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Abstract

The work presented here demonstrates the first imaging of ferromagnetic nanostructures that is obtained
from their coherent soft X-ray scattering intensity pattern. This lensless imaging technique is performed
in two steps: first, the coherent scattering pattern from the magnetic domain structure is recorded. Then,
an established reconstruction procedure is applied to calculate the lateral structure of the magnetic
domains from the scattering intensity.

The experimental setup simply consists of a set of pinholes to achieve coherent conditions of monochro-
matic soft X-rays and a detector that allows for the two-dimensional position resolving photon detection
of the scattering pattern. Effort must be put into the preparation of the sample as well as into the provi-
sion of sufficient magnetic scattering intensity at the detector site. The magnetic CoPt multilayers are
sputtered onto a transparent SiN membrane to permit transmission geometry. The magnetic domains
reveal an anisotropy that is perpendicular to the film surface. Further, the sample is laterally confined
on a micrometer length scale to allow for coherent illumination. The magnetic small angle scattering
is enhanced in intensity by exploiting the X-ray magnetic circular dichroism. The dichroism effect in-
creases the contrast of oppositely magnetized domains that yields higher scattering intensity of magnetic
origin. The energy and polarization dependence of the magnetic scattering pattern is investigated and
appropiate results are shown in the thesis.

The feasibility of the reconstruction procedure is tested with a non-magnetic sample that consists
of variously shaped apertures in a gold-film. From the diffraction pattern of the coherently illuminated
sample its lateral structure is retrieved. Various experimental influences on a successful reconstruction
like a beamblock applied to prevent radiation damage of the detector are investigated. The application
of a reference hole in the sample plane simplifies the reconstruction and gives first hints of a possibly
successful Fourier transform holography in the soft X-ray regime. Further, the lensless imaging of a
magnetic domain test sample is performed to demonstrate the technique to be applicable to magnetic
structures.

Finally, the recovering of the lateral domain structure of previously unknown magnetic sample is
shown. The sample is consecutively exposed to external magnetic fields to demonstrate the domain
reconfiguration after each exposure.

The lensless imaging technique presented could be used to increase the spatial resolution of estab-
lished transmission X-ray microscopes. In principle, the spatial resolution in the scattering pattern
can be increased by recording of high scattering angles. A combination of an microscopy image of
the appropiate sample and the reconstruction procedure that uses a high angle scattering pattern as
input could successfully enhance the resolution of the microscope image. Further, the lensless imaging
technique works also with a scattering pattern that is acquired in a single shot of sufficiejt intensity as
it will be provided by future free-electron laser sources. This could allow for time-resolved experiments
that are not accessible to common microscopes.
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Zusammenfassung

Die vorliegende Arbeit zeigt die erste Abbildung magnetischer Nanostrukturen, die aus dem Streuin-
tensitätsmuster kohärenter weicher Röntgenstrahlung berechnet ist. Diese linsenlose Abbildungstech-
nik wird in zwei Schritten durchgeführt: erstens wird das kohärente Streumuster der magnetischen
Domänenstruktur aufgenommen. Dann wird eine bereits erprobte Rekonstruktionsprozedur angewen-
det, um die laterale Struktur der magnetischen Domänen aus ihrer Streuintensität zu berechnen.

Der einfache experimentelle Aufbau besteht aus Lochblenden, um kohärente Bedingungen der mono-
chromatischen weichen Röntgenstrahlung zu schaffen, und aus einem Detektor, der die zwei-dimensionale
ortsauflösende Photonendetektion des Streumusters erlaubt. Sowohl die Präparation der Probe als
auch das Erreichen einer ausreichenden magnetischen Streuintensität am Ort des Detektors erfordert
einen großen Aufwand. Die magnetischen CoPt Multilagen werden auf eine transparente SiN Mem-
bran aufgetragen und erlauben so eine Transmissionsgeometrie. Die magnetischen Domnen bilden eine
Anisotropie aus, die senkrecht zur Filmoberfläche ausgerichtet ist. Ausserdem wird die Probe auf
einer Mikrometer Längenskale lateral eingeschränkt, sodass sie kohärent ausgeleuchtet werden kann.
Die magnetische Kleinwinkelstreuung wird in ihrer Intensität durch Ausnutzung des magnetischen
Röntgen-Zirkulardichroismus verstärkt. Der Dichroismuseffekt erhöht den Kontrast gegensätzlich mag-
netisierter Domänen, was zu erhöhter Streuintensität führt, die ausschliesslich magnetischen Ursprungs
ist. Die Energie- und Polarisationsabhängigkeit des magnetischen Streumusters wird untersucht und die
entsprechenden Ergebnisse werden in dieser Arbeit präsentiert.

Die Machbarkeit der Rekonstruktionsprozedur wird anhand einer nichtmagnetischen Probe getestet,
die aus unterschiedlich geformten Öffnungen in einem Goldfilm besteht. Aus dem Beugungsbild der
kohährent ausgeleuchteten Probe wird die laterale Struktur wiederhergestellt. Verschiedene experi-
mentelle Einflüsse auf eine erfolgreiche Rekonstruktion wie beispielsweise eine Blende, die Strahlen-
schäden am Detektor verhindert, werden untersucht. Die Verwendung einer Referenzöffnung in der
Probenebene vereinfacht die Rekonstruktion und gibt erste Hinweise auf eine möglicherweise erfolgre-
iche Fourier-Transform-Holographie im Bereich weicher Röntgenstrahlung. Ausserdem wird die linsen-
lose Abbildung einer magnetischen Testprobe durchgeführt, um zu zeigen, dass diese Technik auch auf
magnetische Strukturen anwendbar ist.

Schließlich wird die Wiederherstellung der lateralen Domänenstruktur von zuvor unbekannten mag-
netischen Proben gezeigt. Die Probe wird aufeinanderfolgend äußeren Magnetfeldern ausgesetzt, um
jeweils die Umordnung der Domänen zu demonstrieren.

Die hier präsentierte linsenlose Abbildungstechnik könnte genutzt werden, um die Ortsauflösung von
bestehenden Transmissionsröntgenmikroskopen zu erhöhen. Prinzipiell kann die lateral Auflösung im
Streumuster durch Aufzeichnung hoher Streuwinkel erhöht werden. Eine Kombination eines Mikroskop-
bildes der entsprechenden Probe mit der Rekonstruktionsprozedur, die ein Streumuster mit großen
Streuwinkel als Eingabe benutzt, könnte erfolgreich die Auflösung einer Mikroskopabbildung verbessern.
Ausserdem funktioniert die linsenlose Abbildungstechnik auch mit Streubildern, die in einem einzi-
gen Schuss genügender Intensität, wie ihn zukünftige Freie-Elektronen Laserquellen bereitstellen wer-
den, aufgenommen wurden. Dies könnte zeitaufgelöste Experimente erlauben, die herkömmlichen
Mikroskopen nicht zugänglich sind.
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Introduction

The history of research on magnetism with synchrotron radiation is a story of full success over the last
15 years. Magnetism on one side is still subject to many research programs as many aspects are not fully
understood. Synchrotron radiation on the other hand has found an important role for an increasing
number of scientist during the last decades. The most striking feature of the (soft) X-ray regime of
the synchrotron radiation is the ability to excite core electrons and, consequently, to allow for element
specific experiments.

The discovery of soft X-ray resonant absorption dichroism of magnetic materials and the resonant
scattering from magnetic structures propelled the investigation of magnetism with synchrotron radia-
tion [1–17]. Spectroscopy and microscopy techniques for investigation of magnetic materials are estab-
lished and build the basis for many advanced scientific investigations. The X-ray scattering technique is
also subject to investigations since many years and the coherent scattering is of special interest in view
of future free-electron laser sources that will provide coherent X-rays.

Coherent scattering of soft X-rays from magnetic materials is subject of this thesis. The magnetic scat-
tering is caused by magnetic dichroism effects of oppositely magnetized domains. Coherent scattering
pattern contain all information about the individual sample structure. Hence, correlation spectroscopy
permits to investigate the dynamic properties of materials even if the sample is in thermodynamical
equilibrium that prevents from fluctuation of the average properties of the sample. Another topic for
coherent scattering is the objective to retrieve the sample structure from the scattering pattern. This
lensless imaging technique is subject to a challenging race between different scientific workgroups in the
synchrotron comunity.

Two fundamental aspects have to be considered for performing lensless imaging experiments on
magnetic materials: coherent radiation and X-ray magnetic small angle scattering. The first two chapters
are dedicated to these matters. The concept of coherence is introduced in chapter § 1.1. The quantitative
definition of coherence and its statistical properties are presented. The difference between incoherent
and coherent small angle scattering is explained and the crucial role of coherence for investigations
beyond statistical information is stressed. Each topic is illustrated by own experimental results.

The fundamentals of resonant magnetic scattering are explained in chapter § 2. First an introduction
to the magnetic scattering and its cross-section is given on an atomic level. It is known that magnetic
scattering is very weak compared to non-magnetic charge scattering. In general, interference of charge
and magnetic scattering enhances the magnetic signal [10]. This can be achieved in various ways. The
favored possibility in this work is the resonant magnetic scattering process. The energy is chosen such
that the 2p-electrons of the magnetic element are excited. Dichroic effects permit to achieve a contrast
between differently magnetized domains. This is where the step is done from the scattering on an atomic
level to the small angle scattering (SAS) from an ensemble of magnetic moments that form domains on a
nanometer length scale. The basic concepts of the scattering process concerning polarization and energy
dependence are the same as on the atomic level. The influence of polarization on the scattering process
and the resulting interference is introduced and an important result from experiments is presented (see
§ 2.5.1). The effect of energy variation of the incident coherent radiation across the Co L3 absorption
edge on the resulting interference pattern has also been investigated (see § 2.5.2).
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The fundamental reconstruction procedure is introduced in chapter § 3 and a successful application
to a test object consisting of an aperture pattern that is drilled into an opaque Au-film is demonstrated.

The last chapter § 4 contains the main results of this work: the first recovery of a magnetic structure
on nanometer length scale from its coherent speckle pattern. The proof of principle is given using
a known magnetic test sample. Finally, the concept is applied to unknown magnetic objects. The
magnetic structure is varied by external magnetic fields and the characteristic behavior of the magnetic
domains are shown by analysis of the scattering pattern as well as reconstruction. The results are
discussed concerning reliability and the limits of the reconstruction procedure. It is shown that for
certain conditions a single inverse Fourier transform of the scattering intensity pattern rather than the
application of the reconstruction procedure can be used to obtain the object. This is a hint of probably
successful holography of nanoscale magnetic objects.



Chapter 1

Introduction to Coherent X-ray
Scattering

1.1 Coherence

Generally, light sources do not provide coherent electromagnetic waves. That means interference exper-
iments with light can only be performed using one light source and producing coherent waves from it.
This is a well known process for visible light since some centuries. Fig. 1.1 shows a sketch of a coherence
filtering process: a chaotic light source emits polychromatic waves with arbitrary phase relation. The
resulting wavefront is disturbed (Fig. 1.1(a)). Collimating the size of the light source creates much
sharper wavefronts of all wavelengths such that, transversely to a wavefront, a fixed phase relation can
be assumed. This state is quantified by the transverse coherence, see Fig. 1.1(b). If a chromatic filter
is applied to the light source only a small band of wavelengths remains, ideally only monochromatic
light. The light source is made longitudinally coherent, see Fig. 1.1(c). A combination of both filtering
processes yields spatially and longitudinally coherent light, see Fig. 1.1(d). From the schematic one can
also see that the coherence filtering process occurs always at cost of the remaining photon flux. This is
still an issue even for modern highly brilliant synchrotron radiation sources and many efforts are made
since years to increase the overall coherent flux of x-rays sources.

Synchrotron radiation created at insertion devices such as undulators is also not perfectly coherent. Its
small intrinsic degree of coherence is due comparably monochromatic light that is emitted from electrons
in undulator devices [18]. The fundamental requirement for coherent wave sources is: the emitted waves
must have the same wavelength and being in fixed phase relation the eachother. An electron emits the
radiation tangential to its sinusoidal pathway through the undulator and, as a result, the synchrotron
light emitted by the electron is amplified coherently. Usually, one or a few houndred groups of up to
1010 electrons, so called bunches, are accelerated through the storage ring. The electrons in each bunch
do not emit coherently, nor the electrons of different bunches do. As a result, the synchrotron radiation
has to be filtered spatially and temporally as shown above if a high degree of coherence is required in
the experiment.

To consider the former conditions more quantitatively the longitudinal and transverse coherence
lengths are introduced (see Fig. 1.2). Longitudinal or spectral coherence length is determined by the
spectral resolution E/∆E ∝ λ/∆λ. The longitudinal coherence length is proportional to the distance
along the propagation direction over which two beams of different wavelengths (∆λ) acquire a phase
shift of π,

ξl =
λ2

2∆λ
. (1.1)

For typical energy resolutions of synchrotron beamlines of about E/∆E ≈ 103..105 the longitudinal
coherence length for soft x-rays is in the range of 100..102µm. The longitudinal coherence limits the

1
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Figure 1.1: a) Chaotic, polychromatic light source. b) Spatial filtering creates well-defined wavefronts of
polychromatic light. c) Spectral filtering creates monochromatic light with distorted wavefronts. d) Both
spatial and spectral filtering yields coherent light [18].
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maximum path length difference ∆smax that allows for interference of diffracted beams, hence, the
maximum angle of diffraction θ′ from a sample of size D perpendicular to the beam is also limited,

∆s = D sin θ′ < ξl (1.2)

Transverse coherence varies along the path of the waves and is measured perpendicular to that di-
rection. Perfect transverse coherence would be achieved by a point source emitting perfectly correlated
spherical wavefronts. Zero divergence is impossible due to the uncertainty, ∆k∆x ≥ 1/2 where ∆k is
the uncertainty in wavenumber and ∆x is the uncertainty in position [18]. With k = 2π/λ and assuming
∆k = k∆Θ that is true for ∆k to be small, we get,

∆x · k∆Θ ≥ λ/4π,

where ∆Θ is the uncertainty of the divergence half angle Θ [18]. The diameter of the source is identified
as d = 2∆x yielding the relationship that determines the smallest source size for which the emitted
wavefronts are correlated,

d ·Θ = λ/2π. (1.3)

The equation states that a certain source size d can only create perfectly correlation wavefronts of
wavelength λ radiating into a half angle of Θ. Or, vice-versa, certain beam divergences of size Θ with
a corresponding degree of correlation (or coherence) can only be enhanced by small apertures of size d
that satisfies eqn. (1.3).

It is convenient to introduce a transverse coherence length, i.e. a lateral length over which the
wavefronts are considered to be correlated. It depends on the distance L from the source,

ξtr = LΘ =
λL

2πd
. (1.4)

Figure 1.2: Illustration of longitudinal and transverse coherence length.
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The longitudinal coherence length is a measure of the monochromaticity of the light source. Hence,
it is a parameter of the light source alone. The transverse coherence length can only be determined
by the complete experimental setup. The source confining pinhole must be chosen appropriately in
size and sample distance. Various beamline or experiment devices like mirrors or detectors can destroy
the coherence. A further important coherence parameter is the degeneracy parameter ∆c. It is defined
as the number of photons in the coherence volume Vc = Atξl, where At is the transverse coherence
area spanned by two orthogonal directions of the spatial coherence length ξtr. ∆c is connected to the
brilliance Br as ∆c = Brλ3/πc. Typically, a HeNe laser has about 107 photons per coherence volume
whereas undulators contain about 10−3 coherent photons although the overall photon flux of typical
undulators is about 1012/s [19]. I.e. the flux is reduced dramatically for coherent photons. The relation
of the overall flux in the center cone of the undulator to the coherent flux obtained by spatial and
spectral filtering can be expressed as [18]:

Pcoh ∝
(λ/2π)2

(dxΘx)(dyΘy)︸ ︷︷ ︸
spatial filtering

· N
∆λ
λ︸ ︷︷ ︸

spectral filtering

·Pcen, (1.5)

where the proportionality is given by the beamline efficiency, describing the total intensity loss due to
optical elements (typical value: 10%). dx and dy are the horizontal and vertical pinhole diameters,
respectively, and Θx,Θy give the corresponding beam divergences.

1.1.1 Experimental geometry

Before the results and experimental examples are presented it might be convenient to explain in general
the experimental setup which is mainly the same for all experiments shown throughout the work. All
experiments are performed in transmission geometry, i.e. the angle of incident of the soft x-rays is
perpendicular to the sample surface. Fig. 1.3 shows a sketch of the setup. The synchrotron radiation is
incident from the left - in general, it is incoherent but monochromatic within a certain energy resolution.
A setup of several apertures follows that either acts as a spatial coherence filter or as guard holes
blocking stray light. For coherent illumination of the sample the illuminated area D must be smaller
than the coherent area spanned by the transverse coherence lengths. The soft x-rays are scattered by
the sample structures under a scattering angle θ′ performing small angle scattering (SAS) (see § 2.4). A
position sensitive detector (either a micro-channel plate detector or a charge-coupled device) is placed
downstream the sample at a distance L (for details about the detectors see § C). The exact setup is
explained at the distinct experimental section of the work and the pinholes are referred to as ”upstream”
or ”downstream” pinhole and ”guard” hole.

1.1.2 Dual Pinhole - A Coherence Gauge

In most cases, loss in intensity is critical. Every optical element between the light source and the
sample reduces the overall flux and last but not least, flux reduction is inevitable, virtually necessary,
to increase coherence. During the construction phase of beamline UE56-1 SGM at BESSY II we had
the opportunity to measure the coherence of the UE56-1 undulator without any beamline elements.
The only optical elements between the undulator and the experimental setup are two pairs of baffles
at 13.3 m downstream the undulator and a torroidal mirror at 17 m (see Fig. C.1 in § C.1). At 25 m
downstream of the undulator we illuminated a double pinhole with x-rays of 400 eV energy of the 1st
undulator harmonic (Fig. 1.4). Each pinhole has a diameter of about d = 2 µm and the pinholes are
separated by D = 10 µm. The intensity pattern is analytically known and can be used to determine
the coherence length of the incident radiation [20], see § A. At 260 mm upstream of the dual pinhole
a guard hole of 50 µm diameter is installed (see Fig. 1.3). The natural bandwidth of the undulator’s
center cone is

∆λ
λ

=
1
iN

, (1.6)

where N is the number of magnet periods and i is the order of the undulator harmonics [18]. The
bandwidth yields ∆λ/λ = 1/30 for the first harmonic of the UE56−1 undulator. Hence, the longitudinal
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∆s

θ
′

D

L

DetectorSample

Downstream

Pinhole

Upstream

Pinhole
Guard

Hole

Incoherent

X-Rays

Figure 1.3: General setup for transmission geometry. Incoherent light is collimated by a set of the
upstream pinhole and the downstream pinhole. The sample is illuminated in a region of size D, where
D for some experiments is defined by the downstream pinhole. For the reconstruction experiments
explained in § 4 the downstream pinhole is attached to the sample and consists of two neighbouring
holes. The guard hole is applied for some experiments to surpress higher diffraction orders created by
the upstream pinhole. The scattering intensity is recorded by a detector where the scattering angle is θs.
Both parameters D and θs determine the path length difference ∆s of the scattered waves.
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coherence length is calculated by setting eqn. (1.6) into eqn. (1.1) and is as small as 46 nm. The central
cone of half angle is Θcen ≈ 145 µrad1.

Figure 1.4: Optical microscope image of the dual pinhole.

We closed the baffles located 13.3 m downstream the undulator source to 50 µm × 50 µm, thus,
decreasing the acceptance angle for the central cone to Θb ≈ 2 µrad. The baffles define the size of
the source and the half angle Θ = λ/2π/d = 3.1 nm/2π/50 µm = 10 µrad of coherent illumination.
The upstream 50 µm guard pinhole does not affect the coherence length because it does not shrink the
product d · Θ [18] and it is just installed to reduce stray light. Hence, the transverse coherence length
is ξtr = LΘ = 11.7 m · 10 µrad = 117 µm.

Fig. 1.5 shows the resulting 2D diffraction pattern (inset) and a line profile of the double pinhole
setup illuminated by undulator radiation alone. The detector is placed 660 mm downstream of the
dual pinhole. The line profile is taken offset from the center (white line in diffraction pattern shown in
the inset) because of a hot spot2 close to the center of the diffraction pattern. The visibility V ≈ 0.3
measured as the normalized difference in intensity of the maxima and minima (Imax−Imin)/(Imax+Imin)
of the high frequency interference pattern is comparably low in the center and additionally decreasing to
V ≈ 0.2 towards higher momentum transfer. The reason is the low longitudinal coherence ξl. For each
single wavelength the diffraction pattern is almost perfect due to a relatively large spatial coherence
in comparison to the dual pinhole dimensions. The spectral bandwidth of the undulator causes many
superposed dual pinhole diffraction patterns each with a slightly different angular separation of the
intensity maxima and minima. This smears out the resulting diffraction pattern. The fact that the
visibility is decreasing towards high momentum transfer demonstrates the influence of finite longitudinal
coherence. It limits the maximum path length difference for which two waves diffracted from one of the
two pinholes can interfere. Thus, the higher the diffraction angle the less interference is observed. The
separation of the two pinholes D = 10 µm and the definition of the path length difference in eqn. (1.2)
yield a maximum momentum transfer of qmax = 2π/λsin(θs) ≈ 10 µm−1 which still allows interference.

1The central cone half angle is calculated by [18]:

Θcen =
(1 + K2/2)1/2

γ
√

iN

where K = 3.2 is magnetic strength for the UE56/1 undulator, γ = 1957Ee(= 1.7 GeV ) = 3330. The emittance of the
electron beam is considered but comparably small with beam divergences of σx = 22µrad horizontally and σy = 5µrad
vertically.

2A so called hot spot is produced by erroneously induced electron transitions in the micro-channel plates. Usually high
voltage flashes in broken channels create these electron cascades.
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Figure 1.5: Line profile of the diffraction pattern obtained from the dual pinhole sample that is illuminated
with direct undulator radiation. The line profile is cut off-center because some transmission of the direct
undulator beam through the pinhole plate occurs and disturbs the diffraction pattern. The inset shows
the two-dimensional diffraction pattern from the dual pinhole plotted in logarithmic scale for an in-plane
momentum transfer of −10 µm to 10 µm in both axes.

We repeated the experiment after the complete UE56/1 SGM beamline was constructed. The optical
layout of the beamline is presented in § C.1. The same dual pinhole and the 50 µm guard pinhole
are exposed to the monochromatic X-rays but due to a different experimental setup the guard hole is
located 723 mm upstream of the dual pinhole. The experimental chamber is located about Ls = 8 m
downstream the exit slit of the monochromator which itself is located 33.5 m downstream the undulator
source. The exit-slit is opened to ds = 20 µm vertically. In horizontal direction the beam is not confined
by the exit slit and the width of the beam is determined by the horizontal focussing switching mirror
unit (SMU) placed 17 m downstream of the undulator (see § C.1). The focal plane of the switching
mirror is 37 m downstream of the undulator, i.e. the focus is Lf = 4.5 m in front of the experimental
station. The horizontal divergence of the beam is ΘSMU = 64 µrad. The corresponding coherence
length at the dual pinhole site are: ξhtr = LfΘSMU = 288 µm and ξvtr = λLs/2πds = 190 µm.

In the monochromator we use a 800 lines/mm grating with entrance slit opened to 70 µm, i.e.
accepting the full beam height of 30 µm at the entrance slit, and the exit slit set to 20 µm. The
corresponding energy resolution is E/∆E = 5900 (cp. § C) yielding a longitudinal coherence length of
ξl = λ/2 · 5900 = 9 µm. This is large enough to ensure that the interference is not limited by finite
spectral coherence. For 10 µm lateral separation of the two pinholes ξl = 9 µm implies a maximum
angle for coherent scattering of θ′ = 64◦ (see eqn. (1.2)). This exceeds the angular acceptance in the
experimental setup.

