04, EK06], its results can be automatically lifted to

adhesive categories since the corresponding proofs only use pushout and pullback

constructions which are compliant with adhesive categories. In the following we

present the DPO-BC setting for adhesive categories [LS05] to which we first give a

short introduction.

Definition 3.2.1 (Adhesive Category). A category C is called adhesive if

1. C has pushouts along monos;

2. C has pullbacks;

3. Given a cube diagram as shown on the

right with: (i) A → C mono, (ii) the

bottom square a pushout and (iii) the

left and back squares pullbacks, we have

that the top square is a pushout iff the

front and right squares are pullbacks.

A′ //

ÃÃA
AA

AA
AA

A

²²

C ′

ÃÃB
BB

BB
BB

B

²²

B′ //

²²

D′

²²

A //

ÃÃB
BB

BB
BB

B C

!!B
BB

BB
BB

B

B // D

Pullbacks preserve monos and pushouts preserve epis in any category. Furthermore,

for adhesive categories it is known that monos are preserved by pushouts [LS05]. For

the DPO-BC extension to productions with negative application conditions, defined

in Section 3.3, we need one further requirement, namely that pullbacks preserve epis.

This means that if the square (A′, B′, A, B) above is a pullback and A → B is epi,

we can conclude that A′ → B′ is epi as well.

Our prototypical instance of an adhesive category, which will be used for the exam-

ples in the paper, is the category of labeled graphs (see Appendix A), where arrows

are graph morphisms. In this category pullbacks preserve epis.

We will now define the notion of objects with interfaces and contexts, followed by

the definition of a rewriting step with borrowed contexts as defined in [EK06].

Definition 3.2.2 (Objects with Interfaces and Contexts). An object G with

interface J is an arrow J → G and a context consists of two arrows J → E ← J .
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The embedding of J → G into a context J → E ← J is an object with interface

J → G which is obtained by constructing G as the pushout of J → G and J → E

(see diagram below).

J //

²²
PO

E

²²

Joo

¡¡
G // G

The embedding is defined up to isomorphism since the pushout object is unique up

to isomorphism. Moreover, embedding/insertion into a context and contextualization

are used as synonyms.

Definition 3.2.3 (Rewriting with Borrowed Contexts). Given an object with

interface J → G and a production p : L ← I → R, we say that J → G reduces

to K → H with transition label J → F ← K if there are objects D, G+, C and

additional arrows such that the diagram below commutes and the squares are either

pushouts (PO) or pullbacks (PB) with monos. In this case a rewriting step with

borrowed context (BC step) is called feasible: (J → G)
J→F←K−−−−−→ (K → H).

D //

²²
PO

L

²²
PO

Ioo //

²²
PO

R

²²
G //

PO

G+

PB

Coo // H

J

OO

// F

OO

Koo

OO >>

We also call transition labels as (derived) labels.

In the diagram above the upper left-hand square merges L and the object G to be

rewritten according to a partial match G ← D → L. The resulting object G+ contains

a total match of L and can be rewritten as in the standard DPO approach, producing

the two remaining squares in the upper row. The pushout in the lower row gives us

the borrowed (or minimal) context F , along with an arrow J → F indicating how F

should be pasted to G. Finally, we need an interface for the resulting object H, which

can be obtained by “intersecting” the borrowed context F and the object C via a

pullback. Note that the two pushout complements that are needed in Definition 3.2.3,

namely C and F , may not exist. In this case, the rewriting step is not feasible.

With the procedure described above we may derive infinitely many labels of the

form J → F ← K. However, observe that there are only finitely many up to iso and

hence they can be represented in a finite way.
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In the standard DPO approach given a production L ← I → R and a match

L → G one can employ the gluing condition (Definition 2.3.7) to check whether there

exists the pushout complement I → C → G of I → L → G. This notion of gluing

condition can be elegantly formalized with the categorical concept of initial pushout.

In Appendix A.3 one can find the definition of initial pushout, its construction for the

category of graphs and the formalization of the gluing condition in terms of initial

pushouts.

Similarly, based on a technique defined in [BGK06a] which uses initial pushouts to

check whether a partial match G ← D → L leads to the existence of the borrowed

context F , we define the notion of gluing condition for borrowed context steps.

Definition 3.2.4 (Gluing Condition of Borrowed Context Steps). Given an

adhesive category with initial pushouts, a production p : L
l← I

r→ R and an object

with interface J
j→ G, then a partial match G

dg← D
dl→ L satisfies the gluing condition

of a borrowed context step with respect to p and J
j→ G if the following conditions

hold for the diagram below:

(i) for the initial pushout (1) over dl there exists a mono jj : JD → J such that

dg ◦ jd = j ◦ jj;

(ii) for the initial pushout (2) over dg there exists a mono ii : ID → I such that

dl ◦ id = l ◦ ii.

JD

jj

¸¸

//

jd

²²

(1)

FD

²²
ID id

//

²²

ii
))

(2)

D
dl

//

dg

²²

L I
l

oo
r

// R

CD
// G

J

j

OO

The gluing condition of a borrowed context step can be quickly checked: we only

need to build JD
jd→ D and ID

id→ D (the construction for the category of graphs

is given in Appendix A.3) and check whether there exist jj and ii leading to the

required commutativity. Note that this is usually easier than building the pushout

of dg and dl and checking the existence of F and C by using the gluing condition of

standard DPO (Definition 2.3.7).
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Theorem 3.2.5 (Existence and Uniqueness of Contexts). Given an adhesive

category with initial pushouts, a production p : L
l← I

r→ R and an object with in-

terface J
j→ G, then a partial match G

dg← D
dl→ L, which leads to (3) as a pushout,

satisfies the gluing condition of a borrowed context step with respect to p and J
j→ G if

and only if there exist context objects F and C, i.e., there exist pushout complements

(4) and (5) of J
j→ G → G+ and I

l→ L → G+, respectively.

JD

jj

··

//

jd

²²

(1)

FD

²²

fd
­­

ID id
//

²²

ii
**

(2)

D

(3)

dl
//

dg

²²

L

²²
(5)

I
l

oo
r

//

²²

R

CD
//

cd

44G //

(4)

G+ Coo

J

j

OO

// F

OO

Whenever they exist, the context objects F and C are unique up to isomorphism.

Proof. This proof is split into two parts.

“⇒”: if the gluing condition of Definition 3.2.4 is satisfied then we construct the

pushout J → F
fd← FD of J

jj← JD → FD. Since JD → FD is mono (see Definition A.20

of initial pushout) then so is J → F . By Lemma A.25 (composition of initial pushout

and pushout) we can infer that (1) + (3) is an initial pushout over G → G+. The

square (JD, FD, J, F ) as a pushout, the commutativity of (1)+(3) and dg ◦jd = j ◦jj

(assumption) imply that there exists a unique morphism F → G+ such that (4) and

the morphisms in (FD, L,G+, F ) commute. Since (1) + (3) and (JD, FD, J, F ) are

pushouts and the vertical morphisms above respectively commute with jj and fd,

then we can infer that (4) is a pushout by pushout decomposition. Finally, j mono

implies F → G+ mono. Analogously we build the context object C, where (5) is a

pushout along monos.

“⇐”: if the context object F exists with (4) as a pushout, then the initiality of the

pushout (1) + (3) implies the existence of jj : JD → J mono with dg ◦ jd = j ◦ jj.

Analogously for C we find that there exists ii : ID → I mono with dl ◦ id = l ◦ ii.

The uniqueness of F and C follows from the uniqueness of pushout complements.

A bisimulation is an equivalence relation between states of transition systems, as-

sociating states which can simulate each other.
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Definition 3.2.6 (Bisimulation and Bisimilarity). Let P be a set of productions

and R a symmetric relation containing pairs of objects with interfaces (J → G, J →
G′). The relation R is called a bisimulation if, whenever we have (J → G)R (J →
G′) and a transition

(J → G)
J→F←K−−−−−→ (K → H),

then there exists an object with interface K → H ′ and a transition

(J → G′)
J→F←K−−−−−→ (K → H ′)

such that (K → H)R (K → H ′).

We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that relates

the two objects with interface. The relation ∼ is called bisimilarity.

Theorem 3.2.7 (Bisimilarity is a Congruence). The bisimilarity relation ∼ is a

congruence, i.e., it is preserved by contextualization as described in Definition 3.2.2.

Proof. See Theorem 4.3 in [EK06].

3.3 Borrowed Contexts with NACs

Here we will extend the DPO-BC framework of [EK06] to productions with negative

application conditions. Prior to the extension we will investigate in Section 3.3.1

why such an extension is not trivial. It is worth emphasizing that the extension will

be carried out for adhesive categories with an additional requirement that pullbacks

preserve epis, but the examples will be given in the category of labeled directed

graphs. First, we define negative application conditions for productions.

Definition 3.3.1 (Negative Application Condition). A negative application con-

dition NAC (n) on L is a mono n : L → NAC . A mono m : L → G satisfies NAC (n)

on L if and only if there is no mono q : NAC → G with q ◦ n = m.

NAC
q |F

FF
F

""FFFF

L

m

²²

noo
=

G

A rule L ← I → R with NACs is equipped with a finite set of negative application

conditions {L → NAC y}y∈Y and is applicable to a match m : L → G only if all NACs

are satisfied. If we add NACs to the rules in Definition 3.2.3, we have two ways to

check their satisfiability: before (on G) or after the borrowing (on G+), but the latter

is more suitable since the first one does not take into account any borrowed structure.
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3.3.1 Bisimulation and NACs – Is Bisimilarity still a Con-

gruence?

Let us assume that borrowed context rewriting works as in Definition 3.2.3 if the

total match L → G+ satisfies all NACs of a production, i.e., G+ does not contain

any prohibited structure (specified by a NAC) at the match of L. With the following

example in terms of labeled directed graphs we will show that this notion is not yet

the right one.

On the right-hand side of Figure 3.1 we depict two servers as graphs with interfaces:

J → G and J → G′. An s-node represents a server. Each server has two queues Q1 and

Q2 where it receives tasks to be processed. The queue Q1 is of high priority. Tasks

are modeled as loops and may either be standard (T) or urgent (U). In real world

applications, standard tasks may come from regular users while urgent ones come

from administrators. On the left-hand side of Figure 3.1 we depict how the servers

work. Rule1 says that an urgent task in Q2 must be immediately executed, whereas

Rule2 specifies how a standard task T in Q2 is executed. The negative application

condition NAC1 allows rule2 to be applied only when there is no other T-task waiting

in the high priority queue Q1. We assume that a processed task is consumed by the

server (see R1 and R2).

Figure 3.1: Rules for task processing (left) and the LTSs of two servers (right).

From the servers J → G and J → G′ we derive the labeled transition system (LTS)

to the right of Figure 3.1 w.r.t. rule1 and rule2. The derivation of label2 is depicted

in Figure 3.2. No further label can be derived from K → H and K → H′ and the

labels leading to these graphs are equal. By Definition 3.2.6 (bisimulation) we could

conclude that (J → G) ∼ (J → G′). Since bisimilarity is a congruence (at least for

rules without NACs), the insertion of J → G and J → G′ into a context C, as in

Definition 3.2.2, produces graphs J → G and J → G
′

respectively, which should be

bisimilar. Figure 3.3 shows a context C with a standard task, the resulting graphs

J → G and J → G
′
which received the T-task in queue Q1 via the interface J, and their
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Figure 3.2: Derivation of label2 from J → G′ via rule2

LTS. The server J → G
′
cannot perform any transition since NAC1 of rule2 forbids the

BC step, i.e., the T-task in Q2 cannot be executed because there is another standard

task in the high priority queue Q1. However, J → G is still able to perform a transition

and evolve to K → H. Thus, bisimilarity is no longer a congruence when productions

have NACs.

Figure 3.3: A context C (left) and the resulting LTSs for J → G and J → G′ (right).

The LTS for J → G and J → G′ (see Figure 3.1) shows that label1, which is derived

from rule1 (without NAC) is matched by label2, which is generated by rule2 (with

NAC). These matches between labels obtained from rules with and without NACs

are the reason why the congruence property does no longer hold. In fact, the actual

definitions of bisimulation and borrowed context step are too coarse to handle NACs.

Our idea is to enrich the transition labels J → F ← K with some information

provided by the NACs in order to define a finer bisimulation based on these labels. A

label must not only know which structures (borrowed context) are needed to perform

it, but also which forbidden structures (defined by the NACs) cannot be additionally

offered by the environment in order to guarantee NAC satisfiability. These forbidden

structures will be called negative borrowed contexts and are represented by objects

Nz attached to the label via monos from the borrowed context F (see Figure 3.4).

In our server example, label1 would remain without any negative borrowed context
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since rule1 has no NAC. However, label2 would be the label depicted in Figure 3.4,

where the negative borrowed context F → N1 specifies that if a T-task was in Q1, then

NAC1 would have forbidden the BC step of J → G′ via rule2. That is, with the new

form of labels the two graphs are no longer bisimilar and hence we no longer have a

counterexample to the congruence property.

Figure 3.4: Transition label enriched with negative borrowed context (left) and in-

sertion of J → G′ into a forbidden context (right).

The intuition of negative borrowed contexts is the following: given J → G, when-

ever it is possible to derive a label J → F ← K with negative borrowed context

F → Nz via a production p with NACs, then if J → G is inserted into a context1

J → Nz ← J leading to J → G no further label can be derived from J → G via

p since some of its NACs will forbid the rule application (see the right-hand side

of Figure 3.4). Put differently, the label says that a transition can be executed if

the environment “lends” F as minimal context. Furthermore, the environment can

observe that the NACs of a production are only satisfiable under certain constraints

on the context. Finally, it is not executable at all if the object G+ with borrowed

context already contains the NAC.

3.3.2 Borrowed Contexts – Extension to Rules with NACs

Now we are ready to extend the DPO-BC framework to deal with productions with

NACs. First we define when a BC step is NAC consistent.

Definition 3.3.2 (NAC-Consistent Borrowed Context Step). Assume that all

arrows are mono. Given J → G and a production p : L ← I → R; {ny : L →
NAC y}y∈Y we say that a partial match pm : G ← D → L leads to a NAC consistent

BC step with respect to J → G and p if for the pushout G+ in the diagram below

there is no qy : NAC y → G+ with m = qy ◦ ny for every y ∈ Y .

D //

²²
PO

L
m

²²

ny //

=

NAC y

qy
|ww

ww

{{wwww

J // G // G+

1J → Nz is the composition of J → F → Nz.
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In the following we need the concept of a pair of jointly epi arrows in order to

“cover” an object with two other objects. That is needed to find possible overlaps

between the NACs and the object G+ which includes the borrowed context.

Definition 3.3.3 (Jointly Epi Arrows). Two arrows f : A → B and g : C → B

are jointly epi whenever for every pair of arrows a, b : B → D such that a ◦ f = b ◦ f

and a ◦ g = b ◦ g it holds that a = b.

In a pushout square the generated arrows are always jointly epi. This is a straight-

forward consequence of the uniqueness of the mediating arrow.

Definition 3.3.4 (Borrowed Context Rewriting for Rules with NACs). Given

J → G, a production p : L ← I → R; {L → NAC y}y∈Y and a partial match G ←
D → L, we say that J → G reduces to K → H with transition label J → F ←
K; {F → Nz}z∈Z if the following holds:

(i) the BC step is NAC consistent (as in Definition 3.3.2);

(ii) there are objects G+, C and additional arrows such that Diagram (3.1) below

commutes and the squares are either pushouts (PO) or pullbacks (PB) with

monos;

(iii) the set {F → Nz}z∈Z contains exactly the arrows constructed via Diagram (3.2)

(where all arrows are mono). (That is, there exists an object Mz such that all

squares commute and are pushouts or arrows are jointly epi as indicated.)

NAC y

D //

²²
PO

L

m

²²

ny

OO

PO

Ioo //

²²
PO

R

²²
G //

PO

G+

PB

Coo // H

J

OO

// F

OO

²²

Koo

OO >>

Nz

(3.1)

NAC y
//

=

Mz

PO

Nz
oo

L

ny

OO

m
//

j.epi

G+

OO

Foo

OO (3.2)

In this case a borrowed context step (BC step) is feasible and we write: (J → G)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H).
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Observe that Definition 3.3.4 coincides with Definition 3.2.3 when no NACs are

present (cf. Condition (ii)). By taking NACs into account, a BC step can only be

NAC consistent when G+ contains no forbidden structure of any negative application

condition NAC y at the match of L (Condition (i)). Additionally, enriched labels are

generated (Condition (iii)).

In Condition (iii) the arrows F → Nz are also called negative borrowed contexts

and each Nz represents the structures that should not be in G+ in order to enable a

NAC-consistent BC step via p (see Lemma 3.3.8). This extra information in the label

is of fundamental importance for the bisimulation game with NACs (Definition 3.3.5),

where two objects with interfaces must not only agree on the borrowed context which

enables a transition but also on what should not be offered by the environment

in order to perform the transition. The negative borrowed contexts F → Nz are

obtained from NAC y
ny← L

m→ G+ ← F of Diagram (3.1) via Diagram (3.2), where we

create all possible overlaps Mz of G+ and NAC y in order to check which structures

the environment should not provide in order to assure a NAC-consistent BC step. To

consider all possible overlaps is necessary in order to take into account that parts of

the NAC might already be present in the object which is being rewritten.

Whenever the pushout complement in Diagram (3.2) exists, the object G+ with

borrowed context can be extended to Mz by attaching the negative borrowed context

Nz via F . When the pushout complement does not exist, some parts of G+ which

are needed to perform the extension are not “visible” from the environment and no

negative borrowed context is generated.

Due to the non-uniqueness of the jointly-epi square one single negative application

condition NAC y may produce more than one negative borrowed context as depicted

in Figure 3.5. The rule used in the BC step on the left shows that an online server

(marked with an ON-loop) can be turned off only if there is no standard task in any

of its queues. Note that there are two possible overlaps between NAC1 and G+. On

the right we show the two corresponding negative borrowed contexts {F → Nz}z∈{1,2}.
We depict in detail the construction of F → N1 as described in Definition 3.3.4.

Furthermore, in Definition 3.3.4 the set {F → Nz}z∈Z is in general infinite, but

if we consider finite objects L, NAC y and G+ (i.e., objects which have only finitely

many subobjects) there exist only finitely many overlaps Mz up to iso. Hence the

set {F → Nz}z∈Z can be finitely represented by forming appropriate isomorphism

classes of arrows. Note that F
f1→ N1 and F

f2→ N2 in Figure 3.5 are not isomorphic,

because the mono f : N1 → N2 is not compatible with f1 and f2.

It is important to state that replacing the jointly-epi square by a pushout square

in Definition 3.3.4 leads to a construction where each NAC may generate at most

one negative borrowed context. For the example in Figure 3.5 we would build the

pushout NAC1 → MPO ← G+ (see Figure 3.6) of NAC1 ← L → G+, where the pushout
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Figure 3.5: A borrowed context step (left) and the construction of negative borrowed

contexts (right).

object MPO contains three Q-queues. However, the top queue in MPO can not be

provided by the environment since the server is not in F. Hence, the negative borrowed

context NPO does not exist. Note that this construction with two pushouts fails to

determine the structures that should not be provided to the other two queues in G+

(cf. Figure 3.5) in order to ensure a NAC-consistent BC step. Therefore, we need the

jointly-epi square to build transition labels which lead to bisimilarity as a congruence.

Figure 3.6: Hypothetical construction of negative borrowed contexts with two

pushout squares.

Definition 3.3.5 (Bisimulation and Bisimilarity with NACs). Let P be a set

of productions with NACs and R a symmetric relation containing pairs of objects with

interfaces (J → G, J → G′). The relation R is called a bisimulation with NACs if,
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for every (J → G)R (J → G′) and a transition

(J → G)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H),

there exists an object with interface K → H ′ and a transition

(J → G′)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H ′)

such that (K → H)R (K → H ′).

We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that relates

the two objects with interface. The relation ∼ is called bisimilarity with NACs.

We often drop “with NACs” from bisimulation (bisimilarity) when it is clear from

context.

The difference between the bisimilarity of Definition 3.2.6 and the one above with

NACs is the transition label, which in the latter case is enriched with negative bor-

rowed contexts. Thus, Definition 3.3.5 yields in general a finer bisimulation.

In order to state Theorem 3.3.10 (bisimilarity with NACs is a congruence) we have

to close a relation under all possible contexts.

Definition 3.3.6 (Closure under Contexts). Let R be a relation containing pairs

of objects with interfaces as in Definition 3.3.5. By R̂ we denote the closure of R
under contexts, i.e., R̂ is the smallest relation that contains, for every pair (J →
G, J → G′) ∈ R and for every context of the form J → E ← J , the pair of objects

with interface (J → G, J → G
′
) which results from the insertion of J → G and

J → G′ respectively into J → E ← J , as in Definition 3.2.2.

A relation R is a congruence, i.e., closed under contexts whenever R̂ = R.

We need three extra lemmas before we show the congruence result. Recall that

we are working in the framework of adhesive categories. Lemma 3.3.7, which is used

in the proof of our main result, needs one extra requirement, namely that pullbacks

preserve epis.

To prove that bisimilarity is a congruence, borrowed context steps as well as tran-

sition labels should allow being composed and decomposed [EK06]. Whenever rules

have NACs we have to additionally ensure that negative borrowed contexts can be

composed and decomposed, as stated in Lemma 3.3.7.

Lemma 3.3.7 (NAC Compatibility). In the following let all arrows be mono and

let Diagram (3.3) be given.

If we have Diagram (3.5), then there exist objects Mz, Nz and M ′
x such that Di-

agram (3.4)+(3.6) can be constructed as indicated. Furthermore, if we have Dia-

gram (3.4)+ (3.6), then there exists an object Mx such that Diagram (3.5) can be

constructed as indicated.
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L

²² !!CC
CC

CC
CC

G+ //
=

G
+

F

OO

//

PO

E2

OO

=

Foo

``@@@@@@@@

(3.3)

NAC y
// Mz Nz

oo

L

OO

//

=
j.epi

G+

OO

F

OO

oo

PO

(3.4)

NAC y
// Mx Nx

oo

L

OO

//

=

j.epi

G
+

OO

F

OO

oo

PO

(3.5)

Nz
// M ′

x Nx
oo

F

OO

//

=

j.epi

E2

OO

F

OO

oo

PO

(3.6)

The lemmas below are required to infer the NAC-consistency property of one bor-

rowed context step from another.

Lemma 3.3.8. A borrowed context step (as in Definition 3.3.4) is not NAC con-

sistent whenever there exists a mono qy : NAC y → G+ such that m = qy ◦ ny (see

Definition 3.3.2). This is equivalent to the situation, in which:

(i) there exists a negative borrowed context F → Nz which is an iso;

or

(ii) there exists a mono Nz → G+ such that F → G+ = F → Nz → G+.

Lemma 3.3.9. In the diagram below, where all arrows are mono, it holds: whenever

F → N is not iso then F → N is not iso as well.

N // M ′ Noo

F

OO

//

=
j.epi

E2

OO

F

OO

oo

PO

We are now ready to show the congruence result. The proofs of all lemmas men-

tioned in Theorem 3.3.10 can be found in Appendix B.1. Furthermore, some steps in

the proof can be conveniently illustrated by Venn-like diagrams, which are given in

Appendix B.2.

Theorem 3.3.10 (Bisimilarity with NACs is a Congruence). Whenever R is

a bisimulation with NACs, then R̂ is a bisimulation with NACs as well. This implies

that the bisimilarity relation ∼ is a congruence.
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Proof. In [EK06] it was shown for the category of graph structures that bisimilarity

derived from graph productions of the form L ← I → R with monos is a congruence.

The pushout and pullback properties employed in [EK06] also hold for any adhesive

category. Here we will extend the proof of [EK06] to handle productions with NACs

in adhesive categories. All constructions used in this current proof are compliant with

adhesive categories, except for parts of Lemma 3.3.7, which requires that pullbacks

preserve epis (see Appendix B.1).

We will show that whenever R is a bisimulation, then R̂, which is the contextual-

ization of R, is also a bisimulation. With the following argument we can infer that

∼̂ ⊆ ∼ and that ∼ is a congruence: Whenever (J → G) ∼̂ (J → G
′
), there exists

a bisimulation R such that (J → G) R̂ (J → G
′
). Since, as we will show, R̂ is a

bisimulation, it follows that (J → G) ∼ (J → G
′
).

Let R be a bisimulation and let (J → G) R̂ (J → G
′
). That is, there is a pair

(J → G) R (J → G′) and a context J → E ← J such that J → G and J → G
′
are

obtained by inserting J → G and J → G′ into this context.

Let us also assume that

(J → G)
J→F←K;{F→Nx}x∈X−−−−−−−−−−−−−→ (K → H).

Our goal is to show that there exists a transition

(J → G
′
)

J→F←K;{F→Nx}x∈X−−−−−−−−−−−−−→ (K → H
′
)

with (K → H) R̂ (K → H
′
), which implies that R̂ is a bisimulation. In Step A we

construct a transition

(J → G)
J→F←K;{F→Nz}z∈Z∪Z′−−−−−−−−−−−−−−−→ (K → H)

which implies a transition

(J → G′)
J→F←K;{F→Nz}z∈Z∪Z′−−−−−−−−−−−−−−−→ (K → H ′)

with (K → H) R (K → H ′), since R is a bisimulation. In Step B we extend the

second transition to obtain the transition stated in our goal above. This argument is

basically the same as in [EK06], except for the fact that here we are dealing with a

bisimulation definition involving transition labels with negative borrowed contexts.

Step A: From transition (J → G)
J→F←K;{F→Nx}x∈X−−−−−−−−−−−−−→ (K → H) we can derive

Diagram (3.7), where the decomposition of J → G is shown explicitly, all arrows are

mono and all squares are pushouts, except for the indicated pullback.
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NAC y

D //

²²

L

²²

OO

Ioo //

²²

R

²²
G // G //

G
+

Coo // H

J

OO

// E

OO

J

OO

// F

PB

OO

²²

Koo

OO GG

Nx

(3.7) NAC y

D //

²²

L

²²

OO

Ioo //

²²

R

²²
G // G //

G
+

Coo // H

J

OO

// E

OO

// E2

OO
PB

E1
oo

OO ??

J

OO

// F

PB

OO

²²

Koo

OO

GG

Nx

(3.8)

Now we will project the borrowed context diagram of J → G (see Diagram (3.7))

to a borrowed context diagram of J → G, first without taking into account NACs.

In the following we summarize how this is carried out in [EK06]. For a detailed

description of this projection process we refer the reader to Theorem 4.3 in [EK06].

Applying pushout and pullback splitting in Diagram (3.7) gives rise to Diagram (3.8),

where all morphisms are mono and all squares are pushouts except for the indicated

pullbacks. We build the pullback G ← D → D of G → G ← D and then the pushout

G → G̃ ← D of G ← D → D as shown in Diagram (3.9). From the universal

property of this pushout already built we can infer that the two triangles inside the

upper leftmost square commute. The other squares in Diagram (3.9) are obtained

via pushout and pushout complement splitting. All morphisms in Diagram (3.9) are

mono.

NAC y

D //

²²

D //

²²

££¦¦
L

²²

{{vvvv

OO

I //

££¦¦
¦

²²

oo R

²²

££§§
§

G̃ //

¿¿8
88

G+

##GGG Coo //

¿¿8
88

H
¾¾8

88

G //

BB§§§
G //

G
+

Coo // H

F1

ÀÀ:
::

OO

J

OO

AA¥¥¥
// E

OO

// E2

OO

E1

OO

oo

BB

J

OO

// F

OO

²²
Koo

OO

HH

Nx

(3.9) NAC y

D //

²²

D //

²²

££¦¦
L

²²

{{vvvv

OO

I //

¢¢¥¥
¥

²²

oo R

²²

££§§
§

G̃ //

¿¿8
88

G+

##GGG Coo //

¿¿:
::

H
¾¾8

88

G //

BB§§§
G //

G
+

Coo // H

F1
//

ÀÀ:
::

OO

F
$$HHHH

OO

²²

Koo

ÀÀ;
;;

OO BB

J

OO

AA¥¥¥
// E

OO

// E2

OO

E1

OO

oo

BB

Nz

J

OO

// F

OO

²²
Koo

OO

HH

Nx

(3.10)
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In Diagram (3.9) we build the pullbacks G+ ← F → E2 and C ← K → E1 from

G+ → G
+ ← E2 and C → C ← E1, respectively. The universal property of these

two pullbacks gives us the morphisms F1 → F and K → F to close the cubes in

Diagram (3.10). It turns out that all morphisms in Diagram (3.10) are mono and,

furthermore, all squares are pushouts with monos except for (D,G, D, G), front and

back faces of the cube on the right and (E2, F , E1, K) that are pullbacks.

Now we have to focus on the issues concerning the NACs in the resulting Dia-

gram (3.10). Observe that all negative borrowed contexts Nx of the transition are

obtained via Diagram (3.11). It is shown in Lemma 3.3.7 (NAC compatibility) that

such a diagram can be “decomposed” into Diagrams (3.12) and (3.13), where the

former shows the derivation of negative borrowed contexts for G+. That is, every

negative borrowed context of the larger object G
+

is associated with at least one bor-

rowed context of the smaller object G+. Note that the transformation of one negative

borrowed context into the other is only dependent on the context J → E ← J , into

which J → G is inserted, but not on G itself, since E2 is the pushout of J → E,

J → F . This independence of G will allow us to use this construction for J → G′ in

Step B (see Appendix B.2 for this construction as a Venn diagram).

NAC y
// Mx Nx

oo

L

OO

//

=
j.epi

G
+

OO

F

OO

oo

PO

(3.11)

NAC y
// Mz Nz

oo

L

OO

//

=
j.epi

G+

OO

F

OO

oo

PO

(3.12)

Nz
// M ′

x Nx
oo

F

OO

//

=
j.epi

E2

OO

F

OO

oo

PO

(3.13)

In addition there might be further negative borrowed contexts F → Nz with indices

z ∈ Z ′, where Z and Z ′ are disjoint index sets. These are exactly the negative

borrowed contexts for which Diagram (3.13) can not be completed since the pushout

complement does not exist. If we could complete Diagram (3.13) we would be able

to reconstruct Diagram (3.11) due to Lemma 3.3.7 (NAC compatibility).

Hence we obtain a transition from J → G which satisfies Conditions (ii) and (iii)

of Definition 3.3.4 (borrowed context rewriting). We still have to show that the BC

step from G+ is NAC-consistent (Condition (i)). By assumption, the BC step from

J → G of Diagram (3.10) is NAC-consistent. So by Lemma 3.3.8 there does not

exist any iso F → Nx, which by Lemma 3.3.9 implies that no F → Nz, z ∈ Z is an

iso. Furthermore, no F → Nz with z ∈ Z ′ can be an iso, since otherwise we could

complete Diagram (3.13). Then by Lemma 3.3.8 we conclude that the BC step from

J → G is NAC-consistent.

Since all conditions of Definition 3.3.4 are satisfied, we can derive the transi-
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tion (J → G)
J→F←K;{F→Nz}z∈Z∪Z′−−−−−−−−−−−−−−−→ (K → H) from Diagram (3.10) using Def-

inition 3.3.5 (bisimulation with NACs). Since R is a bisimulation, this implies

(J → G′)
J→F←K;{F→Nz}z∈Z∪Z′−−−−−−−−−−−−−−−→ (K → H ′) with (K → H) R (K → H ′). Addi-

tionally we can infer from Diagram (3.10) that K → H is the insertion of K → H

into the context K → E1 ← K.

Step B: In Step A we have shown that J → G′ can mimic J → G due to the

bisimulation R. Here we will show that (J → G
′
) can also mimic (J → G) since R

is a bisimulation and both objects with interface are derived from the insertion of

J → G and J → G′ into the context J → E ← J .

We take the transition from J → G′ to K → H ′ with (K → H) R (K → H ′)
from Step A and construct a transition from (J → G

′
) to (K → H

′
) with (K →

H) R̂ (K → H
′
). Recall that J → G

′
is J → G′ in the context J → E ← J .

