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Modular chemical production is a tangible translation of the digital transformation of the process industry for specialty

chemicals. In particular, it enables the speeding-up of process development and, thus, a quicker time to market by flexibly

connecting and orchestrating standardized physical modules and bringing them to life (i.e., parameterizing them) with

digitally accumulated process knowledge. We focus on the specific challenges of chemical process and quality control,

which in its current form is not well suited for modular production and provide possible approaches and examples of the

change towards direct analytical methods, analytical model transfer or machine-supported processes.
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1 Introduction

As early as the 1970s, there are approaches that propagate a
shortened market introduction of chemicals and pharma-
ceuticals, e.g., by skipping scale-up steps in process develop-
ment [1]. The vision of that time has proven to be extreme-
ly valuable, especially in the production of specialty
chemicals. European companies in the process industry are
increasingly pushing into the market for specialty chemicals
in order to benefit from the higher profit margins in this
sector. The complexity of the sector could prove to be an
advantage for Europe and could benefit from the technical
know-how of local producers. More recently, the approach-
es have been systematically taken up, including in particular
the ‘‘50 % idea’’, which was born at the Tutzing Symposion
2009 more than ten years ago [1, 2]. This concept is based
on the assumption that the time to market of a product
increasingly determines its economic success. Its aim is to
reduce the time of development from product to production
line in only half the time. This objective can be achieved by
introducing and applying a number of concepts, such as
– development of reusable standard modules,
– knowledge-based process design methodology,
– integration of experiment, modeling and design,
– modularization of the planning process,
– use of modular construction kits for laboratory equip-

ment, planning elements, design and construction,
– increasing the degree of standardization and use of open

standards,
– new concepts in automation technology, and
– numerical optimization instead of numerical simulation.

Just as old are the initial discussions on Industry 4.0 [3].
Industry 4.0 refers to the intelligent networking of machines
and processes in industry using information and communi-
cation technology. There are many ways for companies to
use intelligent networking. Among the possibilities are:
flexible production, convertible factory, customer-centered
solutions, optimized logistics, and use of data or resource-
saving circular economy.

This is done by using a digital representation of all prod-
ucts and production processes. Strictly speaking, the prop-
erties and requirements of products are networked in the
same way as the current settings and production recipes of
the machines with their digital images. The machines, in
turn, can use these digital images to select the optimum
production process for the individual product and start it at
the best time. This enables the optimization of operating
processes and even creates completely new business models.
There are many possibilities for companies to use such an
intelligent networking. Especially outstanding for the pro-
cess industry are: flexible production, convertible factories,
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and predictive maintenance. Flexible production is most
often translated with modular chemical production. For
large-scale synthesis of bulk chemicals following established
synthesis routes the conventional process development
routes still work, but especially for high-margin specialty
chemicals a high adaptability of processes and plants is
desirable.

2 Advantages and Challenges of Modular
Chemical Production

The factors for which a change to modular chemical pro-
duction proves to be particularly favorable and economical
[4–6] are outlined in Fig. 1. As mentioned at the beginning,
the main motivating factors are high flexibility in a volatile
market and a focus more towards individual customer-ori-
ented products. A typical field are specialty chemicals with
particularly high added value, e.g., up to concepts like per-
sonalized medicine in pharmaceutical production. Many
demands from the 50 % idea can also be implemented very
well in the modular approach, and they consistently bring
together the steps of process and product development from
R&D. With the separation of complex production plants
into modules and devices, such approaches can also be
applied advantageously in the brownfield sector. By increas-
ingly making use of the enormous advantages of microreac-
tion technology, such as the handling of very small quanti-
ties within a reactor, better heat dissipation or a much
faster-acting process control, it is possible to realize safety-
critical processes that would be inconceivable in a classical
batch approach. Local flexibility and geographical mobility
are another advantage of modular production. While tech-
nically feasible, current political situation of market-sepa-
rating behavior of nations shows possible barriers in the
realization of such concepts.