In Fig. 1.6(a) the diffraction pattern from the dual pinhole is plotted. The center line of the pinholes
is oriented vertically. Again, the visibility is calculated from line profiles for the central maximum and
the maximum of 1st order (see Fig. 1.6(b)). The visibility is Vv = 0.26 for the central maximum.

The main difference between the direct undulator beam and the complete beamline setup is that the
longitudinal coherence length is increased due to the monochromator. This allows for interference up to
high diffraction angles. The transverse coherence length is almost the same for both experiments. The
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Figure 1.6: (a) Two dimensional diffraction image of a dual pinhole plotted in logarithmic intensity
scale. The center line of the two apertures is vertically oriented. The blob in the image is a hot-spot
of the micro-channel plate detector where the channels erroneously induce electron transitions into the
resistive anode.(b) A line profile cut through the diffraction pattern (black line and markers). The gray
line shows the analytical diffraction pattern for a double pinhole convolved with the detector resolution.

coherence volume Vc is much bigger for the experiment with the complete beamline setup, merely due
to the increased monochromaticity. Nevertheless, the visibility of the diffraction images from the double
pinhole is not enhanced in the ”beamline” experiment. The reason is the limited spatial resolution of
the detector. Its spatial resolution is 100 µm. A simulation of the one-dimensional diffraction pattern
according to eqn. (A.4) in § A for perfect coherence. The limited spatial resolution of the detector is
simulated by convolving the result with the resolution as shown in Fig. 1.6(b) (gray line). The spatial
resolution causes the visibility of the diffraction pattern to be reduced dramatically. As a consequence,
it is difficult to distinguish between low resolution or small coherence length causing the visibility to be
low.

In a next step, we substitute the micro-channel plate detector by a charge-coupled device (CCD)
camera of 13.5 µm pixel size. It is located 315 mm downstream from the dual pinhole. Again, the
vertical coherence length is ξvtr = 190 µm. A profile of the resulting diffraction pattern is plotted in
Fig. 1.7. Obviously, the visibility is much higher this time and is determined to be V = 0.65.

1.1.3 General remarks

Interference - In general, interference phenomena are observable if there are indistinguishable paths
causing the interference pattern. For observation of interference from a double slit (or pinhole) it is
crucial that the observer is not able to tell whether the photon passes through one or the other slit or
pinhole. As soon as the path through the dual aperture setup is known, i.e. one can distinguish the path
through one of the two apertures from that through the other one, the interference is destroyed. This well
known general quantummechanical concept must be kept in mind while performing and understanding
coherence experiments.

Magnetism - Ferromagnetism of the 3d transition metals Cr,Mn, Fe, Co,Ni and 4f rare earth
elements is the basis for many technical and scientific purposes. Any magnetic compound contains at
least one of the above elements. The fundamental of ferromagnetism is of pure quantummechanical
nature. It is based on the electrostatic Coulomb interaction and the Pauli principle. The Pauli principle
prevents the electrons from occupying the same state. Hence, the repelling Coulomb potential is weaker
for parallel arranged electron spins because the average distance of the electrons is larger than for
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Figure 1.7: Line profile of the diffraction pattern from the double pinhole recorded with CCD-camera
of 13.5 µm pixel size (gray dots). The black line is a fit of eqn. A.4 to the data. The inset shows the
corresponding CCD-image. Both axes are plotted between −8 µm−1 and +8 µm−1. The high-frequency
interference lines of the two pinholes are clearly visible. The visibility is V = 0.65.

antiparallel spins due to the Pauli principle. As long as the lowering of the Coulomb energy under
consideration of the Pauli principle can be achieved by parallel spin orientation, free atoms with partially
filled shells show spontaneous magnetization.

This also favors the parallel arrangement of electron spins in condensed matter systems which gives
raise to ferromagnetism. If the lowering of the Coulomb energy were the only criterion every metal
system would show ferromagnetic properties. Parallel spins force the electrons to occupy higher energy
levels. As the delocalized electrons in 3d valence bands of transition metals are no longer bound to
the ion potential, they gain kinetic energy upon shift to high energy levels. As a consequence, the
ferromagnetic order is only favored if the lowering of the Coulomb energy is not compensated by the
gain in kinetic energy. Ordered states are preferred for systems with small bands at the Fermi level, i.e.
the density of states at the Fermi level n(EF ) is large for these bands. This is expressed in the Stoner
criterion for ferromagnetic order:

n(EF )I ≥ 1.

I is the Stoner parameter. Qualitative conditions for ferromagnetic order are:

• The exchange energie must be positive and maximized, i.e. I > 0.

• High density of states reduce the work upon enhancement of kinetic energy and favor ferromagnetic
order.

The ordering of the electron spins in parallel states for ferromagnets is called spin polarization. This
yield a difference in number of electrons with the same spin state. Consequently, the density of states
of ferromagnetic crystals is different for spin-up and spin-down electrons. Accordingly, the electrons are
classified in majority and minority spins.

The most important effect that is exploited in the magnetic scattering experiments is the magnetic
dichroism for polarized X-rays. The dichroic property is based on the polarization dependence of
absorption of photons over a wide range of the electromagnetic spectrum. Especially, soft X-rays allow
for resonant core-electron excitation and can force helicity-dependent transitions from spin-orbit splitted
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core levels to spin-dependent d valence bands of e.g. ferromagnets. The magnetic samples considered
here are compounds containing ferromagnetic Co. This 3d metal has a spin-orbit splitted 2p core level.
The 3d valence band has a different density of states for spin-up and spin-down electrons - a consequence
of the exchange interaction of the valence electrons. These are the two main properties which explain
the magnetic dichroism of circular polarized X-rays (XMCD). The absorption of the photons by 2p
electrons depends on the photon-helicity. This excitation causes spin-polarized electrons because for a
certain helicity it is more probable to excite one kind of electrons, either spin-up or spin-down. For
example, for the Co 2p3/2 level the absorption cross-section of right circular polarized photons is higher
for spin-up electrons than for spin-down electrons. As the 3d band is exchange-splitted the densities of
states have different occupation for spin-up and spin-down electrons. The states (holes) above the Fermi
level are also spin-selective and, hence, cause different transition probabilities for spin-up and spin-down
electrons. Finally, the magnetic dichroism effect for circular polarized photons can be explained in a two
step model: the 2p core electrons are excited with spin-dependent probabilities and undergo transitions
into unoccupied final states according to the spin-selective probability. Both steps together give raise
to a difference in X-ray absorption that depends on the helicity and the direction of the magnetization.

Hence, magnetic domains of opposite magnetization cause different dichroism strength for fix helicity
of the absorbed photons. This difference can be exploited to achieve a contrast between differently
magnetized domains. It has been used in spectro-microscopy as well as in resonant small angle scattering
experiments. The scattering of coherent soft X-rays from magnetic materials is subject of this thesis.
It is used to obtain the structural information of magnetic samples. The lensless imaging technique is
introduced that only requires scattering information from the magnetic objects. The scattering intensity
is acquired in two dimensions and algorithmic procedures allow to retrieve the lateral magnetic structure.

Samples - Before going on it is helpful to present the type of samples that are investigated throughout
this work. The experiments were mainly done in transmission geometry with a sample of a magnetic
anisotropy that is perpendicular to the sample surface. This outstanding magnetic property is obtained
by multilayer systems. The static energy of the systems is minimized by forming oppositely magnetized
domains and the average domain width depends on the thickness of the layers. The details about these
samples are described in § B. A transmission X-ray microscope (TXM) image is shown in Fig. 1.8. The
average width a of the domains causes a small angle scattering (SAS) maximum corresponding to a
momentum transfer of q = 2π/a (cp. § 2.4). As the domains are oriented randomly in 2 dimensions,
i.e. every direction occurs equivalently, the scattering pattern of the domains is circular (cp. § 1.1.4
and § 2.5).

1.1.4 Incoherent Scattering versus Coherent Scattering

Fig. 1.9 illustrates the difference between incoherent and coherent small angle scattering (SAS) from
a sample with characteristic structures of a certain correlation length (Fig. 1.8). In the experiment
sketched in Fig. 1.9 (a) the transverse coherence length of the setup is appropriate for the size of the
sample structures but it is smaller than the illuminated area. Hence, common incoherent small angle
scattering can be observed (line profile and image). Statistical properties of the sample can be obtained
from the scattered intensity, e.g. the average period of the black and white structures in a certain
direction of the sample corresponds to the circular minor maximum in the scattering image. The image
(b) below shows the coherent case. The coherence length is increased to at least the illuminated sample
area. This time, constructive and destructive interference occurs from the structures of the completely
illuminated sample and causes bright and dark intensities on the detector, also known as speckle. The
scattered intensity provides information about the individual sample configuration (see Fig. 1.10).
Objects with same statistical properties but a different structure cause a different speckle pattern. Due
to the ability of the scattered waves to interfere, the exact location of the scattering centers with respect
to its environment is crucial. If the individual arrangement changes the phase relations of the scattered
waves change also.

Fig. 1.11 shows a measurement of this important property. The scattering of soft X-rays from a
coherently illuminated magnetic domain pattern is shown (for image of the pattern see Fig. 1.8). From
left to right the illuminated area changes. Hence, the sample structure that is illuminated changes and,
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Figure 1.8: Transmission X-ray Microscope (TXM) image of the CoPt multilayer magnetic domains
(size: 5 µm × 5 µm). The domains are encoded in white and black color indicating perpendicular
magnetization of opposite direction. (Courtesy of G. Denbeaux at ALS, Berkeley, USA [21])

consequently, a different speckle pattern is observed. The characteristic circular pattern corresponds
to the period of domain structures causing small angle scattering (SAS). It would be also visible with
incoherent light (see Fig. 1.9). But the interference of coherent waves causes the circular pattern to be
modulated by the individual domain structure.

This important property of coherent X-ray scattering can be exploited in the spatial and temporal
domain. From the scattered intensity the real space structure can be obtained by phase retrieval using
an iterative algorithm or holographic techniques. The speckle pattern itself can also be used as a
”fingerprint” of the sample, i.e. without retrieving the real space image. The dynamics of the sample
can then be monitored by measuring fluctuations in the speckle pattern. Structural resolution can be
obtained by confining the scattering angle for which the fluctuations are measured and that corresponds
to a certain structure size of interest. This is the basis for a technique known as x-ray photon correlation
spectroscopy (XPCS).

1.2 Analysis of Coherent Diffraction

Speckle pattern generated by coherent scattering can be described quantitatively regarding their statis-
tical properties, temporal and spatial correlation and contrast. The relation between these properties
is described in this section.

1.2.1 Speckle Statistics

The speckle pattern results from constructive and destructive interference of waves from all scattering
centers of a sample. Thus, the distribution of field strengths is supposed to be Gaussian [22–24]. The
statistical properties of this particular distribution is described by the probability density function of
the intensity I [22]:

p1(I) = 1/〈I〉exp
(
− I

〈I〉

)
. (1.7)

The probability density function of normalized intensities can be extracted from a speckle pattern by
determing the histogram of intensities (see fig. 1.12). The high number of zero-intensity indicates the
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Figure 1.9: Incoherent versus coherent small angle scattering. (a) The transverse coherence length of
the incoming light is smaller than the illuminated area but larger than the correlation length of the
characteristic structure within the sample. Conventional small angle scattering occurs. The right image
shown is obtained simulation. (c): Increasing coherence length to at least the size of the illuminated
area causes the formation of a speckle pattern. The right scattering image shows a simulation.

Figure 1.10: Two sketches of a regular matrix (gray circles) with different disturbances (black circles)
but same statistical properties. Coherent scattering experiments can distinguish both configurations.
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Figure 1.11: Measured speckle pattern from a wormlike magnetic domain pattern (see § 1.8) of a CoPt
multilayer. Every image shows the characteristic circular scattering corresponding to the average domain
period of approximately 200 µm which also would be measurable with incoherent soft X-rays. The in-plane
momentum transfer is q = −45 µm to q = 45 µm for the horizontal and vertical axis of each image. With
coherent illumination the diffraction pattern is modulated and characteristic for the individual domain
pattern. For each image a different area of the magnetic domains was illuminated to demonstrate the
effect of a ”fingerprint”.

perfect destructive interference of coherently illuminated objects. For partial coherent illumination the
coherence volume is smaller than the illuminated volume. The ratio M of both numbers gives the
number of independent speckle pattern each with perfect coherent illumination. The incoherent sum of
the M patterns yields the partial coherent intensity distribution. The probability density functions pj
are multiplied to [22]:

pM (I) =
MM (I/〈I〉)M−1exp

(
−MI

〈I〉

)
Γ(M)〈I〉

. (1.8)

where Γ(M) is a gamma function of M which itself is the only fitting parameter in eqn. (1.8).
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Figure 1.12: (a) Plot of probability density function in terms of normalized intensities 〈I〉 (solid line).
The bars show an idealized histogram of intensities as it would be obtained by perfect coherent illumina-
tion. (b) Plot of eqn. (1.8) for different values of M .

Measurements of coherent scattering from rough surfaces in reflection geometry reveal a high sen-
sitivity of the speckle pattern to the surface topology [16, 22, 25–27]. As an example to illustrate
the statistical properties of a speckle pattern the scattering from a CoPt multilayer was recorded (see
Fig. 1.13(a)). The histogram of intensities from the indicated region (black box) is shown in Fig. 1.13(b).
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It is very similar to the distribution with M = 1, i.e. the sample is illuminated with almost perfect
coherence. From a fit of eqn. (1.8) the parameter is determined to be M = 1.15. The solid line in the
figure shows the fit to the histogram. The value of the visibility of the pattern inside the black box is
V = (Imax − Imin)/(Imax + Imin) = 0.9.

Figure 1.13: (a) Speckle pattern of CoPt multilayer. The color scale is logarithmic. (b) Histogram of
normalized intensities in terms of 〈I〉 of Soft X-ray scattering pattern from the CoPt multiplayer. The
solid line is a fit of eqn. (1.8) to the histogram with parameter M = 1.15.

The standard deviation of the intensities is σ2
I = 〈I2〉 − 〈I〉2 and the contrast of speckle intensities

may be defined as [22]
C =

σI
〈I〉

. (1.9)

For perfect coherence the contrast in the speckle pattern is always unity [22]. Of course, the signal-to-
noise ratio of the Speckle pattern influences the contrast. High incoherent background smears out the
contrast of maximum and minimum intensity and it is found to be [22],

C =
√

1 + 2r
1 + r

, (1.10)

where r = IB/〈I〉 is the ratio of the background intensity to the mean Speckle intensity (see Fig. 1.14).

Goodman derived an expression for M that results in a contrast definition in terms of the coherence
parameter M [22]:

C =
(

1
M

)1/2

. (1.11)

This allows to determine the contrast of a speckle pattern by statistical analysis of the measured inten-
sities.

An example of contrast measurement: The determination of the contrast of a speckle pattern
obtained by coherent scattering from a ferromagnetic CoPt multilayer system (see § B) is demonstrated
next. The characteristic magnetic domain pattern of CoPt causes a distinct scattering pattern similar
to that shown in Fig. 1.11 or in § 2.5.1. The experimental details are also described in § 2.5.1. From the
complete two-dimensional scattering image obtained from the position sensitive detector a sub-image is
extracted called q-box. The in-plane momentum transfer covered by the box is ∆q = 5.7 µm−1 in radial
direction. Transversely the momentum transfer is almost constant and does not depend strongly on the
size of the box. The intensity in the q-box is used to evaluate the contrast by applying eqn. (1.9). In
radial direction the q-box is moved to get the q-dependence of the contrast as it is plotted in the upper
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Figure 1.14: Contrast as function of ratio of the background intensity to mean Speckle intensity con-
cerning eqn. (1.10).

graph of Fig. 1.15. The error bars indicate the size of the q-box in radial direction. The area of the
box is chosen to cover four times the average area of a single speckle. The contrast rises from an initial
level of C = 0.4 to an average of C = 0.7 for q ∈ [27 µm−1, 33 µm−1]. For higher momentum transfer,
i.e. beyond the large magnetic scattering, the contrast is lowered again to values around C = 0.4. This
observation is consistent with the variation of the scattering intensity relative to a constant background
as described by eqn. (1.10).

1.0

0.8

0.6

0.4

0.2

C
on

tr
as

t

60555045403530252015

60

40

20

0

In
te

ns
ity

6055504540353025201510

inplane momentum transfer [µm
-1

]

Figure 1.15: Contrast of a CoPt magnetic multilayer scattering pattern illuminated under coherent
conditions. The contrast is evaluated in a q-box of 5.7 µm−1 radial length across the detector image
and plotted against the momentum transfer in the center of the corresponding box. The size of the box
is chosen to contain a fourfold area of the average speckle size and indicated by the horizontal error
bars in the upper graph. The lower graph is a cross-section through the Speckle pattern along the radial
direction of the contrast value being taken. Up to 15 µm−1 a few pinhole diffraction rings are visible.
Between 20 µm−1 and 40 µm−1 the scattering pattern from the magnetic domains is present. For high
momentum transfer the background intensity becomes dominant.

1.2.2 Intensity Correlation of Partially Coherent Scattering

The speckle pattern is the result of interference of all waves scattered in the object plane after prop-
agation to the observation plane. Hence, the amplitudes or intensities of two points O and P in the
observation plane are correlated to each other and to the waves originating in the object plane. The
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correlation of the amplitudes of the two points at the same time t0 is expressed by the normalized
first-order correlation function [18,19,22]

g(1)(rO, rP , t0) =
〈E∗(rO, t0)E(rP , t0)〉

{〈|E(rO, t0)|2〉〈|E(rP , t0)|2〉}1/2
. (1.12)

Intensities rather than amplitudes are accessible in experiments. The second-order correlation function
consideres this

g(2)(∆r) =
〈I(r, t0)I(r + δr, t0)〉

〈I(r, t0)〉2
. (1.13)

The Siegert relation describes the second-order correlation by the first-order function [19]

g(2)(∆r) = 1 + |g(1)(∆r)|2. (1.14)

Hence, the second-order correlation function does not provide any further information than g(1) but is
experimentally easier accessable. For ∆r = 0 the correlation function gives a measure of the contrast [23]

C = |g(1)(∆r = 0)|2 = g(2)(∆r = 0)− 1 =
〈I I〉
〈I〉2

− 1. (1.15)

The correlation function eqn. (1.13) is a good measure of the speckle size. The size of the speckle
corresponds reciprocally to the beam width in the object plane [28, 29]. We put a movable pinhole of
2.5µm in diameter in front of a CoPt (see § 2.5.1 and § B) multilayer sample that was sputtered on a
transparent SiN membrane (20.9 µm× 32.8 µm in size) to allow transmission geometry. The distance
between the pinhole and the sample is adjustable with a micrometer-range UHV manipulator. To first
approximation the sample is illuminated only over the region of the central maximimum, called the Airy
disc, produced by the pinhole at the position of the sample (see § A). By varying the pinhole-sample
distance, we are able to tune the speckle size. Fig. 1.16 shows the resulting speckle pattern for various
distances of the pinhole to the sample, (a) 1.4 mm, (b) 8 mm and (c) 20 mm. The decreasing speckle
size with increasing distance is obvious.

The corresponding spatial correlation plots are shown in Fig. 1.17. The correlation is done for a
subset of the complete scattering pattern as indicated in Fig. 1.16(a) (white box). The widths of the
correlation function match the appropriate speckle sizes. It is determined as the full width of the half-
maximum from the cross-sections shown in Fig. 1.17. For a distance of 1.4 mm of the pinhole to the
sample the average speckle size is about 760 µm in the observation plane. Increasing the pinhole-sample
distance to 8 mm causes smaller speckle of 520 µm in size. If the pinhole is moved away from the sample
up to 20 mm the speckle size reduces to 160 µm.
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Figure 1.16: Two-dimensional scattering images of the CoPt ferromagnetic domains obtained for a
distance between the collimating pinhole and the sample of (a) 1.4 mm, (b) 8 mm and (c) 20 mm. In
(a) and (b) the facet of the membrane on which the CoPt film is sputtered is clearly visible. For large
distances the diffraction rings of the pinhole are screened by the facet. From the right side a beamblock
is applied to avoid detector saturation in the specular peak.
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Figure 1.17: Upper row of images: Correlation maps for a pinhole-to-sample distance of 1.4 mm, 8 mm
and 20 mm (left to right). The graph below shows the horizontal cross-section through the maps for
distances of 1.4 mm (solid line), 8 mm (dotted line) and 20 mm (dashed line). The Speckle size is
determined as the full width at half-maximum. The displacement ∆r is given in mm.



Chapter 2

Resonant Coherent Scattering from
Magnetic Materials

In this chapter we the various influences on the scattering process of soft X-rays from magnetic materials
is investigated. The resonant cross-section for X-rays is considered, namely its dependence on polar-
ization and energy. After the theoretical introduction the experimental results and their discussion are
presented. The comprehension of these dependencies is important to analyze the magnetic scattering
with respect to image reconstruction and dynamic experiments.

Soft x-rays generated at synchrotron facilities can be tuned to excitation energies of atomic core
electrons and consequently allow for element specific investigations. Furthermore, the polarization of
soft x-ray photons is selectable and can be used for polarization dependent or spin-selective electron
excitation. This work is focussed on the investigation of scattering from magnetic structures. The theory
of absorption and scattering from magnetic moments is elaborated since several years [1, 2, 4, 30] and
many pioneering experiments have established important techniques for (magnetic) material science (e.g.
[5, 31]). The atomic scattering processes are described by the resonant magnetic scattering amplitude
that consideres energy and polarization dependence [4]. The first three sections of this chapter describe
the basics of the resonant scattering amplitude and its corresponding dependencies. Typically, extreme
ultraviolet (EUV) and soft x-ray (SXR) radiation ranges from 50 nm to 0.5 nm wavelength [18] and
consequently allows for core electron excitation but cannot be used for probing of atomic distances
like e.g. conventional Bragg or crystal lattice diffraction of hard x-rays. Hence, it is important to
distinguish the atomic scattering amplitude that describes the scattering process from the small angle
scattering (SAS) that is caused by comparably macroscopic magnetic domain structures. The small
angle scattering is subject of section § 2.4.

2.1 The atomic resonant magnetic scattering factor

As all experiments were performed at resonances of the element carrying the magnetic moment, only the
so called resonant magnetic-resonant charge scattering is considered. Of course, non-resonant charge
and non-resonant magnetic scattering exists. Lovesey [10] introduces the different kinds of charge and
magnetic scattering in his book in a very comprehensive form. Non-resonant magnetic scattering induces
90◦ phase shifts into the scattered wave whereas non-resonant charge scattering does not. Consequently,
the scattering from both merely superimpose and due to the 106 times stronger charge signal [10] the
magnetic scattering is nearly negligible. The magnetic signal can only be recovered if the scattering
from both charge and magnetic moments is separated in reciprocal space and the magnetic scattering
exceeds the noise background.

Rather than superposition of the charge and magnetic scattering interference of both allows to increase
the ”magnetic” contribution [10]. From eqn. (D.18) it is found that the interference contributes linear

19
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in magnetic moments M̂n to the cross-section. Hence, the magnetic scattering is increased by a factor
of 103 [10]. Charge-magnetic interference can be induced in different ways: 1) the charge and magnetic
scattering occurs at different lattice sites of an non-centro-symmetric crystal [10]. 2) Circular polarized
light is used which is a composition of two linear polarized orthogonal waves with 90◦ retardation of
one wave. And 3), interference is induced at a resonance of one of the atomic elements which is not
neccessarly the magnetic one [10].