F1
//

¿¿8
88

F
ÁÁ>

>>

²²

Koo

¿¿:
::

J

CC̈
¨̈

// E // E2 E1
oo

Nz

J

OO

// F

OO

²²
Koo

OO

Nx

(3.14)

NAC ′
y

D′ //

²²

L′

²²

OO

I ′

²²

oo // R′

²²
G′ // G′+

PB

C ′oo // H ′

J //

OO

F

OO

²²

Koo

OO <<

Nz

(3.15)

Now we concentrate on building the BC steps, first without considering the NACs.

This is done by following the procedure of [EK06], which can be summarized as

follows. We cut away the upper part of Diagram (3.10) and we obtain Diagram (3.14),

where all squares are pushouts except for (E2, E1, F , K) which is a pullback. In Step A

we obtained an induced transition from J → G′, which is derived via Diagram (3.15)

for some rule L′ ← I ′ → R′; {L′ → NAC ′
y}y∈Y and all squares are pushouts with

monos except for the indicated pullback. The morphism J → F is split by F1 and

so we can split the leftmost pushouts of Diagram (3.15) by pushout and pushout

complement splitting, which leads to Diagram (3.16) with monos.

NAC ′
y

D′ //

²²

D
′ //

²²

L′

²²

OO

I ′

²²

oo // R′

²²
G′ // G̃′ // G′+

PB

C ′oo // H ′

J //

OO

F1

OO

// F

OO

²²

Koo

OO >>

Nz

(3.16)
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Composing Diagrams (3.14) and (3.16) leads to Diagram (3.17).

NAC ′
y

D′ //

²²

D
′ //

¢¢££
L′

zztttt

OO

I ′ //

¢¢£££
oo R′

¢¢£££

G̃′ // G′+ C ′oo // H ′

G′
@@¡¡

F1
//

ÁÁ>
>

OO

F
%%KKK

KK

OO

²²

Koo

ÁÁ>
>

OO ??

J

OO

@@¡¡
// E // E2 E1

oo

Nz

J

OO

// F

OO

Koo

OO

(3.17) NAC ′
y

// Mz Nz
oo

L′

OO

//

=
j.epi

G′+

OO

F

OO

oo

PO

(3.18)

Nz
// M ′

x Nx
oo

F

OO

//

=
j.epi

E2

OO

F

OO

oo

PO

(3.19)

NAC ′
y

// Mx Nx
oo

L′

OO

//

=
j.epi

G
′+

OO

F

OO

oo

PO

(3.20)

In Diagram (3.17) we build the two remaining cubes that are shown in Dia-

gram (3.21). We construct the pushouts G̃′ → G
′ ← E, G′+ → G

′+ ← E2,

C ′ → C
′ ← E1 and C

′ → H
′ ← H ′ of G̃′ ← F1 → E, G′+ ← F → E2, C ′ ← K → E1

and C
′ ← C ′ → H ′, respectively. The universal property of the pushouts gives the

remaining morphisms to complete the cubes in Diagram (3.21). By applying pushout

and pullback properties in Diagram (3.21) (see [EK06] for details) it turns out that

all squares are pushouts with monos, except for (D′, G′, D
′
, G

′
), front and back faces

of the cube on the right and (E2, F , E1, K) that are pullbacks.

NAC ′
y

D′ //

²²

D
′ //

²²

££¦¦¦
L′

²²

{{vvv
vv

OO

I ′ //

££¦¦
¦

²²

oo R′

²²

¢¢¥¥
¥

G̃′ //

¿¿9
99

G′+
##GGG

G C ′oo //

¿¿9
99

H ′

¿¿:
::

G′ //

BB¦¦¦
G
′ //

G
′+

C
′oo // H

′

F1
//

ÀÀ;
;;

OO

F
$$III

II

OO

²²

Koo

ÀÀ;
;;

OO BB

J

OO

AA¤¤¤
// E

OO

// E2

OO

E1

OO

oo

AA

Nz

J

OO

// F

OO

²²
Koo

OO

HH

Nx

(3.21)

In Diagram (3.21) we then construct {F → Nx}x∈X as shown in Diagram (3.19).

The arrows F → E2 ← F and {F → Nz}z∈Z are already present in Diagram (3.21)
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and so we build M ′
x and Nx by considering all jointly epi squares. Each F → Nx

constructed in this way can be also derived as a negative borrowed context with

Diagram (3.20) due to Lemma 3.3.7 (NAC compatibility, where L, NACy, G+ and

G
+

should be replaced by L′, NAC ′
y, G′+ and G′+, respectively). Furthermore, we

will not derive additional negative borrowed contexts because the arrows F → Nz

with z ∈ Z ′ can not be extended to negative borrowed contexts of the full object G
′+

since an appropriate Diagram (3.19) does not exist. Hence, we obtain a transition

label from J → G
′
which satisfies Conditions (ii) and (iii) of Definition 3.3.4. We still

have to show that the BC step from G
′+

is NAC-consistent (Condition (i)).

Observe that F → E2 ← F of Diagram (3.13) (from Step A) and Diagram (3.19) are

equal and do not contain any information about G or G′ (see Appendix B.2). We can

conclude that Diagram 3.13 and Diagram 3.19 generate the same negative borrowed

contexts in both steps. Since in Diagram (3.10) there is no negative borrowed context

which is an iso (due to the NAC-consistency of its BC steps), then the same holds

for Diagram (3.21). By Lemma 3.3.8 we conclude that the BC step from J → G
′
is

also NAC-consistent.

Finally, by Definition 3.3.5 (bisimulation) we infer that (J → G
′
)
J→F←K;{F→Nx}x∈X−−−−−−−−−−−−−→

(K → H
′
), and since the square (K, H ′, E1, H

′
) is a pushout, K → H

′
is K → H ′

inserted into the context K → E1 ← K. From earlier considerations we know that

K → H is obtained by inserting K → H into K → E1 ← K. Hence, we can conclude

that (K → H) R̂ (K → H
′
) and we have achieved our goal stated at the beginning

of the proof, which implies that R̂ is a bisimulation and ∼ is a congruence.

3.4 Proof Techniques for DPO-BC with NACs

We introduce here some proof techniques to speed up the bisimulation checking pro-

cedure.

By taking a closer look at Definition 3.3.5 (bisimulation) we can notice that the

very same relation R is mentioned in the hypothesis and conclusion. Thus, in order

to check a pair (J → G, J → G′) for bisimilarity we need exactly every single pair of

successors, which can be derived from (J → G, J → G′), to be present in the relation

R. Furthermore, none of these pairs of successors can be discarded from R or have its

component objects manipulated. Hence, a bisimulation relation often contains many

pairs strongly related with each other, i.e., pairs whose bisimilarity may be directly

inferred from the bisimilarity of other pairs.

These redundancies in R often make the bisimulation verification heavy and te-

dious. In the DPO approach objects are defined up to isomorphism, and therefore its
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extension to borrowed contexts should also be able to handle isomorphisms in a nat-

ural way during bisimulation checks. However, many pairs of objects with interface

to be checked for bisimilarity would require infinite bisimulation relations R, because

R is not closed under isomorphism.

In these cases up-to techniques [San95] are of great help since they can relieve the

onerous task of bisimulation proofs by reducing the size of the relation needed to

define a bisimulation. They also provide the means to check bisimilarity with finite

up-to relations in some cases where any bisimulation is infinite. Now we have to

introduce the notion of progression (see also [San95]).

Definition 3.4.1 (Progression with NACs). Let R, S be relations containing

pairs of objects with interfaces of the form (J → G, J → G′), where R is symmetric.

We say that R progresses to S, abbreviated by R ½ S, if for every (J → G)R (J →
G′) and a transition

(J → G)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H)

there exists an object with interface K → H ′ and a transition

(J → G′)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H ′)

such that (K → H)S (K → H ′).

According to Definition 3.3.5, a relation R is a bisimulation with NACs if and only

if R ½ R. Sangiorgi investigates in [San95] progressions of the form R ½ F(R),

where F is a function on relations. This leads to the definition below, where pairs

(J → G, J → G′) related by R evolve to pairs (K → H, K → H ′) related by F(R),

instead of remaining within R.

Definition 3.4.2 (Bisimulation up to F with NACs). Let P be a set of produc-

tions with NACs, R a symmetric relation containing pairs of objects with interfaces

(J → G, J → G′) and F a function from relations to relations. The relation R is

called a bisimulation up to F with NACs if, for every (J → G)R (J → G′) and a

transition

(J → G)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H),

there exists an object with interface K → H ′ and a transition

(J → G′)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H ′)

such that (K → H) F(R) (K → H ′). In this case, R ½ F(R).
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The function F is in charge of creating a relation with new pairs induced by related

pairs in R. This allows us to work with relations that are often much smaller than

those needed to show R ½ R. For example, in the BC framework a function F iso

(defined later on) to close a relation under isomorphisms is quite handy since it allows

us to handle many infinite bisimulation relations in a finite way. In practice we do

not employ F to create a new relation from R, instead we only check the membership

of specific pairs, i.e., we ask whether a pair (K → H, K → H ′) belongs to F(R).

However, not any function F is suitable for an up-to technique since it might not

be sound with respect to bisimilarity ∼.

Definition 3.4.3 (Soundness). A function F on relations is sound if any R as a

bisimulation up to F , i.e., R ½ F(R), implies R ⊆∼.

Definition 3.4.4 (Respectfulness). A function F on relations is respectful if

whenever R ⊆ S and R ½ S, then F(R) ⊆ F(S) and F(R) ½ F(S).

An important property of respectful functions is that they are preserved by function

composition, i.e., they can be combined to form new up-to techniques. Furthermore,

respectful functions are sound.

Theorem 3.4.5. A respectful function F is sound.

Proof. See [San95].

In the following we define three up-to techniques for the borrowed context frame-

work. With the first technique we avoid checking the bisimilarity of one pair of objects

with interface more than once since we close R under isomorphism, i.e., we are able

to detect if a pair already has an isomorphic counterpart in R.

Definition 3.4.6 (F iso function). Let R be a symmetric relation containing pairs

of objects with interfaces of the form (J → G, J → G′). The F iso function closes R
under isomorphisms:

F iso (R) = {(K → H, K → H ′) | ∃ (J → G, J → G′) ∈ R and there exist

isomorphisms K
∼→ J, H

∼→ G, H ′ ∼→ G′ such that (1), (2) commute }

K

o
²²

//

(1)

H

o
²²

K //

(2)o
²²

H ′

o
²²

J // G J // G′

A more powerful technique is called up-to context. As defined in [EK06] two

objects with interface (K → H, K → H ′) are bisimilar up to context if after removal

of identical contexts the resulting pair of objects can be found in the relation R.
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Definition 3.4.7 (FC function). Let R be a symmetric relation containing pairs

of objects with interfaces of the form (J → G, J → G′). The FC function closes R
under contextualization, as in Definition 3.3.6:

FC(R) = {(K → H, K → H ′) | ∃(J → G, J → G′) ∈ R and there exists

a context J → E ← K inducing the diagrams below }

J //

²²
PO

E

²²

Koo

~~

J //

²²
PO

E

²²

Koo

~~
G // H G′ // H ′

Observe that the up-to context technique subsumes the up-to isomorphism. How-

ever, it is an important technique in practice since its membership can often be

determined faster than by using the up-to context (see Section 6.6).

Finally, we define Milner’s classical up-to bisimilarity [Mil89] for borrowed contexts.

The intuition of this technique is to automatically infer the bisimilarity of a pair

from the bisimilarity of other pairs already present in the relation R by using the

transitivity property of ∼.

Definition 3.4.8 (F∼ function). Let R be a symmetric relation containing pairs

of objects with interfaces of the form (J → G, J → G′). The F∼ function closes R
under bisimilarity:

F∼(R) = {(K → H,K → H ′) | ∃ (J → G) ∼ (K → H) and

∃ (J → G′) ∼ (K → H ′) such that (J → G)R(J → G′)}
Remark 3.4.9. The instantiations of Definition 3.4.2 (bisimulation up to F with

NACs) with the functions F iso, FC and F∼ are also called bisimulation up to iso-

morphism with NACs, bisimulation up to context with NACs and bisimulation up to

bisimilarity with NACs, respectively.

The relation obtained by applying FC to R, i.e., FC(R), is also denoted by R̂ (cf.

Definition 3.3.6).

It can be shown that each of the techniques above is respectful, and therefore it

implies bisimilarity. Moreover, they can be composed to form new techniques since

respectful functions are closed under composition, e.g., from FC and F iso we obtain

a respectful function FC ◦ F iso.

Proposition 3.4.10 (Bisimulation up to F (F = F iso,FC orF∼) with NACs

implies F Respectful). Let R be a bisimulation up to F with NACs, where F =

F iso,FC orF∼. Then F is respectful.
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Proof.

Up-to isomorphism: Follows from the definition of objects up to isomorphism.

Up-to context : Follows easily from the proof of Theorem 3.3.10 (see also [EK06]).

Up-to bisimilarity : Follows basically from the transitivity of ∼ (see also [Mil89] and

[San95]).

In Chapter 4 we extend Hirschkoff’s on-the-fly bisimulation checking algorithm

[Hir01] to the borrowed context setting in order to mechanize bisimulation proofs for

graphs with interfaces. Since this algorithm also handles up-to techniques we give in

Section 6.6 algorithms to implement the up-to isomorphism and context techniques.

Now we will investigate the feasibility of checking a pair of objects with interface

for bisimilarity without having to deal with all transition labels generated by Defini-

tion 3.3.4. For productions of the form L ← I → R (without NACs) a bisimulation

checking technique is proposed in [EK06] and it takes into account only certain la-

bels. A label is considered superfluous and called independent if we can add two

arrows D → J and D → I to the BC step diagram in Definition 3.2.3 such that

D → I → L = D → L and D → J → G = D → G. That is, intuitively, the object G

to be rewritten and the left-hand side L overlap only in their interfaces. Any move

made by an independent label need not be matched in the bisimulation game, since

a matching transition is always possible (see Proposition 3.4.12). Hence, only de-

pendent labels have to be checked. Dependent labels are called engaged in Milner’s

approach [Mil06]. In the following we will investigate whether this technique can be

carried over to productions with NACs.

First, we repeat the relevant definition for productions without NACs.

Definition 3.4.11 ((In)Dependent Transition Labels of Productions without

NACs). Let (J → G)
J→F←K−−−−−→ (K → H) be a transition of (J → G). We say

that this transition is independent whenever we can add two arrows D → J and

D → I to the diagram in Definition 3.2.3 such that the diagram below commutes, i.e.,

D → I → L = D → L and D → J → G = D → G. We write (J → G)
J→F←K−−−−−→d

(K → H) if the transition is not independent and we call it dependent.

D //

²²

ºº

''
L

²²

Ioo //

²²

R

²²
G // G+ Coo // H

J

OO

// F

OO

Koo

OO >>

(3.22)
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Let R, S be relations containing pairs of objects with interfaces of the form (J →
G, J → G′), where R is symmetric. We say that R d-progresses to S, abbreviated by

R ½d S, if whenever (J → G)R (J → G′) and (J → G)
J→F←K−−−−−→d (K → H), there

exists an object with interface K → H ′ such that2 (J → G′) J→F←K−−−−−→ (K → H ′) and

(K → H)S (K → H ′).

If no NACs are present, the proof technique works according to the following propo-

sition.

Proposition 3.4.12.

(i) Let R be a relation with (J → G)R (J → G′). Given an independent transition

(J → G)
J→F←K−−−−−→ (K → H), then there is an independent transition (J →

G′)
J→F←K−−−−−→ (K → H ′) via the same production and context such that (K →

H) R̂ (K → H ′).

(ii) Let R be symmetric and let R ½d R̂. This implies that R is contained in ∼.

Proof. See Proposition 5.5 in [EK06].

Unfortunately, as we will show in the following counterexample, the proof technique

based on (in)dependent labels does not carry over straightforwardly into the setting

with NACs. We will give an example for a transition with an independent label for

one graph that can not be simulated by its partner due to the fact that the negative

application condition is satisfied for the first graph, but not for the second.

Figure 3.7: A borrowed context step from J → G

Consider two graphs with interface: J → G (Figure 3.7) and J → G′ (Figure 3.8).

Above we depict how the independent label li = J → F ← K; {F → N1} is derived from

J → G via a graph production p = L ← I → R; {L → NAC} using Definition 3.3.4.

2Note that J → G′ may answer with an independent transition label.
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Recall that if p was a rule without NAC then the same transition label li would

be induced for J → G′ and it would not be necessary to consider these labels in

the bisimulation checking procedure (see (i) in Proposition 3.4.12). However, the

presence of a NAC in p restricts the applicability of this proof technique since the

transition with label li of J → G′ is only feasible if the BC step is NAC consistent (see

Condition (i) of Definition 3.3.4). Figure 3.8 illustrates the induced BC step from

J → G′ via p. This BC step is not NAC consistent since G′+ contains NAC. However,

for completeness we still list all negative borrowed contexts (on the right).

Figure 3.8: A borrowed context step from J → G′

Note that in other cases the BC step of the second graph could be feasible, but

with different negative borrowed contexts. Again, in this case the two steps would

not properly match each other and the two graphs would not be bisimilar.

Due to the problems with NAC consistency discussed above Proposition 3.4.12

(for rules without NACs) has a much weaker counterpart in the setting with NACs.

In Proposition 3.4.13 we consider independent and dependent transition labels for

borrowed context steps with NACs analogously as for BC steps without NACs (see

Definition 3.4.11), i.e., a label l = J → F ← K; {F → Nz}z∈Z is independent

whenever there exist arrows D → I and D → J with the required commutativity;

otherwise l is dependent.

Proposition 3.4.13.

(i) Let R be a relation with (J → G)R (J → G′). Given an independent transition

t = (J → G)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H), then there is an independent

transition t′ = (J → G′)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H ′) via the same production

with NACs and context with (K → H) R̂ (K → H ′) whenever Condition (iii)

of Definition 3.3.4 yields for t′ a set {F → Nz}z∈Z which is isomorphic to the

set in t.
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(ii) Let R be symmetric and let R ½x R̂, where x is either an independent label

which does not satisfy (i) or a dependent label. This implies that R is contained

in ∼.

Proof. This follows directly from Proposition 3.4.12 with support of Lemma 3.3.8 to

ensure NAC consistency for the BC step from J → G′.

As we have shown, the proof technique based on independent labels does not work

in general for rules with NACs. On the other hand, we can still use Proposition 3.4.13

to improve efficiency of the bisimulation checking procedure. This works as follows:

whenever we derive an independent label from J → G via a production with NACs,

we can construct the same borrowed context diagram for J → G′ and it only remains

to show that in both cases the same set of negative borrowed contexts is produced.

Then for sure the BC step from J → G′ is NAC consistent and both independent

labels are suitable matched. Furthermore, in this case it is not necessary to check

whether the pair of successors is contained in the bisimulation relation since both can

be obtained by inserting J → G, J → G′ into the same context (this is analogous to

the corresponding proof of Proposition 3.4.12). This simplification will often lead to

smaller bisimulations.

We illustrate this efficiency improvement for our next example.

3.5 Example 1: Servers as Graphs with Interfaces

Here we apply the DPO-BC extension to NACs in order to check the bisimilarity of

two graphs with interfaces J1 → G1 and J1 → G2 (shown in Figure 3.9 to the right)

with respect to rule1 and rule2 of Section 3.3.1. Here G1 contains only one server,

whereas G2 contains two servers which may work in parallel.

On the left side of Figure 3.9 it is shown a transition derivation for J1 → G1

(which contains only one server) via rule2 according to Definition 3.3.4. There

is no mono NAC1 → G+
1 forbidding the BC rewriting (Condition (i)), and hence

the step is NAC consistent. The graph C1 and additional monos lead to the BC

step (Condition (ii)). The construction of the negative borrowed context F1 → N1

from NAC1 ← L2 → G+
1 ← F1, as specified in Condition (iii), is shown on the right.

Here the graph M1 is the only possible overlap of NAC1 and G+
1 such that the

square with indicated jointly epi monos commutes. Since the pushout complement

F1 → N1 → M1 exists, G+
1 can be indeed extended to M1 by gluing N1 via F1. All

three conditions of Definition 3.3.4 are satisfied and so the BC step above with

label = J1 → F1 ← J1; {F1 → N1} is feasible. This transition can be interpreted as

follows: the environment provides G1 with a T-task in Q2 (see borrowed context F1)
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Figure 3.9: Servers J1 → G1 and J1 → G2 and a borrowed context step from J1 → G1

in order to enable the BC step, but the rewriting is only possible if no T-task is

waiting in queue Q1 (see N1). It can be shown that J1 → G2 can do a matching step

with the same label.

Analogously, we can derive other transitions from J1 → G1 and J1 → G2, where the

labels generated via rule1 (without NAC) do not have any negative borrowed context.

In Figure 3.10 we depict schematically the resulting labeled transition systems (LTS),

for which we have already shown the derivation of label for J1 → G1. In each LTS

the labels on the left are derived via rule1 and the labels on the right via rule2. The

label l′ results from rule1 with a maximal overlap of the graph (G1 or G2) and the left-

hand side (similar to label). Both LTSs have several transitions pointing downwards

(labelled l′′,l′′′, etc.), which are derived with partial matches smaller than the matches

of the loops. In fact, the labels in both LTSs are the same and the resulting states

can be matched. So J1 → G1, J1 → G2 and all their successors can be matched via a

bisimulation and we conclude that (J1 → G1) ∼ (J1 → G2).

Figure 3.10: Labeled transition systems for J1 → G1 and J1 → G2
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Figure 3.11: Example of independent label derivation from J1 → G1

Note that in order to obtain an extended example, we could add a rule modeling

the processing of tasks waiting in queue Q1.

In the following we illustrate how independent labels can be used to improve the

efficiency of the bisimulation checking procedure. Consider the servers J1 → G1 and

J1 → G2 of Figure 3.9. In Figure 3.11 we derive the label J1 → F1 ← K1; {F1 → N1}
via rule2 according to Definition 3.3.4. This transition label is independent w.r.t. Def-

inition 3.4.11 since there exist D → J1 and D → I2 such that D → G1 = D → J1 → G1

and D → L2 = D → I2 → L2. In this case the environment provides G with the entire

left-hand side of the rule (see F1).

Since the label above is independent it induces the derivation of an independent la-

bel J1 → F1 ← K1 (without negative borrowed contexts) for the transition of J1 → G2

via rule2 (compare with Proposition 3.4.12 for productions without NACs). However,

rule2 has a NAC and so we have to check an additional requirement, namely that the

negative borrowed contexts are the same for both independent transition labels (see

Proposition 3.4.13). Whenever this extra requirement is satisfied the independent

transition label J1 → F1 ← K1; {F1 → N1} is the same for both BC steps and the BC

step of J1 → G2 is NAC consistent (due to Lemma 3.3.8).

We describe how this condition is checked. In Diagram (3.23) the morphisms

NAC 1 ← L2 → F1 ← J1 and J1 → G2 are already known. The morphisms L2 →
F1 ← J1 stem from the BC step of J1 → G1. We then construct the pushout square

in the second row and L2 → G+
2 is the composition of L2 → F1 and F1 → G+

2 . The
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construction of the upper part of the diagram proceeds as in Definition 3.3.4 (BC

rewriting with NACs). On the right we depict this diagram for our current example.

Note that NAC1 is not present in G+
2 and the negative borrowed context F1 → N1

obtained below is the same as for the independent label of J1 → G1. In this case,

the induced BC step of J1 → G2 is NAC consistent and provides a matching label for

the transition of J1 → G1. Furthermore, we do not have to check whether the pair

of successors is contained in the bisimulation relation since both can be obtained by

inserting J → G1, J → G2 into the same context.

NAC 1
// M2 N1

oo

L2

=
j.epi

//

OO

55G+
2

OO

F1

PO

OO

oo

G2

OO

J1
oo

OO

PO

(3.23)

3.6 Example 2: Blade Servers

In this section we present a more elaborate example in terms of blade server systems.

A blade server is a server chassis which has multiple circuit boards, known as blade

units. Each blade unit is a server in its own right with components such as processors,

memory and local disk storage. These systems are flexible and modular since their

processing power can be extended by just adding blade units.

Figure 3.12: Two blade serves as graphs with interface.

Figure 3.12 illustrates two blade servers. Each server chassis (M-labeled node)

has three ports: input (in-node), output (out-node) and status (s-node). The input

receives commands from external systems (not modeled here) which are executed by

a blade. The output makes the result of command executions available to external
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systems. The status indicates if a blade server is busy and cannot handle any further

request. The external systems have only access to these three ports (see interfaces J).

Each blade (B-node) performs command executions independently from other blades.

Single-processed blades (marked with a 1x-loop) perform one command execution at

a time, while double processed blades (depicted with a 2x-loop) perform up to two

commands.

The operational semantics for our blade servers, which is not intended to be com-

prehensive, is given by the rules in Figure 3.13. The NACs of all rules, except for

Update-Status2, are depicted as extensions of left-sides L, i.e., a full NAC is L∪NACi.

Read-in shows how a command (cmd-node) is read by an available blade (indicated

by a free-loop). The free-loops on each blade specify its processing power currently

available. To improve efficiency, each blade handles incoming command requests si-

multaneously. The NACs of Read-in restrict a command to be read only when the

blade server is not busy (NAC1) and not fully loaded (NAC2 and NAC3).

Figure 3.13: Operational semantics rules for blade serves.

Update-Status1 and Update-Status2 update the current status of a server. When a

command is read we set the status to busy and force updating. Update-Status1 verifies

if there is a free blade so that the busy-flag can be removed. The rule Update-Status2

checks if the server is not fully loaded. Process executes commands if the server is not

currently updating (see NAC1). Process-in-parallel1 allows a double capacity blade to

execute two commands in one single step. Process-in-parallel2 specifies that two single
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capacity blades can execute their commands in parallel. Finally, Write-out returns

the result, sets the blade as available (free-loop) and flags the blade server to update

its status.

From J → G and J → G′ and the operational semantics rules we derive the labeled

transition system (LTS) of Figure 3.14 w.r.t. to Definition 3.3.4. Black circles are

states and arrows are annotated with labels and rule names. In our example, for

each state the processing capability of a free blade is represented as “ ”. In the

following C abbreviates “command” and R stands for “result”. So when a blade reads

a command, then “ ” becomes “C” and when the command is executed, then “C”

becomes “R”. Since graphs are considered up to isomorphism “C ” (“R ”) represents

the same system state as “ C” (“ R”). If the start state is J → G (J → G′) then

Process-in-parallel1 (Process-in-parallel2) is applied to derive the transition between

the “CC” and “RR” states. Labels with the same index (e.g. l2) are equal. Figure 3.15

shows the remaining labels (l2, l3, l5, l6, l7 and l8) which are associated with empty sets

of negative borrowed contexts.

Figure 3.14: Labeled transition system for J → G (J → G′).

The LTS of Figure 3.14 is a simplification since the dashed arrows point to graphs

that are basically J → G (J → G′) plus some extra elements to represent the results of

processed commands (which are the same in both cases). This issue is automatically

handled by the up-to context technique given in Definition 3.4.7. For example, con-

sider the dashed transition l4: whenever we perform l4 in the LTS of J → G and also

in the LTS of J → G′ they properly match each other, and furthermore, the pair of

resulting graphs can be found in the bisimulation relation after removal of identical
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Figure 3.15: Remaining transition labels of Figure 3.14.

contexts, i.e., after peeling off the results of processed commands generated through

the paths • l1→ • l2→ • l2→ • l3→ • (see leftmost loop in Figure 3.14). Compare the blade

server J → G with the resulting server obtained from the derivation of label l4 in

Figure 3.17.

We illustrate two borrowed context steps for the LTS of the blade server J → G.

Figure 3.16 depicts the derivation of label l1. On the right we show how the negative

borrowed context is generated. Observe that L → NAC2 and L → NAC3 of Read-in do

not yield any negative borrowed contexts.

Figure 3.16: Label derivation – label l1

Figure 3.17 shows the derivation of l4 via Update-Status2.
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Figure 3.17: Label derivation – label l4

Blade servers are very flexible in terms of adding and removing blades to cover

non-constant demands in terms of computational power. In our example even though

each blade processes commands independently from other blades, we had to make this

explicit for two single-processor blades inside the same blade server. If we had not de-

fined Process-in-parallel2, it would not have been possible to show (J → G) ∼ (J → G′).
This problem might be solvable by using parallel rule applications, but this might

lead to problems with non-injective matches. Furthermore, we would get a different

notion of behavioral equivalence that is reminiscent of step bisimilarity.

3.7 Conclusions and Future Work

We have shown how rules with NACs should be handled in the DPO with borrowed

contexts and proved that the derived bisimilarity relation is a congruence. This

extension to NACs is relevant for the specification of several kinds of non-trivial

systems, where complex conditions play an important role. They are also frequently

used when specifying model transformation, such as transformations of UML models.

Behavior preservation is an important issue for model transformation.

Here we have obtained a finer congruence than the usual one. Instead, if one

would reduce the number of possible contexts (for instance by forbidding contexts

that contain certain patterns or subobjects), we would obtain coarser congruences,

i.e., more objects would be equivalent. Studying such congruences will be a direction

of future work.

Furthermore, a natural question to ask is whether there are other extensions to the
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DPO approach that, when carried over to the DPO-BC framework, would require

the modification of transition labels. One such candidate are generalized application

conditions, so-called graph conditions [Ren04], which are equivalent to first-order

logic and of which NACs are a special case. Such conditions would lead to fairly

complex labels.

As a straightforward consequence of a technique based on initial pushouts proposed

in [BGK06a] we defined the notion of gluing condition for borrowed context rewriting,

where one can easily check whether a given partial match guarantees the existence of

the pushout complements required to perform a label derivation.

Due to the fact that the bisimulation checking procedure is time consuming and

error-prone when done by hand, we extend in the next chapter the on-the-fly bisim-

ulation checking algorithm, defined in [RKE07, Hir01], to handle productions with

NACs. However, in order to do this efficiently we still need further speed-up tech-

niques such as additional up-to techniques and methods for downsizing the transition

system, such as the elimination of independent labels. We discussed in Section 3.4

that the proof technique eliminating independent labels as in [EK04, EK06] (or non-

engaged labels as they are called in [Mil06]) does not carry over straightforwardly

from the case without NACs, but that it can still be useful. This needs to be studied

further.

Some open questions remain for the moment. First, in the categorical setting it

would be good to know whether pullbacks always preserve epis in adhesive categories.

This question is currently open, as far as we know. Second, it is unclear where the

congruence is located in the lattice of congruences that respect rewriting steps with

NACs. As for IPO bisimilarity it is probably not the coarsest such congruence, since

saturated bisimilarity is in general coarser [BKM06]. So it would be desirable to

characterize such a congruence in terms of barbs [RSS07].

Finally, it is not clear to us at the moment how NACs could be integrated directly

into reactive systems and how the corresponding notion of IPO would look like. In

our opinion this would lead to fairly complex notions, for instance one would have to

establish a concept similar to that of jointly epi arrows.



Chapter 4

Bisimulation Verification

4.1 Motivation

Model transformation [MG06] concerns the automatic generation of models from

other models according to a transformation definition, which describes how a model

in the source language can be transformed into a model in the target language. Such

transformations can take place between different models or, more specifically, inside

one single model (refactoring). Software refactoring is a modern software develop-

ment activity to cope with the internal modification of source code to improve system

quality, without changing the observable behavior. In extreme programming [BF01]

refactoring belongs to the software development cycle and developers alternate be-

tween adding new functionality and refactoring the code to improve its internal con-

sistency, reusability, flexibility and clarity.

Graph transformation systems (GTS) are well-suited to model not only refactorings

but also model transformation (see [MT04] for the correspondence between refactor-

ing and GTS). A GTS specifies model transformation by defining graph transfor-

mation rules to translate one model into another. The general idea is to have a

graph describing an instance of the source model as a start graph and to apply

graph productions until no further production can be applied and the resulting graph

is an instance of the target model. Model transformations via GTS can be found

in [EE06, EW06, VVGE+06]. A crucial question that must be asked is whether a

given refactoring (or model transformation) is behavior-preserving, which means that

transforming one model into another model does not change the original external be-

havior. In practice, the proof of behavior-preserving transformations is not an easy

task and therefore one normally relies on test suite executions and informal argu-

ments in order to improve confidence that the behavior is preserved. In a recent

paper Narayanan and Karsai [NK06] proposed a method for checking bisimilarity in
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model transformations using GTS which is similar to ours. The new contribution of

our work here is to present an efficient bisimulation checking algorithm, which works

on the fly for infinite state spaces, and to develop the theory in the very general

framework of borrowed contexts [EK06, RKE08a].

