




Abstract

Optical aspheres and freeform surfaces are widely used in modern technologies and industry
and form an integral part of, e.g., lenses, photo cameras or imaging optics. They can be
designed to be more complex than spherical surfaces, resulting in improved functionality
and light, compact optical systems. However, their further improvement is challenged by
the current limitation of high-accurate optical form measurement. Further improving optical
form measurements in terms of accuracy, measurement and computation time, as well as
incorporating a reliable uncertainty quantification of the reconstructed topography, therefore
remain topics of ongoing research for the development of new technologies with high-precision
components. The tilted-wave interferometer (TWI) is a state-of-the-art measurement technique
for the accurate form measurement of optical aspheres and freeform surfaces. Its evaluation
procedure strongly depends on mathematical calculations including solving a high-dimensional
nonlinear inverse problem. So far, the TWI analysis is based on conventional analysis methods.

The goal of this thesis is to explore the potential of deep learning for further enhancing
the optical form measurement by the TWI. Data-driven machine learning methods and deep
neural networks in particular have had a major impact on science and industry thanks to
their ability to learn complex relationships from data. Deep learning techniques have been
successfully applied and have been shown to outperform conventional methods in a variety of
different applications including medical imaging, natural language processing or solving inverse
problems. An advantage of deep neural networks is that they produce instant results once
they are trained. This can be a benefit for time consuming applications. Also, deep learning
comprises frameworks for easy-to-apply uncertainty quantifications of a solution.

Our contributions are the following. In a first proof-of-principle study, we develop a
deep learning method to solve the high-dimensional inverse problem related to the form
reconstruction problem of the TWI. For this purpose, a database is generated for neural
network training and testing using virtual experiments. The developed method is shown
to provide reliable results and a calibrated uncertainty quantification of the prediction for
in-domain as well as out-of-distribution data in a simulated environment.

Next, we apply the developed deep learning approach to measurement data from a real
specimen to demonstrate its practical use in a real-world environment. The results are shown
to be consistent with the results of a modern TWI system from industry, and differences lie
well within the estimated uncertainties of the proposed deep learning method, supporting the
reliability of the developed uncertainty quantification for the deep learning approach.

Finally, a Bayesian statistical framework is developed and used to gain new insights
into the role of deep ensembles that represent the current state-of-the-art for uncertainty
quantification in deep learning. We propose an extension to deep ensembles that leads to an
improved quantification of the epistemic part of the uncertainty in tasks of deep regression
without altering the neural network training or the prediction capacity. Analytical derivations
ensure easy calculations and experiments demonstrate the significant impact of the developed
extension.





Zusammenfassung

Optische Asphären und Freiformflächen, wie z.B. Brillengläser, Kameraobjektive und andere
Abbildungsoptiken, sind in modernen Technologien und der Industrie weit verbreitet. Durch ihre
komplexen Gestaltungsmöglichkeiten helfen sie beispielsweise Abbildungsfehler zu reduzieren,
was zu kompakteren und leichteren optischen Systemen führt. Jedoch ist es anspruchsvoll
solche Oberflächen genau zu messen. Es wird stetig daran geforscht, die Formmessungen
in Bezug auf die erzielten Genauigkeiten, Mess- und Rekonstruktionszeiten zu verbessern,
sowie eine Unsicherheitsquantifizierung der rekonstruierten Topographie mit anzugeben,
um neue Technologien mit hochgenauen Komponenten zu entwickeln. Das Tilted-Wave
Interferometer (TWI) ist ein modernes Messgerät für die hochgenaue Formmessung von
optischen Asphären und Freiformflächen. Es beinhaltet ein mathematisches Auswerteverfahren,
welches bis jetzt mit konventionellen Analysemethoden bearbeitet wurde. Unter anderem muss
ein hochdimensionales nichtlineares inverses Problem zur Formrekonstruktion gelöst werden.

Ziel dieser Dissertation ist, das Potential von Deep Learning (DL) für die optische
Formmessung mit Hilfe des TWIs zu untersuchen. Datengetriebene Methoden und insbesondere
tiefe neuronale Netze können komplexe Zusammenhänge aus Daten lernen und haben einen
großen Einfluss auf die heutige Forschung und Industrie. Sie wurden bereits in verschiedensten
Aufgabenfeldern erfolgreich angewendet und sind der Stand der Technik in Teilbereichen der
Bildverarbeitung, natürlichen Sprachverarbeitung oder der Lösung inverser Probleme. Ein
Vorteil von neuronalen Netzen ist, dass sie sofortige Ergebnisse liefern, nachdem sie trainiert
wurden. Außerdem bietet DL leicht anwendbare Methoden zur Unsicherheitsbestimmung.

Die Beiträge dieser Dissertation lassen sich wie folgt zusammenfassen. In ersten Unter-
suchungen wird eine DL-Methode zur Lösung des hochdimensionalen inversen Problems zur
Formrekonstruktion des TWIs entwickelt. Dafür wird eine Datenbank für das Trainieren
und Testen tiefer neuronaler Netze mit Hilfe von virtuellen Experimenten generiert. Die
Unsicherheitsquantifizierung wird auf Basis von Deep Ensembles, welche als aktueller Stand
der Technik zur Quantifizierung der Unsicherheit in DL gesehen werden können, in den DL-
Ansatz mit eingebaut. Es wird gezeigt, dass die entwickelte Methode zuverlässige Ergebnise
und eine kalibrierte Unsicherheitsquantifizierung der Vorhersage auf simulierten Daten liefert.

Als Nächstes wird die entwickelte DL-Methode auf Messdaten eines realen Prüflings
angewendet, um zu zeigen, dass sie auch in der Praxis verwendet werden kann. Ein modernes
TWI-Messsystem aus der Industrie wird als Vergleichsmethode herangezogen, um die Ergebnisse
bewerten zu können. Die Rekonstruktionsergebnisse der beiden Methoden sind konsistent und
die Unterschiede liegen innerhalb der geschätzten Unsicherheiten.

Schließlich werden Deep Ensembles von einem Bayes-statistischem Blickwinkel untersucht,
um neue Einblicke in die Methode und ihre Unsicherheitsquantifizierung zu gewinnen. Darauf
basierend wird eine Erweiterung vorgeschlagen, welche zu einer verbesserten Quantifizierung
der epistemischen Unsicherheit für Regressionsprobleme führt, ohne dass die Netze neu trainiert
werden müssen oder sich ihre Vorhersagegenauigkeit ändert. Analytische Herleitungen sorgen
für einfache Berechnungen und Experimente belegen den signifikanten Einfluss der Erweiterung.
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1
Introduction

1.1 Motivation

Metrology is indispensable for modern industry. The ever-growing technological progress
requires similar advancements for accurate measurement capabilities. The tilted-wave
interferometer (TWI) first studied in Liesener (2007) and Garbusi et al. (2008) is a state-of-
the-art optical measurement system for the accurate form measurement of optical aspheres
and freeform surfaces. Optical surfaces, especially non-spherical optics such as aspheres and
freeform surfaces, are essential for modern optical systems, e.g. glasses, photo cameras or
imaging optics (Braunecker et al., 2008; Rolland et al., 2021). Aspheres and freeform surfaces
can be designed to be more complex than spherical surfaces since they have a higher degree of
freedom. Advantages include aberration correction and more compact elements, leading to
lighter and simpler to mount optical systems (Fang et al., 2013a). However, the high accuracy
measurement of optical aspheres and freeform surfaces is challenging (Fortmeier and Schulz,
2022). Further improving the form measurement in terms of accuracy and computing time, as
well as reliably quantifying its uncertainty, remain urgent open issues for the development of
new technologies with high-precision components.

The TWI illuminates a surface under test with multiple differently tilted wavefronts. Thus,
the TWI is applicable to a wide range of specimens with varying local slopes (Pruss et al.,
2017). Reconstructing the surface form of the specimen from measurement data involves
solving an inverse problem, whose treatment requires a forward model (Baer et al., 2014c). Due
to the complexity of the TWI, the forward model is not available analytically, but provided by
numerical simulations of the experiment. All simulations in this work related to the TWI are
performed with the simulation toolbox SimOptDevice (Stavridis et al., 2018; Schachtschneider
et al., 2019) developed at the Physikalisch-Technische Bundesanstalt (PTB). The virtual
TWI, i.e. the numerical forward model, provides simulated data for a specified topography.
The inverse problem of reconstructing the surface is solved by determining the difference of
the actual topography to a given design topography. The latter corresponds to the assumed
surface form of the specimen and can be expected to provide a good first approximation of the

1



1. Introduction

topography. Conventional evaluation procedures of the TWI use an iterative reconstruction
method based on local linearizations to solve the nonlinear inverse problem (Fortmeier et al.,
2014). Accurate form measurement of optical surfaces and, in particular, the evaluation
procedure of the TWI are topics of ongoing research (Gronle et al., 2022; Fortmeier and Schulz,
2022; Scholz et al., 2022).

Deep learning is a subfield of machine learning based on neural networks (LeCun et al.,
2015). Machine learning methods are having a major impact on science and industry because
they are able to learn complex relationships from given data (Duda et al., 2001; Balas et al.,
2019). With an increasing amount of data and computing power available, especially deep
neural networks have become very popular to solve complex tasks due to their deep and
nonlinear structure. Examples of deep learning applications range from agriculture (Santos
et al., 2019), natural language processing (Young et al., 2018) and autonomous driving (Kuutti
et al., 2020) to computational imaging (Barbastathis et al., 2019), edge computing (Wang
et al., 2020) and healthcare (Esteva et al., 2019). In optics, deep neural networks have been
successfully applied to a variety of applications such as adaptive optics (Vdovin, 1995), phase
extraction (Kando et al., 2019), wavefront sensing (Nishizaki et al., 2019) and image denoising
(Zhang et al., 2017). Deep learning has also been effectively used to solve inverse problems,
e.g. for inverse problems having non-unique solutions (Bishop, 1994), solving linear inverse
problems (Bai et al., 2020), in imaging (Lucas et al., 2018), and magnetic resonance image
reconstruction (Liang et al., 2020). This work investigates the potential of deep learning for
optical form measurements solving the inverse problem associated with the TWI. Potential
benefits are shorter calculation times, independence on local linearizations which might lead
to an improved overall accuracy, and easy-to-apply uncertainty quantifications.

One issue when applying deep neural networks is their black-box character. A deep neural
network does not indicate how trustworthy a certain prediction is. Even though a trained model
might achieve good performance on the training and test data, there are various examples
of trained neural networks showing an unreliable prediction behaviour. For instance, an
autonomous driving car failed to correctly classify a pedestrian, resulting in an accident in 2018
in Arizona (NTSB, 2019). Subtle perturbations of the input by adversarial attacks can cause
a well-trained neural network to completely change its prediction (Akhtar and Mian, 2018).
Lapuschkin et al. (2019) showed that a trained deep neural network adopted a "Clever Hans"
decision strategy to classify aeroplanes by looking at the image borders, where an artificially
introduced padding pattern existed with uniform blue background. These examples show the
necessity to deal with the black-box character when applying deep learning.

Different approaches have been put forward to recover the reliability of deep learning
predictions. For example, explainability methods (Adadi and Berrada, 2018; Samek et al.,
2021) were introduced to explain why a certain output occurs and to uncover erroneous
decision strategies of trained models. Another important pillar of trustworthy machine learning
are uncertainty methods that quantify the uncertainty of a prediction (Abdar et al., 2021;
Gawlikowski et al., 2021). The total uncertainty of a prediction is thereby divided into an
irreducible aleatoric part that relates to the noise in the data and a reducible epistemic part
that relates to the model uncertainty which can be reduced by more available training data
(Gal, 2016; Hüllermeier and Waegeman, 2021). Examples of uncertainty methods comprise
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Bayesian neural networks (Kononenko, 1989), ensembling techniques (Lakshminarayanan
et al., 2017; Sagi and Rokach, 2018) or dropout based methods (Kingma et al., 2015; Gal
and Ghahramani, 2016). Thorough testing (Tian et al., 2018; Sun et al., 2019) and a prior
detection of unusual input to the neural network (Liang et al., 2018; Martin and Elster, 2021)
are also of interest for a reliable model prediction. One important aspect of this work is to
develop and validate the uncertainty quantification for the inverse problem from optical form
measurements based on the TWI. Uncertainty quantification also plays an important role for
developing traceable reference systems, which is a primary goal in metrology (BIPM et al.,
2012; Fortmeier et al., 2017, 2022).

Deep ensembles (Lakshminarayanan et al., 2017) are an ensembling technique that provide
the current state-of-the-art for uncertainty quantification in deep learning, scale well to high-
dimensional data, and are straightforward to implement (Ovadia et al., 2019; Caldeira and
Nord, 2020; Ashukha et al., 2020; Gustafsson et al., 2020). They consist of an ensemble
of independently trained neural networks, where the prediction is treated as a uniformly
weighted Gaussian mixture model (Lakshminarayanan et al., 2017). Deep ensembles have
originally been proposed and considered as a frequentist alternative to Bayesian neural
networks (Lakshminarayanan et al., 2017; Ovadia et al., 2019). They can, however, also
be viewed as an approximate Bayesian inference method replacing the true posterior of the
model parameters with a uniformly weighted mixture model of delta distributions around
local maximum a posterior estimates (Gustafsson et al., 2020; Wilson and Izmailov, 2020).
Uncertainty quantification is a current research topic in deep learning and especially the
epistemic part of the uncertainty needs further investigations (Nguyen et al., 2019; Caldeira
and Nord, 2020; Hüllermeier and Waegeman, 2021; Zhou et al., 2021). Viewing deep ensembles
from a Bayesian perspective allows insights to be gained in this approach and enables an
extension of this state-of-the-art method to improve its epistemic uncertainty quantification,
which is investigated in this work.

In summary, the goal of this thesis is to investigate the potential benefit of deep learning
approaches for a challenging, high-dimensional inverse problem from optical metrology. The
application is based on the tilted-wave interferometer, which is part of an ongoing research area
for the accurate form measurement of optical aspheres and freeform surfaces. Steps towards
incorporating an uncertainty quantification to the prediction are of interest, as well as improving
the measurement accuracy and calculation time. Furthermore, the measurement of optical
aspheres and freeform surfaces constitutes an interesting task for deep learning applications
due to its complexity and high-dimensional data. Carefully designed reference data could
serve as a benchmark set for further developments and comparison studies of different machine
learning algorithms. In line with current research, we focus on trustworthy deep learning
and, in particular, on uncertainty quantification. Developed methods should be validated on
both in-domain and out-of-distribution data to ensure their generalization capabilities. Deep
ensembles are currently considered the state-of-the-art for uncertainty quantification in deep
learning. Therefore, they should be investigated for further improvements and shortcomings.
One way to do so is to analyze and extend them from a Bayesian perspective which is another
goal of this thesis.
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In a first step, we conduct a proof-of-principle study in a virtual environment generating a
database and demonstrating that the area of computational optical form measurement can
benefit from deep learning (Hoffmann and Elster, 2020). Second, we incorporate and validate
an uncertainty quantification by deep ensembles (Hoffmann et al., 2021b). For this purpose,
out-of-distribution data are generated by systematically introducing a calibration error to the
simulated optical system. Then, the developed method is successfully applied to measurement
data of a real aspherical specimen and compared to a state-of-the-art method from the industry
(Hoffmann et al., 2021a). Finally, we derive the theory behind deep ensembles in a Bayesian
framework, leading to a proposed extension for an improved uncertainty quantification for
regression problems (Hoffmann and Elster, 2021).

1.2 Objectives and aims

The goal of this work is to investigate and develop deep learning methods for solving a
high-dimensional inverse regression problem from computational optical form measurements.
The main objectives can be summarized as follows:

• Objective 1: Generate a database for the training and testing of deep
learning methods. One main challenge of applying deep learning methods to real-world
problems is the generation of a vast dataset that correctly represents the underlying
relationships. A simulation toolbox has been developed at the PTB which includes
a realization of the numerical simulation of the forward model related to the inverse
problem of the TWI reconstruction procedure. This virtual TWI is extended to generate
a database for the development, comparison and validation of deep learning approaches.

• Objective 2: Develop a deep learning approach for the form measurement
of optical aspheres and freeform surfaces. Optical aspheres and freeform surfaces
are widely used in industry, but their surface form is challenging to measure. A scalable
deep learning approach is developed to solve the high-dimensional, nonlinear inverse
problem associated with the TWI to reconstruct the surface form of the specimen from
its measurement data.

• Objective 3: Extend the developed approach to incorporate an uncertainty
quantification to the estimated solution. The main drawback of deep neural
networks is their black-box character. Classic deep learning approaches do not explain
why they make a certain prediction, provide only point estimates of the solution and do
not highlight a potentially failed prediction which limits their applicability to real-world
scenarios. Uncertainty quantification is an important pillar to deal with the black-box
character and to restore the trust in the deep neural network predictions.

• Objective 4: Apply and validate the developed method on measurement data
of a real specimen. In general, a large dataset is required for the neural network
training. Here, and in many other applications, data can be generated by simulating the
underlying physics. The simulated data can then be used to train, e.g., a neural network.
However, the question remains if the trained neural network can generalize from the
treatment of simulated data to real data. It might be unable to handle measurement data
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in a real-world scenario even though it produces perfect results in a virtual environment.
Furthermore, the ground truth is unknown for a real specimen and thus, it is hard to
validate the estimated solution.

• Objective 5: Investigate and improve the uncertainty quantification by deep
ensembles for regression problems. Deep ensembles mark the current state-of-the-
art for uncertainty quantification in deep learning. They were originally proposed as a
frequentist method, but more recently their Bayesian footing has been put forward as
well. The objective here is to extend the latter point of view and explore its consequences
which lead to an improved uncertainty quantification. Our focus thereby lies on regression
problems, since the considered inverse problem from optical form measurement falls in
that class of problems.

1.3 Thesis structure and overview

Chapter 2 (Background) introduces fundamentals of optical form measurement, deep
learning and inverse problems. The application from optical form measurement considered
here is based on the tilted-wave interferometer (TWI). Therefore, the TWI is placed in
the wider context of metrology and its experimental setup is presented. Then, background
information on deep learning is provided, focusing on aspects and approaches relevant to
this work which include an introduction to artificial neural networks, possible design choices
of neural network models and their training procedure, as well as frequentist and Bayesian
approaches to incorporate uncertainty quantification. Furthermore, a brief introduction to
inverse problems is given since the TWI-application involves solving an inverse problem.

Chapter 3 (Virtual tilted-wave interferometer) presents the virtual tilted-wave inter-
ferometer (TWI) that is needed for both the conventional evaluation procedure of the form
reconstruction and the data generation process for the neural network training. The virtual
TWI represents the numerical forward model of the inverse problem associated to the TWI.
This work employs a realization from the simulation toolbox SimOptDevice developed at the
PTB. In order to improve the numerical forward model, we include a refinement that is carried
out by incorporating a phenomenological component determined by comparing predictions of
the numerical model with real measurements. This chapter presents the simulation toolbox,
the inverse problem of the form reconstruction and the calibration process. Also, the data
generation process considering Objective 1 is explained.

Chapter 4 (Deep learning for the tilted-wave interferometer) develops a deep learning
approach for the computational optical form measurement of optical aspheres and freeform
surfaces based on the TWI. Additionally, we extend the proposed method to incorporate an
uncertainty quantification via deep ensembles. Results are presented and validated on in-
and out-of-distribution (noisy) test data. In particular, test data are used that include an
increasing systematic error in the calibration of the virtual optical system. Objectives 2, 3 and
partially 5 are addressed in this chapter.

Chapter 5 (Measuring a real specimen) investigates the generalization capability of the
deep learning approach to measurement data. It shows how the proposed method can be
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applied to measure a real specimen and how the results can afterwards be compared to other
methods. More precisely, the developed approach is applied to measurement data from a
real aspherical specimen. The results are then compared to the form reconstruction of a
state-of-the-art method used in the industry. This chapter deals with Objectives 4 and to
some extent 5.

Chapter 6 (Deep ensembles from a Bayesian perspective) discusses the deep ensembles,
used in the previous chapters for uncertainty quantification, from a more general perspective.
The focus lies on regression problems which naturally arise when discretizing continuous inverse
problems. Deep ensembles have originally been proposed as a frequentist method but have
been shown to have a Bayesian footing as well. We specify the statistical model, the prior
distributions, and the form of approximation so that the uncertainty quantification by deep
ensembles can be considered as an approximate Bayesian method. In addition, we explore
the properties of this technique. Based on our statistical model for deep ensembles, we then
propose a natural extension from the employed delta distributions to Gaussian distributions
which is shown to improve the epistemic uncertainty of a new prediction. The extended method
is applied to toy examples, real data, and the inverse problem of the form reconstruction
related to the TWI. Objective 5 is investigated in this chapter.
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2
Background

Deep learning techniques have been successfully applied in various domains such as
computational imaging (Barbastathis et al., 2019), natural language processing (Young et al.,
2018) and biomedicine (Cao et al., 2018). This work explores deep learning methods to a
specific problems arising in metrology. Metrology is the science of measurement as defined
in BIPM (2004). The application considered here is based on the tilted-wave interferometer
(TWI) - a state-of-the-art interferometrical, optical measurement system for the accurate form
reconstruction of optical aspheres and freeform surfaces. In this work, deep learning techniques
are developed to solve the high-dimensional inverse problem posed by the TWI and their
uncertainty is quantified.

This chapter provides background information and introduces fundamentals. It is divided
into three parts. In Section 2.1, the application of optical form measurement is placed in its
context and the experimental setup of the TWI is presented. In Section 2.2, basic concepts
of deep learning are presented including the building blocks of deep neural networks, their
training procedure, how to quantify their uncertainty, and an introduction to deep ensembles.
In Section 2.3, the basics of inverse problems are briefly discussed.

2.1 Tilted-wave interferometer

Figure 2.1: These pictures show a complex optical freeform surface (left, original source: CC
UPOB e.V.), the TWI in the laboratory of the PTB (middle), and an exaggerated plastic replication
of a multi-radius surface (Fortmeier et al., 2019) (right).1
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The tilted-wave interferometer (TWI) is an interferometrical measurement system for
the accurate form measurement of optical aspheres and freeform surfaces (Garbusi et al.,
2011; Baer et al., 2014c), cf. Figure 2.1. The TWI measuring principle was proposed by the
institute for technical optics of the Stuttgart university (ITO) in the early 2000s (Liesener,
2007; Garbusi et al., 2008) and has since then been further developed in cooperation with the
PTB and the industrial partner Mahr GmbH who distributes a commercially oriented version
of it (Fortmeier, 2016; Mahr GmbH, 2021; Baer, 2016; Schindler et al., 2017; Beisswanger
et al., 2019).

This section introduces the application of measuring optical aspheres and freeform surfaces
(2.1.1), places the TWI in the wider context of form metrology (2.1.2) and presents its
experimental setup (2.1.3). More information about the simulation environment and details
about the evaluation procedure are given in Chapter 3. The interested reader is also referred
to Baer (2016), Fortmeier (2016) and EURAMET (2019) for more details.

2.1.1 Optical aspheres and freeform surfaces

According to Free Dictionary (2003), an optical surface is defined as follows:

“An interface between two media, such as between air and glass, which is used to
reflect or refract light."

In practice, optical surfaces are assumed to be sufficiently smooth as to not impede the
produced optical image. This behavior of an optically smooth surface is described in the
international organization for standardization (ISO) (ISO 10110-8:2019, 2019) as:

An “optical surface for which the height variation of the surface texture is
considerably smaller than the wavelength of light", such that “the amount of light
scattered is small", and which “are usually produced by polishing or moulding".

Optical surfaces are components of optical systems. Examples of such optical systems are
imaging and illumination systems (Lerner and Sasian, 2000). Their design and fabrication
are challenging (Shannon, 1997). Spherical surfaces induce aberrations, such as spherical
aberration, astigmatism and coma, which lead to blurred images (Hecht, 2018). Figure 2.2a
illustrates spherical aberration caused by a lens with a spherical surface. The focal point of
the refracted light differs for rays (green lines) passing near the center of the spherical surface
(black dotted line) and for those which pass further away from it.

Spherical surfaces are uniquely defined by their radius. Aspheres and freeform surfaces have
a higher degree of freedom (Thompson and Rolland, 2012). They can therefore compensate for
occurring aberrations through a more complex surface form. This is illustrated in Figure 2.2b,
where all refracted light rays meet in the same focal point. Furthermore, multiple spherical
surfaces can be replaced by fewer non-spherical ones which lead to lighter and more compact
optical systems (Schulz, 1987).

1Source: https://www.ptb.de/cms/en/ptb/fachabteilungen/abt4/fb-42/ag-424.html. Accessed: 2021-
10-29.
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2.1 Tilted-wave interferometer

Figure 2.2: Light rays passing through a) a spherical lens and b) an optimized aspherical lens.

The classical rotationally invariant aspheric surface is described by a conic section and a
power series (ISO 10110-12:2019, 2019), i.e.

z(h) = h2
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where z is the so-called sagitta, x, y are the base coordinates, R is the radius of curvature
of the base sphere, κ is the conic constant and A2i, i = 2, . . . , n, are the aspheric coefficients.
Note that the spherical surface is a special case of the asphere definition where κ and the
aspheric coefficients equal zero. Due to their improved adaptability, optical aspheres and
freeform surfaces are widely used in modern optics (Braunecker et al., 2008). However, it is
also more challenging to manufacture and measure them (Blalock et al., 2015).

2.1.2 Form metrology

Accurate fabrication gets increasingly important for modern technologies. However, an object
can only be fabricated as accurately as it can be measured. Therefore, investigating high-
accuracy form measurement systems is an ongoing research topic (EURAMET, 2014, 2019).
The current measurement techniques can be grouped in different ways.

One way is to divide form metrology into tactile and optical measurement techniques (Fang
et al., 2013b). Tactile techniques scan the surface under test via contact measurements where
the stylus touches the surface. An advantage of tactile measurement techniques is the flexibility
to measure a variety of different specimens. A disadvantage is that the surface under test can
get damaged, which is highly undesirable. Optical or non-contact techniques, on the other
hand, do not touch the surface during the measurement. They do not corrupt the surface of
the specimen and achieve faster measuring times than tactile techniques.

Form metrology can also be divided into pointwise and areal measurement techniques.
Pointwise techniques are based on sensors (tactile or optical) that scan the surface at predefined
measurement points. Both, the measurement accuracy and time, depend on the number of
surface points to be scanned. These measurement systems are known as coordinate measuring
machines (CMM) (Flack, 2014). In contrast, areal measurement techniques (which are
commonly optical) do not scan individual points on the specimen, but wider areas at a time.
Examples are interferometry and phase measuring deflectometry (PMD) (Häusler et al., 2013;
Huang et al., 2018). The advantages of areal measurement techniques are the comparatively
short measurement time and the resulting high resolution.

The phenomen of interference occurs when two light waves superpose (Hariharan, 2010).
The resulting intensity fringe patterns are called interferograms. The basic idea of optical
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Figure 2.3: The diagram places the tilted-wave interferometer (TWI) in the wider context of
form metrology.

interferometry (Malacara, 2007) for form reconstruction is to collect the interfering coherent
light between a test wavefront reflected by the surface under test and the reference wavefront.
There exist two possible configurations of the optical system, namely the null test and the
non-null test configuration. In the null test configuration, the test wavefront reaches the test
topography perpendicular to its surface. Hence, the reflected light follows the same path
through the optical system as the incoming light. The null test configuration is highly desirable
as errors introduced by the optical system extinguish themselves (DeVries et al., 2006). In
non-null test configurations, the test wavefront does not reach the surface under test with an
angle of 90 degrees and the reflected light then takes a different path through the optical system
than the incoming light. This leads to a more complex ray path and some light rays might
even be deviated in such a way as to leave the optical system completely causing so-called
vignetting errors.

Spherical and planar reference wavefronts can be produced with high accuracy. Thus,
spherical and planar surfaces can be measured in a null test configuration. Asphere and freeform
metrology is very challenging because the surfaces can strongly deviate from spheres or planes
and it is therefore not trivial to find a null test configuration. Some measurement techniques
are based on finding a compensatory element to deviate the reference wavefront depending on
the individual specimen under test such that a null test configuration is possible. Examples are
computer-generated holograms (CGHs) (Pruss et al., 2004). Also, some techniques measure
multiple subapertures in individual null test configurations and stitch together the results
afterwards (Murphy et al., 2003). Other methods find a way to cope with the non-null test
configuration. An example is the TWI (Garbusi et al., 2008; Baer et al., 2014b). Figure 2.3
presents an overview of the introduced techniques and places the TWI in its metrological
context.

The term computational metrology was introduced to emphasize the trend towards using
the computational power of computers, e.g. for data analysis and calculations, in addition
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to the classical measurement setup (Hopp et al., 1993; Bergmann et al., 2016). It marks
methods that depend on the computing power to process the conducted raw data. In summary,
the TWI is an interferometrical system for the computational optical form measurement of
optical aspheres and freeform surfaces using a non-null test configuration. Its detailed setup is
described below.

2.1.3 Experimental setup

Figure 2.4: Experimental setup of the TWI used in this thesis. Incoming light is plotted in red,
light reflected by the specimen is green, and the light coming from the reference arm is colored
blue. Only the center point source of the MLA is activated in this illustration.

The experimental setup of the TWI used in this thesis is shown in Figure 2.4. The specimen
is illuminated with monochromatic green light, which is reflected by the surface of the specimen
and interferes with coherent light from the reference arm at the beam splitter. In Figure 2.4,
incoming light is plotted in red, light reflected by the specimen is shown in green, and the
light coming from the reference arm is colored blue. The interferograms, i.e. the intensity
of the interfering light from the measurement and reference arm, are then collected at the
charge-coupled device (CCD).

Figure 2.5: Interferograms captured by the TWI using four disjoint masks on the MLA. The
images have a resolution of 2048 × 2048 pixels. The interferograms shown here are simulated using
the virtual TWI (cf. Chapter 3).