In the first case the scattering phases depend the lattice site distribution of the charge and magnetic
moments, hence, aloowing for the correct phase shift between charge and magnetic scattering. This
is possible for e.g. anti ferromagnetic crystals [10]. In the second case, using circular polarized light
is helpful because there are always contributions from both charge and magnetic scattering that can
interfere. In this thesis the third case, resonant scattering, is considered. Resonances induce anomalous
scattering, described by complex refractive indices that permits the charge scattering to interfere with
the magnetic scattering. With scattering at a corresponding magnetic resonance-energy interference is
also allowed for linearly polarized light assuming the right experimental geometry.

The X-ray scattering process is strongly related to X-ray absorption and the dispersive properties
of matter. The energy regime of Soft-X-rays allows both non-resonant and resonant scattering due
to excitation of core-electrons. As a consequence, high cross-sections of absorption and anomalous
dispersion become important. The scattering amplitude f for magnetic scattering is in general the sum
of non-resonant and resonant terms [4]:

fn ≈ f0
nonres + fmagnnonres + f ′ + if ′′. (2.1)

The measurable scattering signal is then obtained by summing over all lattice sites rn with a phase factor
containing the momentum transfer Q = q̂′ − q̂, where q̂ and q̂′ are the wavevectors of the incident and
scattered light, respectively:

I ∝

∣∣∣∣∣∑
n

eiQrnfn

∣∣∣∣∣
2

. (2.2)

The scattering factor f is a complex number, in general. The dispersive and absorption contributions
are covered by f ′ and f ′′, respectively. They are relevant for resonant charge and magnetic scattering
as we will see below.

Let us consider strong resonance effects as they occur at a Co L3 edge, for example. Thus, the
scattering amplitude fn is dominated by its resonant terms. For simplicity, we just consider dipole
transitions [4, 10]:

fresn (q̂, q̂′; ê, ê′) = (ê′ · ê)F (0)
n − i(ê′ × ê) · m̂nF

(1)
n + (ê′ · m̂n)(ê · m̂n)F (2)

n . (2.3)

Here, ê and ê′ are the unit vectors of the E-field for the incident and the scattered light, respectively,
also describing the direction of polarization. It is common to establish both vectors in components
parallel and perpendicular to the scattering plane (Fig. 2.1). Hence, light with an elliptical component
is described as a composition of two orthogonal linear waves. m̂n = (m1,m2,m3) is the unit vector
in direction of the magnetization at the atomic site rn. The complex resonance strengths Fn include
all electronic properties of the material, e.g. the atomic excitation and decay processes. They have
a resonant denominator and are energy dependent [4, 10]. The first term in eqn. (2.3) describes the
resonant scattering from the charge distribution and is independent of the magnetic moment. The
second term reveals a linear dependency of the magnetic moment and gives rise to X-ray Magnetic
Circular Dichroism (XMCD). The third term is quadratic in m̂n and therefore it is not sensitive to the
direction of the magnetic moment. It becomes important in probing anti ferromagnetic materials with
linear polarized light (X-ray Magnetic Linear Dichroism, XMLD).

After the atomic scattering amplitude is introduced some special cases are considered concerning
polarization dependence of the scattering cross-section and its charge-magnetic interference term. Of
course, charge-magnetic interference cannot occur on an atomic level for wavelengths of soft x-rays
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because the wavelengths are too large to fulfill the conditions for lattice scattering. Nevertheless,
the atomic scattering amplitude is helpful to understand the interaction of the small angle scattering
from the magnetic domains with the diffraction of a pinhole that is applied to achieve the coherent
beam conditions (see experimental setup in § 1.1.1). Charge scattering is usually neglected. But the
polarization dependence of the diffraction from the pinhole is basically the same as for the charge term,
(ê′ · ê), i.e. concerning the polarization effects the pinhole diffraction can be considered the same way
as the charge scattering.
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Figure 2.1: Scattering geometry: (a) reflection and (b) transmission. In reflection the incident wavevec-
tor q encloses an angle θ with the sample surface and the scattered wavevector q′ takes an angle θ′. For
transmission geometry the incident angle is 90◦ and the scattering angle is measured with respect to the
surface normal by convention.

2.2 Polarization and magneto-optical effects

The dipole scattering amplitude fresn describes all atomic processes including magneto-optical effects
and resonant enhancements. The vector-depending terms (ê′ · ê), (ê′ × ê) · m̂n and (ê′ · m̂n)(ê · m̂n) of
eqn. (2.3) select the possible contribution of each term to the scattering process for a given polarization
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of the light before and after the scattering process. Modern synchrotron insertion devices allow the
control of polarization of X-rays. This permits to investigate easily the effect of polarization on the
scattering process. This chapter focusses mainly on the ”XMCD”-term of the scattering amplitude. For
further details about a complete consideration of the “circular” and “linear” term see e.g. [4, 10,32].

The XMCD effect is based on the different probabilities of excitation for right- and left-circular
polarized light and the spin-selective final density of states. This is taken into account by complex
helicity-dependent resonance strengths Fn [4]. Let us write F 1

+1 for a helicity parallel and F 1
−1 for a

helicity antiparallel to the net magnetization in the sample. Then the resonant scattering factor can be
written as [4, 10,32]:

fresn =
3
4q

(ê′ · ê)[F 1
+1 + F 1

−1]− i
3
4q

(ê′ × ê) · m̂n[F 1
+1 − F 1

−1]. (2.4)

with q = 2π
λ and omitting the linear dichroism term,

flin = − 3
4q

(ê′ · m̂n)(ê · m̂n)[2F 1
0 − F 1

+1 − F 1
−1]. (2.5)

The bilinear form of eqn. (2.4) may be expressed in matrix form
〈
M̃
〉

with a basis of linear polarization
states perpendicular êσ and parallel êπ to the scattering plane as de Bergevin and Brunel proposed
it [2, 33]. Then we obtain:

fresn =
3
4q

〈(
1 0
0 q̂ · q̂′

)〉
[F 1

+1 + F 1
−1]

−i 3
4q

〈(
0 q̂
−q̂′ q̂′ × q̂

)〉
· m̂n[F 1

+1 − F 1
−1]. (2.6)

Details of the matrix formalism to describe the polarization states are described in Appendix D.3. Now,
we have a complete description of the scattering amplitude dependence on the incoming and scattered
wavevectors, q̂′ and q̂′, the quantization direction of magnetic moments m̂, and finally the state of
polarization êσ and êπ.

2.2.1 Linear polarization

With expression (2.6) we can easily discuss the charge scattering and the magnetic scattering under
consideration of the polarization. The matrix form (eqn. (D.11)) allows to select the contribution of
every term assuming known polarization of the incident and scattered radiation and the direction of the
magnetization (cp. § D.3). For simplicity let us consider only the forward scattering (or near specular
scattering) with change of polarization allowed, i.e. q̂ = q̂′ (this has to be distinguished from the
situation discussed in § 2.3.1 where elastic forward scattering with no change in state of polarization is
considered, i.e. q̂ = q̂′ and ê = ê′).

The state of linear polarization is defined always with respect to the scattering plane using the
following standard notation: σ represents linear polarized light with the E-field vector perpendicular to
the scattering plane and π light is polarized parallel to that plane. The scattering plane itself is spanned
by the incoming q-vector and the outgoing vector q′. The resonant charge scattering term does not
change the state of polarization, i.e. only σ → σ′ and π → π′ scattering occurs which is expressed in the
diagonal form of the charge term matrix. In contrast, the magnetic term can change the polarization.
Some special cases are considered next:

σ-light, any geometry - For magnetic scattering of linear polarized light σ → σ′ is forbidden
whereas every other scattering channel is enabled. Hence, with σ light no interference of the charge
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and magnetic term is allowed because the charge scattered wave is perpendicular polarized to the
magnetically scattered wave. The suppression of interference of orthogonal states is obvious:

I ∝ |fres|2 = |fc + fm|2 ,

with fc and fm for charge and magnetic amplitude, respectively. Assuming in-phase relation of both
amplitudes we get [10],

I ∝ f2
c + f2

m + 2fcfm.

The interference term 2fcfm vanishes for orthogonal E-fields.

π-light, reflection geometry - Incident π radiation supports the charge-magnetic interference
because both terms contribute to the scattering amplitude with emitted π′ light. These polarization
dependencies can be exploited to obtain information about the magnetization direction in magnetic
materials, as e.g. shown in [13]. The (π → π′)-channel is valuable for interference scattering while
the angle of incidence θ is smaller than 90◦ (reflection geometry, cp. Fig.2.1(a)) and there are in-plane
magnetic moments1, i.e. m̂n = m1Û1 +m2Û2.

π-light, transmission geometry - For transmission geometry (cp. Fig. 2.1(b)) and pure out-of-
plane magnetization the former result is not longer valid. The (π → π′)-element of the magnetic term
in eqn. (2.6) is zero then, hence, the interference term of eqn. (D.18) vanishes.

Forward scattering - The forward scattering causes the polarization plane of incident π or σ light to
be rotated upon interaction with out-of-plane magnetic moments. Furthermore, the light gets an ellip-
tical component. This well known magneto-optical Faraday-effect can be calculated using eqn. (D.9)
and (D.18). As introduced in Appendix D.1 it is convenient to describe the state of polarization in
terms of Stokes parameters Pi, i = 1, 2, 3. For σ or π light the polarization vector is P = (0, 0,+1) or
P = (0, 0,−1), respectively2. The resulting scattering cross-section is obtained with eqn. (D.18),

dσ

dΩ
∝ |ρ(Q)|2

[
F 1

+1 + F 1
−1

]2
+ 4π2M(Q)2

[
F 1

+1 − F 1
−1

]2
,

where ρ(Q) is the structure factor of the charge density and M(Q) is the magnetic structure factor.
Only the pure charge and magnetic terms remain and no charge-magnetic interference is observable.
The polarization state of the scattered light can be calculated using eqn. (D.9),

P ′
1 =

4πM(Q)ρ(Q)
[
<
{
F (1)

}
=
{
F (0)

}
−<

{
F (0)

}
=
{
F (1)

}]
ρ2(Q)

∣∣F (0)
∣∣2 + 4πM(Q)2

∣∣F (1)
∣∣2

P ′
2 =

4πM(Q)ρ(Q)
[
<
{
F (0)

}
<
{
F (1)

}
+ =

{
F (0)

}
=
{
F (1)

}]
ρ2(Q)

∣∣F (0)
∣∣2 + 4πM(Q)2

∣∣F (1)
∣∣2

P ′
3 =

|ρ(Q)|2
∣∣F (0)

∣∣2 − 4πM(Q)2
∣∣F (1)

∣∣2
|ρ(bfQ)|2

∣∣F (0)
∣∣2 + 4πM(Q)2

∣∣F (1)
∣∣2 .

The resonance strengths are F (0) =
[
F 1

+1 + F 1
−1

]
and F (1) =

[
F 1

+1 − F 1
−1

]
. The resulting vector of

polarization P′ has non-zero components P ′
1 and P ′

2. The first parameter describes the degree of linear
polarization of 45◦ with respect to the scattering plane and indicates that the plane of polarization has
been rotated (Faraday-rotation). A non-zero second parameter P ′

2 indicates that a circular component
of the polarization appeared after the scattering which is consistent with ellipticity measurements upon
Faraday effect [34–36].

1Concerning magnetic moments the expressions “in-plane” and “out-of-plane” are meant with respect to the sample
surface.

2The vector P is unity for completely polarized light and zero for complete unpolarized light
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2.2.2 Circular polarization

Circular polarized light is composed by two orthogonal and phase-shifted waves of linear polarization and
represented by the second Stokes parameter P2 of the polarization vector. As for linear polarization
some special cases are considered.

Specular scattering, out-of-plane magnetization - For specular scattering (θ = θ′) of circular
polarized photons from magnetic domains of any direction of magnetization the polarization is not
changed,

P = (0,±1, 0) → P ′ = (0,±1, 0),

which is a result of eqn. (D.9) and (D.18). The interaction of circular polarized photons with magnetic
moments affects only the phase velocity inside the material which is different parallel or antiparallel
orientation of the magnetization to the helicity [37]. The interference term is non-zero for specular
scattering in transmission and reflection geometry if the magnetization is parallel to Û3 as defined in
Fig. 2.1, e.g. as in a thin film with perpendicular anisotropy.

Forward scattering in transmission, in-plane magnetization - In transmission experiments
the interference term vanishes for in-plane magnetization (m̂ = m1Û1 + m1Û2), even no magnetic
scattering is observed and the cross-section reduces to pure charge scattering:

dσ

dΩ
∝ |ρ(Q)|2

, what is consistent with angle dependent XMCD measurements [9, 38].

Small angle scattering, out-of-plane magnetization - Of course, forward scattering is just
a very special case. Considering a diffuse scattering angle θ′ 6= θ changes the process immensely.
For perpendicular (out-of-plane) magnetization (m(Q) ∝ Û3) and transmission geometry the final
polarization becomes with P = (0, 1, 0) (initial right circular polarization),

P ′ =
(

0,
2 cos(θ′)

1 + cos2(θ′)
,
1− cos2(θ′)
1 + cos2(θ′)

)
setting eqn. (D.18) into eqn. (D.9). The scattered waves are elliptically polarized with a linear fraction
P ′

3 that increases with increasing scattering angle θ′ (cp. Fig. 2.2).
The final polarization would be completly linear polarized for a scattering angle of θ′ = 90◦. Of

special interest is the small angle scattering cross-section,

dσ

dΩ
∝ 1

2
(
1 + cos2(θ′)

) [
|ρ(Q)|2

∣∣∣F (0)
∣∣∣2 + 4π2M2(Q)

∣∣∣F (1)
∣∣∣2

− 4πρ(Q)M(Q)
(
<
{
F (0)

}
<
{
F (1)

}
+ =

{
F (0)

}
=
{
F (1)

})]
,

with ρ(Q) and M(Q) being the structur factors of charge density and magnetic moments, respectively.
Again, pure charge and magnetic scattering are observable and additionally an interference term pro-
portional to the product ρ(Q)M(Q) contributes to the intensity. An interesting case is present if the
charge term depends only on the real part of the resonance strength F (0) as is true for a real-valued
object like an aperture. Then the interference term is only proportional to the real part <

{
F (1)

}
of the

magnetic resonance strength F (1) = F 1
+1 −F 1

−1 which itself is proportional to the dispersion (real part)
of the magneto-optical constant [10,34].

2.3 Energy dependence of resonant magnetic scattering

The energy dependence of the resonant magnetic scattering amplitude is represented in the energy
dependence of the resonance strengths F (0,1). In this section it is shown how the complex atomic
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Figure 2.2: Final polarization parameters P ′
2 (dotted line) and P ′

3 (solid line) as function of the scattering
angle θ′ for perpendicular magnetic anisotropy and transmission geometry.

resonance strengths are related to the optical constants that are experimentally accessable [34, 35] and
reveal the energy dependence of the scattering amplitude. As linear polarized light may be considered
as an interference of two circular polarized waves with opposite helicity the following calculations are
done assuming circular polarized waves as a basis. The content follows the presentation in Lovesey:
X-Ray Scattering and Absorption by Magnetic Materials [10]).

2.3.1 Optical constants, forward scattering and dichroism

On one hand, the interaction of electromagnetic waves and matter is described macroscopically by the
dielectric function with a complex index of refraction n,

n = 1− δ + iβ, (2.7)

where δ is the dispersive index and β represents the absorption index. A magnetic material has different
refractive indices for left (−) and right (+) circular polarized light,

n± = n±∆n, (2.8)

where ∆n = −∆δ + i∆β. On the other hand, an atomic description of the dispersive and absorptive
processes is given by the forward scattering amplitude of circular polarized waves f(0) (q̂ = q̂′; êν = ê′ν),
where ν is the relative orientation of the photons helicity and the magnetic axis3. Forward scattering is
characterized by maintaining the direction of the wavevector (q̂ = q̂′) and the state of the polarization
(êν = ê′ν). The resonant forward scattering amplitude is given by [10],

f(0) (q̂ = q̂′; êν = ê′ν) = −
[
reZ +

(
3
4q

){
[F 1

−1 + F 1
+1]− ν cosφ[F 1

−1 − F 1
+1]
}]
, (2.9)

where re is the classical electron radius, Z the atomic number and φ the angle between the initial
wavevector q̂ and the magnetic axis of the sample. The real and imaginary parts of the refractive index
n are related to the real and imaginary parts of the resonant forward scattering amplitude by [10],

<{n} = 1 +
(

2πn0

q2

)
<
{
f(0) (q̂ = q̂′; ê = ê′)

}
(2.10)

and
3ν = +/ − 1 for parallel or antiparallel orientation.
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={n} =
(

2πn0

q2

)
=
{
f(0) (q̂ = q̂′; ê = ê′)

}
. (2.11)

These relations link the macroscopic refractive indices and the atomic scattering amplitude4. Exploit-
ing magneto-optical effects like Faraday rotation of linear polarized light and measurements of the
ellipticity allows for calculating the atomic scattering factors due to the eqn. (2.11) and eqn. (2.11).
The rotation and the ellipticity of initially linear polarized light interacting with magnetic material are
caused by a difference in absorption and phase velocity for left- and right-circular polarized photons
(the two partial waves of linear photons). Therefore, the difference in refractive indices are calculated
next. For n+ − n− ∝ ∆n = −∆δ + i∆β one gets [10],

∆δ ∝ cosφ <
[
F 1
−1 − F 1

+1

]
and ∆β ∝ − cosφ =

[
F 1
−1 − F 1

+1

]
. (2.12)

∆δ can be measured by polarization analysis experiments because it is proportional to the Faraday
rotation angle. ∆β can be obtained, e.g. in the soft x-rays regime, by XMCD measurements [10,34,35].
The atomic scattering amplitude can be expressed in charge and magnetic terms each complex-valued,

f = (f ′c + if ′′c )± (f ′m + if ′′m). (2.13)

Hence, from the measurements of the Faraday rotation and/or XMCD signal the scattering factors
can be calculated using above relations (eqn. (2.12)) [34,35]. For the Co L3 absorption edge the factors
are plotted in Fig. 2.3 from results in Ref. [14].

In the experiments presented here the scattering intensity can be measured as function of energy.
No polarization analysis is done and XMCD signals cannot be measured because the dichroism sig-
nal is cancelled out by oppositely magnetized domains. XMCD could be measured by saturating the
magnetic domains and reversing the helicity, but saturation destroys the initial domain arrangement.
Consequently, only the small angle scattering (SAS) signal and the transmission intensity are recorded
(see § 2.5.2.1). The scattering spectrum can by modulated by knowing the atomic scattering factors
(Fig. 2.3) and using the following relation for the scattering cross-section σs [39],

σs ∝ (f ′)2 + (f ′′)2. (2.14)

The discussion of the energy dependence is important concerning the strong variation of the optical
indices and, consequently, the atomic scattering amplitude, by only small variation of the energy in
proximity of an absorption edge. The question arises whether the coherent scattering pattern is affected
by a small energy variation and if so, how can this be understood. This question is subject to section
§ 2.5.2.

2.4 Small Angle X-ray Scattering (SAXS)

So far the scattering process was discussed on an atomic level. The experiments performed and presented
in this work were done with soft X-rays of 1.6 nm to 3.1 nm wavelength. Atomic distances or electron
densities of Å-range cannot be probed with these wavelengths. Nevertheless, the atomic processes are
the same so that the atomic scattering amplitude is valid to describe the scattering process but it is no
longer applicable to describe scattering from crystal lattice or charge densities.

Magnetic length scales range from interatomic lengths to domain sizes of many microns. The nm-scale
of soft X-rays is advantageous to probe magnetic nm-domain periods. The scattering occurs from the
lateral variation of the direction of the magnetization m. Scattering maxima are obtained for angles
where the momentum transfer Q = q′ − q fits to a distance of two differently magnetized domains or
their walls [13,14,40,41].

4The absorptive (imaginary) part of the refractive index is related to the imaginary forward scattering by the optical
theorem [10].
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Figure 2.3: (a) The real (solid line) and imaginary (dotted line) term of the charge scattering factors
of Co at the L3 and L2 absorption edge. (b) The real (solid line) and imaginary (dotted line) part
of the magnetic term of Co measured by [14]. The imaginary magnetic factor corresponds exactly to
the difference spectrum of a saturated magnetic sample measured with right and left circular polarized
radiation.
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For the nm-scale of magnetic domains the magnetic structure factor M(q) does not describe the
lattice site of the magnetic moments but the spatial distribution of the magnetic domains, i.e. many
atomic moments of the same average direction of magnetic anisotropy. Hence, the small angle scattering
shown here has its origin in the lateral distribution of the magnetic domains.

2.5 Results - Polarization and Energy Dependence in coherent
magnetic scattering

The theoretical considerations of the former section are next investigated experimentally. First, the
dependence of the coherent magnetic scattering on the state of polarization is presented followed by a
discussion of the energy dependence of the scattering pattern across the Co L3 edge.

2.5.1 Variation of Polarization

As the electron density distribution can not be probed on a crystal lattice scale by soft x-rays the charge
scattering discussed in former sections is usually not involved in the scattering experiments presented
that are mainly performed in transmission geometry. Nevertheless, the discussion of charge-magnetic
interference scattering is still valuable. The diffraction from apertures mostly used to collimate the
illumination of the sample to an area that allows for coherent illumination can be described by the same
polarization dependence as pure charge scattering: (ê′ · ê). Hence, in this section the interference of
diffracting objects and magnetic small angle scattering is investigated.

Coherent resonant magnetic scattering from CoPt multilayers (cp. § B) was measured in transmission
geometry using soft X-rays of linear and circular polarization (see also [42]). Ferromagnetic CoPt
multilayers reveal an anisotropy which is perpendicular to the layers [14,43]. We measured a multilayer
sample in transmission geometry, i.e. the angle of incidence is θ = 90◦ and the magnetization vector m̂
of the sample is either parallel or antiparallel to the incident wavevector. The sample was sputtered on a
SiNx-membrane of 160 nm thickness to enable transmission. The 50 multilayers of 3 nm Co and 0.7 nm
Pt were grown on a 20 nm Pt substrate and capped with 2 nm Pt [44]. A lateral domain structure
develops in the multilayer with adjacent domains having opposite magnetization. Fig. 2.4(c) shows the
worm-like domain structure. Dark and bright domains indicate the opposite direction of magnetization
perpendicular to the multilayer film. The average in-plane correlation length of the domain structure is
approximately 196 nm as measured by a maximum of the power spectral density5 (PSD) at q = 32µm−1

in Fig. 2.5. This domain structure gives rise to small angle x-ray scattering (SAXS) [14,45].

380µm in front of the CoPt-film a pinhole of a 2.5 µ-diameter (see Fig. 2.4(b) bottom) was mounted
in order to illuminate the sample with a transversely coherent x-ray beam (cp. § 1). The transverse
coherence area at the sample position is ξv ≈ 612µm × ξh ≈ 5.6µm for this setup, where ξv and ξh
are the vertical and horizontal coherence lengths, respectively. The longitudinal coherence length is
ξl = 6.4µm assuring the capability of interference even for large scattering angles6.

Fig. 2.6 shows the coherent small angle scattering patterns obtained for incident radiation of (a)
linear polarization, (b) right circular polarization and (c) left circular polarization. The experiments
were performed with a x-ray wavelength of 1.59 nm (778 eV ), corresponding to resonant scattering at
the CoL3 edge (see also § 2.5.2). As seen in Fig. 2.6(a), the scattering pattern consists of a Fraunhofer
pattern due to diffraction from the pinhole and a SAXS ring of intensity centered at q = 0. The radial
distribution of the SAXS has its maximum at q = 32 µm−1 which corresponds well to the magnetic
PSD in Fig. 2.5.