The work presented in this chapter extends the results of our paper [RKE07] to

handle graph rules with negative application conditions, as in Chapter 3.

We give a formal treatment of the question of behavior-preserving refactoring. We

define model refactoring by graph transformation rules in the Double Pushout Ap-

proach (DPO) [CMR+97, EEPT06], which is one of the standards for GTS. Our goal

is to show that instances of one model are bisimilar to their refactored counterparts,

which implies behavior preservation. We employ the extension of DPO to borrowed

contexts [EK06, RKE08a], which provides the means to reason about bisimilarity.

We also extend Hirschkoff’s [Hir01] on-the-fly bisimulation checking algorithm to deal

with our setting [EK06, RKE08a]. A case study of refactoring is presented in terms

of minimization of deterministic finite automata (DFA), where we can test if a given

DFA is bisimilar to its minimal refactored version. Another case study concerning

the flattening of hierarchical statecharts is also given.

4.2 Double-Pushout with Borrowed Contexts

Here we recall the DPO extension to borrowed contexts (BC) already presented in

Section 3.3 for rules with negative application conditions. While in Chapter 3 the

BC machinery is defined upon the general framework of adhesive categories [LS05], in

this chapter it is tailored to the category of labeled graphs1. Those already familiar

with Section 3.3 may safely skip this section and go directly to Section 4.3, where we

present algorithms for the mechanization of bisimulation proofs.

Definition 4.2.1 (Graph and Graph Morphism). A graph G = (V, E, s, t, lv, le)

consists of a set V of nodes, a set E of edges, two functions s, t : E → V (source

and target) and two labeling functions for nodes and edges lv : V → ΩV , le : E → ΩE,

where ΩV and ΩE are node and edge labels. A graph morphism f : G1 → G2 is a

pair of functions f = (fE : E1 → E2, fV : V1 → V2), which is compatible with source,

target and labeling functions of G1 and G2, i.e., fV ◦ s1 = s2 ◦ fE, fV ◦ t1 = t2 ◦ fE,

le2 ◦ fE = le1 and lv2 ◦ fV = lv1.

In the standard DPO approach, graph productions rewrite graphs with no interac-

tion with any other entity than the graph itself and the production. In the DPO with

1The category of labeled graphs is called Graphs and is defined in Appendix A. Moreover, it is
an instance of an adhesive category [EEPT06].
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borrowed contexts [EK06, RKE08a] graphs have interfaces and may borrow missing

parts of left-hand sides from the environment via the interface. This leads to open

systems which take into account interaction with the outside world.

Definition 4.2.2 (Graphs with Interfaces and Graph Contexts). A graph G

with interface J is a morphism J → G and a context consists of two morphisms

J → E ← J . The embedding of a graph with interface J → G into a context

J → E ← J is a graph with interface J → G which is obtained by constructing G as

the pushout of J → G and J → E (see diagram below).

J //

²²
PO

E

²²

Joo

¡¡
G // G

The embedding is defined up to isomorphism since the pushout object is unique up

to isomorphism. Moreover, embedding/insertion into a context and contextualization

are used as synonyms.

We consider graph rules with negative application conditions, as in Chapter 3.

Below we define when a borrowed context step is NAC consistent, i.e., the NACs of

a rule do not forbid the BC step.

Definition 4.2.3 (NAC-Consistent Borrowed Context Step). Assume that all

morphisms are injective. Given J → G and a production p : L ← I → R; {ny : L →
NAC y}y∈Y we say that a partial match pm : G ← D → L leads to a NAC consistent

BC step with respect to J → G and p if for the pushout G+ in the diagram below

there is no qy : NAC y → G+ with m = qy ◦ ny for every y ∈ Y .

D //

²²
PO

L
m

²²

ny //

=

NAC y

qy
|ww

ww

{{wwww

J // G // G+

We need the concept of a pair of jointly surjective morphisms in order to “cover”

a graph with two other graphs. That is needed to find possible overlaps between the

NACs and the graph G+ which includes the borrowed context.

Definition 4.2.4 (Jointly Surjective Morphisms). Two morphisms f : A → B

and g : C → B are jointly surjective whenever for every pair of morphisms a, b : B →
D such that a ◦ f = b ◦ f and a ◦ g = b ◦ g it holds that a = b.

In a pushout square the generated morphisms are always jointly surjective. This

is a straightforward consequence of the uniqueness of the mediating morphism.
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Definition 4.2.5 (Borrowed Context Rewriting for Rules with NACs). Given

J → G, a production L ← I → R; {L → NAC y}y∈Y and a partial match G ← D →
L, we say that J → G reduces to K → H with transition label J → F ← K; {F →
Nz}z∈Z if the following holds:

(i) the BC step is NAC consistent (as in Definition 4.2.3);

(ii) there exist graphs G+, C and additional injective morphisms such that Dia-

gram (4.1) below commutes and the squares are either pushouts (PO) or pull-

backs (PB);

(iii) the set {F → Nz}z∈Z contains exactly the morphisms constructed via Dia-

gram (4.2) (where all morphisms are injective). (That is, there exists a graph

Mz such that all squares commute and are pushouts or morphisms are jointly

surjective as indicated.)

NAC y

D //

²²
PO

L

m

²²

ny

OO

PO

Ioo //

²²
PO

R

²²
G //

PO

G+

PB

Coo // H

J

OO

// F

OO

²²

Koo

OO >>

Nz

(4.1)

NAC y
//

=

Mz

PO

Nz
oo

L

ny

OO

m
//

j.surj.

G+

OO

Foo

OO (4.2)

In this case a borrowed context step (BC step) is feasible and we write: (J → G)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H).

We explain the construction of BC steps in two situations: the simplest case is

when the rule does not have NACs, whereas in the presence of NACs we have to

handle additional conditions.

When no NACs are present in Definition 4.2.5 Condition (ii) does the job, i.e.,

we can safely discard the other two conditions. In this case consider Diagram (4.1).

The upper left-hand square merges L and the graph G to be rewritten according to

a partial match G ← D → L. The resulting graph G+ contains a total match of L

and can be rewritten as in the standard DPO approach, producing the two remaining

squares in the upper row. The pushout in the lower row gives us the borrowed (or
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minimal) context F , along with a morphism J → F indicating how F should be

pasted to G. Finally, we need an interface for the resulting graph H, which can be

obtained by “intersecting” the borrowed context F and the graph C via a pullback.

Note that the two pushout complements that are needed in Definition 4.2.5, namely

C and F , may not exist. In this case, the rewriting step is not feasible. Due to the

absence of NACs Diagram (4.1) produces no F → Nz.

By taking NACs into account, a BC step can only be executed when G+ contains

no forbidden structure of any negative application condition NAC y at the match of

L (Condition (i)). Additionally, enriched labels are generated (Condition (iii)). The

morphisms F → Nz in Condition (iii) are also called negative borrowed contexts and

each Nz represents the structures that should not be in G+ in order to enable the

BC step. This extra information in the label is of fundamental importance for the

bisimulation game with NACs (Definition 4.2.6), where two graphs with interfaces

must not only agree on the borrowed context which enables a transition but also on

what should not be offered by the environment in order to perform the transition. The

negative borrowed contexts F → Nz are obtained from NAC y
ny← L

m→ G+ ← F of

Diagram (4.1) via Diagram (4.2), where we create all possible overlaps Mz of G+ and

NAC y in order to check which structures the environment should not provide in order

to assure a NAC-consistent BC step. To consider all possible overlaps is necessary

in order to take into account that parts of the NAC might already be present in the

graph which is being rewritten. Due to the non-uniqueness of the jointly-surjective

square one single negative application condition NAC y may produce more than one

negative borrowed context F → Nz.

Whenever the pushout complement in Diagram (4.2) exists, the graph G+ with

borrowed context can be extended to Mz by attaching the negative borrowed context

Nz via F . When the pushout complement does not exist, some parts of G+ which

are needed to perform the extension are not “visible” from the environment and no

negative borrowed context is generated.

Now we show how transition labels are used to check bisimilarity between two

graphs with interface. A bisimulation is an equivalence relation between states of

transition systems, associating states which can simulate each other.

Definition 4.2.6 (Bisimulation and Bisimilarity with NACs). Let P be a set

of productions with NACs and R a symmetric relation containing pairs of graphs with

interfaces (J → G, J → G′). The relation R is called a bisimulation with NACs if,

for every (J → G)R (J → G′) and a transition

(J → G)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H),
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there exists a graph with interface K → H ′ and a transition

(J → G′)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H ′)

such that (K → H)R (K → H ′).

We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that relates

the two graphs with interface. The relation ∼ is called bisimilarity with NACs.

We often drop “with NACs” from bisimulation (bisimilarity) when it is clear from

context.

Not all labels derived from a graph and a set of productions are relevant for the

bisimulation. Whenever a rule has no NACs we can distinguish two kinds of transition

labels.

Definition 4.2.7 ((In)Dependent Transition Labels of Productions without

NACs). Let (J → G)
J→F←K−−−−−→ (K → H) be a transition of (J → G). We say

that the transition is independent whenever we can add two morphisms D → J and

D → I to the diagram in Definition 4.2.5 such that the diagram below commutes, i.e.,

D → I → L = D → L and D → J → G = D → G. We write (J → G)
J→F←K−−−−−→d

(K → H) if the transition is not independent and we call it dependent.

D //

²²

¼¼

&&
L

²²

Ioo //

²²

R

²²
G // G+ Coo // H

J

OO

// F

OO

Koo

OO >>

An independent label has a borrowed context F that provides the entire left-hand

side L for G, and hence G does not contribute to the rewriting. (A trivial example

is a label derived with D = ∅.) The figure above on the right schematically depicts

this situation where the partial match occurs only in the overlap of the interfaces

J and I leading to an independent label. In Figure 4.1(a) we give an example of

a dependent label where the borrowed context F is the minimal required to allow

a borrowed context step. Figure 4.1(b) shows an independent label. Remind that

independent labels do not have a minimal borrowed context F .

When graph rules have no NACs the bisimulation game for graphs mainly takes

dependent labels into account. That is, if we modify Definition 4.2.6 in such a way

that only dependent transitions (J → G)
J→F←K−−−−−→d (K → H) have to be simulated

(either by a dependent or independent transition), then the resulting bisimilarity ∼
is unchanged. Informally, an independent label li generated from J → G and a rule

p without NACs implies the same label li for J → G′ via the same rule p. This is
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Figure 4.1: Examples of derived labels

formalized in Proposition 3.4.12 for rules without NACs. However, this result does

not scale up automatically for the case with NACs (see discussion in Section 3.4)

because the BC step for J → G′ is not NAC consistent in general (G′ may contain

elements forbidden by the NAC). Therefore, in this chapter we use this technique

only when a rule does not have NACs.

One of the main advantages of the borrowed context technique is that the derived

bisimilarity is automatically a congruence, which means that whenever one graph with

interface is bisimilar to another, one can exchange them in a larger graph without

effect on the observable behavior. This is very useful for model refactoring since we

can replace one part of the model by another bisimilar one.

Theorem 4.2.8 (Bisimilarity based on Productions with NACs is a Con-

gruence). The bisimilarity relation ∼ is a congruence, i.e., it is preserved by con-

textualization as in Definition 4.2.2.

Bisimulation proofs often yield infinite relations. Hence up-to techniques [San95] for

bisimulation are useful to relieve the onerous task of bisimulation proofs by reducing

the size of the relation needed to define a bisimulation. Bisimulation up-to is defined

by replacing (K → H)R (K → H ′) by (K → H)F(R) (K → H ′) in Definition 4.2.6,

where F is a function from relations to relations that defines the up-to technique (for

details see Section 3.4). The intuition behind up-to techniques is to automatically

infer the bisimilarity of pairs of graphs from the bisimilarity of other related pairs.

For example, the function F iso generates all isomorphic copies of every pair in R,

and hence we can decide whether a pair of graphs is bisimilar by searching R for an

isomorphic pair. A more powerful up-to technique is given by FC , which embeds all

pairs into the same contexts (as in Definition 4.2.2), for all pairs and all compatible

contexts. With FC we can ensure that a pair of graphs is bisimilar whenever after

removal of identical contexts we find the resulting pair of graphs in R.
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4.3 Bisimulation Verification for Borrowed Con-

texts

Bisimilarity is the most widespread notion of behavioral equivalence and hence algo-

rithms for bisimulation checking are of fundamental importance for verifying that two

systems are behaviorally equivalent (seen from the perspective of the environment).

The key aspects in any formal verification technique consist of properties of the

underlying formal notation such as expressive power and ease of use. Another crucial

feature a verification technique may have is tool support. Experience shows that

very often the tasks involved in formal verification are in essence repetitive, time

consuming, and in addition, when done by hand, prone to errors.

In this section we define algorithms to support bisimulation checking of graphs in

the borrowed context framework. As already stated in Chapter 2 one of the main

advantages of the BC technique to label derivation over the relative-pushout based

techniques is that it lends itself better to mechanization due to the very simple cate-

gorical concepts required by the constructions. Chapter 6 contains further algorithms

and additional implementation details.

4.3.1 Partial Match Finding

The first algorithm is for partial match finding, i.e., given a graph J → G and a

rule L ← I → R; {L → NAC y}y∈Y we want to find partial matches of the form

G ← D → L which lead to feasible borrowed context steps as in Definition 4.2.5.

The search of partial matches might lead to cases where the pushout complement

F or C (see Definition 4.2.5) does not exist and so the borrowed context step is not

feasible. This can be checked with the gluing condition of BC steps, which is based

on the categorical concept of initial pushouts (see Appendix A.3) and has already

been presented in Chapter 3 for adhesive categories.

Definition 4.3.1 (Gluing Condition of Borrowed Context Steps). Given a

production p : L
l← I

r→ R and a graph with interface J
j→ G, then a partial match

G
dg← D

dl→ L satisfies the gluing condition of a borrowed context step with respect to

p and J
j→ G if the following conditions hold for the diagram below:

(i) for the initial pushout (1) over dl there exists an injective morphism jj : JD → J

such that dg ◦ jd = j ◦ jj;

(ii) for the initial pushout (2) over dg there exists an injective morphism ii : ID → I

such that dl ◦ id = l ◦ ii.
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//
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//
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ii
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D
dl
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dg

²²

L I
l

oo
r

// R

CD
// G

J

j
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The gluing condition of a borrowed context step can be easily checked: we only

need to build JD
jd→ D and ID

id→ D (the construction for the category of graphs

is given in Appendix A.3) and check whether there exist jj and ii leading to the

required commutativity. Note that this is usually easier than building the pushout

of dg and dl and checking the existence of F and C by using the gluing condition of

standard DPO (Definition 2.3.7).

In Figure 4.2 we illustrate Condition (i) of Definition 4.3.1: whenever there does

not exist JD → J injective with JD → D → G = JD → J → G, the pushout

complement F does not exist either.
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Figure 4.2: Examples of gluing condition for BC steps

In the following we propose an algorithm that takes as input a graph with interface

J → G and a set P of productions of the form p : L ← I → R; {L → NAC y}y∈Y to
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find all possible partial matches G ← D → L that will lead to transition labels. We

first need to introduce partial morphisms.

Definition 4.3.2 (Partial Graph Morphism). Let G = (V, E, s, t, lv, le) be a graph

as in Definition 4.2.1. A subgraph S of G, written S ⊆ G, is a graph with V S ⊆
V G, ES ⊆ EG, sS = sG|ES , tS = tG|ES , lSv = lGv |V S and lSe = lGe |ES . A partial

graph morphism f : G ⇀ G′ is a total injective graph morphism f : dom(f) → G′

from a subgraph dom(f) ⊆ G to G′. Alternatively, a partial graph morphism can be

represented as a span of total injective morphisms: G ←↩ dom(f) → G′.

Given a production p : L ← I → R; {L → NAC y}y∈Y and a graph with interface

J → G, we search for partial matches leading to feasible BC steps. We describe a

procedure in 4 steps for one single production p, but it must be carried out for all

productions of P .

The procedure works as follows:

Step 1 : determine a subgraph Lclean of L, which is the largest subgraph of L

containing only node and edge labels that also occur in G. The graph

Gclean is defined analogously (with the roles of L and G exchanged).

Step 2 : create all possible subgraphs Lsub
i (i ∈ I) of Lclean .

Step 3 : for each i ∈ I find all injective total matches mx : Lsub
i → Gclean (x ∈ X).

Each mx forms a span of injective morphisms G ←↩ Gclean mx← Lsub
i ↪→

Lclean ↪→ L which is a partial match pmx : G ← Lsub
i ↪→ L.

Step 4 : if p has no NACs proceed with 4.no.NAC, otherwise with 4.NAC:

- 4.no.NAC: store each partial match pmx : G ← Lsub
i ↪→ L that leads

to a dependent label (as in Definition 4.2.7) and also satisfies the gluing

condition of Definition 4.3.1.

- 4.NAC: store each partial match pmx : G ← Lsub
i ↪→ L that leads to

a NAC consistent BC step (as in Definition 4.2.3) and also satisfies

the gluing condition of Definition 4.3.1.

Step 4.no.NAC exploits the fact that independent labels do not need to be

matched when the underlying rule has no NAC (Proposition 3.4.12). Therefore,

only partial matches leading to dependent labels are stored to derive BC steps. On

the other hand, step 4.NAC stores all partial matches that ensure NAC consistency

(Definition 4.2.3) and the gluing condition.

Figure 4.3 schematically depicts the first three steps of the algorithm. In order to

prove the correctness of this algorithm we need the following lemma.
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Figure 4.3: Steps 1-3 of the partial match finding algorithm.

Lemma 4.3.3. Given a partial match pm : L ← D → G between a production p : L ←
I → R; {L → NAC y}y∈Y and a graph with interface J → G the algorithm described

by Steps 1-3 creates it.

Proof. A partial morphism pm : L ⇀ G is by Definition 4.3.2 a total injective mor-

phism pm : dom(pm) → G, where dom(pm) is a subgraph of L. Let D = dom(pm)

and again by Definition 4.3.2 this partial match pm can be represented as a span of

total injective morphisms L ←↩ D → G.

Given subgraphs Dz of L (z ∈ Z ∪ Z ′), where Z and Z ′ are disjoint index sets,

then in general not every Dz can be mapped onto G via a total injective morphism

of the form Dz → G. The subgraphs Dz with indices z ∈ Z ′ are either bigger than

G or contain nodes or edges with labels that are not present in G. Therefore they

do not lead to partial matches. On the other hand, the subgraphs Dz with indices

z ∈ Z can be properly matched to G. For any L and G the index set Z is always

non-empty because we can create at least a partial match with Dz being the empty

graph.

By assumption pm : L ← Dz → G exists. An algorithm to create this partial match

efficiently may safely discard every Dz with indices z ∈ Z ′. However, in practice it

is difficult to foresee all subgraphs Dz of L that will not lead to partial matches.

The algorithm described by Steps 1-3 applies some techniques to skip certain Dz

with z ∈ Z ′. Moreover, it uses an optimization to reduce the search space for total

injective morphisms Dz → G.

Step 1 discards some Dz with z ∈ Z ′ by considering only the subgraphs of L which

contain elements (nodes and edges) whose labels are not present in G. This leads to

the inclusion Lclean ↪→ L, where Lclean contains only elements of L whose labels are

also in G. Analogously, G may contain elements whose labels are not in L, and hence

these elements will never be the image of a mapping from L. This gives rise to the
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inclusion Gclean ↪→ G, where Gclean contains only elements of G whose labels are in

L. These inclusions are illustrated in Figure 4.3.

Now Step 2 and Step 3 may construct partial matches. Step 2 creates all subgraphs

Lsub
i of Lclean (i ∈ I) and we obtain Lsub

i ↪→ Lclean ↪→ L. For every i ∈ I Step 3 creates

total injective morphisms mx : Lsub
i → Gclean (x ∈ X), if any. Every x ∈ X leads to a

span of injective morphisms G ←↩ Gclean mx← Lsub
i ↪→ Lclean ↪→ L, which by composition

is pmx : G ← Lsub
i ↪→ L. Finally, since pm : L ← Dz → L exists (assumption) there

will be an x ∈ X which delivers it.

Theorem 4.3.4. The partial match finding algorithm defined by Steps 1-4 is correct,

i.e., given J → G and a rule p : L ← I → R; {L → NACy}y∈Y the algorithm creates

the partial matches of the form G ← D → L that are required in the bisimulation

game.

Proof. From Steps 1-3 and Lemma 4.3.3 we obtain partial matches pmx : G ← D → L

(x ∈ X1 ∪X2 ∪X3 ∪X4), where X1, X2, X3 and X4 are disjoint index sets. However,

not any pmx leads to the a transition label. The partial matches pmx with x ∈ X4

do not satisfy the gluing condition of Definition 4.3.1, i.e., they will not lead to

feasible BC steps because either F or C does not exist. The partial matches pmx

with x ∈ X3 do not lead to NAC consistent BC steps since the NACs of the rule p

forbids the BC step. Those partial matches pmx with x ∈ X2, whose underlying rule

p has no NACs, may be safely discarded since they lead to independent labels and

they are not necessary in the bisimulation game (see Proposition 3.4.12). Finally,

Step 4 returns only those partial matches pmx with x ∈ X1 that will generate the

transition labels required to define a bisimulation, i.e., if the rule p possesses no NACs

then the generated label l via pmx will be dependent, whereas l will be an arbitrary

label whenever p has NACs.

The algorithm proposed here defines a straightforward search strategy for partial

matches. For rules without NACs this simple algorithm may end up producing too

many “candidates” of partial matches which are later discarded since they generate

independent labels (see Step 4.no.NAC ). A more efficient algorithm should constrain

the search space by skipping as many candidates as possible which will lead to inde-

pendent labels. One initial idea in this direction is to find the partial match which is

the threshold of independent labels, i.e., the partial match pm : G ← D → L where

D is the largest graph such that D → J and D → I exist with the required commu-

tativity (see Figure 4.4). Observe that other partial matches pm′ : G ← D′ → L with



4.3 Bisimulation Verification for Borrowed Contexts 77

D′ ↪→ D can be automatically discarded since they lead to independent transitions la-

bels. Hence, an improved search strategy would create partial matches G ← D′′ → L

with D′′ bigger than the threshold D, which may end up resulting in dependent labels.

More elaborate search strategies are part of our future work.

D′

%%

½½

³ p

!!B
BB

BB

D //

²²

::

¦¦

L Ioo // R

G

J

OO

Figure 4.4: Strategy to improve the partial match finding.

4.3.2 Matching Transition Labels

The bisimulation game requires the comparison of labels. In the borrowed context

framework we have to check transition labels for isomorphism as given below.

Definition 4.3.5 (Isomorphic Transition Labels). Let µi = Ji → Fi ← Ki; {Fi →
N z

i }z∈Z (i = 1, 2) be transition labels as in Definition 4.2.5. Two labels µ1 and µ2 are

isomorphic whenever it holds: there exist isomorphisms J1
∼→ J2, F1

∼→ F2, K1
∼→ K2

such that (1), (2) commute and, additionally, {F1 → N z
1}z∈Z and {F2 → N z

2}z∈Z are

isomorphic sets, i.e., each Fi → N z
i from one set has an isomorphic counterpart in

the other set such that (3) commutes.

J1

²²
(1)

∼ // J2

²²
N z

1 F1

(2)

oo ∼ // F2
// N z

2

K1

OO

∼ // K2

OO

N z
1

(3)

∼ // N z
2

F1

OO

∼ // F2

OO

We write µ1
∼= µ2 whenever µ1 and µ2 are isomorphic labels.

In order to check two graphs with interface J → G and J → G′ for bisimilarity as

in Definition 4.2.6 we first have to derive transition labels from both graphs by using

the algorithm defined in Section 4.3.1 to find partial matches between the left-hand

sides of the rules in P (set of graph rules) and the graph with interface. For every

partial match we then use Definition 4.2.5 (borrowed context rewriting) to complete

the borrowed context diagram, which gives us the transition label and the resulting
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graph with interface. Having the transitions from J → G and J → G′ we can perform

the matching of labels as specified in Definition 4.3.5 (isomorphic labels).

An alternative way to match labels consists in checking whether a label from J → G

is also derivable from J → G′ (Definition 4.3.6). This is often more efficient than

deriving all labels from J → G′, which could be a lot, and checking whether they

match. However, this strategy does not work in general for behavioral equivalences

(e.g. bisimulation), because J → G′ may have additional labels, which are not present

in J → G. Still it is useful for behavioral inclusions (also known as as preorders) such

as simulation and trace equivalence, where J → G′ contains the behavior of J → G,

but may have extra behaviors. For bisimulation one would have to derive labels from

J → G, verify if they are derivable from J → G and vice versa.

Definition 4.3.6 (Derivable Label). Given a graph J → G, a label µ = J ′ →
F ′ ← K ′; {F ′ → N ′

z}z∈Z and a set P of productions of the form L ← I → R; {L →
NAC y}y∈Y , we say that µ is derivable from J → G and P whenever it holds:

(i) there exists an isomorphism J
∼→ J ′;

(ii) Diagrams (4.3) and (4.4) yield a feasible BC step (as in Definition 4.2.5);

(iii) the set {F ′ → N ′
z}z∈Z in µ is isomorphic to the set obtained via Diagram (4.4).
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This can be checked as follows: if there exists an isomorphism J
∼→ J ′ we build

G → G+ ← F ′ as a pushout of G ← J
∼→ J ′ → F ′. For all productions P we

find all possible total injective matches mi
1 : L → G+ (i ∈ I). For each mi

1 and

m2 : G → G+, if mi
1 and m2 are jointly surjective (i.e., mi

1,V (LV ) ∪ m2,V (GV ) =

G+
V and mi

1,E(LE) ∪ m2,E(GE) = G+
E) we can take G ← D → L as a pullback of

G → G+ ← L and thus obtain a pushout. Now we check whether the BC step is

NAC consistent (Condition (i) of Definition 4.2.5). We then check the existence and

compute the pushout complement G+ ← C ← I of G+ ← L ← I and the pushout
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C → H ← R of C ← I → R. We check if there exists an injective morphism

K ′ → C such that the rightmost square in the second row is a pullback and add

the induced morphism K ′ → H. Now Condition (ii) of Definition 4.2.5 has been

satisfied as well. Finally, from the morphisms NAC y
ny← L

mi
1→ G+ ← F ′ we build a

set of negative borrowed context as in Condition (iii) of Definition 4.2.5 and check

if it is isomorphic to {F ′ → N ′
y}y∈Y in µ. Hence, if there exists a total match

mi
1 : L → G+, which allows us to complete this procedure, we say that the label

µ = J ′ → F ′ ← K ′; {F ′ → N ′
z}z∈Z is derivable from J → G and P . Note that this is

easier than partial match finding since we are only looking for total matches.

4.3.3 Checking Bisimulation “On the Fly”

Classical methods for bisimulation checking (e.g., see [PT87]) take as input the full

state spaces which are derived from the initial processes to be compared. Their main

drawback is that the whole state space must first be computed and stored. Since we

want to check graphs with interfaces for bisimilarity in the borrowed context setting

we can not afford to unfold the entire state space from two graphs since it may

be very often infinite due to the definition of graphs up to isomorphism. However,

Fernandez and Mounier defined in [FM91] a method for building the state space on

the fly and checking bisimilarity based on depth-first search (DFS). Hirschkoff [Hir01]

extended their work to not only allow breadth-first search (BFS), but also to deal

with bisimulation up-to.

The idea behind Hirschkoff’s algorithm is to take two states P and Q of labeled

transition systems (LTSs) and check their bisimilarity by analyzing their state space

product, which consists of pairs of the form (P, Q) as states and transition labels µ be-

tween states indicating that both states are able to evolve along the same label µ, i.e.,

(P, Q)
µ→ (P ′, Q′). The algorithm initially checks whether P and Q are immediately

bisimilar (none of them has further labels leading to successor states) or non-bisimilar

(one makes a step which the other is not able to mimic). If P and Q are not found

immediately (non-)bisimilar, their state space product is expanded by adding their

successors reached by a common label and so the bisimilarity of (P, Q) can be only

known after the recursive analysis of all successors in the state space product. With

this basic technique, which is exactly the principle of Fernandez/Mounier’s algorithm,

the LTSs in question must be finite. The main advantage of Hirschkoff’s algorithm is

that in some cases it is able to perform finite proofs on infinite state space products

by applying up-to techniques to handle infinite bisimulations as finite bisimulations

up-to. At the end of Section 4.2 we informally define bisimulation up to F and give

examples of functions F . For a formal treatment of this topic we refer the reader to

Section 3.4. Hirschkoff used his algorithm to check bisimilarity of polyadic π-calculus
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[Mil93] processes.

We extend Hirschkoff’s algorithm to check graphs with interface for bisimilarity

with respect to a given set of graph productions with NACs. We also did minor

efficiency improvements and added extra details to the algorithm, trying to make

clear aspects that were not easy to understand in the original version.

In the following sections we recall Fernandez and Mounier’s theoretical investigation

[FM91] on bisimulations in terms of state space products. Since their results are

abstract and hold for any system given by a labeled transition system we tailor

them to our setting with borrowed contexts. The main motivation to do so is that

Hirschkoff’s algorithm, presented in Section 4.3.3.3, is also based on these results,

but there one often becomes bogged down in several implementation details and data

structures, and therefore understanding the overall process of bisimulation checking

is more difficult.

4.3.3.1 Stratification of Bisimilarity

Here we briefly describe a process called stratification of bisimilarity, which dates back

to Milner’s book on CCS [Mil80]. The relevance of this process is that it builds the ba-

sis for algorithms to mechanically check bisimilarity, including Fernandez/Mournier’s

bisimulation checking technique presented in Section 4.3.3.2.

First we have to define a labeled transition system (LTS).

Definition 4.3.7 (Labeled Transition System). A labeled transition system is a

tuple LTS = (S, L, T, s0) where:

• S is a set of states;

• L is a set of labels;

• T ⊆ S × L× S is a labeled transition relation;

• s0 is the initial state.

Example 4.3.1

From a graph with interface J → G and a set P of productions we can employ

Definition 4.2.5 (borrowed context rewriting) to derive an LTS where: J → G and all

its successors (graphs with interfaces) form the set S, the set L contains the generated

transition labels J → F ← K, {F → Nz}z∈Z , T is a relation induced by the BC steps

and J → G is the initial state. A bisimulation relation R (as in Definition 4.2.6)

relates states (graphs with interface) of LTSs that can properly mimic each other.
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For the sake of readability we adopt some shortcuts: graphs with interface J → G

are represented as P and Q (or 1, 2, 3, . . . in the examples), and transition labels

J → F ← K; {F → Nz}z∈Z as µ (or a, b, c in the examples).

A technique to obtain the bisimilarity relation ∼ of an LTS consists in using stratifi-

cation of bisimilarity via bisimulation approximations. We also use the infix notation

P Rk Q for (P,Q) ∈ Rk.

Definition 4.3.8 (Stratification of Bisimilarity). Given an LTS = (S, L, T, s0)

with P, P ′, Q, Q′ ∈ S then we define bisimulation approximations as follows:

• R0 = S × S.

• P Rk+1 Q, for k ≥ 0, if

1. for all P ′ with P
µ→ P ′, there is Q′ such that Q

µ→ Q′ and P ′ Rk Q′;

2. for all Q′ with Q
µ→ Q′, there is P ′ such that P

µ→ P ′ and P ′ Rk Q′.

For each k, P Rk Q if and only if P Rn Q for all n < k. The stratification of

bisimilarity is then R∼ =
⋂

k≥0 Rk.

Each bisimulation approximation Rk in Definition 4.3.8 defines an equivalence re-

lation. However, the relations Rk are not in general bisimulations. In the initial

relation R0 all states are considered equivalent, and then each subsequent relation

refines the previous one by removing pairs that are certainly not bisimilar.

Proposition 4.3.9.