At the same time there are still some challenges that need
to be overcome. One challenge, but as well an enormous
opportunity, are open and standardized interfaces. While

the established manufacturers of automation technology
and equipment in particular have resisted this in order to
preserve their proprietary world, it has been the small com-
panies that have contributed to a fundamental rethink. In
the meantime, the message has arrived that open and stan-
dardized interfaces are in everyone’s interest and the piece
of the cake is getting bigger for everyone – especially as the
cake itself gets bigger.

Additive manufacturing [7, 8] is increasingly being used,
because it offers advanced design freedom for customer-
and product-specific reactors and analyzers for research
and industry. In near future, such instruments can be con-
sidered as the heart of upcoming production facilities that
perform automated chemical processes.

While the advantages of modular production are very
attractive in terms of equipment technology, two crucial ele-
ments are still missing, which are briefly outlined in the fol-
lowing sections. At first, a flexible automation concept is
required, because classical automation approaches are
unsuitable for the modular concept due to lack of flexibility
and high costs. On the other hand, monitoring specific
information (i.e., ‘‘chemical’’ such as physico-chemical prop-
erties, chemical reactions, etc.) is a mandatory prerequisite
to chemical process control especially if hazardous or short-
lived intermediates are being formed. In contrast, most
widespread sensors implemented today along with conven-
tional plant instrumentation are still non-specific. [9]

2.1 Flexible Automation of Modular Plants

Modular chemical production along with modular automa-
tion reduces the complexity in engineering, setup and main-
tenance by internal functionality, as mentioned before. The
classic hierarchical automation (automation pyramid), in
which centralized control is exercised from a process con-
trol system right down to the field level of sensors and
actuators with complex wiring and documentation, is no
longer applicable in a modular concept. In 2013, a ‘‘Modu-
lar Automation’’ working group was established in the ZVEI
[10] specialist area ‘‘Measurement Technology and Process
Automation of the Automation Division’’ with the aim of
cooperating closely with the NAMUR [11]. The working
group published their concept for modular automation
technology as white paper [12] that provides the required
flexibility for modular plants. Much has happened since
then, and considerable progress has been made from that
time.

There are currently very promising, technical solutions in
this context such as communication standards like OPC
UA [13], module type package (MTP) [14], data exchange
for the process industry (DEXPI), or concepts for fast gen-
eration and adaption of reliable models describing the pro-
cess (digital twin) [15].

A uniform protocol and a uniform fieldbus are required
for safe communication between all automation components.
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Meanwhile the standard OPC Unified Architecture (OPC-
UA) [16] is considered to be set and can be regarded as a
small triumph of industry 4.0. Non-ethernet field buses are
still dominant today against the background of a grown land-
scape in brownfield applications and the often very special
requirements for power supply and explosion protection.

In the figurative sense, OPC-UA is comparable to the
PDF standard, which defines the properties of graphical ob-
jects, e.g., print products. It is also independent of manufac-
turers or system suppliers, programming language, operat-
ing system or communication standard (e.g., fieldbus). The
German Federal Office for Information Security (BSI) con-
firmed already in 2016 that OPC UA can be used to imple-
ment IT-safe industrial 4.0 communication. [17]

While OPC UA already allows data and workflows to be
exchanged between automation components in a machine-
readable format and these can be networked with each oth-
er, the so-called module type package (MTP) goes a consid-
erable step further. Since 2014, Wago, an international sup-
plier of automation technology, has been working on a
concept for efficient individualization of process engineer-
ing systems together with TU Dresden and Helmut-
Schmidt-Universität Hamburg. It is intended to enable
manufacturers to combine autonomous modules into a flex-
ible configured unit and, thus, significantly reduce the time-
to-market of products. The decentralized intelligence for
modular applications (DIMA) concept [18] uses the para-
digm of service-oriented architecture (SOA) and builds on
the standardization approach of NAMUR working group
1.12. The MTP is a digital description of the plant module
and represents its functionality with all operational infor-
mation for integration into the process control system.
Therefore, it contains a vendor-neutral and functional
description of the automation features. It can be generated
by the engineering tool of the module. Through a simple
import of the MTP into the process control engineering of
the production plant the module can be easily integrated.
For example, by using MTP the HMI (human-machine
interface) of the module, which contains all static and
dynamic information, can be generated automatically with-
in the process control system. Furthermore, the MTP offers
the possibility of a service-based control. The NAMUR
specifies the MTP together with the ZVEI. [17]