The coherent illumination of the CoPt domains causes a speckle intensity structure which is charac-
terized by destructive (low intensity) and constructive (high intensity) interference of the waves scattered

5The PSD is a common measure for the occurancy of a certain frequency in a signal pattern. It is obtained by
calculating the square of the Fourier transform of the corresponding pattern (e.g. see [14])

6All values are calculated from beamline parameters using eqn. (1.1) and eqn. (1.4)
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Figure 2.4: (a) Scheme of the experimental setup for coherent resonant magnetic small angle scattering.
The spatial coherence filter is a set of circular pinholes (cp. §1.1). The sample is measured in transmis-
sion geometry and the scattered radiation is detected by a two-dimensional position sensitive detector at
L = 897 mm downstream of the object. (b) Electron Microscopy image of a 7.5 µm (top) and 2.5 µm
(bottom) circular aperture. The holes were drilled into a free-standing Au-film of 2 µm thickness by fo-
cussed ion beam (FIB) of 30 keV Ga+ ions [46]. (c) Soft X-ray transmission microscope (TXM) image
of CoPt multilayers taken at the ALS XM-1 microscope [21]. The image covers a 5 µm×5 µm region of
the magnetic sample. The average period of two domains is about 196 nm causing a scattering intensity
maximum at q = 32 µm−1.
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Figure 2.5: (a) Atomic Force Microscope (AFM) image of the surface of the CoPt sample. The gray-
scale range is from 0 nm to 8.3 nm (Courtesy of O. Hellwig). (b) Transmission X-ray microscope (TXM)
of the CoPt multilayer (Courtesy of G. Denbeaux [21]). (c) Power spectral density (PSD) plots of the
magnetic domains (gray triangles) obtained from TXM image and of the surface topography calculated
from the AFM-image (black circles). The maximum of the PSD corresponds to the average period of the
magnetic domain width. It is relatively broad (q ≈ 20 µm−1 to 45 µm−1) indicating that the periodicity
is not sharp in one transverse direction (like it would be for stripe domains). At 290 µm−1 the PSD of
the surface has a distinct peak corresponding to 22 nm correlation length of the granular surface.
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Figure 2.6: Coherent small angle scattering patterns recorded with soft X-rays of 1.59 nm wavelength
corresponding to the Co L3 resonance. The intensity is plotted in logarithmic gray-scale. The Fraunhofer
rings are caused by diffraction from the 2.5µm diameter pinhole. The coherent illumination of the CoPt
domains cause the speckled intensity distribution. (a) shows the pattern for incident radiation of linear
polarization. (b) and (c) demonstrate the influence of right and left circular polarized light on the
scattering pattern, respectively.
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from the magnetic domain borders. The visibility of the speckle pattern is already determined in § 1.2.1
as an example and here just its value is reminded to be V = 0.9 indicating a high degree of coherence.

The domains contribute differently to the magnetic scattering amplitude fm (second term of eqn.
(2.6)) depending on their direction of the magnetization relative to the wavevectors q and q′. This
causes a different cross-section and hence a scattering contrast between the two types of domains. The
scattering contrast is energy-dependent (see § 2.5.2). A contribution of the charge scattering fc cannot
be detected with the above setup as described above. The surface rms-roughness of the sample is
less than 5 nm with a in-plane correlation lengths smaller than 22 nm as observed by atomic force
microscopy (AFM), see Fig. 2.5(a). This typical surface structure size gives rise to a peak at 290 µm−1

and is beyond the angular detection capabilities of the setup. A frequency analysis (PSD) of the surface
roughness obtained by atomic force microscopy (AFM, see Fig. 2.5(a)) is shown in Fig. 2.5(c) (black
circles). This result corresponds well to the result presented in [14]. The PSD of the surface is calculated
from the AFM data and does not show any distinct intensity peaks. Therefore, the surface scattering
may be neglected in further consideration.

A clearly detectable contribution arises from the diffraction pattern of the collimating pinhole. The
state of polarization is not changed upon diffraction from the aperture. In contrast, linearly polarized
radiation is changed by magnetic scattering from σ → π′ and π → σ′. (π → π′)-scattering is forbidden
for this geometry because of q̂′ × q̂ ⊥ m̂. Consequently when linearly polarized radiation is incident on
the pinhole and the sample, no interference between the pinhole diffraction and the magnetic scattering
exists due to their orthogonal polarization states. The superposition (in contrast to interference) of the
pinhole term and the magnetic term can be observed in Fig. 2.6(a).

The exact same sample region is also illuminated with coherent radiation of the same energy but
with circular polarization (P2 = 0.85 of the helical undulator UE56/1 at BESSY). Now the state of
polarization remains the same upon diffraction from the pinhole as well as upon scattering from the
magnetic domains (Spin-flip, i.e. left → right or vice versa, is forbidden). Both the diffracted and the
magnetically scattered partial waves can interfere this time. Fig. 2.6(b) and (c) show the interference
pattern for right circular and left circular polarization, respectively. The diffraction of the pinhole and
the magnetic scattering both cover a broad q-space range around q = 20µm where the interference
becomes very well observable. In contrast to the “linear” case the Fraunhofer rings are disturbed.
Furthermore, the magnetic speckle ring shows circular ripples caused by destructive and constructive
interference.

For left and right circular radiation the detected intensity pattern is different. The difference is plotted
in Fig. 2.7(b). The existance of a difference is not obvious at first glance when considering Babinet’s
theorem. Upon changing the helicity of the incident radiation the magnetic term of eqn. (2.6) flips its
sign, i.e. the absorption cross-section of the magnetic domains causes the bright domains in Fig. 2.4(c) to
become dark and vice versa. According to Babinet this does not change the intensity of the magnetic
scattering contribution (although the phase would do so). However, the assumptions of Babinet’s
theorem, namely that the contrast of the diffracting object is inverted everywhere, are not fulfilled:
the pinhole aperture does not change its contrast upon helicity reversal. The diffraction of the pinhole
interferes with the magnetic scattering and, hence, is responsible for the observed effect upon helicity
reversal.

If the intensity for scattering of left and right circular polarized radiation are added the summed
speckle pattern becomes identical to the intensity pattern recorded with linear polarization (Fig. 2.7(a)).
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Figure 2.7: (a) Sum of intensities from scattering of right (Fig. 2.6(b)) and left (Fig. 2.6 (c)) circu-
lar polarized light. (b) Difference of both circular polarization. The pure pinhole-magnetic scattering
interference remains.
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Now, all pinhole-magnetic domain interference vanishes:

Ir + Il = |Fq {fc + fm}|2 + |Fq {fc − fm}|2

∝ |Fq {fc}|2 + |Fq {fm}|2 + Fq {fcfm} − Fq {fcfm}
= |Fq {fc}|2 + |Fq {fm}|2

= Ilin,

where Fq denotes the Fourier transform of the bracket expression into reciprocal space. This is an
illustration of the fact that linear polarization can be thought of as the superposition of right and left
circular polarization and that orthogonal polarization channels cannot interfere.

The difference image Ir − Il in Fig. 2.7(b) shows the pinhole diffraction - magnetic scattering inter-
ference term, only

Ir − Il = |Fq {fc}|2 + |Fq {fm}|2 − |Fq {fc}|2 − |Fq {fm}|2 + 2Fq {fcfm}+ 2Fq {fcfm}
∝ Fq {fcfm} .

The possibility to switch on and off the interference of the diffraction pattern from the circular
aperture with the magnetic small angle scattering is important to be taken into account. The aim of the
experiments is to show the possibility to reconstruct the magnetic real-space structure from the coherent
scattering pattern (cp. § 4). It turns out that it is necessary for the reconstruction to be successful to
have interference of the pinhole diffraction pattern and the magnetic scattering. I.e. it is required that
the experiments for reconstruction of magnetic domains are performed with circular polarized radiation.

2.5.2 Variation of Energy

After studying the polarization effects on the coherent scattering from magnetic material the energy
dependence of the scattering cross-section is investigated next. The energy of the incident radiation
is considered in the resonance strengths F which are determined by atomic transition matrix elements
[4, 10, 32]. In section § 2.3 the forward scattering cross-section is shown to be related to the complex
resonance strengths, hence, revealing their energy-dependence. The remainder of the section is organized
as follows:

• Small angle scattering (SAS) from magnetic domains measured in transmission is presented con-
cerning

– the transmission and scattering spectra of a CoPt multilayer that reveal strong variation of
the small angle scattering intensity across the Co L3 edge.

– the evidence of magnetic scattering at the Co L3 resonance.

• In § 2.5.2.2 the energy-dependence of the speckle intensity of a CoPt multilayer is presented for

– linear polarized soft x-ray photons.

– circular polarized soft x-ray photons.

– a magnetic CoFe sample measured in reflection geometry.

• Experimental correlation values as function of energy are presented for

– the coincidence of both pinhole diffraction and magnetic scattering measured with linear and
circular polarization.

– both diffraction and magnetic SAS compared to pure magnetic SAS.

– charge (height) scattering and magnetic SAS in reflection geometry.

• And, finally, intensity correlations are simulated and discussed.
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2.5.2.1 Small angle scattering from magnetic domains

Transmission and SAS spectra - While the forward scattering amplitude describes the absorp-
tion spectrum and magnetic dichroism signal of the sample, the small angle scattering intensity is
proportional to the scattering cross-section σs (see § 2.3.1 and eqn. (2.14)). Again, we performed mea-
surements on the CoPt multilayer sample with perpendicular magnetic anisotropy (§ B and [14, 43])
at the UE56/1 SGM beamline BESSY II. Forward scattering in transmission is acquired by accepting
only the specular intensity on the micro-channel plate detector. Alternatively, we can accept only the
diffuse scattering from the magnetic structure allowing us to measure the scattering cross-section σs.
The monochromator is used with 800 lines/mm grating defining the energy resolution together with
the entrance and exit slit dispersion (see Fig. C.2). The transmission spectra of the forward scattering
(square symbols) and the diffuse magnetic scattering (circle symbols) of linear polarized photons are
plotted in Fig 2.8. The transmission spectrum is recorded with ∆E = 0.18 eV (entrance slit: 15 µm,
exit slit: 15 µm) and the scattering spectrum is measured with ∆E = 0.4 eV (slits: 30 µm/50 µm.
Due to the thickness of 185 nm of the CoPt multiplayer plus the SiN -membrane and the Pt buffer
and cap layer the absorption is strong and transmission is small. The diffuse scattering cross-section σs
increases with energy approaching the absorption edge. It should be maximum at the CoL3 resonance.
But the low transmission through the sample diminishes the scattering signal, i.e. actually the product
of the scattering cross-section and the transmission σs · T is measured. The effect can be observed by
comparing Fig. 2.8(a) and (b), where (b) shows the spectrum for a thin sample of just 50 layers of 4 nm
Co and 7 nm Pt. For this sample absorption is less strong and the maximum of the diffuse magnetic
scattering intensity is centered at the resonance.

The experiments presented in the following have been performed on the thick sample (a) in order to
to increase magnetic scattering due to the high concentration of Co.

Evidence of magnetic SAS - The coherent scattering from the ferromagnetic CoPt multilayer is
already subject to § 2.5.1 where the influence of the polarization of the incident soft X-rays is investi-
gated. The CoPt sample is very advantageous because the magnetic and the charge scattering are well
separated in space. Further, the magnetic scattering is very concentrated in a circular area with an
average in-plane momentum transfer of q = 32 µm−1 (see Figs. 2.5 and 2.6). This facilitates the investi-
gation of the magnetic scattering alone. To prove the speckle structure to be purely magnetic in origin,
Fig. 2.9 shows the scattering from the same CoPt-multilayer and collimating pinhole setup recorded
with 758.0 eV and 778.0 eV of incident radiation, respectively. Image (a) contains only the diffraction
Fraunhofer rings from the 2.5 µm diameter pinhole. The magnetic scattering is not existing as the
oppositely magnetized domains do not reveal a magnetic contrast. Hence, there is no magnetic struc-
ture and small angle scattering cannot occur from the domains. If we increase the soft X-ray photon
energy to 778.0 eV the difference in magnetic scattering factors for the two types of domains becomes
dominant and photon scattering from the magnetic domains can be observed (Fig. 2.9(b)). This agrees
well with the measured scattering intensity in Fig. 2.8(a) and proves that the circular scattering pattern
originates from magnetic structures.

As seen in this section the scattering amplitude is attenuated strongly by the limited transmission
through the sample. Nevertheless, low intensity passes through the sample even at the resonance for
the thick sample but to decrease acquisition time and to improve signal-to-noise ratio it is advantageous
to decrease the energy of the incident photons a few electron volts towards the maximum intensity of
the transmitted scattering signal. Doing so might raise the question whether the “detuning” somehow
affects the coherent scattering pattern.

Near the XMCD resonance of Co L3 the contrast between oppositely magnetized domains is maximum.
With decreasing energy (off the resonance) the contrast reduces and a domain image taken would
appear increasingly faint. Evidently, the individual domain arrangement is not affected and small angle
scattering still occurs from the same scattering centers as at the resonance, just the intensity is reduced.
This scenery is well observed in the former paragraph by measuring the overall scattering intensity at



36 CHAPTER 2. RESONANT COHERENT SCATTERING FROM MAGNETIC MATERIALS

Figure 2.8: (a) Transmission (squares) and diffuse scattering (circles) across the CoL3 resonance of the
thick CoPt sample. The inset shows the region of interest (black rectangle) where the intensity of the
scattering was measured during the energy-scan. The detectable scattering intensity is diminished by the
absorption of the radiation at the resonance. (b) Diffuse spectra of a thin multilayer sample. For the
thin sample the transmission is higher than for (a), hence, the scattered intensity peaks at resonance.
In both cases the polarization is linear.
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Figure 2.9: (a) Scattering of 758.0 eV photons from the CoPt magnetic domain sample. No mag-
netic scattering is observable. (b) The same magnetic structure reveals magnetic SAS if the energy is
tuned close to the L3 absorption edge of Co (778.0 eV ). For both plots the polarization of the incident
synchrotron radiation is linear and the intensities are plotted in logarithmic scale.

momentum transfer that corresponds to the average domain period (cp. Fig. 2.8). Consequently, one
should not expect a change in the scattering pattern from absorption contrast alone.

In addition to the amplitude (absorption) contrast the phase of the scattered wave is influenced by the
domains. It is less obvious to state whether the phase variation by energy variation affects the speckle
pattern than to make a prediction about the influence of the absorption contrast. Therefore, the energy
dependence of the scattering pattern is measured and the results are presented next.

2.5.2.2 Diffuse Scattering across the CoL3 absorption edge

A compelling question is whether the pattern of the speckle distribution changes across the absorption
edge due to the strong variation of the scattering factors. To get an answer the speckle pattern of
the CoPt worm-domains is measured by varying the photon energy across the L3 resonance of the Co
species.

Linear polarization - A section of each scattering pattern is presented in Fig. 2.10 with an indication
of the corresponding photon energy of linear polarized soft X-rays. Far below the Co resonance only
the diffraction pattern of the collimating pinhole is visible consistent with the result in Fig. 2.9. For
increasing energy the magnetic scattering pattern becomes predominate revealing the magnetic speckle
structure. The overall pattern of the individual speckle does not change across the absorption edge.
Furthermore, although the transmission is low at and slightly above the resonance (images (7) and (8))
the magnetic speckle pattern is still visible because the magnetic scattering factor do not vanish for
these energies. Note that the overall intensity is very similar for point (2) and point (7) but the scatter-
ing pattern is different because the magnetic scattering distribution is different for the corresponding
energies.

Circular polarization - The same set of images is taken with right circular polarized soft X-rays of
the same energies as in case of linear polarization (except the image taken above the XMCD maximum
for linear photons lacks for the circular polarization because the intensity was too low). The result is
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Figure 2.10: Subsets of the two-dimensional speckle pattern acquired across the CoL3 absorption edge for
linear polarization. The q-range is horizontally from q = 17.9 µm−1 to 29.2 µm−1 and vertically from
q = 17.6 µm− 1 to 26.8 µm−1. The location of the subset in the complete Speckle pattern is depicted in
the inset of the graph below. The curve shows the total scattering cross-section as function of energy to
indicate the corresponding photon energy for the above speckle plots (black squares). The total scattering
intensity is attenuated upon layer transmission near resonance.
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shown in Fig. 2.11. The location of the subsets is the same as in Fig. 2.10. Again the pinhole diffraction
pattern dominates for low energies and, again, the magnetic scattering pattern does not change across
the L3 edge.

Magnetic CoFe in reflection geometry - Additionally, we measured the energy-dependent scat-
tering from a CoFe layer in reflection. The CoFe layer is sputtered on a IrMn layer and pinned to
the anti ferromagnetic IrMn layer of unidirectional anisotropy. The ferromagnetic CoFe forms domains
if not exposed to an external magnetic field that exceeds the coercitivity. Although this system is of
great interest concerning the investigation of exchange-bias effects and its applications [47], here this
sample is just used to demonstrate the energy dependence of speckle patterns obtained from reflec-
tion experiments. Reflection scattering in grazing incidence is very sensitive to the surface topogra-
phy [25–27, 29, 45]. Hence, the reflection experiments allow for enhancing the scattering from surface
roughness relative to the magnetic scattering. As the non-magnetic surface roughness scattering inter-
feres with the magnetic scattering the energy variation causes the speckle pattern to change across the
Co resonance. Again subsets of the speckle pattern are plotted for various energies of the incident radi-
ation, Fig. 2.12. The intensity pattern varies noticeably across the resonance. An explanation may be:
the surface scattering does not vary much with energy variation. In contrast, the intensity contribution
of the magnetic scattering to the total interference pattern varies across the absorption edge. I.e. for
different energies the distinct contributions of surface and magnetic SAS vary and this might cause the
change in the resulting speckle pattern. The quantitative investigation of this phenomenon is subject
to section § 2.5.2.4.

The observations made so far are:

• In the transmission experiments shown the pattern of magnetic small angle scattering do not
change with energy variation across the Co L3 absorption resonance. When the magnetic contrast
decreases for energies below the absorption edge the pinhole diffraction pattern becomes dominant.
As long as the magnetic scattering dominates the speckle pattern no change of the pattern is
observable by energy variation.

• In the reflection experiment presented the surface roughness scattering together with the magnetic
scattering contributes to the total speckle pattern. The pattern changes with energy variation.

These observation gives reason to the following statement. If the coherent scattering is composed of
two or more contributions the resulting speckle pattern changes if at least one of them is varied. This
is also true if the lateral distribution that causes the small angle scattering remains unchanged.

2.5.2.3 Correlation of Magnetic Scattering Patterns

To evaluate the former observations quantitatively a degree of correlation is defined. The similarity
of two two-dimensional patterns measured with an energy E and E0 of the incident radiation can be
calculated with [16,48],

γexp(E,E0) =

∑
h,k(Mhk − M̄hk)(Nhk − N̄hk)[∑

h,k(Mhk − M̄hk)2 ·
∑
h,k(Nhk − N̄hk)2

]1/2 , (2.15)

where Mhk and Nhk are the scattering data matrices to be compared with the corresponding mean
values M̄hk and N̄hk. For two identical images the correlation is unity, γexp = 1. Uncorrelated patterns
have a zero correlation value (γexp = 0), and anticorrelation is given if γexp = −1. The correlation
values are calculated relative to a pattern at fixed energy E0 (reference pattern). The reference pattern
is acquired at the transmission minimum which is identical to the XMCD-maximum (E0 = 779.2 eV )
where the domain contrast should be maximized (cp. Fig. 2.8(a)).
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Figure 2.11: Subsets of the two-dimensional speckle pattern acquired across the CoL3 absorption edge
for circular polarized soft X-rays. The q-range is the same as in Fig. 2.10. The graph below is a plot of
the scattering intensity and the corresponding energies for the subsets are indicates with black squares.
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Figure 2.12: (a) Two-dimensional scattering pattern from the CoFe surface measured in reflection
geometry with θ0 = 6◦ grazing incidence. The black square indicates the region of interest for which
the pattern analysis has been performed. (b) Subsets of pattern cut from the scattering image (black
square) for different energies of incident photons of circular polarization. The energy variies across the
Co L3 edge. (c) Co L3 and L2 edge measured in reflection with grazing incidence of θ0 = 6◦. The
corresponding energies of the subsets shown in (b) are indicated by black squares in the reflectivity scan.
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Pinhole diffraction and magnetic SAS, linear and circular polarization - In Fig. 2.13 the
correlation values are plotted for two different regions of interest of the speckle pattern (marked areas).
Region A is chosen around a momentum transfer of q = 25 µm−1 where the pinhole diffraction rings and
the magnetic scattering have comparable intensities. In the center of region B the momentum transfer
is q = 36 µm−1. In this region the magnetic scattering dominates because the Fraunhofer diffraction
of the aperture is approximately 2 orders of magnitude lower in intensity (cp. Fig. 2.14).

The experiments were carried out with linear and circular polarized radiation. Following observations
can be made:

The correlation is always higher for linear polarized photons than for circular polarized photons,
i.e. the similarity of the speckle pattern is higher for a superposition of the pinhole diffraction and the
magnetic scattering than for interference of both (cp. § 2.2).

Pattern taken with photon energies within ±2 eV show good similarity as it is confirmed by
high correlation values of γepx = 0.8 for linear polarization and γexp = 0.6 for circular polarization.

In region B the pattern are more similar near resonance energy than in region A, i.e. the
correlation values vary less for region B than for region A. This can be understood if we considered that
in region A the impact of the pinhole diffraction on the magnetic scattering is higher than in region B.

The decay of the correlation values with decreasing energies is stronger for region B than for
region A, i.e. the pattern vary stronger in region B than in region A if the magnetic scattering becomes
less intense. This is easy to understand if we keep in mind that the magnetic scattering intensity
decreases for low energies towards zero and only the pinhole diffraction remains. In region A the pinhole
diffraction contributes strongly, due to comparable intensities of diffraction and magnetic scattering at
resonance (see Fig. 2.14).

Both diffraction and magnetic SAS versus pure magnetic SAS - Now, the question arises
whether for pure magnetic scattering the pattern is constant with energy variation. We used a sample-
pinhole arrangement which allows to block the pinhole diffraction and to accept only the pure magnetic
scattering. For that purpose the sample-pinhole setup is rotated around its vertical axis until the edge
of the Si-wafer facet blocks the pinhole diffraction due to the distance of 380 µm from the pinhole to
the facet (cp. Fig. 2.15(b)). A plot of the resulting speckle pattern is shown in Fig. 2.15(a). Plot (c)
of the same figure shows the corresponding correlation values. Obviously, the pattern does not change
for pure magnetic scattering even 5.7 eV below the XMCD-maximum, hence, the correlation values are
constant and measure around γexp(∆E) = 0.9.

Reflection geometry, charge (height) scattering and magnetic SAS - In contradiction to the
observation of weak pattern variation for the transmission experiment with low impact of the pinhole
diffraction and the surface roughness, experiments in reflection geometry show strong pattern variation
as already shown in § 2.5.2.2. The variation is also confirmed in low correlations to the reference pattern
recorded at the Co L3 resonance, Fig. 2.16. The roughness scattering from the surface of the CoFe
film influences the magnetic scattering. The coincidence of the two contributions causes the scattering
pattern to vary strongly with energy variation.