A special feature of the TWI setup is the 2D micro lens array (MLA) that acts as a 2D
point source array. Each point source produces a differently tilted wavefront. These wavefronts
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then reach the specimen from different angles, so that the surface under test is well illuminated.
Four disjoint masks on the MLA subsequently cover different light sources of the 2D point
source array to enhance an overlap of information without having overlapping interferograms
on the camera, which would otherwise lead to overlapping fringe patterns that could not be
easily evaluated. More precisely, each mask activates every second point source row- and
column-wise. Finally, a beam stop in the Fourier plane of the imaging optics limits the fringe
density on the CCD to ensure resolvable interferograms. Figure 2.5 shows an example of
resulting interferograms where each patch can be attributed to a single light source (note that
one source can generate multiple patches).

2.2 Deep learning

Deep learning methods have become very popular due to their ability to learn complex
relationships from given data. Artificial intelligence (AI) is the overall area to which they
belong. According to Oxford University Press (2021a), AI is defined as follows:

“The theory and development of computer systems able to perform tasks normally
requiring human intelligence, ... ."

The notion of data is explicitly introduced to the subdomain of AI known as machine learning
(ML) defined as follows according to Oxford University Press (2021b):

“The use and development of computer systems that are able to learn and adapt
without following explicit instructions, by using algorithms and statistical models
to analyse and draw inferences from patterns in data."

There are various well-known machine learning algorithms (Duda et al., 2001). Examples
comprise principal component analysis, nearest-neighbor classification, support vector machines,
decision trees or neural networks. According to Oxford University Press (2021c), deep neural
networks DNNs or deep learning are defined as follows:

“A type of machine learning based on artificial neural networks in which multiple
layers of processing are used to extract progressively higher level features from
data."

Figure 2.6a shows a summary of the above introduced terms.

Figure 2.6: a) Overview of frequently used, AI related terms. b) In general, deep neural networks
are a black box for the user.
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Machine learning algorithms can be grouped into three learning paradigms: reinforcement,
unsupervised, and supervised learning (Sasakawa et al., 2008; Sutton and Barto, 2018; Duda
et al., 2001). Reinforcement learning algorithms try to maximize a reward signal by interacting
with an environment. An agent exploits and explores possible actions, gets a reward that can
depend on multiple sequentially taken actions, and learns from the experience. Reinforcement
learning applications comprise natural language processing, chat bots or playing Atari video
games. Unsupervised learning is based on finding hidden patterns in given input data without
having any corresponding target values. Tasks include the detection of different clusters, the
projection into a lower-dimensional space, data visualization and data generation. Supervised
learning relies on training data that contain input values as well as the corresponding target
values. The goal is to find the approximation fθ that maps an input x to its corresponding
output y for all data samples (x, y) in the training set D, i.e.

Find fθ : x ↦→ y, such that ∀(x, y) ∈ D : fθ(x) ≈ y, (2.2)

where θ are the learnable model parameters. Tasks, where the input is mapped to a finite
number of discrete class labels, are called classification problems. Examples are binary decision
making, handwritten digit recognition or image segmentation. In contrast, regression problems
have continuous target values. Examples comprise pricing, forecasting the air pollution from
sensor data or reconstructing a topography from measurement data. This work focuses on the
supervised learning setting while considering an image-to-image regression problem.

Machine learning methods and especially deep neural networks are used in a wide range of
applications today (Shinde and Shah, 2018; Dargan et al., 2020). However, their main drawback
is their black-box character (cf. Figure 2.6b) and the resulting lack of trustworthiness. An
incoming signal is processed by the trained model which then generates an output. Why exactly
this output occurs and how uncertain it is remains unknown. But answering these questions is
crucial if important decisions depend on the model prediction, for instance in medical diagnosis
and autonomous driving. Also, adversarial attacks show that a small perturbation in the input
data can mislead a trained model to make erroneous predictions (Akhtar and Mian, 2018).

Different approaches are being investigated to deal with this black-box character. The
most common are explainability and uncertainty methods. Explainability methods try to
explain the model behavior and to make the model predictions more transparent and easier to
interpret (Baehrens et al., 2010; Binder et al., 2016; Selvaraju et al., 2017; Montavon et al.,
2018; Adadi and Berrada, 2018; Samek et al., 2019). In Lapuschkin et al. (2019), for example,
it was shown that an apparently well-trained neural network for image classification had
learned to correctly classify horse images because of a small tag at the bottom left corner of
the images which had remained unnoticed in the training dataset. The focus of this thesis
lies on uncertainty quantification which is introduced in Subsection 2.2.3. Of course, it is also
important to thoroughly test a trained model as to analyze its behavior and generalization
capability (Sun et al., 2018; Tian et al., 2018; Xu et al., 2020). Additionally, one could try to
detect outliers and unusual input prior to the network prediction (Wang et al., 2019; Martin
and Elster, 2021).

The following subsection introduces neural networks in general, discusses different
architectural building blocks and presents convolutional neural networks that play an important
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role in imaging problems (2.2.1). Then, the optimization problem for the neural network
training is stated and the backpropagation algorithm is explained (2.2.2). Different options and
hyperparameters for the neural network training are presented and the problem of overfitting is
discussed. Afterwards, various approaches and methods are presented of how to incorporate an
uncertainty quantification into the neural network prediction, the different types of uncertainty
called aleatoric and epistemic uncertainties are explained, and the framework of Bayesian
inference (2.2.3) is introduced. Finally, the deep ensembles are introduced separately, since
they are relevant for this work (2.2.4).

The interested reader is also referred to Duda et al. (2001), Bishop (2006) and Blei et al.
(2017) for more information.

2.2.1 Artificial neural networks

From perceptrons to feedforward neural networks. A well-known predecessor of neural
networks is the perceptron that was introduced by the American psychologist and AI pioneer
Frank Rosenblatt (1958). The perceptron is a model for binary classification. It produces a
single binary output y ∈ {0, 1} for an input vector x ∈ Rn, where n is the input dimension. For
example, perceptrons can be applied to model logical gates as AND and OR (Nielsen, 2015).
Figure 2.7a shows a perceptron. The output depends on the learnable model parameters, i.e.
the weights w ∈ Rn and the bias b ∈ R (also called threshold value). It is generated by the
Heaviside unit step function applied to a weighted mean of the input values and shifted by the
threshold b, i.e.

y(x) =

1 if w⊤x + b > 0

0 otherwise
. (2.3)

Combining many of these perceptron units into one multilayer perceptron (cf. Figure 2.7b)
allows to solve more complex problems and paved the way for the neural networks widely used
today (Gardner and Dorling, 1998; Nielsen, 2015).

Figure 2.7: a) A perceptron with input x ∈ R3, weights w ∈ R3, bias b ∈ R and output y ∈ {0, 1}
is illustrated. b) A fully connected feedforward neural network (or multilayer perceptron) with
two hidden layers is shown (LeNail, 2019). The gray scale of the connections between two neurons
depends on the corresponding weight value.

Artificial neural networks or simply neural networks consist of many individual neurons
interacting with each other. A neuron receives an incoming signal, might get activated and
transmits a signal to the adjacent neurons. The output y of a single neuron can be formalized

16
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Figure 2.8: Different activation functions. x is the input and β equals one in the plot of the
softplus function.

as follows:
y(x) = h

(︂
w⊤x + b

)︂
∈ R, x ∈ Rn, w ∈ Rn, b ∈ R, (2.4)

where x is the n-dimensional input and w and b are learnable model parameters. The so-called
activation function h is a nonlinear transformation that is applied elementwise. An example is
the step function from equation (2.3). Other well-known activation functions for regression
problems are shown in Figure 2.8 (Paszke et al., 2019; Sharma et al., 2017). Neural networks
consist of multiple layers, each containing one or more neurons. More precisely, they have
an input layer comprising the input signal, one or multiple hidden layers that depend on
the network parameters and whose neurons behave according to equation (2.4), and finally,
an output layer that computes a linear combination of the output of the previous layer. In
addition, the output layer can include offsets or other transformations depending on the given
problem, e.g. constraints on the output space. Figure 2.7b shows a neural network with two
hidden layers. A deep neural network (DNN) (Schmidhuber, 2015) is a neural network with
many hidden layers.

If the information flows only in one direction from the input to the output, the artificial
neural network is called a feedforward neural network. Otherwise, if feedback connections
between the neurons are included and a cyclic information flow occurs, the neural network is
called a recurrent neural network (Goodfellow et al., 2016). This work focuses on feedforward
neural networks. A feedforward neural network fθ can be defined as follows:

fθ(x) = W (L+1)T h(L)
(︂
W (L)T · · · h(1)(W (1)T x + b(1)) · · · + b(L)

)︂
+ b(L+1), (2.5)

where θ =
{︂

W (l) ∈ Rdl−1×dl , b(l) ∈ Rdl : l = 1, . . . , L + 1
}︂

are the network parameters, h(l) are
the activation functions of the corresponding layers l = 1, . . . , L, L is the number of hidden
layers and d0 = dx, dL+1 = dy are the dimensions of the input space x ∈ Rdx and the output
space fθ(x) ∈ Rdy , respectively. Neural networks are universal approximators (Cybenko, 1989;
Hornik et al., 1989; Sonoda and Murata, 2017; Park et al., 2020), e.g. feedforward neural
networks with a single hidden layer having sufficiently many neurons can approximate any
continuous function to arbitrary accuracy on a compact input domain.

Fully connected vs. convolutional neural networks. Figure 2.7b shows a fully
connected neural network because each neuron of one layer is connected to every neuron
of the following layer. If a neuron is directly connected to another neuron that is more than
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Figure 2.9: The convolutional filter A = (ak,l)3
k,l=1 slides over the input X = (xi,j)5

i,j=1 and
produces the output Y = (ym,n)3

m,n=1.

one layer apart, this is called a skip connection because the information flow skips a layer.
Fully connected neural networks have some disadvantages. They can be computationally
expensive for an increased network size and a high-dimensional input. Consider an imaging
problem where the input is an RGB image with a resolution of 64 × 64 pixels, and assume
the first fully connected hidden layer to have only 100 neurons. Then, the resulting number
of learnable network weights (not including the biases) would already be over a million
(3 × 64 × 64 × 100 = 1, 228, 800). The high flexibility of fully-connected neural networks can
also lead to overfitted results when the training data are scarce (Bishop, 2006). Moreover,
they have no built-in notion of structured data, e.g. local spatial correlations and translational
invariances, which would be beneficial for applications related to imaging, time-series and
speech.

Convolutional neural networks (CNNs) have been introduced to overcome these shortcom-
ings (LeCun et al., 1989b, 1995; Bishop, 2006; Goodfellow et al., 2016). CNNs include at
least one convolutional layer consisting of one or multiple filters that slide across the input
as shown in Figure 2.9. These filters are also called kernels, their values are learnable model
parameters, and they project the input onto so-called feature maps because they are able to
extract certain features, e.g. edges from images. The underlying operation is a convolution,
although most implementations use a cross-correlation that is equal to the convolution without
flipping the kernel (Goodfellow et al., 2016; Dumoulin and Visin, 2016). Assume a 2D
input X ∈ RI×J and a kernel W ∈ RK×L with K ≤ I, L ≤ J . Then, the cross-correlation
(W ∗ X) ∈ R(I−K+1)×(J−L+1) is defined as follows:

(W ∗ X)m,n =
K∑︂

k=1

L∑︂
l=1

Xm+k−1,n+l−1Wk,l, (2.6)

where m = 1, . . . , I − K + 1, n = J − L + 1. Using some convolutional layers instead of
fully connected layers can drastically reduce the number of learnable weights and enhance
structured feature extraction. The sizes and number of filters need to be chosen as part of the
network architecture. In addition, the stride can be changed and padding introduced. The
stride controls the step-size of the filter sliding across the input and padding can increase
the input dimension (and consequently the output dimension) by expanding the input with
zero-values. Deep convolutional neural networks have been successfully applied to a wide range
of applications including inverse problems in imaging (McCann et al., 2017), brain magnetic
resonance imaging (Bernal et al., 2019), speech enhancement (Park and Lee, 2016) and object
detection (Dhillon and Verma, 2020).
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Choice of design. A major challenge of applying deep neural networks is finding a suitable
network architecture and optimal training hyperparameters. Table 2.1 shows a summary of
popular layers used to build a neural network (Paszke et al., 2019). More details about the
training procedure are discussed in the following subsection (2.2.2).

Table 2.1: Different types of architectural layers for neural networks are presented.

type of layer description

linear A linear layer is fully connected. It holds that y = W ⊤x + b, where
x ∈ Rdx is the input, y ∈ Rdy is the generated output for the chosen
number dy of neurons in this layer, and W ∈ Rdx×dy , b ∈ Rdy are
learnable network parameters.

convolutional Convolutional layers (LeCun et al., 1989b) are discussed above (cf.
Figure 2.9). In general, they have less learnable parameters than
fully connected layers, apply linear transformations on subsets of the
input (cf. equation (2.6)), and facilitate feature extraction as well as
the detection and processing of local spatial correlations. Parameters
to be chosen include the kernel size, the number of kernels, the stride
and the padding. Learnable parameters are the kernel values and the
optional bias.

activation The activation functions are responsible for the nonlinearity of the
neural network. See Figure 2.8 for some examples.

pooling Pooling layers often follow convolutional layers and are used for
downsampling (Dumoulin and Visin, 2016). Common choices
comprise max pooling and average pooling layers which take the
maximum and average, respectively, over certain regions of the input.
The regions are determined by the chosen pooling size and stride.

batch normalization Batch normalization can reduce the network’s sensitivity to its
initialization, reduce internal covariate shifts and act as a regularizer
(Ioffe and Szegedy, 2015). The output is produced by subtracting
the mean of the batch and dividing the difference by its standard
deviation. Then, the output is shifted by an offset and scaled. The
offset and scaling factor are learnable model parameters.

dropout Input elements are randomly set to zero with a chosen probability.
Dropout layers can reduce overfitting (Srivastava et al., 2014) and
can be used for uncertainty quantification (Gal and Ghahramani,
2016).

In addition to fully connected feedforward and convolutional neural networks, there exist
more sophisticated, popular architectures. Some of them are presented in the following.
Autoencoders are widely used for dimensionality reduction (Hinton and Salakhutdinov, 2006).
They consist of an encoder, that maps high-dimensional data into a low-dimensional latent
space (also called bottleneck), and a decoder that recovers the high-dimensional data from
the latent space. Their probabilistic counterpart is the variational autoencoder (Kingma
and Welling, 2013), where the variables in the latent space are treated as random variables
and the decoder yields a distribution instead of a point estimate as an output which can
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be employed, e.g. for image generation (Vahdat and Kautz, 2020). Generative adversarial
networks (Goodfellow et al., 2014) consist of two players called generator and discriminator.
The discriminator learns to distinguish real data from artificially generated data while the
generator tries to trick the discriminator by learning how to generate realistically looking data.
Applications comprise data generation, style transfer and image superresolution (Creswell
et al., 2018). Residual neural networks have been introduced to ease the training of deep
neural networks by minimizing the residual between the input and the output of a specified
block of layers (He et al., 2016). Finally, the U-Net (Ronneberger et al., 2015) was introduced
to better exploit information from the input data by combining a bottleneck architecture with
additional skip-connections. U-Nets have been successfully applied to various imaging tasks
(Barbastathis et al., 2019).

2.2.2 Neural network training

Optimization problem. Once the architecture of a neural network is chosen, the next
step is to find the best model parameters to optimally solve the given problem. Therefore,
a function to be optimized must first be defined - the loss function L (depending on the
application also cost, risk or error function) (Bishop, 2006). The goal is to find the optimal
network parameters θ, such that the loss function is minimized:

min
θ

∑︂
(x,y)∈D

L (y, fθ(x)) , (2.7)

where D is the set of training data and fθ(x) is the neural network output for an input x. The
standard loss for regression tasks is the mean squared error (MSE) also called L2-loss. It is
defined as follows for a data point (x, y) ∈ D, with x ∈ Rdx and y ∈ Rdy :

LMSE(y, ŷ) := 1
dy

∥y − ŷ∥2
2 = 1

dy

dy∑︂
i=1

(yi − ŷi)2, (2.8)

where ŷ = fθ(x) ∈ Rdy . Other popular loss functions (Paszke et al., 2019) are the mean
absolute error (MAE) or L1-loss, i.e. LMAE(y, ŷ) = 1

dy
∥y − ŷ∥1 = 1

dy

∑︁dy

i=1 |yi − ŷi|, and the
Huber loss that behaves like the MSE around zero and otherwise like the MAE. Of course, it
is also possible to handcraft loss functions for specific problems.

Training by backpropagation. Training neural networks (Duda et al., 2001; Bishop, 2006;
LeCun et al., 2012; Nielsen, 2015) is based on gradient descent (Cauchy et al., 1847) and
backpropagation (Rumelhart et al., 1986). The general ideas are described in the following
while assuming that all mentioned derivatives exist. For reasons of simplicity, derivatives of
the loss function are always evaluated at (y, fθ(x)), where the tuple (x, y) is a data point from
the training set. After initialization, the network parameters θ are iteratively updated using
gradient descent, i.e.

θnew = θold − η
∂L
∂θ

, (2.9)

where η is the learning rate which determines the step size. The gradient is computed
using the backpropagation algorithm. Consider the neural network from equation (2.5) with
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L hidden layers and network parameters θ =
{︂

W (l) ∈ Rdl−1×dl , b(l) ∈ Rdl : l = 1, . . . , L + 1
}︂

with d0 = dx and dL+1 = dy. Assume all activation functions to be the same for simplicity of
notation, i.e. h(l) = h, l = 1, . . . , L. Then, the backpropagation algorithm is divided into two
parts.

First, the forward pass computes the weighted input z and the activation a of every neuron
j from layer l as follows:

z
(l)
j :=

dl−1∑︂
k=1

w
(l)
k,ja

(l−1)
k + b

(l)
j , l = 1, . . . , L + 1, fθ(x) = z(L+1), (2.10)

a
(l)
j := h

(︂
z

(l)
j

)︂
, l = 1, . . . , L, a(0) := x. (2.11)

Second, the corresponding derivatives are computed in the backward pass using the results
from the forward pass via the chain rule, i.e.

δ
(l)
j := ∂L

∂z
(l)
j

=
dl+1∑︂
i=1

∂L
∂z

(l+1)
i

∂z
(l+1)
i

∂z
(l)
j

=
dl+1∑︂
i=1

δ
(l+1)
i w

(l+1)
ji h′

(︂
z

(l)
j

)︂
, l = 1, . . . , L, (2.12)

δ
(L+1)
j = ∂L

∂z
(L+1)
j

= ∂L
∂fθ(x)j

. (2.13)

Finally, the partial derivatives of the neural network parameters can be calculated for all
l = 1, . . . , L + 1, k = 1, . . . , dl−1, j = 1, . . . , dl, as follows:

∂L
∂w

(l)
k,j

= ∂L
∂z

(l)
j

∂z
(l)
j

∂w
(l)
k,j

= δ
(l)
j a

(l−1)
k and ∂L

∂b
(l)
j

= ∂L
∂z

(l)
j

∂z
(l)
j

∂b
(l)
j

= δ
(l)
j . (2.14)

Training options, hyperparameters and the problem of overfitting. The trained
neural network should be validated on data that were not included during training. If there is
a large discrepancy between the model error on the training data and the validation data, then,
the trained model overfits the training data. Overfitting occurs when the model complexity
and the optimization procedure allow the model to fit the training data significantly better
than can be expected given the amount of available training data and the assumed noise level.
The model complexity can be considered in the model selection process. Occam’s razor, based
on a medieval philosopher, can be understood such that if two models perform equally well,
the simpler one should be chosen (Blumer et al., 1987). A simpler model is less prone to
overfitting and hence, more likely to generalize to unseen data. The bias-variance dilemma (or
bias-variance tradeoff ) (Geman et al., 1992; Bishop, 2006) says that the bias of a predictive
model decreases with growing model complexity, but its variance increases at the same time.
The MSE (equation (2.8)) of a predictive model can be decomposed into a bias and a variance
term. A good model needs to find a suitable tradeoff between the two terms. However, more
recent work states that the bias-variance tradeoff is no longer valid in an over-parameterized
setting which is often the case in modern deep learning applications (Belkin et al., 2019; Neal
et al., 2018).

Different techniques are used to reduce overfitting (Ying, 2019) once a model is selected.
Examples are the incorporation of dropout layers in the neural network architecture (cf.
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Table 2.1), data augmentation to increase the variability of the training data (cf. Table 2.2),
regularizing the model parameters by adding a penalty term to the loss function (cf. Table 2.2),
or simply stopping the training procedure before the neural network has fully converged which
is called early stopping (Caruana et al., 2001). Table 2.2 presents an overview of different
options and hyperparameters that can be considered for neural network training.

Table 2.2: Various options and parameter settings are discussed for the neural network training.

option description

data
normalization

The standard procedure is to normalize the data around zero with standard
deviation one, which is realized as follows:

xnew = x − µ

σ
, where µ = 1

N

N∑︂
i=1

xi, and σ =
(︄

1
N

N∑︂
i=1

(xi − µ)2
)︄1/2

.

If dx > 1, the operations are carried out pointwise. Another possibility is to
subtract the minimum and divide the difference by the difference between
the maximum and the minimum over the training data. Then, the training
data lie between zero and one. Without data normalization, for example,
input features with different scales of magnitude could result in a biased
network prediction that depends mainly on the input features with the
greater scale of magnitude (Sola and Sevilla, 1997).

data
augmentation

In general, the network prediction can be improved and overfitting reduced
when more training data are available. Data augmentation techniques
(Shorten and Khoshgoftaar, 2019) can help to generate more training data
without an additional labeling effort. Examples comprise adding random
noise, adversarial training or, for imaging data, geometrical transformations
such as rotations and translations.

optimizer There exist different optimization algorithms that are based on gradient
descent and the backpropagation procedure explained above (Paszke et al.,
2019). The standard stochastic gradient descent uses random subsets of
the training data (defined by the mini-batches) for the parameter updates
in accordance with equation (2.9). A momentum term can be added to
the parameter update to dampen the change of direction and to reduce
the oscillation along the path of steepest descent (Sutskever et al., 2013).
The most famous algorithm for training neural networks probably is the
Adam optimizer (Kingma and Ba, 2015) that keeps a moving average of
past parameter gradients and their squared values. The Adam optimizer
computes individual step sizes for each network parameter.

epochs The number of epochs determines how often the training data are run
through during network training.
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regularization Regularization is a popular way to reduce overfitting and limit the model
complexity (Bishop, 2006). It can be realized by adding a penalty term
to the loss function. The simplest regularizer is the L2 (or quadratic)
regularizer that adds the penalty term λ∥θ∥2

2 = λθ⊤θ to the loss, where θ is
the vector of the network parameters. The resulting loss function is given
by

Lnew (y, fθ(x)) = L (y, fθ(x)) + λ∥θ∥2
2,

where λ is the chosen regularization parameter.

mini batch
size

Instead of updating the neural network for all data points at once, the
training data can be split into multiple batches. The training routine is
then applied to every mini-batch. Larger mini-batch sizes speed up the
training and reduce the influence of outliers, while smaller mini-batch sizes
allow more training steps.

data shuffling Shuffling the data before every new epoch increases the diversity during
network training. Also, it eliminates any bias that might be introduced
into the neural network by repeatedly running through the training data in
a fixed order during training.

learning rate The learning rate determines the step size of the parameter updates in the
training procedure (cf. equation (2.9)). During training, the parameters
might skip their optimum and even diverge if the step size is too large,
while never attaining it or at least converging needlessly slowly if the step
size is too small (Duda et al., 2001). Therefore, it is important to find a
balanced step size. After a chosen initial value, the learning rate can be
continuously adapted during training. It is often set to decrease with time.

parameter
initialization

All network parameters need to be initialized before the optimization
algorithm starts. Normally, the parameters are drawn from a fixed
distribution to ensure a uniform learning process (Duda et al., 2001). Such
distributions include uniform and normal distributions centered around
zero. Very popular are the Glorot (or Xavier) initialization (Glorot and
Bengio, 2010) and the He (or Kaiming) (He et al., 2015) initialization that
are both based on uniform distributions around zero.

2.2.3 Uncertainty quantification

Epistemic vs. aleatoric uncertainty. The pursuit of trustworthy machine learning shows
the importance of active research in the area of uncertainty quantification in deep learning
(Gawlikowski et al., 2021; Zhou et al., 2021; Abdar et al., 2021; Schmähling et al., 2021).
Sources of uncertainty include imperfect model training, out-of-distribution data, noisy data
and unexpected shifts in the data (Kendall and Gal, 2017; Ovadia et al., 2019). The total (or
predictive) uncertainty of a new prediction can be divided into an aleatoric and an epistemic
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part (Gal, 2016; Hüllermeier and Waegeman, 2021). The aleatoric uncertainty is sometimes
called data or irreducible uncertainty because it corresponds to the noise included in the data
which is irreducible. In contrast, the epistemic uncertainty is also called model or reducible
uncertainty because it could in principle be arbitrarily reduced by enlarging the amount of
training data. An example is given in Figure 2.10. Some basic concepts and methods are
introduced in the following.

Figure 2.10: The aleatoric uncertainty refers to the irreducible noise included in the data (blue
stars), while the epistemic uncertainty describes the distance of the inferred regression function
(green curve) to the underlying ground truth (red curve).

Assume the following regression model with univariate target value. Let D = {(xi, yi) ∈(︂
Rdx × R

)︂
: i = 1, . . . , N} be the training dataset, such that it holds ∀(x, y) ∈ D:

y = f(x) + ϵ, ϵ ∼ N (0, σ2), x ∈ Rdx , σ > 0, (2.15)

where f : Rdx → R is the underlying regression function and ϵ is some Gaussian noise with zero
mean and variance σ2. Assume that for the chosen neural network architecture there exists
a set of parameters θ∗ such that the output of the neural network fθ∗ equals the underlying
regression function, i.e. ∀(x, y) ∈ D:

y ∼ N (fθ∗(x), σ2). (2.16)

Frequentist approach. The likelihood function is the probability distribution for the
observed data D viewed as a function of the parameters θ. It is given by the joint distribution
of the observed data samples given the model parameters, i.e.

L(θ) := p(D|θ) =
N∏︂

i=1
p(yi|xi, θ), where y|x, θ ∼ N (fθ(x), σ2), ∀(x, y) ∈ D. (2.17)

The maximum likelihood estimate (MLE) of the parameters θ is a maximizer of the likelihood
function p(D|θ) (Duda et al., 2001). Maximizing the likelihood with respect to θ is equivalent to
maximizing the logarithm of the likelihood, because the logarithm is monotonically increasing,
i.e. maximizing the log-likelihood:

l(θ) := log (L(θ)) = −1
2

N∑︂
i=1

[︄
(fθ(xi) − yi)2

σ2 + log
(︂
2πσ2

)︂]︄
. (2.18)
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In practice, instead of maximizing the log-likelihood, often the negative log-likelihood is
minimized.

Note that if σ2 is already known or fixed beforehand, minimizing the negative log-likelihood
is the same optimization problem as minimizing the MSE (cf. equations (2.7) and (2.8)). The
variance σ2 describes the aleatoric part of the uncertainty of the prediction of a new observation
y. If unknown, it can be estimated as an additional parameter during the training process. In
a heteroscedastic setting, it can also be included as an additional output of the neural network,
i.e. σ2

θ(x). The formalism can be derived analogously for a multivariate output where the
variance is replaced with a covariance matrix. In practice, often a diagonal covariance matrix
is assumed for simplicity.

Bayesian approach. In contrast to the frequentist approach (i.e. the MLE), in Bayesian
statistics (O’Hagan and Forster, 2004; Gelman et al., 1995; Duda et al., 2001; Bishop, 2006) the
model parameters θ are treated as random variables. The aim is to determine (or approximate)
the posterior distribution π(θ|D). Therefore, Bayes’ theorem plays a central role in Bayesian
statistics. It has the following form:

π(θ|D) = p(D|θ)π(θ)
p(D) , (2.19)

where the prior π(θ) can be chosen to include some prior knowledge about the network
parameters and the so-called evidence in the denominator is the normalizing constant p(D) =∫︁

p(D|θ)π(θ)dθ. Hence, the posterior is proportional to the product between the likelihood
and the prior.

The maximum a posterior (MAP) determines the most probable model parameter values
for the given data D in a Bayesian setting, by maximizing the posterior distribution. Assume
the following prior distribution:

θ ∼ N
(︂
0, λ−1Idθ×dθ

)︂
, λ > 0, (2.20)

where dθ is the dimension (equal to the number) of the model parameters. Then, it follows by
using equations (2.18) and (2.19) that the MAP is given by

arg max
θ

π(θ|D) = arg min
θ

{︄
N∑︂

i=1

[︄
(fθ(xi) − yi)2

σ2 + log
(︂
σ2
)︂]︄

+ λ∥θ∥2
2

}︄
. (2.21)

Note, that the MAP is equal to the MLE plus an L2-regularization term for the model
parameters that comes from the prior distribution. Again, the variance σ2

θ(x) could be an
additional output of the neural network in a heteroscedastic scenario.

The MLE and the MAP are only point estimates. Bayesian neural networks (Goan and
Fookes, 2020; Jospin et al., 2020) derive a posterior distribution π(θ|D) for the neural network
parameters. However, one problem is that the integral in the denominator of the Bayes’ formula
in equation (2.19) is impossible to compute in practice, and the same applies to quantities
summarizing the posterior such as the posterior mean or variance.
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2. Background

Variational inference. Variational inference (Blei et al., 2017) is a popular method
for approximate Bayesian inference in deep learning. For instance, the posterior can be
approximated (assuming the density distribution exists) by a chosen parameterized distribution
q(θ), i.e.

q(θ) ≈ π(θ|D). (2.22)

The parameters of q can be determined by minimizing the distance between the true posterior
π(θ|D) and the approximation q(θ).

A popular measure for the distance between the approximated and the true posterior of
the neural network parameters is the Kullback-Leibler (KL) divergence (Kullback and Leibler,
1951), which is non-negative but asymmetric, and is defined as follows:

KL (q(θ)∥π(θ|D)) :=
∫︂

q(θ) log
(︃

q(θ)
π(θ|D)

)︃
dθ = Eq [log (q(θ))] − Eq [log (π(θ|D))] . (2.23)

Instead of directly minimizing the intractable KL divergence between the approximated and
the true posterior, often the evidence lower bound (ELBO) is maximized in practice (Blei et al.,
2017), i.e.

