
Roles’07
Proceedings of the 2nd Workshop on

Roles and Relationships

in Object Oriented Programming,

Multiagent Systems, and Ontologies

Workshop co-located with ECOOP 2007 Berlin

July 30 and 31, 2007

Editors:
Guido Boella, Steffen Goebel, Friedrich Steimann,

Steffen Zschaler

Michael Cebulla

Bericht-Nr. 2007 – 9

ISSN 1436-9915

Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

Roles’07
The 2nd Workshop on Roles and Relationships in
Object Oriented Programming, Multiagent Systems, and
Ontologies

http://normas.di.unito.it/zope/roles07

Roles are a truly ubiquitous notion: like classes, objects, and
relationships, they pervade the vocabulary of all disciplines that
deal with the nature of things and how these things relate to each
other. In fact, it seems that roles are so fundamental a notion that
they must be granted the status of an ontological primitive.

The definition of roles depends on the definition of relationships.
With the advent of Object Technology, however, relationships have
moved out of the focus of attention, giving way to the more restricted
concept of attributes or, more technically, references to other ob-
jects. A reference is tied to the object holding it and as such is
asymmetric – at most the target of the reference can be associated
with a role. This is counter to the intuition that every role should
have at least one counter-role, namely the one it interacts with. It
seems that the natural role of roles in object-oriented designs can
only be restored by installing relationships (collaborations, teams,
etc.) as first-class programming concepts.

By contrast, the relational nature of roles is already acknowl-
edged in the area of Multiagent Systems, since roles are related
to the interaction among agents and to communication protocols.
However, in this area there is no convergence on a single definition
of roles yet, and different points of view, such as agent software en-
gineering, specification languages, agent communication, or agent
programming languages, make different use of roles. Like its pre-
decessor “Roles, an interdisciplinary perspective” (Roles’05) held at
the AAAI 2005 Fall Symposium (see the website of the Symposium
http://www.aaai.org/Press/Reports/Symposia/Fall/fs-05-08.php),
this workshop aimed at gathering researchers from different dis-
ciplines to foster interchange of knowledge and ideas concerning
roles and relationships, and in particular to converge on ontolog-
ically founded proposals which can be applied to programming and
agent languages.

1

Program Committee

Uwe Assmann, Technische Universitaet Dresden
Colin Atkinson, Universitaet Mannheim
Matteo Baldoni, Universit di Torino
Giancarlo Guizzardi, LOA-CNR Trento
Stephan Hermann, Technische Universitaet Berlin
Pierre Kelsen, University of Luxembourg
Claudio Masolo, LOA-CNR Trento
James Odell, Intelligent Automation, inc. Rockville MD
Andrea Omicini, DEIS Universit di Bologna
Kasper Østerbye, IT University of Copenhagen
James Noble, Victoria University of Wellington
Daniel Oberle, SAP Research
Elke Pulvermueller, University of Luxembourg
Dirk Riehle, SAP Research, SAP Labs, LLC - Palo Alto, CA
Trygve Reenskaug, University of Oslo
Leendert van der Torre, University of Luxembourg
Harko Verhagen, DSV, KTH/SU

2

Table of contents

Relationships Define Roles, Objects Offer Them
Matteo Baldoni, Guido Boella, and Leendert van der Torre p.4

Member Interposition: Defining Classes
Stephanie Balzer and Thomas R. Gross p.15

Roles and Self-Reconfigurable Robots
Nicolai Dvinge, Ulrik P. Schultz, and David Christensen p.17

A Meta-model for Roles: Introducing Sessions
Valerio Genovese p.27

Role Representation Model Using OWL and SWRL
Kouji Kozaki, Eiichi Sunagawa, Yoshinobu Kitamura,
Riichiro Mizoguchi p.39

Towards a Definition of Roles for Software Engineering and
Programming Languages
Frank Loebe p.47

Structure and Function - Roles as the Connecting Concept
Holger Muegge p.50

Roles and Classes in Object Oriented Programming
Trygve Reenskaug p.54

3

Relationships Define Roles, Objects Offer Them

Matteo Baldoni1, Guido Boella2, and Leendert van der Torre3

1Dipartimento di Informatica - Università di Torino - Italy. email: baldoni@di.unito.it
2Dipartimento di Informatica - Università di Torino - Italy. email: guido@di.unito.it

3University of Luxembourg. e-mail: leendert@vandertorre.com

Abstract. In this paper we study the interconnection between relationships and
roles. We start from the patterns used to introduce relationships in object oriented
languages. We show how the role model proposed in powerJava can be used to
define roles in an abstract way in objects representing relationships, to specify
the interconnections between the roles. Abstract roles cannot be instantiated. To
participate in a relationship, objects have to extend the abstract roles of the rela-
tionship. Only when roles are implemented in the objects offering them, they can
be instantiated, thus allowing another object to play those roles.

1 Introduction

The need of introducing the notion of relationship as a first class citizen in Object Ori-
ented (OO) programming, in the same way as this notion is used in OO modelling, has
been argued by several authors, at least since Rumbaugh [1]: he claims that relation-
ships are complementary to, and as important as, objects themselves. Thus, they should
not only be present in modelling languages, like ER or UML, but they also should be
available in programming languages, either as primitives, or, at least, represented by
means of suitable patterns.

Two main alternatives have been proposed by Noble [2] for modelling relationships
by means of patterns:

– The relationship as attribute pattern: the relationship is modelled by means of
an attribute of the objects which participate in the relationship. For example, the
Attend relationship between a Student and a Course can be modelled by
means an attribute attended of the Student and of an attribute attendee of
the Course.

– The relationship object pattern: the relationship is modelled as a third object linked
to the participants. A class Attendmust be created and its instances related to each
pair of objects in the relationship. This solution underlies programming languages
introducing primitives for relationships, e.g., Bierman and Wren [3].

These two solutions have different pros and cons, as Noble [2] discusses. But they
both fail to capture an important modelling and practical issue. If we consider the kind
of examples used in the works about the modelling of relationships, we notice that re-
lationships are also essentially associated with another concept: students are related to
tutors or professors [3, 4], basic courses and advanced courses [4], customers buy from

4

sellers [5], employees are employed by employers, underwriters interact with reinsur-
ers [2], etc. From the knowledge representation point of view, as noticed by ontologist
like Guarino and Welty [6], these concepts are not natural kinds like person or organi-
zation. Rather, they all are roles involved in a relationship.

Roles have different properties than natural kinds, and, thus, are difficult to model
with classes: roles can played by objects of different classes, they are dynamically ac-
quired, they depend on other entities - the relationship they belong to and their players.
Moreover, when an object of some natural type plays a certain role in a relationship, it
acquires new properties and behaviors. For example, a student in a course has a tutor,
he can give the exam and get a mark for the exam, another property which exists only
as far as he is a student of that course.

We introduce roles in OO programming languages, in an extension of the Java pro-
gramming language, called powerJava, described in [7–11]. The language powerJava
introduces roles as a way to structure the interaction of an object with other objects
calling their methods. Roles express the possibilities of interaction offered by the ob-
ject to other ones (e.g., a Course offers the role Student to a Person which wants
to interact with it), i.e., the methods they can call and the state of interaction. First,
these possibilities change according to the class of the callers of the methods. Second, a
role maintains the state of the interaction with a certain individual caller. As roles have
a state and a behavior, they share some properties with classes. However, roles can be
dynamically acquired and released by an object playing them. Moreover, they can be
played by different types of classes. Roles in powerJava are essentially inner classes
which are linked not only to an instance of the outer class, called institution, but also
to an instance representing the player of the role. The player of the role, to invoke the
methods of the roles it plays, it has to be casted to the role, by specifying both the role
type and the institution it plays the role in (e.g., the university in which it is a student).

In [12] we add roles to the relationship as attribute pattern: the relationship is mod-
elled as a pair of roles (e.g., attending a course is modelled by the roleStudent played
by Person and BasicCourse played by Course) instead of a pair of links, like in
the original pattern. In this way, the state of the relationships and the new behavior re-
sulting from entering the relationship can be modelled by the fact that roles are adjunct
instances with their state and behavior.

However, that solution fails to capture the coordination between the two roles, since
in this pattern the roles are defined independently in each of the objects offering them
(Person offering BasicCourse and Course offering Student) as we discuss
in Section 3. This is essentially an encapsulation problem, raised by the presence of a
relationship.

In this paper, we provide a solution to this limitation by introducing abstract roles
defined by relationships and extended by roles of objects offering them. When roles
are defined in the relationships, the interconnection between the roles can be specified
(e.g., the methods describing the protocol the roles use to communicate). When roles
are extended in the objects offering them, they can be customized to the context. Roles
defined in the relationships are abstract and thus they cannot be instantiated. Roles can
be instantiated only when they are extended in the objects which will participate to the
relationship.

5

2 Roles and relationships

Relations are deeply connected with roles. This is accepted in several areas: from mod-
elling languages like UML and ER to knowledge representation discussed in ontologies
and multiagent systems.

Pearce and Noble [13] notice that relationships have similarities with roles. Objects
in relationships have different properties and behavior: “behavioural aspects have not
been considered. That is, the possibility that objects may behave differently when par-
ticipating in a relationship from when they are not. Consider again the student-course
example [...]. In practice, a course will have many more attributes, such as a curriculum,
than we have shown.”

The link between roles and relationships is explicit in modelling languages like
UML in the context of collaborations: a classifier role is a classifier like a class or in-
terface, but “since the only requirement on conforming instances is that they must offer
operations according to the classifier role, [...] they may be instances of any classifier
meeting this requirement” [14]. In other words: a classifier role allows any object to fill
its place in a collaboration no matter what class it is an instance of, if only this object
conforms to what is required by the role. Classification by a classifier role is multiple
since it does not depend on the (static) class of the instance classified, and dynamic (or
transient) in the sense above: it takes place only when an instance assumes a role in a
collaboration [15].

As noticed by Steimann [16], roles in UML are quite similar to the concept of inter-
face, so that he proposes to unify the two concepts. Instead, there is more in roles than
in interfaces. Steimann himself is aware of this fact: “another problem is that defining
roles as interfaces does not cover everything one might expect from the role concept.
For instance, in certain situations it might be desirable that an object has a separate
state for each role it plays, even for different occurrences in the same role. A person
has a different salary and office phone number per job, but implementing the Employee
interface only entails the existence of one state upon which behaviour depends. In these
cases, modelling roles as adjunct instances would seem more appropriate.”

To do this, Steimann [17] proposes to model roles as classifiers related to relation-
ships, but such that these classifiers are not allowed to have instances. In Java terminol-
ogy, roles should be modelled as abstract classes, where some behavior is specified, but
not all the behavior, since some methods are left to be implemented in the class extend-
ing them. These abstract classes representing roles should be then extended by other
classes in order to be instantiated. However, given that in a language like Java multiple
inheritance is not allowed, this solution is not viable, and roles can be identified with
interfaces only.

In this paper, we overcome the problem of the lack of multiple inheritance, by al-
lowing objects participating to the relationship to offer roles which inherit from abstract
roles related to the relationship, rather than imposing that objects extend the roles them-
selves. This is made possible by powerJava.