Insufficient interoperability between computer-aided
engineering (CAE) tools makes it difficult to plan, build and
operate process plants across organizational boundaries,
e.g., between different companies or even business units
within the same company. For this reason, the DEXPI [19]
working group within the ProcessNet community aims to
develop a manufacturer-neutral exchange format for engi-
neering data and documents and to implement it in interfa-
ces of existing CAE tools. Currently, the focus is on the
exchange of P&I diagrams including graphical layout and
engineering data.

2.2 Interaction of the Observed Chemical Informa-
tion with Process Models

The provocative abstract suggested very simplified that pro-
duction modules are brought ‘‘to life (i.e., parameterizing
them) with digitally accumulated process knowledge’’. This
is precisely where we see the central challenge for modular
automation: How can process knowledge and operational
experience be brought into the lifeless modules? Further-
more, one of the visions of facilitated automation is hoping
to accomplish decision support systems for processes and,
in the end, even a troubleshooting if unforeseen deviations
occur. One could become philosophical here, because the
provision of module hardware will probably no longer be
the key competence of the process industry in the future. It
is exactly the orchestration and process knowledge that
keeps the manufacturer close to the customer and protects
him from becoming a contractor.

Instead, due to the high market requirements, nowadays
preference is given to reliable operation, which is anchored
in classical operational know-how. However, access to con-
sistently compiled data alone is not enough to generate pro-
cess understanding. The improvement of production
parameters, space-time yield or energy efficiency can only
be achieved by data- or knowledge-based models from the
basic data via a more accurate description of the material
on several scale levels.

To find an acceptable way to chemical process control
and for sensors and actuators to better meet the require-
ments of digital transformation and the associated tasks in
the future, they must be equipped with smart features. The
benefits of smart field devices in the process industry and
their communication options were first described in 2015
in the technology roadmap ‘‘Process Sensors 4.0’’ [20].
Recently, a position paper on sensor technology for the digi-
talization of chemical production plants was published [21].

For a holistic process analytical approach and such deci-
sion support systems, the semantic level (context informa-
tion brought together with sensor data) must be considered
beyond the pure interface definition (syntax, such as data
acquisition, data connectivity, and data integrity). Data
sources contain time-value pairs, but also discrete data from
various data storage systems, which today are supplemented
with increasingly complex, sometimes multidimensional
data, for example from image-based techniques. Multivari-
ate tools and algorithms are used for automated feature
extraction, such as the extraction of chemical information
from the above-mentioned data sources. Multivariate statis-
tics such as PCA (principle component analysis), PLS (par-
tial least squares) and LDA (latent discriminant analysis)
form the initial basis for data analysis. Data preprocessing
steps are mandatory and critical for these procedures. Mod-
eling is currently done manually and is very complex and
time-consuming.

The problem today is the non-optimal operation of pro-
cesses, since external influences (fluctuating raw material
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quality, T-influences by weather/energy supply) are not con-
sidered. Furthermore, no standardized interfaces between
field device/data source, model and control system have
been established yet. Specific data (i.e., chemical) are often
not available or accessible due to lacking infrastructure.

Possible solutions can be found by using more specific
data sources that become available through digital transfor-
mation. The temporary use of specific sensors, which may
be dispensable again after data acquisition, will also be an
important basis for the acquisition of context-related data
and will support the generation of soft sensors.