ELBO(q) := Eq [log (p(D|θ))] − KL (q(θ)∥π(θ)) = log (p(D)) − KL (q(θ)∥π(θ|D)) . (2.24)

Uncertainty methods. Examples of deep learning techniques that approximate the
posterior of the model parameters via variational inference in combination with the KL
divergence as the distance measure are Bayes by Backprop (Blundell et al., 2015), normalizing
flows (Rezende and Mohamed, 2015) or dropout (Kingma et al., 2015; Gal and Ghahramani,
2016). Other examples of Bayesian inference for neural networks include the Laplace
approximation (MacKay, 1992; Ritter et al., 2018) or Markov chain Monte Carlo for small
network sizes (Neal, 1992). Another class of methods widely used in machine learning for
uncertainty quantification are ensemble learning techniques that produce a better generalization
performance and a more robust model prediction (Sagi and Rokach, 2018; Ganaie et al., 2021;
Gawlikowski et al., 2021). Their basic idea is to combine the predictions of multiple models.
Ensemble learning methods include both frequentist (Carney et al., 1999; Tiwari and Chatterjee,
2010) and Bayesian (Wilson and Izmailov, 2020; Pearce et al., 2020) elements.

GUM. The guide to the expression of uncertainty in measurement (GUM) (BIPM et al.,
2008c) is an internationally recognized guide that introduces general rules for the evaluation
and expression of uncertainties in measurements. According to the GUM (BIPM et al., 2008c),
the uncertainty (of measurement) is defined as a

“parameter, associated with the result of a measurement, that characterizes the
dispersion of the values that could reasonably be attributed to the measurand."

Such a parameter could be a standard deviation of a probability density function that accounts
for all known sources of uncertainty.

The aim of the GUM is to provide general guidance for the understanding and evaluation
of uncertainty in measurement and has been successfully applied to various examples from
a wide range of applications. It establishes rules of how to propagate uncertainties from the
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2.2 Deep learning

input quantities to the output quantities. This propagation of uncertainties requires that a
mathematical model has been specified which relates the output quantity to the input quantities
in a unique way. Furthermore, uncertainties need to be assigned to the input quantities. In
addition to the basic GUM document (BIPM et al., 2008c), the supplement GUM-S1 (BIPM
et al., 2008a) establishes the propagation of uncertainty distributions via a Monte Carlo method
and the supplement GUM-S2 (BIPM et al., 2008b) introduces multivariate output quantities.

The treatment of regression problems according to GUM is not uniquely defined (Elster,
2014). Recently, a new part was added to the GUM (BIPM et al., 2020) that also considers
Bayesian statistics and discusses the quantities involved in the measurement model. However,
a Bayesian uncertainty analysis employs standard treatments such as the use of Markov chain
Monte Carlo methods which do not scale to high-dimensional problems. Here, we consider a
high-dimensional regression problem where the chosen regression model is a nonlinear deep
neural network having more model parameters than data samples are available. For these
reasons the GUM will not be further discussed in this thesis.

2.2.4 Deep ensembles

Deep ensembles (Lakshminarayanan et al., 2017) are an ensemble learning method which is
currently seen as providing the state-of-the-art for uncertainty quantification in deep learning
(Caldeira and Nord, 2020; Gustafsson et al., 2020; Ovadia et al., 2019; Henne et al., 2020;
Ashukha et al., 2020). Multiple neural networks are independently trained and their prediction
is treated as a uniformly weighted Gaussian mixture model.

Figure 2.11: a) shows a neural network that has two output neurons (LeNail, 2019), i.e. the
estimated regression function fθ and the corresponding estimate of the aleatoric variance σ2

θ . b)
indicates how the individual neural networks (illustrated as black boxes) act together to form the
deep ensembles estimation of the regression function fDE(x) = 1

K

∑︁K
k=1 fθ(k)(x) and the epistemic

variance σ2
epist(x) = 1

K

∑︁K
k=1 (fθ(k)(x) − fDE(x))2.

Assume the univariate statistical model from (2.15) and let K be the number of neural
networks included in the deep ensemble. Each ensemble member learns to estimate the
underlying regression function fθ and the corresponding variance of the noise included in the
data σ2

θ which is related to the aleatoric part of the uncertainty, cf. Figure 2.11a. The neural
networks are independently trained using the negative log-likelihood function (2.18) as the
loss function. Figure 2.11b indicates the prediction behaviour of the deep ensembles. For an
input x, the estimate of the underlying regression function fDE(x) and the estimated variance
related to the epistemic uncertainty σ2

epist(x) are the average and the uncorrected variance of
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the individual estimations of the neural networks fθ(k)(x), k = 1, . . . , K, respectively, i.e.

fDE(x) = 1
K

K∑︂
k=1

fθ(k)(x), σ2
epist(x) = 1

K

K∑︂
k=1

(fθ(k)(x) − fDE(x))2 . (2.25)

The variance of the total uncertainty of the prediction for an input x is the following:

σ2
total(x) = σ2

epist(x) + σ2
aleat(x), where σ2

aleat(x) = 1
K

K∑︂
k=1

σ2
θ(k)(x). (2.26)

This thesis focuses on deep ensembles because they scale well to high-dimensional data,
outperform other modern methods and are straightforward to implement (Beluch et al., 2018;
Gustafsson et al., 2020; Scalia et al., 2020). Deep ensembles have originally been proposed as
a frequentist heuristic but can also be viewed from a Bayesian perspective which is discussed
in Chapter 6 where a natural extension to the deep ensembles is proposed as well.

2.3 Inverse problems

Figure 2.12: The forward problem is often defined as obtaining a model for the measurement
data from a given object and the inverse problem is about finding the underlying object given the
data and the forward model.

Consider the following mapping for an object x, some data y and an operator F :

y = F (x). (2.27)

The forward problem is defined as finding y for a given x while the inverse problem is defined
as finding x for a given y (Aster et al., 2018) as illustrated in Figure 2.12. Inverse problems are
very common in science and engineering (Yaman et al., 2013; Bertero et al., 2021). Examples
comprise determining the hypocenter of an earthquake from observed seismic data, X-ray
computed tomography (CT), or reconstructing a topography from collected interferometrical
measurement data.

2.3.1 Types of inverse problems

When x and y can be expressed as finite dimensional vectors and the operator F is a mapping
f between two finite dimensional spaces (cf. equation (2.27)), the inverse problem is said to
be discrete. If, however, x and y are functions of continuous variables, the inverse problem is
called continuous. Continuous inverse problems are often discretized, since numerical methods
require a discretization of the inverse problem to compute an approximate solution (Richter,
2020). Inverse problems can also be divided into linear and nonlinear inverse problems. The
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treatment of linear problems is well understood (Aster et al., 2018). In contrast, nonlinear
inverse problems are more challenging. Different approaches should be chosen depending on
the concrete problem. Many solution techniques comprise some form of linearization.

In discrete linear inverse problems, the operator F can be expressed as a matrix, i.e.

Fx = y, x ∈ Rdx , y ∈ Rdy , F ∈ Rdy×dx . (2.28)

Some continuous linear inverse problems can be expressed as a Fredholm integral equation of
the first kind (IFK) with kernel k, i.e.

∫︂ b

a
k(z, ξ)x(ξ)dξ = y(z). (2.29)

It is possible to discretize IFKs, for example via quadrature rules to obtain a linear system of
equations that is easier to solve (Aster et al., 2018).

2.3.2 Solving ill-posed problems

A problem is well-posed in the sense of Hadamard if there exists a unique solution and the
solution depends continuously on the data (Hadamard, 1902; Engl et al., 1996; Bertero et al.,
2021). The non-existence of a solution occurs if the system of equations to be solved is
inconsistent. This may happen when there are more data points y available than elements
to be estimated x and the data are noisy (e.g. measurement data). Next, if there exists a
solution, it might not be unique. Non-uniqueness of a solution occurs if the null space of a
linear operator F is nontrivial. It is a characteristic of rank deficiency in discrete linear inverse
problems that can be induced, for example, by discretizing a continuous inverse problem. The
third property of well-posed problems in the sense of Hadamard is the continuous dependence
of the solution x on the data y, also described as the stability of the solution (Aster et al.,
2018). A solution is unstable if small changes in the data drastically change the solution.
Such an issue can arise for discrete inverse problems when F has small singular values and is
therefore ill-conditioned, since the solution can then be very sensitive to noise in the data.

In summary, inverse problems are often ill-posed because of various reasons. Some remedies
for discrete linear inverse problems (2.28) are discussed in the following (Engl et al., 1996;
Aster et al., 2018). If there does not exist a solution, it is still possible to find a best fit
approximate solution by minimizing some misfit measure. A popular example is the least
squares solution xL2 that minimizes the L2-norm of the residuals as follows:

xL2 := arg min
x

∥y − Fx∥2 = (F ⊤F )−1F ⊤y, (2.30)

where the second equality is only defined if F has full column rank (since (F ⊤F )−1 does not
exist otherwise). Note that the least squares solution can be viewed as a recommended solution
from a statistical point of view if the data noise is normally distributed (cf. equation (2.18)).

If the solution is not unique, an additional constraint can be optimized. A typical example
is the least squares solution of (2.28) that has the smallest L2-norm. Let F = USV ⊤ be
the singular value decomposition of F , where U ∈ Rdy×dy and V ∈ Rdx×dx are orthogonal
matrices and S ∈ Rdy×dx is a diagonal matrix having the singular values on its diagonal. The
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Moore-Penrose pseudoinverse solution x† is defined as follows:

x† := VpS−1
p U⊤

p y, Vp ∈ Rdx×p, Sp ∈ Rp×p, Up ∈ Rdy×p, (2.31)

where p is the number of nonzero singular values and Sp is the diagonal matrix containing
the nonzero singular values of F on its diagonal. The Moore-Penrose pseudoinverse solution
always exists and is the least squares solution of (2.28) that has the smallest L2-norm (Engl
et al., 1996). Finally, instability can be reduced by employing regularization methods, e.g. the
Tikhonov regularization (Aster et al., 2018).

2.3.3 Outlook

Interested readers are referred to Engl et al. (1996), Aster et al. (2018) and Bertero et al.
(2021) for more information on inverse problems. Various machine learning techniques have
been developed particularly to solve inverse problems. Examples comprise deep convolutional
neural networks for inverse problems in imaging (McCann et al., 2017; Lucas et al., 2018),
deep residual networks for image recognition (Schmidhuber, 2015) and denoising (Zhang et al.,
2017), sparse basis field expansions and hierarchical Bayesian inference for magneto- and
electroencephalography (MEG/EEG) data (Haufe et al., 2008; Hashemi et al., 2021), training
a regularizer with deep neural networks to obtain well-posed solutions (Li et al., 2020), solving
the forward and inverse problem simultaneously through inverse neural networks (Hagemann
and Neumayer, 2021), or mixture density networks for non-unique solutions (Bishop, 1994).

The application from computational optical form measurements considered here (cf. Section
2.1) constitutes a nonlinear continuous inverse problem of reconstructing a specimen surface
from measurement data. Therefore, it can generally be assumed to be ill-posed. In Chapter 3,
the numerical forward model is introduced that can be used to solve the inverse problem, as
discussed in more detail in Section 3.2. Towards this end, the known design topography of the
specimen provides a well-informed first guess. The inverse problem is discretized by choosing
a parameterized model class for the inverse operator to approximate the specimen topography
with finitely many parameters to be optimized. In the state-of-the-art reconstruction procedure
described in Subsection 3.2.1, a sequence of polynomial functions up to a certain order that
are orthogonal on the unit disc are chosen as the model class. In this thesis, a model class of
deep neural networks is proposed (cf. Chapter 4).

Of course, only a finite number of data points are available due to the limited camera
resolution of 2048×2048 pixels. Problems might arise, if the measurement data are noisy or the
numerical forward model does not equal the underlying physical forward model. In these cases
there might not be a solution. Also, positioning errors and form errors can be confounding
(Gronle et al., 2022). If both are estimated at the same time, the solution might not be unique.
Only optical (smooth) surfaces (cf. Subsection 2.1.1) are considered for measurement by the
TWI to ensure the uniqueness of the solution up to the positioning problem.
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Virtual tilted-wave interferometer

The forward model for the inverse problem of the TWI surface form reconstruction procedure
is provided by numerical simulations of the experiment, i.e. by a virtual TWI. It refers to a
computer model of the optical system that imitates the behavior of a physically given TWI.
Measurement data from a real specimen measured by the physical TWI can be related to
simulated data computed by the virtual TWI. Basically, the virtual TWI has two different
roles. First, it plays the role of the forward model in an inverse problem from accurate optical
form measurements (Fortmeier et al., 2014). Second, it can be applied in order to explore
the behaviour of procedures used to solve the inverse problem. Examples include analyzing
the influence of error sources and limitations of the evaluation process (Fortmeier et al.,
2013), exploring sources of uncertainty in the reconstruction, distinguishing sensitive system
parameters (Scholz et al., 2022), generating a database for machine learning applications and
many more.

This chapter is structured as follows. Some simulation tools relevant for this work are
presented in Section 3.1, e.g. the simulation toolbox used to realize the virtual TWI, the
orthogonal sequence of polynomials employed for modeling topographies, and the wavefront
manipulators that are applied to phenomenologically alter the light path through the virtual
optical system to improve the quality of the numerical forward model. Afterwards, the use-cases
of the virtual TWI are discussed in Section 3.2. The inverse problem of the form reconstruction
is introduced, the state-of-the-art evaluation procedure is summarized, and the data generation
is explained that is needed for the training and validation of the deep neural networks. A
short summary is given in Section 3.3.

3.1 Simulation tools for virtual experiments in optics

Virtual experiments are crucial for scientific progress (Cooper et al., 2015). In optics, virtual
experiments allow to rigorously analyze optical measurement techniques (Thalhammer and
Wachutka, 2003a). Examples include optimizing the design of experiment (Thalhammer and
Wachutka, 2003b), computing expected accuracies (Wiegmann et al., 2011), analyzing the
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effects of additional measurement information (Fortmeier et al., 2016) or applying neural
networks for misalignment corrections (Zhang et al., 2019).

The evaluation procedure of the tilted-wave interferometer (TWI) is based on both
measurement data and a numerical forward model (Liesener, 2007; Garbusi et al., 2008;
Baer et al., 2014c). Therefore, a virtual environment is needed to simulate the optical system,
which is realized at the PTB using the simulation toolbox SimOptDevice (Schachtschneider
et al., 2019; Fortmeier et al., 2022). The simulated optical system has to be adapted to the
real measurement system, i.e. calibrated, prior to the reconstruction procedure (Baer et al.,
2014a; Fortmeier, 2016).

Based on virtual experiments, Mühlig et al. (2014) and Baer (2016) showed that the TWI
calibration procedure is drastically improved by using multiple reference spheres instead of a
single one. Steps towards tracing the measurement results to the SI units with low uncertainty
are discussed in Schulz et al. (2015) and Fortmeier et al. (2017). Baer (2016) and Harsch et al.
(2019) investigated the effect of positioning errors on the TWI measurement using Monte Carlo
simulations. Fortmeier et al. (2016) and Harsch et al. (2019) concluded that an additional
length measuring interferometer to determine the exact position of the specimen in the optical
axis can drastically improve the measurement results. In Scholz et al. (2022), the virtual TWI
is used to identify high-impact parameters. For the set of investigated parameters in that
study, errors of the wavelength used for the illumination, errors of the radius of one of the
calibration spheres, as well as the positioning errors of the specimen and noise in the input
data showed greatest impact on the measurement result.

The section is structured as follows. Subsection 3.1.1 briefly introduces the simulation
toolbox SimOptDevice. It was developed at the PTB, contains a realization of the virtual
TWI, and is used for all the TWI-related simulations throughout this thesis. Subsection 3.1.2
presents the Zernike polynomials which are another building block for the data generation
for later machine learning applications. Then, the wavefront manipulators are discussed in
Subsection 3.1.3 that are needed to better adapt the virtual optical system to the real optical
system of the TWI.

3.1.1 Simulation toolbox SimOptDevice

Virtual experiments can help to develop, improve, analyze and might even be part of complex
measurement systems (Bergmann et al., 2016; Scholz et al., 2022). SimOptDevice is a simulation
toolbox for optical virtual experiments (Fortmeier, 2016; Stavridis et al., 2018; Schachtschneider
et al., 2019). It has been developed at the Physikalisch-Technische Bundesanstalt (PTB) and
is implemented in MATLAB®.

The SimOptDevice enables the geometric setup of measuring devices containing axes,
pivots, sensors, and optical surfaces such as mirrors, lenses, collimators, etc. Basic features
include coordinate system transformations, ray tracing and ray aiming. The latter two are
illustrated in Figure 3.1. Given a starting point p0 ∈ R3 and angle e0 ∈ R3, the aim of ray
tracing is to trace the beam path through the optical system and to compute the intersection
point pn ∈ R3 of the ray with a certain interface, e.g. the camera. In contrast, ray aiming is
the inverse problem of finding the direction e0 that leads a ray through the optical system
from point p0 to point pn, e.g. from one source to a certain pixel on the camera. More detailed
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information about the implementation are provided in Fortmeier et al. (2014) and Fortmeier
(2016).

Figure 3.1: Exemplified path of a light ray through an optical system (green). The ray starts at
p0 in the direction of e0, passes through the optical system with several optical elements (simplified
as blue boxes) and arrives at pn.

Applications of SimOptDevice include the tilted-wave interferometer (Fortmeier et al., 2022),
PTB’s double-ended interferometer (Fischedick et al., 2021), modulation transfer functions in
optomechanical simulations (Schenker et al., 2020), sub-aperture interferometry measurements
of a synchrotron mirror (Wiegmann et al., 2011) and small angle deflectometry (Schulz et al.,
2010).

3.1.2 Zernike polynomials

Zernike polynomials form a sequence of orthogonal polynomial functions defined over the unit
circle and are well known in optics from wavefront modeling (Wang and Silva, 1980). The
following definition is based on the ANSI Z80.28-2017 (2017). A Zernike polynomial function
Zm

n with radial integer index n and signed azimuthal index m is defined as follows:

Zm
n (ρ, ϕ) := R|m|

n (ρ)M(mϕ), ρ ∈ [0, 1], ϕ ∈ [0, 2π], (3.1)

where the radial term R
|m|
n (ρ) and the azimuthal term M(mϕ) are defined in the following:

R|m|
n (ρ) :=


∑︁ 1

2 (n−|m|)
s=0

(−1)s(n−s)!
s!
(︁

n+|m|
2 −s

)︁
!
(︁

n−|m|
2 −s

)︁
!
ρn−2s if (n − |m|) is even

0 otherwise
, (3.2)

M(mϕ) :=

cos(mϕ) if m ≥ 0

sin(−mϕ) otherwise
. (3.3)

The radial parameter ρ is defined as ρ = r
a for any radial distance r from the aperture center,

where a is the value of the aperture radius. The azimuthal parameter ϕ expresses the angle
between 0 and 2π.

A surface T parameterized by Zernike polynomials can be represented by

T (ρ, ϕ) =
∑︂
n,m

cm
n Zm

n (ρ, ϕ), ρ ∈ [0, 1], ϕ ∈ [0, 2π], (3.4)

where cm
n ∈ R are the Zernike coefficients associated with the corresponding Zernike polynomial

functions Zm
n . Instead of the double indexing, the Zernike polynomial functions can be ordered
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using a single index j provided by

j = n(n + 2) + m

2 . (3.5)

Also, any parameterized surface can be represented in a Cartesian coordinate system as follows:

T (x, y) =
∑︂

j

cjZj(x, y), (3.6)

where (x, y) is defined on the unit disc. Figure 3.2 shows the first 15 Zernike polynomial
functions. The frequency of the modeled surface increases with higher orders.

Figure 3.2: The first 15 Zernike polynomials (i.e. n, |m| ≤ 4) functions are plotted in dependence
of their azimuthal and radial indices together with their names commonly used in optics.

3.1.3 Wavefront manipulators

The1 virtual TWI differs in general from the physical TWI, because there are deviations of the
manufactured system from the instrument design. To attain an accuracy that is fit for purpose,
the virtual TWI can be refined, i.e. calibrated using the observed data for some test specimens
whose topographies are known with high accuracy (Baer et al., 2014a; Fortmeier et al., 2022).
An example is shown in Figure 3.3a. The calibration is realized by adding optical path lengths
at two virtual planes R1, R2, called wavefront manipulators, to the virtual TWI, as shown

1Part of this section is taken from Hoffmann et al. (2021b).
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in Figure 3.3b. The light beam passes the first wavefront manipulator R1 before attaining
the topography and passes the second wavefront manipulator R2 after having attained the
topography.

Figure 3.3: a) The goal of the calibration process is to adapt the simulated data to the measured
data for some well-known test topographies. b) The light path through the optical system is
deviated by introducing the wavefront manipulators R1 and R2 before and after the topography,
respectively. Figure b) is taken from Hoffmann et al. (2021b).

Each virtual wavefront manipulator modifies the light beams phenomenologically by
changing the light path through the optical system. More precisely, the optical path lengths
LR1 and LR2 of the wavefront manipulator R1 and the wavefront manipulator R2, respectively,
are added to the optical path length between the two wavefront manipulators LT . Then, the
total optical path length difference (OPD) is computed by subtracting the optical path length
of the reference arm LR (cf. Figure 2.4) from the resulting sum as follows (Fortmeier, 2016):

OPD = LR1 + LR2 + LT − LR. (3.7)

Each wavefront manipulator is parameterized by a double fit of Zernike polynomials explained
in the following. The parameterization of the wavefront manipulator R1 depends on the
intersection (u, v) with a beam and its originating light source (U, V ), i.e.

LR1(u, v, U, V ) =
I∑︂

i=1

 J∑︂
j=1

QijZj(U, V )

Zi(u, v), (3.8)

where Q is the matrix of Zernike coefficients with dimension I × J and Zi, Zj are the Cartesian
Zernike polynomials. Analogously, the wavefront manipulator R2 depends on the intersection
with a beam (m, n) and its corresponding pixel on the CCD (M, N), i.e.

LR2(m, n, M, N) =
K∑︂

k=1

(︄
H∑︂

h=1
PkhZh(M, N)

)︄
Zk(m, n), (3.9)

where P is the matrix of Zernike coefficients with dimension K × H and Zk, Zh are the
Cartesian Zernike polynomials.

Note that two wavefront manipulators are required instead of a single one to ensure that
the refinement of the virtual TWI is independent of the surface under test (Fortmeier, 2016).
The Zernike coefficients of the parameterized wavefront manipulators are adjusted during the
calibration procedure (Fortmeier et al., 2022). This is done in such a way that the simulated
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data using the virtual TWI increasingly resemble the measurement data obtained from the real
optical system for some spherical calibration specimens that are known with high accuracy.

3.2 Use of the virtual tilted-wave interferometer

For an optical specimen topography T defined on a circular base area and the corresponding
measurement data L (resulting from four disjoint masks on the acting 2D point source array),
the following mapping is considered:

F (T ) = L, (3.10)

where F is the forward operator, given here numerically by the virtual TWI. The inverse
problem (cf. Section 2.3) consists of reconstructing the surface form from the measurement
data. It can generally be viewed as a nonlinear continuous inverse problem, since the optical
surface is assumed to be a continuous function defined on the unit circle in R2.

Figure 3.4 summarizes the evaluation procedure of the optical form reconstruction using
the TWI (Garbusi et al., 2008; Baer et al., 2013b; Fortmeier et al., 2016). The measurement
data of a specimen are collected at the CCD of the TWI in the form of interferograms (cf.
Subsection 2.1.3). For each of the four masks, the interferograms are transformed into a phase
image using a five-step phase shifting algorithm (Hariharan et al., 1987)2. Then, the phase
images Φmeas are unwrapped to the corresponding optical path length differences (OPDs) via
the Goldstein unwrapper (Goldstein et al., 1988)2.

The known design topography T0 can be used as a first guess for the surface form of the
specimen T and the numerical forward model is given by the virtual TWI F . Then, the
inverse problem translates to reconstructing the deviation of the specimen topography to its
design called difference topography ∆T from the differences of the OPDs ∆L between the
measurement data L and the simulated data L0 = F (T0), i.e.

T = T0 + ∆T, ∆L = L − L0, L0 = F (T0). (3.11)

Hence, the solution of the inverse problem is based on finding a map f : ∆L ↦→ ∆T .
The inverse problem can be discretized by choosing a parameterized model class {fθ}θ∈Θ to

approximate the mapping f with finitely many parameters. Zernike polynomials (cf. Subsection
3.2.1) as well as neural networks (cf. Chapter 4) can be chosen as model class. The parameters
are determined by solving the following minimization problem:

min
θ∈Θ

∥fθ(∆L) − ∆T∥2. (3.12)

Note that the resulting discrete inverse problem is at the same time a regression problem.
The following subsections explain in more detail what the numerical forward model given by

the virtual TWI is needed for. A brief overview of the state-of-the-art reconstruction procedure
is provided in Subsection 3.2.1, where the numerical forward model is used in every iteration
step of the iterative evaluation procedure. Then, Subsection 3.2.2 explains how to generate

2in the PTB implementation relevant for this work.
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Figure 3.4: Scheme of the TWI evaluation procedure. The collected interferograms of a measured
specimen are mapped to phase images Φmeas that in turn are unwrapped to optical path length
differences (OPDs). As a first guess, the OPDs corresponding to the design topography can be
simulated by the virtual TWI. The task is now to reconstruct the difference topography ∆T from
the resulting differences of measured and simulated OPDs ∆L (red box). Note that four disjoint
masks were subsequently used on the acting 2D point source array (cf. Subsection 2.1.3).

a dataset for machine learning applications and especially deep neural network training for
optical form measurements based on simulations. In addition, virtual experiments allow to
generate out-of-distribution test data for validation and to study the generalizability of the
trained models by modifying the numerical forward model, as discussed in Subsection 3.2.3.

3.2.1 State-of-the-art TWI evaluation procedure

State-of-the-art TWI evaluation methods use a two-step reconstruction procedure (Baer, 2016;
Fortmeier et al., 2022). First, the model class for the discretized inverse problem (cf. the
optimization problem from (3.12)) is chosen to be the set of Zernike polynomials (cf. Subsection
3.1.2) up to a fixed order M . Hence, the Zernike coefficients are the parameters to be optimized.
Additional parameters such as position parameters or patch offsets can be included as well
(Fortmeier et al., 2022). The nonlinear inverse problem is solved by iteratively updating the
design topography T0 using local linearizations as follows (Fortmeier, 2016):

Tk+1 = Tk +
M∑︂

j=1
c

(k)
j Zj , k = 0, . . . , K, (3.13)

where K is the number of performed iterations, Zj and cj , j = 1, . . . , M, are the Cartesian
basis Zernike polynomials and the corresponding Zernike coefficients, respectively.
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The Zernike coefficients are computed by solving the following linearized discrete inverse
problem via least squares (Fortmeier et al., 2014):

∆L = Jc, J = dL

dc
, (3.14)

where L are the measured OPDs and c ∈ RM is the vector of Zernike coefficients. Note that
the virtual TWI is used in every iteration step to calculate ∆L (cf. equations (3.11)).

Second, the remaining high-frequency parts are computed from the remaining residuals
between the measured and simulated OPDs on a chosen grid and are added to the approximated
topography. There exist different approaches to do so. In Baer et al. (2013b), the high-frequency
surface deviation is geometrically calculated for each source independently based on the angles
of incidence and the intersection points of the rays with the topography provided by the ray
tracing procedure. Then, the different parts of the reconstructed surface deviations (depending
on the source) are combined via a stitching procedure. In contrast, Fortmeier et al. (2022)
solve an additional linearized inverse problem to reconstruct the high-frequency part via the
partial derivatives of the simulated OPDs with respect to the height values of the surface
under test.

3.2.2 Data generation for neural network training

This work focuses on solving the nonlinear inverse problem of reconstructing an arbitrary
difference topography ∆T from the corresponding differences of OPDs ∆L for a fixed design
topography (cf. Figure 3.4) via deep neural networks. Potential advantages of the deep learning
approach are improved reconstruction accuracies because the nonlinear inverse problem is
directly solved instead of applying local linearizations, shorter computation times since deep
neural networks provide immediate results once they are trained, and easy-to-apply uncertainty
quantifications. Challenges include the data generation, the neural network training, the
model validation and its generalization capability to measurement data. Deep neural network
training, generalization performance and validation depend on the quality (and quantity) of
the available data (Nikolenko et al., 2021). Therefore, the following tackles Objective 1, i.e. to
generate a database for the training and testing of deep learning methods (cf. Section 1.2),
and presents the basic concepts of data generation for this work.

The inverse problem is treated as a regression problem and we choose the model class
(cf. the optimization problem from (3.12)) to be a set of convolutional deep neural networks,
where the model parameters are optimized using some training data D. Due to the high model
complexity of deep neural networks, the pixelwise height values of a difference topography
are directly predicted by the deep learning approach and no iterative procedure is applied.
For a fixed design topography, the trained deep learning model can be applied directly to any
specimen without further refinement. No misalignment errors are included during the neural
network training to preserve the uniqueness of the reconstructed topographies by fixing the
position in advance. Nonetheless, the deep learning approach is also applied to measurement
data in Chapter 5.

As shown in the red box in Figure 3.4, the deep learning objective is to reconstruct the
difference topographies ∆T for given differences of OPDs ∆L. The data generation process
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is summarized in Figure 3.5. For a fixed design topography T0, various specimens T can be
generated by randomly drawing Zernike coefficients (cf. Section 3.1.2) and using the resulting
polynomials as difference topographies ∆T . The corresponding OPDs can be simulated for a
given specimen using the virtual TWI. Then, the differences of OPDs ∆L are computed by
subtracting the OPDs L0 corresponding to the design topography from the simulated OPDs L

of the specimen. Note that ∆L has four channels because four disjoint masks are successively
blocking the 2D point light source array (cf. Subsection 2.1.3). Figure 3.6 shows an example
data point (∆L, ∆T ) ∈ D.

Figure 3.5: General data generation process. Adding a random difference topography ∆T to the
known and fixed design topography T0 generates a new specimen. The virtual TWI computes the
corresponding OPDs of a specimen. Then, the differences of OPDs ∆L are obtained by subtracting
the OPDs of the design topography L0 from the resulting OPDs of the specimen.