6

role Student playedby Person { int giveExam(String work); }
role BasicCourse playedby Course { void communicate(String text); }

class Person{
String name;
private Queue messages;
private HashSet<BasicCourse> attended; //BasicCourses followed
definerole BasicCourse {

Person tutor;
// the method access the state of the outer class
void communicate (String text) {Person.messages.add(text);}
BasicCourse(Person t){

tutor=t;
Person.attended.add(this); }//add link

}
}
class Course {
String code;
String title;
private HashSet<Student> attendees; //students of the course
private int evaluate(String x){...}
definerole Student {

int number;
int mark;
int giveExam(String work)

{ return mark = Course.evaluate(work); }
Student (){ Course.attendees.add(this); }}}//add link

Fig. 1. Relationship as attributes pattern with roles in powerJava

3 Relationship as attribute pattern with roles

We first describe how the relationship as attribute pattern can be extended with roles.
Then, starting from the limitation of this new pattern, in Section 4 we define a new solu-
tion introducing abstract roles in relationships. As an example we will use the situation
where a Person can be a Student and follow a Course as a BasicCourse in his
curriculum. The language powerJava is described in [7–11] so we do not summarize it
here again.

In [12], the relationship as attribute pattern is extended with roles by reducing the
relationship not only to two symmetric attributes attended and attendees but
also to a pair of roles. E.g., a Person plays the role of Student with respect to
the Course and the Course plays the role of BasicCourse with respect to the
Person (see Figure 1 and 2, where the UML representation is illustrated1).

1 The arrow starting from a crossed circle, in UML, represents the fact that the source class can
be accessed by the arrow target class.

7

The role Student is associated with players of type Person in the role spec-
ification (role), which specifies that a Student can give an exam (giveExam).
Analogously, the role BasicCourse is associated with players of type Course in
the role definition, which specifies that a Course can communicate with the attendee.

The role Student is implemented locally in the class Course and, viceversa,
the role BasicCourse is defined locally in the class Person. Note that this is not
contradictory, since roles describe the way an object offers interaction to another one: a
Student represents how a Course allows a Person to interact with itself, and, thus,
the role is defined inside the class Course. Moreover the behavior associated with the
role Student, i.e., giving exams, modifies the state of the class including the role or
calls its private methods, thus violating the standard encapsulation. Analogously, the
communicate method of BasicCourse, modifies the state of the Person hosting
the role by adding a message to the queue. These methods, in powerJava terminology,
exploit the full potentiality of methods of roles, called powers, of violating the standard
encapsulation of objects.

To associate a Person and a Course in the relationship, the role instances must be
created starting from the objects offering the role, e.g. if Course c:
c.new Student(p).

When the player of a role invokes a method of a role, a power, it must be first role
casted to the role. For example, to invoke the method giveExam of Student, the
Person must first become a Student. To do that, however, also the object offering
the role must be specified, since the Person can play the role Student in different in-
stances of Course; in this case the Course c:
((c.Student)p).giveExam(...).

This pattern with roles allows to add state and behavior to a relationship between
Person and Course, without adding a new class representing the relationship. The
limitation of this pattern is that the two roles Student and BasicCourse are defined
independently in the two classes Person and Course. Thus, there is no warranty that
they are compatible with each other (e.g., they communicate using the same protocol,
despite the fact that they offer the methods specified in the role specification). More-
over, we would like that all roles of a relationship can access the private state of each
other (i.e., share the same namespace). However, this would be feasible only if the two
roles Student and BasicCourse are defined by the same programmer in the same
context. This is not possible since the two player classes Person and Course may be
developed independently.

In summary, we would like:

– to define the interaction between the roles separately from the classes offering them
to participate in the relationship, thus to guarantee that the interaction between the
objects eventually playing the roles is performed in the desired way;

– that the roles of a relationship have access to the private state of each other to
facilitate their programming;

– that the roles have also access to the private states of the objects offering them (like
in powerJava) to customize them to the context.

These requirements mirror the complexities concerning encapsulation, which arise
when relationships are taken seriously, as noticed by Noble and Grundy [5].

8

+ communicate(String)

Course

+ name: John

+ tutor: person

+ number: 1234

− ...

− messages: ...
− attended: ...

− evaluate(String)

− attendees: ...
+ title: "programming"

RQ

RQ

+ mark: 10

+ Student(Person)

+ BasicCourse(Course)

+ giveExam(String)BasicCourse.this

that

that

:Person.BasicCourse

:Course.Studentp:Person

Student.this

c.Course

+ code: CS110

Person

Fig. 2. The UML representation of the relationship as attributes pattern example

4 Abstract roles and relationships

A solution to the encapsulation problem is possible in powerJava by exploiting an often
disregarded feature of Java. Inner classes share the namespace of the outer classes con-
taining them. When a class extends an inner class in Java, it maintains the property that
the methods defined in the inner class which it is extending continue to have access to
the private state of the outer class instance containing the inner class. If the inner class
is extended by another inner class, the resulting inner class belongs to the namespaces
of both outer classes. Moreover, an instance of such an inner class has a reference to
both outer class instances so to be able to access their states. The possible ambiguities of
identifiers accessible in the two outer classes and in the superclass are resolved by using
the name of the outer class as a prefix of the identifier (e.g., Course.registry).

This feature of Java, albeit esoteric, has a precise semantics, as discussed by [18].
The new solution we propose allows to introduce a new class representing the rela-

tionship as in the relationship object pattern, and to define the roles inside it. The idea
is illustrated and in Figure 5 as an UML diagram.

First, as in the relationship object pattern, a class for creating relationship objects is
created (e.g., AttendBasicCourse): it will contain the implementation of the roles
involved in the relationship (e.g., Student and BasicCourse in
AttendBasicCourse), see Figure 3. The interaction between the roles is defined
at this level since the powers of each role can access the state of the other roles and of
the relationship.

These roles must be defined as abstract and so they cannot be instantiated. More-
over, the methods containing the details about the customization of the role can be left
unfinished (i.e., declared as abstract) if they need to be completed depending on the
classes offering the roles which extend the abstract roles.

Second, the same roles in the relationship can be implemented in the classes offer-
ing them (and, thus, they can be extended separately), accordingly to the relationship
as attribute pattern, see Figure 4 (Person offering BasicCourse and Course of-
fering Student). However, these roles (e.g., Student and BasicCourse), rather
than being implemented from scratch, extend the abstract roles of the relationship ob-
ject class (e.g., AttendBasicCourse), filling the gaps left by abstract methods in
the abstract roles (both public and protected methods). The extension is necessary to
customize the roles to their new context. Methods which are declared as final in the
abstract roles cannot be overwritten, since they represent the interaction among roles in

9

role Student playedby Person
{ int giveExam(String work); }

role BasicCourse playedby Course
{ void communicate(String text); }

class AttendBasicCourse {
Student attendee;
BasicCourse attended;
abstract definerole Student {

int mark;
int number;
//method modelling interaction
final int giveExam(String work){

return mark = evaluate(work);}
//method to be implemented which is not public
abstract protected int evaluate(String work);

}
abstract definerole BasicCourse {

String program;
Person tutor;
//method to be implemented which is public
abstract void communicate(String text);

}
AttendBasicCourse(String pr, Person t){

attendee = c.new Student(p,this);
attended = p.new BasicCourse(c,this,t);

}
}

Fig. 3. Abstract roles

the scope of the relationship. Further methods can be declared, but they are not visible
from outside since both the abstract role and the concrete one have the signature of the
role declaration.

Note that the abstract roles are not extended by the classes participating in the rela-
tionship (e.g., Course and Person), but by roles offered by (i.e., implemented into)
these classes (e.g., Student and BasicCourse). Otherwise, the classes participat-
ing in the relationship could not extend further classes, since Java does not allow mul-
tiple inheritance, thus limiting the code reuse possibilities.

The advantage of these solution is that roles can share both the namespace of the
relationship object class and the one of the class offering the roles, as we required above.
This is possible since extending a role implementation is the same as extending an inner
class in Java: roles are compiled into inner classes by the powerJava precompiler.

Basing on this idea we propose here a limited extension of powerJava, which allows
to define abstract roles inside relationship object classes, and to let standard roles ex-
tend them. The resulting roles will belong both to the namespace of the class offering

10

class Course {
String code;
String title;
private HashSet<Student> attendees;
class Student extends AttendBasicCourse.Student {

Student() {
Course.this.attendee = this;

}
//abstract method implementation
protected int evaluate(String work)

{ /*Course specific implementation of the method */ } } }

class Person {
String name;
private Queue messages;
private HashSet<BasicCourse> attended;
//courses followed as BasicCourse
class BasicCourse extends AttendBasicCourse.BasicCourse {

BasicCourse(Person t) {
tutor=t;
Person.this.attended=this; }
//abstract method implementation
void communicate (String text)
{Person.this.messages.add(text);} } }

Fig. 4. Abstract roles extended

them and to the relationship object class. Moreover, the resulting roles will inherit the
methods of the abstract roles.

Note that the abstract roles cannot be instantiated, so that the are used only to imple-
ment both the methods which define the interaction among the roles, and the methods
which are requested to be contextualized. The former will be final methods which are
inherited, but which cannot be overwritten in the eventual extending role: they will ac-
cess the state and methods of the outer class and of the sibling roles. The latter will be
abstract protected methods, which are used in the final ones, and which must be im-
plemented in the extending class to tailor the interaction between the abstract role and
the class offering the role. If these methods are declared as protected they are not visi-
ble outside the package. These methods have access to the class offering the extending
roles.

Besides adding the property abstract to roles, three other additions are necessary
in powerJava.

First, we add an additional constraint to powerJava: if a role implementation extends
an abstract role, it must have the same name. Thus, the abstract and concrete role have
the same requirements. Moreover, it is possible to extend only abstract roles, while
general inheritance among roles is not discussed here.

11

:AttendBC.Student

that

+ number: 1234
+ mark: 10

+ Student(Person,...)
+ giveExam(String)

AttendBasicCourse.this AttendBasicCourse.this

a:AttendBasicCourse

+ communicate(String)
+ AttendBasicCourse(...)

− attended: ...
− attendee: ...

that

RQ

+ number: 1234
+ mark: 10

+ Student(Person,...)

:Course.Student

− evaluate(String)

RQ

Course

PersonCourse.this

Person.this

+ tutor: person

+ communicate(String)

:AttendBC.BasicCourse

+ BasicCourse(Course,...)

+ tutor: person

+ communicate(String)

:Student.BasicCourse

+ BasicCourse(Course,...)c.Course

+ code: CS110
+ title: "programming"

+ getCode()

p:Person

+ name: John
− messages: ...

+ getName()

Fig. 5. The UML representation of the new relationship pattern

Second, the methods of the abstract role can make reference to the outer class of
the extending role. This is realized by means of a reserved variable outer, which is of
type Object since it is not possible to know in advance which classes will offer the
extended role. This variable is visible only inside abstract roles.

Third, to create a role instance it is necessary to have at disposal also the relationship
object offering the abstract roles, and the two roles must be created at the same time.

For example, the constructor of a relationship:

AttendBasicCourse(Person p, Course c){
...
c.new Student(p,this);
p.new BasicCourse(c,this);

}

Where Student and BasicCourse are the class names of the concrete roles
implemented in p and c and they are the same as the abstract roles defined in the
relation.

The types of the arguments Person and Course are the requirements of the roles
Student and BasicCourse which will be used to type the that parameter refer-
ring to the player of the role.

Moreover, the first and the second argument of the constructor are added by default:
the first one represents the player of the role, while the second one, present only in roles
extending abstract roles, is the reference to the relationship object. This is necessary
since the inner class instance represented by the role has two links to the two outer
class instances it belongs to. This reference is used to invoke the constructor of the

12

abstract role, as required by Java inner classes. For example, the constructor of the role
Course.Student is the following one.