In the context of machine learning (ML) and artificial
intelligence (AI), there is currently some hope that data can
be used meaningfully without classical modeling. However,
the term ‘‘Big Data’’ as a prerequisite for data-driven evalua-
tion procedures is not appropriate for the process industry,
because even with quantitatively large data sets, information
is typically only available for campaigns about a few batches
with a series of measurement data that do not exhibit suffi-
cient variance for a data-driven evaluation – not comparable
with the data sets on the WWW or from large internet
groups. [22, 23]

In the process technology environment, the term ‘‘Smart
Data’’ is often used instead. Smart data includes, among
other things, the clever selection of data for analysis and the
combination of data-driven procedures and expert knowl-
edge for their analysis. [24]

Even if the challenges of exchanging information and
generating knowledge from it in the course of the digital
transformation have been sufficiently solved, it should be
pointed out that it will still be a further considerable chal-
lenge to use this knowledge on a cross-process and cross-
plant basis. This step will once again be much more com-
plex than the solution at process level.

2.3 Desire and Reality for Chemical Process Control

In order to achieve chemically specific measurements, sen-
sors are needed that react directly or indirectly to changes
in the target components – and this as specifically as possi-
ble (i.e., undisturbed by other components, the solvent or
other disturbances) as well as with sufficient sensitivity. So-
called direct analytical methods would be the optimum
where the signal obtained is independent of matrix effects
and is causally linked to an objective function – usually the
concentration of a component in a multicomponent mix-
ture. Furthermore, statements about the measurement
uncertainty may be given. If a method causes indirect
changes in the analytical signals, which are often described
as nonlinear effects, then all correlations and interference
effects would be completely known and could be represent-
ed in an analytical model for this component. Concentra-
tion-dependent changes of the refractive index or intermo-
lecular interactions in optical spectroscopy are typical
examples for such nonlinear effects, which end up in shifts

or distortions of spectroscopic signals or nonlinear calibra-
tion curves for an observed target compound.

It should be clear that this consideration here can only be
very general in order to illustrate the underlying principles.
It is well known that real technical and complex reacting
mixtures with all potentially occurring chemical and physi-
cal disturbances in the mixture and in the measurement
process are deviating more or less strongly from the as-
sumed conditions. In a controlled production, however, it is
quite realistic that only minor deviations from the originally
defined working region of the analytical method occur. This
is referred to as ‘‘design space’’, which represents the varia-
tion of all critical process variables of that working region
in the considered process step.

An excellent example of a direct analytical method is
online nuclear magnetic resonance (NMR) spectroscopy.
NMR spectroscopy is fulfilling most of the described rela-
tionships. Due to its direct correlation between the signal
area in the spectrum and the number of nuclei in the active
sample region, it allows for a calibration-free relative quan-
tification compared to a ‘‘counting’’ of nuclear spins. In
combination with a reference compound of known quantity
or a single-point calibration, e.g., on a pure reactant, abso-
lute quantification becomes feasible. This makes NMR spec-
troscopy a very promising method for online reaction mon-
itoring applications. The application of NMR spectroscopy
is currently in status TRL 7 (system prototype demonstra-
tion in operational environment). Work is presently under-
way to fully integrate an NMR analyzer and the associated
data evaluation via MTP in the sense of a quality control
and process control unit.

We have therefore taken the opportunity to very briefly
represent the current state of the art of NMR instrumenta-
tion in Sect. 3 and present some practical examples in Sect.
4 to illustrate the principles and advantages of direct analyt-
ical methods.

3 Online NMR Spectroscopy as a Direct
Process Analytical Method

3.1 NMR Instrumentation

NMR spectroscopy is a very versatile tool in the analytical
toolbox and is widely used since many years especially in
organic synthesis. The majority of performed sample analy-
sis aim for qualitative information proving expected molec-
ular structure and identity. However, the demand for quan-
titative NMR spectroscopy (qNMR) is rising.