Figure 3.6: A data point consists of a difference topography ∆T and the corresponding differences
of OPDs ∆L. The images have a resolution of 64 × 64 pixels and an underlying asphere as design
topography.

In this work, two different design topographies with a circular base are employed; a two-radii
surface (Fortmeier et al., 2019) and an asphere (cf. Appendix A.1). They have a base-diameter
of about 40 mm and 30 mm, and a peak-to-valley value of ca. 6 mm and 4 mm, respectively. To
generate different specimens, the Zernike coefficients for up to the first 136 Zernike polynomial
functions are drawn randomly. An additional weighting is applied to the Zernike coefficients.
The weights decrease for higher order polynomials and provide for a larger share of rotational
symmetric coefficients, resulting in more realistic specimens (Schachtschneider et al., 2018;
Fortmeier et al., 2020). Also, we always set the first three Zernike coefficients, that correspond
to the piston and tilt parameters (cf. Figure 3.2), to zero to not introduce any positioning
errors.

Up to approximately 40, 000 training data points are generated for a design topography. An
example of such a data point is shown in Figure 3.6 for the asphere as design topography. The
generated data have a resolution of 64 × 64 pixels. This resolution is enough for the purposes
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of this thesis, but can be adapted in the future. For the moment it saves memory, computation
time, and ensures a fast data generation process. All training data are provided using exactly
the same virtual TWI for both the design topography and the specimens (cf. Figure 3.5), i.e.
the virtual TWI is perfectly calibrated (cf. Subsection 3.1.3). The data generation process is
implemented in MATLAB®.

3.2.3 Model validation using virtual experiments

The prediction behaviour of a (trained) deep learning model should be tested thoroughly to
ensure a trustworthy output (Taylor, 2006). Therefore, all generated test data are disjoint
from the training data, i.e. the model has not seen them during training. Independent test
data are important because the model might have learned to overfit the training data, meaning
that the predictions are very accurate on the training data but do not generalize well to data
not included in the training process (Bishop, 2006).

Similar to the training data, we generate the test data using the numerically given forward
model as described in the previous subsection. All training data are provided by a perfect
optical system, where the same virtual TWI is used for the simulated data of both the design
topography and the specimens (cf. Figure 3.5). A first independent test dataset is generated
analogously. However, the prediction behaviour of a deep learning model is of interest not
only for in-domain data, but also its generalizability to out-of-distribution data (Abdar et al.,
2021). Indeed, our goal is to apply the developed deep learning approach to a real-world
environment, where no perfect optical system exists. To this end, we use virtual experiments
to generate multiple test sets originating from non-perfect optical systems, where the numerical
forward model is imperfect. It follows that the employed virtual TWIs to simulate the data
for the design topography and specimens, respectively, are not identical. In order to simulate
an imperfect numerical forward model, we disturb the virtual TWI phenomenologically by
modifying its wavefront manipulators (cf. Subsection 3.1.3).

3.3 Summary

This chapter introduces the virtual TWI as a numerical forward model for the inverse problem
related to the TWI surface form reconstruction. The virtual TWI employed in this thesis is
based on the SimOptDevice - a simulation toolbox developed at PTB for virtual experiments
in optics. State-of-the-art TWI evaluation methods require the virtual TWI to update the
reconstructed topography iteratively by solving a linearized inverse problem via least squares
optimization. Here, we extend the virtual TWI to generate a database that enables the
investigation of deep learning methods for the inverse problem related to the TWI, which
addresses Objective 1, i.e. to generate a database for the training and testing of deep learning
methods (cf. Section 1.2). Various specimens are generated using Zernike polynomial functions,
and out-of-distribution data are simulated by modifying the wavefront manipulators of the
virtual TWI which phenomenologically disturbs the light path through the optical system.
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Deep1 neural networks and machine learning in general are experiencing an ever greater
impact on science and industry. Their application has proven beneficial in many different
domains, including autonomous driving (Grigorescu et al., 2020), anomaly detection in quality
management (Staar et al., 2019), signal processing (Mousavi and Baraniuk, 2017), analysis of
raw sensor data (Moraru et al., 2010), medical health care (Esteva et al., 2019), and quality
assurance (Kretz et al., 2020). Deep learning has also been successfully employed in optics.
Examples comprise the compensation of lens distortions (Chung, 2018), correcting abberated
wave fronts in adaptive optics (Vdovin, 1995), correcting misalignment errors (Baer et al.,
2013a), (Zhang et al., 2020), aberration detection (Yan et al., 2018), or phase predicitons
(Rivenson et al., 2018).

In this chapter, we develop a deep learning approach to solve the high-dimensional inverse
reconstruction problem from computational optical form measurements based on the TWI
evaluation procedure (cf. Figure 3.4). A recent study comparing different state-of-the-art
techniques that measure optical freeform surfaces (Fortmeier et al., 2020) showed deviations
between the participants ranging from 15 nm to 110 nm on some real specimens neglecting
any spherical contribution. The aim of this chapter is to demonstrate that this field in optics
can also benefit from deep learning while tackling Objectives 2 and 3, i.e. to develop a deep
learning approach for the form measurement of optical aspheres and freeform surfaces and to
extend it to incorporate an uncertainty quantification to the estimated solution (cf. Section
1.2). Motivated by the ultimate goal of measuring optical surfaces in a real-world scenario, we
propose a hybrid approach combining deep learning methods with a state-of-the-art calibration
procedure (Fortmeier et al., 2022) to refine the numerical forward model.

Recall that the estimation of the solution to the inverse problem related to the TWI
evaluation procedure is treated as a regression problem and can be stated as follows. Find a
map f for a fixed design topography, such that the resulting differences of OPDs ∆L map to

1This chapter is based on Hoffmann and Elster (2020) and Hoffmann et al. (2021b).
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the corresponding difference topography ∆T , i.e.

f : RC×M×M → RM×M , ∆L ↦→ ∆T, (4.1)

where C is the number of input channels, i.e. the number of disjoint masks sequentially used
to block parts of the 2D point light source array (cf. Subsection 2.1.3), and M × M is the
image resolution.

Section 4.1 shows in a proof-of-principle study that deep learning approaches can be
successfully applied to computational optical form measurements using the TWI evaluation
procedure. Afterwards, an uncertainty quantification is incorporated into the developed
approach in Section 4.2 via deep ensembles and the proposed method is tested thoroughly. The
analysis and results presented in this chapter are based on virtual experiments with known
ground truth. Finally, our findings are summarized in Section 4.3.

4.1 Computational optical form measurement

Applied2 state-of-the-art methods solve the high-dimensional, nonlinear, inverse reconstruction
problem related to the TWI evaluation procedure iteratively through local linearizations (cf.
Subsection 3.2.1). A general advantage of neural networks is the ability to produce instant
results once they are trained. Furthermore, it is interesting to explore whether deep learning
could also improve the quality of the inverse reconstruction as a nonlinear approach. In a proof-
of-principle study, this section demonstrates that computational optical form measurements
can benefit from deep learning. A data-driven approach based on deep neural networks is
explored to solve the inverse problem of the accurate optical measurement of optical aspheres
and freeform surfaces using the TWI.

The section is organized as follows. Subsection 4.1.1 presents the employed data for training
and testing. Then, Subsection 4.1.2 introduces the proposed deep learning framework and
explains how to combine this approach with a conventional calibration method for better
generalization performance. Subsequently, the results are shown in Subsection 4.1.3 and the
outcome of the proof-of-principle study is discussed in Subsection 4.1.4.

4.1.1 Data

When solving an inverse problem with neural networks, it is a common practice to generate
data through physical simulations (Lucas et al., 2018), (McCann et al., 2017). Here, the data
generation is carried out as described in Subsection 3.2.2. Various difference topographies ∆T

are generated through randomly chosen weighted Zernike polynomials (cf. Subsection 3.1.2).
Then, they are added to a specific design topography at a fixed measurement position to create
different virtual specimens. Following the forward pass, the numerical forward model given as
virtual TWI (cf. Chapter 3) is used to compute the OPDs L0 and L of the design topography
T0 and the modeled specimens T = T0 + ∆T , respectively. For a fixed design topography, the
generated training dataset D is defined as follows:

D := {(∆L, ∆T ) | ∆T randomly generated, ∆L = L − L0} . (4.2)
2Most of this section is taken from Hoffmann and Elster (2020).
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More precisely, the OPDs are computed from the corresponding topographies using the virtual
TWI while assuming the numerical forward model to be perfect.

Towards the aim of generalizing the deep learning approach to real-world data, the model
is tested on in-domain data assuming a perfect numerical forward model as well as out-of-
distribution data generated by simulating an imperfect forward model (cf. Subsection 3.2.3).
An overview is given in Table 4.1. All training data are generated using a perfect optical
system while the system conditions are varied for testing.

Table 4.1: Different optical system settings are presented that depend on the employed numerical
forward models.

optical system formula virtual TWI description

perfect ∆L = F0(T ) − F0(T0) F0 is the numerical forward model used to
generate the training data.

non-perfect ∆L = F1(T ) − F0(T0) F1 is a numerical forward model simulating the
ground truth TWI, i.e. simulating measurement
data.

calibrated ∆L = F1(T ) − F̂ 1(T0) F̂ 1 is a refined numerical forward model that
is phenomenologically adapted to approximate
the ground truth TWI.

Two different design topographies are considered, namely the two-radii freeform surface
and the asphere with a base-diameter of ca. 40 mm and 30 mm, respectively. About 22, 000
data points are generated for each design. 10% of the data is used exclusively for testing and
is not included in the network training. An example is shown in Figure 3.6 for the asphere as
design topography with C = 4 and M = 64 in (4.1).

4.1.2 Approach

Regression problem. We develop a method that combines the TWI evaluation procedure
with a data-driven deep learning approach. Therefore, the inverse problem (4.1) is treated
as an image-to-image regression problem and the inverse mapping f is approximated by a
parameterization fθ with parameter space Θ, i.e.

fθ : RC×M×M → RM×M , ∆L ↦→ ∆T, (4.3)

where M × M is the dimension of the images, and C is the number of channels in the input.
Note that the image dimension of the input equals the image dimension of the output here.
This is not mandatory, but it suits the neural network architecture described below. The
parameterized model class {fθ}θ∈Θ is determined by the neural network architecture, where
θ are the learnable model parameters. Using the L2-loss function (cf. equation (2.8)) for
the model training, the following minimization problem is implicitly solved for all tuples
(∆L, ∆T ) ∈ D:

min
θ∈Θ

∥fθ(∆L) − ∆T∥2. (4.4)

43



4. Deep learning for the tilted-wave interferometer

While the CCD gives a resolution of 2048 × 2048 pixels, M = 64 is chosen here which
suffices for the purpose of this work. For the asphere and the two-radii surface C = 4 and
C = 1 were used, respectively. This is because the two-radii freeform surface has a big patch
in the first channel which almost covers the entire CCD for the selected measurement position.
Furthermore, even though some pixels are missing, the first channel sufficed for the purpose of
this deep learning proof-of-principle study.

Deep neural network. Deep learning techniques became very popular for computational
imaging applications (Barbastathis et al., 2019) with the introduction of convolutional networks
(LeCun et al., 2015). Therefore, we choose the U-Net (Ronneberger et al., 2015) as neural
network architecture. U-Nets have been successfully applied in various image-to-image deep
learning applications (Işıl et al., 2019; Barbastathis et al., 2019). An example U-Net structure
is shown in Figure 4.1. The input passes through several convolution and rectified linear unit
layers on the left side before being reduced in dimension in every vertical connection by max
pooling layers. After reaching its bottleneck at the bottom, the original data dimension is
restored, step by step, through transposed convolution layers on the right side. During each
dimensional increase step, a depth concatenation layer is added which links the data of the
current layer to the data of the former layer with same dimension. These skip connections are
depicted as horizontal lines in Figure 4.1.

Figure 4.1: Example of a U-Net architecture taken from Hoffmann et al. (2021b).

Here, the chosen U-Net architecture consists of a total of 69 layers. The training set is
used to normalize all input and output data prior to feeding them into the network. The
U-Net is trained using an Adam optimizer (Kingma and Ba, 2015) and the mean squared
error as the loss function. The training is carried out for the multi-radii freeform surface with
an initial learning rate of 0.0005, a drop factor of 0.75 every five periods, and a mini batch
size of 64. In addition, a L2 regularization of the network parameters is employed to stabilize
the training with a regularization parameter of 0.004. For the asphere, the training is carried
out for 15 epochs with a mini batch size of eight samples, an initial learning rate of 0.0005
which decreased every three epochs by a learning rate drop factor of 0.5, and a regularization
parameter of 0.0005. The implementation is realized in MATLAB® (version R2019b) using
the Deep Learning Toolbox 14.0 (The MathWorks, 2018).

Generalization to non-perfect systems. While the great success of deep neural networks
is based on their ability to learn complex relations from data without knowing the underlying
physical laws, including existing physical knowledge into the models can further improve results
(de Bézenac et al., 2019; Karpatne et al., 2017; Raissi, 2018). In this proof-of-principle study,
we follow such an approach by developing a hybrid method which combines physical knowledge
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with data-driven deep convolutional neural networks. The employed scientific knowledge is
twofold; training data is generated by physical simulations using the virtual TWI (cf. Chapter
3) and a conventional calibration method (Fortmeier et al., 2022) is used to generalize the
trained network to non-perfect optical systems.

The generalization procedure is motivated by the ultimate goal to apply the trained deep
neural network to real-world data (cf. Objective 4 in Section 1.2 and Chapter 5). A workflow
of the proposed hybrid approach is summarized in Figure 4.2a based on the nomenclature
of Table 4.1. First, the selected U-Net is trained on data generated under perfect system
conditions (A). In a real-world scenario, however, no perfect optical system exists. Thus, the
trained model is evaluated on test data derived from a non-perfect system (B). We introduce
an additional state-of-the-art calibration step into the evaluation procedure prior to the model
prediction (C), where the imperfect numerical forward model is refined phenomenologically
(Baer et al., 2014a; Fortmeier et al., 2022). This can be realized by inserting wavefront
manipulators into the virtual TWI (cf. Subsection 3.1.3) and adapting the beam path through
the optical system in a least-squares sense using known, well fabricated spherical topographies
at different measurement positions to compare the OPDs measured by the TWI and its virtual
counterpart. The refinement of the virtual TWI is achieved through the state-of-the-art
calibration procedure implemented at the PTB (Fortmeier et al., 2022). In 4.2b, the results
are summarized for the different test sets to visualize the effect and aim of the hybrid method.
Note that the topographies are the same in the three test cases, but the input to the deep
learning model changes. The results are discussed more precisely in the following.

Figure 4.2: a) Workflow of the hybrid method based on the nomenclature of the numerical
forward model from Table 4.1. The U-Net is trained on data generated by a perfect system (A)
and tested on data from a non-perfect system (B). The hybrid method constitutes a refinement of
the imperfect numerical forward model by a state-of-the-art calibration method (C). b) Results
for the test sets from a).

4.1.3 Results

The following results are all based on simulated data. As mentioned above, two different
design topographies are considered, namely an asphere and a two-radii freeform surface. First,
the results for simulated data from a perfect system environment are presented. The neural
networks that are trained for the design topography of an asphere and a two-radii freeform
surface artefact are addressed, respectively. Next, additional strategies which could improve
the models are discussed as well. Finally, the results are shown for data simulated by a
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non-perfect system and compared to the results provided by the proposed hybrid method
applied in a calibrated environment.

The presented results are reproducible in the sense that when repeating the simulations
for similar train and test sets, essentially the same findings are observed. The topographies
have a circle as base area. Since the required input and output of the deep neural network are
images, the area outside of the circle shape is defined with zeros which the model learns to
predict. Nonetheless, we consider only the difference topography pixels inside the circle shape
in the presented results.

The root mean squared error (RMSE) of two vectors y, ŷ ∈ Rdy and the root mean squared
deviation (RMSD) of a vector y are defined as follows:

RMSE(y, ŷ) :=

 1
dy

dy∑︂
i=1

(yi − ŷi)2

 1
2

, RMSD(y) :=

 1
dy

dy∑︂
i=1

y2
i

 1
2

. (4.5)

Note that the pixels of a topography form a vector. If the RMSE or RMSD relates to a set of
vectors (e.g. set of topographies), then the mean over the RMSE and RMSD of the individual
elements of the set is taken, respectively.

Perfect system. About 2200 samples are used for testing that were not included in the
training. First, the two-radii freeform surface is considered as the design topography. Three
randomly chosen prediction examples are shown in Figure 4.3a. The RMSE of the U-Net
predictions on the test set is 33 nm. For comparison, the difference topographies in the test
set have a total RMSD of 559 nm. The median of the absolute errors of the U-Net is about 18
nm, while the median of total absolute deviations in the test set is 428 nm.

Figure 4.3: a) Three examples of predicted test difference topographies. The errors in the third
column show the pointwise differences between the ground truth and the prediction. The root mean
squared error (RMSE) from top to bottom are 16 nm, 84 nm, and 74 nm. The base-diameter of the
topographies is about 40 mm. b) RMSE of a single network (blue) and a network ensemble (red),
depending on the amount of data used for training. The test set is the same for all evaluations
and was not included in training. Both figures are taken from Hoffmann and Elster (2020).
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For the asphere as the design topography the RMSE is 102 nm, while the difference
topographies in the test set have a RMSD of 589 nm. The median of the absolute errors
of the predictions of the U-Net is 52 nm and the median absolute deviation of the test set
is 451 nm for comparison. One possible explanation for the discrepancy in the accuracy of
the predictions between the network for the asphere and two-radii freeform surface as the
design topographies is the following. The input of the respective U-Nets and their resulting
architecture are varying. As mentioned above, the network concerning the asphere has four
input channels. These are shown in Figure 3.6. In each channel, various different areas are
illuminated at the CCD, resulting in a distribution of information into different and smaller
patches. The two-radii freeform surface on the other side, illuminates one big circle shaped
patch in the first channel for the selected measurement position. This channel, which contains
most of the important information in a single patch, forms the only input to the corresponding
network.

However, the results for the asphere can be improved further. One way to do so is to
increase the amount of training data. The results are shown in Figure 4.3b. As the input
has four channels for the asphere, it seems natural that more data is needed for training
than for the two-radii freeform surface. A second approach is to use a network ensemble
(Lakshminarayanan et al., 2017) rather than a single trained network. To this end, 15 U-Nets
are trained from scratch and the ensemble output is taken as the mean of the ensemble
predictions. Again, the results are shown in Figure 4.3b. In this way, the accuracy improves to
a RMSE of 80 nm using an ensemble of 15 U-Nets, each trained from scratch on almost 28.000
data points. It should be noted that a further improvement seems possible as the amount of
data is crucial for training and the network’s architecture of the asphere is more complex due
to more input channels.

Generalization to non-perfect systems. In any real world application, no experiment
is carried out under perfect system conditions. This motivates the idea of disturbing the
numerical forward model used for the specimen topography to simulate a real measurement
scenario by adding wavefront manipulators to the virtual TWI (cf. Table 4.1). Now, the
generalization capacity of the deep neural network can be tested. The trained model needs to
cope with data coming from a non-perfect system after having trained on a perfect simulation
environment in the first stage. Using a state-of-the-art calibration, the trained model can be
applied to a calibrated system environment (cf. Figure 4.2).

Here, the focus lies on the two-radii freeform surface as the design topography. Thirty
difference topographies are randomly chosen from the former test set, i.e. not included in the
U-Net training. They have a total root mean squared deviation of 545 nm and are ranged
from 296 nm to 6.1 µm in their absolute maximal deviation from peak to valley. The results
are shown in Table 4.2, where the same trained neural network is used for differently produced
inputs. The RMSE of the network predictions is 30 nm on the perfect TWI system. This
increases to 538 nm after having disturbed the virtual TWI. The trained model is incapable
of predicting properly. However, the error can be reduced to 67 nm by using a calibrated
forward pass to produce the input data. Hence, the proposed method can also generalize to
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non-perfect systems. Of course, the accuracy of the hybrid method depends on the quality of
the calibration, which will be discussed in more detail in Section 4.2.

Table 4.2: RMSE and median of the absolute errors for the predictions of the same trained U-Net
using different inputs. The results for the perfect system also used to generate the training data
are shown in the first column, for the non-perfect system without calibration in the second column,
and for the proposed hybrid method in the third column.

perfect system non-perfect system calibrated system

RMSE 30 nm 538 nm 67 nm

Median 16 nm 298 nm 33 nm

4.1.4 Discussion

The obtained results are promising and suggest that deep learning can be successfully applied
in the context of computational optical form measurements in answer to Objective 2, i.e. to
develop a deep learning approach for the form measurement of optical aspheres and freeform
surfaces (cf. Section 1.2). We analyzed various specimens based on two different design
topographies. The findings show that it is possible to generate a database using the numerical
forward model given by the virtual TWI to successfully train a U-Net to solve the inverse
reconstruction problem. An alternative parameterization could be one that predicts Zernike
coefficients instead of the direct height values of the topography. However, here the interest
lies in solving a direct image-to-image regression task and not to limit the prediction to a
certain polynomial degree.

First experiments were carried out for in-distribution data, where the disjoint training and
test data are generated under perfect system conditions, i.e. using the same forward model
to compute the OPDs for the design and specimen topographies, respectively. In a second
step, we corrupted the numerical forward model for the test data to simulate a more realistic
experimental environment. Simply applying the trained model on the new dataset results in
a meaningless prediction with high prediction error. A remedy is proposed by including a
state-of-the-art calibration method to refine the numerical forward model, so that it is less
corrupted. Using the data from the calibrated system as an input to the neural network, the
developed hybrid approach is able to generalize well.

The presented results are based on simulated data only and they constitute a proof-of-
principle study rather than a final method that is ready for application. There is still room for
improvement considering the measurement accuracies for the aspherical design topography
having four input channels to the neural network. Testing the approach on real measurements,
incorporating an uncertainty quantification, and comparing the results to a state-of-the art
method are next steps. Nevertheless, these initial results are encouraging and once trained, a
neural network solves the inverse problem much faster than the currently applied state-of-the-art
methods.
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4.2 Incorporating an uncertainty quantification via deep en-
sembles

However3, their black-box character and the resulting lack of trustworthiness are probably the
most crucial shortcomings of deep learning approaches. Many examples exist that demonstrate
unreasonable behavior of trained networks. For instance, the technique of layer-wise relevance
propagation has revealed that an apparently well-trained image classification algorithm had
adopted a “Clever Hans" decision strategy (Lapuschkin et al., 2019); the model had learned to
classify horse images correctly by focusing on the bottom left corner of the image - there was
an unnoticed tag remaining on horse images in the training dataset. Adversarial attacks can
mislead trained networks into making unreasonable predictions by only slightly perturbing
the input data (Akhtar and Mian, 2018). In 2018, an autonomous driving car crashed into a
pedestrian in Arizona because the self-driving system did not classify her correctly (NTSB,
2019).

These examples demonstrate the importance of understanding the behavior of deep neural
networks in order to ensure their trustworthiness. Much effort has been devoted to developing
corresponding approaches as already discussed in Section 2.2. We focus on the uncertainty
quantification of the prediction. Uncertainties are often classified as epistemic and aleatoric
(Gal, 2016; Hüllermeier and Waegeman, 2021). Sources of uncertainty include imperfect
training, unexpected shifts in the data, systematic errors and out-of-distribution data, to
mention just a few (Ashukha et al., 2020; Kendall and Gal, 2017; Ovadia et al., 2019; Scalia
et al., 2020). The most common approaches to uncertainty quantification include Bayesian
neural networks (Kononenko, 1989; Yao et al., 2019), dropout based methods (Kingma et al.,
2015; Gal and Ghahramani, 2016) and ensemble techniques (Dietterich, 2000; Lee et al., 2015;
Lakshminarayanan et al., 2017). This thesis focuses on the latter, because ensemble learning
scales well to higher dimensional data, performs best in recent uncertainty studies and is
straightforward to implement (Caldeira and Nord, 2020; Gustafsson et al., 2020; Ovadia et al.,
2019; Scalia et al., 2020).

The goal of this section is to incorporate a quantification of the uncertainty for the
reconstructed optical surfaces based on the TWI. At the same time it is of interest to explore the
potential of ensemble techniques for uncertainty quantification in deep learning in terms of the
large-scale inverse problem known from computational optical form measurements. Uncertainty
quantification is generally an important field in computational science and engineering (Dieck,
2007; Ghanem et al., 2017). Considering the TWI application, there exists previous work in
which quantities have been identified that influence the uncertainty (Fortmeier et al., 2017).
Some of these quantities have been analyzed via experimental measurements, Monte-Carlo
simulations or the Jacobian used for the iterative topography updates (Fortmeier et al., 2013,
2014; Baer et al., 2014b; Harsch et al., 2019; Schindler, 2020).

The contribution of this section is twofold. First, we extend the previously proposed
deep learning approach from Section 4.1 to incorporate an uncertainty quantification of its
predictions. This is achieved through ensemble learning. In contrast to the previous section,
the neural networks are trained on a calibrated dataset, which will be discussed in more detail.

3Most of this section is taken from Hoffmann et al. (2021b).
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Second, we systematically insert an increasing out-of-distribution calibration error into the
optical system and analyze its effect on the reliability of the developed uncertainty quantification.
Furthermore, we investigate the influence of noise. High-dimensional uncertainty quantification
for scalable deep learning techniques is less treated in literature than low-dimensional problems
(Gustafsson et al., 2020), which makes the results of the chosen application useful for other
machine learning applications as well.

The section is structured as follows. Subsection 4.2.1 introduces the data used for
the study. The employed deep neural network, ensemble learning and the corresponding
uncertainty quantification are introduced in Subsection 4.2.2. Results are then presented
in Subsection 4.2.3 with a particular focus on the impact of systematic calibration errors
on the uncertainty quantification. Finally, in Subsection 4.2.4, the potential benefit of deep
learning for computational optical form measurements is discussed and possible future research
motivated.

4.2.1 Data

The data generation is carried out as explained in Subsection 3.2.2. A dataset containing
various topographies is generated through randomly drawn sets of Zernike coefficients. The
Zernike polynomials parameterize the difference topographies ∆T , i.e. the deviation of the
specimen from the known design topography. Then, the OPDs through the optical system
are computed for the design topography and each generated specimen at a fixed position,
respectively. Hence, for each specimen, a difference of OPDs ∆L is obtained from the difference
between the OPDs L = F (T ) from the specimen T and the OPDs L0 = F (T0) from the design
topography T0, where F is the employed numerical forward model (cf. virtual TWI, Chapter
3).

The asphere used as design topography is characterized in Subsection 3.2.2. Each sample in
the generated dataset consists of a set of differences of OPDs ∆L and the difference topography
∆T between the specimen and the design topography. An example is shown in Figure 3.6. The
difference of OPDs ∆L consists of four images because four disjoint masks are sequentially
used to block different groups of the point light sources. In total, almost 40,000 (virtual)
topographies are generated for training and about 2,000 topographies are generated for testing.
The RMSD of the difference topographies in the generated test dataset is 564 nm and their
median deviation is 473 nm. The peak to valley differences of the topographies of the test set
range from 42 nm to 11.6 µm. Examples are shown in Figure 4.4 to illustrate the diversity
of the test data. The exact amount of training and test data are not optimized. It was
shown in the previous Section (cf. Figure 4.3b) that the number of available training data
is crucial for the prediction capability. However, 40,000 training data are enough to achieve
accurate predictions. More data would likely lead to even better results, but the goal is to
systematically analyze the uncertainty quantification of ensemble learning. Also, the generated
test set already represents a large diversity of possible difference topographies.

The numerical forward model of the optical system used to solve the inverse problem is
never perfect when considering a real-world environment. State-of-the-art methods include
a calibration step, where the numerical forward model is refined using the observed data for
some test specimens whose topographies are known with high accuracy (Baer et al., 2014a;
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Figure 4.4: Some examples of generated test topography deviations ∆T are shown. The aperture
has a radius of about 15 mm. The plots are taken from Hoffmann et al. (2021b).

Fortmeier et al., 2022). The calibration is realized by adding two wavefront manipulators to
the virtual TWI (cf. Subsection 3.1.3). In this work, we adopt the same strategy to cope with
non-perfect optical systems, and analyze the impact on the deep neural network prediction.

In the proof-of-principle study from the last section (4.1.1), the training data were generated
without including wavefront manipulators to the model of the optical system, and the simulated
data were constructed under the assumption of a perfect optical system. Now, systematic
investigations on the impact of errors in the numerical forward model are carried out. For this
purpose, all applied numerical forward models use activated non-zero wavefront manipulators
to modify the light beams phenomenologically. The training data are determined by simulating
data for a perfectly calibrated optical system, i.e. the virtual TWI (including the wavefront
manipulators) is applied for computing the simulated data for the specimen and the design
topography. In contrast, the test data are generated using a non-perfect optical system by
deliberately adding calibration errors to the optical system. These errors represent errors
caused by an imperfect calibration and will be termed calibration errors in the following.
To construct test data containing such calibration errors, the wavefront manipulators of the
perfectly calibrated optical system are systematically modified, which alters the beam path
through the optical system.

Investigating the predictive ability of the trained deep neural network for test data corrupted
by calibration errors allows the generalizability of the trained model to be explored for a more
realistic scenario. From the point of view of machine learning, the test set constructed under
calibration errors is an out-of-distribution test set, as no calibration errors are contained in the
training set. A particular interest lies in the behavior of the calculated uncertainties and in the
extent to which they reflect the errors in the reconstructed topographies for out-of-distribution
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data. In total, the introduced calibration error affects the differences of OPDs ∆L up to a
root mean squared deviation of 219 nm on the test dataset.

Noisy test data are generated by adding Gaussian noise to the input of the existing test
data. Note that the training set is fixed and does not adapt to errors introduced into the test
set.

4.2.2 Approach

General. The nonlinear inverse problem consists of finding the topography of the specimen
such that the modeled OPDs best fit the observed ones. For a fixed design topography, the goal
is to measure the deviation of the specimen from its design given the OPDs computed from the
observed CCD intensities. The inverse problem is treated as a regression problem, analogue
to the previous proof-of-principle study with a four channel input, i.e. fθ : RC×M×M →
RM×M , ∆L ↦→ ∆T, θ ∈ Θ, C = 4, M = 64 (cf. regression problem in Subsection 4.1.2). The
parameterization fϕ is in general defined through the chosen neural network architecture and
its concrete structure as for example the used activation functions, the actual depth of the
network or the individual layers. All trainable network parameters are real numbers.