Student(Person p, AttendBasicCourse a){
a.super();
... }

However, these complexities are hidden by powerJava which adds the necessary
parameters and code during precompilation.

The entities related by the relationship must preexist to it:

Person p = new Person();
Course c = new Course();
AttendBasicCource r = new AttendBasicCourse(p,c);
((c.Student)p).giveExam(w);
((p.BasicCourse)c).communicate(text);

Note that the role cast ((r.Student)p) is equivalent to ((c.Student)p).

5 Conclusion

In this paper we discuss how abstract roles can be introduced when relationships are
modelled in OO programs: first abstract roles are defined in the relationship object class,
which specify the interaction, and then the abstract roles are extended in the classes
offering them. This pattern solves the encapsulation problems raised when relationships
are introduced in OO.

We introduce abstract roles using the language powerJava, a role endowed version
of Java (http://www.powerjava.org) [7–12].

References

1. Rumbaugh, J.: Relations as semantic constructs in an object-oriented language. In: Procs. of
OOPSLA. (1987) 466–481

2. Noble, J.: Basic relationship patterns. In: Pattern Languages of Program Design 4. Addison-
Wesley (2000)

3. Bierman, G., Wren, A.: First-class relationships in an object-oriented language. In: Procs.
of ECOOP. (2005) 262–286

4. Albano, A., Bergamini, R., Ghelli, G., Orsini, R.: An object data model with roles. In: Procs.
of Very Large DataBases (VLDB’93). (1993) 39–51

5. Noble, J., Grundy, J.: Explicit relationships in object-oriented development. In: Procs. of
TOOLS 18. (1995)

6. Guarino, N., Welty, C.: Evaluating ontological decisions with ontoclean. Communications
of ACM 45(2) (2002) 61–65

7. Baldoni, M., Boella, G., van der Torre, L.: Roles as a coordination construct: Introducing
powerJava. Electronic Notes in Theoretical Computer Science 150 (2006) 9–29

8. Baldoni, M., Boella, G., van der Torre, L.: powerJava: ontologically founded roles in object
oriented programming language. In: Procs. of OOPS Track of ACM SAC’06, ACM (2006)
1414–1418

13

9. Baldoni, M., Boella, G., van der Torre, L.W.N.: Modelling the interaction between ob-
jects: Roles as affordances. In: Procs. of Knowledge Science, Engineering and Management,
KSEM’06. Volume 4092 of LNCS., Springer (2006) 42–54

10. Baldoni, M., Boella, G., van der Torre, L.: Interaction among objects via roles: sessions and
affordances in powerjava. In: Procs. of PPPJ ’06, New York (NY), ACM (2006) 188–193

11. Baldoni, M., Boella, G., van der Torre, L.: Interaction between Objects in powerJava. Journal
of Object Technology 6 (2007) 7–12

12. Baldoni, M., Boella, G., van der Torre, L.: Relationships meet their roles in object oriented
programming. In: Procs. of the 2nd International Symposium on Fundamentals of Software
Engineering 2007 Theory and Practice (FSEN ’07). (2007)

13. Pearce, D., Noble, J.: Relationship aspects. In: Procs. of AOSD. (2006) 75–86
14. OMG: OMG Unified Modeling Language Specification, Version 1.3. (1999)
15. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.

Addison-Wesley (1999)
16. Steimann, F.: A radical revision of UML’s role concept. In: Procs. of UML2000. (2000)

194–209
17. Steimann, F.: On the representation of roles in object-oriented and conceptual modelling.

Data and Knowledge Engineering 35 (2000) 83–848
18. Smith, M., Drossopoulou, S.: Inner classes visit aliasing. In: ECOOP 2003 Workshop on

Formal Techniques for Java-like Programming. (2003)

14

Member Interposition: How Roles Can Define
Class Members

Stephanie Balzer and Thomas R. Gross

Department of Computer Science, ETH Zurich

Abstract. Explicit relationships are a means to make the collabora-
tions that arise between objects explicit1. In [1], we introduce a math-
ematical model that fosters the specification of such relationships. The
model relies in particular on member interposition, a mechanism that fa-
cilitates the specification of relationship-dependent members of classes.
In this position paper we highlight the interdependence between relation-
ships and role models and introduce generic relationships, an extension
to support explicit roles.

1 Relationships and Member Interposition

A relationship is a programming language abstraction that encapsulates the
collaborative behavior between classes. The specification of a relationship tradi-
tionally involves the indication of the participating classes and the declaration of
further attributes and methods defining the collaboration. In a university infor-
mation system, e.g., we have the classes Student, Course, and Faculty, and the
relationships Attends (between Student and Course for students taking courses
as part of their education), Assists (between Student and Course for students
assisting courses as teaching assistants), and Teaches (between Faculty and
Courses for faculty members teaching courses).

Member interposition is a mechanism accommodating relationship-dependent
properties of classes. Such properties, e.g., the attribute instructionLanguage,
arise only if the object participates in a specific collaboration, e.g., if a stu-
dent assists a course, and therefore should not be attributed to the partici-
pating class in general. Declaring such properties as interposed members, on
the other hand, makes the dependence explicit. Technically, the member (e.g.,
instructionLanguage) is declared as part of and considered to be part of the
relationship (e.g., Assists) into which the member is interposed.

2 Generic Relationships and Explicit Roles

Describing the collaborations between objects, relationships can serve as the
programming language counterpart of the role models [2] identified during system
design. Likewise, a class that participates in a relationship (a participant of the

1 See [1] for an introduction to the field and for a comprehensive list of related work.

15

relationship) can be perceived as playing the corresponding role defined in the
model.

Unfortunately, current languages supporting relationships do not distinguish
between classes and roles: a role is tied to a particular participant of a rela-
tionship. This “direct wiring” makes it difficult to accommodate variations of
relationships. Even if a relationship remains identical with regard to its behav-
ior, as soon as different participating classes are involved, a separate relationship
must be declared redundantly for each participating class.

We introduce the notion of a role as a language construct that allows the
explicit representation of the role classes can play in a relationship. The notion of
a role can then be used also for the declaration of a relationship: relationships can
not only list classes but also roles as their participants. Explicit roles thus enable
generic relationship declarations, with the role serving as a generic parameter.

3 Concluding Remarks

Member interposition allows us to separate the general properties of a class from
the properties that depend on the collaborations an instance of the class may
take part in. Together with the support for generic relationships and the support
for roles, respectively, member interposition allows the explicit representation of
the roles a class may assume.

Member interposition further promotes a kind of “laziness” and “locality”:
the declaration of relationship-dependent members is deferred until the moment
the role of the class becomes apparent, and the declaration is local to the role
declaration. The benefits of laziness and locality can be exploited also for the
specification and verification of software systems. In our work [1], we strictly
distinguish between the definition of object collaborations and their application.
Whereas class and relationship declarations allow the definition of object col-
laborations, a module called application provides the place to combine these
two and to express properties that the system is supposed to maintain. The
module application is a pure configurational unit that is used to define how a
specific software system is composed of classes, roles, and relationships, as well
as constraints that define the configuration.

References

1. Stephanie Balzer, Thomas R. Gross, and Patrick Eugster. A relational model of
object collaborations and its use in reasoning about relationships. In 21st Euro-
pean Conference on Object-Oriented Programming (ECOOP’07), Lecture Notes in
Computer Science. Springer, 2007. To appear.

2. Trygve Reenskaug, Per Wold, and Odd Arild Lehne. Working with Objects:
The OOram Software Engineering Method. Number ISBN 0-13-452930-8. Man-
ning/Prentice Hall, 1996.

16

Roles and Self-Reconfigurable Robots

Nicolai Dvinge, Ulrik P. Schultz, and David Christensen

Maersk Institute
University of Southern Denmark

Abstract. A self-reconfigurable robot is a robotic device that can change
its own shape. Self-reconfigurable robots are commonly built from mul-
tiple identical modules that can manipulate each other to change the
shape of the robot. The robot can also perform tasks such as locomotion
without changing shape. Programming a modular, self-reconfigurable
robot is however a complicated task: the robot is essentially a real-time,
distributed embedded system, where control and communication paths
often are tightly coupled to the current physical configuration of the
robot. To facilitate the task of programming modular, self-reconfigurable
robots, we have developed a declarative, role-based language that allows
the programmer to associate roles and behavior to structural elements
in a modular robot. Based on the role declarations, a dedicated middle-
ware for high-level distributed communication is generated, significantly
simplifying the task of programming self-reconfigurable robots. Our lan-
guage fully supports programming the ATRON self-reconfigurable robot,
and has been used to implement several controllers running both on the
physical modules and in simulation.

1 Introduction

A self-reconfigurable robot is a robot that can change its own shape. Self-
reconfigurable robots are built from multiple identical modules that can manip-
ulate each other to change the shape of the robot [9, 11, 13, 4, 18, 12]. The robot
can also perform tasks such as locomotion without changing shape. Changing the
physical shape of a robot allows it to adapt to its environment, for example by
changing from a car configuration (best suited for flat terrain) to a snake con-
figuration suitable for other kinds of terrain. Programming self-reconfigurable
robots is however complicated by the need to (at least partially) distribute con-
trol across the modules that constitute the robot and furthermore to coordinate
the actions of these modules. Algorithms for controlling the overall shape and
locomotion of the robot have been investigated (e.g. [5, 16]), but the issue of
providing a high-level programming platform for developing controllers remains
largely unexplored. Moreover, constraints on the physical size and power con-
sumption of each module limits the available processing power of each module.

In this paper, we present a role-based approach to programming a con-
troller for a distributed robot system. We have implemented a prototype role-
based programming language, named “RAPL”, for the ATRON modular, self-
reconfigurable robot [9, 10]. Our implementation is based on roles as the main

17

Fig. 1. The ATRON self-reconfigurable robot. Seven modules are connected in a car-
like structure.

abstraction of behavior and implements a remote method invocation framework
based on the roles and their structural interconnections. RAPL allows the pro-
grammer to construct a controller for a structure of ATRON modules in less
time and with less knowledge of hardware than was the case before. Moreover,
we argue that the controller constructed is less error-prone and is more intuitive
to comprehend.

The contributions of our work are as follows: We use the concept of role-based
programming to identify the central entities in a distributed robot controller. We
increase the level of abstraction in the process of programming robot controllers
by means of a domain specific language (DSL), which is built upon these con-
cepts. The structural information from the DSL is used to provide a lightweight
remote method invocation framework appropriate for the physical constraints of
the ATRON modules. Moreover, our language allows the programmer to specify
the behavior of the robot as a whole from the constituent parts. Our compiler
generates an application framework either in embedded C code for execution on
the physical modules or in well-structured Java code for execution in a virtual
simulation environment.

2 The ATRON Self-Reconfigurable Robot

The ATRON self-reconfigurable robot is a 3D lattice-type robot [9, 10]. Figure 1
shows an example ATRON car robot built from 7 modules. Two sets of wheels
(ATRON modules with rubber rings providing traction) are mounted on ATRON
modules playing the role of an axle; the two axles are joined by a single module
playing the role of “connector.” As a concrete example of self-reconfiguration,
this car robot can change its shape to become a snake (a long string of modules);
such a reconfiguration can for example allow the robot to traverse obstacles such
as crevices that cannot be traversed using a car shape.