2.5.2.4 Modelling of the Cross-Correlation

A lot of observations have been presented in the previous section that need further explanation. There-
fore, it is desirable to know the impact of each contribution to the correlation function γ: the pinhole
diffraction, the surface roughness scattering and the magnetic scattering. The basic idea of the following
derivation is to get an analytical correlation factor that contains explicitly these contributions, in order
to be able to discuss the influence of the different contributions. Most of the derivation is according to
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Figure 2.13: (a) Image plot of the two-dimensional speckle pattern with marked region of interest. A
is a region around q = 25 µm−1 of comparable intensities of the pinhole diffraction and the magnetic
scattering. In region B around q = 36 µm−1 the magnetic scattering dominates the overall intensity by
an order of magnitude (cp. Fig. 2.14). (b) Correlation values indicating the degree of pattern similarity
for linear polarized (squares) and circular polarized (circles) radiation in region A and B, respectively.
The pattern of reference is recorded at the energy of the Co L3 XMCD-maximum.
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Figure 2.14: PSD of the pinhole and magnetic domains obtained from experiment (symbols) at the
scattering maximum, 778.0 eV . Calculated PSD of a 2.5 µmdiameter pinhole (black line). The absolute
intensities of the simulated pinhole diffraction are fitted by adjusting the relative intensity of the second
minor maximum of the Fraunhofer ring to the measured intensity of that ring (cp. § A). Hence, the
intensity of the pinhole diffraction can be compared to the measured scattering.

the presentation of an analytical correlation factor in Ref. [16]. The derivation is based on an intensity
correlation function. The scattering intensity can be expressed in form of Fourier transformed scatter-
ing factors for roughness and magnetic scattering. The Fourier expressions can be separated into the
different terms for each contribution such that the mutual influence on the correlation can be discussed.

We start with the second-order intensity correlation function introduced in § 1.2.2,

γ(∆E=E−E0)(q) =
〈IE0(q)IE(q)〉

[〈IE0(q)2〉〈IE(q)2〉]1/2
(2.16)

and substitute [16]

〈IE0(q)IE(q〉 =
∣∣Γ(E0,E)(q)

∣∣2 (2.17)
and

〈IE(q)2〉 =
∣∣Γ(E,E)(q)

∣∣2 (2.18)
where

Γ(E0,E)(q) = 〈AE0(q)A∗
E(q)〉 (2.19)

and
Γ(E,E)(q) = 〈AE(q)AE(q)〉 = |〈AE(q)〉|2 . (2.20)

The amplitude correlation function Γ(E0,E) is expressed by the total scattering amplitude

AE(q) =
∫
drp(r)eiqzh(r)f(r)eiqr, (2.21)

where p(r) is the aperture function, h(r) is the surface height function with perpendicular momentum
transfer qz, and

f(r) = fc + fm = c(r)eiφ(r)[1 +m(r)] (2.22)
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Figure 2.15: (a) Image plot of the two-dimensional speckle pattern with screened Fraunhofer diffrac-
tion rings on the left. The squares indicate the regions of interest for the calculation of the correlation
values. (b) Scheme of the sample setup. The collimating pinhole of 2.5 µm in diameter is set 380 µm in
front of the sample membrane. By rotating the hole setup the diffraction rings of the pinhole are blocked
by the facet. (c) Graph of the correlation values for the pure magnetic scattering region (squares) and
the region of superposition of the diffraction pattern (circles). The radiation is linear polarized.
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Figure 2.16: (a) Two-dimensional speckle pattern of the CoFe surface measured in reflection geometry.
The photon energy is tuned the Co L3 resonance at 779.2 eV and polarization is set to circular state.
The correlation values are calculated from subregion marked in the image (black box). (b) Corresponding
correlation values as function of ∆E referring to the pattern recorded at the Co L3 resonance. The
correlation is low confirming the above observation of non-similar patterns across the Co resonance.

is the resonant magnetic scattering amplitude. Here c(r) and eiφ(r) are the average magnitude and
the phase of the magnetic scattering amplitude fres, respectively, with 〈φ(r)〉 = 0. The variation of
of the scattering amplitude due to the magnetic domains is described by m(r), also with zero mean,
〈m(r)〉 = 0 [16]. The average magnitude c(r) may be included into the aperture function

p(r) → pc(r)
{
c(r) r ∈ aperture
0 r /∈ aperture. (2.23)

Using eqn. (2.21) the amplitude correlation eqn. (2.19) can be written,

Γ(E0,E)(q) =
〈∫∫

dr1dr2pc(r1)pc(r2)eiqz [h(r1)−h(r2)]ei(φE0−φE)

[1 +mE0(r1)][1 +mE(r2)]eiq(r1−r2)

〉
. (2.24)

The surface roughness and the magnetic structure are considered to be spatially independent. Hence,
the ensemble average 〈〉 is taken separately for both terms. We assume that the surface roughness can
be described by Gaussian distributed height fluctuations [16,45],〈

eiqz [h(r1)−h(r2)]
〉

= e−q
2
zσ

2
h[1−ρh(R)], (2.25)

where the distance of two points in the surface is defined by R = r1 − r2. σh is the rms-roughness of
the surface and ρh(R) is the autocorrelation function of the surface height. If the surface is assumed to
be a self-affine fractal surface then the autocorrelation function can be described by [16,45],

ρh(R) = e−(|R|/ξh)2hr
, (2.26)

where ξh is the fractal cutoff length for the roughness and hr is a roughness-parameter that is defined by
the fractal dimension D = 3− hr. A finite cutoff length ξh is introduced e.g. to describe a finite size of
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the surface [45]. 0 < hr < 1 describes the texture of the surface roughness, i.e. if hr is small the surface
is very rough and for hr approaching unity the surface becomes smooth [45]. The Fourier transform
of the surface autocorrelation function Fq {ρh(R)} is equal to the power spectral density (PSD) of the
surface which can be obtained experimentally from atomic force microscopy (AFM) (see Fig. 2.5).

Since the intensity correlations are evaluated here, only
∣∣Γ(E0,E)(q)

∣∣2 is relevant and the phases
ei(φE0−φE ) are neglected for the following derivation. The correlation of the magnetic scattering intensity
may be expressed as,

〈[1 +mE0(r1)][1 +mE(r2)]〉 = 1 + 〈mE0(r1)mE(r2)〉 . (2.27)

If the magnetic domain distribution has a zero mean, 〈m(r)〉 = 0, i.e. the same total area of up and
down domains. The magnetic-magnetic correlation function can be set to,

〈mE0(r1)mE(r2)〉 = σm,E0σm,Eρm(R), (2.28)

calling ρm(R) the magnetic amplitude autocorrelation function that can be derived from the PSD of
the magnetic domain distribution by Fourier transform, ρm ∝ Fq {PSD}. σm =

√
〈m(r)2〉, is the rms

variation of the magnetic scattering amplitude. It can be expressed by the magnetic scattering factors
σm = |f ′m|

2 + |f ′′m|
2. The autocorrelation function ρm(R) is a general expression, that can be describe

any correlated magnetic domain structure. For example, a random magnetic domain distribution may
be described by a Gaussian surface with a cutoff parameter ξm [16],

ρm(R) = e−(R/ξm)2 .

Substituting eqn. (2.25) and eqn. (2.27) into eqn. (2.24) yields,

Γ(E0,E)(q) = e−q
2
zσ

2
h

∫
dR%p(R)(1 + σm,E0σm,Eρm(R))eq

2
zσ

2
hρh(R), (2.29)

where %p(R) =
∫
drp(r)p(r + R) is the aperture correlation function. Proceeding with eqn. (2.29) and

abbreviating the Fourier integral to Fq gives,

Γ(E0,E)(q) = e−q
2
zσ

2
hFq

{
%p(R)

(
eq

2
zσ

2
hρh(R) + 1− 1 + σm,E0σm,Eρm(R)eq

2
zσ

2
hρh(R)

)}
= e−q

2
zσ

2
hFq

{
%p(R) + %p(R)

(
eq

2
zσ

2
hρh(R) − 1

)
+ %p(R)σm,E0σm,Eρm(R)eq

2
zσ

2
hρh(R)

}
= e−q

2
zσ

2
hFq {%p(R)}+ Fq

{
eq

2
zσ

2
hρh(R) − 1

}
+ σm,E0σm,EFq

{
ρm(R)eq

2
zσ

2
hρh(R)

}
.(2.30)

The aperture function %p(R) is used as windowing function to set the integration limits of the second and
third term of eqn. (2.30). Finally, the amplitude correlation function can be written in short form [16],

Γ(E0,E)(q) = e−q
2
zσ

2
h
(
P (q) +R(q) +M(E,E0)(q)

)
, (2.31)

with

P (q) = Fq {%p(R)} (2.32)

R(q) = Fq
{
eq

2
zσ

2
hρh(R) − 1

}
(2.33)

M(E0,E)(q) = σm,E0σm,EFq
{
ρm(R)eq

2
zσ

2
hρh(R)

}
. (2.34)

The corresponding denominator eqn. (2.20) can be evaluated by expressing the magnetic correlation
as

〈[1 +mE(r1)][1 +mE(r2)]〉 = 1 + σ2
m,Eρm(R), (2.35)
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again with the magnetic domain distribution to be assumed of zero mean, 〈m(r)〉 = 0. Following the
same derivation as above yields,

Γ(E,E)(q) = e−q
2
zσ

2
h
(
P (q) +R(q) +M(E,E)(q)

)
, (2.36)

with

M(E,E)(q) = σ2
m,EFq

{
ρm(R)eq

2
zσ

2
hρh(R)

}
. (2.37)

Hence, we get the expression for the intensity-intensity correlation function,

γ(∆E)(q) =

(
P (q) +R(q) +M(E0,E)(q)

)2[
(P (q) +R(q) +M(E0,E0)(q))2(P (q) +R(q) +M(E,E)(q))2

]1/2 . (2.38)

The Fourier transform of the aperture correlation function Fq {%p(R)} for a circular pinhole with radius
a is [20, 22,49],

P (|q|) = P0

∣∣∣∣2J1 (|q|a)
|q|a

∣∣∣∣2 , (2.39)

where P0 is the peak intensity and J1 is the Bessel function of first kind.

2.5.2.5 Discussion of the Analytical Correlation and Comparison to Experimental Results

A first observation may be the following: eqn. (2.38) is unity if the pinhole is infinitely large (a = ∞)
and the surface is absolutely smooth (σh = 0), i.e. P (q) = R(q) = 0,

γ(∆E)(q) =

(
M(E0,E)(q)

)2[
(M(E0,E0)(q))2(M(E,E)(q))2

]1/2
=

(σm,E0σm,E)2

[(σm,E0σm,E0)2(σm,Eσm,E)2]1/2
= 1

This agrees well with the experimental result shown in Fig. 2.15 for pure magnetic scattering. Aside
from experimental uncertainties the correlation values are constant with ∆E and approximately unity.

For a q-box of comparable scattering intensities from the pinhole and the magnetic domains (see
Fig. 2.14) the correlation of a reference pattern acquired at resonance energy E0 = 779.2 eV to a
pattern recorded several eV below the resonance decreases towards zero as seen experimentally in
Fig. 2.13. This is confirmed by eqn. (2.38), too. For simplicity, let the surface be perfectly flat, i.e.
σh = 0. Hence, we can neglect the second term R(q). This is a good assumption for our sample and
transmission scattering geometry, see § 2.5.1, stating that the surface in-plane roughness scattering due
to a granularity of 20 nm occurs for much higher scattering angles than the magnetic scattering. Thus,
eqn. 2.38 simplifies to,

γ∆E(q) =
(P (q) + σm,E0σm,EFq {ρm(R)})2

[(P (q) + σm,E0σm,E0Fq {ρm(R)})2(P (q) + σm,Eσm,EFq {ρm(R)})2]1/2
. (2.40)

To be able to simulate the energy-dependent correlations it is necessary to know the relative intensities
of the pinhole diffraction and the magnetic scattering. From Fig. 2.14 we know the relative intensities at
the scattering maximum, E = 778 eV . The calculated pinhole diffraction from eqn. (2.39) is fitted to the
measured intensity of the second-order minor maximum of the Fraunhofer rings (see also § A.1). The
magnetic PSD from Fig. 2.5(c) is calibrated to the measured scattering intensity at q = 26 µm−1. Hence,
we can calculate the magnetic scattering intensity for each energy if the magnetic PSD is weighted by
σm = |f ′m|

2 + |f ′′m|
2 for the corresponding energy.
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At the resonance energy E0 = 779.2 eV the relative intensity of the pinhole diffraction for q ≈ 30 µm−1

is 2 orders of magnitude lower than the magnetic scattering (cp. Fig. 2.17). That is why the pinhole
diffraction may be neglected at the resonance energy. On the other hand, the magnetic term can be
neglected 10 eV below the resonance energy. For the correlation between the on-resonance and the
off-resonance case we thus obtain:

γ∆E(q) =
(P (q) + σm,E0σm,EFq {ρm(R)})2

(P (q)σm,E0σm,E0Fq {ρm(R)})
. (2.41)

Simplifying and expanding the above expression yields,

γ(∆E)(q) =
P (q)

σ2
E0
Fq {ρm(R)}

+ 2
σE
σE0

+
σ2
EFq {ρm(R)}

P (q)
. (2.42)

The interference term σE/σE0 is negligible because σE � σE0 (cp. Fig. 2.3). As P (q) � σ2
E0

and
σ2
E � P (q) the first and third term of eqn. (2.42) also approaches zero. As a result, the intensity-

intensity correlation vanishes, i.e. we get uncorrelated patterns.

The state of polarization can also be taken into account in eqn. (2.40). In § 2.5.1 we learned that for
linear polarized light no interference occurs of the diffracted beam from the pinhole and the scattered
radiation from the magnetic domains. Hence, the squared bracket expressions of the correlation for
incident linear polarized soft X-rays reduce to,

γ(∆E)(q) =
P (q2 + (σm,E0σm,EFq {ρm(R)})2

[(P (q)2 + (σm,E0σm,E0Fq {ρm(R)})2)(P (q)2 + (σm,Eσm,EFq {ρm(R)})2)]1/2
. (2.43)

Simulations of correlation values are shown in Fig. 2.18. The state of polarization is included. The
correlation for linear polarized radiation is plotted with square symbols and for circular polarization with
circle symbols. The main experimental results are confirmed. Linear polarization causes higher pattern
correlation than circular polarization. Strong magnetic scattering in the corresponding q-range causes
a constant correlation upon energy variation near-resonance, Fig. 2.18(a). For high q the correlation
decreases rapidly with energy variation. Variation of the transmission due to absorption in the sample
is not considered in the calculation.

Finally, we can conclude from the experimental and analytical results in this chapter some important
statements about coherent resonant magnetic scattering:

Polarization - The polarization state of the incident radiation strongly influences the speckle pat-
tern. In conjunction with the scattering geometry and the magnetization directions in the sample the
polarization determines the possibility for interference of charge and magnetic contributions.

Energy variation - The answer to the initial question whether the speckle pattern changes with
energy variation is: yes and no. Yes if interference or superposition in q-space of at least two of the
contributing scattering terms is possible. No is the correct answer if there is pure scattering observable
from one of the contributing scattering terms. To be more detailed,

• The speckle pattern of pure magnetic scattering does not depend on near-resonance variation of
the energy.

• Both superposition intensities and interference of amplitude of pinhole diffraction and magnetic
scattering cause a change of the individual speckle pattern. A prior condition is that the intensities
of both terms are comparable in the q-space region of interest. E.g. the magnetic scattering
intensity varies with energy and is its contribution to the total scattering is enhanced near Co L3

resonance.

• For linear polarized soft X-rays and for the magnetization being parallel to the propagation di-
rection of the incident light (m̂q̂) the correlation of the on-resonance pattern to near-resonance
pattern is higher than for circular polarization states due to the possibility of interference.
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Figure 2.17: PSD for the pinhole diffraction (thin line) and the magnetic scattering (thick line) obtained
from the TXM-image in Fig. 2.5. The pinhole diffraction was calibrated to the measured intensity by
adjusting the intensities of the second minor diffraction maximum the analytical diffraction pattern to the
measured one (cp. Fig. 2.14). The PSD from the TXM-image was calibrated to the measured magnetic
scattering as described in the text. (a) shows the relative intensities at resonance energy and (b) depicts
the PSD for 770.4 eV , i.e. the magnetic PSD is weighted by the scattering amplitude.
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Figure 2.18: Calculated correlation values using eqn. (2.40) for circular (circles) and linear (squares)
polarization. The reference pattern is calculated for photons of the resonance-energy (E = 779.2 eV ). (a)
The correlation is calculated for q = 2 µm−1 (low magnetic scattering contribution). (b) Correlation for
q = 43 µm−1 (high magnetic contribution). The reduced transmission due to absorption of the radiation
in the sample is not considered.





Chapter 3

Phase retrieval and lensless imaging

Coherent scattering is sensitive to the sample individuality in the sense that the speckle fine structure
observed in the diffraction pattern is sensitive to the sample fine structure beyond statistical averages (see
§ 1.1.4). Hence, one could say the real space structure is ”encoded” in frequency space. The transition
into the frequency space is mathematically described by the Fourier transform assuming perfect coherent
conditions [20,49]. Inverse transform is able to retrieve the original real space structure.

Hence, performing scattering experiments with coherent light allows for reconstruction of the real
space object. Before realizing the imaging of objects by coherent scattering and inverse Fourier transform
one has to overcome an immense obstacle: usually the wave magnitude and its phase cannot be measured
separately, but only the intensity, i.e. only the squared modulus of the Fourier wave can be recorded.
The phase information is lost in the intensity measurement. This well known phase problem makes it
difficult to retrieve the real space object from its scattering pattern.

Nevertheless, a solution was found and it has been shown that the real space structure can be re-
constructed from the measured intensity under certain conditions [50–59]. This chapter will present
the fundamental tools for the phase retrieval, namely a reconstruction algorithm and its boundary
conditions (constraints). A proposal of an advantageous sample-setup is made to overcome a hitherto
performed patching technique that is often subject to discussions. Successful reconstructions of opaque
objects are shown and discussed also under consideration of the limits for phase retrieval. The object
reconstruction is finally extended to magnetic objects (see chapter 4).

3.1 Iterative reconstruction algorithm

3.1.1 The modified Gerchberg-Saxton algorithm

The fundamental idea of the algorithm is to make use of the Fourier transform relation between the
object and the diffraction plane and to apply the algorithm iteratively. The latter helps to decrease
the deviation between the calculated object and the actual object [50]. Initially, Gerchberg and
Saxton used the measured intensities of both the image plane and the diffraction plane as input for
their algorithm to retrieve the lost phase information. Fienup proposed a modified version of that
algorithm that needs only the measured intensity of the diffraction or scattering pattern and renamed
the retrieval procedure to error reduction algorithm [51]. Additionally, Fienup introduced boundary
conditions to the algorithm that merely define constraints for the object (see also § 3.1.2). A schematic
drawing of the algorithm is shown in Fig. 3.1(a). The Fourier space (index “f”) is referred to as the
plane of the diffraction or scattering pattern and the object space (index “r”) is referred to as the plane
of the real object. The algorithm starts in Fourier space with an amplitude proportional to the square
root of the measured intensity

Af (q) =
√
If (q)

53
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and a phase guess φf (q) of random numbers between −π and π. An inverse Fourier transform is applied
to the complex wave Af (q)eiφf (q) obtaining the first estimate of the real space object:

ar(r)eiφr(r) =
∫ √

If (q)eiφf (q)e−iqrdq. (3.1)

In a next step real space constraints (boundary conditions) are applied. These constraints are introduced
in detail in section § 3.1.2. Next, the constrained object’s amplitude and phase are Fourier transformed
into reciprocal space. Now, the calculated amplitudes are substituted by the square roots of the measured
intensity whereas the phases are maintained: the first cycle of the algorithm is completed. To get an
estimate of the deviation between the calculated object and the actual object the mean squared error
in the Fourier domain is calculated

E2
f =

∫
[|Af (q)| − |Ff (q)|]2 dq∫

[|Ff (q)|]2 dq
, (3.2)

where |Ff (q| =
√
If (q).

Af(q) = |Af | eiφfar(r) = |ar| e
iφr

Fourier transform
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Figure 3.1: (a) Scheme of the error-reduction (ER) algorithm and (b) the hybrid-input-output (HIO)
algorithm [51].

3.1.2 Finite support and oversampling technique

In this section the idea of ”constraints” or boundary conditions is introduced. Basically, the more
knowledge about the object can be put into the reconstruction procedure the more probable is it that
the algorithm procedure converges towards the correct solution. The knowledge about the object is
applied to the algorithm in terms of boundary conditions or constraints, generally, either in the object
or the Fourier space. The simpliest knowledge about the sample is its measured scattering pattern.
This condition is put into the algorithm in Fourier space by substituting the calculated magnitude by
the square root of the measured intensity.

The improvement of Fienup was to introduce a real space constraint that defines important properties
of the object, as e.g. non-negativity or low spatial-frequency information [51]. The low spatial-frequency
information may e.g. reduce the area of accepted amplitudes and phases to the shape of the object.
The calculated real space object has to satisfy the following constraints:

ar(r) =
{
a′r(r) r ∈ Sr(r)
0 r /∈ Sr(r),

(3.3)
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where Sr(r) includes all points at which the constraint has to be fulfilled. Sr is often referred to as
”support”. First, the support defines the region over which the sample is extended. For example, if the
sample has a circular shape and internal structure , then the support is given by the circular shape of the
sample. Additionally, inside the support region the sample can be forced to fulfill additional conditions,
like e.g. being non-complex or being an anti -phase object [54]. The support itself can either be initially
known or being derived from the measured autocorrelation function of the sample. The latter approach
is discussed below in detail (§ 3.2).

Mathematically, the Fourier inversion procedure must be able to solve a system of N non-linear
equations for the amplitude and additional N non-linear equations for the phase, assuming that both
the object and its Fourier magnitude are being sampled by a one-dimensional matrix of N elements.
Of course, the phase is lost upon intensity measurements. To overcome this problem the oversampling
technique is applied [51,60]. It has been shown that the phase can be retrieved if the Fourier magnitude
is sampled twice as fine as the object [60–62]. If the 2-fold oversampled intensity pattern is Fourier
transformed into the object space, the object of length N is embedded into an oversampled object
of length 2N . I.e. twice as much is known about the object as before the oversampling. As an
illustration, consider the Fourier magnitudes of a simple hole measured with different sampling rates.
Fig. 3.2(a) shows a 1-dimensional profile of a 2-dimensional Fraunhofer diffraction pattern of a circular
aperture. The pattern is once sampled with 9 elements (circles) and once with 5 elements (squares)
per Fraunhofer ring. The inversion of the corresponding two-dimensional matrices are shown in
Fig. 3.2(b) and (c). The higher Fourier space sampling rate generates a larger real space area by Fourier
transform. More elements of the real space object are known than with a smaller sampling rate. No
additional oversampling is given with a Fourier sampling rate of one element for the Fraunhofer
maximum and one element for the minimum (not shown). The oversampling factor Ω for scattering
from a 2D object recorded on a 2D detector can be defined as the ratio of the real space area probed
by the detector divided by the actual sample area. In the small angle scattering limit one obtains

Ω2D =
(λL)2

(SP )
, (3.4)

where S is the sample area and P is the detector pixel area.

This oversampling technique is the main idea of the phase retrieval procedure presented in this work.
The additional knowledge about the object due to oversampling is usually used as follows: The area
around the object (white area around the black circle in the above example) is considered as being
opaque. That means no transmission through this object region is possible. Hence, the constraint in
the object space is is defined as putting all magnitudes and phases to zero values outside the actual
object. In the experiments the zero-padded area is realized by a opaque mask (see § 3.2 and § 4.1.1).
Mathematically, an oversampling of 2 is sufficient for each dimension but experimentally oversampling
rates of 6 to 10 are necessary [60].

The possible oversampling is experimentally limited e.g. by the size of the detector pixel. The spatially
resolvable elements of the micro-channel plate detector are only 400 pixel elements of 100 µm size. The
oversampling rate can be increased by using a detector with more pixel per axis. For the experiments
presented in chapter 4 a CCD camera is used with 2048 × 2048 pixel elements of 13.5µm × 13.5µm
pixel size. For technical details of the camera see § C. This enhances the oversampling by a factor of 5.
Furthermore, the spatial resolution can be enhanced with this camera if at the cost of oversampling the
sample-camera distance is reduced. Then the camera accepts a higher maximum momentum transfer
qmax as before and hence, the smaller structures of the sample can be resolved.