Most NMR spectrometers operate on superconducting
magnets to ensure high field strengths combined with a
good field homogeneity. However, these instruments are
large and can only be operated stationary in the lab, which
impedes the use for online reaction monitoring directly in
the field. Only a limited number of research groups
specialized on that topic managed to develop a suitable
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infrastructure around a high-field NMR spectrometer for
monitoring reactions in the scale of laboratory to pilot
plant. This situation has changed since the availability of
compact benchtop NMR instruments based on rare-earth
permanent magnets. These systems are easy to use and
almost maintenance-free during operation. Currently,
instrument manufacturers offer proton frequencies ranging
from 43 MHz to 80 MHz announcing 100 MHz in very near
future. Besides proton NMR capability most of the instru-
ments allow for fixed or even variable options measuring
popular X-nuclei like 13C, 19F, 31P, and 29Si.

3.2 Industrial Application of NMR-Spectroscopy

With these instruments, it is now possible to bring NMR
spectroscopy directly into the field close to specialized labo-
ratory equipment [25], pilot setups [26] and even industri-
al-scale manufacturing plants. Often integrated within a
bypass flow configuration, instruments can be hyphenated
by the use of specifically designed flow cells or regular poly-
mer tubing based on process requirements. [27]

As the spectrometers offered on the market are usually
intended to be used on a laboratory bench, additional pro-
tection equipment is required for a safe and reliable opera-
tion in a rough environment of an industrial site. A high
level of automation and field communication ability needs
to be established, as these systems need to operate on a 24/7
basis without having analytical NMR experts on-site. [28]

Besides protection of the instrument, most chemical pro-
duction processes have very high safety demands, especially
regarding explosion hazards. All electrical instrumentation,
including analytical equipment, is required to comply with
the latest guidelines according to ATEX or IECEx depend-
ing on the location and specified hazards on site. This needs
to be proven before by certification at a notified body for
these regulations. For the example of a fully automated,
ATEX-compliant NMR analyzer module based on a labora-
tory device this was already successfully demonstrated with-
in the EU project CONSENS – Integrated Control and Sens-
ing. [29]

A major drawback of the current instruments on the mar-
ket is the high sensitivity regarding temperature changes.
To ensure field stability, permanent magnet systems need to
be thermostated very precisely. Almost all benchtop instru-
ments operate at a fixed magnet temperature slightly higher
than room temperatures, some offering options to increase
up to 60 �C. This is usually not a problem for regular opera-
tion with NMR tubes, but becomes highly relevant for reac-
tion monitoring, as often dynamic situations arise from
exo- or endothermic reaction steps, as well as process steps
running at very different temperature ranges in fast sequen-
ces. Due to space limitations in the current design of mag-
nets and probes, a sufficient insulation or even active tem-
perature regulation between sample and magnet is almost
impossible. Prototypes offering larger bore sizes could help

to test suitable concepts tackling this issue and are highly
desirable in the development of optimized setups for pro-
cess monitoring.

4 Application Examples of Calibration-Free
Chemical Process Control and Quality
Control

4.1 Application 1: Combined Mixer Analyzer

Many continuous chemical reactions considered for flow
chemistry follow fast kinetics. Hence, a consecutive place-
ment of mixing and analysis device is required to gain
insights into reaction mechanisms. Using NMR as analyti-
cal method, the flow cell is placed inside the magnet and,
therefore, must fulfill additional requirements. A compre-
hensive overview about the design process and validation of
a tailor-made flow cell (Fig. 2) made of ceramic material
(Al2O3) is given in detail in a previous publication [29].

ATEX-compliant integration of the assembly is ensured
by firmly bonded, patented connection [30] to stainless steel
tubes. The custom-made design of a flow reactor especially
suited for the need of the employed analytical method pro-
vides great advantages over off-the-shelf devices, e.g.,
improved closeness to the actual chemical reaction [31].
Furthermore, the devices can be quickly adapted towards
changing process conditions or improvements being imple-
mented in a fast manner by simply reprinting the desired
apparatus.