An ATRON module has one degree of freedom, is spherical, is composed of
two hemispheres, and can actively rotate the two hemispheres relative to each
other. A module may connect to neighbor modules using its four actuated male

18

and four passive female connectors. The connectors are positioned at 90 degree
intervals on each hemisphere. Eight infrared ports, one below each connector,
are used by the modules to communicate with neighboring modules and sense
distance to nearby obstacles or modules. A module weighs 0.850kg and has a
diameter of 110mm. Currently 100 hardware prototypes of the ATRON modules
exist. The single rotational degree of freedom of a module makes its ability to
move very limited: in fact a module is unable to move by itself. The help of
another module is always needed to achieve movement. All modules must also
always stay connected to prevent modules from being disconnected from the
robot. They must avoid collisions and respect their limited actuator strength:
one module can lift two others against gravity.

Programming the ATRON robot is complicated by the distributed, real-time
nature of the system coupled with limited computational resources and the dif-
ficulty of abstracting over the concrete physical configuration when writing con-
troller programs. General approaches to programming the self-reconfigurable
ATRON robot include metamodules [5], motion planning and rule-based pro-
gramming. In the context of this article, we are however interested in role-based
control. Role-based control is an approach to behavior-based control for modu-
lar robots where the behavior of a module is derived from its context [17]. The
behavior of the robot at any given time is driven by a combination of sensor
inputs and internally generated events. Roles allow modules to interpret sensors
and events in a specific way, thus differentiating the behavior of the module
according to the concrete needs of the robot.

3 A Role-based Conceptual Model

The level of abstraction offered by focusing on the behavior of a specific module
in a given context is somewhat similar to that of role-based programming [15].
We use this approach as a basis for our language by making roles the fundamental
concept for expressing the desired behavior. A fundamental difference between
previous work and our approach is however that previous role-based experiments
have focused on performing cyclic behavior, e.g., locomotion, and not event
routing and reactive behavior. Moreover, all implementations presented in earlier
work have been constructed in an ad-hoc manner with little or no language
support.

Our conceptual view of a role is that it defines the module structure and the
active and reactive behavior of each module in a robot. In other words, it defines
what the module can do and what it will do. There is a one-to-one mapping
between a role and a module, but modules can change their roles (and thus their
behavior) as a reaction to messages from other modules or internal events. The
behavior of a role is thus determined by the physical state of the module (as
reported by sensors), program state stored in the memory of the module, and
messages received from other modules. The behavior is encapsulated in methods
that are activated either through external messages or internal events.

19

An ATRON robot as a whole is implicitly assigned a role using the object-
oriented concept of a whole-part structure (as known from the whole-part design
pattern [3]). Behavior for the robot is declared for each individual role. For ex-
ample, all modules in a car may be able to play the role of a “car” by receiving
messages for the “car” role. A module may either process such a message or
forward it to another module, as designated by the programmer. The function-
ality of the whole and the role that it can play is thus created in coordination
between the individual modules, corresponding to how the control of a modular
robot necessarily must be implemented in practice.

4 The RAPL Compiler

We have implemented a role specification language for the ATRON modules,
named RAPL (Role-based ATRON Programming Language). RAPL can be com-
piled either to Java, for use with the ATRON simulator, or to C, for execution
directly on the modules. The Java backend simply generates an implementation
of the proxy and state design patterns [7]. The C backend compiles a role to
a skeleton that invokes C functions written by the programmer and to a proxy
represented as a collection of C functions that can be used to send messages to
other modules implementing this role.

4.1 RMI based communication

RAPL implements a remote procedure calling functionality to facilitate dis-
tributed communication. A RAPL program declares a list of functions each
belonging to a specific role. Functions can be tied to an event or provide a
default behavior for a role; an event can be a message from a neighbor-module
or an internal event signal (e.g. timer, tilt sensor, etc.). Having a list of func-
tions for each role is sufficient to generate a stub/skeleton proxy framework that
provides abstraction over communication which is critical to our approach. The
issue of addressing the correct modules is resolved by exploiting the structural
information from the roles. Messages always identify both the receiver role and
the name of the message (at runtime each identifier is represented by a single
byte).

4.2 Whole-part design architecture

The whole-part design pattern is integrated in the implementation of the RMI
framework, providing a whole-part functionality for the entire structure of ATRON
modules. Functions declared on a controller level expose the controllers main
functionality to other controllers or external clients, which would not normally
know, e.g., how to make the car drive or turn.

20

4.3 A domain specific language with simple logic

RAPL is a domain-specific language used to express roles and functions; allow-
ing control structures and other imperative language constructs would hamper
the intention of defining behavior at a higher abstraction level. Moreover, we
believe that general-purpose languages such as Java and C are better suited for
specifying more complex, internal behavior in controllers. To facilitate practical
experiments, we do however enable RAPL to directly express primitive actu-
ation operations and message forwarding with simple arithmetic processing of
arguments. More advanced functionality will have to be included from externally
linked code supplied directly by the programmer. To this end, we have defined a
simple programmatic interface between RAPL and each of the platforms that it
supports: RAPL methods can be implemented in the target language and code
written in the target language can call RAPL methods. We currently use XML
as the concrete syntax for writing RAPL declarations; in the future we envision
providing one or more high-level syntaxes, as exemplified in Figure 2.

5 Example

We now outline a few simple examples of using RAPL to program an ATRON
car. We refer to the first author’s MS for more detailed examples [6].

5.1 A simple car program

As a concrete example, consider the ATRON car shown earlier in Figure 1. Sim-
ple reactive control of this robot can be implemented using the role declarations
shown in Figure 2, left. A role has a name and declares its structural dependen-
cies on other roles, and can moreover extend another role creating a hierarchy
of roles (not shown). Structure is specified in terms of the roles of the neighbor-
ing modules and the physical communication port used to contact the module
(auto-detection of neighboring modules, although possible, is currently slightly
problematic on the physical modules due to hardware difficulties). Behaviors are
simply declared as functions that are attached to roles.

In the program of Figure 2, when a move event is delivered to the “connector”
it forwards it to the two axles, which again forwards it to the wheels. The action
performed by the wheel is a primitive actuation of the main joint, implemented
by all modules (similarly to the methods provided by Object in Java). Similarly
for the turn event. To increase readability, we are currently investigating a more
human-friendly syntax resembling Java declarations, as shown in Figure 2, right.

The roles thus provide a means of denoting the behavior of each module as it
is used for a specific purpose in the robot. Moreover, the roles provide a simple
and very light-weight way of (albeit manually) routing events through the topol-
ogy of the robot. This is particularly interesting given the resource constraints
of the ATRON module, which only has 4K of RAM available for communication
buffers, operating system functionality, and program state. (Program size on the
other hand is not so much of a problem since there is 128K of flash memory
available for storing programs.)

21

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Controller>

<Controller Name="Car" xsi="Xatron.xsd">

<Role RoleName="Connector" ...>

<Structure RoleToUse="Axle"

StructureName="axleFront"

Channel="2"/>

<Structure RoleToUse="Axle"

StructureName="axleRear"

Channel="6"/>

</Role>

<Role RoleName="Axle" ...> ...</Role>

<Role RoleName="Wheel" ...> ...</Role>

<Function FunctionName="move" Target="Connector">

<Action ActionName="move"

Target="axleFront"

Value="value"/>

...

</Function>

<Function FunctionName="turn" Target="Connector">

<Action ActionName="rotate"

Target="axleFront"

Value="value/2"/>

<Action ActionName="rotate"

Target="axleRear"

Value="value/2"/>

</Function>

...

</Controller>

role Connector implements Car {

Axle frontAxle = Axle(channel#2);

Axle rearAxle = Axle(channel#6);

move(int value) {

frontAxle.move(value);

rearAxle.move(value);

}

turn(int value) {

frontAxle.rotate(value/2);

rearAxle.rotate(-value/2);

}

}

role Axle implements Car {

Wheel leftWheel = Wheel(channel#0);

Wheel rightWheel = Wheel(channel#2);

move(int value) {

leftWheel.move(value);

rightWheel.move(-1*value);

}

}

role Wheel implements Car {

Axle axle = Axle(channel#5);

}

Fig. 2. A simple car controller implemented in RAPL (left) and in our proposed Java-
like syntax (right)

Fig. 3. The ATRON car rebuilding itself after a tilt

22

<Function FunctionName="Run" Target="Connector">

<Action ActionName="extTiltTurnLogic" Target="EXT" Value="0"/>

<Action ActionName="extTiltGetupLogic" Target="EXT" Value="0"/>

</Function>

<Function FunctionName="drive" Target="Car">

<Action ActionName="move" Target="connector" Value="value"/>

</Function>

<Function FunctionName="getup" Target="Car">

<Action ActionName="getupimpl" Target="connector" Value="value"/>

</Function>

Fig. 4. A tilt-aware Car controller in RAPL

#include "rapl.h" /* header file generated by RAPL for the car */

int last = 0;

void extTiltLogic() {

signed char x = getTiltY();

if(abs(x-last)>10) {

if ((x - last) < 0) Connector_turn_impl(-20);

else Connector_turn_impl(20);

last = x;

}

}
Fig. 5. Custom code for the tilt-logic

5.2 Adding proactive behavior

Our working example of a car is shown in action in Figure 3. Here, we have added
custom functionality which fires events based on the internal tilt-sensor. Tilting
makes the car turn towards higher grounds (the car will move towards the top
of a hill) whereas an extreme tilt-level (indicating that the car has fallen over)
triggers a series of reconfigurations which rises the car. The RAPL declarations
for this more advanced controller extend those of Figure 2 and are shown in
Figure 4. In this example we specify several functions and some custom code
functionality to exemplify the diversity of the RAPL language.

The behavior of the controller for the tilting car is defined in the Run method
on the connector. This tells the connector module to call the two external tilt-
functions, one of which is shown in Figure 5. These two functions monitor the
y-axis tilt sensor for a minor or severe change in tilt level. The first function
extTiltLogic reacts upon tilt changes in steps of 10, and for each step it calls the
Connector method turn, thus turning the axles. A complete tilt of the car (e.g.,
falling over) is detected by another function which triggers a self-reconfiguration
sequence of several rotations. The sequence of rotations is programmed in RAPL
in the function getupimpl (not shown). The function in the custom code of Fig-
ure 5 displays an obvious example of functionality that would be laborious to
provide in our RAPL compiler and thus should be supplied in native code.

23

5.3 Additional examples

In addition to the car example presented thus far, we have also implemented
a controller for metamodules: metamodules are a control approach where three
modules are combined into a logical module which has the freedom to move
on its own. A central module plays the role of a head whereas the two others
are attached as legs, which maps perfectly to a set of RAPL declarations. Our
experiments show that using RAPL the size of the controller is reduced from
approximately 300 LOC in C to 32 LOC in RAPL.

Locomotion is a classical application for modular self-reconfigurable robots,
and we believe RAPL will prove highly useful in this area. For example a snake
structure which is simply a line of modules is easily constructed by an end-role
and a body-role. In the concrete case of the ATRONs, a snake of 7 modules can
transform into a car. Transformation is the main feature of a self-reconfigurable
robot, but it is also the hardest part to program since modules change their
physical position and most likely their role during the transformation. We envi-
sion implementing transformations using intermediate roles that are responsible
for rearranging the modules before going back to a reactive state again.

We believe aggregation of roles to be essential for the scalability of our ap-
proach to more complex structures. In the work of Stoy et al, a lizard-like struc-
ture with four legs is programmed using roles [17, 15]. We observe that this
scenario is close to our car-example, the main difference being legs instead of
wheels. This brings to mind reuse of existing code (we can keep the central part
of our structure) and aggregation of roles. If the legs of the lizard were made
of metamodules implementing a whole-behaviour, the top of the car would not
need to deal with how the structure actually performed its locomotion: it would
simply send the same message move to the Leg or the Wheel.