3.1.3 The hybrid-input-output algorithm

Fienup also extended the error-reduction algorithm by an hybrid input-output procedure similar to the
negative feedback principle [51]. The only difference to the ER-algorithm is the modified input in the
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Figure 3.2: (a) Different sampling rates for a diffraction pattern. (b) Real space object obtained by
Fourier transform of the diffraction pattern recorded with small oversampling and (c) with large over-
sampling.
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object domain. The input for the k + 1 algorithm cycle is set to the weighted difference of the output
a′k and the constrained input a′k from the k-th step exactly there where the constraint is violated:

ak+1(r) =
{
a′k(r) r ∈ Sr(r)
ak(r)− βa′k r /∈ Sr(r).

(3.5)

The weighting factor β has typical values between 0.5 and 1.0. The lower condition of eqn. (3.5) can be
understood as follows: the output a′k violates the constraints outside the support S, hence, the input
for the k + 1 step is compensated for the violation by the difference of ak and a′k. In a lot of cases
the so called HIO-algorithm successfully breaks stagnation of the ER-algorithm and, hence, speeds up
convergence [51,58,60,63].

In general, the constraints used for the reconstruction must be fitted to the individual problem. The
next section demonstrates the phase retrieval by the ER-algorithm where only measurable information
from the sample is used to determine the tight object domain support and, finally, to recover the real
object from the scattered intensity.

3.2 Result - Lensless imaging at 3.1 nm wavelength

The following section demonstrates the feasibility of phase-retrieval from the scattering pattern gen-
erated by a transparent object on an opaque background using coherent soft x-rays [64]. The object
consists of transparent structures drilled into a Au-film and forming a letter pattern. The freestanding
Au-film has a thickness of 2 µm. For soft X-rays of 400 eV with 0.035 µm Au-attenuation length the
film is opaque and, evidently, the apertures have full transmission. The holes are drilled with a focused
ion beam (FIB)1 and the resulting pattern is shown in Fig. 3.3. The object is real and non-periodic.

Figure 3.3: Scanning Electron Microscope (SEM) image of the test sample [prepared by S. Andrews,
SSRL, 2003]

The pattern of interest is the double ”HI�”, contained in a region of about 3.3µm× 3.5µm in size.
The letters contain finer structure due to imperfect FIB sputtering as indicated on the image by white
arrows. A reference pinhole of approximately 0.8 µm in diameter is placed in the right upper edge in
a distance of 5.7 µm from the upper square of the letter pattern. The role of the reference pinhole
is crucial for the reconstruction procedure because it allows to determine the support from the x-ray
scattering image. This technique is discussed in detail in § 3.2.1.

1Courtesy of S. Andrews, Stanford Synchrotron Radiation Laboratory, 2003
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The coherent x-ray scattering experiment was performed in transmission geometry at UE56−1/SGM
beamline of the BESSY II synchrotron facility (see Fig. 3.4). Soft X-rays with a wavelength of λ = 3.1 nm
(400 eV photon energy) were used. To satisfy both longitudinal and transverse coherence requirements
the undulator radiation is monochromatized to E/∆E ≈ 5000 and is then spatially filtered. The
resulting longitudinal coherence length is given by ξl = λ2

2∆λ ≈ 8 µm, which is larger than all possible
optical path length differences in our setup. The spatial filter consists of a 50 µm pinhole 723 mm
upstream of the sample and the fact that the sample is transparent only within an area of 6 × 9 µm2,
respectively. The transverse coherence length at the sample position defined by the 50 µm pinhole is
ξtr = λD

πd ≈ 13 µm, i.e. the sample (consisting of the double HI� pattern and the reference hole) is
illuminated coherently. A 2D position sensitive detector is placed 990 mm downstream of the sample.
The detector is based on a stack of five micro channel plates with a top CsI layer for photon-to-electron
conversion and a 2D resistive anode readout. While the spatial resolution is only 100 µm×100 µm over
the 40 mm× 40 mm active area, the dynamic range (104) and the background noise level (10 counts/s
over the entire active area) are significantly superior to CCD devices, allowing to operate without a
beam block for the zero order beam.

D=723 mm L=990 mm

r

√

P

d

W

√

S

Figure 3.4: Scheme of the experimental setup. Incident soft x-rays of wavelength λ = 3.1 nm pass
through a pinhole of diameter d = 50 µm and are scattered by the sample, located 723 mm downstream.
S denotes the sample area (6×9 µm2) and r is the linear dimension of a resolvable element, determined
by the maximum momentum transfer in the scattering experiment. A 2D detector is positioned at a
distance L = 990 mm behind the sample. The linear detector size is W = 40 mm, the area P of a
spatially resolvable element is 100× 100 µm2.

The coherent diffraction pattern of 3.1 nm X-rays from this sample is presented in Fig. 3.5. The
image is a sum of 10 subsequent measurements each with an exposure time of approximately 30 min.
The average countrate on the detector is 2700 counts/s which translates into an incident coherent flux
of 2 · 105 photons/s at the sample position, when the sample geometry and absorption is taking into
account. The experimental chamber had to be set up 7 m downstream of the beamline focal position.
Hence, an estimated fraction of only 5% of the total coherent flux available at this beamline under
optimized conditions could be used.

Several features in the coherent diffraction pattern can be easily related to the pattern in the Au-
film. The cross-like intensity originates from the ”�”-apertures of the ”HI�”. A high frequency line
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Figure 3.5: Scattered intensity distribution on the two-dimensional position sensitive detector located
990 mm downstream of the sample. Intensity is shown in a logarithmic gray scale. The maximum
momentum transfer of approximately 35 µm−1 results in an overall spatial resolution of 180 nm.
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pattern can be observed at about 45 degrees with respect to the central cross. This component is due
to interference of X-rays photons passing through the reference pinhole and through the ”HI�” pattern.
The inverse line spacing in the high frequency pattern of approximately q = 0.83µm−1 corresponds well
to the real space distance of d = 2π/q ≈ 7.6 µm of the reference hole to the transmission weighted
center of the ”HI�” pattern. The number of detector channels sampling the diffraction pattern of the
largest spatial dimension determines the one-dimensional oversampling rate. The 400 resolvable detector
elements cover a total range of qdet ≈ 80 µm−1. Hence, 0.83 µm−1 are covered by 4 channels, i.e. the 1D
oversampling is Ω1D = 4. Also, a fairly weak Fraunhofer pattern of concentric rings can be observed,
originating from the reference pinhole. At 3.1 nm x-ray wavelength the detector covers a maximum
momentum transfer of approximately qmax = 35 µm−1 in the experimental geometry, corresponding to
a maximum spatial resolution of 180 nm. It is important to note that the zero order beam has been
recorded together with the rest of the diffraction pattern, giving access to information on a large spatial
scale.

3.2.1 Determination of the support

We turn now to the crucial step of determing the support for the object domain constraint. The
spatial autocorrelation of an object is connected to its shape and can thus be used to determine the
rough support [58, 59]. The autocorrelation can easily be calculated by inverse Fourier transform of
the measured scattering intensity2. The autocorrelation of an object obtained by Fourier transform of
the diffraction pattern is known in crystallography as the ”Patterson map”. The more distinct and
separated the regions of an object are the better and easier interpretable is the resulting correlation
image. The aperture object in our experiment consists of a few very well separated patterns (the letters)
and the reference pinhole probes the object itself very well. The size of the reference hole determines the
spatial resolution of the probed objects in the Patterson map. The autocorrelation of the aperture
object shows very distinct structures, see Fig. 3.6.

At the center of Fig. 3.6 the lateral offset is zero and the auto-correlation value maximal. At a
positive and negative displacement that corresponds to the distance of the reference hole to the letter
pattern the correlation is high again. This intensity corresponds to the convolution of each of the ”HI�”
letters with the reference hole. As a result, we obtain an estimate of the lateral size and shape of the real
space object and on this basis we are able to define a real space support S(r), as indicated in Fig. 3.6
(outlines). The support area consists of three separate regions, enclosing the reference hole and each of
the ”HI�” rows. Only one of the two mirrored images at positive and negative displacement is chosen.
Of course, the result of the algorithm may always be the mirror image of the real object [51,65].

For the object of interest it is known that the Au-film is opaque. With the help of the support the
object domain constraint can now be defined. Outside the indicated shape the X-rays are attenuated,
thus, the magnitude of the calculated object are set to zero-values. Inside the support area the calculated
magnitude and phase of the object are floating in the algorithm as described in eqn. (3.3) of § 3.1.2.

3.2.2 Pattern Reconstruction

Now, all requisites for the first object reconstruction are known. We estimate a matrix of Fourier phases
φf of random numbers of interval −π . . . π and create a complex Fourier wave together with the square
roots of the measured intensity. After 150 iteration cycles of the ER-algorithm the real space object is
reconstructed. The result is presented in Fig. 3.7. By comparing Fig. 3.3 and Fig. 3.7 one observes that
the elliptical shape of the reference hole is recovered within the support around the hole. Furthermore,
the overall structure and most of the fine structure in the ”HI�” pattern is reproduced such as e.g.
the change in width in the vertical line of the ”I” in the top row. Several features marked by arrows
in the SEM picture are not reproduced. These features have a characteristic width of 100 nm and are

2Autocorrelation theorem:

Fq {g(x) ◦ g(x)} = Fq {g(x)} · Fq {g(x)} = |Fq {g(x)}|2 = I(q)

.
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Figure 3.6: Autocorrelation of the real space object determined from the recorded diffraction pattern in
Fig.3.5. The outlines indicate the support chosen on the basis of the information from the autocorrela-
tion.

thus below the smallest structure size resolvable due to the maximum momentum transfer in the setup
used here, which corresponds to 180 nm in real space. The same reconstruction pattern is obtained for
different random start phases. This indicated that the obtained result is reliable.

In the small angle scattering limit, the spatially resolvable structure r is r = 2λL/W , where W is
the detector length in the scattering plane and L is the sample–detector distance (see Fig. 3.4). For this
geometry, one obtains r = 150 nm. The experimental value is slightly higher (rexp = 180 nm) as the zero
order beam is not perfectly aligned to the center of the detector (Fig. 3.5). As a consequence, the effective
detector width is reduced for some scattering directions. The 2D oversampling factor is according to
eqn. (3.4) Ω2D = 17 for S = 6 µm × 9 µm and the detector pixel size of P = 100 µm × 100 µm.
Hence, the oversampling is large enough for the 2D problem and is about equal to the value determined
experimentally from the high frequency oscillations: (Ω1D)2 = 16.

One pixel in Fig. 3.7 corresponds to a lateral size of 90 nm. The graph in the inset above the ”HI�”
pattern shows a profile cut through the reconstructed letter pattern. Each dot of the line represents one
pixel in the image. The onset of a letter happens over two image pixels, hence, confirming the resolution
of 180 nm that was calculated from the maximum momentum transfer qmax.

3.3 Discussion and modelling results

In the last section of this chapter we want to discuss some details of the algorithm and show possible
improvements. First, we apply the HIO-algorithm in combination with additional internal constraints
on the sample. Second, the advantage of a sample setup with a reference hole is discussed. Third, we
discuss the influence of a beamblock covering the central peak in the scattering pattern.
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Figure 3.7: (a) Reconstructed real space pattern of the Au-film. The detailed structures of the object are
recovered. The resolution of the image retrieval is about 180nm. The inset shows a profile cut through
the letter pattern between the arrow indicators. The same reconstructed image is obtained for different
random start phases giving reliability to the reconstructed object.

3.3.1 Application of the HIO-algorithm

The algorithm procedure described above is very simple, but allows to reconstruct the object successfully.
Nevertheless, further constraints and the application of the HIO-algorithm can slightly improve the
retrieved image quality. Additional constraints are the so called internal constraints in contrast to the
external constraints that are defined by the support. Further information of the object can be used to
enhance the algorithm procedure. The apertures in Au-film are real objects, i.e. the their imaginary
part equals zero. This knowledge is set into the algorithm by extending the object domain constraints
to:

ar(r) =
{
<{a′r(r)}+ 0 · = {a′r(r)} r ∈ Sr(r)
ak(r)− βa′k r /∈ Sr(r).

(3.6)

The algorithm is started with the same support (Fig. 3.6). First, 100 steps of the ER-algorithm with
constraints of eqn. (3.3) and the internal real-object constraint are performed, followed by 30 steps of
the HIO-algorithm with eqn. (3.6)-constraints. Finally, 20 steps of the ER-algorithm are carried out.
The Fourier space error eqn. (3.2) and the resulting object are shown in Fig. 3.8. The shapes of the
apertures slightly sharper than in the previous ER-reconstruction. This is most notable at the reference
hole and the second letter ”I” in the lower row. The error increases strongly during the application
of HIO-algorithm. This is typically observed [16, 66] and caused by the modified output outside the
support.

3.3.2 The advantage of a known reference hole

Miao often uses low-resolution microscopy images to patch in the center part of the scattering image
that can not be measured due to detector saturation caused by its limited dynamic range [53, 57, 67].
The use of a microscopy image, of course, is not always feasible if the reconstruction procedure shall be
applied to unknown objects. The micro-channel plate detector we used for the above experiment has
a large dynamic range that allows the acquisition of the near-specular intensity. The center intensity
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Figure 3.8: (a) Reconstructed Au-pattern by application of the HIO-algorithm and by assumption of the
object to be real. (b) The error in Fourier-space is plotted for each iteration cycle. The gray background
indicates the application of the HIO-algorithm. Outside the gray region the ER algorithm was used.
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provides the information about the object on large length scales. But in general measuring the specular
peak is (a) difficult due to saturation and (b) unreliable due to coexistence of transmission and forward
scattering. The reference pinhole approach provides the near specular information. The reference hole
probes the sample and allows for determing the long range dimension of the sample by calculating the
autocorrelation from the measured intensity. This procedure was describes above.

It is desirable to increase high-q intensity to obtain information about smaller structure sizes. This
can be achieved by increasing the total incident power of the synchrotron radiation. Hence, the parallel
recording of the center and the diffuse scattering may become difficult. In this case it is advantageous to
use a central beamblock in front of the detector. Now, the specular information is not available in order
to extract the support for the object domain constraint. Still the autocorrelation can be helpful for
the determination of the support, if the object has a suitable shape, i.e. distinct objects [58, 59]. This
approach has been realized by arranging an object consisting of Au balls with an scanning tunneling
microscope (STM) tip. One Au-ball is separated with the tip from other balls and acts as a separated
reference scatterer [59].

In order to make the reference hole concept available for a wide variety of samples, the use of custom
made sample holders is proposed here that includes the reference hole. Micro-technology and lithography
allow the production of a sample holder system consisting of a reference hole laterally separated from
a sample holder region (cp. Fig. 3.9). Both are structured e.g. into a Au-film which is sputtered on
a SiN -membrane to allow transmission. There are several parameters which can be optimized to the
objects under study. The size of the reference pinhole determines the smallest structure of the object
which can be observed in the Patterson map, i.e. without reconstruction. Consequently, the pinhole
should be made small enough such that the autocorrelation is sufficient to determine the shape of the
object. Of course, the pinhole size cannot be reduced to any extent as (a) the transmission through
the pinhole becomes low with small pinhole sizes and (b) nm holes with sufficient aspect ratio to block
X-rays are difficult to produce.

Figure 3.9: Proposition of a microfabricated sample holder system. The SiN membrane is coated onto
a Si wafer with an etched facet that allows transmission. A Au-film that is thick enough to be opaque
for soft x-rays is sputtered onto the membrane. The rectangular region contains the sample that is
reconstructed. The reference hole must be separated from the sample region by a distance that is larger
than the sum of the diameter of the reference hole and the diameter of the sample region.
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A further parameter is the distance of the reference hole to the sample area. The autocorrelation
contains a distinct sample region if the separation of the pinhole from the object is bigger than any
distance within the sample area (cp. Fig. 3.6). Otherwise, the correlation area around displacement
0 cuts the area of the probed object like in Fig. 3.10(b). This makes the determination of a support
difficult. Fig. 3.10(d) to 3.10(f) show the case for a well separated reference hole. The determination of
a tight support for the object is much easier than before.

3.3.3 Compensating the lack of specular information

Although we are able to measure the specular peak of the diffraction pattern from the Au aperture
sample and make use of this additional information in the reconstruction procedure, the reference
hole already provides enough information about the large scale shape of the sample in many cases.
However, in many experimental situations the specular beam does not only contain forward scattering
information but also transmission intensity. The transmitted inntensity can not be easily separated from
the scattering signal. As the algorithm is based on the assumption that the input is of pure scattering
nature the reconstruction may become erroneous. Therefor, we test the possibility to reconstruct the
object without knowledge of the central beam.

A central beamblock is experimentally favorable to increase the detectable flux at high momentum
transfer as it avoids detector saturation in the center. Of course, the information contained in the
specular peak is lost. One may ask how much of the specular information can be lost while still being
able to reconstruct the object. To investigate this question, the measured intensity was blocked in the
center by simulation. A circular area of increasing diameter is zero-padded for that purpose as shown
in Fig. 3.11(a)-(c). Next, each manipulated intensity is used as input to the reconstruction algorithm as
it is described in § 3.3.1. The same support is applied (cp. Fig. 3.6). The only extension to the above
algorithm occurs in the Fourier domain. The zero-padded area is free-floating in the Fourier domain,
i.e. the calculated Fourier magnitudes are not substituted by the input intensity but maintained. Of
course, the rest of the magnitudes are set to the square roots of the measured scattering pattern. Hence,
successful reconstructions will recover the scattering intensity in the near specular area (cp. Fig. 3.12).
The results of the phase retrieval are shown in the right column of Fig. 3.11.

The reconstruction is feasible with a lack of near specular information (q ≈ 1.5 µm−1) as shown in
Fig. 3.11(a). The quality of the recovered object is even better than the image with the full intensity as
input (cp. Fig. 3.8). The reason may be that slight detector non-linearity for high count rates is present.
Hence, the specular intensity is probably recorded erroneously. The reconstructed object becomes worse
with a lack of information up to q ≈ 3.1 µm−1 in in-plane momentum transfer. Blocking a momentum
transfer larger than q ≈ 3.6 µm−1 prevents the reconstruction from being successful3 (see Fig. 3.11(c)).
In case of successful reconstruction with applied central zero-padding the Fourier magnitude is recovered
in the free-floating area as shown in Fig. 3.12.

The insets in the left column of Fig. 3.11 show the autocorrelation of the object obtained from the
zero-padded scattering intensities. For a blocking of 1.5 µm−1 the autocorrelation still allows to derive
the support because the letters are distinctly observable. A blocking of larger momentum transfers
smears the autocorrelation and makes the determination of the support difficult.

The maximum momentum transfer that can be blocked without serious disturbances of the recovered
structures is about q ≈ 3 µm−1 what corresponds to a real space length of almost 2 µm. All information
on larger length scales is lost due to the beam block. If the beamblock size is increased and blocks a
momentum transfer that corresponds to the dimension of the largest letter size then the reconstruction
fails. The set of simulations demonstrates the advantage of using a known reference hole as the object
shape can still be determined from the Patterson image, although a part of the central beam is
missing.

3The correlation value (eqn. 4.2.1) of the ”HI�” patterns of (a) to (b) is γI = 0.81 and the correlation of (a) and (c)
is reduced to γI = 0.60.
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Figure 3.10: (a) Test sample with distance of the reference hole shorter than the sample diameter. (b)
Autocorrelation of (a) in µm-units of lateral displacement. The center-area cuts the object-area. The
reconstructed object is shown in (c). (d) Same test sample but the distance of the reference hole is
larger than the sample diameter. (e) The autocorrelation of (d) is distinct and given in µm-units of
lateral displacement. (f) shows the reconstruction. The test-image is a subset of an transmission X-ray
microscope image recorded from a vertical cross-section of an AMD processor unit. Courtesy of G.
Schneider, BESSY 2003.



3.3. DISCUSSION AND MODELLING RESULTS 67

Figure 3.11: Left column: logarithmic scale plots of scattering intensity with removed specular infor-
mation increasing in diameter from (a) to (c). The maximum momentum transfer q lost due to the
beamblock is (a): q = 1.5 µm−1, (b): q = 3.1 µm−1 and (c): q = 3.6 µm−1. The insets in the left up-
per corner of each momentum spectrum depict the corresponding autocorrelation obtained from inverse
Fourier transform of the zero-padded scattering intensity. Right column: the corresponding reconstruc-
tion of the object.
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Figure 3.12: (a) Logarithmic plot of the recovered Fourier scattering magnitude inside a blocked area of
radius q = 1.5µm−1 (white circle). The free-floating magnitudes are well calculated by the algorithm in
comparison to the measured intensity. (b) Profiles of the scattering intensity around the specular peak
in logarithmic scale. The thick line indicates the originally measured intensity. Profiles of the recovered
Fourier magnitudes by reconstruction as shown in Fig. 3.11(a) and (b) are plotted with cross symbols.
Only if Fourier components larger than q = 3.1µm−1 are blocked (Fig. 3.11(c)) the scattering intensity
cannot be re-calculated in the free-floating area (thin line).
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As described above the Fourier magnitudes inside the padded area are re-calculated by the algorithm.
Fig. 3.12(a) shows the reconstructed scattering intensity initially blocked inside the white circle. The
recovered magnitudes of the different blocking sizes are shown in Fig. 3.12(b) together with the actually
measured intensity (thick line). The gray scaled background of the plot marks each radius of the
corresponding blocked area. The cross symbols indicate the profiles of the Fourier components obtained
by the algorithm for q = 1.5 µm−1- and q = 3.1µm−1-blocking. Only for larger blocking the scattering
intensity is not recovered (thin line).

By applying a beamblock the intensity of the incident radiation can be increased. If the beamblock
is chosen such that it is still small enough to allow for reconstruction, e.g. the complete central peak
and part of the minor maxima is blocked (up to q = ±3 µm−1), then more than half of an order of
magnitude in intensity can be gained until the detector is saturated by the diffuse scattering intensity

In summary, reconstruction of a non-complex object from the coherent soft x-ray scattering pattern
has been demonstrated. In addition, a method based on a reference hole in the object plane has been
proposed and tested. The method allows the determination of the support from the x-ray diffraction
pattern. In the next chapter, the same principles are applied to more complicated specimen: magnetic
domain patterns which are continuous and complex-valued objects.





Chapter 4

Reconstruction of magnetic domain
structures

After the successful reconstruction of a real-valued diffracting object in chapter § 3, we focus on the
problem of phase retrieval from a magnetic structure. This is a challenging task because magnetic
scattering is relatively weak. Hence, it must be well separated from any other scattering or diffraction
signal. Further, the reconstruction of complex-valued objects has more possible solutions (uniqueness
problem) than from real objects [60,63,68]. This is why we have to carefully check the obtained results.

4.1 Experimental proof of principle

4.1.1 The test sample

The reconstruction of magnetic domain structure is a new challenge and so far has never been demon-
strated. This requires that first a known sample structure is investigated to prove the feasibility of
magnetic structure reconstruction itself. A test assembly is created consisting of a mask and a CoPt
multiplayer sample. After imaging both the mask and the sample-mask setup by microscopy the recon-
struction experiment can be performed and the obtained result can be proven by the initial images.