4.2 Application 2: Model-Based Approaches for
Spectra Evaluation

Signals observed on compact NMR spectrometers tend to
spread and overlap due to the low magnetic field of perma-
nent magnets compared to high-field NMR devices. The
large amounts of data generated in process analytical appli-
cations lead to complex data sets with numerous overlaps in
the spectrum. This type of data is usually subject to many
effects in the NMR spectrum caused by inhomogeneities in
the magnetic field, e.g., from temperature fluctuations of
the magnet or solid particles contained in the sample. These
nonlinear effects result in peak shape distortions (peak

www.cit-journal.com ª 2020 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH Chem. Ing. Tech. 2021, 93, No. 1–2, 62–70

Inlet Measurement AreaStatic Mixing Elements Outlet

Figure 2. Photograph and CFD model of an additively manufac-
tured flow cell consisting of a mixing and a measurement area.
Sufficient mixing is ensured through consecutive SMX-type mix-
ing elements. The application of a sapphire glass cylinder in the
measurement area leads to high quality spectra.

66 Review
Chemie
Ingenieur
Technik



-widening or asymmetric peaks) or peak shifts, which must
be considered by a robust data evaluation method.

Model-based approaches are getting wider acceptance as
a robust alternative to the established peak integration.
Quantum mechanical principles are invariant with respect
to the magnetic field strength. They take advantage from
the quantum mechanical properties of the spectra and offer
identification of individual components based on spectral
parameters. [32]

Using a Bayesian approach, a general model for an NMR
signal was published that considers the effects of chemical
shifts, relaxation, line shape imperfections, phasing, and
baseline distortions [33, 34]. Indirect hard modeling (IHM)
enables the analysis of complex spectra acquired on low-
field instruments (Fig. 3) and was successfully demonstrated
in both academic [35, 36] and industrial applications
[37, 38]. IHM is based on the idea that the spectrum is com-
posed of components modeled with a collection of peak-
shaped signals, i.e., Pseudo-Voigt functions with certain
positions, width, heights, and Gaussian-Lorentzian ratios
(Fig. 3a and b). By adjusting the peak parameters (Fig. 3c),
the model is fitted to the experimental data (Fig. 3e), which
finally provides concentrations of the components in the
analyzed sample (Fig. 3d). Within such a hard model, the
shape of each component is preserved by fixing peak area
ratios of individual peaks. [39]

Multiplets or even higher-order spectra can be described
by combinations of these peak functions. This offers a fully
automated approach to resolve overlapping component sig-
nals, which are subject to the abovementioned nonlinear
effects. In a recent study of a lithiation reaction step, the
IHM approach could easily adopted to various starting
materials and achieved root-mean-square errors (RMSE)
for the concentration measurements of each reaction system
in the lower mmol L–1 range. [29]

4.3 Application 3: Online Reference Data for
Method Transfer

In order to achieve chemical process control, the process
does not necessarily have to be permanently observed with
direct analytical methods, as these are still relatively unes-
tablished and expensive today. One conceivable variant is to
use calibration-free methods only in an initial learning
phase and to transfer the derived data to operationally
proven analyzers (or even soft sensors) – provided that these
are capable of detecting specific changes in the design space
either directly or indirectly.