6 Related Work

Autonomous robots are commonly controlled using behavior-based control [2];
behaviors are typically sensor-driven, reactive, and goal-oriented controllers. Cer-
tain behaviors may inhibit other behaviors, allowing the set of active behaviors
to vary. Modular robots often use the concept of a role albeit in an ad-hoc
fashion: complex overall behaviors can be derived from a robot where different
modules react differently to the same stimuli, in effect allowing each module to
play a different role (e.g., [1, 5, 14]). Recently, Stoy et al have explicitly used
the concept of a role to obtain a very robust and composable behavior [15, 17].
Compared to RAPL, the implementation of roles is ad-hoc and the only control
examples investigated are cyclic, signal-driven behaviors for locomotion.

Apart from RAPL, the only high-level programming language for modular
robots that the authors are aware of is the Phase Automata Robot Scripting
Language (PARSL) [8, 19]. Here, XML-based declarations are used to describe
the behavior of each module in the PolyBot self-reconfigurable robot [18]. Com-
pared to RAPL, the tool support is much more complete and the language has

24

many advanced features for controlling locomotion using behavior-based control.
Nevertheless, PARSL completely lacks the concept of a role for structuring the
code: each behavior is assigned to a specific module as an atomic unit.

7 Discussion and Future Work

In this paper, we have presented the RAPL system, a role-based approach to
abstraction of hardware and communication in the ATRON system. Based on
our experiments, we conclude that supporting role-based programming at the
language level makes programming distributed robots less tedious and thereby
more accessible and less error prone. We believe that providing a high-level pro-
gramming interface is critical for improving the maturity of the ATRON robotic
system and is an important first step in moving towards concrete applications
of self-reconfigurable robots. In terms of language design, we are interested in
creating a correspondence between the physical modules and the concepts used
to program the controller. Here roles are a perfect fit since the behavior of a
module changes over time in response to programmatic decisions or sensory in-
put. Nevertheless, we believe that the role-based approach can be strengthened
using object-oriented design principles such as whole-part.

As mentioned earlier in the context of reuse between car and lizard robots,
aggregation could be used to construct “wholes of objects” which again could be
parts of a bigger whole. This scenario however currently has to be programmed
manually by routing messages for the whole to the appropriate module. More-
over, we would like to explore inheritance between roles, which can be realized
using the standard object-oriented principles, e.g., a combination of adding and
overriding functions. Currently we only support a single level of inheritance from
a primitive module where basic behaviour is defined for all modules. Specializa-
tion does however raise the issue of role selection. The process of role-selection is
currently done programmatically or even manually using a PDA with an infrared
port. We envision automating this process to a certain degree by implementing
simple rules that fire a role-change when some local state is met. This can be
done right now in the custom-code section, but a future enhancement to our
contribution could incorporate this logic in RAPL.

References

1. H. Bojinov, A. Casal, and T. Hogg. Multiagent control of self-reconfigurable robots.
In Proceedings of Fourth International Conference on MultiAgent Systems, pages
143–150, 2000.

2. R. Brooks. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2:14–23, March 1986.

3. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture: A System of Patterns. Wiley, 1996.

4. A. Castano and P. Will. Autonomous and self-sufficient conro modules for re-
configurable robots. In Proceedings of the 5th International Symposium on Dis-
tributed Autonomous Robotic Systems (DARS), pages 155–164, Knoxville, Texas,
USA, 2000.

25

5. D.J. Christensen and K. Støy. Selecting a meta-module to shape-change the
ATRON self-reconfigurable robot. In Proceedings of IEEE International Confer-
ence on Robotics and Automations (ICRA), pages 2532–2538, Orlando, USA, May
2006.

6. Nicolai Dvinge. A programming language for ATRON modules. Master’s thesis,
University of Southern Denmark, 2007.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

8. Alex Golovinsky, Mark Yim, Ying Zhang, Craig Eldershaw, and Dave Duff. Poly-
bot and PolyKinetic system: A modular robotic platform for education. In IEEE
International Conference on Robots and Automation (ICRA), 2004.

9. M. W. Jorgensen, E. H. Ostergaard, and H. H. Lund. Modular ATRON: Modules
for a self-reconfigurable robot. In Proceedings of IEEE/RSJ International Confer-
ence on Robots and Systems (IROS), pages 2068–2073, Sendai, Japan, September
2004.

10. H.H. Lund, R. Beck, and L. Dalgaard. Self-reconfigurable robots with ATRON
modules. In Proceedings of 3rd International Symposium on Autonomous
Minirobots for Research and Edutainment (AMiRE 2005), Fukui, 2005. Springer-
Verlag.

11. S. Murata, E. Yoshida, K. Tomita, H. Kurokawa, A. Kamimura, and S. Kokaji.
Hardware design of modular robotic system. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 2210–
2217, Takamatsu, Japan, 2000.

12. D. Rus and M. Vona. Crystalline robots: Self-reconfiguration with compressible
unit modules. Journal of Autonomous Robots, 10(1):107–124, 2001.

13. W.-M. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein, and J. Venkatesh.
Multimode locomotion via superbot robots. In Proceedings of the 2006 IEEE
International Conference on Robotics and Automation, pages 2552–2557, Orlando,
FL, 2006.

14. Wei-Min Shen, Yimin Lu, and Peter Will. Hormone-based control for self-
reconfigurable robots. In AGENTS ’00: Proceedings of the fourth international
conference on Autonomous agents, pages 1–8, New York, NY, USA, 2000. ACM
Press.

15. Kasper Stoy, Wei-Min Shen, and Peter Will. Using role based control to produce
locomotion in chain-type self-reconfigurable robots. IEEE Transactions on Robotics
and Automation, special issue on self-reconfigurable robots, 2002.

16. K. Støy. How to construct dense objects with self-reconfigurable robots. In Pro-
ceedings of European Robotics Symposium (EUROS), pages 27–37, Palermo, Italy,
May 2006.

17. K. Støy, W.-M. Shen, and P. Will. Implementing configuration dependent gaits
in a self-reconfigurable robot. In Proceedings of the 2003 IEEE international con-
ference on robotics and automation (ICRA’03), pages 3828–3833, Tai-Pei, Taiwan,
September 2003.

18. M. Yim, D. Duff, and K. Roufas. Polybot: A modular reconfigurable robot. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 514–520, San Francisco, CA, USA, 2000.

19. Ying Zhang, Alex Golovinsky, Mark Yim, and Craig Eldershaw. An XML-based
scripting language for chain-type modular robotic systems. In Proceedings of the
8th Conference on Intelligent Autonomous Systems (IAS), 2004.

26

A Meta-model for Roles: Introducing Sessions

Valerio Genovese

Università di Torino, Dipartimento di Informatica
10149, Torino, Cso Svizzera 185, Italia

valerio.click@gmail.com

Abstract. Role is a widespread concept, it is used in many areas like
MAS, DB, Programming Languages, Organizations, Security and OO
modeling. Unfortunately, it seems that the literature is not actually able
to give a uniform definition of roles, there exist several approaches that
model roles in many different (and opposite) ways. Our aim is to build
a formal framework through which we can describe different definitions
appeared in the literature or implemented in computer systems. In par-
ticular we give a new role’s foundation introducing sessions, which are a
formal instrument to talk about role’s states and we show how sessions
may be useful to model relationships.

1 Introduction

The notion of role is a modelling concept strictly linked with interaction between
entities. In natural language, we notice that terms like “student”, “employee”
or “president” are linked with a person who plays them and a context in which
the player interact, the term “student” refers to a person that is a student in
a specific university (eg. [1]). In a certain way, we can view roles as a pivotal
concept to model an interaction, but problems arise because it is not completely
clear how many different types of interactions exist and is possible to represent
in the OO paradigm.

There are many definitions of roles, each one with a plausible approach based
on intuition, practical needs and, sometimes, on a formal account. In security,
roles are seen as a way to distribute permissions [2], in organizational models
roles gives powers to their players in order to access an institution, in MAS roles
could be seen as descriptions of the behavior which is expected by agents who
play them [3], in ontology research roles are an anti-rigid notion founded on a
player and a context [4], and many more. Even in the same field of research, there
exist in the literature completely different notions of role which are in contrast
with each other. Roles are not so easy to grasp, it seems that each different
approach underlines a particular part of a common phenomenon not definable
in a unique way.

The main goal of this work is to provide a flexible formal model for roles,
which is able to catch the basic primitives behind the different role’s accounts in

27

the literature, rather than a definition. If it is possible to define such a model,
then we can study the key properties of roles in different implementations.

The paper is organized as follows. In section 2 we introduce the model. In
section 3 we analyze in more depth sessions in relationships, showing links among
states of different entities engaged in a collaboration. Conclusions close the paper.

2 A Logical Model for Roles

We define the formalism of the framework in a way as much general as possible,
this gives us an unconstrained model where special constraints are added later
in order to describe different approaches.

2.1 Universal Level

At the universal level we describe the relationship between natural and role
types1, in particular we define two relationship PL and RO through which we
link roles to contexts and players (natural types) to roles.

Definition 1 An universal model is a tuple

< D, Contexts, Players, Roles, Attr, Op, Constraints

PL, RO, AS, OS, RH, PH, CH >

where:

– D is a domain of classes
– Contexts ⊆ D is a set of institutions
– Players ⊆ D is a set of potential players or actors
– Roles ⊂ D is a finite set of roles {R1, ..., Rn}
– Attr is a set of attributes
– Op is a set of operations
– Constraints is a set of Constraints

The static model has also a few relations:

– PL ⊆ Players x Roles: this relation states, at the universal level, which are
the players that can play a certain role.

– RO ⊆ Roles x Contexts: each role is linked with one or more contexts.
– AS ⊆ D x Attr: it is an attribute assignment relationship, through which we

can assign to each class its attributes.
– OS ⊆ D x Op: it is an operation assignment relationship, through which we

can assign to each class its operations.
– RH ⊆ Roles x Roles is a partial order relationship called role hierarchy, also

written as ≥RH . If r <RH r
′

, we say that r inherits all Attr and Op which
belong to r

′

.

1 Natural types refer to the essence of the entities whereas role types depend on an
accidental relationship to some other entity (context).

28

– PH ⊆ Players x Players is a partial order relationship called player hierarchy,
also written as ≥PH . If p <PH p

′

, we say that p inherits all Attr and Op

which belong to p
′

.
– CH ⊆ Contexts x Contexts is a partial order relationship called context hier-

archy, also written as ≥CH . Is c <CH c
′

, we say that c inherits from c
′

.

Given the information contained in AS and OS relations, we use πAttr(o) and
πOp(o) as shortcuts to refer about the set of attributes and operations defined for
class o. At this point we can add into Constraints some logical rules in order to
model different role notions. For example in powerJava each role type is linked
with one and only one context type [5], so we can express this through the
following constraint:

∀x, y, z(x ∈ Roles y, z ∈ Contexts xROy ∧ xROz → y = z)

2.2 Individual level

The individual part relies on the universal one and the elements of this level are
individuals (or instances) of the types defined at the universal level.

Definition 2 A snapshot model is a tuple

< O, I contexts, I players, I roles, Sessions, Val, I contraints

IRoles, I Attributes, I Operations, IAttr >

where:

– O is a domain of objects, for each object o is possible to refer to its attributes
and operations through πI Attr(o) and πI Op(o), respectively.