Known support mask - An important prerequisite for the phase retrieval of the scattering from
complex-valued objects is a known support [63, 65, 68]. Therefor, we used a sample setup with a mask
containing a large circular aperture of 1.2 µm diameter for the sample (let us call it “sample hole”)
and a small reference hole of approximately 200 nm diameter as already proposed in § 3.1.2. The
reference hole is separated 1.2 µm from the sample pinhole. The pinholes are drilled by FIB technique
into a Au-film of 2 µm thickness to guaranty opaqueness [46]. This mask is placed in direct contact
on a magnetic sample which can be investigated in a scattering experiment in transmission geometry.
The use of the autocorrelation of the object obtained from the measured intensity allows to locate the
support in the object matrix. From the known dimensions of the mask (sample hole plus reference hole)
we can determine a tight support as it is necessary for complex-valued objects [63,68].

Known sample structure - As sample the CoPt multilayer of 50 double layers of 3 nm Co and
0.7 nm Pt sputtered on a SiNx membrane is used. The CoPt sample is prepared by O. Hellwig [44].
In order to be able to test the phase retrieval process, the sample.mask assembly has been imaged
by a transmission X-ray microscope (TXM) at the Advanced Light Source (ALS) in Berkeley by P.
Fischer [21]. The resulting image is presented in Fig. 4.1. The mask with the sample hole and the
reference hole is clearly visible. The magnetic structure of the CoPt multiplayer is recognizable within
the sample hole: alternating domains arranged in stripes. Unfortunately, the reference hole shows a
faint side-structure that may be the result of a misplaced focus of the ion beam. The structure is not
completely drilled through the Au-film but attenuated radiation penetrates that thinned area.

71
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Figure 4.1: TXM image of the CoPt membrane-mask assembly recorded at the Co L3 absorption edge.
The magnetic domains are oriented mainly parallel revealing a stripe pattern. The domain pattern and
the pinholes sampled in the scattering experiment are imaged at the ALS by P. Fischer [21] to allow for
comparison with the result from reconstruction.



4.1. EXPERIMENTAL PROOF OF PRINCIPLE 73

The magnetic multilayer is measured in transmission geometry, i.e. due to the perpendicular anisotropy
of the sample the results from § 2.5.1 are valid. The intensity of the speckle pattern is recorded with
a high-resolution (2048 × 2048)-elements CCD camera of quadratic 13.5 µm-pixel. The CCD chip is
exposed directly to the soft X-ray photons with an quantum efficiency of 80% at 780 eV . For further
details see § C. The camera is located 315 mm downstream of the sample, thus, the maximumF in-
plane momentum transfer covered by the active area is qmax = 170 µm−1 allowing for a resolution of
approximately r = 40 nm structures. The oversampling is large, Ω(2D) = 1200.

Again, the experiment is performed at the UE56/1-SGM beamline at BESSY with almost the same
setup as depicted in Fig. 3.4. The CoPt multilayer-mask assembly is illuminated with 778 eV photons
of circular polarization to enhance the magnetic contrast due to resonant scattering (see § 2.5.2). An
additional guard pinhole of 500 µm in diameter is inserted 25 mm upstream of the sample to block
high order diffraction rings from the 20 µm pinhole located 723 mm upstream. Hence, only the Airy
disc and the Fraunhofer rings up to 4th order of the diffraction pattern passes to the sample. The
transverse coherence length at the sample yields ξtr = 9.2 µm. The energy resolution is ∆E = 0.4 eV
(entrance slit: 30 µm, exit slit: 50 µm) and the longitudinal coherence length is ξl = 2 µm.

4.1.2 The autocorrelation obtained from intensity pattern

The measured scattering intensity obtained is shown in Fig. 4.2(a). The cumulated exposure time of
the camera is 1400 s and the read-out-noise has been subtracted. Clearly observable are two satellite
maxima horizontally arranged to the left and right of the central (q = 0)-maximum. They reveal the
stripe like domain structure of the magnetic sample and their corresponding momentum transfer of
q ≈ 24 µm represents the average period of 260 nm of the magnetic domains. The diffraction rings
of the sample hole are visible up to many Fraunhofer orders. The interference of the sample and
reference hole can be recognized by a stripe pattern across the whole intensity image. The maximum
in-plane momentum transfer of recognizable interference structures is qmax ≈ 120 µm−1. Hence, the
smallest spatially resolvable structure is r ≈ 52 nm.

By inverse Fourier transform of the intensity the autocorrelation (or Patterson image) is calculated
and plotted in Fig. 4.2(b). The area of the sample pinhole probed by the reference hole is clearly visible.
The autocorrelation shows the characteristic twin-images, each being mutually the mirror image of the
other. The reference hole is located in the center of the image inside the saturated black convolution
area. A clear domain structure appears in the autocorrelation function due to the reference pinhole
being small compared to the area of the sample pinhole but approximately as large as the width of
typical domains. The sample hole structure shows a halo that is correspondingly mirrored in both
twin-images. This shadow is caused by the thinned structure of the reference hole as described above.
As some radiation penetrates this structure it acts as an additional reference aperture that also probes
the domain structure. For further considerations of the autocorrelation the shadow image is ignored.
The number of black and white domains is the same as in the TXM image (cp. Fig 4.1). Also, the
orientation of the domains is the same as in the reference image, e.g. the first white domain from the
right is in line with the reference hole. As a result, one can state that the autocorrelation reveals already
all features of the test object and can be considered as a simple reconstruction of good quality.

Determination of initial input to the algorithm - Consequently, this offers a good possibility
to start the algorithm with the knowledge obtained from the autocorrelation. The idea is to use the
Patterson map1 as a first (good) guess of the object that has to be reconstructed. The initial input
helps the algorithm to converge better towards the correct solution than with no further knowledge
about the object [65]. It shall be emphasized that the a priori knowledge is obtained without exception
from the measurement.

1Autocorrelation obtained from intensity measurement.
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Figure 4.2: (a) The scattering intensity from the test sample shown in Fig. 4.1. The exposure time is
1400 s and read-out-noise is subtracted. The image is plotted in logarithmic scale and in units of µm−1.
(b) Autocorrelation (or Patterson map) of the test sample obtained by inverse Fourier transform of the
intensity. The structure of the magnetic domains is already visible due to the relatively small reference
pinhole.

Applying the tight support to the autocorrelation function cuts out the sample and the reference
pinhole area. This new object is used as magnitude |ar(r)| of a complex wave with zero phase,

ar(r) = |ar(r)| eiφr(r) =
{
|g′AC(r)| r ∈ Sr(r)
0 r /∈ Sr(r)

, (4.1)

where gAC is the autocorrelation function of the object and Sr is the support. Of course, according
to the existence of twin images in the autocorrelation of the object, it is ambiguous which sample area
should be chosen. It is possible to choose a support that selects both images and then let the algorithm
converge with equal probability to either one or the other of the twin solutions [65,66,68]. Nevertheless,
only one of the images is chosen a priori to avoid twin-image stagnation [66]. Hence, it is always
possible that the obtained solution is the mirror image of the real space object. A forward Fourier
transform of ar(r)eiφr(r) yields a Fourier-space magnitude Af (q) and phase φf (q). Before starting the
error reduction (ER) algorithm in Fourier-space (see Fig. 3.1(a)) the magnitude is substituted by the
square root of the measured intensity. The phase is maintained as it is a good initial guess obtained
from the Patterson image2. The initial phase is plotted in Fig. 4.3(a).

4.1.3 Reconstruction procedure: Proof of principle

500 cycles of the ER algorithm are performed with just applying the support in each cycle to the object
magnitude and phase but no further internal constraints. In Fourier-space the magnitude is replaced
by the square root of the measurement for each cycle. The resulting object is shown in Fig. 4.3(b).
The reconstruction shows the same features as the autocorrelation in Fig. 4.2(b): In the center of the
image three white domains are observable where the right domain shows a little kink. The domains are
oriented the same way and the right domain is aligned with the reference hole. The edges of the domains
are sharper for the reconstruction than in the autocorrelation. A scan line through the magnetic domain
pattern is plotted in the inset graph of image (b). High values correspond to black color in the image
and low values to white, so the three white domains are three minima in the profile.

2citing Fienup: “Starting with a good initial input [...] helps” [65].
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One pixel of the image corresponds to approximately 20 nm and the smallest resolvable structure
of the object is r = 52 nm (see § 4.1.2). As a result, the obtained reconstruction image shows more
details than it is expected from the actual spatial resolution, namely, the smallest resolvable element
is represented by three pixels. I.e. that the fuzzy domain boundaries are artifacts obtained from the
algorithm procedure. Comparing the reconstruction to the microscope image in Fig. 4.1 one can state
that the object is recovered from the pure measurement of its scattering intensity.

As a conclusion, the reconstruction procedure is applicable to magnetic structures. Exploiting the
magnetic dichroism contrast allows for small angle scattering from the magnetic domains. The Pat-
terson image of the scattering object reveals already most of the magnetic structure. The result can
be improved in spatial resolution by the reconstruction procedure.

Figure 4.3: (a) Initial phase guess obtained from forward Fourier transform of the autocorrelation. (b)
Magnitude of the resulting real space object. The number of domains, their widths and the orientation
coincide with the microscope image of the same sample. The inset shows a profile through the magnetic
domains between the arrows.

4.2 Result - First reconstruction of unknown magnetic struc-
tures

After successfully reconstructing the test object with a known arrangement of magnetic domains the
phase retrieval technique is applied to unknown objects. A CoPt multilayer is investigated, that is
grown with the same parameters as the test sample. The sample is exposed to external magnetic fields
and imaged in different magnetic states. The mask used is: 1.2 µm sample pinhole, 170 nm reference
pinhole and a center-to-center distance of 1.2 µm. The beamline is tuned to the scattering maximum
at 778 eV with the photons being right circular polarized.

First, the sample is investigated after it was exposed to an external magnetic field with field-direction
parallel to the sample surface. After removal of the field the domains are aligned in stripes [43]. Hence,
the sample has a similar structure as the test sample in the former section. This is confirmed by the
speckle pattern obtained from coherent scattering in transmission geometry: The intensity pattern shown
in Fig. 4.4(a) clearly shows two centro-symmetrically arranged magnetic satellites around q = ±25 µm.
They correspond to the period of the magnetic domains of approximately 250 m and are aligned on a
axis through the specular peak (q = 0). This alignment indicates a stripe-like pattern of the magnetic
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domains. Additionally, the Fraunhofer-rings from the 1.2 µm circular sample pinhole can be observed
and the high-frequency modulation of the ring intensity is due to pinhole-reference hole interference.

The stripe-like domain structure is also confirmed by the autocorrelation, Fig. 4.4(b). Of course, the
autocorrelation shows a twin image centro-symmetrically located around the center. But to show more
details the image is zoomed to one of the twin-images. As the reference hole is smaller than the period
of the domains the autocorrelation reveals the overall domain structure. Four black and three white
domains are clearly observable. The distance of the reference hole from the sample hole is as large as the
summed diameter of the two pinholes. Hence, the Patterson image shows an overlap of the sample
area with the central convolution area that disturbs the lowest black domain and part of the neighbored
white domain.

Figure 4.4: Reconstruction of complex-valued magnetic domain sample. (a) Scattering intensity of the
CoPt multilayer sample. The dimensions of the image axes are given in in-plane momentum transfer
from −70µm−1 to 70µm−1 in both directions. (b) The corresponding autocorrelation as obtained from
the measured intensity. The magnetic domain pattern is visible. Only one of the twin-images is shown.
(c) shows the resulting object after performing the iterative ER algorithm. The parallel structure of the
domain is clearly observable. (d) The result from (c) is convolved with a disk of the size of the reference
pinhole to check the consistency of the result with the image in the autocorrelation function.
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As described in the former section the autocorrelation obtained from the measured scattering intensity
is considered as a good first guess of the magnetic structure. This knowledge about the sample is used as
input for the reconstruction algorithm. From Fourier transform the Fourier phase is obtained and taken
as starting phase. The same algorithm procedure including the same constraints as above are engaged
for the following reconstruction. The result of the phase retrieval algorithm is shown in Fig. 4.4(c).
The stripe domains are clearly visible. In the lower left part of the circular area the stripes are fringed
and have less sharp edges than in the right part. The resolvable sample structure is about r = 52 nm.
Each pixel of the reconstruction image covers a square of 20 nm lateral size. This is 2.5 times smaller
than the possible resolution. This might cause artifacts by the reconstruction procedure like the fuzzy
domain boundaries. The four black domains that are already visible in the Patterson map are sharply
recovered by the algorithm. The overlap region shown in the Patterson image has been removed and
an additional white domain appears in the reconstructed magnetic structure.

Applying an external magnetic field perpendicular to the CoPt multilayer surface by saturating the
domain magnetization and removing the field causes the domains to decay into a labyrinth structure
(e.g. cp. Fig. 2.4(c)) [14, 43]. This change in magnetic domain arrangement is also observed by the
following coherent scattering experiment. A permanent magnet of approximately 1 T is manually
approached close to the CoPt sample membrane such that the stray field saturates the magnetization in
direction of the surface normal. The saturation field of the CoPt domains is > 1.1 T [14]. After removal
of the NdFeB-magnet the magnetization returns to its remanent state while rearranging the domain
pattern. This is confirmed by the scattering intensity taken from the domain pattern and plotted in
Fig. 4.5(a). In contrast to the two aligned satellites in Fig. 4.4(a) the magnetic intensity is distributed
more homogeneously in the circular area. This indicates that any orientation of the domains can be
found in the sample structure like it is the case for labyrinthine arrangements. Again, the Fraunhofer
diffraction rings of the sample hole are visible and the interference fringes of the reference and the sample
hole can be observed.

The average width of domains arranged in stripes is smaller than the one for randomly arranged
domains [43]. This has also been measured in the presented scattering experiments. In Fig. 4.6 a
radial profile of the speckle pattern is plotted for the stripe-like arrangement (solid line) and the worm-
like arrangement (dotted line). The scattering maximum of the domains is visible revealing a certain
width that indicates a distribution of domain periods and widths. For the parallel aligned domains the
magnetic scattering peak is slightly moved towards higher momentum transfer, i.e. smaller real space
structure, compared to the profile of the worm-domain scattering.

The autocorrelation obtained from the intensity measurement shows the new domain pattern (Fig.
4.5(b)). The domains are clearly arranged in different directions. The width of the domains is approxi-
mately 150 nm. The Patterson image is used for reconstruction of this object by calculating the initial
Fourier phase as described in the former section. The reconstructed result is plotted in Fig. 4.5(c). In
the center of the image the domain structure reveals bent shapes and only a few parallel structures at
the boundary of the image are left. One can find slight similarity to the autocorrelation. The fringed
edges of the domains in the center cannot be expected to reflect the real structure. The reason is that
rough domain wall surfaces increase the static energy. Therefore, rough interfaces are less stable than
smooth boundaries. Again, the fuzzy boundaries may be artifacts caused by the algorithm that recon-
structs each pixel with a spatial dimension of 20 nm whereas actually the smallest resolvable structure is
approximately r = 52 nm. I.e. an uncertainty of approximately 3×3 pixel remains in the reconstructed
object.

Finally, a 1.6 T field is applied perpendicular to the sample surface because the magnetization might
not be saturated with the former 1 T permanent magnet. After returning into remanent state the
domains are measured again, Fig. 4.7(a). This time the magnetic domains are disordered. From the in-
tensity measurement the autocorrelation of the domains structure is calculated and shown in Fig. 4.7(b).
The arrangement of the domains is different to that of the former magnetization process (cp. Fig. 4.5(b)).
The reconstruction is plotted in Fig. 4.7(c).
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Figure 4.5: (a) Scattering intensity after temporarily exposing the sample to a 1 T magnetic field per-
pendicularly applied to its surface. Units: in-plane momentum transfer from −70µm−1 to 70µm−1 in
both axes. (b) The corresponding autocorrelation as obtained from the intensity. The magnetic domain
pattern is visible. (c) The reconstructed object after 500 cycles of the ER algorithm. (d) The convolution
of the result with the disk corresponding to the size of the reference hole.
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Figure 4.6: Small angle scattering from aligned (solid line) and labyrinthine (dotted line) CoPt domain
patterns. The scattering is obtained from the measured two-dimensional scattering patterns: Aligned
domain state (solid) by profile cut through image shown in Fig. 4.4(a); Labyrinth state (dotted) by
angular integration of the pattern shown in Fig. 4.5(a). For the stripe domain sample 3 orders of the
magnetic scattering are observable. The peaks is slightly shifted towards higher q than for the worm-like
state indicating the smaller domain width.

Conclusion - the scattering experiments and results of reconstruction confirm all the behaviour of
the CoPt multilayer domains: The application of a saturating field perpendicular to the sample surface
causes the domains to decay into a labyrinth structure. The domain period is different for stripe and
worm domains as it has been seen in the scattering pattern.

4.2.1 Discussion and uniqueness problem of the solution

In general, the reconstruction of complex-valued objects has multiple solutions (uniqueness problem)
[60, 68]. One feature to reduce the number of possible solutions is the knowledge of a tight support
as it was used in the reconstructions presented. It has been shown that a tight support can force the
algorithm to the correct solution [68]. Upon the presentation of the images of the magnetic structures
obtained by the phase retrieval algorithm one must ask whether the solutions are unique and reliable.
Thus, a reliability criterion is proposed in this section and discussed.

The size of the reference hole is smaller than the average width of two oppositely magnetized domains.
Consequently, the autocorrelation reveals the main shapes of the real space structure. The autocorrela-
tion can be considered as the convolution of the magnetic domain structure with the reference hole. If
the result of the phase retrieval algorithm is convolved with a structure that corresponds to the reference
hole then it should be similar to the autocorrelation. This idea is realized in plot (d) of each figure,
Fig. 4.4 to Fig. 4.7 where the reconstruction is convolved with a disk that corresponds to the size of the
reference hole.

The convolved result in Fig. 4.4(d) and the autocorrelation in (b) show good congruence. The reli-
ability is given for this object. The number of stripes and their orientation are consistent in (b) and
(d). The object is reconstructed although there may be doubts about the fine structure. To present
a numerical estimate of the congruence, the pattern correlation of the convolved reconstruction image



80 CHAPTER 4. RECONSTRUCTION OF MAGNETIC DOMAIN STRUCTURES

Figure 4.7: (a) Scattering intensity after temporarily exposing the domains to a 1.6 T magnetic field.
This time the scattering pattern is relatively spreaded. Units: in-plane momentum transfer from
−70µm−1 to 70µm−1 in both axes. (b) The corresponding autocorrelation as obtained from the in-
tensity. The magnetic domain pattern is visible. (c) The resulting object after 500 cycles of the ER
algorithm. (d) The convolution of the reconstructed object.



4.2. RESULT - FIRST RECONSTRUCTION OF UNKNOWN MAGNETIC STRUCTURES 81

and the Patterson map is calculated according to:

γI =

∑
h,k(Mhk − M̄hk)(Nhk − N̄hk)[∑

h,k(Mhk − M̄hk)2 ·
∑
h,k(Nhk − N̄hk)2

]1/2 ,
where Mhk and Nhk are the corresponding pattern matrices. The correlation of the Fourier transform
image and the phase retrieval pattern is γI = 0.95, confirming the congruence.

The next domain structure shown in Fig. 4.5 is more complex than the first one. The convolution of
the result with the reference structure (Fig. 4.5(d)) corresponds to the autocorrelation obtained from the
scattering intensity. The correlation value is γI = 0.90. Most part of the convolved domain pattern show
the same features as the Patterson map. However, some deviations can be observed. For example,
the autocorrelation (b) shows a U -shaped black domain in the upper left region whereas the convolved
reconstruction just shows the lower and right branch of that U -form.

For the last reconstruction the convolution Fig. 4.7(d) shows some similarity with the autocorrelation
but cannot clearly be declared as coinciding. For example, the autocorrelation shows a closed white
domain coming from the center of the left side and being bent to the upper edge of the image. The
result as well as the convolution (d) contain the horizontal part of that domain but it ends in the center
of the circle. Nevertheless, the numerical correlation is γI = 0.93. The high value indicates a good
agreement between both patterns. That can be ascribed to the same correlation width of the domains
in both resulting images, i.e. the patterns are similar on a certain lengths scale that corresponds to the
domain width.

Finally, on one hand the results given here show successful reconstruction for simple structures and
the obtained object is reliable. On the other hand artificial structures are induced by the reconstruction
algorithm. Whether the correct solution has been obtained can be tested by comparison of the auto-
correlation pattern and the reference-hole convolved reconstruction pattern. A numerical correlation
value could be calculated for the solution. This value could also be used as a criterion to test a series
of solutions. If the reconstruction procedure is varied by e.g. different values of β (the HIO parameter,
see eqn. 3.5) or used with different supports during runtime, the result may be different each time.
Whether one of the obtained possible solutions is the correct one can then be tested by a maximum of
the correlation value.

For all experiments the autocorrelation obtained from the measured scattering intensity by inverse
Fourier transform is very reliable revealing already the main structures. The resolution of the Patter-
son image is only limited by the size of the reference hole.

For further experiments the microstructuring techniques may be engaged to create non centro-
symmetric supports, e.g. a non-equilateral triangular or a circle with lateral bulges. Centro-symmetric
supports may cause stagnation of the reconstruction algorithm and, hence, prevent from obtaining the
correct result. The reason for stagnation is that for centro-symmetric shapes the actual image ar(r)
and the translated twin-image ar(r− r0) are equally probable. This may cause the reconstructed result
to be a mixure of both [68].

In a way, the results of this magnetic reconstructions are preliminary. The size of the reference hole
used in these experiments allows for considering the autocorrelations of the objects to be reliable. They
show a blurred image of the actual objects. Further reconstruction procedures generally increase the
resolution of the images but at the cost of less reliability of the obtained object. More effort has to be
done in decreasing the size of the reference hole to come closer to the limit of holography where the
phase information is encoded in a fringe pattern of the scattering intensity [68]. Then the object is
easily obtained from one inverse Fourier transform.





Chapter 5

Summary

The main subject of this work is the reconstruction of the real-space structure of ferromagnetic domain
patterns from their coherent magnetic scattering intensity. Exploiting the X-Ray magnetic circular
dichroism (XMCD) effect, a contrast between oppositely magnetized domains of CoPt multilayers is
induced to obtain small angle scattering (SAS) from the spatial domain distribution. The CoPt multi-
layer system reveals an magnetic anisotropy that is perpendicular to the film surface and, hence, allows
for strong dichroism effects in transmission geometry, i.e. with perpendicular incidence of the radiation.
Using coherent Soft X-rays permits to record a Speckle intensity pattern that contains all information
about the individual domain structure beyond statistical information that is already obtained from
incoherent small angle scattering. An algorithmic reconstruction procedures allows for calculating the
spatial domains structure from the scattering intensity pattern by solving the known phase lost prob-
lem. The reliability of the procedure is tested by retrieval of an aperture pattern that is drilled into an
opaque Au-film. After the successful test the procedure is extended to the magnetic domain pattern.
First reconstruction results of ferromagnetic domains are obtained and it is shown that the domain
arrangement changes by temporary and consecutive exposures to an external magnetic field.

In the first part of the thesis the pre-requisites for successful reconstruction of magnetic domain pat-
terns are introduced: coherence and resonant magnetic scattering. Coherence has to be produced befor
starting the experiments. The method of spatial and spectral filtering is demonstrated and quantita-
tively shown. Statistical properties of Speckle patterns - the granular structure of scattering intensity
patterns from coherently illuminated objects - have been introduced and illustrated by own experimental
results.

The basic dependencies of the resonant magnetic scattering amplitude are investigated concerning
variation of polarization and energy. The interaction of pinhole diffraction and magnetic domain scat-
tering depends strongly on the state of polarization of the incident light. Circular polarized X-Rays
cause strong interference effects between both the diffraction from the large sample shapes (the pinhole)
and the small angle scattering from magnetic domains. The individual scattering pattern is different
for right (RCP) and left circular polarized (LCP) light and the sum of both yields the same pattern as
it can be recorded if linear polarized light is used. Furthermore, the strong interference effects vanishes
for linear polarization and, likewise, for the sum of the scattering patterns using RCP and LCP light.