Similar to the previous study, we choose the U-Net (Ronneberger et al., 2015) as the
network architecture, because it achieved accurate results in the proof-of-principle study and
in various imaging tasks (Esser and Sutter, 2018; Barbastathis et al., 2019; Işıl et al., 2019).
An example of a U-Net structure is shown in Figure 4.1. The input is processed through
several layers, most of which are convolution layers, and results in the predicted output from
left to right. The network has a bottleneck structure, which means that the dimension of
the image data is reduced after each bundle of layers until it attains its minimal dimension
in the center and increases afterwards in the same way. Furthermore, the arrows indicate
skip connections between the bundles of layers of the same dimension, which means that the
output of the last layer with the same dimension is depth concatenated to the input after the
dimensional increase. The rectified linear unit (ReLU) activation function (Nair and Hinton,
2010) is chosen for the U-Net because it is the state-of-the-art for deep neural networks. We
normalize all data pixelwise by subtracting the mean and dividing by the standard deviation
of the training data. The model output is rescaled accordingly.

Deep ensembles. The landscape of deep neural networks and the associated question of
finding global optima under certain assumptions are topics of ongoing research (Sun et al., 2020).
Training multiple networks and making the prediction a decision of the constructed network
ensemble (Hansen and Salamon, 1990) is a straightforward solution to deal with the problem
of getting stuck in local minima. Deep ensembles have been proposed in Lakshminarayanan
et al. (2017) for uncertainty quantification because of their predictive variety. The random
initialization, along with the random shuffling of data points during training, is considered to
induce sufficient diversity to the neural network ensemble. Dropout layers (Baldi and Sadowski,
2013) are also included in this work during training to encourage diversity. In contrast to
Lakshminarayanan et al. (2017), we focus on the epistemic part of the uncertainty, since
the model uncertainty is the relevant part of the uncertainty when inferring an underlying
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regression function, and not on predicting an extra variance per output neuron to model the
aleatoric uncertainty of the observed data.

An introduction to the deep ensembles (Lakshminarayanan et al., 2017) is provided
in Subsection 2.2.4. A lot of effort goes into finding an appropriate neural network
architecture, especially when considering high-dimensional regression tasks. For example,
simpler convolutional neural networks or autoencoders without skip-connections did not achieve
accurate results in this application in contrast to the U-Net. Consider an ensemble with K

ensembles members. The ensemble prediction is defined as the average over all predictions of
the ensemble members for an input x, i.e.

fDE(x) := 1
K

K∑︂
j=1

fθj
(x) , θj ∈ Θ, j = 1, . . . , K. (4.6)

Similarly, the ensemble uncertainty is defined as the standard deviation over the individual
predictions:

u(fDE(x)) :=

 1
K

K∑︂
j=1

(︂
fθj

(x) − fDE(x)
)︂.2
. 1

2

. (4.7)

Here, the tuple (x, y) equals the differences of OPDs and the corresponding difference
topography, i.e. (∆L, ∆T ). Hence, the ensemble prediction (4.6) and the ensemble uncertainty
(4.7) are matrices. In (4.7), .2 and . 1

2 indicate the elementwise square and square root,
respectively. This definition of ensemble uncertainty is in line with the uncertainty definition
from Lakshminarayanan et al. (2017) when omitting the aleatoric part. If the ensemble
uncertainty is considered for an entire topography, the scalar valued topography uncertainty is
referred to as the root mean square of the pixel values in u(fDE(x)) of the predicted topography,
i.e. ⌜⃓⃓⎷ 1

dy

dy∑︂
i=1

u(fDE(x))2
i , (4.8)

where dy is the number of topography pixels.

Training. Previous work indicates that few ensemble members suffice to attain good results
(Ashukha et al., 2020) and training time gets expensive with an increasing number of networks.
Here, the ensemble is chosen to contain eight networks, i.e. K = 8. This number is probably not
optimal, but is a good trade-off between the computational capacity of the ensemble training
and the accuracy of the ensemble prediction and its uncertainty quantification, since the
prediction capability and the uncertainty estimation of the ensemble have already converged,
as shown in Table 4.3 in the results section. We choose an ensemble of eight U-Nets to
be trained with the mean squared error loss, because the mean squared error loss is more
robust based on previous experience than for example the negative log likelihood loss function.
The U-Nets are independently trained for the ensemble using the mean squared error as loss
function together with the Adam optimizer (Kingma and Ba, 2015) and an L2 regularization
with regularization factor 0.002 (cf. Subsection 2.2.2). Note that by minimizing the chosen loss
function, i.e. 1

N ′
∑︁N ′

i=1 ∥fθ′(xi) − yi∥2
2 + λ∥θ′∥2

2, where λ is the regularization parameter, N ′ is
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the current batch size and θ′ the current network parameters, equation (4.4) is approximately
optimized.

Each network consists of 69 layers, including five max pooling layers and transposed
convolution layers, respectively. The initial learning rate equals 5 ∗ 10−5, with a learning rate
drop factor of 0.75 every fourth epoch. In total, each network trains for 25 epochs with a mini
batch size of 64, and the data are randomly shuffled every epoch. These parameters were
selected after an initial grid search and tests with other choices of parameters. Similarly to
the exact number of ensemble members and amount of training data, the selected parameters
could be further optimized. However, we did not do so as we found that they serve our purpose
sufficiently well.

To sum up, an ensemble of K = 8 deep neural networks (fθi
)i, θi ∈ Θ, i = 1, . . . , K,

is trained that all have the same U-Net architecture and are independently trained on the
same training data. Diversity is induced through random initialization, random data shuffling
per epoch and inclusion of dropout layers during the training procedure. Training takes
around 45 min for one network on a single GPU (Tesla V100-NVLINK on an Intel Xeon Gold
6226). The trained deep neural network ensemble takes about 300 milliseconds to predict 30
difference topographies (on a single GPU, Tesla V100-NVLINK on an Intel Xeon Gold 6226).
In Fortmeier et al. (2014), the TWI evaluation procedure takes about 15 seconds for one
topography reconstruction considering 13,350 rays, and assuming five iterative reconstruction
steps (on an Intel(R), Core(TM), i7-2600, single CPU). The implementation is realized in
MATLAB® (version R2020b) using the Deep Learning Toolbox 14.1 (The MathWorks, 2018).

4.2.3 Results

In the following, the obtained results are presented when considering a test set constructed
using a perfectly calibrated system as well as test data produced by an optical system containing
calibration errors. In addition, results are shown when the input data from the test set are
corrupted by noise. Recall that the training data are constructed by simulating a perfectly
calibrated optical system. The test set constructed after introducing calibration errors into
the numerical forward model used to generate the data can be seen as an out-of-distribution
test set and explores the generalizability of the trained deep learning approach. We focus
on analyzing the uncertainty quantification produced by the neural network ensemble. As
mentioned above, the uncertainty is primarily an estimation of the epistemic uncertainty (cf.
Subsection 2.2.3), as the quality of the inferred regression function is of interest. Nonetheless,
the behavior of the ensemble uncertainty is analyzed on out-of-distribution test data by means
of the systematically introduced calibration errors, and also through analyzing test data whose
input is corrupted by white noise.

Perfectly calibrated system. First, we evaluate the performance of the trained neural
network ensemble on the test dataset generated by the same optical system as the training data,
i.e. a perfectly calibrated system. The average root mean squared error (RMSE) equals 77 nm.
Some results of the ensemble prediction are shown in Figure 4.5a. Three example topographies
with greatly varying height sizes are reconstructed and the difference between the ground truth
and the prediction is given. The neural network ensemble has no difficulties in reconstructing

54



4.2 Incorporating an uncertainty quantification via deep ensembles

the different topographies. The main error occurs at the edge of the topographies. This is
not surprising, since the input data is more error-prone at the topography edges. There exists
almost no redundant information since the patches rarely overlap at the edges, and some rays
even leave the optical system without returning to the CCD. It is well-known that outliers
have a high impact on the L2 measure. Therefore, the median error (i.e. the median of the
absolute errors) of an image is a more stable measure than the RMSE to capture the total
predictive capacity of the network ensemble. Its average over the entire test set equals 20 nm.

Figure 4.5: a) The ground truth, the ensemble prediction and their difference are shown for
three example topographies with median errors of 44.5 nm, 17.2 nm and 1.5 nm, respectively. b)
The RMSE (cf. equation (4.5)) of the ensemble predictions of the topographies are plotted against
their corresponding topography uncertainties (cf. equation (4.8)). Both figures are taken from
Hoffmann et al. (2021b).

The relationship between the topography uncertainty and the RMSE of the topography
predictions by the ensemble is shown for the test dataset in Figure 4.5b. The uncertainty
grows as the RMSE increases around a straight line with slope one. A more detailed analysis of
the uncertainty estimation is given in Figure 4.6a, where the profiles of some test topographies
are plotted along with the profiles of the ensemble predictions and the estimated uncertainty
tubes, i.e. the profiles of ∆T , fDE(∆L) and fDE(∆L) ± 1.96u(fDE(∆L)). The ground truth
(in red) rarely leaves the uncertainty tube (in blue) and at the same time, the uncertainty tube
is not too wide. The uncertainty tube is, in general, widest at the borders of the topographies
and smallest at their centers. This behavior is in accordance with the corresponding sizes of
the RMSE. Some further examples are presented in Appendix A.2, Figure A.2.

The factor 1.96 for the uncertainty tube equals the 0.025 and 0.975 quantiles of the standard
normal distribution at −1.96 and 1.96, repsectively. This choice implies that, if the errors are
normally distributed around the prediction of the ensemble with a standard deviation equal to
u(fDE(x)), then the uncertainty tube will encompass the difference between the predictions
and the ground truth in 95% of the cases. The assumption of normally distributed errors was
found to be justified in this application.
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Figure 4.6: a) The profiles of four example topographies (cf. Figure 4.4) are plotted in red, along
with the profile cross-sections of the ensemble predictions and the estimated uncertainty tubes in
blue. b) The uncertainty estimation covers the prediction error well if the coverage probability is
close to one. Both figures are taken from Hoffmann et al. (2021b).

Figure 4.6b shows the coverage probability of the uncertainty estimation. For each pixel of
the topographies, the corresponding coverage probability is estimated as follows:

cpi = 1
|Dtest|

∑︂
(x,y)∈Dtest

g (fDE(x)i, yi) , g(ŷi, yi) :=

1, if |yi−ŷi|
1.96u(ŷ)i

≤ 1

0, otherwise
, (4.9)

where |Dtest| is the number of samples in the test data, yi is the ground truth topography
height at pixel i = 1, . . . , dy, ŷi is the corresponding predicted topography height, and u(ŷ)i

the pixelwise uncertainty estimate as defined in (4.7). The coverage probability indicates how
likely it is that the ground truth is found around the prediction within the chosen uncertainty
tube. Figure 4.6b shows the pixelwise coverage probabilities, which indicate that the calculated
uncertainties characterize the size of the errors of the predictions well. The mean coverage
probability can be defined as the average over the pixelwise coverage probabilities, i.e.

1
dy

dy∑︂
i=1

cpi. (4.10)

The observed mean coverage probability equals 94%, which fits the intended 95% coverage
probability well.

Table 4.3 shows the results in dependence of the ensemble size. Altogether, the neural
network ensemble makes accurate predictions and provides a trustworthy uncertainty estimate,
not only per image, but also pixelwise, for the perfectly calibrated optical system.

Systematically introduced calibration error. For the results presented above, training
and test data were generated by means of the same perfectly calibrated optical system. However,
the network ensemble should also make trustworthy predictions on out-of-distribution data.
Indeed, in any real measurement scenario, there will remain a calibration error. Therefore, we
analyze the quality of the ensemble prediction and its uncertainty quantification under the
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Table 4.3: The table shows how the results change with the number of neural networks in the
ensemble in terms of the prediction capability (second row) and how good the estimated uncertainty
covers the prediction errors (third row). The results are produced on the perfectly calibrated test
dataset without any additional noise.

number of ensemble members 1 2 3 4 5 6 7 8 25

median absolute error in nm 35 29 25 24 23 22 21 20 19

mean coverage probability in % 0 60 77 84 88 91 93 94 96

influence of a systematically introduced, growing calibration error. To this end, the optical
system generating the test data is increasingly disturbed from the optical system used to
produce the training data. The chosen topographies in the test set remain the same.

A first overview of the results is summarized in Table 4.4. The calibration error is induced
stepwise from zero to one hundred per cent, cf. first row. The second row shows the actual
impact of the corrupted numerical forward model, used to simulate the data from the specimens,
on the resulting OPDs, which are used as input data by the trained neural networks in order
to predict the sought topography. Then, the RMSE of the ensemble prediction is given in the
fourth row, which achieves consistently better results than the prediction of a single trained
network (third row). A more robust measure of the ensemble prediction is the median error in
the fifth row, because it is more stable against outliers at the edges of the topographies. The
sixth row displays the mean topography uncertainties. Finally, the mean coverage probabilities
are calculated in the last row (cf. equation (4.10)).

Table 4.4: The influence of the introduced calibration error is analyzed on the test dataset. The
rows contain the following values: the percentage of induced calibration error, its impact on the
input data expressed as the root mean squared error, the averaged root mean squared error over
the single network predictions, the root mean squared error of the ensemble prediction, the median
absolute error of the ensemble prediction, the topography uncertainty and the mean coverage
probability.

calibration error
(in %) 0 10 20 30 40 50 60 70 80 90 100

flawed input
(in nm) 0 28 55 75 96 116 137 156 176 198 219

rmse single net
(in nm) 95 137 178 229 280 331 383 435 484 538 596

rmse ensemble
(in nm) 77 104 145 194 241 288 336 384 429 479 536

median error
(in nm) 20 29 42 55 68 82 95 110 125 139 154

topography uc
(in nm) 55 90 108 131 155 178 201 225 246 267 285

total cp
(in %) 94 94 84 78 75 73 71 70 69 68 67
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Analogous to Figure 4.6a, the profiles of the four test topographies are plotted (in red) in
Figure 4.7a, along with their ensemble predictions and their estimated uncertainty tubes (in
blue) for the full calibration error. In the first column, the ground truth topographies mostly
are within the range defined by the predicted topographies and their calculated uncertainties.
Furthermore, the ensemble predictions recognize the basic shapes of the sought topographies,
except for their edges. In contrast, the topographies from the second column are not recognized
well. Instead, the ensemble predictions resemble one another and predict a topography
with much stronger peak to valley variability. Considering the ground truth topographies
(cf. Figure 4.4), Figure A.3 shows that the impact of the calibration error dominates the
ensemble prediction for small topographies, while it has a smaller impact on larger difference
topographies. The stepwise change in the ensemble prediction and its uncertainty estimation
for the increasing calibration error are shown in Appendix A.2, Figures A.4 and A.5.

Figure 4.7: a) The profile cross-sections of four example topographies (cf. Figures 4.4 and 4.6a)
are plotted (red), along with the ensemble predictions and the estimated uncertainty tubes (blue)
under full calibration error. b) The median of the ensemble uncertainty on the test dataset is
plotted against the median of the absolute calibration error on the input data ∆L. Both figures
are taken from Hoffmann et al. (2021b).

The dependency between the ensemble uncertainty and the increasing calibration error
is plotted in Figure 4.7b. The ensemble uncertainty grows monotonically with the growing
calibration error with a slope of almost one, which is a desirable behavior for trustworthy
predictions. Figure 4.7b shows the results over the entire test dataset, while Figure 4.7a
presents the pixelwise results. In contrast, Figure 4.8 shows the obtained results on the
image level, where the RMSE of the ensemble prediction is plotted against the topography
uncertainty for the different degrees of induced calibration error. Again, the estimated
uncertainty correlates well with the prediction error (as well as with the calibration error),
even though the uncertainties are slightly underrated for very large calibration errors.

Finally, the coverage and mean coverage probabilities (cf. equations (4.9) and (4.10))
are shown in Figure 4.9 in relation to the growing calibration error. Although the coverage
probability slowly decreases, the mean coverage probability stays at 94% after having induced
10% of the calibration error and still correctly covers two thirds of the pixels for the maximal
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Figure 4.8: The RMSE of the ensemble prediction is plotted against the topography uncertainty.
Each color represents a different amount of the systematically introduced calibration error. The
figure is taken from Hoffmann et al. (2021b).

induced corruption of the input data in the test set. Furthermore, not the center but the
topography edges are less well covered with increasing calibration error.

Figure 4.9: The coverage probabilities per pixel are plotted together with their mean coverage
probability on the test set for increasing calibration error (from left to right). The figure is taken
from Hoffmann et al. (2021b).

In sum, the ensemble prediction and its uncertainty quantification are best (for the
investigated test cases) when the optical system is perfectly calibrated and get worse as
the quality of the calibration decreases. However, the uncertainty increases with a growing
calibration error and appears to still reliably characterize the size of the errors in the predictions.

Noisy data. The results shown above examine how the systematically deviated numerical
forward model of the optical system, that is used to simulate the test data, influences the
neural network ensemble. Another source of error is noise in the data. Therefore, the ensemble
prediction and its uncertainty estimation are analyzed in terms of using noisy input data.
Again, only the test data are modified, while the trained ensemble stays fixed.

Random white noise is added pixelwise to the input data with a standard deviation of
10 nm and 50 nm, respectively. This is done for the test data generated by the perfectly
calibrated optical system as well as for the test data produced by the optical system after
corrupting them with an increasing calibration error. Figure 4.10a shows the previous results
from Figure 4.8 plotted against the results of the deep learning model when additionally
corrupting the input data with normally distributed noise with a standard deviation of 50
nm. The root mean squared error of the ensemble predictions is plotted together with the
topography uncertainties for the stepwise increasing introduced calibration error. There is no
sudden loss in the prediction capability or the reliability of the uncertainty estimation to be
seen for noisy input data. Only for the perfectly calibrated case (dark blue) are the errors
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slightly larger for the noisy input data. However, also the topography uncertainties are slightly
larger in this case than the topography uncertainties if the input data is not disrupted with
white noise, which is a desirable behaviour.

Figure 4.10: a) The root mean squared errors and topography uncertainties are plotted when
feeding the network ensemble test data with and without additional Gaussian noise. The Gaussian
noise has a standard deviation of 50 nm. The colors represent the amount of introduced calibration
error in analogy to Figure 4.8. b) The ensemble predictions and their ground truth are plotted
for four different test topographies under the influence of varying Gaussian noise (legend shows
standard deviations) for the perfectly calibrated system. Both plots are taken from Hoffmann et al.
(2021b).

A closer look at some example topographies is given in Figures 4.10b and 4.11, where the
profiles are plotted. The former figure shows the ground truth together with the ensemble
prediction for the perfectly calibrated data with and without noise. The noisy data have
almost no impact on the ensemble prediction for the large topographies in the first row. In
contrast, especially the noisy data with a standard deviation of 50 nm have a visible influence
on the ensemble prediction of the smaller topography at the bottom right. Nonetheless, the
main shape of the topography is still recognized.

Figure 4.11 shows the ground truth along with the ensemble prediction and estimated
uncertainty for the noisy input data with a standard deviation of 50 nm. The first row a) shows
the results for the perfectly calibrated optical system and can be compared to Figure 4.6a.
Here, the uncertainties are much larger for the small topography (id 29) under the influence of
noise, which is an appropriate behavior, as the prediction is also most strongly influenced by
the noise for small topographies (cf. Figure 4.10b). The second row b) shows the same plots
but for the maximal calibration error, which seems to dominate the noise; there is no visible
difference between the plots in b) and those in Figure 4.7a.

In total, the neural network ensemble is not largely affected by noisy data, even though it
did not encounter them during training. The prediction error might increase in some cases,
but then the uncertainty estimate rises as well.
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Figure 4.11: The profiles of the ensemble prediction and uncertainty tube are plotted (blue)
with the underlying ground truth (red) for perturbed input data by white noise with a standard
deviation of 50 nm for a) the perfectly calibrated system and b) the full calibration error. The
plots are taken from Hoffmann et al. (2021b).

4.2.4 Discussion

In this section, our results showed that ensemble learning is a powerful tool for reliably
solving the inverse problem of reconstructing topographies from given differences of OPDs. A
major advantage of ensemble learning compared to other deep learning uncertainty methods
is their scalability to high-dimensional data and the simplicity of implementation if a well
suited architecture can be found. This is because the training procedure just has to be
carried out multiple times without further adjustments. Other uncertainty methods result
in a computationally more expensive approximate Bayesian inference (Neal, 1995) or require
a modified loss function (Gal et al., 2017). Moreover, ensemble methods outperform other
scalable state-of-the-art uncertainty methods in recent comparison studies (Gustafsson et al.,
2020; Scalia et al., 2020).

The proposed ensemble method based on the deep ensembles, provides a sensible uncertainty
quantification to its results in answer to Objective 3, i.e. to extend the developed deep learning
approach to incorporate an uncertainty quantification to the estimated solution (cf. Section
1.2), which is shown on the pixel level as well as on the image level. This is true not only
for a diverse test set that is disjoint from the training data, but also under the influence of
different additional error sources. The neural network ensemble was successfully tested on
out-of-distribution data realized by systematically deviating the computer modeled optical
system used to simulate the test data, which can be associated with an increasing calibration
error. The estimated uncertainty grows in relation to the introduced calibration error and
the prediction error, respectively. Furthermore, the ensemble behavior is analyzed under the
influence of noisy input data using different amounts of white noise. The noisy input has almost
no effect on the prediction. An impact can be seen mainly for small topographies. However,
the uncertainty estimation is able to reflect this behavior as well, meaning that because the
different neural networks in the ensemble have different imperfections, the ensemble uncertainty
covers the observed errors well.
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4. Deep learning for the tilted-wave interferometer

From an application point of view, ensemble learning can be used to reliably solve the
considered inverse topography reconstruction problem up to a certain accuracy faster than
applied conventional methods after having trained the neural networks once for a specific
design topography. Additionally, the neural network ensemble provides a consistent uncertainty
quantification. Including other error sources such as positioning errors of the specimen or
applying the proposed method to real data could be next steps. Deep ensembles could also be
applied to validate the current status of a calibration using a fixed reference specimen, since
the ensemble uncertainty should increase if the calibration worsens over time. In this way, the
presented uncertainty estimate could be used to determine whether a new calibration of the
system in necessary.

It is difficult to compare the developed deep learning approach to the conventional TWI,
since there does not exist a unique TWI. Several research sites and companies use different
implementations which are adapted by ongoing research (Mahr GmbH, 2021; Pruss et al.,
2017; Fortmeier et al., 2022) and various hyperparameters influence the reconstruction. Our
experience with the PTB implementation of the conventional TWI on simulated data suggests
that the conventional method is much more accurate under perfect system conditions. However,
the results from the two approaches converge rapidly towards each other when disturbing the
optical system. In addition to providing a reliable uncertainty quantification of the predicted
topography, the TWI application can benefit from faster calculation times using the deep
learning approach once the model is trained.

From a machine learning perspective, this application exemplifies the ability of ensemble
methods, and especially deep ensembles, to make trustworthy predictions and to provide an
uncertainty quantification. The great potential of ensemble methods lies in their simple and
straightforward implementation when solving high-dimensional problems. The results show
that the uncertainty is mainly of epistemic nature. Future work could address the explicit
incorporation of aleatoric uncertainty in the observed data as well. However, analyzing the
effects of noisy input data is of more interest than of noisy target data, because an inverse
problem is considered here. Also, establishing a high-dimensional benchmark dataset to test
and compare scalable uncertainty methods could benefit the machine learning community.

4.3 Summary

A data-driven deep learning approach is developed and explored to solve the large-scale,
nonlinear inverse problem for the accurate optical measurement of optical aspheres and
freeform surfaces based on the TWI evaluation procedure. A proof-of-principal study shows
that deep learning can be used to solve the inverse problem. For a fixed design topography and
position, the deep neural network learns to correctly reconstruct the difference topographies
from given differences of OPDs. Once the model is trained, it provides an instant output
prediction to a new input. Ensemble learning is used to extend the scope of the developed
method in order to provide an uncertainty quantification of the solution to the inverse problem
predicted by the deep learning approach. The employed architecture of the deep neural
networks is the U-Net and the ensemble learning method is based on the deep ensembles.
Combining the deep learning model with a state-of-the-art calibration procedure, that refines
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the numerical forward model, leads to an improved generalization performance and is an
important step towards applying the proposed method on real word data.

The approach is developed and tested using virtual measurements with a known ground
truth. Training is performed on a database generated in a perfect or at least perfectly calibrated
optical system environment. By systematically inserting calibration errors to the numerical
forward model as well as noisy data, the reliability of the developed approach and its uncertainty
quantification is explored, and its generalization capacity is tested on out-of-distribution data.
Results are encouraging and the proposed application exemplifies the ability of deep ensembles
to make trustworthy predictions on the basis of high-dimensional data in a real-world context.

The first three objectives are discussed in this chapter, i.e. to generate a database for
training and testing as well as to develop a deep learning approach with an incorporated
uncertainty quantification of the model prediction for the optical form measurement of optical
surfaces based on the TWI evaluation procedure. It can be concluded from our findings
that computational optical form metrology can benefit from deep learning (in a virtual
environment). Next steps include a more detailed comparison to the current state-of-the-art
and the application on measurement data from a real specimen.
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Measuring a real specimen

The1 need for accurate measurement techniques increases with ongoing technological advances.
A manufactured good can be fabricated only as accurately as it can be measured. Non-
spherical optics, like aspheres or freeform surfaces, are indispensable for modern optical
systems (Rolland et al., 2021). In order to track the state-of-the-art in the form measurement
of such optical surfaces, interlaboratory comparison studies are performed to analyze the
differences between the various high accuracy measuring systems, including tactile and optical
instruments (Bergmans et al., 2015; Schachtschneider et al., 2018; Fortmeier et al., 2020;
Fortmeier and Schulz, 2022). The tilted-wave interferometer (TWI) (Garbusi et al., 2008; Baer
et al., 2014c) is one of the state-of-the-art interferometrical measurement techniques for optical
form measurements of optical aspheres and freeform surfaces (cf. Section 2.1).

The evaluation procedure of the TWI leads to a high-dimensional inverse problem of
reconstructing the specimen topography from measurement data. State-of-the-art TWI
methods consist of three major steps for reconstructing the surface form: the prior refinement
of the numerical forward model, i.e. the calibration step (Garbusi et al., 2008; Baer et al.,
2014a; Mühlig et al., 2014); the reconstruction of the form deviation represented by Zernike
polynomials (Fortmeier et al., 2014); and the reconstruction of the remaining high-frequency
form deviations (Baer et al., 2013b; Fortmeier et al., 2022). Measurement uncertainties are
not yet available for tilted-wave interferometry, but previous work addresses a number of
relevant investigations (Fortmeier et al., 2014; Baer, 2016; Fortmeier et al., 2017; Schindler,
2020; Scholz et al., 2022).

This chapter tackles Objective 4, i.e. to apply and validate the developed deep learning
approach to solve the inverse problem of the TWI on measurement data of a real specimen (cf.
Section 1.2), and shows that the previously developed deep learning approach for computational
optical form measurement can be applied to measurement data it has never seen before, even
if it was trained on purely simulated data. The results obtained include a quantification of the
uncertainty of the reconstructed topography and are shown to be reliable by comparing the
deep learning approach to a state-of-the-art method for optical form measurements, namely

1Most of this chapter is taken from Hoffmann et al. (2021a).
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the tilted-wave interferometer distributed by Mahr GmbH (MarOpto TWI 60) (Mahr GmbH,
2021). The chapter is structured as follows. First, we apply the proposed deep learning
approach to measurement data from a real specimen in Section 5.1. Then, the results are
compared to the state-of-the-art in Section 5.2. Finally, conclusions are drawn in Section 5.3.

5.1 Application to measurement data using deep ensembles

Chapter 4 introduced a deep learning approach to solve the inverse topography reconstruction
problem of the TWI. The approach incorporates a quantification of the uncertainty of the
reconstructed topography and achieves accurate results and reliable uncertainty estimates in a
simulation-based environment. Now, the goal is to extend the application of the developed
approach to measurement data.

A reliable deep learning model should generalize well to out-of-distribution data. This
means that the uncertainty quantification should relate to the gap between the model prediction
and its ground truth not only with respect to the data originating from the training data
domain but also for data generated from outside. It was previously shown that the deep
learning approach generalizes well for simulated out-of-distribution data when introducing a
calibration error into the optical system used for the data generation (cf. Subsection 4.2.3).
The application to measurement data is presented in the following. It includes additional
challenges, such as the occurrence of misalignment errors or additional image artefacts of the
measurement, and the ground truth is unknown.

Subsection 5.1.1 provides an overview of the data used in this chapter, i.e. the measurement
data of a real aspherical specimen. Then, in Subsection 5.1.2, the deep learning approach is
briefly recapitulated and extended for the application on measurement data. The results are
presented in Subsection 5.1.3.

5.1.1 Data

The goal of this chapter is to apply the deep learning approach to measured data from a
real specimen and to compare it to a state-of-the-art method. Analogous to the training and
test data used in the last chapter, the specimen T considered here has the same asphere as
underlying design topography T0 (cf. Appendix A.1). The measured interferograms have
a resolution of 2048 × 2048 pixels. Figure 5.1 shows the measured phase images resulting
from the collected interferograms that are computed by a five-step phase shifting algorithm
(Hariharan et al., 1987) and setting the background pixels to zero using the SimOptDevice
(Schachtschneider et al., 2019). Remember that there are four channels representing the four
disjoint masks used in the focal plane of the microlens array (cf. Subsection 2.1.3) to block
the light coming from neighboring microlenses.

The measured OPDs L are calculated using the Goldstein unwrapper (Goldstein et al.,
1988), while the OPDs L0 corresponding to the design topography are simulated by a calibrated
virtual TWI, i.e. the refined numerical forward model (cf. Chapter 3). The differences between
the measured and the simulated OPDs are shown in Figure 5.2a. Note that the images are
sampled down by selecting every 32nd pixel, because the input and output images of the deep
neural networks have a resolution of 64 × 64 pixels. Less memory is needed to store the data
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Figure 5.1: Measured phase data of the aspherical specimen after setting the background and
invalid pixels to zero. Each patch represents a sub-interferogram.

and train the neural networks for lower resolutions. Furthermore, generating the training data
is much faster because less rays need to be traced through the optical system. This resolution
is sufficient for the purposes of this work, but it can be adapted as required in future work.