– I contexts ⊆ O is a set of institutions which instantiate classes in Contexts.
– I players ⊆ O is a set of actors, which instantiate universals in Players.
– I roles ⊂ O is a set of roles instances.
– I Attributes is the set of objects’ attributes.
– I Operations is the set of objects’ operations.
– Sessions is a set of sessions, which keep the state of an interaction between

actors and institutions (See Section 3).
– Val is a set of values.
– I constraints is a set of integrity rules that constraint elements in the snap-

shot.

In this section we call elements in I contexts, I players and I roles respectively,
institutions, actors and roles instances.
The snapshot model has also a few functions and relations:

– IRoles is a role assignment function that assigns to each role R a relation on
I context x I players x Sessions x I roles.

– IAttr is an assignment function which it takes as arguments an object d ∈ O,
and an attribute p ∈ πI Attr(d), if p has a value v ∈ Val it returns it, ∅
otherwise.

29

When an object x is an individual of the universal y, we say that x instantiates
y and, in order to express this in a formal way, we write a :: b when a is an
instance of b. In general if x :: y, attributes and operations defined for y at
the universal level are assigned to x. If a ∈ πAttr(B) we write x.a ∈ I Attributes

as the attribute instance assigned to object x, the same holds for elements in
I Operations.

The role assignment function IRoles gives us the notion of an actor who
plays a role within a specific context: if i :: x is an institution, a :: y an actor,
and o :: R a role, (i,a,o)∈ IRoles(R) is to be read as: “the object o represents
agent a playing the role R in institution i”. We will often write R(i,a,o) for this
statement, and we call o the role instance.

Suppose we have a role instance employee, and that the value of the attribute
salary is 1000 e usually, instead of writing IAttr(employee, salary) = 1000, we
write

salary(employee) = 1000

The way we defined a snapshot leaves a lot of room for formulating further
constraints in I contraints that may or may not be reasonable to assume, depend-
ing on the particular role’s definition we have in mind. Here are a number:

1. Dependence of roles on institutions. In our model it is presupposed that the
identity of a role instance depends not only on the role and the actor involved,
but on an ’institution’ as well. This is often, but not always, appropriate. We
can mimic the case were the introduction on institutions is unnecessary with
the introduction of a ’trivial’ institution, and let I contexts contains only this
trivial institution, as we do in section 3 when we model RBAC [2].

2. Context coherence. From an organizational point of view, there cannot be a
student role’s player without a teacher one, also it would not be sensible to
talk about the context family without someone who plays the role of husband
and another one being the wife. To express this constraint we can state, for
example, the following integrity rule:

∀y (y :: Family↔ ∃x, o, z, p (husband(y, x, o) ∧ wife(y, z, p))

Which means that in the snapshot exists y ∈ I contexts if and only if there
exist two role instances p and o which represent respectively an husband and
a wife played by actors x and z in y.

3. Complementary roles. In general we can express the fact that playing a role R

for an actor implies that there exists another actor playing a complementary
role R

′

with the follwowing constraint:

R(i, a, o)↔ R
′

(i, b, x)

2.3 The dynamic model

The dynamic model defines a structure to properly describe how the framework
evolves as a consequence of executing an action on a snapshot. We well see in
Section 4 and 5 how is up to this model to constraint agents’ dynamics.

30

Definition 3 A dynamic model is a tuple

< S, TM, Actions, Requirements, D constraints, IActions, IRolest
πReq, IRequirementst

>

where:

– S is a set of snapshots.

– TM ⊆ S x IN: it is a time assignment relationship, such that each snapshot
has an associated unique time t. For the sake of simplicity we define a discrete
time through positive natural numbers.

– Actions is a set of actions.

– Requirements is a set of requirements for playing roles in the dynamic model.

– D contraints is a set of integrity rules that constraints the dynamic model.

– IActions maps each action from Actions to a function on S. IActions(s, a, t) tells
us how the snapshot s changes as a result of executing action a at time t.
This function returns a couple in TM that binds the resulting snapshot with
time t + 1. In general, to express that at time t is carried action a we write
at.

– About IRolest
we say that Rt(i, a, o) is true if there exists, at a time t, the

role instance R(i, a, o).

– πReq(t, R) returns a subset of Requirements present at a given time t for the
role of type R, which are the requirements that must be fulfilled in order to
play roles of type R.

Intuitively, the snapshots in S represent the state of a system at a certain time.
Looking at IActions is possible to identify the course of actions as an ordered
sequence of actions such that:

a1; b2; c3

represents a system that evolves due to the execution of a,b and c at consecutive
times. We refer to a particular snapshot using the time t as a reference, so that
for instance πAttrt

refers to πAttr in the snapshot associated with t in TM.

We suppose that, for every time t, given an object p we can always say if
it exist or not via the existst operator, so that existst(p) is true, if and only if
p exists at time t, false otherwise. We write exists(p) when p exists in all the
snapshots of the dynamic model.

A particular aspect of the dynamic model is role addition and deletion model.
It has actions corresponding to role assignment for each R, i and a, which are
supposed to capture the effect of adding the role R within institution i to ac-
tor a, and other actions that represent the taking away from a the role R in
institution i.

Of course, these actions will not be arbitrary. We first identify a number of
minimal properties that the action of role assignment need to satisfy, then we
describe a small set of possible actions that can be applied in the dynamic model.

31

Role Assignment

Let M be a snapshot.

M = < O, I contexts, I players, I roles, Sessions, Val, IRoles, πAttr, πOp, IAttr >

Let i ∈ I contexts, a ∈ I players, and R ∈ I Roles. There are two possibilities, if
we want to assign role R to actor a: either if fails, or it succeeds. In the latter
case, the resulting snapshot:

M
′

= < O
′

, I contexts
′

, I players
′

, I roles
′

, Sessions
′

, Val
′

, I
′

Roles, π
′

Attr, π
′

Op, I
′

Attr >

should satisfy the following properties:

– A role assignment may add at most one new object to the domain (namely
the newly introduced qua-individual). O

′

= O ∪ {o}, where o may or may
not already be in O.

– I contexts
′

= I contexts or I contexts
′

= I contexts ∪ {o}.
– I players

′

= I players or I players
′

= I players ∪ {o}.
– I roles

′

= I roles, Val
′

= Val. The sets of roles and possible values of attributes
do not change.

– I
′

Roles(R) = IRoles ∪ {(i, a, o)}

– π
′

Attr and π
′

Op can be different if attributes and operations of a role are
inherited by its player.

– I
′

Attr is just like IAttr with respect to the properties of objects different from
i, a, and o.

For role addition and deletion actions we use, respectively Reqt(i, a, R), R, i →֒t a,
and Reqt(i, a, R), R, i ←֓ t a. Then using the notation of dynamic logic we write:

[Reqt(i, a, R)?; R, i →֒t a]φ

to express that, if actor a fills the requirements at time t (Reqt(i, a, R) is True),
after assigning role R within institution i at the same time t, φ is True in the
resulting snapshot. If there are no particular Requirements (i.e. πReq(t, R) ∈ ∅)
we can omit Reqt. The above definition gives us the possibility to model that a
role assignment introduces a role instance:

[R, i →֒t a]∃xR(i, a, x)

or the fact that if a does not play the role R within institution i, then the role
assignment introduces exactly one role instance:

(¬∃xR(i, a, x))→ [R, i →֒t a]∃!xR(i, a, x)

The dynamic level can be constrainted in order to model inheritance of at-
tributes and operations, here we discuss only attributes, for operations the dis-
cussion is similar.

32

In the model, both roles and objects have properties. A natural constraint is
that role-instances at least get all the properties that are defined for that role:

Rt(i, a, s, x)→ (attr ∈ πAttr(R)→ ∃v : attr(x) = v)

With respect to the question if the role-instance should ’inherit’ all the properties
of the original player object there are different possible answers.

For example, in powerJava [5], no such inheritance is assumed at all - the
properties of the role instance are precisely those of the role, and we have that:

Rt(i, a, x)→ (attr ∈ πAttr(R)↔ ∃v : attr(x) = v)

But other options are possible as well. For example, one alternative approach
is that roles can be best seen as ’views’ on a certain object, providing only a
subset of the properties of the original object, like in Fibonacci [7]. A constraint
which reflects that view is that the role-player has only the properties that are
defined for the original object as well as for the role:

Rt(i, a, s)→ πAttr(R) ⊂ πAttrt
(a)

The opposite view is that roles add properties to the players. For example, in
the Zope security model (like also in RBAC) we have the following:

[R, i →֒t a](πAttrt+1
(a) = πAttrt

(a) ∪A πAttr(R))

The same considerations hold for operations. In the above forumla we introduced
an ad-hoc union operator ∪A that binds attributes of an object with attributes
of a class instantiating them. For instance if we have an object o and a class
T , the union πAttr(o) ∪A πAttr(T) add into I Attributes the elements o.a, a ∈
πAttr(T).

Methods

There are other actions through which is possible to change the model as
well, for instance objects may assign new values to their attributes [8]. Again,
the effects of such changes may depend on choices made earlier (e.g. in the case
of delegation, changing the attribute value of an object may change the value of
that attribute also in some roles he plays).

3 Sessions and relationships

We explicitly introduce sessions because we argue that are strictly linked with the
role’s notion. As already said, we talk about sessions when is necessary to keep
the state of an interaction between entities. Sessions in our model are a couple
(ID , K) where ID is an identifier and K a set of attributes and operations. If
an attribute is in K it means that its value maintains a particular information

33

on the state of the interaction between an actor playing a role and an institution
offering it. Operations in K are behavioral aspect of the interaction and they can
change the value of the attributes that are in the same session, this means that
operation in K can change attributes in K even if the are of different objects.
For instance suppose to have R(i,a,s,x), depending on what we want to model,
we can look at sessions from three different points of view:

1. A session can collapse into one role instance [1,5,9] (ID = x). This means
that attributes and operations in K are all a subset of πAttr(x) ∪ πOp(x)
where x ∈ I roles.

2. A session can collapse into the actor [2,10] (ID = a). In that case pecu-
liar attributes and operations for the interaction are linked with the object
representing the actor.

3. A session can be an object with its own ID (like when we reify an association).
It is important to underline that a session of this type can link different role
instances embedding their attributes and operations in K, so that the state of
a role instance a can be influenced by the behavior of another role individual
b.

In powerJava the state of the interaction between a player and an institution
is kept by the role instance:

R(i, a, s, x)→ πK(s) ⊆ πAttr(x) ∪ πOp(x)

Where πK(s) is a projection on the second element of couple s. The point is
slightly different if roles are not instantiable, in this case we have:

R(i, a, s)→ πK(s) ⊆ πAttr(a) ∪ πOp(a)

The session notion gives the possibility to unify the state of the interaction
between different roles instances or actors which participate in the same rela-
tionship or which are part of the same organizational model.

 :Faculty :Course

 /Teacher: Person /Student: Person
 Faculty_Memeber

Faculty

Lecturer

Given_Course Taken_Course

Participant

*

1

1

*

*

*

Student

1

Tutor

 *

Fig. 1. UML collaboration diagram

In UML, roles serve two purposes: they label association ends, and they act
as type specifiers in the scope of a collaborations (so-called classifier roles) [10].

34

In Figure 1 the labels of the association ends correspond to our roles, a
straight line between a Teacher and a Student identify an interaction between
them, where tutor and student are the roles through which the interaction takes
place.