1. If k > n then Rk ⊆ Rn;

2. Let an LTS be image-finite, i.e., for every state P the set {P ′ : P
µ→ P ′, for

some µ} of possible successors is finite. Then it holds: the relations ∼ and⋂
k≥0 Rk coincide.

Proof. See [Mil80].

According to Proposition 4.3.9 relations Rk decrease non-strictly as k increases.

Furthermore, for image-finite LTSs the bisimilarity
⋂

k≥0 Rk we obtain via stratifica-

tion coincides with standard bisimilarity ∼.

Definition 4.3.8 (stratification) can also deal with LTSi = (Si, L, Ti, si) (i = 1, 2)

such that S1 ∩ S2 = ∅. In theses cases we consider S = S1 ∪ S2 and T = T1 ∪ T2

during the construction of R∼. Moreover, by item 2. of Proposition 4.3.9 given a pair

(P, Q), where P,Q ∈ S, we can write: P ∼ Q if and only if (P, Q) ∈ R∼ and P � Q

if and only if (P, Q) /∈ R∼.
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Figure 4.5: Example of stratification of bisimilarity: 1 ∼ 6.

Example 4.3.2

We show the stratification of bisimilarity for LTS1 and LTS2 of Figure 4.5. The bisim-

ulation approximations obtained are depicted below, where we omit the symmetric

cases and also the identities to keep the presentation short.

R0 = {(1, 2); (1, 3); (1, 4); (1, 5); (1, 6); (1, 7); (1, 8); (1, 9); (2, 3); (2, 4); (2, 5); (2, 6);

(2, 7); (2, 8); (2, 9); (3, 4); (3, 5); (3, 6); (3, 7); (3, 8); (3, 9); (4, 5); (4, 6); (4, 7);

(4, 8); (4, 9); (5, 6); (5, 7); (5, 8); (5, 9); (6, 7); (6, 8); (6, 9); (7, 8); (7, 9); (8, 9)}
R1 = {(1, 6); (2, 3); (2, 7); (3, 7); (4, 5); (4, 8); (4, 9); (5, 8); (5, 9); (8, 9)}
R2 = R1

In the initial relation R0 all states are equivalent because transitions are not taken

into account. The following relations are built considering the transitions. In R1 we

discard every pair whose components can not mimic each other’s transitions (e.g.

(2, 8)). Note that R2 = R1 and so we do not need to proceed. By taking the intersec-

tion of the relations above we obtain R∼ = R1, and, for example, since (1, 6) ∈ R∼ we

can infer 1 ∼ 6.

Algorithms for stratification of bisimilarity work on finite LTSs to ensure that after

a finite number of steps the partitions become stable, i.e., Rk = Rk−1 for a certain

k, and hence R∼ can be always computed. Moreover, the resulting R∼ produces

the correct bisimilarity (Proposition 4.3.9.2). However, from the efficiency point of

view computing stratification as in Definition 4.3.8 is rather an inadequate process

due to the associated burden of generating the first relations (e.g. R0). Recall that

each Rk forms an equivalence relation. Hence, a more sensible implementation for

Definition 4.3.8 would consider equivalence classes within each Rk and construct

Rk+1 based on these equivalence classes. This also allow us to better handle the
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identities and the symmetric cases: compare each Rk given above with their respective

representations as equivalence classes on the right side of Figure 4.5.

Figure 4.6: Example of stratification of bisimilarity: 1 � 5.

Example 4.3.3

For the LTSs on the left of Figure 4.6 we obtain the following bisimulation approxi-

mations:

R0 = {(1, 2); (1, 3); (1, 4); (1, 5); (1, 6); (1, 7); (2, 3); (2, 4); (2, 5); (2, 6); (2, 7); (3, 4);

(3, 5); (3, 6); (3, 7); (4, 5); (4, 6); (4, 7); (5, 6); (5, 7); (6, 7)}
R1 = {(1, 5); (2, 4); (2, 6); (3, 7); (4, 6)}
R2 = {(1, 5); (2, 4); (2, 6); (4, 6)}
R3 = { (2, 4); (2, 6); (4, 6)}
R4 = R3

Observe that 4 and 7 can not mimic each other, and therefore they are no longer

equivalent in R1. During the construction of R2 the pair (3, 7) performs b and lands

on (4, 7), which is absent in R1, and hence (3, 7) is not in R2. Similarly, (1, 5) is not

in R3 due to the absence of (3, 7) in R1. Now R4 = R3 and the intersection of these

relations is R∼ = R3. Since (1, 5) /∈ R∼ then 1 � 5. On the right of Figure 4.6 each

Rk is depicted as equivalence classes.

4.3.3.2 State Space Product and Bisimulations

In practice we often do not have the unfolded LTSs beforehand, and more importantly,

if we are only interested in checking specific states (or graphs with interface) for

bisimilarity it is unnecessary to build the bisimilarity relation since it is sufficient to

find only one bisimulation relating these states.
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The general principle behind Fernandez/Mounier’s technique [FM91] consists in

checking states for bisimilarity without having to construct the complete associated

LTSs. They build on the fly an LTS called state space product (defined below) and

show that two states are not bisimilar if and only if there exists an execution sequence

in this product satisfying a specific criterion (see Proposition 4.3.11).

In Section 4.3.2 we have already described how transition labels are derived from

graphs with interfaces and a set P of graph productions (see Definition 4.2.5 and

Section 4.3.1). Furthermore, in Section 4.3.2 we defined how labels are matched in

the borrowed context setting. A bisimulation checking procedure explores the state

space product of two graphs with interface to be compared.

Definition 4.3.10 (State Space Product and Failure). Let P be a set of graph

productions p (with NACs). The state space product of two graphs P0 and Q0 is the

labeled transition system generated from the initial state (P0, Q0) using the following

inference rules:

match1 :
P

µ−→(d) P ′ Q
µ′−→Q′

(P,Q)
µ−→ (P ′,Q′)

match2 :
P

µ−→ P ′ Q
µ′−→(d) Q′

(P,Q)
µ−→ (P ′,Q′)

µ ∼= µ′

A sequence of the form (P0, Q0)
µ0→ (P1, Q1)

µ1→ · · · µk−1→ (Pk, Qk) in a state space

product is called execution sequence.

We say that a pair (P,Q) fails to evolve whenever it holds:

(P
µ−→(d) P ′∧@Q′ : Q

µ′−→ Q′ s.t. µ ∼= µ′)∨(Q
µ′−→(d) Q′∧@P ′ : P

µ−→ P ′ s.t. µ ∼= µ′).

Each transition P
µ−→ P ′ and Q

µ′−→ Q′ is generated by Definition 4.2.5. Moreover,

whenever the underlying production p of a transition has no NACs then the associated

label is dependent (as in Definition 4.2.7) and we write →d. Otherwise, the label is

arbitrary: →.

The successors of (P, Q) are all (P ′, Q′) such that P ′ and Q′ respectively correspond

to evolutions of P and Q along an equal (isomorphic) label µ. The rules match1 and

match2 cover the situation when one dependent label (indicated with→d) is answered

(i.e. matched) by either a dependent or independent label. Whenever the underlying

production p has NACs we have to consider arbitrary labels µ and µ′ (see discussion

in Section 3.4), and hence the rules match1 and match2 coincide. If one graph can

not answer, we say that the pair fails to evolve, i.e., we can infer immediately that P

and Q are not bisimilar.

The following proposition provides the means to express whether P and Q are not

equivalent in R∼ in terms of execution sequences in the state space product.



4.3 Bisimulation Verification for Borrowed Contexts 85

Proposition 4.3.11. Let LTSsp be the state space product generated from P and

Q (as in Definition 4.3.10). Then (P,Q) /∈ R∼ (stratification of bisimilarity as in

Definition 4.3.8) if and only if there exists an execution sequence seq in LTSsp such

that:

(i) seq : (P, Q) = (P0, Q0)
µ0→ (P1, Q1)

µ1→ · · · µk−1→ (Pk, Qk);

(ii) (Pk, Qk) fails;

(iii) every (Pi, Qi) (0 ≤ i ≤ k) in seq is distinct;

(iv) for every (Pi, Qi) (0 ≤ i ≤ k) in seq it holds: (Pi, Qi) /∈ Rk−i+1.

Proof. See Proposition 3.1 in [FM91].

According to Proposition 4.3.11 a pair (P,Q) /∈ R∼ (and hence P � Q by item 2.

of Proposition 4.3.9) if and only if we find a specific execution sequence seq in which:

Pk fails to mimic Qk, it contains no loop (Condition (iii)) and each (Pi, Qi) /∈ Rk−i+1.

The absence of loops in seq is necessary to infer the bisimilarity of a pair (P, Q)

from the analysis of its successors (P ′, Q′), where (P, Q)
µ→ (P ′, Q′). Put differently,

based on the bisimilarity result of each successor (P ′, Q′) we can determine whether

(P, Q) is bisimilar.

Note that in Definition 4.3.8 (stratification) a pair in R0 does not make its way to

R1 if and only if this pair fails. Hence, the failure of (Pk, Qk) implies (Pk, Qk) /∈ R1 in

Condition (iv). The absence of (Pk, Qk) in R1 will determine that (Pk−1, Qk−1) /∈ R2

and this happens “backwards” in seq until (P0, Q0) /∈ Rk+1 because (P1, Q1) /∈ Rk. In

words, the bisimilarity of (Pk, Qk) would have been required to infer bisimilarity for

the other pairs in seq, but (Pk, Qk) fails. This means that whenever Condition (iv)

holds then seq is an explanation for the non-bisimilarity of P and Q.

On the left-side of Figure 4.7 we show the state space product for the example

of Figure 4.5. This product has four possible execution sequences from (1, 6), but

none satisfies Condition (ii) of Proposition 4.3.11. Thus we can infer (1, 6) ∈ R∼, and

hence 1 ∼ 6.

Remark 4.3.12. Every state space product is depicted fully unfolded in order to keep

the associated text succinct. The results presented in this section also hold when the

product is built on the fly, i.e., step by step.

For the example of Figure 4.6 we give its space product on the right of Figure 4.7.

There are four possible execution sequences from (1, 5), but only the three rightmost

are candidates for Proposition 4.3.11. This product illustrates that checking Condi-

tion (iv) is not an easy task because in order to find an execution sequence satisfying
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Figure 4.7: Examples of state space product.

it we also have to investigate other execution sequences. In Definition 4.3.8 (strat-

ification) the bisimilarity result of a pair is given by the analysis of its successors.

Remind the relations Ri (i = 0, 1, 2, 3) given after Figure 4.6 and compare them with

the product above. At the very beginning all pairs are equivalent in R0. In R1 the

pairs (2, 7), (3, 6) and (4, 7) are no longer present since they fail. The pair (1, 5)

is in R1 because (2, 6) and (3, 7) are considered equivalent in R0. However, (3, 7)

does not make its way to R2 due to its direct dependence on (4, 7). Hence, (1, 5)

turns out non-equivalent in R3 because 3 and 7 have not found any matching partner.

Finally, seq : (1, 5)
a→ (3, 7)

b→ (4, 7) satisfies all conditions of Proposition 4.3.11 and

thus 1 � 5. Notice that we had to take a look at the other execution sequences to

determine that seq satisfies the required conditions.

Fernandez/Mounier’s algorithm relies on Proposition 4.3.11 to check P and Q for

bisimilarity. Each pair (P, Q) in the state space product is associated with a bit array,

where each bit represents a successor of either P or Q. During the analysis of each

successor (P ′, Q′) of (P, Q) whenever it turns out that P ′ ∼ Q′ we set P ′ and Q′ to

1 in the bit array of (P, Q). Finally, after the analysis of all successors of (P, Q) if

every bit in its bit array is 1 then P ∼ Q, i.e., each successor has found a bisimilar

partner.

Figure 4.8: Bit arrays for (1, 5) and (3, 7).

In Figure 4.8 we show the initial bit arrays for (1, 5) and (3, 7) (of Figure 4.7),
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where every successor is set to 0. The pair (4, 7) fails, and hence 4 and 7 do not set

their bits in the bit array of (3, 7) to 1. Since (4, 7) is the only successor of (3, 7)

its analysis is finished and its bit array is 00, which implies that 3 and 7 are not

equivalent. This result can be propagated to (1, 5), where neither 3 nor 7 sets any

bit to 1. In order to determine the bisimilarity of (1, 5) we still have to analyze its

other three pairs of successors. After the analysis of (2, 6) we find out that 2 and 6

properly mimic each other and we set its corresponding bits to 1 in the bit array of

(1, 5), which is now 1010. The pairs (2, 7) and (2, 6) fail and so they do not set their

bits to 1. At this moment, all successors of (1, 5) have been analyzed and its bit array

is 1010. So we can infer that 1 � 5 because 3 and 7 have not found any matching

partner.

In Figure 4.9 we give an example where LTS1 and LTS2 are isomorphic and so it

trivially holds: 1 ∼ 5. With this example we want to illustrate that even though the

root of the state space product is bisimilar it may contain execution sequences with

pairs that fail. Figure 4.10 shows the initial bit array associated to (1, 5), which is

0000 representing 2, 3, 6, 7 (the successors of 1 and 5). The components in the pair

(2, 6) are equivalent and so 2 and 6 set their corresponding bits to 1 in the bit array

of (1, 5), which now is 1010. Then we analyze (3, 7), but we can only determine its

equivalence after investigating (4, 8). Since (4, 8) turns out equivalent, so is (3, 7).

This new result can be propagated to (1, 5), where 3 and 7 set their bits to 1 in the

bit array of (1, 5). Note that (2, 7) and (3, 6) fail and they are not allowed to set any

bit to 1. Finally, all successors of (1, 5) have been analyzed and its bit array is 1111,

which implies 1 ∼ 5, i.e., all successors of 1 and 5 have found a matching partner.

Figure 4.9: Example in which 1 ∼ 5.

Unfortunately, this strategy of deciding the bisimilarity of a pair after the complete

analysis of all its successors may not work in general. There are situations in which it

is possible to reach a pair in the state space product which has already been “visited”

but not yet analyzed since this depends on the analysis of other pairs. Thus, the

result of the analysis of such pair is unknown, i.e., it is not yet available. Figure 4.11

illustrates this problem. The dashed lines indicate the bisimilar states of LTS1 and
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Figure 4.10: Pair (1, 5): successors and its associated bit array.

LTS2. The state space product from (1, 3) is shown on the right. In Figure 4.12 we

show the bit array of (1, 4): the pair (2, 5), which is bisimilar, has set its bits to 1.

Two other successors, namely (2, 3) and (1, 5), fail and do not set any bit to 1. Now

(1, 4) depends on the analysis of (1, 3). However, (1, 3) also depends on (1, 4), i.e.,

there exists a circular dependence.

Figure 4.11: Using assumptions in bisimulation checking.

Fernandez and Mounier, and hence Hirschkoff, propose the following solution to

this dependence problem. Consider we check P and Q for bisimilarity. Whenever

we reach a pair in the state space product which has already been “visited” but

not yet analyzed we assume it bisimilar. If this very pair turns out non-bisimilar

after its analysis then an answer P ∼ Q is not reliable since we have made a wrong

assumption. In this case, we have to run the algorithm once again, but keeping track

of the pairs already known as non-bisimilar. On the other hand, an answer P � Q is

always reliable.

Proposition 4.3.13. Whenever the state space product of (P, Q) is finite then the

bisimulation checking algorithm using assumptions (informally described above) will

return that P and Q are bisimilar if and only if P ∼ Q.

Proof. See Proposition 4.1 in [FM91].
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Figure 4.12: Bit array for the pair (1, 4) of Figure 4.10.

In Proposition 4.3.13 Fernandez and Mounier showed that their algorithm termi-

nates and is correct. We give here only its general idea. Let W be a set into which the

algorithm stores the non-bisimilar pairs during the investigation of the state space

product. Whenever a pair lands in W it does not need to be reanalyzed again. A

finite state space product implies that the algorithm can only make a finite number

of assumptions on bisimilarity. Whenever a pair (P ′, Q′) assumed bisimilar turns out

non-bisimilar, we can not trust on a positive answer (i.e. P ∼ Q) of the algorithm.

Thus we insert (P ′, Q′) into W and restart the investigation of the state space prod-

uct from the beginning, but keeping track of the non-bisimilar pairs already in W .

This means that each wrong assumption implies that W strictly grows and the new

exploration of the state space product is more constrained. After a finite number of

executions of the algorithm, each due to wrong assumptions, it will be able to decide

the bisimilarity of P and Q.

4.3.3.3 Algorithm for Bisimulation “On the Fly”

In the previous section we have revisited Fernandez and Mournier’s technique [FM91]

to check P and Q for bisimilarity using state space products. Here we present

Hirschkoff’s algorithm which also mechanizes this process. Additionally, we explicitly

show which parts are specific tailored to the borrowed context setting.

The data structures used by the algorithm are:

- a structure S listing the pairs of states that still have to be inspected;

- a Table storing information about each pair of graphs (P,Q) under inspection

in the state space product;

- a set V containing pairs that have already been visited;

- a set W containing pairs that are known to be non-bisimilar;
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- a set R containing pairs that are known to be bisimilar.

By accessing S as stack (respectively queue) the algorithm performs a depth-first

(respectively breadth-first) search on the state space product. The depth-first strat-

egy lends itself better to give an explanation of the non-bisimilarity of P and Q

because its nature, which closely follows the transitions, allows us to show an execu-

tion sequence satisfying the conditions of Proposition 4.3.11.

The main procedure is bisimulation check, which calls: succeeds, fails and

propagate. First off bisimulation check initializes the sets W,R, V , inserts (P, Q)

into S and Table (as described later on) and sets the variable status to true. This

variable keeps track of the fidelity of our assumptions on the bisimilarity of pairs,

i.e., whenever status = false and bisimulation check returns true this result is not

reliable because we have made a wrong assumption.

bisimulation check(P, Q) :=

W := ∅;
(∗) R := ∅; V := ∅;
insert (P, Q) into S and Table; status := true;

while S 6= ∅ do

take (P0, Q0) from S;

if succeeds((P0, Q0))

then insert (P0, Q0) into R;

propagate((P0, Q0), true);

else if fails ((P0, Q0))

then insert (P0, Q0) into W ;

propagate((P0, Q0), false);

else if (P0, Q0) ∈ V

then move (P0, Q0) from V to R;

propagate((P0, Q0), true);

else if (P0, Q0) ∈ R

then propagate((P0, Q0), true);

else {pair (P0, Q0) is new}
insert (P0, Q0) into V ;

{(P0, Q0)
µ→ successor(P0, Q0)}

insert successors of (P0, Q0) into S;

for each successor(P0, Q0) do

if successor(P0, Q0) /∈ Table

∧ successor(P0, Q0) /∈ W ∪R ∪ V

then insert it into Table;

end for

end while

if (P, Q) /∈ R

then return false

else if status then return true else loop back to (∗)

succeeds(P, Q) := Table(P, Q).successors = ∅
∧ Table(P, Q).fails = false

fails(P, Q):=

if (P, Q) ∈ Table

then Table(P, Q).fails ∨ (P, Q) ∈ W

else (P, Q) ∈ W

propagate((P, Q), success) :=

if (P, Q) ∈ R ∧ success = false

then status := false;

if (P, Q) ∈ Table

∧ Table(P, Q).successors is complete2

then remove (P, Q) from Table;

for each (Pf , Qf ) ∈ Table with (Pf , Qf )
µ→ (P, Q) do

Table(Pf , Qf ).successors(P, Q) := true;

if success

then Table(Pf , Qf ).m(P ) := true;

Table(Pf , Qf ).m(Q) := true;

if Table(Pf , Qf ).successors is complete

then

if ∃j = false ∈ Table(Pf , Qf ).m

then

insert (Pf , Qf ) into W ;

propagate ((Pf , Qf ), false);

else

if (Pf , Qf ) ∈ V

then take it from V to R;

propagate ((Pf , Qf ), true);

end for

The while do statement in bisimulation check is in charge of building and

exploring the state space product. It takes a pair (P0, Q0) from S and checks with

succeeds whether it is immediately bisimilar (e.g. none of them is able to derive

2This means that either all successors of (P, Q) have already been analyzed (•) or successors = ∅.
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further labels). If (P0, Q0) is not immediately bisimilar, fails checks if this pair fails

to evolve or if it is already known as non-bisimilar (i.e., it is in W ). If it fails we insert

it into W and use propagate to update this new result in the state space product

stored in Table, which can possibly lead to the discovery of new (non-)bisimilar pairs.

If (P0, Q0) does not fail but has already been visited (i.e., it belongs to V ) we assume

it is bisimilar by moving it from V to R and only after the analysis of all its successors

(where the notion of successor is specified in Definition 4.3.10) we are able to decide

whether the pair is really bisimilar (as we assumed) or not. If by processing S we

find a pair that is already in R we update Table using propagate. When none of

the above conditions hold (P0, Q0) is a new pair and must be analyzed: we mark it

as visited by inserting it into V , calculate its successors and insert them into S and

Table (the latter only if the successor is not currently in Table under investigation and

has not yet been analyzed). When all pairs of successors have already been analyzed

(S = ∅) the algorithm can determine the bisimilarity of (P,Q).

Figure 4.13 shows two small transition systems and their respective state space

product. Figure 4.14 depicts the states under investigation in S and their current

information in Table. The states 1–6 represent graphs with interfaces and a, b tran-

sition labels with borrowed contexts. Consider the pair (1, 4) in Table. The entry

successors shows the successors of (1, 4) in the state space product together with a

boolean value true (•) or false (◦), indicating which pairs of successors have already

been analyzed. The entry m lists the successor states (e.g. 3 and 6 with false [¤], 2

and 5 with true [£]), indicating which state has found a bisimilar partner. Whenever

a pair of successors has been analyzed, if it turns out to be bisimilar both m-fields

of the pair are set to true (£). For example, successors (2, 5) and (2, 6) have been

explored and only (2, 5) is bisimilar. The m-field corresponds to the bit array of

Fernandez and Mounier’s technique in Section 4.3.3.2. Note that (2, 5) and (2, 6) are

no longer in Table since the algorithm keeps in Table only the states under investi-

gation. If all successors of (P,Q) have been analyzed (all are set to •) and all fields

of m are set to true (£) then (P, Q) is bisimilar. If there is in m at least one graph

with false (¤) then (P,Q) is not bisimilar. The entry fails indicates if a pair fails to

evolve (according to Definition 4.3.10). A non-bisimilar pair has always at least one

successor leading to a failure, but as already shown in Section 4.3.3.2 a bisimilar pair

might also have successors leading to a failure. In this example even though (2, 6)

and (3, 5) fail, it is clear that (1, 4) is bisimilar since LTS1 and LTS2 are isomorphic.

A new pair (P, Q) is inserted into Table as follows. Using Definition 4.3.10 (state

space product and failure) we can determine if (P,Q) fails to evolve and if it has

successors. We insert (P,Q) into Table with the following data in case of failure:

successors = ∅, m = ∅ and fails = true. If the pair does not fail we fill successors

with the successors of (P,Q), m with the states of the successors of (P,Q) and all
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Figure 4.13: Two LTSs and their corresponding state space product.

(3,5)
(1,4)

(3,6)
S

Table

(P,Q) successors m fails

(1, 4)
(2,5)• (2,6)• (3,5)◦ (3,6)◦

2 3 5 6

£¤ £ ¤ false

(3, 5) true

(3, 6)
(3,6)◦

3 6

¤¤ false

Figure 4.14: Pairs still under analysis (in S) and their information in Table.

boolean values are set to false.

If the algorithm above is employed to check graphs with interfaces for bisimilarity

the operators ∈ and /∈ require isomorphism checks. Furthermore, note that the

insertion of a pair (P,Q) of graphs with interface into Table requires the borrowed

context machinery (in Definition 4.3.10) to not only derive transition labels from

P and Q, but also to match them in order to obtain the pairs of successors to be

inserted into the fields successors and m. At the beginning of Section 4.3.3.2 we

describe how labels with borrowed contexts are derived and matched. In Section 6.5

we give additional details and algorithms to carry out these tasks.

The procedure propagate is in charge of updating the information in Table con-

cerning the state space product analysis. The procedure bisimulation check calls

propagate to inform the space product under investigation whether a pair is bisimi-

lar (true) or not (false). If we assumed (P, Q) bisimilar (i.e., it was moved to R) and

it turned out non-bisimilar then the variable status is set to false, which means that

the result of the current run of the algorithm is not reliable, i.e., we have made a

wrong assumption about the bisimilarity of some pair. In this case when S is empty

in bisimulation check the algorithm is restarted but retaining the information in

W about states which are already known to be non-bisimilar. We do not immediately

restart the algorithm because we can still find other non-bisimilar pairs during the

current execution. The procedure propagate keeps in Table only the pairs under

analysis, removing the ones that have already been analyzed. When one pair is prop-

agated, the predecessors of this pair should also be informed about the new results.
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When a pair is propagated with true or false the algorithm always sets this pair as

analyzed (true [•]) in the list of successors of each of its predecessors that are still

under analysis (in Table). Only if the pair is propagated with true its respective

graphs in m of its predecessors are set to true (£). When the last successor of a

given pair has been analyzed we can verify its bisimilarity. If the pair has at least one

graph in m set to false it is non-bisimilar and we propagate this result. Otherwise it

is bisimilar and we propagate this result.

In the example of Figure 4.13 the algorithm does not employ any assumption

because there is no circular dependence in the state space product. Thus, 1 and 4

are found bisimilar within one single run of the algorithm. On the other hand, the

state space product of Figure 4.15 has loops and by calling bisimulation check to

check (1, 8) for bisimilarity assumptions are employed: the second time we visit the

pair (2, 12) (after performing b from (3, 13)) we assume it bisimilar (i.e. move it from

V to R), but when the analysis of (4, 14) is completed we find out that (2, 12) is not

bisimilar, which is a contradiction to the assumption. Analogously, it happens to

(5, 9). Finally, during the second run of the algorithm, since (2, 12) and (5, 9) have

been inserted into W during the first run, the algorithm is able to conclude 1 ∼ 8.

Figure 4.15: A more complex example in which wrong assumptions are made.

The examples presented here contain LTSs that are isomorphic, and hence they

are trivially bisimilar. However, they are useful to illustrate how the algorithm works

and also the issues on assumptions. Examples of bisimilarity and non-isomorphic

LTSs are given in Sections 4.3.3.1 and 4.3.3.2.

Hirschkoff’s algorithm, as opposed to Fernandez and Mounier’s, also handles bisim-

ulation up-to [San95]. These up-to techniques enable us to reduce the size of the rela-

tion needed to define a bisimulation. Moreover, they also provide the means to check
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bisimilarity with finite up-to relations in some cases where any bisimulation is infinite.

If the algorithm has to handle bisimulation up-to we have only to replace in the pro-

cedure bisimulation check (P0, Q0) ∈ V by (P0, Q0) ∈ F(V ) and (P0, Q0) ∈ R

by (P0, Q0) ∈ F(R) , where F describes the up-to technique. For example, consider

the up-to context technique FC informally described at the end of Section 4.2. With

this technique the algorithm is able to decide whether a pair (P0, Q0) can be obtained

from a proper contextualization of another pair already equivalent in R. If this is the

case then (P0, Q0) ∈ FC(R), and we do not need to analyze (P0, Q0) since we can

infer its bisimilarity from related pairs already analyzed. For the formal treatment

of bisimulation up-to and also techniques for borrowed contexts we refer the reader

to Section 3.4. In Section 6.6 we define algorithms to check whether a pair (P, Q)

of graphs with interface belongs to F(R). For the refactoring examples proposed in

this chapter (see Sections 4.4 and 4.5) we use the up-to context technique FC .

Our version of the bisimulation checking algorithm is very similar to Hirschkoff’s.

Our main contribution to the algorithm is the full specification of how Table is used

to store and process the state space product investigation. A small efficiency im-

provement can be seen in the for each statement of bisimulation check, where

we added extra conditions in order to avoid reanalyzing pairs already investigated.

Furthermore, we checked that the algorithm also works in our setting of borrowed

contexts.

4.4 Example 1: Minimization of Finite Automata

We will now come back to our original motivation: showing that refactoring preserves

behavior.

Inspired by the algorithm on minimization of automata by merging equivalent

states, given in Hopcroft/Motwani/Ullman’s classic book [HMU00] on automata the-

ory, we define this process in terms of graph productions (see Figure 4.19). On one

hand this enables us to perform minimization of deterministic finite automata (DFA)

via graph transformations, but, on the other hand, we still do not have the means to

verify whether minimized DFA and their original versions (given as graphs) accept

the exact same language. We could manually check if both DFA are equivalent, but

for complex DFA this can easily become time consuming. A reasonable solution is to

use the borrowed context machinery to carry out this task, i.e., given a finite automa-

ton and its refactored minimal version we check them for bisimilarity, which implies

language equivalence for the regular language generated by the automata. However,

to do so it is required a set of graph productions describing the operational semantics

for DFA. As formally defined in [HMU00] an automaton can either consume symbols
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of an alphabet or accept the sequence of symbols previously consumed. Based on

that we describe these operations as a set of graph productions in Figure 4.16.

Each DFA is described as a graph with interface, where unlabeled nodes are states

and directed labeled edges are transitions (see DFA1 and DFA2 in Figure 4.16). An

FS-loop marks a state as final. A W-node has an edge pointing to the current state

and this edge points initially to the start state. The W-node is the interface, i.e.,

the only connection to the environment. So an automaton DFA is hidden in a “black

box” whose observable part is only J.

Figure 4.16: Operational semantics rules for DFA and two examples of DFA.

The operational semantics for DFA is given by a set OpSemDFA of rules containing

Jump(a), Loop(a) and Accept depicted in Figure 4.16. The rules Jump(a), Loop(a)

must be defined for each symbol a ∈ Λ, where Λ is a fixed alphabet. A DFA may

change its state according to the rules in OpSemDFA. The W-node receives a symbol

(e.g. ‘b’) from the environment in form of a b-labeled edge connecting W-nodes, e.g.,

the string ‘bc’ is ?>=<89:;w ?>=<89:;wboo ?>=<89:;wcoo . An acpt-edge between W-nodes marks the end of

a string. When such an edge is consumed by a DFA, the string previously processed

is accepted. For example, whenever ?>=<89:;w ?>=<89:;w0oo ?>=<89:;w0oo ?>=<89:;w1oo ?>=<89:;w0oo ?>=<89:;w
acptoo is consumed

by a DFA the string 0010 is accepted.

In Figure 4.17 we illustrate the automaton DFA1′, which is DFA1 of Figure 4.16 at-

tached to the string 0010 previously depicted. This string is consumed by DFA1′ via

a sequence of standard DPO transformations: DFA1′
Jump(0)
=⇒ DFA1′′

Loop(0)
=⇒ • Jump(1)

=⇒ •
Jump(0)
=⇒ • Accept

=⇒ DFA1, whose first step is shown in Figure 4.17. In the last step the
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Figure 4.17: DFA1′ consumes the symbol 0 via a standard DPO transformation.

automaton consumes the acpt-edge indicating that 0010 has been accepted and be-

comes DFA1. Analogously can be done for DFA2, which also accepts the same string

via: DFA2′
Loop(0)
=⇒ • Loop(0)

=⇒ • Jump(1)
=⇒ • Jump(0)

=⇒ • Accept
=⇒ DFA2. Even though we can manu-

ally demonstrate via DPO transformations that a specific string is accepted by two

automata, it is still difficult to guarantee with standard DPO machinery that both

automata recognize the exact same language, i.e., they are equivalent.

Our idea consists in employing the borrowed context (BC) technique to check

automata (given as graphs with interface) for bisimilarity, which implies language

equivalence. In standard DPO the consumption of strings resembles batch process-

ing, whereas in the borrowed context framework strings are processed through in-

teractions with the environment. In Figure 4.18 we show an example of BC step

(as in Definition 4.2.5) from the automaton J → DFA1. The environment provides

J → DFA1 with the borrowed context F (containing the symbol 0) in order to trigger

the rewriting. None negative borrowed context is generated because Jump(0) does

not have NACs. Analogously a BC step from J → DFA2 via Loop(0) produces the

exact same transition label J → F ← K as in Figure 4.18. These transition labels

represent the possible interactions one can make with each automaton, and therefore

the bisimulation checking algorithm described in the previous section exploits them

to show the bisimilarity of two automata.