Figure 5.2: a) The down-sampled differences ∆L between the measured and simulated OPDs
represent the four channels of input to the deep neural networks. b) Analogue to a), but including
a pre-processing step where the positioning error between the specimen and the design topography
is corrected prior to the simulation. Both figures are taken from Hoffmann et al. (2021a).

Positioning errors directly influence the measured OPDs and hence the topography
reconstruction (Gronle et al., 2022). However, no misalignment was taken into account
during the neural network training. Therefore, we introduce a prior misalignment correction
in a pre-processing step (see below, Subsection 5.1.2). The input to the deep neural networks
then comprises the difference between the measured OPDs, which are the same as before, and
the simulated OPDs computed after correcting the misalignment of the topography. Now, the
input data is more centered, as shown in Figure 5.2b.

5.1.2 Approach

Solving the inverse problem related to the TWI. The deep learning approach is
applied to measured data from a real specimen based on the trained deep learning model from
the previous chapter (cf. Subsection 4.2.2). A deep learning hybrid approach was proposed
for the TWI surface reconstruction procedure combining a conventionally refined numerical
forward model to generate the input data with a deep learning model solving the inverse
problem related to TWI.
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Figure 5.3 summarizes the deep learning hybrid approach. The OPDs L of a real specimen
T are calculated from the interferograms measured by the physical TWI, cf. Figure 5.3a. The
known design topography T0 constitutes a first guess to the reconstruction problem and the
refined numerical forward model F , i.e. the virtual TWI, yields the corresponding simulated
OPDs L0. For a fixed design topography, the deep learning model learns to predict a difference
topography ∆T from the corresponding differences ∆L between the measured OPDs and the
simulated OPDs, as shown in Figure 5.3b. The model is trained on purely simulated data,
which means that all data for the design topography and for the specimens are simulated (cf.
Subsection 3.2.2). No positioning errors are included during training. Also, the deep learning
model is trained on perfectly calibrated data, i.e. the same numerical forward model is used
for the simulated data of both the design topography and the specimens.

Figure 5.3: a) Based on the TWI, OPDs L calculated from the measured interferograms are
provided for the specimen topography T . Using the (refined) numerical forward model F , the
virtual TWI yields simulated OPDs L0 for the design topography T0. b) The deep neural network
is illustrated as a black box. Its input is the difference between the OPDs from the specimen
and the OPDs from the design topography. The output is the difference topography, i.e., the
deviation of the specimen from its known design topography. c) Having independently trained
multiple networks, the ensemble prediction (yµ = 1

K

∑︁K
i=1 yi) and uncertainty of the reconstructed

topography (u2(yµ) = 1
K

∑︁K
i=1(yµ − yi)2) are the mean and uncorrected sample variance of the

individual member predictions. The operations are performed pixel-wise. The figures are partly
taken from Hoffmann et al. (2021a).

The deep learning model is based on the deep ensembles (Lakshminarayanan et al., 2017)
that represent a popular method for incorporating an uncertainty quantification into a deep
neural network prediction and for making the prediction itself more robust. Multiple neural
networks are independently trained instead of a single one. As sketched in Figure 5.3c, the
ensemble prediction yµ = fDE(x) is the mean value of the individual network predictions
and the (squared) uncertainty of the reconstructed topography u2(yµ) corresponds to the
uncorrected sample variance. In (Lakshminarayanan et al., 2017), the uncorrected sample
variance was introduced as a heuristic. It can, however, be justified from a Bayesian perspective
as will be explained in Chapter 6. The approach chosen here uses an ensemble of eight deep
neural networks, all having the same U-Net architecture (Ronneberger et al., 2015). The
high-dimensional inverse problem of reconstructing the optical surface is treated as an image-
to-image regression problem, and U-Nets have previously been successfully applied to various
imaging tasks (Barbastathis et al., 2019).

Pre-processing. No misalignment was taken into account during the neural network training.
The difference topography is therefore estimated a second time including a prior misalignment
correction. The estimation of the specimen positioning error is realized by minimizing the
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5.1 Application to measurement data using deep ensembles

differences between the measured and simulated OPDs in a least-squares sense considering the
parameters of the degrees of freedom of an asphere, i.e., the rotation angle parameters and the
position in space, but excluding the position along the optical axis, which is measured with
a distance measuring interferometer. Furthermore, the numerical forward model is refined
in a conventional calibration step (Fortmeier et al., 2022) to reduce the corruptness of the
non-perfect optical system that provides the input data related to the design topography to
the already trained deep learning model (cf. Figure 4.2).

Post-processing. An additional post process is added to the deep learning hybrid approach
when applied to measurement data to reduce the influence of misalignment errors to the
reconstructed surface form. It modifies the individual ensemble member predictions before
calculating the mean and uncorrected sample variance (cf. Figure 5.3c). The steps are
summarized as follows:

1. Add the predicted difference topographies to the design topography to reconstruct the
specimen.

2. Rotate and shift the point clouds of the reconstructed specimens into the design to
align the coordinate systems of the design function and the reconstructed topography
(Schachtschneider et al., 2018).

3. Subtract the design topography to deduce the resulting form deviation of the specimen
from its design.

4. Calculate the average and uncorrected sample variance over the ensemble members.

The implementation is realized in MATLAB® (version R2021b) using the Deep Learning
Toolbox 14.1 (The MathWorks, 2018) and the SimOptDevice (Stavridis et al., 2018;
Schachtschneider et al., 2019; Fortmeier et al., 2022) developed at the PTB.

5.1.3 Results

In the following, the results are presented when applying the trained deep neural network
ensemble on the differences of OPDs shown in Figure 5.2 to reconstruct the deviation of
the specimen under test from its design. Figure 5.4 shows the output of the deep learning
model. Coma (cf. Figure 3.2) can be detected in Figure 5.4a as a drop-shaped, tail-like
distortion which can be caused by a positioning error, while the prediction in Figure 5.4b is
more centered due to the prior misalignment correction. The horizontal and vertical cross
sections of the predicted difference topographies are plotted together with the 95% symmetric
credible intervals of the uncertainty of the reconstructed topography, i.e. yµ ± 1.96

√︂
u2(yµ)

(cf. Figure 5.3c).
Including the post-processing step for measurement data described above, the results of

the reconstructed difference topography are presented in Figure 5.5. In addition to the post
process, Zernike polynomial functions (up to the first 78 coefficients) are fitted to the resulting
difference topographies to smooth the results. This is done in order to later compare the
results to the results of the state-of-the-art measurement system that will be introduced in
Section 5.2 focusing on the lower spatial frequencies of the form reconstruction. In Figure A.6
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Figure 5.4: a) Output of the deep neural network ensemble for the input data from Figure 5.2a.
The horizontal and vertical cross sections of the topography profile are plotted together with the
95% symmetric credible interval of the uncertainty of the reconstructed topography in the second
plot. b) Analogous to a), but with the misalignment of the specimen corrected prior to the data
simulation.

in Appendix A.2, the results are shown without additionally fitting Zernike polynomials. Note
that the fitted Zernike polynomials could be employed to upsample the prediction to higher
resolutions. The root mean deviation of the variance corresponding to the uncertainty of the
reconstructed topography drops from 113 nm without prior misalignment correction to 77 nm
when the prior correction of the topography position is included.

Figure 5.5: a) Reconstruction of the difference topography using the deep learning hybrid
approach for the measured data of the aspherical specimen. The second plot shows the horizontal
and vertical cross sections of the topography profile shown in the first plot, together with the 95%
symmetric credible interval of the uncertainty of the reconstructed topography. b) Analogous to
a), but with the misalignment of the specimen corrected prior to the data simulation. The figures
are taken from Hoffmann et al. (2021a).

5.2 Comparison to a state-of-the-art method

The reconstruction results from the deep learning hybrid approach are compared to the results
produced by a state-of-the-art method for optical form measurements, namely the tilted-wave
interferometer distributed by Mahr GmbH (MarOpto TWI 60) (Mahr GmbH, 2021). The
comparison procedure is similar to the one used in recent interlaboratory comparison studies
(Schachtschneider et al., 2018; Fortmeier et al., 2020). Again, all processing steps are carried
out using the simulation toolbox SimOptDevice (Schachtschneider et al., 2019).

5.2.1 Comparison procedure

In a first step, the point clouds of the reconstructed specimens need to be transformed
into a format that is comparable. To this end, we restrict the data to the largest common
aperture radius, and align the point clouds in the Cartesian coordinate system by fitting the
reconstructed topographies into the design topography in a least-squares sense. This allows
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the estimated difference topographies to be compared after subtracting the design from the
reconstructed specimens. An additional step is included to subtract the best fit sphere (BFS)
in a least-squares sense using the MATLAB implementation of the Levenberg-Marquardt
algorithm. Comparing the results while neglecting the dominating spherical part can be of
interest to show non-spherical deviations and because spherical contributions may arise from
a remaining misalignment of the topographies along the optical axis (Fortmeier et al., 2016;
Gronle et al., 2022). The steps of the comparison procedure are summarized as follows:

1. Restrict the data of the reconstructed specimens to the largest common aperture radius.

2. Rotate and shift point clouds of the reconstructed specimens into the design.

3. Subtract the design topography from the reconstructed specimens and repeat step 1.

4. Subtract the respective BFS from the reconstructed difference topographies.

The results are compared after steps 3 and 4. The reconstructed topography and its
uncertainty predicted by the deep learning model are propagated by performing each step of
the comparison procedure for the individual ensemble member predictions, and by taking the
mean and uncorrected sample variance only afterwards. The achieved resolution of the deep
learning hybrid approach (64 × 64) is much smaller than the resolution of the measured data
on the camera (2048 × 2048). Also, no high-frequency parts were included during the neural
network training, since the training topographies are generated using up to the first 136 Zernike
polynomial functions (cf. Subsection 3.2.2). Therefore, Zernike polynomials are fitted to the
reconstructed difference topographies up to the first 78 coefficients before plotting the results.
The chosen polynomial degree could be higher or lower, but the chosen order (n, m = 11) (cf.
Subsection 3.1.2) is sufficient for the purpose of this work. In this way, only lower spatial
frequencies of the form reconstruction are compared while higher frequency structures are
neglected. The presented results are produced by evaluating the Zernike polynomials on a fixed
equidistant grid. For completeness, the results are shown without the smoothening Zernike
polynomial fit and with a higher resolution in Figure A.6 in Appendix A.2.

5.2.2 Results

A summary of the results is displayed in Tables 5.1 and 5.2. The reconstructed difference
topographies (the results obtained after step 3) are shown in Figure 5.5 for the deep learning
hybrid approach with and without prior misalignment correction. For comparison, the
reconstructed difference topography from the state-of-the-art method is depicted in Figure 5.6a.
The vertical (left) and horizontal (right) cross sections of the reconstructed topographies are
directly compared in Figures 5.7a and 5.7c, respectively, with and without the misalignment
correction prior to applying the trained deep learning model. Most of the reconstructed surface
from the state-of-the-art method (red) lies in the 95% symmetric credible interval of the deep
learning results (blue). More precisely, 92% of the reconstructed form from the state-of-the-art
method is covered by the described uncertainty of the reconstructed topography of the deep
learning prediction when no prior misalignment correction is carried out, while 93% of the
topography is covered when the prior correction of the topography position is included. The
root mean squared deviation (RMSD) (cf. equation (4.5)) of the reconstructed difference
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Table 5.1: The root mean squared deviation (RMSD) of the reconstructed difference topographies,
before and after subtracting the best fit sphere (BFS), are presented for the state-of-the-art method
as well as for the deep learning based hybrid approach without (hybrid method 1) and with (hybrid
method 2) prior misalignment correction. Also, the radii of the best fit spheres are shown, where
the mean is taken over the ensemble members for the hybrid methods. All uncertainties refer to
the uncorrected standard deviation over the individual ensemble member predictions.

state-of-the-art hybrid method 1 hybrid method 2

RMSD (in nm) 489 494 476
uncertainty (in nm) - 30 22

RMSD after subtracting
the BFS (in nm) 239 192 211

uncertainty (in nm) - 22 25

radius of BFS (in m) 59.7 54.7 58
uncertainty (in m) - 4.4 4.5

Table 5.2: The first row shows the root mean squared error (RMSE) between the reconstructed
difference topographies from the state-of-the-art method and the deep learning hybrid approach
before and after subtracting the BFS. Method 1 refers to the deep learning hybrid approach
without prior misalignment correction, while method 2 includes it. The second row presents the
root mean variances of the ensemble member predictions and the third row shows how much of the
reconstructed form from the state-of-the-art method is covered by the 95% symmetric credible
interval of the deep learning results.

before subtracting the BFS after subtracting the BFS

method 1 method 2 method 1 method 2

RMSE (in nm) 135 81 133 82

root mean variance
(in nm) 113 77 107 70

coverage (in %) 92 93 91 89

topography is 489 nm for the state-of-the-art method, 476 nm for the deep learning method
with prior misalignment correction, and 494 nm without such correction. The RMSE between
the two methods is 81 nm with, and 135 nm without the prior misalignment correction included
in the deep learning approach.

Figures 5.6b-d show the results after subtracting the corresponding BFS (step 4). The result
from the state-of-the-art form reconstruction method (Fig. 5.6b) has a RMSD of 239 nm. The
subtracted BFS has a radius of 59.7 m. Next, the result from the deep learning hybrid approach
without prior misalignment correction (Fig. 5.6c) has a RMSD of 192 nm, and a RMSE of 133
nm compared to the state-of-the-art method, which lies to 91% in the area covered by the
uncertainty of the reconstructed topography. The subtracted BFS has a mean radius2 of 54.7

2It is common for the radius of the BFS to be in the range of meters when considering the reconstructed
difference topographies for optical aspheres and freeform surfaces (Schachtschneider et al., 2018; Fortmeier and
Schulz, 2022).
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Figure 5.6: a) The reconstructed difference topography is plotted for the state-of-the-art method
for optical form measurement. b) Result from a) after subtracting the best fit sphere. c) Result
from Fig. 5.5a) after subtracting the best fit sphere. d) Result from Fig. 5.5b) after subtracting
the best fit sphere. The figures are taken from Hoffmann et al. (2021a).

Figure 5.7: The vertical (left) and horizontal (right) cross sections of the reconstructed difference
topographies plotted for the state-of-the-art TWI method (red) and the deep learning hybrid
approach (blue) together with the latter’s uncertainty of the reconstructed topography, i.e., the
95% symmetric credible interval: a) without prior misalignment correction; b) after subtracting
the best fit sphere; and c) with prior misalignment correction; d) after subtracting the best fit
sphere. The plots are taken from Hoffmann et al. (2021a).

m, ranging from 48.7 m to 60.5 m for the individual ensemble member predictions. Finally, the
result from the deep learning hybrid approach with prior misalignment correction (Fig. 5.6d)
has a RMSD of 211 nm and a RMSE of 82 nm compared to the state-of-the-art method which
it covers to 89%. The subtracted best fit sphere has a mean radius of 58 m, ranging from 50.9
m to 66.7 m for the individual ensemble member predictions. Again, the cross sections of the
topography profiles from the state-of-the-art method (red) are plotted together with the deep
learning hybrid approach and its uncertainty of the reconstructed topography (blue) with and
without prior misalignment correction, respectively, in Figures 5.7b and 5.7d.

5.3 Discussion and summary

In Chapter 4, it was shown that the introduced deep learning hybrid approach produces reliable
results, which also include a quantification of the uncertainty of the reconstructed topography,
for in-domain as well as out-of-distribution test data in a simulated environment. In this
chapter, we demonstrate how to use the deep learning approach in a real-world environment
and how to apply it to measurement data from a real specimen of an asphere. Given that the
ground truth for real specimens is not known, however, the results are compared to the results
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of a state-of-the-art method for the optical form measurement of optical aspheres and freeform
surfaces (Mahr GmbH, 2021). Higher frequency structures are neglected because the deep
learning model is trained on, and produces, low resolution images. Also, higher frequencies
and positioning errors were not included in the generated topographies of the training data.

It is difficult to compare the computing efficiency of the two approaches due to their
different requirements. Once the deep neural networks are trained for a design topography,
and the measurement data of the specific specimen are acquired and preprocessed, the form
reconstruction and the described uncertainty quantification are performed instantaneously.
In contrast, state-of-the-art TWI methods do not need any training for different design
topographies. However, their form reconstruction time depends on different hyperparameters,
such as the chosen resolution, the amount of rays to be traced through the optical system,
and the number of steps used for the iterative form reconstruction procedure (Fortmeier et al.,
2014).

Nonetheless, the results show that the deep learning hybrid approach provides reliable
results for the measured data, since the two methods produce similar results, especially
when a prior misalignment correction is performed for the input data of the deep learning
model. Furthermore, the form reconstructed by the state-of-the-art method lies well within the
estimated uncertainty of the reconstructed topography of the deep learning hybrid approach.
Hence, Objective 4, i.e. to apply the developed deep learning approach to solve the inverse
problem of the TWI on measurement data of a real specimen and to validate it against a
state-of-the-art method (cf. Section 1.2), is successfully dealt with.

Future work should include an extended comparison study with other kinds of design
topographies and specimens that can be measured by the TWI, e.g. as part of an interlaboratory
comparison study (Schachtschneider et al., 2018; Fortmeier et al., 2020). Also, higher frequency
parts, misalignment errors and a higher resolution of the form reconstruction could be
incorporated in the data generation and investigated for the deep learning hybrid approach in
the future.
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perspective

Quantifying1 the uncertainty associated with the prediction of a trained neural network has its
own merit and is particularly relevant when decisions are taken in sensitive applications such
as medical diagnosis (Leibig et al., 2017) or autonomous driving (Michelmore et al., 2020).
Several methods have been proposed to quantify the uncertainty associated with the prediction
of a deep neural network (Abdar et al., 2021; Jospin et al., 2020). Currently, deep ensembles
(Lakshminarayanan et al., 2017) can be seen as state-of-the-art for uncertainty quantification
in deep learning (cf. Subsection 2.2.4).

Deep ensembles are based on a combination of multiple networks, an idea that dates back
to the 20th century. In Hansen and Salamon (1990), better accuracies were achieved for an
ensemble of networks than when employing a single network; the use of multiple networks to
account for model uncertainty has been proposed in Carney et al. (1999). Ensemble learning
has gained in popularity ever since (Sagi and Rokach, 2018). A breakthrough in the application
of ensembling for deep learning was the introduction of deep ensembles (Lakshminarayanan
et al., 2017), where the prediction of an ensemble of independently trained neural networks
is treated as a uniformly weighted Gaussian mixture model. In Ashukha et al. (2020), deep
ensembles are even used to introduce a metric to measure the performance of other ensembling
methods by counting the number of networks needed to reach a specified performance.

Uncertainty quantification by deep ensembles has been proposed without referring to
a Bayesian background and has even been explicitly classified as a non-Bayesian approach
(Lakshminarayanan et al., 2017; Ovadia et al., 2019; Hu et al., 2020). Several ideas have
been put forward to embed deep ensembles into a Bayesian framework. Examples comprise
early stopping (Duvenaud et al., 2016), regularizing parameters around different values drawn
from a prior distribution (Pearce et al., 2020) and creating a link to Gaussian processes via
the neural tangent kernel (He et al., 2020). In Wilson and Izmailov (2020), deep ensembles
are associated to Bayesian model averaging (Hoeting et al., 1999), while in Gustafsson et al.

1Most of this chapter is taken from Hoffmann and Elster (2021).
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(2020), they are represented as an approach that builds on an approximation of a multimodal
posterior for the network parameters.

In following this latter perspective, we argue that deep ensembles provide an approximate
Bayesian inference in which the true posterior is replaced with an average of delta distributions
around local maximum a posterior (MAP) estimates for the parameters of the network. The
statistical model and prior distributions required to achieve this result are specified below.
By using an average of delta distributions as an approximation of the posterior, the formulas
applied in deep ensembles (Lakshminarayanan et al., 2017) follow directly. To improve this
approximation, we replace the delta distributions with Gaussian distributions in this work,
which is a technique known from Laplace approximation (Ritter et al., 2018). A similar idea is
presented in Wilson and Izmailov (2020), where the approximated posterior distribution is
generalized to a mixture of Gaussians which are independently trained as stochastic-weight-
averaging Gaussians (SWAG) (Maddox et al., 2019). The approximation of the posterior by a
family of Gaussian distributions is well-known from Bayesian neural networks (Lampinen and
Vehtari, 2001) and variational inference in general (Blei et al., 2017).

By applying variational inference (Blei et al., 2017), the evidence lower bound (ELBO)
is maximized in this work to determine the additional parameters of the Gaussian mixture
distribution. However, rather than maximizing the ELBO with respect to all parameters during
network training, we propose a two-step approach. First, conventional training of the ensemble
of neural networks yields local MAPs of the network parameters, which are taken as the
locations of the Gaussian mixture distribution. In the second step, the remaining parameters
are determined by maximizing the ELBO. In this way, training of the deep ensembles does
not have to be altered, and the improved approximation of the posterior can be obtained via
post-processing.

Previous work suggests that model uncertainty can be captured using only a few or even
just one Bayesian layer at the end of the network (Zeng et al., 2018; Brosse et al., 2020;
Kristiadi et al., 2020). Considering the last layer to be linear and only the weights of that layer
to be random, an analytical solution for the maximization of the ELBO can be derived. As a
consequence, the proposed variational inference can be easily applied by simple post-processing
of the results obtained by conventional deep ensembles.

The improved approximation of the posterior leads to a modification of the formulas used
to perform uncertainty quantification by deep ensembles. Specifically, the epistemic part of
the uncertainty is enlarged by an additional contribution. Arguing that, in the context of
regression problems, the epistemic part of the uncertainty can be the relevant part when the
goal is to infer the regression function, the proposed modification can then be necessary to
arrive at a reliable uncertainty quantification.

This chapter tackles Objective 5, i.e. to investigate and improve the uncertainty
quantification by deep ensembles for regression problems (cf. Section 1.2). Applying the
developed approach to both simulated and real data, we demonstrate the impact on the
uncertainty quantification by comparing the results with those obtained by conventional deep
ensembles. Analytical derivations enable the easy implementation of the proposed approach.
The approach and the derived analytical formulas are based on analyzing deep ensembles from
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a Bayesian perspective. The resulting statistical formulations are presented and support new
interpretations of deep ensembles.

The chapter is structured as follows. In Section 6.1, we specify the conditions under which
uncertainty quantification by deep ensembles can be viewed as an approximate Bayesian
method and the proposed extension is derived. In Section 6.2, we explore the impact of the
proposed approach and compare it to the classical deep ensembles in different experiments. We
also apply it to the inverse problem related to the TWI. Finally, the results are summarized
and discussed in Section 6.3.

6.1 Theoretical formulas and derivations

An introduction to uncertainty quantification, Bayesian statistics and variational inference
is provided in Subsection 2.2.3, while the basic frequentist framework of deep ensembles
(Lakshminarayanan et al., 2017) is presented in Subsection 2.2.4. In this work, we focus on
regression problems. The following notations are going to be used from now on. Let the
data D = {(xi, yi), i = 1, . . . , N} be independent and identically distributed (i.i.d.) samples
following the heteroscedastic regression model given as

y|x ∼ N
(︂
ηθ(x), σ2

θ(x)I
)︂

, (6.1)

where x ∈ Rdx , y ∈ Rdy , σ2
θ(x) ∈ R, and the conditional distribution for y given x is taken

as a Gaussian distribution with mean ηθ(x) and covariance matrix σ2
θ(x)I. Both ηθ(x) and

σ2
θ(x) are modeled by deep neural networks. The mean ηθ(x), viewed as a function of x, will

be termed the regression function, and its inference is of particular interest. We consider D as
the training data.

Subsection 6.1.1 specifies the statistical formulas, the prior distributions and the
form of approximation required such that uncertainty quantification by deep ensembles
(Lakshminarayanan et al., 2017) can be viewed as an approximate Bayesian method. This
approximation is then improved by extending the family of distributions used to approximate
the posterior from delta distributions to Gaussian distributions in Subsection 6.1.2. We
maximize the ELBO to determine the additional parameters, leading to a simple post-processing
procedure of conventional deep ensembles.

6.1.1 Deep ensembles as a Bayesian approximation

In a Bayesian framework (Gelman et al., 1995; Robert, 2007; O’Hagan and Forster, 2004), the
posterior distribution π(θ|D) is determined (or approximated) and used for inference. For
example, as an estimate of the regression function ηθ(x) and its associated uncertainty one
could take the posterior mean and posterior standard deviation of ηθ(x). If one is interested in
predicting a future observation y at a specified x, on the other hand, the posterior predictive
distribution π(y|x, D) should be considered. The posterior predictive distribution accounts for
both the uncertainty in the parameters θ and the additional uncertainty of y expressed by the
covariance matrix σ2

θ(x)I.
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The total uncertainty associated with the posterior predictive distribution of the neural
network predictions can be divided into an aleatoric part and an epistemic part (Gal, 2016;
Hüllermeier and Waegeman, 2021). While the former is related to the irreducible part of
the uncertainty, the epistemic uncertainty characterizes the uncertainty about the model
(i.e. the model parameters θ in this setting). The epistemic uncertainty can be reduced by
increasing the size of the available training data. The aleatoric uncertainty is represented in
the regression model (6.1) by the covariance matrix σ2

θ(x)I and characterizes the uncertainty
about the (future) realization of an observation y given its mean ηθ(x).

In the deep ensembles method (Lakshminarayanan et al., 2017), an ensemble of individually
trained neural networks is considered. To predict an observation y, the mean of the predictions
of the single networks is formed (cf. Subsection 2.2.4). The (squared) uncertainty associated
with this prediction is taken as the sum of the covariance matrix of the individual predictions and
the estimated aleatoric part of the prediction (i.e. σ2ˆ︁θ(x)I in model (6.1)). Deep ensembles were
originally introduced as a non-Bayesian method (Lakshminarayanan et al., 2017). However,
it has been repeatedly brought up that deep ensembles can be viewed from a Bayesian
perspective (Abdar et al., 2021; Gustafsson et al., 2020; Wilson and Izmailov, 2020). More
precisely, conventional deep ensembles can be viewed as an approximate Bayesian inference
where the posterior π(θ|D) of the model parameters θ given the data D is approximated by a
family of delta distributions, i.e.

π(θ|D) ≈ q(θ) := 1
K

K∑︂
k=1

δ(θ − ˆ︁θ(k)) , (6.2)

while choosing the prior π(θ) for the neural network parameters normally distributed as

θ ∼ N
(︂
0, λ−1I

)︂
, (6.3)

where λ is the L2-regularization parameter for the model parameters.
This is shown in the following based on the statistical model in (6.1). Each neural network

of the ensemble is independently trained according to (Lakshminarayanan et al., 2017) by
minimizing the following loss function:

loss = −L(θ; D) + 1
2λ∥θ∥2 , L(θ; D) = −1

2

N∑︂
i=1

(︄
∥yi − ηθ(xi)∥2

σ2
θ(xi)

+ dy log
(︂
σ2

θ(xi)
)︂)︄

, (6.4)

where ∥.∥ is the L2-norm, and L(θ; D) equals (up to a constant) the log likelihood for the
statistical model in (6.1). The parameter estimates ˆ︁θ(k), k = 1, . . . , K, obtained for the
ensemble of K networks, are at the same time (local) estimates for the maximum a posteriori
probability (MAP) of θ when assigning the prior (6.3). By taking the average of K probability
mass functions at the local MAPs as an approximation of the posterior π(θ|D) (cf. (6.2)), the
approximation of the posterior predictive distribution for the statistical model in (6.1) is then
given by

π(y|x, D) =
∫︂

π(θ|D)N
(︂
y; ηθ(x), σ2

θ(x)I
)︂

dθ ≈ 1
K

K∑︂
k=1

N
(︂
y; ηˆ︁θ(k)(x), σ2ˆ︁θ(k)(x)I

)︂
, (6.5)
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which equals the expression given in (Lakshminarayanan et al., 2017) for deep ensembles.
By using the approximation (6.5), mean and covariance matrix of the posterior predictive

distribution are obtained as

E (y|x, D) = 1
K

K∑︂
k=1

ηˆ︁θ(k)(x) , (6.6)

Cov (y|x, D) = 1
K

K∑︂
k=1

{︃(︂
ηˆ︁θ(k)(x) − E (y|x, D)

)︂ (︂
ηˆ︁θ(k)(x) − E (y|x, D)

)︂⊤
+ σ2ˆ︁θ(k)(x)I

}︃
, (6.7)

where E stands for expectation and Cov for covariance, cf. Appendix B.1. Note that equation
(6.6) is a prediction of a future observation at x and yields at the same time the inferred
regression function ηθ(x) = E (y|x, D) according to the statistical model (6.1). Equation (6.7)
describes the total uncertainty associated with the prediction of the neural network ensemble.
Mean and covariance matrix of the posterior predictive distribution are in accordance with
the results given in Lakshminarayanan et al. (2017) for the original approach of the deep
ensembles.

In Lakshminarayanan et al. (2017), the comparison between different methods is based
on the posterior predictive distribution. The covariance matrix (6.7) comprises the reducible
epistemic part of the uncertainty as well as the irreducible aleatoric part. However, when the
goal is to infer the underlying regression function, an accurate estimation of the epistemic
uncertainty is essential. The epistemic uncertainty is given by the spread of the single estimates
of the regression function obtained by the ensemble of trained networks. Mean and covariance
matrix of the regression function are deduced in the following lemma.

Lemma 1. The approximate Bayesian inference associated with deep ensembles yields a
posterior π(η|x, D) for the regression function η ≡ ηθ(x) given by

π(η|x, D) = 1
K

K∑︂
k=1

δ(η − ηˆ︁θ(k)(x)) , (6.8)

with mean and covariance matrix given by

E (η|x, D) = 1
K

K∑︂
k=1

ηˆ︁θ(k)(x) , (6.9)

Cov (η|, x, D) = 1
K

K∑︂
k=1

{︃(︂
ηˆ︁θ(k)(x) − E (η|x, D)

)︂ (︂
ηˆ︁θ(k)(x) − E (η|x, D)

)︂⊤
}︃

. (6.10)

Proof. The proof is given in Appendix B.2.