Depending on what we have in mind, we can express the interaction between
two instances of Person (one acting as a Teacher and the other one as Student)
in two different ways, if x :: Person, y :: Person, tutor :: Tutor and student ::
Student2 we have:

1. Tutor(y, x, q, tutor) ∧ Student(x, y, q
′

, student)
2. Tutor(y, x, q, tutor) ∧ Student(x, y, q, student)

Notice that x and y are both in I contexts and I players, because they offer and
play roles at the same time. In the first view we have two separate sessions each
one representing a specific direction of the association between x and y, whereas
in the second approach a common session q unifies the two-way association seeing
it as a unique interaction with a unique state for both directions (x → y and
y → x). It must be said that is not mandatory to model the interaction between
x and y with role instances, if we do not want roles to be instantiated we simply
let sessions refer to attributes and operations of x and y.

The UML collaboration diagram (Figure 1) defines, at the specification level,
how instances of different classes must behave in order to be engaged in the
collaboration in a sort of relationship’s pattern. In Figure 2 we represent role
instances inside the context that offers them, the relation of playing a role is
translated through an arrow which goes from the actor to the role instance
played.

The view of putting the role tutor inside the object studentD, together with
having all objects being at the same time contexts and players of some roles,
could seem counter intuitive, but is extremely powerful. Role instances are seen
as set of affordances [11] that let the actor interact with another entity, in general
an actor plays a role which is linked with a context, and the fact of playing that
role gives him the power to modify the properties of the context. With this
example in mind we can now translate the diagram in Figure 1 representing it
through a set of constraints at the individual level 3:

Tutor(student, teacher, s1, tutor) ∧
Faculty Member(faculty, teacher, s2, faculty member) ∧

Lecturer(course, teacher, s3, lecturer)∧Student(teacher, student, s1, student)∧
Participant(course, student, s4, participant) ∧

Faculty(teacher, faculty, s2, faculty)∧
Taken Course(student, course, s4, taken course) ∧
Given Course(teacher, course, s3, given course)

2 In this section we refer to classes with the first letter capitalized in order to distin-
guish them from instances which are in lower case.

3 In order to avoid confusion we refer to teacher, student, course,and faculty as
instances of the classes involved in the collaboration diagram.

35

faculty

given_course

student

lecturer

participant

tutor

taken_course

faculty_member

teacherA

studentD

facultyB

courseC

Fig. 2. Example of object diagram with roles

This predicate represents a set of constraints that have to be applied to all
entities that want to be engaged in the collaboration diagram in Figure 1. So
it is impossible to play the role lecturer without offering the role student, and
without being engaged in all others associations implied in the collaboration
diagram.

We said that playing a role always translates into modeling an interaction,
and that the state and behavior of this interaction is kept by a subset of attributes
and operations of the entity engaged in the relationship. We introduce the term
session to refer to this subset of elements because this abstraction let us model, in
a formal and hopefully clear way, the links that relate the states of the elements
playing roles in a relationships.

In general, when attributes’ values in a session s1 are influenced by operations
or actions carried out by other roles which elements are in another session s2,
we need to express an integrity rule that links the states of s1 and s2.

Referring to Figure 2, suppose that faculty member and tutor have an at-
tribute num courses which value counts the number of courses held by the
teacherA, if teacherA stops playing lecturer in courseC, num courses in both
faculty member and tutor should be decreased by one. There could also be a
case where an action carried out as tutor can modify lecturer ’s state (i.e the
execution of a tutor ’s operation can change one or more lecturer’s attributes).

Then we can define the following integrity rule in D contraints of the dynamic
model:

36

∀z, p, q :
p :: Faculty ∧ q :: Student ∧ z :: Teacher ∧

faculty membert(p, z, s1, x) ∧ tutort(q, z, s2, y)
→

num courses(x) = num courses(y) = β

Where β is the number of lecturer instances played by z. Notice that in the dy-
namic model the value of β can always be deduced analyzing the set of snapshots
in S.

With the introduction of sessions we argue that to model properly a rela-
tionship is important to talk about states that are strictly linked with the role
played, and that roles can not be simple labels of association ends.

4 Conclusions

In this article we extend and improve the framework for modelling roles intro-
duced in [8], moreover we redefine the session notion in order to analyze in more
depth how roles are linked with relationships. In [8] it has been shown that the
model is able to grasp different role notions, the aim is to find the basic elements
which can describe what roles are. We think that relationships are the right place
to investigate and to find a foundation of roles.

References

1. Frank Loebe: Abstract vs. social roles - a refined top-level ontological analysis. In
Procs. of AAAI Fall Symposium on Roles, an interdisciplinary perspective Series
Technical Reports FS-05-08. pages 93-100 (2005)

2. Ravi S.Sandhu, Edkward J.Coyne: Role-Based Access Control Models. IEEE
Computer, Volume 29, Number 2 38-47 (1996)

3. L. van der Torre, Guido Boella: Organizations as socially constructed agents in
the agent oriented paradigm. In Procs. of ESAW’04 (2004)

4. Claudio Masolo, Laure Vieu, Emanuele Bottazzi, Carola Catenacci, Roberta Fer-
rario, Aldo Gangemi, Nicola Guarino: Social roles and their descriptions. In Procs.
KR2004, Whistler, Canada, June 2-5, 2004, pp.267-277 (2004)

5. Matteo Baldoni, L. van der Torre, Guido Boella: Interaction between objects in
powerJava. Journal of Object Technology(JOT) (2006)

6. M. Baldoni, C. Baroglio, A. Martelli, V. Patti: Reasoning about interaction
protocols for customizing web service selection and composition. Journal of
LOgic and Algebraic Programming, special issue on Web Services and Formal
Methods,70(1):53-73 (2007)

7. A.Albano, R.Begamini, G.Ghelli, R. Orsini: An object data model with roles. In
R. Agrawal, S. Baker, and D. Bell, editors, Proc. of the Nineteenth Intl. Conf. on
Very Large Data Bases (VLDB), Dublin, Ireland, pages 39-51, San Mateo, CA,
1993. Morgan Kaufmann (1993)

8. Valerio Genovese: Towards a general framework for modelling roles. In Guido
Boella, Leon van der Torre, Harko Verhagen, eds.: Normative Multi-agent Systems.
Number 07122 in Dagstuhl Seminar Proceedings, Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

37

9. Stephan Herrmann: Programming with Roles in ObjectTeams/Java. In proc.
AAAI Fall Symposium 2005: Roles, an iterdisciplinary perspective (2005)

10. Friedrich Steimann: On the representation of roles in object-oriented and concep-
tual modelling. Data and Knowledge Engineering, 35:83-848 (2000)

11. Matteo Baldoni, Guido Boella, L. van der Torre: Modelling the interaction between
objects: Roles as affordances. In Procs. Knowledhe Science, Engineering and Man-
agement, First International Conference, KSEM 2006, Guilin, China, August 5-8,
volume 4092 of Lecture Notes in Computer Science, pages 42-54. Springer, 2006
(2006)

38

Role Representation Model Using OWL and SWRL

Kouji Kozaki, Eiichi Sunagawa, Yoshinobu Kitamura, Riichiro Mizoguchi

The Institute of Scientific and Industrial Research (ISIR), Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 Japan

{sunagawa, kozaki, kita, miz}@ei.sanken.osaka-u.ac.jp

Abstract. Role is very important in ontology engineering. Although OWL has
been available for ontology representation, consideration about roles is not
enough. It can cause to decrease semantic interoperability of ontologies because
of conceptual gaps between OWL and developers. To overcome this difficulty,
this paper presents some consideration for dealing with roles using OWL.

1. Introduction

Ontology is one of the key technologies for realization of the Semantic Web. To
represent web-ontologies, OWL and SWRL have been published as a W3C
Recommendation. Although there are many tools for ontology development in OWL
and SWRL, few of them provide a higher-level framework for conceptualization of
the target world with fundamental discussion. That can cause to decrease semantic
interoperability of ontologies because developers need to devise idiosyncratic patterns
for building their own ontologies for themselves and such patterns will lack
compatibility with others. In this research, we focus on roles [1, 2, 3, 5, 7] as one of
the common and typical semantic primitives in ontology development, and investigate
representation model for dealing with characteristics of roles in OWL and SWRL
justified by fundamental consideration. It contributes to increasing semantic
interoperability of roles by providing an infrastructure for role representation.

This paper is organized as follows. Section 2 clarifies roles treated in this paper and
summarizes characteristics of roles as requirements for representation model. Section
3 evaluates some examples of role representation. After that, role representation
model in this research is presented. Section 4 describes some related work. And,
Section 5 concludes this paper with description about some future work.

2. Characteristics of Roles (Requirements)

2.1 Roles in Our Model

In this section, we summarize fundamental schema of our role model proposed in
previous work [10]. The fundamental scheme of roles at the instance level is the
following (see the lower diagram in Fig. 1): “In Osaka high school, John plays

39

teacher role-1 and thereby becomes teacher-1”. This can be generalized to the class
level (see the upper diagram in Fig. 1): “In schools, there are persons who play
teacher roles1 and thereby become teachers”. By play, we mean “act as”, that is, it
contingently acts as the role (role concept). By “teacher”, we mean a class of persons
who are playing teacher roles.

We introduced a couple of important concepts to enable finer distinction among
role-related concepts: Role concept, Role holder, Potential player and Role-playing
thing. In the above example, these terms are used as “In a context, there are potential
players who can play role concepts and thereby become role-holders.” By context,
we mean a class of things to be considered as a whole. It includes entities and
relations. Role concept is defined as a class of concepts which are played by
something within a context. By potential player, we mean a class of things which are
able to play an instance of a role concept. In many cases2, basic concepts (natural
types) can be used as potential player class. In this example, we say a person can play
an instance of teacher role. And, when a person (an instance of person class) is
actually playing a teacher role, he/she thereby becomes an individual teacher
role-holder. This means the conventional concept, player, is divided into two: One is
potential player (a role-playable thing) which at the class level, means a class of
entities which can play a role of interest and the other is a role-playing thing, which
is an entity playing the role at the instance level. At the same time, the conventional
player link is divided into two kinds: one is playable link (class level) and the other is
playing link (instance level). Role holder class is an abstraction of a composition of
role-playing thing and an instance of role concept, as is shown in Figs. 1 and 2.

Fig.2. shows the conceptual framework of role model we have proposed. There are
two kinds of properties: those of teacher role and person. All of the properties are
divided into three groups. Properties of group A are determined by the definition of
the role concept itself independently of its player. The second group B is shared by
both of the role concept and the potential player. And, the last group C is what the
role concept does not care about. Generally, a role concept is defined by describing its
properties of group A together with some from group B which are shared by a
potential player but come originally from the role concept. Its potential player class is
defined by itself context-independently and is used as a constraint of the potential
player of the role concept. And, the role-holder is defined as a result of the above two
definition operations and eventually includes all of three kinds of properties.
Therefore, the individual corresponding to a teacher role holder is the compound of
these two instances and totally dependent on them.

1 When we mention a particular role, we put “role” after its name.
2 In some case, role holders can be used as potential player class. (see section 2.2 (5))

Fig. 1. Fundamental schema of a role
concept and role holder

Fig. 2. Conceptual framework of a role,
player and role-holder

Context

Teacher
role-1

Osaka
High school

Role-holder

Teacher-1

instance-of

depend on

playing
Role Concept

Role-holder

Role concept

Teacher
role

Context

depend on

Person
Potential player

playable

School

Role-playing thing

John

Class

Instance

Teacher

Context

Teacher
role-1

Osaka
High school

Role-holder

Teacher-1

instance-of

depend on

playing
Role Concept

Role-holder

Role concept

Teacher
role

Context

depend on

Person
Potential player

playable

School

Role-playing thing

John

Class

Instance

Teacher

40

2.2 Requirements for Role Representation Model

In the following items, we summarize characteristics of role concepts. They are
referred to as criteria for evaluating role representation models in the next sections.
(1) Context dependency: Context dependence is critical to describe that roles cannot

be determined without their contexts and entities change their roles to play
according to changes of their contexts.