Figure 4.19 depicts graph productions to minimize DFA by merging equivalent

states. The idea of the algorithm is to identify the distinguishable states, followed

by the merging of equivalent states. To the left of each rule we depict the negative

application conditions (if any). The algorithm is defined by several graph productions

spread over three layers, where each layer applies its rules as long as possible before

the rules of the next layer can be applied. In practical terms, the transformation
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Figure 4.18: Borrowed context step from J → DFA1 via Jump(0).

begins with rules of Layer 0. If no more rule of Layer 0 is applicable, the rules of

Layer 1 come into play. The rules in Layer 0 examine the transitions labels for every

two states and determine if they are distinguishable. The rule in Layer 1 merges

equivalent nodes, i.e., nodes without a dist-edge between them. Finally, the rules in

Layer 2 remove all dist-edges and redundant transitions between two states.

In theory, one should prove that a refactoring algorithm is correct and complete.

However, in practice this can be very difficult due to the complexity of the model

under refactoring and the refactoring process. In our case, finite automata is a simple

model, but showing these properties for the minimization algorithm of Figure 4.19

is far from trivial. Therefore, we have defined the graph productions of Figure 4.19

in AGG [AGG] and checked that transformations via these rules indeed produce the

minimal versions of automata given as input. For our purpose here this is sufficient,

since we are primarily interested in checking behavior preservation, i.e., that an au-

tomaton and its refactored minimal version present the same observable behavior.

Given an automaton and its minimal refactored version we can check them for

bisimilarity with respect to the set OpSemDFA of rules defining the operational se-

mantics of DFA. Note that for DFA borrowed context bisimilarity coincides with

language equivalence. In other words, whenever we can show with the borrowed con-

text technique that two automata (as graphs with interface) are bisimilar then both

recognize the same language. What should be shown is that bisimilarity on automata

seen as transition systems corresponds to the bisimilarity that we obtain via the bor-

rowed context technique. This requires showing that transition labels with borrowed

contexts and transitions of automata are equivalent. However, proving that these two
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Figure 4.19: Productions for DFA minimization.

notions of bisimilarity coincide is not trivial, e.g., independent transition labels (as in

Definition 4.2.7) in the BC framework do not have a direct meaning in the automata

model. A more detailed investigation of this issue is part of our future work.

Consider J → DFA1 and J → DFA2 previously depicted in Figure 4.16. By applying

the minimization algorithm on J → DFA1 we obtain J → DFA2 as its minimal version.

Now we can use the procedure bisimulation check to verify that these two automata

are indeed bisimilar. By doing so we show behavior preservation for the refactoring of

only one automaton. Proving behavior preservation for the refactoring process (i.e.,

all transformations preserve behavior) is a much more ambitious goal (see discussion

in Chapter 5).

The general principle of bisimulation check to verify J → DFA1 and J → DFA2

for bisimilarity is summarized as follows. In Figure 4.20 we give the resulting state

space product fully unfolded, where the omitted interfaces of the graphs in the tuples

contain only one node labeled W. First off we recall how the state space prod-

uct is generated. From (J → DFA1, J → DFA2) (leftmost tuple) the algorithm cal-

culates the partial matches between both graphs and the left-sides of the rules in

P = {Jump(a), Loop(a), Accept} (∀a ∈ Λ) (as described in Section 4.3.1). Then it

constructs the corresponding borrowed context steps as in Definition 4.2.5 (borrowed

context rewriting). Now it checks whether the labels of one graph have a matching



4.4 Example 1: Minimization of Finite Automata 99

Figure 4.20: State space product for J → DFA1 and J → DFA2.

partner on the other graph (as in Definition 4.3.5). If there is a label from one graph

that does not have a partner on the other graph then the graphs fail to mimic each

other’s move (Definition 4.3.10). Otherwise, we expand the state space product by

adding the successor states and the transition labels.

The procedure bisimulation check can not infer that the initial pair (J → DFA1,

J → DFA2) is immediately (non)-bisimilar. Hence, the state space product is ex-

panded by adding the pair in the middle of Figure 4.20, and only after the analysis of

this successor the algorithm can infer the bisimilarity of (J → DFA1, J → DFA2). The

middle pair is not immediately (non)-bisimilar as well and the state space product is

once again expanded. The same occurs with the rightmost pair, whose 0-transition

leads to the initial pair (J → DFA1, J → DFA2). Note that we are visiting the initial

state for the second time, but its bisimilarity result is still unknown (their successors

have not yet been analyzed). Thus, we assume it is bisimilar. This result is prop-

agated to its predecessor and so we are also able to decide the bisimilarity of the

rightmost pair since its successors have been analyzed. It turns out bisimilar and we

propagate this result to the middle pair which turns out bisimilar as well. Finally, the

bisimilarity of the middle pair implies that all successors of (J → DFA1, J → DFA2)

have been analyzed and the algorithm concludes that the initial pair is bisimilar. In-

tuitively it is easy to check the bisimilarity of this pair since the state space product

does not contain any pair which fails, and hence there does not exist an execution

sequence satisfying Proposition 4.3.11.
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The transition labels of Figure 4.20 are generated via partial matches with maximal

overlaps between the graphs under rewriting and the left side of each rule (see Def-

inition 4.2.5). These labels are exactly the dependent ones (Definition 4.2.7). Even

though other partial matches exist with smaller objects D, they do not ensure the

existence of the pushout complement objects F (borrowed context) which implies

that the BC step is not feasible (no label is derived). Apart from the transition labels

depicted in the state space product there exist other labels derived with D as the

empty graph, but they lead to independent labels (which are omitted in Figure 4.20).

4.5 Example 2: Flattening of Statecharts

Statecharts [Har87] are finite state machines enriched with hierarchy on states and

parallelism on transitions. A statechart with hierarchy has states within states, which

breaks down the system under specification in smaller modules to help improve the

comprehension, readability and maintenance of the specification. Any hierarchical

statechart can be translated into a plain (flat) state machine, and hence every hier-

archical statechart has a semantically equivalent flat statechart.

In this section we define a refactoring to flatten hierarchical statecharts. Our refac-

toring is inspired by the works of Minas/Hoffmann [MH08] and Geiger/Zündorf [GZ05].

Minas and Hoffmann take into account two kinds of hierarchical states, namely and-

and or-states and describe the flattening process in pseudocode. Geiger and Zündorf

tackle or-states and specify the refactoring in terms of graph transformation rules in

Fujaba [Fuj].

First off, we specify the operational semantics of hierarchical and plain statecharts

as graph productions. In addition we define graph rules to model the flattening

of or-states. Our goal is to flatten hierarchical statecharts and use the borrowed

context technique to check the behavior of hierarchical statecharts and their flat

versions. Geiger and Zündorf can only execute transitions in plain statecharts since

their operational semantics does not take hierarchical states into account.

Figure 4.21: Examples of Statecharts.
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Figure 4.21 depicts two statecharts: SC1 containing two or-states (B and F) and

its corresponding flat version (SC2). Each or-state contains a complete statechart

diagram and when an or-state is active then one of its contained states is active. Our

simplified statecharts consist of a collection of plain states, non-empty or-states and

initial pseudo states. Initial pseudo states cannot be active and whenever a statechart

is activated then its initial pseudo state activates its connected state. An or-state

has sub-states and exactly one of them may be active at a time. Final states and

history states are not considered. The transitions take into account only events, so

firing conditions and actions are not considered as well. Furthermore, transitions are

not allowed to cross the borders of or-states.

Figure 4.22: Metamodel for our simplified statechart diagrams.

The metamodel for our statechart diagrams is shown in Figure 4.22 as a class

diagram. States are either initial pseudo or real states (plain and or-states). Each

state has a name and a boolean value indicating whether it is active or not. Or-states

contain the states of the contained state diagram. Nested or-states indicate their

superstates with in-or-edges. An initial pseudo state indicates which real state is

initial. Transitions are associated to event names and specify their respective states

by using from- and to-edges.

Figure 4.23 shows SC1 and SC2 (of Figure 4.21) as graphs with interface. Nodes

labeled st represent states and each kind of state is given by the loops: init, plain and

or. When a state has an act-loop it is active. The t-nodes represent transition events.

The names of states and transitions are given by the label on the node pointed by

name-edges. Finally, the ct-edge stands for the “contains”-relation in the metamodel.

The w-node has an edge connected to the initial pseudo state (marked with a 1st-

loop). This w-node is the only part of the statechart that is observable (see J), i.e.,

the part the environment may interact with.

The operational semantics for our simplified statecharts follows a similar synchro-
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Figure 4.23: Statecharts as graphs with interface.

nization strategy as for finite automata, i.e., the environment has to provide a symbol

which fires the corresponding transition in the statechart diagram. The current ac-

tive state is marked with an act-loop. Whenever a transition t is fired the act-loop is

transferred to the state activated by t. The rules in Figure 4.24 define this process.

All rules must be instantiated for each event name a ∈ Events, where Events is a

set of event names. The firing of a transition is triggered by receiving from the en-

vironment the corresponding event name (as an edge connecting w-nodes) whenever

the source state is active. Fire-plain(a) describes an event firing between plain states.

Fire-or-in(a) triggers an event which activates an or-state, i.e., the state connected

to its the pseudo state receives the act-loop. For example, firing the x-transition in

J → SC1 activates the plain state G. An active state inside an or-state may activate

a state connected outside the or-state by triggering the corresponding outgoing tran-

sition (see Fire-or-out(a)). For diagrams with nested or-states, i.e., or-states within

or-states, an active state in a nested or-state may fire an outgoing transition of any

of its superstates. For instance, whenever C is active it may fire the y-transition of

B via Fire-nested-or-out(a). This rule works also for several levels of nesting because

an or-state has an in-or-edge pointing to each superstate in the nested hierarchy. For

example, consider a statechart with three nested or-states A,B, C, where A contains

B and B contains C. Then we have A B
in-oroo C

in-oroo
in-or

gg and an active substate of C
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may fire outgoing transitions of B and A.

Figure 4.24: OpSemSC: operational semantics for our statecharts.

The equivalence of statechart diagrams can be established via labeled transition

systems [MSPT96], i.e., two statecharts are equivalent if their induced labeled tran-

sition systems describe the exact same language. Labels are the event names which

trigger the execution of transitions. Hence, by using a similar reasoning as for the

previous finite automata example, bisimilarity on statecharts implies language equiv-

alence.

Notice in Figures 4.21 and 4.23 that in order to flatten an or-state we have to shift

the transitions which activate the or-state to the state connect to its pseudo state

and, in addition, for each transition “leaving” the or-state we have to insert a new

transition from each of its component real states. The rules in Figure 4.25 specify

this process in three transformation layers. To the left of each rule we depict the

negative application conditions (if they exist). One or-state is flattened at a time,

i.e., if a statechart has n or-states the flattening process has to be executed n times.

In the first refactoring step an or-state is marked for deletion (see Mark). We use

“deletion” and “flattening” of or-states as synonyms. Mark is applied to the innermost

or-state within a nested-or hierarchy (see the first NAC). An or-state is marked only

once for deletion (second NAC) and, finally, exactly one or-state is flattened at a
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Figure 4.25: Flattening of or-states.
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time (third NAC). Move-from and Move-to shift the transitions connected to the or-

state to the state indicated by its pseudo state. Note that this makes a transition

temporarily cross the border of an or-state. Recall that this is not allowed in our

statechart diagrams, but it will help us identify which outgoing transitions (shifted via

Move-from) will have to be additionally created to emulate the outgoing transitions

of the or-state when it is finally deleted. Hence, New-t(a) creates new transitions

to simulate the former outgoing transitions of the original or-state (see example in

Figures 4.21 and 4.23). This rule has to be instantiated for every event name a ∈
Events. Whenever the statechart diagram has nested or-states, Rewire comes into

play to reconnect the real states from the or-state to be deleted to its parent or-state.

Unwire1 disconnects the component states from the or-state to be deleted. The first

NAC constrains Unwire1 to the cases where the or-state is not inside another or-state

(in these situations Rewire must be applied). The second NAC says that the pseudo

state should remain connected (it will be deleted later on). Unwire2 disconnects the

or-state to be deleted from the nested hierarchy of or-states. Finally, Del-or(a) and

Del-nested-or(a) remove the or-state and its pseudo state. These two rules have to

be instantiated for each state name a employed by or-states. These refactoring rules

have been defined in AGG [AGG] and given an hierarchical statechart as input they

generate its flat version.

Figure 4.26: Statechart J → SC1′.

By applying the refactoring rules to the statechart J → SC1 of Figure 4.23 the or-

state F is flattened, and hence we obtain (J → SC1) ⇒∗ (J → SC1′) (see Figure 4.26).

Applying the refactoring rules to J → SC1′ flattens the or-state B and gives rise

to the transformation (J → SC1′) ⇒∗ (J → SC2), where J → SC2 is shown in Fig-

ure 4.23. The question is whether the entire refactoring transformation (J → SC1) ⇒∗

(J → SC2) preserved the behavior, i.e., the sequences of transition executions are

equal for both statecharts. This is done by calling the procedure bisimulation check

to verify J → SC1 and J → SC2 for bisimilarity w.r.t. OpSemSC. The algorithm

performs similar steps as for the finite automata of the previous section. In Fig-

ure 4.27 we show the complete state space product, where the graphs with interface
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in the three rightmost tuples are not explicitly depicted. Finally, we conclude that

(J → SC1) ∼OpSemSC (J → SC2).

Figure 4.27: Space space product for J → SC1 and J → SC2.

4.6 Conclusions and Future Work

In this chapter we have proposed the algorithms required by the borrowed context

machinery in order to check systems specified in terms of graphs for bisimilarity. Our

extension of Hirschkoff’s on-the-fly bisimulation checking algorithm to the borrowed

context setting also handles operational semantics rules with negative application

conditions (as in Chapter 3), but our examples given in Sections 4.4 and 4.5 (finite

automata and statecharts) have operational rules without NACs.

Compared to Hirschkoff’s original algorithm we have made some minor improve-

ments to avoid certain redundant computations. In Chapter 6 we describe some

procedures, which were described here at a high level of abstraction, in more details

and also give suggestions to make the algorithm more efficient.

The contribution of this chapter is twofold. For borrowed context practitioners we

provide a way to mechanize bisimulation proofs, and thus equivalence checking can

in principle be carried out automatically. To people interested in model refactoring

we have shown how the borrowed context technique can be used to reason about

the behavior of instances of a metamodel. The main advantage of this approach is

that for every metamodel whose operational semantics can be specified in terms of

finite graph transformation productions, the bisimulation checking algorithm can be

used to show bisimilarity between models which are instances of this metamodel.

Two examples of refactorings were given, namely minimization of finite automata
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and flattening of hierarchical statecharts, and also checked with the AGG system.

In Chapter 5 we develop more elaborate techniques based on borrowed contexts to

analyze behavior preservation of refactoring rules.

For our statechart example in order to show the bisimilarity between hierarchical

and flat diagrams we had to insert a special edge to the metamodel, namely the in-or-

edge, to enable states inside an or-state to directly fire outgoing transitions of other

or-states in the nested hierarchy with exactly one single borrowed context step. Recall

that flat statecharts also fire their transition via one BC step. Another strategy would

be to search the nested-or hierarchy for a particular transition and fire it. However,

this could lead to more than one BC step since some “internal” processing would be

required to search the transition and then a final step for the firing per se. In these

terms, we would need weak instead of strong bisimulation. Note that by constructing

a concurrent production [EEPT06, Lam07] pc induced by this process (i.e. searching

and firing) outgoing transitions in a nested-or hierarchy could be fired with one single

BC step via pc. Moreover, this could lead to a similar notion as weak bisimulation in

the BC framework. This is an interesting direction for future research.

Last but not least, an interesting future work consists in investigating how close is

the relation between bisimilarity on automata seen as labeled transition systems and

the bisimilarity obtained via borrowed contexts. This can be done by finding corre-

spondences between the labels of borrowed contexts and the transitions of automata.

However this is not an easy task because there exist labels, e.g. independent labels,

which does not have a straightforward interpretation in the automata model.





Chapter 5

Behavior Preservation in Model

Refactoring

5.1 Motivation

Model transformation [MG06] is concerned with the automatic generation of models

from other models according to a transformation procedure which describes how a

model in the source language can be “translated” into a model in the target language.

Model refactoring is a special case of model transformation where the source and

target are instances of the same metamodel. Software refactoring is a modern software

development activity, aimed at improving system quality with internal modifications

of source code which do not change the observable behavior. In object-oriented

programming usually the observable behavior of an object is given by a list of public

(visible) properties and methods, while its internal behavior is given by its internal

(non-visible) properties and methods.

Graph transformation systems (GTSs) are well-suited to model refactoring and,

more generally, model transformation (see [MT04] for the correspondence between

refactoring and GTSs). Model refactorings based on GTSs can be found in [RKE07,

BEK+06c, HJE06, MTR07]. The left part of Figure 5.1 describes schematically model

refactoring via graph transformations. For a graph-based metamodel M , describing,

e.g., deterministic finite automata or statecharts, the set RefactoringM of graph pro-

ductions describes how to transform models which are instances of the metamodel

M . A start graph GM , which is an instance of the metamodel M , is transformed ac-

cording to the productions in RefactoringM (using ordinary DPO transformations),

thus producing a graph HM which is the refactored version of GM .

A crucial question that must be asked always is whether a given refactoring is

behavior-preserving, which means that source and target models have the same ob-



110 Behavior Preservation in Model Refactoring

Figure 5.1: Model refactoring via graph transformations and behavior preservation.

servable behavior. In practice, proving behavior-preservation is not an easy task

and therefore one normally relies on test suite executions and informal arguments

in order to improve confidence that the behavior is preserved. On the other hand,

formal approaches [vKCKB05, PC07, NK06, GSMD03] have been also employed. A

common issue is that behavior preservation is checked only for a certain number of

models and their refactored versions. It is difficult though to foresee which refactoring

steps are behavior-preserving for all possible instances of the metamodel. Addition-

ally, these approaches are usually tailored to specific metamodels and the transfer to

other metamodels would require reconsidering several details. A more general tech-

nique is proposed in [BHE08] for analyzing the behavior of a graph production in

terms of CSP processes [Hoa85] and trace semantics which guarantees that the traces

of a model are a subset of the traces of its refactored version.

In Chapter 4 (and also in [RKE07]) we employed the general framework of bor-

rowed contexts [EK04, EK06, RKE08a] to show that models are bisimilar to their

refactored counterparts, which implies behavior preservation. The general idea is

illustrated in the right-hand side of Figure 5.1. We define a set OpSemM of graph

productions describing the operational semantics of the metamodel M and use the

borrowed context technique to check whether the models GM and HM have the same

behavior w.r.t. OpSemM . In Chapter 4 we also tailored Hirschkoff’s up-to bisimula-

tion checking algorithm [Hir01] to the borrowed context setting and thus equivalence

checking can in principle be carried out automatically. The main advantage of this

approach is that for every metamodel whose operational semantics can be specified

in terms of finite graph transformation productions, the bisimulation checking algo-

rithm can be used to show bisimilarity between models which are instances of this

metamodel. However, this technique is also limited to showing behavior preservation

only for a fixed number of instances of a metamodel.

In this chapter we go a step further and employ the borrowed context framework

in order to check refactoring productions for behavior preservation according to the

operational semantics of the metamodel. We call a rule behavior-preserving when
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its left- and right-hand sides are bisimilar. Thanks to the fact that bisimilarity is

a congruence, whenever all refactoring productions preserve behavior, so does every

transformation via these rules. In this case, all model instances of the metamodel

and their refactored versions exhibit the same behavior. However, refactorings very

often involve non-behavior-preserving rules describing intermediate steps of the whole

transformation. Given a transformation G
p1⇒ H via a non-behavior-preserving rule

p1, the basic idea is then to check for the existence of a larger transformation G ⇒∗ H ′

via a sequence seq = p1, p2, . . . , pi of rule applications such that the concurrent pro-

duction [EEPT06, Lam07] induced by seq is behavior-preserving. Since the concur-

rent production pc performs exactly the same transformation G
pc⇒ H ′ we can infer

that G and H ′ have the same behavior.

This chapter is based upon our work published in [RLK+08a, RLK+08b], but here

we allow operational semantics rules with negative application conditions (NACs).

It is structured as follows. Section 5.2 briefly reviews how the DPO approach with

borrowed contexts can be used to define the operational semantics of a metamodel.

Section 5.3 defines the model refactorings we deal with. An example in the setting of

finite automata is given in Section 5.4. In Section 5.5 we define a technique to check

refactoring rules for behavior preservation and we discuss an extension to handle non-

behavior-preserving rules in model refactoring. These techniques are then applied

to the automata example. Finally, we also apply these techniques to the example

describing the flattening of statecharts from Chapter 4.

5.2 Operational Semantics via Borrowed Contexts

Here we recall the DPO approach with borrowed contexts [EK04, EK06, RKE08a]

and show how it can be used to define the operational semantics of a metamodel M .

In this chapter we consider the category of labeled graphs, but the results would also

hold for the category of typed graphs or, more generally, for adhesive categories in

which pullbacks preserve epimorphisms (see Section 3.3.2 for details). This section

is very similar to Section 4.2, however, with a slightly different notation to address

borrowed contexts as operational semantics machinery.

In standard DPO [CMR+97], productions rewrite graphs with no interaction with

any other entity than the graph itself. In the DPO approach with borrowed con-

texts [EK06, RKE08a] graphs have interfaces, through which missing parts of left-

hand sides can be borrowed from the environment. This leads to open systems which

take into account interaction with the external environment.

Definition 5.2.1 (Graphs with Interfaces and Graph Contexts). A graph G

with interface J is a morphism J → G and a context consists of two morphisms
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J → E ← J . The embedding of a graph with interface J → G into a context

J → E ← J is a graph with interface J → G which is obtained by constructing G as

the pushout of J → G and J → E.

J //

²²
PO

E

²²

Joo

¡¡
G // G

Observe that the embedding is defined up to isomorphism since the pushout object

is unique up to isomorphism.

Definition 5.2.2 (Metamodel M and Model). A metamodel M specifies a set of

graphs with interface of the form J → G (as in Definition 5.2.1). An element of this

set is called an instance of the metamodel M , or simply model.

For example, the metamodel DFA, introduced in Section 5.4, describes determin-

istic finite automata. A model is an automaton J → G, where G is the automaton

and J specifies which parts of G may interact with the environment.

We define DPO rules with negative application conditions (NAC).

Definition 5.2.3 (NAC and Rule with NAC). A negative application condition

NAC (n) on L is an injective morphism n : L → NAC. An injective match m : L → G

satisfies NAC (n) on L if and only if there is no injective morphism q : NAC → G

with q ◦ n = m.

NAC
q |F

FF
F

""FFFF

L

m

²²

noo
=

G

A negative application condition NAC (n) is called satisfiable if n is not an iso-

morphism.

A rule L
l← I

r→ R (l, r injective) with NACs is equipped with a finite set of

negative application conditions {ny : L → NAC y}y∈Y .

Note that if NAC (n) is satisfiable then the identity match id : L → L satisfies

NAC (n). We will assume that for any rule with NACs, the corresponding negative

application conditions are all satisfiable, so that the rule is applicable to at least one

match (the identity match on its left-hand side).

Definition 5.2.4 (Set of Operational Semantics Rules). Given a metamodel M

as in Definition 5.2.2, its operational semantics is defined by a set OpSemM of graph

productions as in Definition 5.2.3.
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Below we define when a borrowed context step is NAC consistent, i.e., the NACs

of an operational semantics rule do not forbid the BC step.

Definition 5.2.5 (NAC-Consistent Borrowed Context Step). Assume that all

morphisms are injective. Given J → G and a production p : L ← I → R; {ny : L →
NAC y}y∈Y we say that a partial match pm : G ← D → L leads to a NAC consistent

BC step with respect to J → G and p if for the pushout G+ in the diagram below

there is no qy : NAC y → G+ with m = qy ◦ ny for every y ∈ Y .

D //

²²
PO

L
m

²²

ny //

=

NAC y

qy
|ww

ww

{{wwww

J // G // G+

In the following we need the concept of a pair of jointly surjective morphisms in

order to “cover” a graph with two other graphs. That is needed to find possible

overlaps between the NACs and the graph G+ which includes the borrowed context.

Definition 5.2.6 (Jointly Surjective Morphisms). Two morphisms f : A → B

and g : C → B are jointly surjective whenever for every pair of morphisms a, b : B →
D such that a ◦ f = b ◦ f and a ◦ g = b ◦ g it holds that a = b.

In a pushout square the generated morphisms are always jointly surjective. This

is a straightforward consequence of the uniqueness of the mediating morphism.

Definition 5.2.7 (Borrowed Context Rewriting for Rules with NACs). Let

OpSemM be as in Definition 5.2.4. Given a model J → G, a production p : L ← I →
R; {L → NAC y}y∈Y (p ∈ OpSemM) and a partial match G ← D → L, we say that

J → G reduces to K → H with transition label J → F ← K; {F → Nz}z∈Z if the

following holds:

(i) the BC step is NAC consistent (as in Definition 5.2.5);

(ii) there exist graphs G+, C and additional injective morphisms such that Dia-

gram (5.1) below commutes and the squares are either pushouts (PO) or pull-

backs (PB);

(iii) the set {F → Nz}z∈Z contains exactly the morphisms constructed via Dia-

gram (5.2) (where all morphisms are injective). (That is, there exists a graph

Mz such that all squares commute and are pushouts or morphisms are jointly

surjective as indicated.)
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NAC y

D //

²²
PO

L

m

²²

ny

OO

PO

Ioo //

²²
PO

R

²²
G //

PO

G+

PB

Coo // H

J

OO

// F

OO

²²

Koo

OO >>

Nz

(5.1)

NAC y
//

=

Mz

PO

Nz
oo

L

ny

OO

m
//

j.surj.

G+

OO

Foo

OO (5.2)

In this case a borrowed context step (BC step) is feasible and we write: (J → G)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H).

The construction of borrowed context steps is described in two situations: the

simplest case is when the rule does not have NACs, whereas in the presence of NACs

we have to deal with additional conditions.

When no NACs are present in Definition 5.2.7 Condition (ii) is sufficient, i.e., we

can safely discard the other two conditions. In this case consider Diagram (5.1). The

upper left-hand square merges L and the graph G to be rewritten according to a

partial match G ← D → L. The resulting graph G+ contains a total match of L

and can be rewritten as in the standard DPO approach, producing the two remaining

squares in the upper row. The pushout in the lower row gives us the borrowed (or

minimal) context F , along with a morphism J → F indicating how F should be

pasted to G. Finally, we need an interface for the resulting graph H, which can be

obtained by “intersecting” the borrowed context F and the graph C via a pullback.

Note that the two pushout complements that are needed in Definition 5.2.7, namely

C and F , may not exist. In this case, the rewriting step is not feasible. Note that

due to the absence of NACs Diagram (5.1) has no F → Nz.

By taking NACs into account, a BC step can only be executed when G+ contains

no forbidden structure of any negative application condition NAC y at the match of

L (Condition (i)). Additionally, enriched labels are generated (Condition (iii)). The

morphisms F → Nz in Condition (iii) are also called negative borrowed contexts and

each Nz represents the structures that should not be in G+ in order to enable the

BC step. This extra information in the label is of fundamental importance for the

bisimulation game with NACs (Definition 5.2.8), where two graphs with interfaces

must not only agree on the borrowed context which enables a transition but also on

what should not be offered by the environment in order to perform the transition. The
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negative borrowed contexts F → Nz are obtained from NAC y
ny← L

m→ G+ ← F of

Diagram (5.1) via Diagram (5.2), where we create all possible overlaps Mz of G+ and

NAC y in order to check which structures the environment should not provide in order

to assure a NAC-consistent BC step. To consider all possible overlaps is necessary

in order to take into account that parts of the NAC might already be present in the

graph which is being rewritten. Due to the non-uniqueness of the jointly-surjective

square one single negative application condition NAC y may produce more than one

negative borrowed context F → Nz.

Whenever the pushout complement in Diagram (5.2) exists, the graph G+ with

borrowed context can be extended to Mz by attaching the negative borrowed context

Nz via F . When the pushout complement does not exist, some parts of G+ which

are needed to perform the extension are not “visible” from the environment and no

negative borrowed context is generated.

A bisimulation is an equivalence relation between states of transition systems, as-

sociating states which can simulate each other.

Definition 5.2.8 (Bisimulation and Bisimilarity with NACs). Let OpSemM

be as in Definition 5.2.4 and R a symmetric relation containing pairs of models

(J → G, J → G′). The relation R is called a bisimulation with NACs if, for every

(J → G)R (J → G′) and a transition

(J → G)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H),

there exists a model K → H ′ and a transition

(J → G′)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−→ (K → H ′)

such that (K → H)R (K → H ′).

We write (J → G) ∼OpSemM (J → G′) (or (J → G) ∼ (J → G′) if the opera-

tional semantics is obvious from the context) whenever there exists a bisimulation R
that relates the two instances of the metamodel M . The relation ∼OpSemM is called

bisimilarity with NACs.

We often drop “with NACs” from bisimulation (bisimilarity) when it is clear from

context.

When defining the operational semantics using the borrowed context framework, it

should be kept in mind that the rewriting is based on interactions with the environ-

ment, i.e., the environment may provide some information via F to the graph G in

order to trigger the rewriting step. For instance, in our finite automata example in

Section 5.4 the environment provides a letter to trigger the corresponding transition

of the automaton.
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An advantage of the borrowed context technique is that the derived bisimilarity

is a congruence, which means that whenever a graph with interface is bisimilar to

another, one can exchange them in a larger graph without effect on the observable

behavior. This is very useful for model refactoring since we can replace a component

of the model with a bisimilar one, without altering its observable behavior.

Theorem 5.2.9 (Bisimilarity based on Productions with NACs is a Con-

gruence). The bisimilarity ∼ of Definition 5.2.8 is a congruence, i.e., it is preserved

by embedding into contexts as given in Definition 5.2.1.

Proof. See Theorem 3.3.10.

In [EK06] a technique is defined to speed up bisimulation checking, which allows us

to take into account only certain labels. A label is considered superfluous and called

independent if we can add two morphisms D → J and D → I to the diagram in Def-

inition 5.2.7 such that D → I → L = D → L and D → J → G = D → G. That is,

intuitively, the graph G to be rewritten and the left-hand side L overlap only in their

interfaces. Transitions with independent labels can be ignored in the bisimulation

game, since a matching transition always exists. However, this technique is limited

to productions without NACs (see discussion in Section 3.4).

5.3 Refactoring Transformations

Here we define refactoring transformations using DPO rules with negative application

conditions (NAC).

Definition 5.3.1 (Transformation). A direct transformation G0
p,m
=⇒ G1 via a rule

p with NACs and an injective match m : L → G0 consists of the double pushout

diagram below, where m satisfies all NACs of p.

NAC Loo

m
²²

I

PO PO

oo //

²²

R

²²
G0 C0

oo // G1

Definition 5.3.2 (Layered Refactoring System and Refactoring Rule). Let

metamodel M be as in Definition 5.2.2. A refactoring rule is a graph rule as in

Definition 5.2.3. A layered refactoring system RefactoringM for the metamodel M

consists of k sets RefactoringM
i (0 ≤ i ≤ k − 1) of refactoring rules. Each set

RefactoringM
i defines a transformation layer.
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Definition 5.3.3 (Refactoring Transformation). Let RefactoringM be as in Def-

inition 5.3.2. A refactoring transformation t : (J → G0) ⇒∗ (J → Gn) is a sequence

(J → G0)
p1⇒ (J → G1)

p2⇒ · · · pn⇒ (J → Gn) of direct transformations (as in Defini-

tion 5.3.1) such that pi ∈ RefactoringM and t preserves the interface J , i.e., for each i

(0 ≤ i < n) there exists an injective morphism J → Ci with J → Gi = J → Ci → Gi

(see diagram below). Moreover, in t each layer applies its rules as long as possible

before the rules of the next layer come into play.

NAC Loo

²²

Ioo //

²²
PO PO

R

²²
Gi

=

Ci
oo // Gi+1

J

OO HH ??

Note that refactoring transformations operate only on the internal structure of Gi

while keeping the original interface J unchanged.