The magnetic scattering patterns that are obtained by consecutively adjusting the wavelength of the
incident soft X-ray photons across the Co L3 absorption edge remain unchanged. To get a quantitative
measure of a potential change in the Speckle pattern, a pattern correlation value is calculated as func-
tion of energy. Pure magnetic scattering reveals constant values upon energy variation across the L3

resonance. Only interference between the pure magnetic scattering and the pinhole diffraction cause a
change of the pattern.

The second part of the work is dedicated to the reconstruction of real-space structures from their
diffraction or scattering pattern. This technique emerges as lensless imaging that allows to image
nanostructures with the use of a simple experimental setup. The term ”lensless” expresses the fact that

83



84 CHAPTER 5. SUMMARY

no imaging lenses are used in contrast to microscopes. The reconstruction of diffracting objects like
a pattern of apertures in an opaque film is successful. The use of a reference hole that is drilled into
the same plane as the rest of the pattern turns out to be very helpful in the phase retrieval procedure.
The diffraction from the reference hole interferes with the diffraction of the aperture pattern. Hence,
the first inversion of the diffraction pattern by Fourier transform reveals already the rough shape of the
structures that have to be reconstructed. This ”knowlegde” about the real-space structure is used to
drive the algorithm and supports it to converge towards the correct solution.

The use of the reference hole is established as a general approach also for reconstructing the magnetic
domain pattern. First, a test sample of parallel aligned domains is used to check the algorithm. As the
test domains are imaged by a transmission X-ray microscope it is possible to compare the result from the
phase retrieval procedure with the actual structure. The same reconstruction algorithm is then applied
to unknown magnetic structures. The first scattering pattern of the sample reveals a parallel alignment
of the domains because of special arrangement of the scattering maxima. Due to the existance of the
reference hole the first Fourier transform inversion shows already the correct number and orientation of
the domains. This low resolution Patterson image is included into the algorithm to force convergence.
After several hundred iteration cycles the result is obtained. It shows a higher resolution than the former
Patterson map but unfortunately some artifacts that are caused by the algorithmic procedure.

The same sample is temporarly exposed to a saturating external magnetic field. After being in
remanent state the scattering reveals a new domain arrangement as it is expected from literature. The
Patterson image confirms this impressively. The following reconstruction procedure enhances the
spatial resolution but also induces artifacts that may limit its reliability.

Consequently, the reconstruction of magnetic objects from their coherent scattering pattern is shown
to be possible. Further effort has to be put on enhancing the quality of the resulting images. A
promising approach is the use of a reference hole. With shrinking diameter of the hole this method can
be recognized as Fourier transform holography. Recent results from our workgroup demonstrate the
successful holography of magnetic domains with structure sizes in the nanometer range but the results
are not subject of this work. The use of coherent scattering patterns to extract the real-space structure
could find application in microscopy by enhancing the spatial resolution of microcopes. To achieve
this a scattering pattern of the object is recorded with high scattering angles. To force convergence,
a microscopy image is used as input to the algorithm that calculates the highly resolved real-space
structure from the Speckle pattern.



Appendix A

Intensity Function of a Double
Pinhole

A.1 Fraunhofer diffraction from a single pinhole

The diffraction pattern from a circular aperture of diameter d = 2a can analytically be described
by [18,20,49],

I(q) = 2
(

2J1(qa)
qa

)2

(A.1)

where J1 is the Bessel function of first kind (see Fig. A.1). This is only valid for the so called
Fraunhofer limit where the distance L of the observation plane from the aperture is large compared
to the size of the pinhole, namely [20,49],

a2 � λL (A.2)

The minima and maxima of the Bessel-function are shown in Tab. A.1,

qa
(

2J1(qa)
qa

)2

0 1 Max.
1.220π 0 Min.
1.635π 0.0175 Max.
2.233π 0 Min.
2.679π 0.0042 Max.
3.238π 0 Min.
3.699π 0.0016 Max.

Table A.1: Maxima and minima of the Bessel-function of first kind J1 [20].

The radii of the first Fraunhofer minima follow to be [20],

ω0 = 0.610
λ

a
, ω1 = 1.116λa , ω2 = 1.619

λ

a
. (A.3)

The zero-order maximum with radius ω0 is called Airy-disc.

A.2 Fraunhofer diffraction from a double pinhole

The diffraction pattern of two point sources separated by D is proportional to I(q) ∝ cos(qD/2) (see
Fig. A.1). To derive the diffraction pattern of two circular apertures of diameter d and separation D
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the two point sources are substituted by the circular apertures. Then the resulting diffraction intensity
is a modulation of the sinusoidal intensity distribution by the Bessel-function eqn. (A.1) [20],

I(q) = 2
(

2J1(qa)
qa

)2

(1 + |µ12| cos(qD)) , (A.4)

where |µ12| is the mutual degree of coherence that is unity for perfect coherence. Eqn. (A.4) is
plotted in Fig. A.1. The degree of coherence is subject to the next section.

I(
q)

q
2π/D-2π/D 0

x

0 D/2-D/2

I(
q)

q

2π2π 0.61-0.61
d d

x
-d/2 0 d/2

I(
q)

q
-0.61 2π2π

dd
0.612π/D-2π/D

Fourier transform

Figure A.1: Left column: two point sources separated by D and their diffraction pattern. Right column:
circular aperture of diameter d and its Fraunhofer pattern. The sinusoidal diffraction intensity from
the two point sources is modulated by the Bessel-function upon substituting the point sources by two
circular apertures.

A.3 Complex degree of coherence

Coherent light sources can also be characterized by transverse correlation of the wave amplitudes in the
observation plane. The correlation may be expressed as following [18,20,22],

µ12 =
〈E∗(r1)E(r2)〉

{〈|E(r1)|2〉〈|E(r2)|2〉}1/2
, (A.5)
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where the scalar electric fields are

E1 '
Eξe

ikzeikξ
2/2z

z
(A.6)

and

E2 '
Eξe

ikzeikξ
2/2zeiψe−ikξθ

z
. (A.7)

ξ is the coordinate in the source plane and z the distance from the source plane to the detection plane
(see Fig. A.2). ψ is the phase difference between two possible paths and θ is the diffraction angle. For
large distances z compared to the source size and the detection area the denominator of eqn. (A.5)
simplifies to,

√
〈|E(r1)|2〉 '

√
〈|E(r2)|2〉 '

|Eξ|
z
. (A.8)

Hence, the mutual degree of coherence or the mutual correlation function for a single point source
can be written as,

µ12 =
|Eξ|2 eiψe−ikξθ

|Eξ|2
. (A.9)

Extended light sources can be considered as the incoherent sum of single point sources, simply, by
integrating over the area of the source and the degree of coherence for quasi-monochromatic extended
light sources becomes,

µ12 =
∫ ∫

dξdηI(ξ, η)e−ik(ξθx+ηθy)∫ ∫
dξdηI(ξ, η)

eiψ, (A.10)

where I ∝ |E|2. This is the result of the known van Cittert-Zernike theorem. Hence, the mutual
degree of coherence can be considered as the normalized two-dimensional Fourier transform of the source
intensity distribution of uncorrelated point sources [18,20,22,49].

Figure A.2: Geometry for the calculation of the van Cittert-Zernike theorem. (ξ, η) are the coordi-
nates in the source plane and (x, y) are the coordinates in the detection plane [18].

Point source: Going back to a single point source eqn. (A.10) reduces to,

µ12 = eiψ. (A.11)

Thus, for a point source the degree of coherence is |µ12| = 1, i.e. the waves have a perfect phase
relation ψ across the observation plane.
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Circular aperture: A circular distribution of radius a of incoherent point sources has the following
degree of coherence,

µ12 =
2J1(kaθ)
kaθ

eiψ. (A.12)

The circular area of uncorrelated point sources is equivalent to a incoherently illuminated pinhole of
the same size [18].

Double pinhole: A nice application for the degree of coherence can be found for two apertures
separated laterally by distance D and illuminated by an extended source of radius ρ. Born and Wolf
derived the corresponding degree of coherence [20],

|µ12| =
∣∣∣∣2J1(ν)

ν

∣∣∣∣ , (A.13)

where

ν = k
ρD

L
, (A.14)

and L is the distance between the two pinholes and the light source. In Fig. A.3 the degree of
coherence is plotted as function of the separation D for the two apertures. Hence, the two pinholes can
be used as a coherence detector if D can experimentally be varied.
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Figure A.3: Plot of the degree of coherence for an extended light source. |µ1| is plotted as function of
the separation D of the two scanning apertures.

In Fig. A.4 the diffraction intensity from two pinholes eqn. (A.4) is plotted for various degrees of
coherence. With decreasing transverse coherence length at the site of the two pinholes the visibility of
the high-frequency interference also decreases.
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Figure A.4: Diffraction patterns from a set of two pinholes illuminated from a light source of decreasing
degree of coherence 1.0 ≥ |µ| ≥ 0.15.
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Appendix B

CoPt multilayer

The main property of the CoPt multilayer systems is their magnetic anisotropy to be perpendicular to
the layer surface [41, 43, 69]. To reduce magnetostatic energy this magnetic films form stripe domains
of characteristic width which is determined by the film thickness. The structure of the domains is
influenced by their magnetic field history and a perpendicular applied field causes a labyrinth of worm-
like domains with random orientation (cp. Fig. B.1). The average domain width of the aligned state is
smaller than for the labyrinth state [43].

To allow transmission experiments the CoPt multilayers are sputtered onto a transparent SiN mem-
brane coated on a Si-wafer. The wafer is provided with a etched facet forming a µm2-size aperture.
Typically, an 200 Å underlayer of Pt is applied before the actual CoPt multilayer stack is sputtered.
For most experiments presented in this thesis the Co layer has a thickness of 30 Å and the Pt layer
is 7 Å thick. Finally, a 20 Å Pt caplayer protects the stack from oxidation [43]. A sketch of a typical
sample is shown in Fig. B.1.
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Figure B.1: (a) Labyrinth and (b) aligned state of the magnetic CoPt domains. The images are taken
by magnetic force microscopy (MFM) [43]. (c) Sketch of the CoPt sample layer stack. A Si wafer is
etched to form the facet. The SiN membrane is coated onto the wafer, thus, allowing transmission at
the facet site. Typically, a Pt underlayer is applied followed by alternating layers of Co and Pt. Finally,
the multilayer is capped by a thin Pt film [43].



Appendix C

Experimental devices

C.1 The UE56-1/SGM beamline setup at BESSY

The Research Center Jülich has built an own beamline branch at the BESSY II synchrotron facility.
The radiation source is a helical undulator with a magnet period of 56 mm and 30 of such magnet pairs.
The two rows of magnets can be shifted against each other to provide linear polarization vertically and
horizontally to the storage ring plane as well as circular polarized x-rays (see Fig. C.1). A switching
mirror unit (SMU) at 17 m downstream of the undulator allows to select which branch of the two
possible beamline branches is fed with the undulator radiation (see Fig. C.1). The monochromator unit
consists of an entrance slit, the grating stage and an exit slit. The VFM focusses the source radiation
onto the entrance slit and the spherical monochromator grating focusses the beam to the exit slit.

C.2 The Micro-Channel Plate Detector

The position sensitive micro-channel plate (MCP) detector that has been used for the experiments is a
3300 MCP/RAE Sensor operated with a Position Anaylzer Model 24011. The detector is sensitive to
single-event counting of charged-particles and (EUV, soft X-ray) photons. A photon conversion plate
coated with CsI initiates the electron cascade that is amplified in the MCPs. We used the 5 channel-
plate option for the detector that allows for 400× 400 resolvable elements across the 40 mm× 40 mm
active area of the resistive anode (RAE). The position is calculated by measuring the ratio of the charge
pulse amplitude at the four edges of the anode plate.

Two consecutive events can be separated by the detector system if they occur with a time lag of at
least the effective dead time of 10 µsec (see Fig. C.3). The advantage of this type of detector is the
fast acquisition time with single-event counting. It can also be used as total yield detecotr to allows for
fluorescence spectroscopy experiments. The transmission and scattering spectra presented in this work
are acquired in the corresponding total yield mode.

An disadvantage is the relatively low spatial resolution. Furthermore, the electronic system can
generate distortion of the measured spatial intensity distribution by possible errorneous calculation of
the spatial position of each event. Also the detector system including the channel plates and the CsI
photon conversion plate are very sensitive to humidity and excessive intensity of radiation. Both can
rapidly destroy the detection capabilities.

C.3 The Charge-Coupled Device Camera

The CCD camera2 used for the experiments is a Princeton Instruments device, model PI•SX:2048.
The camera chip is of Marconi CCD42-40 type. It is back-illuminated and sensitive to (soft) x-rays with a
quantum efficiency of 80% for 800 eV photons. The chip provides 2048×2048 pixels of 13.5 µm×13.5 µm

1All specifications from: www.quantar.com
2The reference for all camera specifications is: www.roperscientific.com

93



94 APPENDIX C. EXPERIMENTAL DEVICES

S
ch

em
a

 J
ü

lic
h

e
r B

E
S

S
Y

-2
-b

ea
m

lin
e

 
M

a
ss

ta
b

 1
00

:1
 (

1
cm

=
1m

) 
 

 
 

 
 

 

1
7

5
o

  

17
m

20
m

2
5m

3
0m

35
m

1
.4

m

(R
ic

h
tu

n
g

=
-

5
o

)
( R

ic
h

tu
n

g
=

+
1

o
)

(R
i c

h
tu

n
g

=
+

5
o

)

17
m

20
m

2
5m

3
0m

35
m

1
7m

2
0m

2
5m

3
0m

35
m

T
op

-V
ie

w

S
id

e-
V

ie
w

E
xi

t S
lit

M
on

oc
hr

om
at

or
E

nt
ra

nc
e 

S
lit

V
er

tic
al

 F
oc

us
si

ng
 

M
irr

or
S

w
itc

hi
ng

 M
irr

or
 

U
ni

t (
S

M
U

)

S
. C

ra
m

m

E
xp

er
im

en
t

Figure C.1: Scheme of the UE56/1 SGM beamline of BESSY II. The distances on the scale are given
with respect to the site of the undulator. Courtesy of S. Cramm, Research Center Jülich. The small
image shows a scheme of the modes of the UE56/1 undulator at BESSY II. It provides horizontal and
vertical linear polarization as well as circular polarization. The image is taken from BESSY information
pages on www.bessy.de.
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Figure C.2: Dispersion of the monochromator of beamline UE56/1 SGM at BESSY II. ”alpha” is the
incident angle of the beam on the monochromator grating. From the left axis the desired energy of the
photons is read. For the corresponding energy the angle ”alpha” can be determined for each grating.
With the value of ”alpha” of the illuminated grating the slit dispersion in meV/µm can be extracted
from the dotted lines. Courtesy of S. Cramm, FZJ.
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Figure C.3: Input rate (counts per second in Hz) versus output rate of the 5 micro channel plate detector
with 10 bit analog-digital converts (ADC). At 105 Hz the detector dead time limits the time-lag between
two consecutive events. Image is taken from www.quantar.com.
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size. The dynamic range is 16 bit digitization. To reduce noise the chip is thermo-electrically cooled to
−75◦C with a dark current of 14 electrons per pixel and hour.

The camera is mounted on a CF63 conflat flange permitting high vacuum experiments. Data acqui-
sition is realized using an external controller unit and Princeton Instruments computer software.
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Appendix D

The matrix formalism of the state of
polarization

D.1 Stokes-Vector and Poincaré’s representation of polariza-
tion

The basic idea of Poincaré’s representation for the polarization is to create a cartesian system with
the Stokes parameter P1, P2 and P3 as coordinates

1

( [10,70]). The resulting vector P is called the polarization vector. Its length represents the degree of
polarization, i.e. for P = 0 the light is completely unpolarized and fully polarized light yields to P = 1.
The three parameters describe each a different state of polarization with respect to the scattering plane
(Fig. D.1).

Figure D.1: The Poincaré sphere. The polarization is completely described by the Stokes parameter
P1,P2 and P3, and by definition |P| ≤ 1. [33]

P3 represents the perpendicular or σ (P3 = +1) and parallel or π (P3 = −1) component of the
polarization regarding the scattering plane. P2 stands for the circular polarization. Completely right-
circular polarized light yields to P2 = +1 whereas completely left-circular polarized light yields to
P2 = −1. The first parameter describes the contribution of 45◦-linear polarization.

1It shall be emphasized that the three coordinate axes do not correspond to real-space directions.
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Now, let us consider what happens to the polarization vector P if linear polarized light interacts with
a magnetized sample ( [70]). The sample shall be characterized by a filter-matrix F̃2. It takes into
account the asymmetry of absorption A and the difference in phase velocity ε for right- and left-circular
polarized light. Both variables are depending on the path length of the light through the sample. The
linear polarized light is described by a superposition of two partial waves with opposite helicity and its
polarization vector is: P = (0, 0, 1). The resulting polarization is:

P′ = (
√

1−A2 sin ε, A,
√

1−A2 cos ε).

It is instructive to consider the case where the asymmetry vanishes A = 0. Then the polarization
precesses in the (P1, P3)-plane: P′ = (sin ε, 0, cos ε). The state of polarization remains linear and the
plane of polarization rotates. Now, we assume that there is no different phase velocity, ε = 0 and the
asymmetry is maximum, A → 1. Then the resulting vector is P′ = (0, 1, 0), i.e. the light is perfectly
circular polarized after the interaction.

In general, both asymmetry and different phase velocities apply. Thus, during the interaction with
the magnetic sample the polarization moves from the plane of linear polarization to the pole of circular
polarization describing a spiral. Between the “linear” plane and the pole of the Poincaré-sphere the
vector P represents elliptical polarized light. As a result, both effects, for example, Faraday rotation
and an increasing elliptical component of the light polarization can be recognized.

D.2 Density Matrix

To make easy the calculation of the polarization depending cross-section we use the formalism of the
density matrix µ [10, 33]. In a short way, the necessary equations shall be proposed here.

The density matrix is a 2×2-matrix and represents all states of polarization if written as:

µ =
1
2
(1 + P·σ), (D.1)

where 1 is the unit matrix, P the polarization vector (cp. Fig.D.1) and σ represents the Pauli

matrices: σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
. This defines µ,

µ =
1
2

(
1 + P3 P1 − iP2

P1 + iP2 1− P3

)
. (D.2)

The polarization P can be calculated by
P= tr(σµ) (D.3)

namely

P1 = tr(σ1µ) (D.4)
P2 = tr(σ2µ) (D.5)
P3 = tr(σ3µ). (D.6)

If the state of polarization of the radiation, |ψ〉 is known within a probability p then the expectation
value of a matrix operator M̃ is [33]: 〈

ψ
∣∣∣M̃∣∣∣ψ〉 = tr(µM̃) (D.7)

The scattering cross-section dσ
dΩ = |f |2 can then be calculated by [10,33]:

2for details see [70]
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dσ

dΩ
= tr(M̃µM̃†). (D.8)

Finally, the new polarization with eqn. (D.3) is

dσ

dΩ
P ′ = tr(σµ′), (D.9)

where µ′ = M̃µM̃†.

D.3 Derivation of matrix representation of the polarization de-
pendent scattering factor

It is very common to describe the state of polarization in a basis of two orthogonal vectors êσ and
êπ. êσ is perpendicular to the scattering plane spanned by the initial and final wavevector q̂ and q̂′,
respectively (cp. Fig. 2.1), while êπ lies in this plane. In this basis it is possible to write eqn. (2.4) in a
matrix-form as proposed by de Bergevin and Brunel ( [2])

ê′ · ê =
(

ê′σ · êσ ê′σ · êπ
ê′π · êσ ê′π · êπ

)
(D.10)

An equivalent expression is given for ê′ × ê. With this form we have an easy representation for the
4 possible scattering channels: (

σ → σ π → σ
σ → π π → π.

)
(D.11)

The chosen geometry (Fig. 2.1) causes êσ and ê′σ to be always parallel, thus: ê′σ · êσ = 1, ê′σ× êσ = 0.
The two in-plane vectors enclose an angle of θ+θ′. Finally, some geometric considerations lead to [10,32]:

fresn =
3
4q

〈(
1 0
0 q̂ · q̂′

)〉
[F 1

+1 + F 1
−1]

−i 3
4q

〈(
0 q̂
−q̂′ q̂′ × q̂

)〉
· m̂n[F 1

+1 − F 1
−1]. (D.12)

m̂n = (m1,m2,m3) is the direction of the magnetization. Let us introduce matrix operators for the
charge and magnetic term,

〈
M̃c

〉
=

〈(
1 0
0 cos θ′

)〉
F (0) (D.13)〈

M̃m

〉
= −i

〈(
0 m3

−m1 ∗ sin θ′ −m3 ∗ cos θ′ −m2 sin θ′

)〉
F (1), (D.14)

where the q̂ and q̂′ terms are evaluated using the transmission scattering geometry in Fig. 2.1 and
the abbreviations F (0) = [F 1

+1 +F 1
−1] and F (1) = [F 1

+1−F 1
−1] are used. Then eqn. (D.12) can be written

in a compact form,

fresn =
3
4q

(〈
M̃c

〉
+
〈
M̃m

〉)
. (D.15)
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Shall εσ and επ be a 2-dimensional basis of linear polarized light. Then εσ =
(

1
0

)
represents

perpendicular and επ =
(

0
1

)
represents parallel polarization with respect to the scattering plane. A

linear combination of the basis vectors allows to define the state of polarization: |ψ〉 = µ1

(
1
0

)
+

µ2

(
0
1

)
. Now, we can easily calculate the contribution of each partial wave to the scattering process.

Let us assume the polarization to be perpendicular to the scattering plane, thus: |ψ〉 =
(

1
0

)
.

Furthermore, a polarization filter allows to select the same partial wave after the scattering process, i.e.
we have σ → σ′ scattering. Now the scattering cross-section dσ

dΩ =
∣∣〈ψ′|

∑
n e

iQrnfn|ψ
〉∣∣2 reduces to:

dσ

dΩ
=
(

3
4q

)2
∣∣∣∣∣∑
n

eiQrn [F 1
+1 + F 1

−1]

∣∣∣∣∣
2

. (D.16)

The scattered intensity is only depending on the charge term and the magnetization of the sample
is not involved in the process.

Now, the polarization analyzer shall be turned to detect the π-light, only. For σ → π scattering we
get:

dσ

dΩ
=
(

3
4q

)2
∣∣∣∣∣∑
n

eiQrn (q̂′ · m̂n) [F 1
+1 − F 1

−1]

∣∣∣∣∣
2

. (D.17)

This time the charge scattering is surpressed and magnetic scattering can be observed.

D.3.1 Applying the density matrix

The scattering cross-section for known states of polarization before and after the scattering process

dσ

dΩ
=

∣∣∣∣∣
〈
ψ′|
∑
n

eiQrnfresn |ψ

〉∣∣∣∣∣
2

may be transformed with eqn.(D.7), (D.8) and (D.12)into:

dσ

dΩ
=

(
3
4q

)2

tr

(∑
n

eiQrn

{〈
M̃c + M̃m

〉
µ
〈
M̃c + M̃m

〉†})
=

(
3
4q

)2

tr

(∑
n

eiQrn

{〈
M̃c

〉
µ
〈
M̃†

c

〉
+
〈
M̃m

〉
µ
〈
M̃†

m

〉
+
〈
M̃m

〉
µ
〈
M̃†

c

〉
+
〈
M̃c

〉
µ
〈
M̃†

m

〉} . (D.18)

The first and second term represent the charge and pure magnetic scattering, respectively. The last
two terms describe the interference of charge and magnetic scattering.
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