Note that the expectation of the posterior for the regression function (6.9) equals the
expectation of the posterior predictive distribution (6.6), while its covariance matrix (6.10)
contains only the epistemic part of the covariance matrix of the posterior predictive distribution
(6.7).

The average over delta distributions taken at point estimates of the parameters θ (6.2) is a
crude approximation of the posterior. Nonetheless, deep ensembles outperform many other
Bayesian approaches due to their ability to explore different modes of the posterior distribution
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(Fort et al., 2019). Figure 6.1, which is inspired by Fort et al. (2019) (Fig. 1) and Wilson and
Izmailov (2020) (Fig. 3), illustrates this behavior.

Figure 6.1: This example figure illustrates the solution space of the network parameters on the
x-axis and the negative loss function on the y-axis. Deep ensembles explore multiple modes in
contrast to other Bayesian approaches which focus on a single mode but consider more complex
distributions. The proposed extension combines these two ideas. The figure is taken from Hoffmann
and Elster (2021).

6.1.2 Proposed extension to Gaussian mixture distributions

When the aleatoric part of the covariance matrix of the posterior predictive distribution (6.7) is
dominant, the covariance matrix of the regression function (6.10) is expected to be significantly
smaller than that of the posterior predictive distribution (cf. example in Figure 6.3 and results
in Table 6.2). It follows that the (crude) approximation of the posterior in (6.2) with a family
of delta distributions, which ignores the nonzero width of the true posterior around its (local)
MAPs, is irrelevant for the total uncertainty in these cases. However, this approximation can
lead to a significant underrating of the epistemic uncertainty.

An improved approximation of the posterior distribution π(θ|D) is given by

q(θ) = 1
K

K∑︂
k=1

N(θ; ˆ︁θ(k), γkI) , (6.11)

where the γk correspond to the variances around the (local) MAPs ˆ︁θ(k). The approximation
(6.11) of the posterior extends the approximation in (6.2) by allowing for a finite width of the
posterior around the (local) MAPs, and it reduces to (6.2) for γk → 0.

The general idea behind variational inference (Blei et al., 2017) is to approximate the
posterior π(θ|D) by a distribution that can be more easily handled. Specifically, one can seek
the best approximation of the posterior within a parametric family of distributions such as the
Gaussian mixture distribution in (6.11). One way to do so is to use a Laplace approximation,
for which the parameters of a single Gaussian approximation are calculated from the local
properties of the posterior at the MAP (Ritter et al., 2018). In deep learning approaches,
however, the parameters are typically determined by maximizing the evidence lower bound
(ELBO) defined as follows (cf. Subsection 2.2.3):

ELBO(q) := Eq [log (p(D|θ))] − KL (q(θ)∥π(θ)) = log (π(D)) − KL (q(θ)∥π(θ|D)) . (6.12)

Instead of maximizing the ELBO with respect to all parameters during network training,
we suggest here a two-step procedure. First, the networks are independently trained in
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accordance with the conventional deep ensembles training procedure. The resulting (local)
MAPs of the network parameters are taken as the first moments of the Gaussian mixture
distributions. Second, the remaining parameters of (6.11), which are the variances γ, are
deduced by maximizing the ELBO from equation (6.12) in a post-processing step. This can
be done numerically for example via a grid search.

In the following, assume that the only random weights in the network are those in the
last layer. Furthermore, we will consider only the randomness of ηθ(x), while σ2

θ(x) remains a
point estimate for easier formulas, but could be extended in a similar manner. Also, σ2

θ would
not depend on the last layer but rather be an individual network parameter, when choosing a
homoscedastic approach instead, which could be an alternative to the heteroscedastic model
in (6.1). Figure 6.2 visualizes the parameters treated as random in the proposed approach.
Maximizing the ELBO can then be performed analytically, as stated in Theorem 1 below.
Mean and covariance matrix of the regression function for the improved approximate Bayesian
inference are given in Theorem 2, while Algorithm 1 summarizes the proposed approach.

Figure 6.2: The proposed model of a single neural network is visualized here. A sample y|x
from the posterior predictive distribution is drawn from the network outputs N(ηθ(x), σ2

θ̂
(x)). All

network weights are fixed to the MAP estimates after training, except for the last linear unit of the
predicted mean value ηθ(x). The weights of this last linear unit are normally distributed around
the trained MAPs ˆ︁θ with variances γk, k = 1, . . . , K. The figure is taken from Hoffmann and Elster
(2021).

Theorem 1. Let only the weights of the last layer in the neural network, which are related to
the prediction of the regression function ηθ(x), be random and assume a linear transformation
from the last layer to the network output. Approximate maximization of the ELBO (6.12) can
then be done analytically when considering the approximation of the posterior distribution
given in (6.11), leading to the expression (B.20) in the Appendix. Furthermore, the variances
in (6.11) tend to zero for an infinite amount of training data.

Proof. The proof is given in Appendix B.3.

Theorem 2. The improved approximation for the Bayesian inference associated with deep
ensembles (from delta to normal distributions, cf. equation (6.11)) yields a posterior π(η|x, D)
for the regression function η ≡ ηθ(x) given by

π(η|x, D) = 1
K

K∑︂
k=1

∫︂
δ(η − ηθ(x))N

(︂
θ; ˆ︁θ(k), γkI

)︂
dθ , (6.13)
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with mean and covariance matrix given approximately by

E (η|x, D) ≈ 1
K

K∑︂
k=1

ηˆ︁θ(k)(x) , (6.14)

Cov (η|x, D) ≈ 1
K

K∑︂
k=1

{︃(︂
ηˆ︁θ(k)(x) − E (η|x, D)

)︂ (︂
ηˆ︁θ(k)(x) − E (η|x, D)

)︂⊤
+ γkJkJ⊤

k

}︃
, (6.15)

where Jk = ∂η/∂θ is evaluated at θ = ˆ︁θ(k). The Jacobian matrix Jk can be easily calculated in
terms of the output of the next-to-last layer when considering only the weights of the last layer
in the neural networks to be random, and when the last layer is linear.

Proof. The proof is given in Appendix B.4.

Algorithm 1: improved approximation of the posterior π(θ|D)
Result: q(θ) := 1

K

∑︁K
k=1 N(θ; ˆ︁θ(k), γkI), instead of q(θ) := 1

K

∑︁K
k=1 δ(θ − ˆ︁θ(k));

1. initialize and independently train networks ηθ(k) , k = 1, . . . , K, in accordance with
the deep ensembles approach (Lakshminarayanan et al., 2017);

2. compute γk, k = 1, . . . , K, according to (B.20).

The improved approximation of the Bayesian inference associated with deep ensembles
yields the same expectation (6.14) for the regression function as the original approximation
(6.9), together with a covariance matrix (6.15) that includes the additional term γkJkJ⊤

k

(compared to (6.10)). In this way, the epistemic part of the uncertainty of the conventional
deep ensembes is enlarged.

Samples from the posterior (6.13) for the regression function can be easily obtained by first
sampling a k ∈ {1, . . . , K} with probability 1

K . Second, a θ(k) is sampled from N(ˆ︁θ(k), γkI)
and third, ηθ(k)(x) is evaluated. To sample from the posterior predictive distribution, a fourth
step is added: sample a y from N

(︃
ηθ(x), σ2

θ̂
(k)(x)I

)︃
of the selected kth network. The sampling

procedure is summarized in Algorithm 2.

Algorithm 2: sample from the posterior of the regression function π(η|x, D) and
from the posterior predictive distribution π(y|x, D)

Result: sample from π(η|x, D): steps 1-3; sample from π(y|x, D): steps 1-4;
1. sample kth network uniformly from k ∈ {1, . . . , K};
2. sample network weights θ(k) from N(ˆ︁θ(k), γkI);
3. evaluate ηθ(k)(x);

4. evaluate σ2
θ̂

(k)(x) and sample from N

(︃
ηθ(k)(x), σ2

θ̂
(k)(x)I

)︃
.

6.2 Experiments

In this section, the classical deep ensembles (DE) (Lakshminarayanan et al., 2017) are compared
to the proposed extended approach (DE extended). Following Algorithm 1, the neural network
training procedure is exactly the same for the classical and the extended deep ensembles. The
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inferred regression function is identical in both cases, namely the average over the estimates
of all ensemble members 1

K

∑︁K
k=1 η

θ̂
(k)(x) at the trained MAPs ˆ︁θ. The only difference is the

additional term of the extended covariance matrix in (6.15), which is related to the epistemic
part of the uncertainty. Uncertainties are understood as the half width of the 95% credible
intervals calculated in terms of an assumed Gaussian distribution using the approximate
variance formulas (i.e. 1.96 times the standard deviation). Coverage probabilities refer to the
number of test cases that lie within the estimated, symmetric around the inferred regression
function, 95% credible interval. Training and test data are always disjoint and all obtained
results are shown in respect to the test set.

In Subsection 6.2.1, the deep ensembles method and its proposed extension are compared
on simulated toy regression problems with known ground truth. The implemented code,
together with additional examples, is provided2. Then, the results of the two methods are
compared on real data in Subsection 6.2.2. The architecture of all neural networks in the
above mentioned experiments is fully connected with three hidden layers consisting of 128, 64,
and 32 neurons, respectively. Eventually, in Subsection 6.2.3, we apply the proposed extension
to deep ensembles for solving the inverse problem related to the TWI.

All implementations in this section are realized in Python (version 3.6.9) (Van Rossum and
Drake, 2009) using pytorch (version 1.6.0) (Paszke et al., 2019). The weights of the employed
neural networks are initialized by randomly drawing from the kaiming uniform distribution
(He et al., 2015) which is currently the default initialization for convolutional and linear layers
in pytorch. Dispersing the initial values of the individual neural networks before starting the
model training is important to ensure unbiased solutions.

6.2.1 Toy regression problems

First, numerical experiments are carried out on some toy regression examples. Results are
shown for two univariate regression tasks with a one and two dimensional input domain,
respectively. Many more examples can be performed and parameter settings tested using the
provided GitLab-repository2. All data of the output space are normalized by subtracting the
mean and dividing the difference by the standard deviation of the corresponding training set.
The input data are uniformly drawn from the elementwise support [−1, 1]. The training and
test sets are disjoint. All presented results refer to the test data.

The hyperparameters and the network architecture are not fine-tuned, since the achieved
prediction accuracies are the same for both methods and the focus lies on the quantification of
the epistemic uncertainty. The following hyperparameter settings are equal for all presented
results, while the individual parameter settings are described below. Training is performed
over 60 epochs with a learning rate drop factor of 0.1 for the last five epochs and a mini batch
size of 64.

Figure 6.3 shows the predicted regression function and the resulting total and epistemic
uncertainties for the classical and extended deep ensembles together with the ground truth.
The data y(x) ∈ R, x ∈ [−1, 1], are normally distributed around the regression function
η(x) = 1

2
(︁
(4.5x)4 − (18x)2 + 22.5x

)︁
with a standard deviation of 10. An ensemble of 10

networks is trained using 200 data samples with a learning rate equal to 0.005, and the
2BayesianDeepEnsembles (https://gitlab1.ptb.de/hoffma31/bayesiandeepensembles)
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regularization parameter λ (cf. equation (6.4)) is set to 0.01. The total uncertainty is much
greater than the epistemic part of the uncertainty for the classical deep ensembles, when
comparing the first two images of the first row. This means that the aleatoric part of the
uncertainty is dominant there. The total uncertainty almost perfectly covers the underlying
disturbed data and hence, the approximation of the posterior predictive distribution works
well for both approaches. However, the second column shows that the uncertainty for the
inferred regression function covers the ground truth in less than 60% of the considered test
cases for the conventional deep ensembles, i.e. conventional deep ensembles underrate the
uncertainty. In contrast, the extended deep ensembles cover the regression function completely,
as shown in the second row (second and third image), and hence yield a more reliable, yet to
some extent conservative, uncertainty quantification.

Figure 6.3: The results are plotted for the classical deep ensembles (first row) and the proposed
extension (second row). The coverage probabilities (cp) and root mean squared errors (rmse)
are estimated for the posterior predictive distribution (first column) and the regression function
(second column). The estimates, predictions and corresponding 95% credible intervals are plotted
(in blue) together with the underlying disturbed and undisturbed ground truth data (in red). In
the third column, the epistemic uncertainties are plotted together with the absolute errors of the
estimated regression function to the ground truth. The plots are based on Hoffmann and Elster
(2021).

Another comparison between the classical and extended deep ensembles is provided in
Figure 6.4, which analyzes the dependence of the amount of training data and the number of
trained ensemble members on the epistemic uncertainty. A more complex regression function
with a two dimensional input domain is chosen here as an example. Nonetheless, the regression
function from the previous example leads to similar significant results which can be easily
checked2. The data samples y(x) ∈ R, x ∈ [−1, 1]2, are normally distributed around the
regression function η(x) = ∑︁2

i=1(1.5xi − 1)2(1.3xi + 1)2 with a standard deviation of 0.2. The
results in Figure 6.4 are produced using a learning rate of 0.001 and a regularization parameter
of 0.1. 10 neural networks are employed to generate the results in the first column, while
the ensembles yielding the plots in the second column are trained using 600 data samples.
Our findings show that the extended approach consistently outperforms the uncertainty
quantification of the classical deep ensembles with a coverage probability of over 80% in almost
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every setting. Even for a single network, the coverage of the extended method is about 60%,
while there is no epistemic uncertainty at all in the classical method for this case. In this
example, the uncertainty remains almost constant when the number of neural networks for the
ensemble is increased beyond ten ensemble members. The uncertainties of the two approaches
are expected to converge for an infinite amount of training data (cf. Theorem 1), which seems
to be supported by the observed results. Finally, note that the root mean squared error
(RMSE) of the predicted regression function is the same for the two approaches since the same
estimates are reached. It decreases for an increasing amount of training data and is more
stable for an increasing number of ensemble members.

Figure 6.4: The coverage probabilities for the regression function of the classical deep ensembles
approach and its suggested extension are plotted in the first row in dependence on an increasing
amount of training data and an increasing number of ensemble members, respectively. The second
row shows the corresponding root mean squared errors (which are the same for both approaches).
The plots are based on Hoffmann and Elster (2021).

6.2.2 Real data

The proposed extension is tested on four real datasets downloaded from the UCI database
(Dua and Graff, 2017). A summary of the datasets (e.g. amount of training and test data)
and the chosen hyperparameters for the network training are given in Table 6.1. All data are
normalized, i.e. the mean is subtracted and the difference is divided by its standard deviation.
All networks are trained using the Adam optimizer (Kingma and Ba, 2015) and a constant
learning rate up to the last five epochs where the learning rate drops by a factor of 0.5 in
every epoch.

The results are shown in Table 6.2 for the conventional deep ensembles (Lakshminarayanan
et al., 2017) and the proposed extension. All investigations are conducted for an ensemble of
five and ten neural networks, respectively. Note that the RMSE of the predicted regression
function based on the given (noisy) target values and the aleatoric uncertainty are the same
for both methods since the proposed extension has only an effect on the epistemic uncertainty
via the post-processing step. The epistemic and total coverages describe the relative amount
of target data that lie in the 95% symmetric credible intervals. The epistemic coverage relates
only to the coverage of the epistemic uncertainty, while the total coverage relates to the
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Table 6.1: The table provides general information about the considered datasets taken from the
UCI database (Dua and Graff, 2017) and specifies the hyperparameters used for the neural network
training. λ is the L2-regularization parameter for the neural network parameters (cf. equation
(6.4)). The output dimension equals one for all datasets.

data information

name QSAR aquatic
toxicity

Yacht
hydrodynamics

Blog
feedback

Year prediction
MSD

reference Cassotti et al.
(2014)

Gerritsma et al.
(1981); Ortigosa
et al. (2007)

Buza (2014) Bertin-Mahieux
et al. (2011)

# training data 437 246 52, 397 463, 715

# test data 109 62 7, 624 51, 630

input dimension 8 6 276 90

hyperparameters for neural network training

learning rate 10−3 10−3 10−5 5 ∗ 10−5

λ 10−2 10−3 10−5 10−4

mini batch size 128 8 64 128

epochs 60 100 50 40

coverage of both the epistemic and the aleatoric uncertainties, i.e. the total uncertainty. An
automatic uncertainty estimation as proposed here is expected to have a total coverage of
about 95%, which is roughly true for both variants in the examples considered here. The
epistemic uncertainty, however, relates to the distance of the inferred regression function to
the underlying ground truth, which is unknown. The epistemic coverage therefore refers to
the same noisy target values as the total coverage, and is expected to be smaller than 95%
and much smaller in cases where the aleatoric uncertainty strongly dominates.

The ratio between the epistemic and aleatoric variances describes the proportion of the
two estimated uncertainty sources. Furthermore, this ratio shows how the epistemic part of
the uncertainty changes for the proposed extension in comparison to the original method.
In the considered examples, the aleatoric part dominates the uncertainty, because the ratio
of the epistemic and aleatoric variances is always smaller than one. However, the proposed
extension has a significant impact on the estimated epistemic uncertainties in the first two
datasets (QSAR aquatic toxicity and yacht hydrodynamics) where only comparatively few
data samples are available. The ratios show an increase of the mean epistemic variance up
to a factor of three. Here, the increase of the epistemic uncertainty and the coverage of the
epistemic uncertainty for the proposed extension of deep ensembles can be considered an
improvement, because the coverage of the total uncertainty remains well calibrated without
being further increased. In contrast, the proposed extension shows no effect on the last dataset
(year prediction MSD), which means that the proposed approximation of the posterior of the

86



6.2 Experiments

Table 6.2: The results are shown for the classical deep ensembles and the proposed extension for
the four datasets from Table 6.1. The root mean squared error (RMSE) of the predicted regression
function and the epistemic and total coverages, i.e. the relative amount of target data that lie
in the 95% symmetric credible intervals, are based on the given (noisy) target values. The ratio
describes the mean over the test set of the estimated epistemic variances divided by the estimated
aleatoric variances.

method deep ensembles proposed extension

# ensemble members 5 10 5 10

QSAR
aquatic
toxicity

RMSE 0.555 0.557 0.555 0.557
epistemic coverage in % 24.8 28.4 42.2 47.7
total coverage in % 95.4 95.4 95.4 95.4
ratio epistemic-aleatoric var 0.030 0.036 0.088 0.098

Yacht
hydro-
dynamics

RMSE 0.085 0.078 0.085 0.078
epistemic coverage in % 75.8 87.1 82.3 90.3
total coverage in % 98.4 98.4 98.4 98.4
ratio epistemic-aleatoric var 0.284 0.383 0.412 0.509

Blog
feedback

RMSE 0.684 0.683 0.684 0.683
epistemic coverage in % 41.0 44.7 41.6 45.0
total coverage in % 96.8 96.8 96.8 96.8
ratio epistemic-aleatoric var 0.093 0.092 0.094 0.092

Year
prediction
MSD

RMSE 0.795 0.795 0.795 0.795
epistemic coverage in % 20.4 22.8 20.5 22.8
total coverage in % 95.2 95.3 95.2 95.3
ratio epistemic-aleatoric var 0.024 0.027 0.024 0.027

network parameters (6.11) through a family of normal distributions can safely be replaced with
a family of delta distributions according to the classical deep ensembles (6.2). This finding is
also in accordance with the expectation that widths of the normal distributions tend to zero
when the amount of training data become large (cf. Theorem 1).

Figure 6.5 shows additional results for the third dataset (blog feedback). More precisely,
coverages of epistemic uncertainties are plotted in the first row for an increasing amount of
training data and an increasing amount of ensemble members, respectively, together with the
corresponding root-mean-squared errors in the second row. In the first column, the results
are provided for an ensemble of five neural networks, while 5240 data samples are used for
training in the second column. Note that the x-axis in the first column shows the logarithm
of the number of data samples used for training. More detailed information are provided in
Tables 6.3 and 6.4.

The upper left plot in Figure 6.5 shows that the coverage of the epistemic uncertainty is
much larger for the proposed extension than for the classical deep ensembles when only a small
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Figure 6.5: The plots are based on the blog feedback dataset. Coverage probabilities for the
epistemic uncertainties obtained by classical deep ensembles and their suggested extension are
plotted in the first row in dependence on an increasing amount of training data and an increasing
number of ensemble members, respectively. The second row shows the corresponding RMSE (which
are the same for both approaches). 5 ensemble members are used in the first column, while the
neural network ensemble is trained on 5240 data samples in the second column. The figures are
taken from Hoffmann and Elster (2021).

amount of training data are available, while converging to the same value for a growing number
of data samples in the training data. This behaviour can be explained by considering the
corresponding epistemic uncertainties for the two methods shown in Figure 6.6. The epistemic
uncertainties of the proposed extension are much larger than of the classical deep ensembles
for a small amount of training data. Also, they decrease significantly for a growing amount of
training data. The epistemic uncertainties of the two methods converge to a common value for
an increasing number of training data, as expected (cf. Theorem 1).

Figure 6.6: The mean of the epistemic variances predicted by deep ensembles and the proposed
extension, respectively, are plotted together with the logarithm of the number of data samples
used for training an ensemble consisting of 5 neural networks on the blog feedback dataset. The
figure is taken from Hoffmann and Elster (2021).

Unfortunately, the ground truth is not known for real data which prevents a quantitative
comparison of the results of the two approaches. Nonetheless, it can be assumed that the
inferred regression function is less well approximated for a smaller number of training data,
because of the larger root-mean-squared errors in Figure 6.5 (lower left plot). Therefore, a
larger model uncertainty is more reliable than a small one. Furthermore, the coverage of the
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Table 6.3: Results for the blog feedback dataset per amount of training data for 5 ensemble
members, cf. first column of Figure 6.5. The table shows the number of training data, the
root-mean squared errors, and the coverage probabilities for the epistemic uncertainties and total
uncertainties, respectively.

# training data 819 1, 638 3, 275 6, 550 13, 099 26, 198 52, 397

RMSE 0.803 0.8 0.765 0.752 0.755 0.712 0.684

epist. coverage
(in %)

DE 8 6.8 54.6 39.8 35.6 35 41
extension 93.6 65.7 68.4 42.4 37.2 36 41.6

total coverage
(in %)

DE 98 98 98.1 97.1 96.9 97 96.8
extension 98.1 98.1 98.1 97.1 96.9 97 96.8

Table 6.4: Results for the blog feedback dataset per amount of ensemble members for 5240
training samples, cf. second column of Figure 6.5. The table shows the number of neural networks
in the deep ensemble, the root-mean squared errors, and the coverage probabilities for the epistemic
uncertainties and total uncertainties, respectively.

# ensemble members 1 2 3 4 5 8 10

RMSE 0.801 0.773 0.766 0.749 0.752 0.754 0.754

epist. coverage
(in %)

DE 0 30.4 47.4 51 52.8 55.3 55.9
extension 27.7 40.7 50.8 54 56 57.8 58.2

total coverage
(in %)

DE 97.3 97.3 97.6 97.6 97.6 97.6 97.5
extension 97.3 97.3 97.6 97.6 97.6 97.6 97.5

total uncertainty remains well calibrated in the sense that it is the same for both methods,
as shown in Table 6.3. A possible explanation for the behavior of the estimated epistemic
uncertainty of the classical deep ensembles is the following. If the neural networks are updated
in the same general direction during training and have not converged towards individual local
minima yet, then the predictions of the different ensemble members might not vary much and
the delta distributions are insufficient to approximate the posterior and hence to describe the
complete epistemic uncertainty. Of course, even if local solutions have been found correctly,
the widths around the point estimates might actually be significantly greater than zero.

The upper right plot in Figure 6.5 shows that it is an advantage to apply the proposed
extension also for a single trained neural network, even if no ensembling approach is pursued.
Altogether, it can be concluded that in the considered cases the proposed extension to deep
ensembles has the most significant impact on the reliability of the epistemic uncertainty
quantification when only limited data samples are available for training or the ensembles
consist of a few neural networks only, e.g. due to limited computational capacity and time.
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6.2.3 Tilted-wave interferometer

The proposed extension will now be applied for solving the inverse problem related to the
TWI on simulated data (cf. Section 3.2). In analogy to Chapter 4, the goal is to reconstruct
the corresponding difference topography ∆T for given differences ∆L of optical path length
differences (OPDs) for a fixed design topography. Again, we select an asphere (cf. Appendix
A.1) as design topography, up to 40, 000 data samples are available for training the neural
networks (cf. Subsections 3.2.2 and 4.2.1), and the test data are the 30 samples shown in
Figure 4.4.

To analytically compute the variances around the (local) MAPs of the model parameters,
only the weights of the last layer are treated as random variables and the last layer is taken to
be linear allowing only linear transformations to the model output (cf. Theorem 1). Therefore,
in contrast to Chapter 4, a different type of deep learning model is chosen here, as presented
in Figure 6.7. Instead of directly predicting the height values of the topography, the neural
networks learn to predict Zernike coefficients cθ(x) ∈ RQ, providing a topography parameterized
by Zernike polynomial functions, i.e. ŷ = ∑︁Q

j=1 cθ(x)jZj (cf. Subsection 3.1.2). Remember that
Zernike coefficients are drawn randomly for up to the first 136 Zernike polynomial functions
(i.e. n, m = 15) to generate the training data. The Zernike coefficients of the first 153 Zernike
polynomial functions (i.e. n, m = 16) are predicted in order to ensure sufficient complexity of
the model class to cover the ground truth.

Figure 6.7: The individual ensemble members learn to predict Zernike coefficients cθ(x) ∈ RQ

and a scalar valued heteroscedastic variance according to the assumed regression model in (6.1)
for a four-channel input of differences of OPDs, i.e. x = ∆L. The neural network architecture is
presented in more details in Figure 6.8. The output ŷ = ∆T is the estimated difference topography
provided by a parameterization by Zernike polynomials using the estimated Zernike coefficients.

Figure 6.8 shows the architecture of the neural networks in more detail. In addition to
the Q = 153 Zernike coefficients cθ(x), the neural networks learn to predict the scalar valued
variance σ2

θ(x) according to the assumed regression model in (6.1) using the loss function
from (6.4). Including the additional linear combination between the Zernike coefficients and
their polynomial functions, the corresponding formulas are provided in Appendix B.5. Here,
the extended epistemic part of the uncertainty is computed by sampling 100 times from the
posterior of the inferred regression function (cf. steps 1-3 in Algorithm 2). This is done because
of occurring memory issues due to the high dimensionality of the Jacobian when calculating the
covariance matrix of the inferred regression function (6.15) from Theorem 2 (cf. Appendix B.5,
equation (B.32)). Recall that the variance γ around the (local) MAPs of the neural network
parameters is taken as a scalar and therefore, sampling 100 times is more than sufficient.
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Figure 6.8: The architecture of the neural networks is based on the AlexNet (Krizhevsky et al.,
2012). The chosen heights, widths, depths, layer structures and other components are presented
(Paszke et al., 2019). The plot is produced using LeNail (2019).

The individual ensemble members are trained for 40 epochs using the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of 10−4 that decreases with a learning rate drop
factor of 0.5 in every epoch for the last five epochs. The mini batch size equals 32 and the
regularization parameter is set to 10−4. All data are normalized for the neural network training
and prediction in the sense that they are divided by the standard deviation over all pixels in
the training data in the input and output domain, respectively.

Figure 6.9: The coverage probabilities of the epistemic uncertainties are plotted for the
conventional deep ensembles and the proposed extension (first row) together with the median
absolute errors averaged over the test samples (second row). The results are compared for an
ensemble of 8 neural networks and an increasing number of training data (first column) as well
as for an increasing number of ensemble members trained on almost 4000 data samples (second
column).

Results are shown in Figure 6.9. The first row shows the coverage probabilities for the
epistemic uncertainties of the conventional and extended deep ensembles, while the second row
presents the corresponding averages over the test set of the median absolute errors between the
estimated topographies and their ground truth. Note that the average of the median absolute
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deviations of the topographies in the test set is 447 nm. The first column of Figure 6.9 shows
the results for an ensemble of 8 neural networks in dependence of the amount of training data.
The second column refers to an increasing number of ensemble members trained on about
4000 data samples.

In summary, our results imply that the uncertainty quantification of the inferred regression
function is sufficiently reliable using classical deep ensembles for the inverse form reconstruction
problem associated with the TWI. The approximation of the posterior of the model parameters
by a mixture of delta distributions captures the epistemic uncertainty well enough for the
amount of available training data used here. However, this application can benefit from the
proposed extension to a mixture of normal distributions when very few training data are used
or when only a single deep neural network is trained, cf. Figures 6.9 and 6.10.

Figure 6.10: Comparison between the coverage probabilities of the epistemic uncertainties of the
classical deep ensembles (blue) and the proposed extension (orange) for few vs many data.

6.3 Discussion and summary

Deep ensembles (Lakshminarayanan et al., 2017) represent the state-of-the-art for the
uncertainty quantification in deep learning. However, they can significantly underrate the
epistemic uncertainty, as the numerical experiments have shown. We provide a remedy by
developing an extension to deep ensembles that improves its uncertainty quantification in
a post-processing step without losing any of the advantages of the approach, such as its
prediction accuracy, and without altering its training procedure or inferred regression function.
Numerical experiments on both simulated and real data illustrate the effect of the extended
approach, leading to a more appropriate uncertainty quantification for the inferred regression
function than classical deep ensembles. The observed effects are especially significant when
limited training data are available or the neural network ensemble consists of few members,
e.g. due to limited computational capacities. Moreover, the introduced method can also be
employed to obtain an epistemic uncertainty for a single trained neural network.

The proposed approach is based on viewing deep ensembles from a Bayesian perspective.
More precisely, the delta distributions that serve as an approximation of the posterior for
the neural network parameters in the conventional deep ensembles are replaced by normal
distributions with finite variances. The corresponding variances can be computed in a post-
processing step by minimizing the Kullback-Leibler divergence between the approximate
posterior and the true posterior. Analytical calculations show that the proposed extension
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of deep ensembles yields an additional term to the covariance matrix of the estimated
regression function that results in an enlarged epistemic uncertainty. The presented theoretical
formulations in this chapter range from explicitly deriving deep ensembles as an approximation
of a conventional Bayesian inference by stating the underlying approximations and assumptions,
including the required statistical model and choice of prior, to new formulations related to the
developed extension.