5.4 Example: Deleting Unreachable States in DFA

In Section 4.4 we have presented an algorithm to minimize deterministic finite au-

tomata (DFA) by merging equivalent states. Here we give a procedure to delete

unreachable states in DFA.

The metamodel DFA describes finite automata represented as graphs with interface

as J → DFA1 and J → DFA2 in Figure 5.2, where unlabeled nodes are states and

directed labeled edges are transitions. An FS-loop marks a state as final. A W-node

has an edge pointing to the current state and this edge points initially to the start

state. The W-node is the interface, i.e., the only connection to the environment.

Figure 5.2: Examples of DFA as graphs with interface.

The operational semantics for DFA is given by a set OpSemDFA of rules containing

Jump(a), Loop(a) and Accept depicted in Figure 5.3. The rules Jump(a), Loop(a)

must be defined for each symbol a ∈ Λ, where Λ is a fixed alphabet. A DFA may
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change its state according to the rules in OpSemDFA. The W-node receives a symbol

(e.g. ‘b’) from the environment in form of a b-labeled edge connecting W-nodes, e.g.,

the string ‘bc’ is ?>=<89:;w ?>=<89:;wboo ?>=<89:;wcoo . An acpt-edge between W-nodes marks the end of

a string. When such an edge is consumed by a DFA, the string previously processed

is accepted. An example of an automaton consuming a string is given in Section 4.4.

Figure 5.3: Operational semantics and a refactoring for DFA.

A layered refactoring system for the deletion of unreachable states of an automaton

is given in Figure 5.3 on the right. To the left of each rule we depict the NAC (if

it exists). The rules are spread over three layers. Rule1 marks the initial state as

reachable with an R-loop. Rule2(a) identifies all other states that can be reached

from the start state via a-transitions. Layer 1 deletes the loops and the edges of the

unreachable states and finally the unreachable states. Layer 2 removes the R-loops.

By applying the refactoring rules above to the automaton J → DFA1 we obtain

J → DFA2, where the rightmost state was deleted. By using the bisimulation checking

algorithm of Chapter 4 we conclude that J → DFA1 and J → DFA2 are bisimilar w.r.t.

OpSemDFA, which implies language equivalence.
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5.5 Behavior Preservation in Model Refactoring

Here we introduce a notion of behavior preservation for refactoring rules and, building

on this, we provide some techniques for ensuring behavior preservation in model

refactoring.

5.5.1 Refactoring via Behavior-Preserving Rules

For a metamodel M as in Definition 5.2.2 we define behavior preservation as follows.

Definition 5.5.1 (Behavior-Preserving Transformation). Let OpSemM be as

in Definition 5.2.4. A refactoring transformation t : (J → G) ⇒∗ (J → H) (as in

Definition 5.3.3) is called behavior-preserving when (J → G) ∼OpSemM (J → H).

In order to check t for behavior preservation we can use Definition 5.2.7 (borrowed

context rewriting) to derive transition labels from J → G and J → H w.r.t. the rules

in OpSemM .

Observe that behavior preservation in the sense of Definition 5.5.1 is limited to

checking specific models. This process is fairly inefficient and, as behavior-preservation

is checked for each specific transformation, it can never be exhaustive. A more ef-

ficient strategy consists in focussing on the behavior-preservation property at the

level of refactoring rules. The general idea is to check for every p ∈ RefactoringM

whether its left and right-hand sides, seen as graphs with interfaces, are bisimilar, i.e.,

(I → L) ∼ (I → R) w.r.t. OpSemM . Whenever this happens, since bisimilarity is a

congruence, any transformation (J → G)
p⇒ (J → H) via p preserves the behavior,

i.e., J → G and J → H have the same behavior.

Definition 5.5.2 (Behavior-Preserving Refactoring Rule). Let OpSemM be as

in Definition 5.2.4. A refactoring production p : L ← I → R; {L → NAC y}y∈Y is

behavior-preserving whenever (I → L) ∼ (I → R) w.r.t. OpSemM .

Now we can show a simple but important result that says that a rule is behavior-

preserving if and only if every refactoring transformation generated by this rule is

behavior-preserving.

Proposition 5.5.3. Let OpSemM be as in Definition 5.2.4. Then it holds: p : L ←
I → R; {L → NAC y}y∈Y is behavior-preserving w.r.t. OpSemM if and only if any

refactoring transformation (J → G)
p⇒ (J → H) (as in Definition 5.3.3) is behavior-

preserving, i.e., (J → G) ∼OpSemM (J → H).

Proof. “⇒”: Assume a refactoring transformation (J → G)
p⇒ (J → H) as depicted

below. Since p is behavior-preserving we know that (I → L) ∼OpSemM (I → R)
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(Definition 5.5.2). Observe that J → G and J → H are I → L and I → R

respectively inserted into the context I → C ← J , which implies (J → G) ∼OpSemM

(J → H) by Theorem 5.2.9 (bisimilarity is a congruence).

NAC y Loo

²²
PO

I

²²

oo //

PO

R

²²
G

=

Coo // H

J

OO ??~~~~~~~~

??

“⇐”: Assume that any refactoring transformation via p is behavior-preserving.

By assumption, for rule p all NACs in {L → NAC y}y∈Y are satisfiable (see Defini-

tion 5.2.3) and thus p is applicable to the identity match id : L → L. As a result of

the application of p to I → L, we obtain (I → L)
p⇒ (I → R). Such refactoring is

behavior-preserving, by hypothesis, and thus (I → L) ∼OpSemM (I → R). Hence, by

Definition 5.5.2, p is behavior-preserving.

Remark 5.5.4. The fact that the previous proposition also holds for rules with

NACs, even though Definition 5.5.2 does not take NACs into account for behavior-

preservation purposes, of course does not imply that negative application conditions

for refactoring rules are unnecessary in general. They are needed in order to constrain

the applicability of rules, especially of those rules that are not behavior-preserving, or

rather, are only behavior-preserving when applied in certain contexts. As a direction

of future work, we plan to study congruence results for restricted classes of contexts.

This will help to better handle refactoring rules with NACs.

Remark 5.5.5. This is a more technical version of Remark 5.5.4.

In general the NACs of a refactoring rule p : L ← I → R; {L → NAC y}y∈Y may

play a more prominent role in behavior preservation. Definition 5.5.2 takes into

account only the morphisms I → L and I → R in order to determine the behavior-

preservation property of p, i.e., whenever (I → L) ∼OpSemM (I → R) holds then this is

valid in any context. Recall that behavior preservation is obtained via Definitions 5.2.7

and 5.2.8 but it is important to make clear that the NACs present in Definition 5.2.7

belong to the operational semantics rule. The applicability of a refactoring rule p is

limited to certain graphs which respect the NACs (of p), and hence it is not necessary

to consider (I → L) ∼OpSemM (I → R) valid in all contexts, but rather only in

contexts that satisfy the NACs. By the current definition of borrowed contexts if

there exists at least one context in which (I → L) ∼OpSemM (I → R) does not

hold then the refactoring rule p is not behavior preserving. In several cases, the
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exact contexts in which (I → L) ∼OpSemM (I → R) does not hold are those that

are ruled out by the NACs of p, and hence p preserves behavior in restricted classes

of contexts. Below we schematically depict this situation, where a refactoring rule

p : L ← I → R; {L → NACy}y∈Y is checked for behavior preservation.

Two transition labels are derived from I → L and only one from I → R, and thus

p is not behavior preserving because the label on the right-hand side of I → L does

not have a matching partner in I → R. In the following we consider a hypothetical

borrowed context theory where graphs with interfaces are equipped with NACs which

forbid BC steps whose contexts do not satisfy them. In the refactoring setting these

NACs are the ones from a refactoring rule. Using this hypothetical BC rewriting the

second label of I → L is not derivable because its borrowed context violates the NAC

(of the graph I → L). Thus, its left label and the label from I → R can be properly

matched and we could infer that p is behavior preserving in the restricted class of

contexts. An extension of the BC theory to cope with this kind of graphs with NACs

is an interesting future work.

Theorem 5.5.6 (Refactoring via Behavior-Preserving Rules). Let OpSemM

and RefactoringM be as in Definitions 5.2.4 and 5.3.2. If each rule in RefactoringM

is behavior-preserving w.r.t. OpSemM then any refactoring transformation (J →
G0) ⇒∗ (J → Gn) via these rules is behavior-preserving.

Proof. Assume that RefactoringM contains only behavior-preserving rules with re-

spect to OpSemM . Let t : (J → G0) ⇒∗ (J → Gn) be a sequence of refactor-

ing transformations as in Definition 5.3.3. So, for every i (0 ≤ i < n) we have

a direct refactoring transformation (J → Gi)
p⇒ (J → Gi+1) via a rule p : L ←

I → R; {L → NAC y}y∈Y in RefactoringM . Since p is behavior-preserving we have:

(I → L) ∼OpSemM (I → R). From the first part of Proposition 5.5.3 we can infer that

(J → Gi) ∼OpSemM (J → Gi+1). Furthermore, since bisimilarity ∼ is an equivalence

relation, by transitivity (J → G0) ∼OpSemM (J → Gn).

Our examples in this chapter do not make use of NACs for the operational semantics

rules, even though the techniques proposed here can handle them.
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Example 5.5.1

We check the rules in RefactoringDFA
i (i = 0, 1, 2) from Section 5.4 for behavior preser-

vation. We begin with RefactoringDFA
0 (Layer 0). For RULE1 : NAC ← L ← I → R

we derive transition labels from I → L and I → R w.r.t. OpSemDFA (where L → NAC

plays no role). On the left-hand side of Figure 5.4 we schematically depict the first

steps in their respective labeled transition systems (LTS), where each partner has

three choices. Independent labels exist in both LTSs but are not illustrated below.

The derivation of label L1 for I → R is shown on the right. Since I → L and I → R

(and their successors) can properly mimic each other via a bisimulation we can con-

clude that (I → L) ∼OpSemDFA (I → R). The intuitive reason for this is that the R-loop,

which is added by this rule, does not have any meaning in the operational semantics

and is hence “ignored” by OpSemDFA.

Analogously, RULE2(a) and the rule in Layer 2 are behavior-preserving as well.

Hence, we can infer that every transformation via the rules of Layer 0 and Layer 2

preserves the behavior. On the other hand, all rules in Layer 1, except for RULE6,

are not behavior-preserving. Note that RULE6 is only behavior-preserving because of

the dangling condition. Thus, when a transformation is carried out via non-behavior-

preserving rules of Layer 1 we cannot be sure whether the behavior is preserved.

Figure 5.4: Labeled transition systems for RULE1 and a label derivation via Jump(a).

5.5.2 Handling Non-Behavior-Preserving Rules

For refactoring transformations based on non-behavior-preserving rules the technique

of Section 5.5.1 does not allow to establish if the behavior is preserved.

Very often there are refactoring rules representing intermediate transformations

that indeed are not behavior-preserving. Still, when considered together with neigh-
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boring rules, they could induce a concurrent production [EEPT06, Lam07] pc, cor-

responding to a larger transformation, which preserves the behavior. For a transfor-

mation t : (J → G) ⇒∗ (J → H ′) via a sequence seq = p1, p2, . . . , pi the concurrent

production pc : Lc ← Ic → Rc; {Lc → NAC y
c}y∈Y induced by t performs exactly the

same transformation (J → G)
pc⇒ (J → H ′) in one step. Moreover, pc can only be

applied to (J → G) if the concurrent NACs in {Lc → NAC y
c}y∈Y are satisfied. This is

the case if and only if every NAC of the rules in t is satisfied. The basic idea is now to

check for a transformation (J → G)
p1⇒ (J → H) based on a non-behavior-preserving

rule p1 whether there exists such a larger transformation t : (J → G) ⇒∗ (J → H ′)
via a sequence seq = p1, p2, . . . , pi of rules such that the concurrent production in-

duced by t is behavior preserving. Then we can infer that J → G and J → H ′ have

the same behavior.

This is made formal by the notion of safe transformation and the theorem below.

Definition 5.5.7 (Safe Transformation). Let OpSemM be as in Definition 5.2.4.

A refactoring transformation t : (J → G) ⇒∗ (J → H) (as in Definition 5.3.3) is

called safe if it induces a behavior-preserving concurrent production w.r.t. OpSemM .

Theorem 5.5.8 (Safe Transformations preserve Behavior). Let OpSemM and

RefactoringM be as in Definitions 5.2.4 and 5.3.2, and let t : (J → G) ⇒∗ (J → H)

be a refactoring transformation. If t is safe, then t is behavior-preserving, i.e., (J →
G) ∼ (J → H).

Proof. Let t be a safe transformation. By definition it induces a concurrent produc-

tion pc : Lc ← Ic → Rc; {Lc → NAC y
c}y∈Y (see [EEPT06, Lam07] for the details of

the construction) which is behavior-preserving, i.e., (Ic → Lc) ∼OpSemM (Ic → Rc).

Due to the Concurrency Theorem with NACs [Lam07] the concurrent production pc

induced by t is applicable to J → G with the same result J → H. Since pc preserves

behavior it follows from Theorem 5.5.6 that (J → G) ∼OpSemM (J → H).

In order to prove that a refactoring transformation t : (J → G) ⇒∗ (J → H)

is safe (and thus behavior-preserving), we can look for a split tsp : G ⇒∗ H1 ⇒∗

· · · ⇒∗ Hn ⇒∗ H (interfaces are omitted) of t where each step (⇒∗) induces a

behavior-preserving concurrent production (see Definition 5.5.9). In fact, as shown

below, if and only if such split exists we can guarantee that t preserves behavior

(Theorem 5.5.10).

Definition 5.5.9 (Safe Transformation Split). Let OpSemM be as in Defini-

tion 5.2.4 and let t : (J → G) ⇒∗ (J → H) be a refactoring transformation (as in
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Definition 5.3.3). A split of t is obtained by cutting t into a sequence of subtrans-

formations tsp : (J → G) ⇒∗ (J → H1) ⇒∗ · · · ⇒∗ (J → Hn) ⇒∗ (J → H). A

transformation split tsp is safe if each step (⇒∗) is safe.

In Section 5.5.3 we present a simple search strategy for safe splits. More elaborate

ones are part of future work.

Theorem 5.5.10. Let t : (J → G) ⇒∗ (J → H) be a refactoring transformation.

Then t is safe if and only if it admits a safe split.

Proof. “⇒”: The fact that t is safe implies a behavior-preserving concurrent produc-

tion pc such that (J → G)
pc⇒ (J → H). In this case the split tsp has only the step

(J → G)
pc⇒ (J → H) which is safe.

“⇐”: if t admits a safe split then there exists a split tsp : G ⇒∗ H1 ⇒∗ · · · ⇒∗

Hn ⇒∗ H (the interfaces J are omitted) with n + 1 steps such that the i-th step (for

1 ≤ i ≤ n + 1) is safe (Definition 5.5.9). Each of these steps induces a behavior-

preserving concurrent production pi
c : Li

c ← I i
c → Ri

c; {Li
c → NAC y,i

c }y∈Y . We know

that given two behavior-preserving rules p1 and p2 as depicted below the induced

concurrent production pc is also behavior-preserving since bisimilarity is a congruence

(Theorem 5.2.9), i.e., (I1 → L1) ∼ (I1 → R1) implies (Ic → Lc) ∼ (Ic → E)

and (I2 → L2) ∼ (I2 → R2) implies (Ic → E) ∼ (Ic → Rc) and so we have

(Ic → Lc) ∼ (Ic → Rc).
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Thus, since every pi
c is behavior-preserving we can infer that the concurrent pro-

duction induced by tsp is also behavior-preserving which implies that t is safe.

Observe that, instead, the following does not hold in general: if t : (J → G) ⇒∗

(J → H) and (J → G) ∼OpSemM (J → H) then t is safe. Consider for instance

RULE5(a) in Figure 5.3. As remarked, it is in general not behavior-preserving, but

when, by coincidence, it removes a transition that is unreachable from the start state,

the original automaton and its refactored version are behaviorally equivalent.



5.5 Behavior Preservation in Model Refactoring 125

5.5.3 Ensuring Behavior Preservation

In this section we describe how the theory presented in this chapter can be applied.

Note that our results would allow us to automatically prove behavior preservation

only in special cases, while, in general, such mechanized proofs will be very difficult.

Hence here we will suggest a “mixed strategy”, which combines elements of automatic

verification and the search for behavior-preserving rules, in order to properly guide

refactorings.

More specifically, a given model J → G can be refactored by applying the rules

in RefactoringM in an automatic way, where the machine chooses non-deterministi-

cally the rules to be applied, or in a user-driven way, where for each transformation

the machine provides the user with a list of all applicable rules together with their

respective matches and ultimately the user picks one of them. The main goal is then

to tell the user whether the refactoring is behavior-preserving.

The straightforward strategy to accomplish the goal above is to transform J → G

applying only behavior-preserving rules. This obviously guarantees that the refactor-

ing preserves behavior. However if a non-behavior-preserving rule p is applied we can

no longer guarantee behavior preservation. Still, by proceeding with the refactoring,

namely by performing further transformations, we can do the following: for each new

transformation added to the refactoring we compute the induced concurrent produc-

tion for the transformation which involves the first non-behavior-preserving rule p

and the subsequent ones. If this concurrent production is behavior-preserving we can

again guarantee behavior preservation for the refactoring since the refactoring admits

a safe split (see Theorem 5.5.10).

The strategy above is not complete since behavior preservation could be ensured

by the existence of complex safe splits which the illustrated procedure is not able to

find. We already have preliminary ideas for more sophisticated search strategies, but

they are part of future work. Note however, that this strategy can reduce the proof

obligations, since we do not have to show behavior preservation between the start

and end graph of the refactoring sequence (which may be huge), but we only have to

investigate local updates of the model.

Example 5.5.2

Consider the automaton J → DFA1 of Section 5.4. By applying the behavior-preserving

rules of RefactoringDFA
0 (Layer 0) we obtain J → DFA0

1 depicted in Figure 5.5 (the in-

terface J is omitted). Since RefactoringDFA
0 contains only behavior-preserving rules by

Theorem 5.5.6 it holds that (J → DFA1) ⇒∗ (J → DFA0
1) preserves the behavior. No

more rules in RefactoringDFA
0 can be applied, i.e., the computation of Layer 0 termi-

nates.

Now the rules of RefactoringDFA
1 (Layer 1) come into play. Recall that all rules
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in RefactoringDFA
1 are non-behavior-preserving, except for RULE6. This set contains

RULE4(0) and RULE4(1) which are appropriate instantiations of RULE4(a). After the

transformation (J → DFA0
1)

RULE4(0)
=⇒ (J → DFA1

1) we can no longer guarantee behavior-

preservation since RULE4(0) has been applied. From now on we follow the strategy

previously described to look for a behavior-preserving concurrent production. We

perform the step (J → DFA1
1)

RULE4(1)
=⇒ (J → DFA2

1), build a concurrent production pc

induced by the transformation (J → DFA0
1)

RULE4(0)
=⇒ (J → DFA1

1)
RULE4(1)

=⇒ (J → DFA2
1)

and, by checking pc for behavior-preservation, we find out that it is not behavior-

preserving. We then continue with (J → DFA2
1)

RULE6
=⇒ (J → DFA3

1), build p′c (Fig-

ure 5.6), induced by the transformation beginning at J → DFA0
1 and check it for

behavior-preservation. By Definition 5.2.7 (borrowed context rewriting) we derive

transition labels from Ic → Lc and Ic → Rc which are properly matched as in Defini-

tion 5.2.8 (bisimulation). Hence p′c is behavior-preserving by Proposition 5.5.3 and

so we can once again guarantee behavior preservation (Theorem 5.5.8).

Figure 5.5: Refactoring transformation.

Figure 5.6: Concurrent production p′c induced from Figure 5.5.

Finally, no more rules of RefactoringDFA
1 are applicable to J → DFA3

1. The behavior-

preserving rule in RefactoringDFA
2 (Layer 2) comes into play and performs a transfor-

mation (J → DFA3
1)

RULE7
=⇒2 (J → DFA2), where the final automaton is depicted in Sec-

tion 5.4 (DFA2). Concluding, since we have found a safe split given by (J → DFA0
1)

p′c=⇒ (J → DFA3
1) (Figure 5.7) for the transformation via non-behavior-preserving rules

we can infer that J → DFA1 and J → DFA2 have the same behavior.

Figure 5.7: Transformation (J → DFA1) ⇒∗ (J → DFA2) and safe splits (via p′c) .
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Intuitively, the concurrent production is behavior-preserving, since it deletes an

entire connected component that is not linked to the rest of the automaton. Note

that due to the size of the components involved it can be much simpler to check such

transformation units rather than the entire refactoring sequence.

In addition, it would be useful if the procedure above could store the induced con-

current productions which are behavior-preserving into RefactoringM for later use.

By doing so the user knows which combination of rules leads to behavior-preserving

concurrent productions. Similarly, the user could also want to know which combina-

tion of rules leads to non-behavior-preserving concurrent productions. Of course, in

the latter case the concurrent productions are just stored but do not engage in any

refactoring transformation. It is important to observe that we store into RefactoringM

only concurrent productions which are built with rules within the same layer (as in

Example 5.5.2). For more complex refactorings, such as the flattening of hierarchical

statecharts in Example 5.5.3, a behavior-preserving concurrent production pc exists

only when it is built from a transformation involving several layers. In this case, pc

is built and checked for behavior preservation but not stored for later use.

For the cases where a layer RefactoringM
i of RefactoringM is terminating and con-

fluent it is then important to guarantee that adding concurrent productions to the

refactoring layer does not affect these properties.

Theorem 5.5.11. Let RefactoringM
i be as in Definition 5.3.2 and Rpc

i be a set con-

taining concurrent productions pc built from p, q ∈ RefactoringM
i ∪ Rpc

i . Then when-

ever RefactoringM
i is confluent and terminating it holds that RefactoringM

i ∪ Rpc

i is

also terminating and confluent.

Proof. Suppose that an infinite graph transformation sequence G0 ⇒ G1 ⇒ G2 ⇒ . . .

exists via rules in RefactoringM
i ∪Rpc

i (the interfaces J are omitted). Due to the anal-

ysis part of the Concurrency Theorem with NACs [Lam07] each direct transformation

in this sequence via a concurrent rule pc ∈ Rpc

i can be analyzed to a sequence of di-

rect transformations with the same result via rules in RefactoringM
i . Therefore, there

would also exist an infinite graph transformation sequence via rules of RefactoringM
i ,

but this is a contradiction since RefactoringM
i is terminating.

Now consider the transformation sequences H1
∗⇐ G

∗⇒ H2 via productions in

RefactoringM
i ∪Rpc

i . We can argue analogously. Due to the analysis part of the Con-

currency Theorem with NACs [Lam07] each direct transformation in these sequences

via a concurrent rule pc ∈ Rpc

i can be analyzed to a sequence of direct transforma-

tions with the same result via rules in RefactoringM
i . Thus, we obtain transformation

sequences H1

′∗⇐ G
∗′⇒ H2 via rules in RefactoringM

i . Since RefactoringM
i is confluent

there exist two transformation sequences H1
∗⇒ X

∗⇐ H2 via rules in RefactoringM
i .

Hence, the original sequences H1
∗⇐ G

∗⇒ H2 are also confluent.
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For the case where layer RefactoringM
i is terminating and confluent another inter-

esting and useful fact holds: assume that we fix a start graph G0 and we can show that

some (terminating) transformation, beginning with G0 allows a behavior-preserving

split. Then clearly all transformations starting from G0 are behavior-preserving since

they result in the same final graph H.

In the following example we apply the techniques developed in this chapter to reason

about the refactoring rules describing the flattening of statecharts from Section 4.5.

Example 5.5.3

Let OpSemSC be a set containing the rules of Figure 4.24 describing the operational

semantics of statecharts diagrams. Each layer in Figure 4.25 forms a set of refactor-

ing rules RefactoringSC
i (i = 0, 1, 2). By checking these refactoring rules for behavior

preservation we find out that all rules are not behavior-preserving, except for Mark,

Del-or(a) and Del-nested-or(a).

In Figure 5.8 we depict a statechart with an or-state and its respective flat version.

These statecharts are given as graphs with interface in Figure 5.9.

Figure 5.8: Statechart SC3 and its flattened version SC3-FLAT.

Figure 5.9: Statecharts as graphs with interface.

We then apply the rules in RefactoringSC to J → SC3. The first transformation step

(J → SC3)
Mark
=⇒ (J → SC31) (see Figure 5.10) is behavior-preserving since Mark pre-

serves behavior. The second refactoring step is (J → SC31)
Move-from

=⇒ (J → SC32) and
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we can no longer guarantee behavior preservation since Move-from does not preserve

behavior. From J → SC31 on we will use the simple search strategy previously defined

in order to find a safe split. Now we perform (J → SC32)
Move-to
=⇒ (J → SC33) and build

the concurrent production pc induced by (J → SC31) ⇒2 (J → SC33). By checking pc

for behavior preservation we find that it does not preserve behavior. No more rule

from Layer 0 is applicable and so the rules of Layer 1 come into play. The transfor-

mation (J → SC33)
Unwire1
=⇒ (J → SC34) takes place, we build a concurrent production

including this last transformation, but it is not yet behavior preserving. Layer 1 ter-

minates. The last transformation is (J → SC34)
Del-or(B)
=⇒ (J → SC3-FLAT). We build

the concurrent production p′c (shown in Figure 5.11) induced by the transformation

(J → SC31) ⇒4 (J → SC3-FLAT) and we find that p′c is behavior preserving. Hence,

we can guarantee again behavior preservation because we have found a safe split via

p′c for the refactoring transformation.

Figure 5.10: Sequence of refactoring transformations (interfaces J are omitted).

Since p′c is built from rules of Layer 1 and Layer 2 we do not store it for later use.
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Figure 5.11: Induced concurrent production p′c.

Note that the left and right sides of p′c are much smaller than the statecharts in

Figure 5.9 which leads to a more efficient behavior preservation checking.

5.6 Conclusions and Future Work

We have shown how the borrowed context technique can be used to reason about

behavior-preservation of refactoring rules and refactoring transformations. In this

way we shift the perspective from checking specific models to the investigation of the

properties of the refactoring rules.

The formal techniques in related work [vKCKB05, PC07, NK06, GSMD03] address

behavior preservation in model refactoring, but are in general tailored to a specific

metamodel and limited to checking the behavior of a fixed number of models. There-

fore, the transfer to different metamodels is, in general, quite difficult.

Hence, with this chapter we propose to use the borrowed context technique in

order to consider any metamodel whose operational semantics can be given by graph

productions. Furthermore, the bisimulation checking algorithm of Chapter 4 for

borrowed contexts provides the means for checking models for behavior preservation.

This can be done not only for a specific model and its refactored version, but also for

the left-hand and right-hand sides of refactoring rules. Once we have shown that a

given rule is behavior-preserving, i.e., its left- and right-hand sides are equivalent, we

know that its application will always preserve the behavior, due to the congruence

result. When rules are not behavior-preserving, they still can be combined into

behavior-preserving concurrent productions. We believe that such a method will

help the user to gain a better understanding of the refactoring rules since he or she

can be told exactly which rules may modify the behavior during a transformation.

An advantage of our technique over the one in [BHE08] is that we work directly with

graph transformations and do not need any auxiliary encoding. Furthermore, with
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our technique we can guarantee that a model and its refactored version have exactly

the same observable behavior, while in [BHE08] the refactored model “contains” the

original model but may add extra behavior.

This work opens up several possible directions for future investigations. First, in

some refactorings when non-behavior-preserving rules are applied, the search strate-

gies for safe splits can become very complex. Here we defined only a simple search

strategy, but it should be possible to come up with more elaborate ones.

Second, although we are working with refactoring rules with negative application

conditions, these NACs do not play a prominent role in our automatic verification

techniques, but of course they are a key to limiting the number of concurrent produc-

tions which can be built. The borrowed context framework and the congruence result

already handle rules with NACs [RKE08a]. However, this applies only to negative

application conditions in the operational semantics. It is, nevertheless, also impor-

tant to have similar results for refactoring rules with NACs, which would lead to a

“restricted” congruence result, where bisimilarity would only be preserved by certain

contexts (see also the discussion in Remarks 5.5.4 and 5.5.5). Since model refactor-

ings often use graphs with attributes it would be also useful to investigate whether

the congruence results in [EK04, RKE08a] also hold for adhesive HLR categories (the

category of attributed graphs is an instance thereof).





Chapter 6

Towards a Tool Support

6.1 Motivation

Experience shows that label derivation and bisimulation proofs demand a great

amount of time even for small examples and when done by hand they are partic-

ularly susceptible to errors. This situation becomes even worse when dealing with

behavior preservation on the level of refactoring rules, as shown in Chapter 5, where a

refactoring rule L ← I → R; {L → NAC y}y∈Y seen as graphs with interface, namely

I → L and I → R, may have an interface I of considerable size exposing several

components of L and R to the environment which in turn makes the derivation of

labels a nightmare when done manually. This is exactly the case for the flattening of

statecharts in Example 5.5.3.

Metamodels whose operational semantics rules require negative application condi-

tions may quickly increase the amount of work required to derive labels and match

them via the bisimulation game. Transition labels with negative borrowed contexts

are more complex and, additionally, we have to consider arbitrary labels because the

technique based on (in)dependent labels does not scale up smoothly to this setting.

Originally, our initial idea to overcome these problems was to implement a proto-

type to carry out all the hurdle involving bisimulation checking. We began developing

a prototype tool in Objective Caml (OCaml) [OCa], which is a functional language

very appropriate for rapid prototyping. Due to the nature of graphs and the categor-

ical operations required by the borrowed context technique we can easily implement

them with a list-based functional programming language such as OCaml. We chose

OCaml as a prototyping language because it is based on Lisp [WH89], and so widely

known and used, which results in a variety of libraries and source code available.

Furthermore, Ocaml is mainly interpreted for rapid prototyping purposes, but also

possesses a code generator to C. These features allow a prototype to be developed in
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interpreted mode and afterwards compiled from the generated C code, giving rise to

a faster program. Our prototype in OCaml uses directed labeled graphs and when

we want to check two graphs for bisimilarity, we specify a set of graph productions

and also the graphs with interface to be checked. We have implemented graphs with

interfaces, graph productions, and all procedures required by the derivation of tran-

sition labels. OCaml is mainly textual, but for the sake of visualization, our graphs,

rules and derived labels can be visualized with the package Graphviz [Gra].

By the time we extended the borrowed context framework to rules with NACs

(Chapter 3) and then applied bisimulations to reason about behavior preservation in

model refactoring we realized that our prototype would not be able to evolve to a

fully functional tool. Ocaml’s main drawback is the lack of graphical user interface

(GUI) routines to implement features needed by a graphical editor to draw graphs and

graph transformation rules. An alternative strategy would be to do the drawing in a

existing tool with GUI resources such as AGG [AGG] and the bisimulation checking

with our prototype. However, in practice switching among several small tools (not

well integrated) can be very annoying and time consuming in the long run. Usually

users tend to stick with solutions disposed in a smoothly integrated environment. For

this reason our OCaml prototype is limited to the implementation of structures and

operations required by label derivation from graphs and graph rules (without NACs).

The bisimulation checking procedure, the construction of concurrent productions

with NACs and an elaborate GUI to support these tasks are part of our future work.

We plan to implement the bisimulation checking algorithm and the behavior analysis

techniques of Chapter 5 in a programming language such as Java and deploy them

as an engine to be used by other tools, such as AGG for example. One of the

advantages of equipping AGG with our engine is that the resulting tool would have a

graphical editor to define graphs and graph rules, the required machinery to perform

graph transformations (and also model refactorings) and the means to reason about

behavior preservation of graph transformations and model refactorings.

The following sections complement Chapter 4. Here we describe additional ingre-

dients needed to implement the bisimulation checking algorithm for the borrowed

context technique to graph rewriting.