In recent years, optical spectroscopic methods such as
near-infrared (NIR), Raman and mid-infrared spectroscopy
(MIR or IR) have been increasingly used for online moni-
toring of product quality in industry [40] and users have
gained experience. For complex mixtures, the calibration of
optical spectroscopic analyzers in general is based on a mul-
tivariate approach. In order to cover all possible chemical
states of the reaction mixture in a calibration model, a
design of experiments is typically used. Often, the actual
plant setup needs to be operated in unfavorable states to en-
sure covering the full design space in the development of
these calibration models, which is an important economic
factor. For each variation in the chemical structure of the
raw materials, analytical data (spectra) in combination with
reference data are required to develop and maintain the
calibration models. With the analytical instrumentation get-
ting more and more affordable, the high amount of work
establishing calibration models gets less reasonable, espe-
cially when thinking about flexible production setups with a
high number of different measurement positions. Today,
reference values for calibration are usually obtained from
labor-intensive laboratory experiments and offline analysis
(e.g., HPLC or GC-MS), which requires sampling from the
continuous production stream. Since combined sampling
errors are usually one or two orders of magnitude larger
than the analytical uncertainty, the sampling procedure has
the dominant influence on data quality [41].
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To overcome this, direct analytical methods like NMR
spectroscopy can be used to gather reference data on the
running process for the development of multivariate mod-
els. This was demonstrated in the calibration of a NIR ana-
lyzer implemented along with a benchtop NMR device on a
modular plant setup. It could be shown that the consider-
ation of sensitive intermediate species accessible in the
NMR spectrum could improve the quality of the multivari-
ate model compared to reference data obtained from HPLC
after quenching the process sample. [29]

4.4 Application 4: Machine-Assisted Model Building

Artificial neural networks (ANNs) have the potential to
extract valuable process information. ANN approaches can
be advantageous compared to model-based approaches
since they require very little computing power for predic-
tions and are orders of magnitudes faster than, e.g., IHM.
This is advantageous if the prediction is to be implemented,
e.g., in an embedded system with limited performance.
Another advantage is that ANNs do not rely on discrete
decisions of a nonlinear optimization scheme, which is used
during the spectral model fitting within model-based
approaches. These nonlinear optimization schemes can face
challenges, e.g., fitting impurities beneath large signals.

To predict the quantitative information from complex
NMR spectra large training datasets are required for such
data driven methods. The application of ANNs for the
quantitative evaluation of spectroscopic data has already
been demonstrated on the past [42–44]. Our recent work
shows a novel training concept for NMR spectroscopy using
machine learning, which needs less training data than usual
approaches [45]. To overcome the issue of the large amount
of training data simulated variants of the measured data
(i.e., synthetic NMR spectra) were calculated. This data aug-
mentation procedure for the generation of synthetic but
physically based NMR is based on using spectral hard mod-
els as described in the section above for forward prediction.

By this the initial training dataset can be sized and distribut-
ed along various prediction variables arbitrarily (see Fig. 4).
This recent study shows that the application of ANN
approaches to low-field NMR data with limited experimen-
tal data is in general possible. However, a limitation of the
ANN methodology is that the resulting model may only
reproduce those changes that are within the training label
space and, thus, the application to ranges outside the train-
ing dataset will be limited.

5 Conclusions

An increasing flexibility of modular chemical production
comes along with the demand for flexible online process
analytical instrumentation. Direct analytical methods like
NMR spectroscopy can help to improve process knowledge
and maintain product quality without the need for extensive
calibration effort. Even when not implemented perma-
nently, direct analytical methods can be used for acquiring
reference data for the development of model-based ap-
proaches for other PAT methods (like optical spectroscopy)
or even combination of conventional process sensors (soft-
sensing). Currently, connectivity within the plant setups is
often limited, which impedes the fusion of data from the
large number of already available sensors. In the future, data
availability within the plant setup will be not a problem
anymore, allowing new concepts of process monitoring and
control feedback. Process knowledge from the initial devel-
opment as well as gained knowledge over the time of opera-
tion will be available in a digital representation of the setup
and continuously improved. The ultimate goal is the full
integration and intelligent networking of systems and pro-
cesses. [46]

The process industry is facing changes that will take place
over a long period of time. These require a strong research
and design effort. Digitalization cannot be achieved on its
own, it can only be shaped together with all parties
engaged.
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