In order to apply the proposed extension to the inverse problem in the context of the TWI,
we choose the model architecture and loss function to be different from the previous chapters.
In particular, a simpler neural network architecture is chosen here with a fully connected last
layer (without bias), instead of the previously used U-Net having a convolutional layer as
the last layer. In contrast to directly predicting the height values of the seeked topography,
Zernike polynomials are used in this chapter to parameterize the estimated topographies and
the neural networks predict the Zernike coefficients. Thus, an additional linear transformation
is performed to the output of the neural networks and the posterior of the neural network
parameters can be analytically approximated around the learned (local) MAPs. The results
are similar to the results from both the toy regression problems and the real data. Namely,
that the improved uncertainty estimation of the proposed extension is most significant when
limited training data are available or only few neural networks are trained, for instance due to
limited computational capacities. It can be concluded that approximating the posterior of the
model parameters by delta distributions is sufficient for the TWI application when enough
training data and ensemble members are available.

The epistemic uncertainty is the crucial part of the uncertainty when the goal is to infer the
underlying regression function. Therefore, it should be given more relevance in future work, e.g.
when dealing with the black-box character of deep neural networks. Another observation is
that the prediction capacity as a function of the number of trained neural networks converged
in all performed experiments for less than 10 ensemble members.

The basis of the proposed extension is similar to ideas that have already been put forward in
related work (Maddox et al., 2019; Wilson and Izmailov, 2020). In contrast to those approaches,
however, the extension of deep ensembles presented here does not alter the actual method, but
simply adds a post-processing step. Future work could address the adaptation to classification
problems, replacing the linear unit of the neural network output with a convolution layer for
imaging tasks, and relaxing the uniform weights 1/K of the Gaussian mixture distributions.
Combining the proposed extension with other methods that improve the accuracy of deep
ensembles (Wenzel et al., 2020) or their extrapolation power (Pearce et al., 2020) could also
be of interest.
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7
Conclusion and outlook

The goal of this thesis was to explore the potential benefit of data-driven deep learning
techniques for solving the high-dimensional nonlinear inverse problem associated to the form
reconstruction problem of the TWI, which has so far been treated using conventional data
analysis methods. The TWI is a state-of-the-art method for the accurate form measurement
of optical aspheres and freeform surfaces. Deep learning algorithms have been successfully
applied in a wide range of applications in science and industry, including inverse problems
and optical imaging, thanks to their ability to learn complex relationships from given data.
Potential benefits for the TWI application might be shorter calculation times, since neural
networks produce instant results once they are trained, improved accuracies of the measured
surface, as conventional methods use local linearizations for the reconstruction procedure, or
a quantification of the uncertainty of the reconstructed topography to obtain more reliable
results.

Five objectives were defined at the beginning of this work and will be discussed subsequently.
The first objective concerns the generation of a database to train, test and compare deep
learning approaches for solving the inverse problem related to the TWI. To this end, a virtual
TWI is introduced in Chapter 3, which is used as numerical forward model for simulating
experimental TWI data. We explain how to generate a database for the neural network training
via virtual experiments and how to simulate out-of-distribution data for the model validation
by systematically modifying the virtual TWI used to generate the test data. In this work, the
data are generated for two different design topographies (a two-radii and an aspherical surface)
at fixed positions of the specimens in the measurement setup.

Chapter 4 deals with the second and third objectives that refer to the actual development
of a deep learning approach for the inverse problem associated with the form reconstruction
problem of the TWI incorporating at the same time an uncertainty quantification of the
prediction. A first proof-of-principle study shows that the inverse problem related to the TWI
can be solved using deep neural networks with an achieved accuracy of about 20 nm median
absolute error (compared to a 470 nm median absolute deviation of the test set). Based on a
U-Net architecture, the pixelwise height-values of the topography are predicted directly. It
is difficult to compare these results to the classical TWI evaluation, because there does not

95



7. Conclusion and outlook

exist a unique TWI but several implementations from different research sites and companies,
and various possible hyperparameter settings. For instance, the TWI at PTB is continuously
adapted and further improved as part of ongoing research. Nonetheless, we conclude from our
experience that the conventional TWI outperforms the developed deep learning approach in
terms of accuracy for perfectly simulated data, while the results of both methods approach
each other when the numerical model is disturbed.The deep learning approach turns out to be
beneficial by reducing the calculation time of the evaluation procedure by more than an order
of magnitude, since predictions are provided instantly once the model is trained. Moreover, it
appears robust towards noisy input data. Our findings also show that the achieved accuracy
highly depends on the number of available training data and that an ensemble of trained
neural networks provides higher accuracies than a single model.

To incorporate an uncertainty quantification of the prediction into the deep learning
approach, we developed an ensembling technique based on deep ensembles. Deep ensembles
scale well to high-dimensional data, outperform other modern uncertainty methods in recent
comparison studies, and are straightforward to implement. In general, the uncertainty
quantification in deep learning is composed of an irreducible aleatoric part related to noisy data
and a reducible epistemic part. Since the goal is to infer the underlying regression function when
reconstructing the specimen topographies, we focus on the epistemic part of the uncertainty.
Furthermore, the results show that the uncertainty is mainly of epistemic nature, because
disturbing the input data by white noise has almost no effect on the predictions. Noisy input
data can be considered to be the main source of aleatoric uncertainty here, since the problem
at hand is inverse and the noisy measurement data constitute the input to the deep learning
model. Our findings show that the proposed deep neural network ensemble provides reliable
predictions and a calibrated uncertainty quantification of the prediction not only for in-domain
but also for out-of-distribution data simulated by a systematically disturbed numerical forward
model generating the test data. However, the epistemic uncertainty quantification by deep
ensembles can significantly underrate the uncertainty when less training data are available.

Chapter 5 tackles the fourth objective, i.e. to eventually apply and validate the developed
deep learning approach on measurement data from a real specimen. For real data the ground
truth is unknown. Therefore, we compare our results to the results obtained by a state-of-the-
art TWI measurement system from industry. The reconstructed topographies are quite similar,
and differences lie well within the uncertainty quantification of the solution of the proposed
deep learning method. This shows (in the test cases considered here) that the developed deep
learning approach generalizes well from simulated to measurement data.

The success of deep ensembles in a variety of different applications, such as the inverse
problem related to the TWI considered in this thesis, motivates the last objective, namely to
investigate and improve its uncertainty quantification for regression problems. Deep ensembles
were originally introduced as a heuristic method, but arguments towards a Bayesian footing
have been put forward as well, albeit more recently. We investigate and further develop deep
ensembles from a Bayesian perspective in Chapter 6. Starting with a theoretical analysis, we
specify the statistical model, the prior distribution and the type of approximation for the
posterior of the model parameters required to understand deep ensembles as an approximate
Bayesian method. These considerations lead to new insights into the role of deep ensembles
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and help us to develop an extension of deep ensembles, in which an improved approximation of
the posterior of the model parameters is achieved by expanding a mixture of delta distributions
to normal distributions. The additional variances related to the spread of the neural network
parameters around the (local) MAPs can be computed in a post-processing step by maximizing
the ELBO, which is a popular approach from variational inference to minimize the distance
between two distributions, without altering the training and the prediction accuracy of deep
ensembles. If only the weights from the last layer are considered to be random and the last
layer is linear, the corresponding variances can be calculated analytically and the variances of
the network parameters tend to zero for an infinite amount of training data, cf. Theorem 1.
Including the spread of the random neural network parameters around the (local) MAPs leads
to an enlarged, and more realistic part of the epistemic uncertainty, cf. Theorem 2.

In addition to providing the theoretical formulas and analytical derivations, we perform
numerical experiments to analyze the impact of the developed extension to deep ensembles.
Our findings show that conventional deep ensembles sometimes significantly underestimate
the epistemic part of the uncertainty, where our proposed method can provide a remedy.
The highest impact of the proposed extension arises when limited data are available or only
very few ensemble members are trained, e.g. due to limited computational capacities. Also,
the proposed extension already provides an epistemic uncertainty if only a single network is
trained, which is non-existent in conventional deep ensembles. Some general conclusions of
the experiments performed in this thesis are that the aleatoric part of the uncertainty often
dominates the total uncertainty of the prediction and we recommend future research to put
more emphasis on the epistemic part of the uncertainty, which is the relevant part of the
uncertainty when the goal is to infer a regression function.

To apply the proposed extension of deep ensembles to the inverse problem related to the
TWI, we choose a different neural network architecture which is simpler and, in particular,
has a fully connected linear last layer instead of a convolutional layer to ensure analytical
computations. The results suggest that using a mixture of delta distributions for the
approximation of the posterior of the model parameters is sufficiently accurate, provided
that enough training data are available. However, the proposed extension should be applied
instead when limited data are available or when the ensemble consists of less than five neural
networks. A general remark is that in the experiments conducted here, an ensemble of less than
ten neural networks was usually sufficient to exploit the potential of the prediction accuracy
and uncertainty estimation of deep ensembles.

Limitations of the work presented here are discussed in the following. The proposed
Bayesian treatment of deep ensembles is a variational inference method without knowing how
good the approximation to the real posterior really is. Considering the deep learning approach
developed to solve the inverse problem related to the TWI, the model needs to be retrained
anytime the design topography or the measurement position changes. The reconstruction
accuracies do not improve compared to conventional methods on perfectly simulated data.
Also, the presented results do not have the full resolution provided by the conventional TWI
in order to save memory, computational capacities and to fasten the data generation process.
It should be no problem to adapt the resolution in future work. Another limitation from
the metrological perspective is that the numerical forward model employed to generate the
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training data is not perfect. Systematic inconsistencies in the training data as well as further
neglected error sources of the measurement process might not be considered in the data-driven
uncertainty quantification of the reconstructed surface form. More research needs to be carried
out to provide a full measurement uncertainty.

In summary, the application and development of deep learning methods to the high-
dimensional inverse problem from computational optical form measurement related to the
form reconstruction problem of the TWI was explored for the first time in this thesis. The
developed deep learning approach based on deep ensembles might be beneficial for mass
production, where many specimens of a fixed design topography are fabricated, thanks to
shorter calculation times and the included instant uncertainty quantification of the predicted
surface form.

Next steps could be to extend the database to more design topographies and include more
error sources, such as misalignment errors or high-frequency errors. Future work could also
include the deep learning approach in a larger comparison study. The trustworthiness of the
developed approach might be further improved using explainability methods. It would be
desirable to release a public database for the machine learning community in the near future to
compare, for instance, scalable uncertainty methods on a high-dimensional benchmark dataset
from optical form measurement based on a real-world application. Training the deep neural
networks might be further improved by investigating techniques such as curriculum learning
(Bengio et al., 2009; Weinshall et al., 2018) for faster convergence and better generalization
ability, active learning (Ren et al., 2021) for less required training data and faster convergence,
or pruning (LeCun et al., 1989a; Yeom et al., 2021) to eliminate irrelevant units of the deep
neural network resulting in smaller architectures.

Future work should also include a thorough comparison of uncertainty methods in deep
learning with respect to the epistemic uncertainty for deep regression tasks. Furthermore, it
would be of interest to expand the proposed extension of deep ensembles to a convolutional last
layer, or to reconsider the uniform weighting of the mixture distributions, or to investigate if a
similar approach could incorporate an epistemic uncertainty that is applicable in a meaningful
way also to inverse problems with a non-unique solution. Another idea derived from the
developed extension could be to compute the variances of the model parameters via a Laplace
approximation instead of maximizing the ELBO.
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Supplementary material

A.1 Aspherical specimen

The asphere, used as the design topography for the data generation as well as for the application
to measurement data, has the following design parameters. The aspherical coefficients are
A4 = 5.4145 ∗ 103 m−3, A6 = −8.0413 ∗ 105 m−5, A8 = −2.9871 ∗ 109 m−7, A10 = −1.4918 ∗
1012 m−9, A12 = 1.3777 ∗ 1015 m−11, A14 = 4.4258 ∗ 1018 m−13, and A16 = −3.4928 ∗ 1021 m−15.
The aspherical equation is given in equation (2.1). The conic constant and the paraxial surface
radius characterising the asphere are κ = −1, and R = 0.0202 m.

The asphere is plotted in Figure A.1a. Figure A.1b shows the deviation of the asphere to a
sphere, i.e. the difference between the topography of the asphere and its BFS.

Figure A.1: a) Topography of the aspherical specimen. b) Deviation of the asphere to its BFS.
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A.2 Additional plots

Figure A.2: The profile plots of all difference topographies from Figure 4.4 are plotted in red,
while the ensemble predictions and the estimated uncertainties are plotted in blue for the perfectly
calibrated system (cf. Subsection 4.2.3). The plots are taken from Hoffmann et al. (2021b).
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Figure A.3: The profile plots of all difference topographies from Figure 4.4 are plotted in red,
while the ensemble predictions and the estimated uncertainties are plotted in blue for the full
calibration error (cf. Subsection 4.2.3). The plots are taken from Hoffmann et al. (2021b).

Figure A.4: The topography uncertainty is plotted against the increasing calibration error for
four individual difference topographies (cf. Figures 4.4, 4.6a and 4.7a). The figure is taken from
Hoffmann et al. (2021b).
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Figure A.5: The profiles of the ensemble prediction and its estimated uncertainty tube (blue) are
plotted together with the ground truth (red) for four difference topographies. The first row shows
the results for the perfectly calibrated system. The calibration error is then increased by 10% in
each row (cf. Figures 4.4, 4.6a, 4.7a and A.4). The plots are taken from Hoffmann et al. (2021b).
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Figure A.6: Comparison of the measurement results between the state-of-the-art method and the
proposed deep learning hybrid approach discussed in Chapter 5 with a resolution of 1000 × 1000
pixels. The topographies are linearly interpolated on the equidistant grid from their respective
pointclouds. Here, the high-frequency parts are included as well and no smoothing occurs through
fitted Zernike polynomials. A misalignment correction is carried out prior to the deep learning
prediction. The first row shows the reconstructed difference topographies, while the second row
shows the results after subtracting the corresponding best-fit-spheres. The profiles are plotted
together with their vertical and horizontal cross-sections, where the cross-section of the predicted
topography of the deep learning hybrid approach is plotted with its 95% credible interval in blue
and the red curve corresponds to the state-of-the-art method.
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B
Supplementary formulas and

derivations

B.1 Mean and covariance matrix of the posterior predictive
distribution for the original deep ensembles approach

The first (6.6) and central second (6.7) moments of the approximation (6.5) of the posterior
predictive distribution are calculated as follows:

E (y|x, D) =
∫︂

yπ(y|x, D)dy

≈ 1
K

K∑︂
k=1

∫︂
yN

(︂
y; ηˆ︁θ(k)(x), σ2ˆ︁θ(k)(x)I

)︂
dy

= 1
K

K∑︂
k=1

ηˆ︁θ(k)(x) ,

Cov (y|x, D) =
∫︂ [︂

(y − E (y|x, D)) (y − E (y|x, D))⊤
]︂

π(y|x, D)dy

≈ 1
K

K∑︂
k=1

∫︂
[
(︂
ηˆ︁θ(k)(x) − E (y|x, D)

)︂ (︂
ηˆ︁θ(k)(x) − E (y|x, D)

)︂⊤

+
(︂
y − ηˆ︁θ(k)(x)

)︂ (︂
ηˆ︁θ(k)(x) − E (y|x, D)

)︂⊤

+
(︂
ηˆ︁θ(k)(x) − E (y|x, D)

)︂ (︂
y − ηˆ︁θ(k)(x)

)︂⊤

+
(︂
y − ηˆ︁θ(k)(x)

)︂ (︂
y − ηˆ︁θ(k)(x)

)︂⊤
] N

(︂
y; ηˆ︁θ(k)(x), σ2ˆ︁θ(k)(x)I

)︂
dy

= 1
K

K∑︂
k=1

[︃(︂
ηˆ︁θ(k)(x) − E (y|x, D)

)︂ (︂
ηˆ︁θ(k)(x) − E (y|x, D)

)︂⊤
+ σ2ˆ︁θ(k)(x)I

]︃
.
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B. Supplementary formulas and derivations

B.2 Proof of Lemma 1

Application of the change-of-variables formula and the approximation (6.2) of the posterior
π(θ|D) yield the following for the regression function η ≡ ηθ(x):

π(η|x, D) =
∫︂

δ(η − ηθ(x))π(θ|D)dθ

≈
∫︂

δ(η − ηθ(x)) 1
K

K∑︂
k=1

δ(θ − ˆ︁θ(k))dθ

= 1
K

K∑︂
k=1

δ(η − ηˆ︁θ(k)(x)) .

The expectation and covariance matrix then follow immediately:

E (η|x, D) =
∫︂

ηπ(η|x, D)dη

≈ 1
K

K∑︂
k=1

∫︂
ηδ(η − ηˆ︁θ(k)(x))dη

= 1
K

K∑︂
k=1

ηˆ︁θ(k)(x) ,

Cov (η|x, D) =
∫︂ [︂

(η − E (η|x, D)) (η − E (η|x, D))⊤
]︂

π(η|x, D)dη

≈ 1
K

K∑︂
k=1

∫︂
[
(︂
ηˆ︁θ(k)(x) − E (η|x, D)

)︂ (︂
ηˆ︁θ(k)(x) − E (η|x, D)

)︂⊤

+
(︂
η − ηˆ︁θ(k)(x)

)︂ (︂
ηˆ︁θ(k)(x) − E (η|x, D)

)︂⊤

+
(︂
ηˆ︁θ(k)(x) − E (η|x, D)

)︂ (︂
η − ηˆ︁θ(k)(x)

)︂⊤

+
(︂
η − ηˆ︁θ(k)(x)

)︂ (︂
η − ηˆ︁θ(k)(x)

)︂⊤
] δ(η − ηˆ︁θ(k)(x))dη

= 1
K

K∑︂
k=1

[︃(︂
ηˆ︁θ(k)(x) − E (η|x, D)

)︂ (︂
ηˆ︁θ(k)(x) − E (η|x, D)

)︂⊤
]︃

.

B.3 Proof of Theorem 1

The objective function to be maximized is the ELBO from equation (6.12):

ELBO = Eq log p(D|θ) − KL (q(θ)∥π(θ)) .

The first term of equation (6.12) is the expectation of the log likelihood (up to a constant):

Eq log p(D|θ) = − 1
2K

K∑︂
k=1

N∑︂
i=1

∫︂
N
(︂
θ; ˆ︁θ(k), γkI

)︂∥yi − ηθ(xi)∥2

σ2
θ̂

(k)(xi)
+ dy log

(︃
σ2

θ̂
(k)(xi)

)︃ dθ,

(B.1)
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B.3 Proof of Theorem 1

where ∥.∥ refers to the L2-norm. Note that the parameters of the last layer related to the
variances σ2

θ̂
(k) of the statistical model (6.1) are fixed after the network training. The parameters

θ of the corresponding mean ηθ are drawn only from the last layer to the output without any
nonlinearity. Hence, the network output of the kth ensemble member can be written as

ηθ(x) = Wθ ˆ︁η(k)(x), Wθ = W
θ̂

(k) +√
γkE ∈ Rdy×dη̂ , Ei,j ∼ N(0, 1), i = 1, . . . , dy, j = 1, . . . , dη̂,

(B.2)
where ˆ︁η(k)(x) is the output of the next-to-last layer of the trained network. The dependence
of ˆ︁η(k)(x) on θ is suppressed, assuming that the corresponding MAP estimates for θ are taken.
Wθ contains the parameters of the linear unit drawn from a normal distribution around the
MAPs W

θ̂
(k) with the same elementwise variance γk for each parameter. E is a matrix with

the same dimensionality as W
θ̂

(k) , i.e. the output dimension dy times the dimension of the last
layer dη̂.

Using (B.2), the following equations hold:∫︂
N
(︂
θ; ˆ︁θ(k), γkI

)︂
∥y − ηθ(x)∥2dθ = EE

[︂
∥y − (W

θ̂
(k) + √

γkE)η̂(k)(x)∥2
]︂

(B.3)

= EE
[︂
∥y − W

θ̂
(k) η̂(k)(x)∥2 − 2(y − W

θ̂
(k) η̂(k)(x))⊤(√γkE η̂(k)(x)) + ∥√

γkE η̂(k)(x)∥2
]︂

= ∥y − η
θ̂

(k)(x)∥2 + γkEE
[︂
∥E η̂(k)(x)∥2

]︂
, (B.4)

where η
θ̂

(k) is the trained network with MAP estimates. Furthermore, the following holds:

EE
[︂
∥E ˆ︁η(k)(x)∥2

]︂
= EE

[︂
(E ˆ︁η(k)(x))⊤(E ˆ︁η(k)(x))

]︂
(B.5)

=
dy∑︂

r=1

dη̂∑︂
α,β=1

ˆ︁η(k)(x)αE [Er,αEr,β ] ˆ︁η(k)(x)β (B.6)

=
dy∑︂

r=1

dη̂∑︂
α=1

ˆ︁η(k)(x)αE
[︂
E2

r,α

]︂ ˆ︁η(k)(x)α (B.7)

=
dy∑︂

r=1

dη̂∑︂
α=1

ˆ︁η(k)(x)α

(︂
Var(Er,α) + E [Er,α]2

)︂ ˆ︁η(k)(x)α (B.8)

= dy∥ˆ︁η(k)(x)∥2 . (B.9)

Inserting (B.4) and (B.9) into equation (B.1) yields:

Eq log p(D|θ) = − 1
2K

K∑︂
k=1

N∑︂
i=1

∥yi − η
θ̂

(k)(x)∥2 + γkdy∥ˆ︁η(k)(x)∥2

σ2
θ̂

(k)(xi)
+ dy log

(︃
σ2

θ̂
(k)(xi)

)︃ .

(B.10)

107



B. Supplementary formulas and derivations

The second term of the ELBO (6.12) is the Kullback-Leibler divergence between the
approximation of the posterior q(θ) and the chosen prior π(θ). The following holds:

KL (q(θ)∥π(θ)) =
∫︂

q(θ) log
(︃

q(θ)
π(θ)

)︃
dθ (B.11)

=
∫︂ 1

K

K∑︂
k=1

N
(︂
θ; ˆ︁θ(k), γkI

)︂
log

 1
K

∑︁K
r=1 N

(︂
θ; ˆ︁θ(r), γrI

)︂
π(θ)

 dθ (B.12)

≈ 1
K

K∑︂
k=1

∫︂
N
(︂
θ; ˆ︁θ(k), γkI

)︂
log

 1
K N

(︂
θ; ˆ︁θ(k), γkI

)︂
π(θ)

 dθ (B.13)

= 1
K

K∑︂
k=1

KL
(︂
N(θ; ˆ︁θ(k), γkI)∥π(θ)

)︂
− 1

K

K∑︂
k=1

log(K) . (B.14)

The approximation

∫︂
N
(︂
θ; ˆ︁θ(k), γkI

)︂
log

(︄
K∑︂

r=1
N
(︂
θ; ˆ︁θ(r), γrI

)︂)︄
dθ ≈

∫︂
N
(︂
θ; ˆ︁θ(k), γkI

)︂
log

(︂
N
(︂
θ; ˆ︁θ(k), γkI

)︂)︂
dθ

is valid under the assumption that the between-variability of the MAP estimates is large
compared to the within-variability, since then the first term of the integrand (the normal
distribution around ˆ︁θ(k)) goes sufficiently fast to zero for distant ˆ︁θ(r), r ̸= k.

It is well known that the Kullback-Leibler divergence between two Gaussians can be
calculated analytically. It follows that:

KL
(︂
N(θ; ˆ︁θ(k), γkI)∥π(θ)

)︂
= KL

(︂
N(θ; ˆ︁θ(k), γkI)∥N(θ; 0, λ−1I)

)︂
(B.15)

= 1
2
(︂
dθγkλ + λ∥ˆ︁θ(k)∥2 − dθ − dθ log(γkλ)

)︂
, (B.16)

where dθ := dim(ˆ︁θ(k)), k = 1, . . . , K. Here, dθ = dydη̂, as only the weights Wθ of the last
linear unit of the network are random. It follows with (B.14) that

KL (q(θ)∥π(θ)) = 1
2K

K∑︂
k=1

(︂
dydη̂γkλ + λ∥W

θ̂
(k)∥2

F − dydη̂ − dydη̂ log(γkλ)
)︂

− 1
K

K∑︂
k=1

log(K) ,

(B.17)
where ∥ · ∥F denotes the Frobenius norm.
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Now, the ELBO is given by combining (B.10) and (B.17):

ELBO = Eq log p(D|θ) − KL (q(θ)∥π(θ))

= − 1
2K

K∑︂
k=1

N∑︂
i=1

∥yi − η
θ̂

(k)(xi)∥2 + γkdy∥ˆ︁η(k)(xi)∥2

σ2
θ̂

(k)(xi)
+ dy log

(︃
σ2

θ̂
(k)(xi)

)︃
−
(︄

1
2K

K∑︂
k=1

(︂
dydη̂γkλ + λ∥W

θ̂
(k)∥2

F − dydη̂ − dydη̂ log(γkλ)
)︂

− 1
K

K∑︂
k=1

log(K)
)︄

= 1
K

K∑︂
k=1

[log(K) − 1
2{

N∑︂
i=1

∥yi − η
θ̂

(k)(xi)∥2

σ2
θ̂

(k)(xi)
+ dy log

(︃
σ2

θ̂
(k)(xi)

)︃+ λ∥W
θ̂

(k)∥2
F

− dydη̂ − dydη̂ log(λ)} − 1
2

 N∑︂
i=1

dy∥ˆ︁η(k)(xi)∥2

σ2
θ̂

(k)(xi)
+ dydη̂λ

 γk + 1
2dydη̂ log(γk)].

(B.18)

In total, the ELBO takes the form:

ELBO = 1
K

K∑︂
k=1

(ak + bkγk + ck log(γk)) , (B.19)

where ak, bk, ck are given analytically in dependence on the (local) MAP estimates ˆ︁θ(k), k =
1, . . . , K. The maximizer of (B.19) w.r.t. the γk is given by

γk = −ck

bk
= dη̂∑︁N

i=1
∥ˆ︁η(k)(xi)∥2

σ2
θ̂

(k) (xi)
+ dη̂λ

, k = 1, . . . , K . (B.20)

Note that bk < 0 and ck > 0 holds. The solution for γk in equation (B.20) is indeed a maximum,
since the ELBO in equation (B.19) goes to minus infinity for the limits of γk (i.e. γk → 0 and
γk → ∞, and (B.20) is the only stationary solution. It can be expected that ∑︁N

i=1
∥ˆ︁η(k)(xi)∥2

σ2
θ̂

(k) (xi)

is unbounded as N grows, since the individual networks are trained independently. Under this
assumption, it follows that γk → 0 for N → ∞.

B.4 Proof of Theorem 2

The proof is straightforward in analogy to the proof of Theorem 1 (cf. Appendix B.2), with
the following addition:∫︂ (︂

η − ηˆ︁θ(k)(x)
)︂ (︂

η − ηˆ︁θ(k)(x)
)︂⊤

δ(η − ηθ(x))N
(︂
θ; ˆ︁θ(k), γkI

)︂
dθdη ≈ γkJkJ⊤

k , k = 1, . . . , K ,

(B.21)
using the first-order Taylor approximation ηθ(x) ≈ ηˆ︁θ(k)(x) + Jk(θ − ˆ︁θ(k)) of ηθ for θ in the
vicinity of ˆ︁θ(k).

The derivative Jk can be easily calculated based on the output of the next-to-last layer of
the trained networks (cf. Appendix B.3 (B.2)) and equation (6.14).
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B.5 Proposed extension applied to the TWI in 6.2.3

Applying the proposed extension to the inverse problem related to the TWI requires an
additional linear transformation after the fully connected last layer (cf. Figure 6.7). The
adapted formulas are given below.

The following equations are modified when considering the proof of Theorem 1 in Appendix
B.3. Adapted formulas (B.2):

ηθ(x) = Z Wθ η̂(x), Wθ = Wθ̂ + √
γE , Ei,j ∼ N(0, 1), (B.22)

with

Z ∈ Rdy×dz , Wθ ∈ Rdz×dη̂ , η̂(x) ∈ Rdη̂×1, i = 1, . . . , dz, j = 1, . . . , dη̂, (B.23)

where dz is the number of estimated Zernike coefficients, i.e. the number of employed Zernike
polynomial functions, dy is the output dimension of the resulting topographies understood as
a vector, and dη̂ is the dimension of the next-to-last layer, i.e. η̂(x) is the input to the layer
estimating the Zernike coefficients. Adapted equations (B.5-B.9):

EE
[︂
∥ZE η̂(x)∥2

]︂
= EE

[︂
(ZE η̂(x))⊤(ZE η̂(x))

]︂
(B.24)

=
dy∑︂

r=1

dz∑︂
i,j=1

dη̂∑︂
α,β=1

η̂(x)αzr,iE [Ei,αEj,β ] zr,j η̂(x)β (B.25)

=
dy∑︂

r=1

dz∑︂
i=1

dη̂∑︂
α=1

η̂(x)αzr,iE
[︂
E2

i,α

]︂
zr,iη̂(x)α (B.26)

=
dy∑︂

r=1

dz∑︂
i=1

z2
r,i∥η̂(x)∥2 . (B.27)

It follows for the updated variances from equation (B.20):

γk = dzdη̂∑︁N
i=1

∑︁dy

r=1
∑︁dz

k=1 z2
r,k

∥ˆ︁η(k)(xi)∥2

σ2
θ̂

(k) (xi)
+ dzdη̂λ

, k = 1, . . . , K . (B.28)

In Theorem 2, the additional part of the covariance matrix in equation (6.15) can be
computed as follows:

ηθ(x) = Z Wθ η̂(x) =
dz∑︂

i=1

dη̂∑︂
j=1

η̂(x)jWθi,j
Zi ∈ Rdy , (B.29)

dηθ(x)
dWθi,j

= η̂(x)jZi ∈ Rdy , (B.30)

J := dηθ(x)
dWθ

, (B.31)

dim(J) = dy × (dz × dη̂), dim(JJ⊤) = dy × dy. (B.32)
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