6.2 Graph, Graph Morphism and Match

Labeled graphs (as in Definition 2.3.1) can be easily encoded in an either functional

or object-oriented programming language. First we have to declare ΩV and ΩE as

sets containing labels for nodes and edges, respectively. A labeled graph can be

implemented in a functional language as a tuple G = (V,E, lv, le), where:
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- V is a set of node names, e.g., V = {“n1′′; “n2′′};

- E is a set of edges. An edge is a tuple (edge name, source, target) indicating

the name of the edge, its source and target nodes, e.g., (“e1′′, “n1′′, “n2′′);

- lv is a labeling function for nodes, defined as a set of pairs (node name, type),

where type is a label contained in ΩV , e.g., lv = {(“n1′′, “A′′); (“n2′′, “B′′)};

- lE is a labeling function for edges, defined as a set of pairs (edge name, type),

where type is a label contained in ΩE, e.g., lE = {(“e1′′, “X ′′)}.

•A
n1 •B

n2
e1

X 33

Figure 6.1: Example of a labeled graph.

A graph morphism f : G → H (as in Definition 2.3.1) consists of a function

fV : Gv → Hv for node mapping and another fe : GE → HE for edge mapping. These

functions can be encoded in a functional language as sets of tuples, where the first

element of each tuple is a node (edge) name from GV (GE) and the second is a node

(edge) from HV (HE).

Given two graphs G and H it is useful to know whether there exist graph morphisms

of the form G → H (i.e., H preserves the structure of G). This is called graph

matching and algorithms to find matches play a key role in any graph-based tool.

The most straightforward algorithm to finding graph matches consists in creating for

each node (edge) in G a list of nodes (edges) from H, where each element of these lists

is a candidate for a mapping. The idea is then to generate all possible combinations

of candidates and pick only the ones which preserve the structure of G in H, i.e., the

ones that are indeed graph morphisms. This simple algorithm is easy to implement,

but it has a major drawback in terms of performance due to its exponential worst-

case complexity. Any serious graph-based tool implementation can not afford such a

bottleneck.

More efficient algorithms take several optimizations into account in order to speed

up match finding. One simple optimization is to populate the list of candidate nodes

(edges) with nodes (edges) of H which have the same label as the node (edge) in G.

A further optimization is to avoid generating all possible combinations of candidates

since usually most of them do not lead to proper graph morphisms. A sensible

algorithm may decrease the search space by generating the combinations of candidates

on the fly with some kind of backtracking search strategy. Constraint satisfaction

techniques also bring benefits when applied to graph matching search. Each node and

each edge in G is assigned to constraints such as its type, its number of incoming and
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outgoing edges and functions to ensure source and target compatibility. In [Rud98]

such techniques are described together with a backtracking search strategy. This

algorithm has a good overall performance, as we observed by implementing it in our

OCaml prototype. Another interesting optimization strategy can be found in [Bat06],

where heuristics come into play to define search plans for matching strategies.

6.3 Categorical Constructions for Graphs

The borrowed context framework and also the behavioral analysis techniques pre-

sented in this thesis rely on basic categorical constructions, such as pushout, pushout

complement, pullback and initial pushout, which can be mechanized. Their mathe-

matical definitions are given in Appendix A.

In our OCaml prototype we have implemented the following constructions:

• Pushout: see Fact A.8 for the construction. Remark 2.18 in [EEPT06] presents

an algorithm;

• Pullback: see Fact A.15;

• Pushout Complement: see Fact 2.3.9 for the construction. In general the

pushout complement may not exist, but by implementing the gluing condition

(Definition 2.3.7) we can check its existence;

• Initial Pushout: see Fact A.21.

The borrowed context extension to rules with negative application conditions in

Chapter 3 requires an additional construction to build a commutative square with

jointly surjective (epi) morphisms. Given a span B
f← A

g→ C of monomorphisms

we want to build all possible cospans B
g′→ D

f ′← C of monomorphisms such that

g′◦f = f ′◦g and the morphisms f ′ and g′ are jointly surjective (as in Definition 3.3.3).

An algorithm to do so should basically build all possible overlaps D of B and C while

preserving the elements of B and C that are identified in A.

Fact 6.1 (Squares with Jointly Surjective Morphisms in Sets). Given a span

B
f← A

g→ C of injective morphisms in Sets the cospans of injective morphisms

B
g′→ D

f ′← C with g′ ◦ f = f ′ ◦ g and f ′, g′ jointly surjective are constructed as

follows. First we build a set Bsub = {A+ ∈ P(B) | ∃ a : A → A+ ∧ ∃f+ : A+ →
B such that (1) commutes}, where P is a powerset function.
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B
g′ // D

A+

f+
aaBBBBBBBB

g+

!!B
BB

BB
BB

B

PO

(1)

(2)

A

a

==||||||||

f

OO

g
// C

f ′

OO

Then we do:

∀ A+ ∈ Bsub :

∀ g+ : A+ → C injective with (2) commutative :

build pushout B
g′→ D

f ′← C of B
f+← A+ g+→ C.

Proof. Every graph A+ in Bsub is a subgraph of B including A. Since f is injective

and (1) commutes it holds that a is injective as well. The morphism f+ is injective

because it is an inclusion. Since g+ is injective and (2) commutes it holds that A+

is a subgraph of C containing A. These steps generate all spans B
f+← A+ g+→ C of

injective morphisms between B and C, where each A+ contains at least A.

By taking the pushout B
g′→ D

f ′← C of f+ and g+ we can infer that g′ and f ′ are

injective due to the injectivity of g+ and f+, respectively. The pushout square implies

that g′ and f ′ are jointly surjective. It remains to show the required commutativity,

namely g′ ◦ f = f ′ ◦ g. Note that g′ ◦ f = g′ ◦ f+ ◦ a = f ′ ◦ g+ ◦ a = f ′ ◦ g.

Fact 6.1 can also be used in Graphs with a power function P producing subgraphs

of B. Moreover, Fact 6.1 is employed to build the diagram below in Definition 3.3.4

(BC rewriting with NACs). Since the graph G+ tends to be larger than NAC y it is

more efficient to build the cospans NAC y → Mz ← G+ by taking the subgraphs of

NAC y (via P) instead of G+.

NAC y

=

// Mz

PO

Nz
oo

L //

OO
j.surj.

G+

OO

Foo

OO

6.4 Isomorphism Checking and Graph Certificates

The bisimulation checking procedure for borrowed contexts in Section 4.3.3 heavily

depends on isomorphism checks of graphs. Every operation ∈ and /∈ to inspect
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relations and other data structures for a specific pair (J → G, J → G′) demands

isomorphism checks.

Two graphs G and H are equal up to isomorphism, i.e., they are structurally

identical, whenever for every morphism f : G → H there exists an inverse f−1 : H →
G such that f−1 ◦ f = idG and f ◦ f−1 = idH (see Definition A.4 in Appendix A).

Hence, a standard procedure to check G and H for isomorphism is to find such

morphisms f and f−1. Once we have a graph matching algorithm implemented one

can easily check graphs for isomorphism. However, even a match finding algorithm

with sophisticated techniques to improve its overall performance may very quickly

become a bottleneck in a tool which frequently performs isomorphism checks.

A useful optimization consists in equipping graphs with invariants (also called

certificates). Graph certificates are “signatures” that identify certain properties in

graphs. Straightforward certificates take into account, for example, the number of

nodes and edges with their respective labels. A more complex certificate would also

store additional information such as the number of incoming and outgoing edges of

every node. Graph certificates are intended to be computed very fast and, in addi-

tion, the comparison of graph certificates should also be done in no time. The idea is

to define a function c : G → Cert , where G is a graph and Cert is a certificate com-

puted for G. Two isomorphic graphs end up having the same certificate, whereas the

converse does not hold in general. Even though two graphs have the same certificate

we still have to find an isomorphism between them to be on the safe side. Therefore,

a certificate with high distinguishing power is very desirable. In practice, there are

many situations in which it is useful to store graphs together with their respective

certificates, and furthermore, each rewriting of a graph should force an update of its

certificate. Just to give a flavor of how much impact graph certificates may have in

the bisimulation checking algorithm consider the following situation: finding a spe-

cific pair of graphs (J → G, J → G′) inside a huge relation R. This is actually what

the up-to isomorphism technique (Definition 3.4.6) and the operations with ∈ and /∈
do.

In our Ocaml prototype we implemented a powerful graph certificate defined by

Rensink in [Ren06]. These certificates are created by a function c : G → N which takes

a graph G as input and produces a natural number as certificate. The algorithm to

calculate these certificates assigns for each node and edge a natural number, which

is a special encoding of their corresponding labels to natural numbers, and iterate

as follows: edges not only change their values based on the values of their adjacent

nodes, but also modify the values of the nodes. For a finite graph after a finite number

of iterations the values one nodes and edges become “stable” with respect to a halt

condition. At the end the natural values of all nodes and edges are summed up to

obtain a final certificate. Besides this sum the certificate is also composed of a list
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of natural values used by the edges and another list of the natural values used by

the nodes. Thus, whenever two graphs turn out to have the same sum we are also

able to compare their respective values in the lists of nodes and edges to ensure that

both certificates are really the same. Only in this case we try to find an isomorphism

between the two graphs.

6.5 Bisimulation Checking Algorithm

The bisimulation checking algorithm has been described in Section 4.3.3 with pseudo

code which makes its presentation compact, but also leaves certain room for more

details about some operations which have been only textually described. Here we

will focus on clarifying these operations.

Given two graphs with interface we show an algorithm to construct their successor

states in the state space product as in Definition 4.3.10. Based on this algorithm

we will also be able to check whether these two graphs fails to mimic each other

(Definition 4.3.10). These two operations allow us to give more details on how to

insert a new pair of graphs with interface into Table, where the state space product

under investigated is stored.

Table

(P, Q) successors m fails

(1, 4)
(2,5)• (2,6)• (3,5)◦ (3,6)◦

2 3 5 6

£¤ £ ¤ false

(3, 5) true

(3, 6)
(3,6)◦

3 6

¤¤ false

Figure 6.2: Pairs still under analysis in Table.

Figure 6.2 depicts an example of Table. We use P and Q as shortcuts for graphs

with interface of the form J → G. Table has four fields: (P,Q) indicating a pair

of graphs with interface; a set called successors , where each successor is a tuple

of the form (P ′, Q′, boolean) whose boolean value indicates whether this successor

has already been investigated; a set called m with tuples, where the first element

is a successor and the second is a boolean value; fails is a boolean value indicating

whether P and Q fail to mimic each other.

The procedure find successors is in charge of expanding the state space product

of a pair (P, Q) of graphs with interface. We need some auxiliary procedures. The

procedure build transitions(P ) receives a graph with interface P as argument. First

it uses the set P of rules to calculate partial matches leading to transition labels as
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described by the algorithm in Section 4.3.1. From these partial matches the procedure

builds the corresponding borrowed context steps (Definition 4.2.5) and finally returns

a set containing transitions of the form P
µ→(d) P ′ (µ = J → F ← K; {F → Nz}z∈Z),

where the label µ is dependent only when its underlying rule has no NAC.

The procedure derivable label(P, µ) receives a graph with interface P and a tran-

sition label µ in order to check whether µ is derivable from P and the set P of rules

(as in Definition 4.3.6). This procedure returns either P
µ→ P ′ if µ is derivable from

P or ∅, otherwise. We define three functions to access the elements of a transition

t = P
µ→ P ′, namely 1st(t) = P , 2nd(t) = P ′ and label(t) = µ.

find successors(P, Q) :=

succs := ∅; m := ∅;
TP := build transitions(P );

TQ := build transitions(Q);

for each tP ∈ TP do

tQ := derivable label(Q, label(tP ));

if tQ 6= ∅
then insert (2nd(tP ),2nd(tQ), false) into succs;

insert (2nd(tP ), false) into m;

insert (2nd(tQ), false) into m;

else return ((P, Q), ∅, ∅, true);

end for

for each tQ ∈ TQ do

tP := derivable label(P, label(tQ));

if tP 6= ∅
then insert (2nd(tP ),2nd(tQ), false) into succs;

insert (2nd(tP ), false) into m;

insert (2nd(tQ), false) into m;

else return ((P, Q), ∅, ∅, true);

end for

return ((P, Q), succs, m, false);

In the procedure bisimulation check we replace:

insert (P, Q) into S and Table; status := true;

by this code

insert (P, Q) into S;

insert find successors(P, Q) into Table;

status := true;

and

{(P0, Q0)
µ→ successor(P0, Q0)}

insert successors of (P0, Q0) into S;

for each successor(P0, Q0) do

if successor(P0, Q0) /∈ Table

∧ successor(P0, Q0) /∈ W ∪R ∪ V

then insert it into Table;

end for

by this code

succ details :=find successors(P0, Q0);

succs :=get successors(succ details);

for each succ ∈ succs do

insert succ into S;

if succ /∈ Table ∧ succ /∈ W ∪R ∪ V

then insert find successors(succ) into Table;

end for

In the procedure propagate the following line

for each (Pf , Qf ) ∈ Table

with (Pf , Qf )
µ→ (P, Q) do

should be replaced by

for each (Pf , Qf ) ∈ Table such that

(P, Q) ∈ Table.successors do

The procedure find successors calculates the successors of P and Q whenever

they can mimic each other. This procedure returns the information about (P, Q)

to be stored into Table (see last line with return). First we generate the set TP

(TQ) containing transitions of the form P
µ→(d) P ′ (Q

µ→(d) Q′). Then we check

whether each transition label from one graph is derivable from the other. If a label

is derivable from the other graph they properly match and we insert the pair of

successors into succs and each of its components into m. Whenever at least one label

is not derivable from the other graph then P and Q fail to mimic each other and we
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return ((P, Q), ∅, ∅, true).

The procedure find successors can now be used in bisimulation check of Sec-

tion 4.3.3. We need to make two replacements in bisimulation check as described

above. First we replace how the successors of (P,Q) are inserted into Table. Note

that in practice each field of Table should explicitly receive a field of the tuple re-

turned by find successors. The second replacement specifies how the successors of

(P0, Q0) are constructed. The procedure get successors returns the set of succes-

sors from the tuple succ details . Then we insert each each successor into S, and in

addition, if its information is not available in Table and it has not been already ana-

lyzed we insert the information about its successors into Table. The last replacement

is within the procedure propagate, where we want to fetch the parents of (P, Q)

in the state space product (stored in Table). This is done by looking for (P, Q) in

every set Table.successors of each entry of Table and returning the associate pairs in

Table.(P ,Q).

6.6 Up-to Techniques

We show how the up-to techniques of Section 3.4 can be implemented. The general

principle is as follows: given a relation R = {(J → G, J → G′), ...} and an up-to

technique specified as a function F from relations to relations, we want to decide

whether a pair of graphs with interface (K → H, K → H ′) belongs to F(R).

6.6.1 Up-to Isomorphism

Since graphs are defined up to isomorphism the bisimulation checking algorithm of

Section 4.3.3 requires at least the up-to isomorphism technique (Definition 3.4.6),

which is given by:

F iso(R) = {(K → H, K → H ′) | ∃(J → G, J → G′) ∈ R and there exist

isomorphisms K
∼→ J,H

∼→ G,H ′ ∼→ G′ such that (1), (2) commute}

K

o
²²

//

(1)

H

o
²²

K //

(2)o
²²

H ′

o
²²

J // G J // G′

Let each element in R be a tuple of the form (J → G, J → G′, CG, CG′), where CG

and CG′ are graph certificates for J → G and J → G′, respectively. The procedure

same certificate checks whether two graph certificates are equal and isomorphic
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checks if two graphs with interface are isomorphic. Thus, given two graphs and their

respective certificates the procedure is in upto iso tries to find an isomorphic pair in

the relation R. First we compare graph certificates, which is fast, and only when the

certificates are equal we proceed by checking the graphs for isomorphism. Observe

that the symmetry of R is implemented by code in order to keep this relation as

small as possible.

is in upto iso(K → H, K → H′, CH , CH′ ,R) :=

for each (J → G, J → G′, CG, CG′ ) ∈ R do

if same certificate(CH , CG) ∧ same certificate(CH′ , CG′ )
then if isomorphic(K → H, J → G) ∧ isomorphic(K → H′, J → G′)

then return true;

else if same certificate(CH , CG′ ) ∧ same certificate(CH′ , CG)

then if isomorphic(K → H, J → G′) ∧ isomorphic(K → H′, J → G)

then return true;

end for

return false;

In the procedure is in upto iso above the use of graph certificates have a great

impact in the amount of time required to decide the membership of a pair of graphs

with interface in F iso(R), because it is able to quickly skip several pairs in R whose

certificates do not match with the certificates of (K → H, K → H ′).

6.6.2 Up-to Context

A more powerful technique is the up-to context (Definition 3.4.7). Two graphs with

interface (K → H,K → H ′) are bisimilar up to context if after removal of identical

contexts the resulting pair of graphs can be found in the relation R. This technique

is given by:

FC(R) = {(K → H, K → H ′) | ∃(J → G, J → G′) ∈ R and there exists a

context J → E ← K inducing the diagrams below}

J //

²²
PO

E

²²

=

Koo

~~}}
}}

}}
}}

J //

²²
PO

E

²²

=

Koo

~~||
||

||
||

G // H G′ // H ′

We need three auxiliary procedures in order to implement is in upto context

below. Given two graphs G and H as input the procedure find monomorphisms

returns a set containing injective morphisms G → H, if they exist. The procedure

build context receives morphisms of the form J → G → H ← K and returns a

context J → E ← K whenever: the pushout complement J → E → H exists and

there exists an injective morphism K → E such that the corresponding triangle above

commutes. If such a context does not exist build context returns ∅. The procedure
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check context determines whether K → H can be indeed obtained by inserting

J → G into the context J → E ← K.

is in upto context(K → H, K → H′,R) :=

for each (J → G, J → G′) ∈ R do

mH :=find monomorphisms(G, H);

if mH 6= ∅
then

for each mh ∈ mH do

context :=build context(J → G, K → H, mh);

if context 6= ∅
then

if check context(J → G′, K → H′, context)

then return true;

end for

mH′ :=find monomorphisms(G, H′);
if mH′ 6= ∅

then

for each mh′ ∈ mH′ do

context :=build context(J → G, K → H′, mh′);
if context 6= ∅

then

if check context(J → G′, K → H, context)

then return true;

end for

end for

return false;

Note that is in upto context subsumes the procedure is in upto iso of Sec-

tion 6.6.1. However, this fact does not lessen the usefulness of is in upto iso. In

practice, it can be computed much faster than is in upto context due to the use

of graph certificates and its simpler machinery.





Chapter 7

Conclusion

Here we summarize the main achievements of this thesis, and then outline open

problems and directions for future work.

7.1 Summary and Main Results

In this thesis we have focused on a framework to reason about behavioral aspects of

graphs and graph transformations. The advent of the DPO extension to borrowed

contexts provided the means to draw a clear line between internal and observable

behavior of systems given by graph transformations. Borrowed contexts allow systems

to be treated as black boxes, where users or other systems (formally defined as an

environment) are only granted to interact with the visible part of a system, whereas

the internal computations are hidden, and therefore not observable.

The work presented in this thesis has extended the borrowed context framework

[EK04, EK06] of Ehrig and König in many directions. The results of this thesis are in

essence a consequence of bouncing between theory and practice. Initially, the main

drive of our research was more theory-oriented, but later on we found out a very

interesting application area (model refactoring) which could profit a lot by exploiting

the distinction between observable and internal (hidden) behavior and the main result

of borrowed contexts (bisimilarity is a congruence). By this time, our interest was

fundamentally to extend the borrowed context framework in ways with direct impact

in practice.

Compared to the other approaches based on relative pushouts [LM00, SS03a] to

derivation of labeled transition systems the borrowed context technique has several

advantages, varying from its intuitive graph-based notation to its easier underlying

theory and simpler machinery to label derivation. Furthermore, by using graph trans-

formations one can analyze a wide range of problems: protocol verification, behavioral
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equivalences of process calculi, model transformation and model refactoring, just to

cite a few.

Below we summarize the main results achieved in this thesis.

Bisimulation Congruences in the Presence of NACs: we investigated negative

application conditions in transformations rules and their consequences to the bisim-

ilarity result. We discussed which problems arise due to the introduction of NACs

and how they can be overcome in order to guarantee that the derived bisimilarities

are congruences. The extension, which is carried out for adhesive categories [LS04],

required an enrichment of the transition labels which now do not only indicate the

context that is provided by the observer, but also constrain further additional con-

texts that may (not) satisfy the negative application condition. That is, we do not

only specify what must be borrowed, but also what should not be borrowed. We

proved that the main result of [EK06] (bisimilarity is a congruence) still holds for

our extension. Furthermore, as a straightforward consequence of a technique based

on initial pushouts proposed in [BGK06a] we defined the notion of gluing condition

for borrowed context rewriting. We have illustrated the theory via two examples:

a simple example based on processing tasks on servers and a more elaborate one in

terms of blade server systems.

Up-to Techniques: we have extended the up-to context technique of [EK06] to

the setting with NACs. Moreover, we defined two additional up-to techniques which

help reduce the size of the relation needed to define a bisimulation. They are: up-to

isomorphism and up-to bisimilarity. Because graphs in the DPO approach are defined

up to isomorphism the up-to isomorphism technique can be considered the minimal

requirement to enable bisimulation checks in the borrowed context framework. Even

though this technique turns out to be subsumed by the more powerful up-to context

it is still very useful in practice since it can be computed much faster with help of

graph certificates.

Bisimulation Checking Algorithms: we have defined the essential algorithms re-

quired by the development of a tool support to check graphs for bisimilarity. The

main algorithms are: partial match finding, label matching, up-to isomorphism, up-

to context and the extension of Hirschkoff’s on-the-fly bisimulation checking algo-

rithm [Hir01] to borrowed contexts. We have also outlined the role of graph certifi-

cates [Ren06] and how they can be used to speed up some bottlenecks caused by

isomorphism checks during bisimulation proofs. We have also developed a prototype

in OCaml to derive transitions labels from graph with interfaces and graph rules.

Behavioral Analysis Techniques for Model Refactoring: we have shown that

the borrowed context technique is a useful and suitable instrument to analyze the
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behavior of systems. One application area that has profited from the results of this

thesis is model refactoring. New techniques to check model refactorings for behavior

preservation, which is always a crucial aspect of every refactoring transformation, have

been defined using the borrowed context machinery. The simplest technique checks

instances of a metamodel for bisimilarity w.r.t. to a set of productions defining the

operational semantics of the metamodel. Bisimilarity implies behavior preservation.

A more elaborate technique exploits the fact that observational equivalence is a con-

gruence and hence we show how to check refactoring rules for behavior preservation.

When rules are behavior-preserving, their application will never change behavior, i.e.,

every model and its refactored version will have the same behavior. For the cases

where non behavior-preserving refactoring rules are applied we defined a procedure to

combine refactoring rules to behavior-preserving concurrent productions in order to

ensure behavior preservation. The advantage of this second technique lies in its capa-

bility to reduce proof obligations, since we do not have to show behavior preservation

between the start and end graph of the refactoring sequence (which may be huge), but

we only have to investigate local updates of the model. Both techniques were applied

to examples of minimization of deterministic finite automata and flattening of hierar-

chical statecharts. We believe that the second technique will help the user to gain a

better understanding of the refactoring rules since he or she can be told exactly which

rules may modify the behavior during a transformation. One of the advantages of our

techniques over the ones in related work [vKCKB05, PC07, NK06, GSMD03] is that

they are not tied to specific metamodels, but they can handle any metamodel whose

operational semantics can be given by graph productions. For the behavioral analysis

of refactoring productions an advantage of our techniques over the one in [BHE08]

is that we work directly with graph transformations and do not need any auxiliary

encoding. Furthermore, with our technique we can guarantee that a model and its

refactored version have exactly the same observable behavior, while in [BHE08] the

refactored model “contains” the original model but may add extra behavior.

Application to Examples: in this thesis the borrowed context technique has shown

its applicability in a variety of examples: blade server systems, minimization of de-

terministic finite automata by merging of equivalent states, deletion of unreachable

states in finite automata and flattening of hierarchical statecharts into plain state

machines.

7.2 Open Problems and Future Work

The work presented in this thesis opens up several possible directions for future

investigations.
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Bisimulation Congruences for Rules with NACs

In our extension of the borrowed context to rules with negative application con-

ditions we have obtained a finer congruence than the usual one. This is due to the

construction of negative borrowed contexts via the jointly epi square which ends up

in some cases generating extra information. One possible solution to be investigated

consists in reducing the number of these possible contexts (for instance by forbidding

contexts that contain certain patterns or subobjects) which would lead to coarser

congruences, i.e., more objects would be equivalent. Studying such congruences is an

interesting future work to be pursued.

Furthermore, a natural question to ask is whether there are other extensions to the

DPO approach that, when carried over to the borrowed context framework, would

require the modification of transition labels. One such candidate are generalized

application conditions, so-called graph conditions [Ren04], which are equivalent to

first-order logic and of which NACs are a special case. Such conditions would lead to

fairly complex labels.

Bisimulation checks may be in some cases very inefficient. In order to improve the

overall performance of the bisimulation checking algorithm we need further speed-

up techniques such as additional up-to techniques and methods for downsizing the

transition system, such as the elimination of independent labels. We discussed in

Section 3.4 that the proof technique to eliminate independent labels [EK04, EK06] (or

non-engaged labels as they are called in [Mil06]) does not carry over straightforwardly

to the setting with NACs, but it can still be useful. This needs to be studied further.

Some open questions remain for the moment. In the categorical setting it would

be good to know whether pullbacks always preserve epis in adhesive categories. This

question is currently open, as far as we know. Moreover, it is unclear where the

congruence is located in the lattice of congruences that respect rewriting steps with

NACs. As for IPO bisimilarity it is probably not the coarsest such congruence, since

saturated bisimilarity is in general coarser [BKM06]. So it would be desirable to

characterize such a congruence in terms of barbs [RSS07].

It is not clear to us at the moment how NACs could be integrated directly into

reactive systems and how the corresponding notion of IPO would look like. In our

opinion this would lead to fairly complex notions, for instance one would have to

establish a concept similar to that of jointly epi arrows.

Another topic that deserves further analysis is the relation between the bisimilar-

ities we obtain via the borrowed context technique and the standard bisimilarity of

finite automata seen as transition system. Proving that both notions coincide is not

so trivial since via borrowed contexts we may derive certain transition labels, e.g.

independent labels, which do not have a direct meaning in the automata model.
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Finally, it would be also interesting to investigate the theoretical implications of

merging a sequence of borrowed context steps into single steps via concurrent pro-

ductions [EEPT06, Lam07]. This could lead to a similar notion as weak bisimulation

in the BC framework, where one graph with interface would be able to perform “in-

ternal” processing in order to match other transitions.

Algorithms and Tool Support

In our extension of Hirschkoff’s bisimulation checking algorithm to borrowed con-

texts we have already made some minor efficiency improvements to avoid certain

redundant computations, but the algorithm can still be further improved. Hence, a

full investigation from the efficiency point of view should be carried out.

The algorithms defined in this thesis are also due to improvements. For example,

the partial match finding algorithm could benefit from the technique based on de-

pendent and independent labels. An initial idea is to first calculate for a graph with

interface and a production without NACs the partial match which is the threshold for

independent labels and then we could test “bigger” partial matches. This strategy

may lead to the generation of fewer candidates for partial matches.

During the development of this thesis we have implemented a prototype in OCaml

[OCa] to derive transition labels. Our initial plan was to implement the bisimulation

checking algorithm in OCaml as well, but we have decided to postpone the implemen-

tation to future work since our prototype would not be able to fulfill the expectations

of potential users (e.g. from the model refactoring field) in terms of graphical user

interface (GUI) and usability. Our plan is to implement the bisimulation checking

algorithm in a programming language such as Java and deploy it as an engine which

can be later reused by a variety of tools. A second step would consist in equip-

ping AGG [AGG] with our engine for bisimulation checking in order to reason about

behavior preservation in model refactoring.

Behavior Preservation in Model Refactoring

In some refactorings whenever non-behavior-preserving rules are applied, the search

strategies for safe splits, through which we can again guarantee behavior preservation,

can become very complex. In this thesis we defined only a simple search strategy,

but it should be possible to come up with more elaborate ones.

Although we have worked with refactoring rules with negative application condi-

tions, these NACs have not played a prominent role in our automatic verification

techniques, but of course they are a key to limiting the number of concurrent pro-

ductions which can be built. In [RKE08a] the borrowed context framework and the

congruence result has been extended to handle rules with NACs. However, this applies

only to negative application conditions in the operational semantics. It is, neverthe-
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less, also important to have similar results for refactoring rules with NACs, which

would lead to a “restricted” congruence result, where bisimilarity would only be pre-

served by certain contexts. Since model refactorings often use graphs with attributes

it would be useful to investigate whether the congruence results in [EK04, RKE08a]

also hold for adhesive HLR categories [EEPT06] (the category of attributed graphs

is an instance thereof).

Beyond model refactoring an interesting work consists in generalizing our behavior

analysis techniques to model transformations between different metamodels. In this

case one aspect that should be kept in mind is that transition labels from different

metamodels may be different, which would demand translations in order to properly

match them.



Appendix A

Categorical Concepts

We briefly recall some categorical concepts that are used throughout this thesis. The

text presented here is originally from [EEPT06]. For more comprehensive introduc-

tions to the world of category theory we refer the reader to [Pie91, BW95, Mar95].

A category is a mathematical structure that has objects and morphisms, with an

associative composition operation on the morphisms and an identity morphism for

each object.

Definition A.1 (Category). A category C = (ObC ,MorC , ◦, id) is defined by

• a class ObC of objects,

• a set MorC(A,B) of morphisms for each pair of objects A,B ∈ ObC,

• a composition operation ◦(A,B,C) : MorC(B,C) ×MorC(A,B) → MorC(A,C)

for all objects A, B, C ∈ ObC and

• an identity morphism idA ∈ MorC(A,A) for each object A ∈ ObC,

such that the following conditions hold:

1. Associativity: for all objects A,B,C, D ∈ ObC and morphisms f : A → B,

g : B → C and h : C → D it holds: (h ◦ g) ◦ f = h ◦ (g ◦ f);

2. Identity: for all objects A, B ∈ ObC and morphisms f : A → B it holds: f ◦
idA = f and idB ◦ f = f .

Remark A.2. Instead of f ∈ MorC(A,B) we write f : A → B and leave out the

index for the composition operation, since it is clear which one to use. For such a

morphism f , A is called its domain and B its codomain.
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Example A.3

We show two examples of structures that form categories:

1. Category Sets, where the object class contains all sets and the morphisms are

all functions f : A → B. The composition for f : A → B and g : B → C is

defined by (g ◦ f)(x) = g(f(x)) for all x ∈ A, and the identity is the identical

mapping idA : A → A : x 7→ x.

2. The class of all graphs (as in Definition 2.3.1) as objects and of all graph mor-

phism (as in Definition 2.3.1) forms the category Graphs, with the composition

given in Fact 2.3.2, and the identities as the pairwise identities on nodes and

edges.

Definition A.4 (Mono-, Epi- and Isomorphism). Given a category C, a mor-

phism m : B → C is a monomorphism if for all morphisms f, g : A → B ∈ MorC it

holds: m ◦ f = m ◦ g ⇒ f = g.

A
f //
g

// B
m // C

A morphism e : A → B ∈ MorC is an epimorphism if for all morphisms f, g : B →
C it holds: f ◦ e = g ◦ e ⇒ f = g.

A
e // B

f //
g

// C

A morphism i : A → B is an isomorphism if there exists a morphism i−1 : B → A

such that i ◦ i−1 = idB and i−1 ◦ i = idA.

A
i

// B
i−1

oo

Remark A.5. An isomorphism i is both a monomorphism and an epimorphism. For

every isomorphism i the inverse morphism i−1 is unique.

Fact A.6. In Sets and Graphs the monomorphisms (epimorphisms, isomorphisms)

are exactly those morphisms that are injective (surjective, bijective).

Proof. See Fact 2.15 in [EEPT06] (page 27).
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A.1 Pushouts as Gluing Construction

For the application of a graph transformation rule to a graph we need a technique

to glue graphs together along a common subgraph. Intuitively the resulting graph

consists of the common subgraph glued to all other nodes and edges from both graphs.

The concept of pushouts generalizes this gluing construction to categorical terms, i.e.,

a pushout object emerges from gluing two objects along a common subobject.

Definition A.7 (Pushout). Given the morphisms f : A → B and g : A → C in a

category C, a pushout (D, f ′, g′) over f and g is defined by

• a pushout object D, and

• morphisms f ′ : C → D and g′ : B → D with f ′ ◦ g = g′ ◦ f

such that the following universal property is fulfilled: for all objects X and morphisms

h : B → X and k : C → X with k◦g = h◦f there exists a unique morphism x : D → X

such that x ◦ g′ = h and x ◦ f ′ = k.

A

g

²²
=

f // B

g′
²² h

³³

C
f ′

//

k //

D
x

ÃÃ
=

=

X

We often use the abbreviation “PO” for pushout.

Fact A.8 (PO in Sets and Graphs). In Sets the pushout object over f : A → B

and g : A → C can be constructed as the quotient B
¦∪ C|≡, where ≡ is the smallest

equivalence relation with (f(a), g(a)) ∈ ≡ for all a ∈ A. The morphisms f ′ and g′

are defined by f ′(c) = [c] for all c ∈ C and g′(b) = [b] for all b ∈ B.

Moreover the following properties hold:

1. If f is injective (surjective) then also f ′ is also injective (surjective).

2. The pair (f ′, g′) is jointly surjective, i.e., for each x ∈ D there is a preimage

b ∈ B with g′(b) = x or c ∈ C with f ′(c) = x.

3. If x ∈ D has preimages b ∈ B and c ∈ C with g′(b) = f ′(c) = x then there is a

preimage a ∈ A with f(a) = b and g(a) = c. If f is injective then a is unique.
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4. If f is injective (and hence f ′ as well) then D is isomorphic to D′ = C
¦∪

B \ f(A).

In Graphs pushouts can be constructed componentwise for nodes and edges in

Sets. Furthermore, the properties 1-4 hold componentwise.

Proof. See Fact 2.17 in [EEPT06] (page 29).

Pushout squares can be decomposed if the first square is a pushout. Furthermore,

pushout properties are preserved.

Fact A.9 (Uniqueness, Composition and Decomposition of POs). Given a

category C, we have:

a) The pushout object D is unique up to isomorphism.

b) The composition and decomposition of pushouts result again in a pushout, i.e.,

given the following commutative diagram, then it holds:

A //

²²
(1)

B

(2)

//

²²

E

²²
C // D // F

- Pushout composition: If (1) and (2) are pushouts then (1)+(2) is a pushout

as well.

- Pushout decomposition: If (1) and (1) + (2) are pushouts then (2) is also

a pushout.

Proof. See Fact 2.20 in [EEPT06] (page 31).

Fact A.10 (PO Splitting). In any category C given the left diagram below as

pushout then it splits into two pushouts as shown in the right diagram.

A //

²²
PO

B // E

²²
C // F

A //

²²
PO

B //

²²
PO

E

²²
C // D // F

Proof. This follows easily from pushout decomposition in Fact A.9.

In a variety of situations we need the reverse construction of a pushout, which is

called pushout complement.
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Definition A.11 (Pushout Complement). Given morphisms f : A → B and

g′ : B → D, then A
g→ C

f ′→ D is the pushout complement of f and g′, if (1)

below is a pushout.

A

g

²²
(1)

f // B

g′
²²

C
f ′

// D

Fact A.12. Pushout complements of monomorphisms (if they exist) are unique up

to isomorphism.

Proof. See item 4. of Theorem 4.26 in [EEPT06] (page 96).

Fact A.13 (Pushout Complement Splitting). Whenever the square below on the

left is a pushout with monos, then it can be split into two pushouts with monos as

depicted on the right.

A //

²²
PO

E

²²
C // B // F

A //

²²
PO

D //

²²
PO

E

²²
C // B // F

Proof. This follows easily from Fact A.19.

A.2 Pullbacks

The dual construction of a pushout is called pullback. Pullbacks can be seen as a

generalized intersection of objects over a common object in category theory.

Definition A.14 (Pullback). Given the morphisms f : C → D and g : B → D in a

category C, a pullback (A, f ′, g′) over f and g is defined by

• a pullback object A, and

• morphisms f ′ : A → B and g′ : A → C with g ◦ f ′ = f ◦ g′

such that the following universal property is fulfilled: for all objects X with morphisms

h : X → B and k : X → C with f ◦ k = g ◦ h there is a unique morphism x : X → A

such that f ′ ◦ x = h and g′ ◦ x = k.
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X h

ÀÀ

k

##

x

ÃÃ
A

g′
²²

f ′ //

=

=

= B

g

²²
C

f
// D

We often use the abbreviation “PB” for pullback.

Fact A.15 (PB in Sets and Graphs). In Sets the pullback C
g′← A

f ′→ B over

morphisms f : C → D and g : B → D is constructed by A =
⋃

d∈D f−1(d)× g−1(d) =

{(c, b) | f(c) = g(b)} ⊆ C × B with morphisms f ′ : A → B : (c, b) 7→ b and g′ : A →
C : (c, b) 7→ c. Moreover, the following properties hold:

1. If f is injective (surjective), then f ′ is also injective (surjective).

2. f ′ and g′ are jointly injective, i.e., for all a1, a2 ∈ A, f ′(a1) = f ′(a2) and

g′(a1) = g′(a2) implies a1 = a2.

3. A commutative square, as in Definition A.14, is a pullback in Sets if and only

if, for all b ∈ B, c ∈ C with g(b) = f(c), there is a unique a ∈ A with f ′(a) = b

and g′(a) = c.

In Graphs pullbacks can be constructed componentwise for nodes and edges in

Sets.

Proof. See Fact 2.23 in [EEPT06] (page 34).

Remark A.16. In Sets and Graphs we have the interesting property that pushouts,

where at least one of the given morphisms is injective, is already a pullback. For

further details see Remark 2.25 in [EEPT06] (page 34).

Fact A.17 (Uniqueness, Composition and Decomposition of PBs). Given a

category C, we have:

a) The pullback object A is unique up to isomorphism.

A //

²²
(1)

B //

²²
(2)

E

²²
C // D // F

b) The composition and decomposition of pullbacks result again in a pullback:
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- Pullback composition: if (1) and (2) are pullbacks then (1)+(2) is a pullback

as well.

- Pullback decomposition: if (2) and (1) + (2) are pullbacks then (1) is also

a pullback.

Proof. See Fact 2.27 in [EEPT06] (page 35).

Fact A.18 (PB Splitting). In any category C given the left diagram below as pull-

back then it splits into two pullbacks as shown in the right diagram.

A //

²²
PB

E

²²
C // B // F

A //

²²
PB

D //

²²
PB

E

²²
C // B // F

Proof. This follows easily from pullback decomposition in Fact A.17.

Fact A.19 (Special Pushout-Pullback Decomposition). Given the diagram be-

low with monos, whenever (1) + (2) is a pushout and (2) is a pullback then (1) and

(2) are both pushouts.

A //

²²
(1)

B //

²²
(2)

E

²²
C // D // F

Proof. See item 2. of Theorem 4.26 in [EEPT06] (page 96).

A.3 Initial Pushouts

Given a rule L ← I → R and a match m : L → G′ as depicted below the gluing

condition of Definition 2.3.7 describes an operational way to check the existence of

the context graph C ′.

L

²²
PO

Ioo //

²²

R

G′ C ′oo

This notion of gluing condition can generalized from Graphs to any category

C possessing initial pushouts. First let us define the categorical concept of initial

pushout.
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Definition A.20 (Initial Pushout). Given a morphism f : A → D in a category

C, a mono b : B → A is called boundary over f if there exists a pushout complement

B → C
c→ D such that Diagram (1) is a pushout which is initial over f . Initiality

of Diagram (1) over f means that for every other pushout as in Diagram (2) with

b′ mono there exist two unique monos B → A′ and C → D′ such that Diagram (2)

commutes and (3) is a pushout. The object B is called boundary object and C the

context with respect to f .

B
b //

²²

PO

A

f

²²
C c

// D

(1) B
b //

²²

&&

A

f

²²

A′
²²

b′

88qqqqqq

D′

&&MMM
MMM

PO(3)

C c
//

88

D

(2)

Fact A.21 (Initial Pushouts in Graphs). The boundary object B of an injective

graph morphism f : A → D consists of all nodes a ∈ A such that f(a) is adjacent

to an edge in D \ f(A). These nodes are needed to glue A to the context graph

C = D \ f(A) ∪ f(b(B)) in order to obtain D as the gluing of A and C via B in the

initial pushout.

In the following the gluing condition is formulated in terms of initial pushouts.

Definition A.22 (Gluing Condition via Initial Pushout). In a category C with

initial pushouts, a match m : L → G′ satisfies the gluing condition with respect to a

rule L
l← I

r→ R (l mono) if, for the initial pushout (1) over m, there exists a mono

b∗ : B → I such that b = l ◦ b∗.

B
b //

b∗

!!

²²
(1)

L

m

²²

I
loo r // R

C c
// G′

Theorem A.23 (Existence and Uniqueness of Contexts). Given a category

C with initial pushouts a match m : L → G′ satisfies the gluing condition (Defini-

tion A.22) with respect to a rule L
l← I

r→ R (l mono) if and only if the context

object C ′ exists, i.e., there exists a pushout complement I → C ′ → G′ of l and m.

Moreover, whenever the context object C ′ exists it is unique up to isomorphism.
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B
b //

b∗

""

²²

L

²²
POm

²²

I

²²

loo r // R

C c
// G′ C ′oo

Proof. See Theorem 6.4 in [EEPT06] (page 127).

Remark A.24. For Graphs Definition A.22 is a restricted version of Definition 2.3.7

(gluing condition) since the former only takes into account injective morphisms l. We

can also let l be non-injective, but in this case the “⇐” part of Theorem A.23 does

not hold in general.

In the following we recall a lemma that is required to show Theorem 3.2.5 (satisfi-

ability of the gluing condition for borrowed context steps).

Lemma A.25. Given an initial pushout (1) over a mono f : A → D and a pushout

(2) with m mono, then the composition (1) + (2) is an initial pushout over the mono

n.

B

²²

b //

(1)

A

f
²²

m //

(2)

E

n

²²
C // D // F

Proof. See item 2. of Lemma 6.5 in [EEPT06] (page 127).





Appendix B

BC with NACs – Additional

Information

Here we give further details about our extension of the borrowed context framework

to negative application conditions, defined in Chapter 3.

B.1 Proofs of Lemmas

In this section we present the lemmas required by the proofs of Chapter 3. Lem-

mas B.1.2, B.1.4, B.1.5, B.1.6 and B.1.7 require the category to be adhesive.

Lemma B.1.2 (and hence Lemma B.1.6, which is based on Lemma B.1.2) additionally

requires that pullbacks preserve epis.

Lemma B.1.1. Given the commuting diagram below, where the arrows c and d are

jointly epi, the arrow e is an epi if and only if (f, g) is jointly epi.

B

c

²² f

³³

=C
d

//

g //

=

D
e

ÃÃ@
@@

@@
@@

E

Proof. We consider both directions. Take two arrows x, y : E → F .

(“⇐”) Assume that (f, g) is jointly epi and x ◦ e = y ◦ e. Then we have: x ◦ e ◦ c =

y◦e◦c ⇒ x◦f = y◦f and x◦e◦d = y◦e◦d ⇒ x◦g = y◦g. Since (f, g) is jointly epi,

x◦f = y◦f and x◦g = y◦g we have x = y. Therefore we can conclude that e is an epi.
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(“⇒”) Let e be an epi, x ◦ f = y ◦ f and x ◦ g = y ◦ g. Then we have: x ◦ e ◦ c =

x ◦ f = y ◦ f = y ◦ e ◦ c and x ◦ e ◦ d = x ◦ g = y ◦ g = y ◦ e ◦ d. Since (c, d) is jointly

epi, x ◦ e ◦ c = y ◦ e ◦ c and x ◦ e ◦ d = y ◦ e ◦ d we have x ◦ e = y ◦ e. Our assumption

that e is an epi implies x = y. Thus, we conclude that (f, g) is jointly epi.

Lemma B.1.2. Given a commuting cube with all arrows mono and all lateral sides

pushouts, then the pair of arrows (c, d) is jointly epi if and only if (p, q) is jointly epi.

A
a

wwnnnnnnnnn
b
ÃÃA

AA
A

h

²²

B
c
ÃÃA

AA
A

i

²²

C
d
wwnnnnnnnnn

j

²²

D

k

²²

F
m

wwnnnnnnnnn

n ÃÃA
AA

A

G

p ÃÃA
AA

A H

qwwnnnnnnnnnn

I

Proof. We construct the pushout (r, s, J) of m and n and obtain t as an induced

arrow such that p = t ◦ r and q = t ◦ s (see the upper left diagram below). We

proceed analogously for (A, C, B, D) (see the lower left diagram below). Gluing these

new monos to the cube gives rise to the cube below, except for l : E → J .

F
n //

m

²²

PO

H

q

²²

s

ÄÄ~~
~~

~

J
t

ÃÃ@
@@

@@
=

=

G p
//

r
??ÄÄÄÄÄ

I

A
b //

a

²²

PO

C

d

²²

f

~~}}
}}

}

E
g

ÃÃA
AA

AA
=

=

B c
//

e
>>~~~~~

D

A
a

ttiiiiiiiiiiiii

b

»»0
00

00
00

0

h

²²

B

c
»»0

00
00

00
0

i

²²

e

((PPPPPPPP

E

l

²²

g
~~}}

}
C

d
ttiiiiiiiiiiiii

j

²²

foo

D

k

²²

F
m

ttiiiiiiiiiiiii

n

»»0
00

00
00

0

G

p

»»0
00

00
00

0
r

((PPPPPPPPP

J
t
~~}}

}}
H

qttiiiiiiiiiiiii
soo

I

C
d //

j

²²

f &&MMMMMMMM

(1)

D

k

²²

(2)

E
l ²²

g

88qqqqqqq
=

J
=

t

&&MMMMMMMM

H

s
88qqqqqqqq
q

// I

Note that r ◦ i ◦ a = r ◦m ◦ h = s ◦ n ◦ h = s ◦ j ◦ b since (A,F, B, G), (F,G, H, J)

and (A,F, C, H) commute. So (A,B,C, E) as a pushout and r ◦ i ◦ a = s ◦ j ◦ b

imply a unique arrow l : E → J such that l ◦ e = r ◦ i and l ◦ f = s ◦ j. From

the inner cube we can infer that (A,F, C, H) + (F, H, G, J) is a pushout and by

the commutativity it implies (A, C, B, E) + (B,E, G, J) as a pushout. By pushout

decomposition, (B, E, G, J) is a pushout since (A,C, B, E) is a pushout. Analogously,

(C, E, H, J) is also a pushout. The rightmost diagram is extracted from the cube: the
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outer square and (1) are pushouts. By pushout decomposition (2) is also a pushout.

Since (1) is a pushout and j is mono then l is mono as well.

Here we will show: (c, d) jointly epi ⇒ (p, q) jointly epi. Since (A,B,C,E) is a

pushout and (c, d) is jointly epi (assumption), then by Lemma B.1.1 the arrow g is

epi. The arrow t is also epi since (2) is a pushout. Finally, by Lemma B.1.1 we obtain

that p and q are jointly epi.

The other direction (“⇐”) is shown as follows. Since (F, G,H, J) is a pushout and

(p, q) is jointly epi (assumption), then by Lemma B.1.1 the arrow t is epi. Since (2)

is a pushout and l is mono, then (2) is also a pullback. The pullback (2) and t as epi

imply that g is epi as well. So by Lemma B.1.1 (c, d) is jointly epi.

Lemma B.1.3 (Composition of Jointly Epi Arrows). Whenever (1) is a com-

muting diagram and (f, g) and (i, j) are pairs of jointly epi arrows, then the compo-

sition (f, g ◦ j) is also jointly epi.

A
f //

(1)

B

C

x

OO

i
// D

g

OO

E

j

OO

Proof. By Definition 3.3.3 (f, g) and (i, j) jointly epi means: (i) ∀ a, b : B → F : a ◦
f = b◦f ∧ a◦g = b◦g ⇒ a = b and (ii) ∀ c, d : D → G : c◦i = d◦i ∧ c◦j = d◦j ⇒
c = d. We assume that ∀ a, b : B → F : a ◦ f = b ◦ f ∧ a ◦ (g ◦ j) = b ◦ (g ◦ j) and we

will show that this implies a = b. Observe that a ◦ g ◦ i = a ◦ f ◦ x ((1) commutes) =

b ◦ f ◦ x (a ◦ f = b ◦ f by assumption) = b ◦ g ◦ i ((1) commutes). Then we have

a ◦ g ◦ i = b ◦ g ◦ i (previous calculation) and a ◦ g ◦ j = b ◦ g ◦ j (assumption), which

implies a ◦ g = b ◦ g (iii). By using (i) and(iii) (a ◦ f = b ◦ f and a ◦ g = b ◦ g,

respectively) together we have: ∀ a, b : B → F : a ◦ f = b ◦ f ∧ a ◦ g = b ◦ g, which

by (i) implies that a = b.

Lemma B.1.4. Given the diagram below, where all arrows are mono and (c, d) is

jointly epi, whenever b is an iso then so is c.

C
d // D

A a
//

b

OO

=
j.epi

B

c

OO
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Proof. We have to check that c is an iso. Since c is mono and we are working in an

adhesive category it is enough to show that c is epi (cf. [LS05]). Assume that there

are arrows x, y : D → X with x◦c = y◦c. Composing with a gives us x◦c◦a = y◦c◦a
and hence x ◦ d ◦ b = y ◦ d ◦ b. Since b is an iso it follows that x ◦ d = y ◦ d. Finally,

since c and d are jointly epi we obtain x = y.

Lemma B.1.5. In the diagram below, where all arrows are mono, it holds: whenever

F → N is not iso then F → N is not iso as well.

N // M ′ Noo

F

OO

//

=
j.epi

E2

OO

F

OO

oo

PO

Proof. We show the contrapositive: F → N iso ⇒ F → N iso. The arrow F → N

as an iso implies by Lemma B.1.4 that E2 → M ′ is also an iso. The pushout along

monos is also a pullback and E2 → M ′ iso implies F → N iso.

Lemma B.1.6 (NAC Compatibility). In the following let all arrows be mono and

let Diagram (B.1) be given.

If we have Diagram (B.3), then there exist objects Mz, Nz and M ′
x such that Di-

agram (B.2)+(B.4) can be constructed as indicated. Furthermore, if we have Dia-

gram (B.2)+ (B.4), then there exists an object Mx such that Diagram (B.3) can be

constructed as indicated.

L

²² !!CC
CC

CC
CC

G+ //
=

G
+

F

OO

//

PO

E2

OO

=

Foo

``@@@@@@@@

(B.1)

NAC y
// Mz Nz

oo

L

OO

//

=
j.epi

G+

OO

F

OO

oo

PO

(B.2)

NAC y
// Mx Nx

oo

L

OO

//

=

j.epi

G
+

OO

F

OO

oo

PO

(B.3)

Nz
// M ′

x Nx
oo

F

OO

//

=

j.epi

E2

OO

F

OO

oo

PO

(B.4)

Proof. The proof is split into two steps.

Step 1 (Diagram (B.2)+(B.4) ⇒ Diagram (B.3)). We take the inner squares of

Diagram (B.2)+(B.4) and build G
+

as the pushout of E2 ← F → G+ and Mx as the
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pushout of M ′
x ← Nz → Mz (see Diagram (B.5)). Since (left) is a pushout and (back),

(right) and (top) commute, then there exists a unique arrow G
+ → Mx such that

(bottom) and (front) commute. By pushout composition and then decomposition we

find that (front) is a pushout. So E2 → M ′
x mono implies G

+ → Mx mono. The

arrows E2 → M ′
x and Nz → M ′

x are jointly epi which implies by Lemma B.1.2 that

G
+ → Mx and Mz → Mx are also jointly epi.

F //

!!CC
CC

CC
CC

²²

Nz

²²

!!CC
CC

CC
CC

E2
//

²²

M ′
x

²²

G+ //

!!CC
CC

CC
CC

Mz

!!CC
CC

CC
CC

G
+ // Mx

(B.5)

NAC y
// Mz

// Mx M ′
x

oo Nx
oo

L

OO

//

=

j.epi

G+

OO

//

=

j.epi

G
+

OO

PO

OO

E2

OO

oo F

OO

oo

PO

Gluing the leftmost and rightmost squares of Diagram (B.2)+(B.4) to the bottom

and front faces of Diagram (B.5) produces the diagram above on the right, which

by Lemma B.1.3 and pushout composition is exactly Diagram (B.3). Note that for

each choice of Mz and M ′
x in Diagram (B.2)+(B.4), there is a unique Mx (up to iso)

leading to Diagram (B.3).

Step 2 (Diagram (B.3) ⇒ Diagram (B.2)+(B.4)). Combining Diagrams (B.1) and

(B.3) gives rise to Diagram (B.6). We take all possible factorizations NAC y → Mz →
Mx of NAC y → Mx such that there exists an arrow G+ → Mz (see Diagram (B.7))

with (1), (2) commuting and jointly epi and all arrows are monos. At least one such

Mz—which can be obtained as the pushout of L → NAC y and L → G+—exists. By

pushout splitting we find M ′
x and both squares are pushouts along monos.

NAC y
// Mx Nx

oo

L

OO

//

=

G+

j.epi

//
G

+

OOOO

E2
oo F

OO

oo

PO

(B.6)

NAC y
// Mz

// Mx M ′
x

oo Nx
oo

L

OO

//

(1)

G+

OO

(2)

//
G

+

OO

E2
oo

OO

PO

F

OO

oo

PO

(B.7)
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Gluing the pushout of Diagram (B.1) to Diagram (B.7) produces Diagram (B.8),

except for Ny and its arrows. So the fact that (left) + (front) is a pushout and the

commutativity of (bottom) imply that the outer square over E2 in Diagram (B.9) is

a pushout. We construct the pullback Mz ← Nz → M ′
x with monos of Mz → Mx ←

M ′
x, which induces F → Nz (due to the universal property of pullbacks) such that the

top and back faces of the cube commute. Hence, (left) + (front) is a pushout with

monos and also a pullback. So (back) + (right) is a pullback as well, but (right) is

already a pullback, which implies by pullback decomposition that (back) is a pullback.

Since G+ → Mz is mono, so is F → Nz. Now (back) + (right) as a pushout and

(right) as a pullback imply by special pushout-pullback decomposition that (back)

and (right) are pushouts.

F

²²

// Nx

²²

F

$$III
III

I

²²

//

=

Nz

²²

""EE
EE

E2

²²

// M ′
x

²²

L

ÃÃA
AA

AA
//

j.epi
=

NAC y

$$III
II

G+ //

$$IIIII

j.epi
=

Mz

""DD
DD

G
+ // Mx

(B.8)

E2

··
=

F

²²

22

//

PO

Nz

²²

//

PO

M ′
x

²²

G+ // Mz
// Mx

(B.9)

NAC y
// Mz Nz

oo // M ′
x Nx

oo

L

OO

//

=

j.epi

G+

OO

F

OO

oo

PO

OO

//

=

j.epi

E2

OO

F

OO

oo

PO

(B.10)

Since all lateral sides of the cube are pushouts, the bottom and top faces commute

and G
+ → Mx and Mz → Mx are jointly epi we can infer by Lemma B.1.2 that

Nz → M ′
x and E2 → M ′

x are jointly epi as well. By taking the squares we are

interested in, we obtain Diagram (B.10), which is Diagram (B.2)+(B.4). Observe

that for each choice of Mx in Diagram (B.3) and each factor Mz there is a unique Nz

leading to Diagram (B.2)+(B.4).
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Lemma B.1.7. A borrowed context step (as in Definition 3.3.4) is not NAC con-

sistent whenever there exists a mono qy : NAC y → G+ such that m = qy ◦ ny (see

Definition 3.3.2). This is equivalent to the situation, in which:

(i) there exists a negative borrowed context F → Nz which is an iso;

or

(ii) there exists a mono Nz → G+ such that F → G+ = F → Nz → G+.

Proof. We have to show: ∃ qy : NAC y → G+ mono with m = qy ◦ ny ⇔ (∃ negative

borrowed context F → Nz which is iso) or (∃Nz → G+ mono with F → G+ = F →
Nz → G+).

NAC y
qy //

=

G+

PO

Foo

L

ny

OO

m
//

j.epi

G+

o
OO

Foo

OO

o
OO (1) NAC y

qy //

=

Mz

PO

Nz
o o

L

ny

OO

m
//

j.epi

G+

o
m′

OO

Foo

OOOO (2)

(“⇒”). Assume there exists a mono qy : NAC y → G+ with m = qy ◦ ny (left square

of Diagram (1)). The arrows qy and idG+ are jointly epi. We show “(i)”: a pushout

along monos is also a pullback, and hence we can infer F → Nz is also an iso

(idF ). Now we show “(ii)”: F → G+
idG+→ G+ = F → Nz → G+ (pushout). Let

Nz → G+ = Nz → G+
id−1

G+→ G+. Then we have F → G+ = F → Nz → G+
id−1

G+→ G+

which is F → G+ = F → Nz → G+.

(“⇐”). “(i)”: Suppose F → Nz is an iso in Diagram (2). The pushout implies

m′ : G+ → Mz iso, and therefore m′ ◦m = qy ◦ ny. Let qy = m′−1 ◦ qy then we have

m = qy ◦ ny. Observe that qy mono and m′ iso are clearly jointly epi. “(ii)”: assume

there exists a mono Nz → G+ with F → G+ = F → Nz → G+. The pushout implies

m′ : G+ → Mz iso. Let qy = m′−1 ◦ qy. Then we obtain m = qy ◦ ny.

B.2 Objects with Interfaces as Venn Diagrams

We depict some diagrams of Theorem 3.3.10 as Venn diagrams. The left-hand side L

of a production, its interface I, the object G and its interface J are shown as circles

(see Figure B.1). The NAC is the circle L together with the “boomerang”-shaped

area. Figure B.1 shows typical overlaps between an object J → G and the left-hand

side of a production that occur when a BC step takes place. Depending on the

situation the NAC might have a bigger overlapping structure with G, which—in the



168 BC with NACs – Additional Information

picture—means that the NAC is rotated counterclockwise. On the right we show an

overlapping when J → G is inserted into a context J → E ← J .

Figure B.1: Overlaps between J → G and a production NAC ← L ← I → R

Figure B.2 shows graphical representations of Diagrams (3.12), (3.11) and (3.13)

of Theorem 3.3.10. Non-empty areas, i.e., areas where items are present, are shaded

gray.

Figure B.2: Diagrams (3.12), (3.11) and (3.13) of Theorem 3.3.10.

The top-left diagram in Figure B.2 shows the construction of negative borrowed

contexts of the form F → N for the BC step of J → G. The objects G+ and NAC

overlap, giving rise to M . The object G+ is G plus the borrowed context F . So

N represents exactly what should not be further provided by the environment in

order to guarantee the feasibility of the BC step. Note that N does not contain any

information about G which is not “visible” from the interface J .
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The top-right diagram in Figure B.2 depicts how the negative borrowed context

F → N is built for the BC step of J → G. Also note that N does not contain any

information about G which is not already present in the interface J .

Finally, the diagram in the second row of Figure B.2 represents the translation of a

negative borrowed context with respect to a new context that is added. Observe that

the translation is based on the context E2, which does not depend on the contents of

G, and therefore can be used for both parts of the proof of Theorem 3.3.10.
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gebraic approaches to graph transformation part I: Basic concepts and double
pushout approach. In G. Rozenberg, editor, Handbook of Graph Grammars and
Computing by Graph transformation, Volume 1: Foundations, pages 163–246.
World Scientific, 1997.

[EE06] H. Ehrig and K. Ehrig. Overview of formal concepts for model transformations
based on typed attributed graph transformation. In Proc. of GraMoT ’05
(International Workshop on Graph and Model Transformation), volume 152
of ENTCS, pages 3–22. Elsevier Science, 2006.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
graph grammars and computing by graph transformation: volume 2: applica-
tions, languages, and tools. World Scientific, 1999.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Alge-
braic Graph Transformation (Monographs in Theoretical Computer Science.
An EATCS Series). Springer, 2006.

[EK04] H. Ehrig and B. König. Deriving bisimulation congruences in the DPO ap-
proach to graph rewriting. In Proc. of FoSSaCS ’04 (Foundations of Software
Science and Computation Structures), volume 2987 of LNCS, pages 151–166,
2004.



BIBLIOGRAPHY 173

[EK06] H. Ehrig and B. König. Deriving bisimulation congruences in the DPO ap-
proach to graph rewriting with borrowed contexts. Mathematical Structures
in Computer Science, 16(6):1133–1163, 2006.

[EKMR99] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Hand-
book of graph grammars and computing by graph transformation: volume 3:
concurrency, parallelism, and distribution. World Scientific, 1999.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I. Springer,
1985.

[EM90] H. Ehrig and B. Mahr. Fundamentals of algebraic specification II: module
specifications and constraints. Springer, 1990.

[EW06] K. Ehrig and J. Winkelmann. Model transformation from visual OCL to OCL
using graph transformation. In Proc. of GraMoT ’05 (International Workshop
on Graph and Model Transformation), volume 152 of ENTCS, pages 23–37,
2006.

[FG96] C. Fournet and G. Gonthier. The reflexive cham and the join-calculus. In
Proc. of POPL ’96 (Principles of Programming Languages), pages 372–385.
ACM Press, 1996.

[FM91] J.-C. Fernandez and L. Mounier. On the fly verification of behavioural equiva-
lences and preorders. In Proc. of CAV’91 (International Conference on Com-
puter Aided Verification), volume 757 of LNCS, pages 181–191. Springer, 1991.

[Fuj] Fujaba – tool suite. http://wwwcs.uni-paderborn.de/cs/fujaba/.

[Gib94] W. W. Gibbs. Software’s chronic crisis. Scientific American, pages 86–95,
1994.

[Gla01] R.J. van Glabbeek. The linear time – branching time spectrum I; the semantics
of concrete, sequential processes. In J.A. Bergstra, A. Ponse, and S.A. Smolka,
editors, Handbook of Process Algebra, chapter 1, pages 3–99. Elsevier, 2001.

[Gra] Graphviz - graph visualization software. http://www.graphviz.org.

[GSMD03] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer. Towards automating
source-consistent UML refactorings. In Proc. of UML 2003 - The Unified
Modeling Language, volume 2863 of LNCS, pages 144–158. Springer, 2003.

[GZ05] L. Geiger and A. Zündorf. Statechart modeling with fujaba. ENTCS,
127(1):37–49, 2005.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, June 1987.



174 BIBLIOGRAPHY

[HC98] S.-Y. Huang and K.-T. Cheng. Formal Equivalence Checking and Design De-
Bugging. Kluwer Academic Publishers, 1998.

[HHT96] A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative appli-
cation conditions. Fundamenta Informaticae, 26(3-4):287–313, 1996.

[Hir01] D. Hirschkoff. Bisimulation verification using the up-to techniques. Inter-
national Journal on Software Tools for Technology Transfer, 3(3):271–285,
August 2001.

[HJE06] B. Hoffmann, D. Janssens, and N. Van Eetvelde. Cloning and expanding graph
transformation rules for refactoring. ENTCS, 152:53–67, 2006.

[HMU00] J. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation (2nd Edition). Addison Wesley, 2000.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[HR04] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, 2004.

[JGP99] E. M. Clarke Jr., O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 1999.

[Kik05] T. Kikuno. Why do software projects fail? reasons and a solution using a
bayesian classifier to predict potential risk. In Proc. of PRDC’05 (Pacific Rim
International Symposium on Dependable Computing), page 4. IEEE Computer
Society, 2005.

[Lam07] L. Lambers. Adhesive high-level replacement system with negative application
conditions. Technical Report 2007/14, TU Berlin, 2007.

[Lei01] J. J. Leifer. Operational Congruences for Reactive Systems. PhD thesis, Uni-
versity of Cambridge Computer Laboratory, 2001.

[Lei02] J. J. Leifer. Synthesising labelled transitions and operational congruences in
reactive systems, part 2. Technical Report RR-4395, INRIA Rocquencourt,
2002.

[LM00] J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive
systems. In Proc. of CONCUR’00 (International Conference on Concurrency
Theory), volume 1877 of LNCS, pages 243–258. Springer, 2000.
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