(2) Identity of Role concepts: Identities of roles is needed to discuss whether two
roles are the same or not. For example, when a person is reinstated in his former
position, is the role he/she is playing now the same as the one he/she has played?
Identities of the roles may answer this question. Furthermore, it enables to
represent a vacant post by an individual of a role which is left un-played.

(3) Distinction between role concepts and role-holders: The distinction between role
concepts and role-holders is represented the conceptual model discussed in section
2.1. It solves counting problem described in (11).

(4) Part-whole relation associated with roles and players: An object, which is
recognized as a whole thing for its part thing(s), can be conceptualized from at least
two aspects. From one aspect, the whole thing consists of constituents which build
up it (e.g. wheels of bicycle). From the other, it has a conceptual structure which
determines roles played by the constituents (e.g. a steering wheel and driving wheel
of bicycle). Hence, in some cases, the whole thing is described as a composition of
the role-playing thing(s) and a set of the roles. This is similar to a description of a
crystal as a composition of “constituents” in the crystal structure and the “crystal
structure” without the constituents. By a context for roles in this paper, we mean a
conceptual structure. It corresponds roughly to particular patterns of relationships
connected with roles by Sowa [9], associations or collaborations in UML.

(5) Compound role concepts: Some role needs to be played together with other roles.
And, in some case, a player stops playing one of the roles, and then, some of others
will automatically be un-played according to interdependency. Such a relation
between roles is discussed in other researches as “requirement” [7] and “roles can
play roles” [8]. In our terminology, “role-holders can play roles”. Such a role
concept depends on multiple contexts. For example, teacher can be recognized not
only as a staff member of a school but also as a person who teaches students. So,
teacher role is interpreted as a compound of school staff role and teaching agent
role. So, here, we can identify two kinds of roles according to the complexity of
their context dependencies: primitive role concepts and compound role concepts.
The former has a single context-dependency and latter has multiple context
dependency. A school staff role in school context and a teaching agent role in
teaching action context are primitive role. A teacher role is a compound role of
them. In order to deal with compound role concepts, here we introduce Role
Aggregation, which is based on decomposition of the compound role and
determination of essential context for it [10].

(6) An individual plays multiple roles: An individual can play multiple roles at the
same time. For example, an instance of Person may play a Teacher Role and a
Husband Role at the same time.

(7) Individuals of role concepts: Individuals of role concepts have the following two
characteristics. (a) They cannot exist if individuals of their contexts do not exist

41

because roles are externally founded [3,7]. (b) Because roles are dynamic [7], they
have two states: played and un-played. (c) They have their own identities
independently of their states and their players and are regarded as defective
instances until played by some individuals.

(8) Individuals of role-holders: An individual of a role-holder is composed of
individuals of a role concept and its player. The identity (ID) of the individual of
the role-holder is a function of the IDs of the role concept (IDRole) and of the player
(IDPlayer). That is, IDRole-Holder=f (IDRole, IDPlayer) in which both arguments are
mandatory for IDRoleHolder, in which “f” is bijective (surjective and injective)

(9) Disappearance of individuals of role-holders: In connection with (8) and (9),
individuals of role-holders disappear when (a) its player disappears, (b) its role
disappears and its player quits playing the role.

(10) Solution of counting problem: For example, the number of passengers taking a
certain means of transportation in one week may be greater than the number of
individual persons traveling with that means during the same period [4,11]. This
problem, so-called Counting Problem, can be solved by separately counting
identities of individuals (players) and that of Passenger role-holders which are
recognized every time that the players play Passenger role. For example, when we
need to count the number of passengers, we use the IDRole holder, and when we need
to count the number of persons, we use IDPlayer instead of IDRole-Holder.

(11) Players of compound role concepts: Individuals of roles as constituents of a
compound role need to be played together by the same individual.

3. Representation of Roles Using OWL and SWRL

3.1. Examples of Role Representation

Fig.3 shows three examples of role representation model in OWL. In this section, we
evaluate each of them according to the requirements for dealing with characteristics
of roles discussed in Section 2.2. Here, we refer a Teacher Role, which depends on a
School as its context, exampled in Section 2.1. Table 1 shows the result of
comparison among the examples. (d) and (d)+ in the table shows representation
ability of the proposed models explained in the next section.
Example 1 (in Fig.3-a): A role as a Teacher is dealt with in teacherOf property. This
property may represent the role which is determined in e.g. “teacher-student relation”.
In this model, however, context dependency of role concepts is implicit (see (1) in the
former section). That causes a critical problem because the context dependency
relates essentially to other characteristics.
Example 2 (in Fig.3-b): This model represents a context of Teacher explicitly.
However, the role is dealt with still in a property. That can complicate management of
identity of roles in its instance model (see (2)). For example, it is difficult to describe
that, after some person quits his/her job as a Teacher, other person fills the same post
as the Teacher. Moreover, this model can not represent state of the role concept:
played or un-played (see (7)-b). It means, for example, a vacant post can hardly be
represented and identified.

42

Example 3 (in Fig.3-c): The hasPart property in this model means School consists of
Teacher(s) here. And a restriction on dependOn property in Teacher class expresses
that a Teacher depends on School as its context. This model is superior to the above
two models because their problems can be solved in this model. However, a Teacher
is classified into a Person in confusion between role concepts, role-holders and basic
concepts (see (3)). Hence, according to the semantics of rdfs:subClassOf, an instance
of a Teacher and its player (an instance of Person) are required to be one and the same
instance. That causes the player cannot stop to be an instance of a Teacher without
stopping to be an instance of a Person, i.e., deletion of an instance of a Teacher brings
with deletion of an instance of a Person (see (9)). Furthermore, in this model, the
Counting Problem cannot be solved because it is necessary for solution of the
problem to distinct role-holders from role concepts (see (3) and (10)).

3.2. Role Representation Model

In Fig. 4(d), we represent our role model in OWL for dealing with characteristics of
roles with fundamental consideration as faithfully as possible. We define some
properties and classes which are indicated by namespace “hozo:”. For example,
hozo:BasicConcept class, hozo:RoleConcept class and hozo:RoleHolder class express
basic concepts, role concepts and role-holders respectively. hozo:playedBy property
represents a relation between classes of role concept and classes of potential player.
This property indicates role-playable thing discussed in 2.1. When a relation between
an instance of role concept and player is represented as hozo:playedBy property, the
property means a playing relation between them. hozo:RoleHolder class represents a
role holder.

Fig. 4(d)+ gives rules which are applied into classes and properties in this role
representation. Theey are written in a human-readable style and can be implemented
in SWRL rules like an example under the table. They are not only applied to instance
models for inference, but also implying our policies on using the classes and
properties in this section for describing characteristics of roles. For example, Rule-03
and 04 require that we describe a role concept with two properties (hozo:dependOn
and hozo:hasStructuralComponent) among the role and a class as its context.

In the following items, we evaluate this model also with reference to characteristics
of roles summarized above. The evaluations are shown in Table 1 as (d) and (d+). In

Fig. 3. Examples of role
representation models

Table 1. Comparison of role representation models

Characteristics of Role Concepts and Role-Holders (a) (b) (c) (d) (d)+
(1) Context dependency - OK OK OK OK

(2) Identity of Role concept - - OK OK OK

(3) Distinction between role concepts and role-holders - - - -/OK OK

(4) Part-whole relation associated with roles and players - -/OK -/OK -/OK OK

(5) Compound role concepts -/OK -/OK -/OK OK OK

(6) An individual plays multiple roles OK OK OK OK OK

(7) Individuals of role concepts - - - -/OK OK

(8) Individuals of role-holders - - OK -/OK OK

(9) Disappearance of individuals of role-holders OK OK -/OK -/OK OK

(10) Solution of counting problem - - - OK OK

(11) Players of compound role concepts -/OK -/OK -/OK - OK

OK:represented, -:not represented, -/OK:represented partially

School PersonhasTeacher

Person
teacherOf

School

Teacher

hasPart
Person

rdfs:subClassOfdependOn

ObjectProperty(teacherOf
domain(Person) range(Person))

ObjectProperty(hasTeacher
domain(School) range(Person))

ObjectProperty(hozo:hasPart)
ObjectProperty(hozo:dependOn)
Class(Teacher partial Person
restriction(hozo:dependOn

cardinarity(1))
restriction(hozo:dependOn

allValuesFrom(School)))
Class(School partial
restriction(hozo:hasPart

someValuesFrom(Teacher)))

(a)

(b)

(c)

43

column (d), the model is evaluated only within the description of this model in OWL.
And, in column (d+), it is done within the descriptions in OWL and SWRL.
(1)Context dependency: The definition of hozo:RoleConcept has a restriction on this

property to have exactly one hozo:dependOn property. It represents all role
concepts depend on another class as their context.

(2) Identity of Role concepts: Roles are conceptualized as classes and are categorized
into hozo:RoleConcept as its subclasses. One of the major contributions by treating
roles as not properties but classes in the syntax of OWL is to make management of
identities of roles easier.

(3) Distinction between role concepts and role-holders: In the same way as roles,
role-holders are categorized into hozo:RoleHolder. And, they are discriminated
from each other explicitly. Role-Holders are described with hozo:inheritFrom. This
property is used for representing that a role-holder inherits definitions from role
concept or its player. But the property does not imply inheritance of identity, and in
that respect hozo:inheritFrom differs from rdfs:subClassOf.

(4) Part-whole relation associated with roles and players: Part-whole relation is
represented by two properties (hozo:hasStructuralComponent and
hozo:hasComponent) and rules for reasoning on them (Rule-01,02 in Table 2).

(5) Compound role concepts: Fig. 5 shows an extended model of the one in Fig. 4 for
role aggregation. In this example, a Teacher Role is a compound role concept
defined by aggregation of a Staff Role and a Teaching Agent Role. A compound
role concept is described by role aggregation using two properties: rdfs:subClassOf
and hozo:aggregateOf. The latter means that, a role concept in its range inherits
some properties from one in its domain.

(6) An individual plays multiple roles: This can be represented by several instances
of role concepts are connected with one and the same individual through
hozo:playedBy.

(d)+ : SWRL Rules for role representation model

hozo:Role
Concept

Teacher
Role

School

Person

hozo:Role
Holder

Teacher

hozo:Basic
Concept

hozo:depend
On

hozo:has
Structural
Component

hozo:inheritFrom

hozo:inheritFrom

hozo:heldBy

hozo:has
component hozo:

heldBy

rdfs:subClassOf
rdfs:subClassOf

rdfs:sub
ClassOf

hozo:playedBy

rdfs:sub
ClassOf

hozo:playedBy(d) ObjectProperty(hozo:dependOn
domain(hozo:RoleConcept))

ObjectProperty(hozo:playedBy
domain(hozo:RoleConcept)
range(hozo:BasicConcept))

ObjectProperty(hozo:inheritFrom
domain(hozo:RoleHolder))

ObjectProperty(hozo:hasComponent
range(hozo:BasicConcept))

ObjectProperty(hozo:hasStructuralComponent
range(hozo:RoleConcept))

Class(hozo:BasicConcept partial
DisjointClasses(hozo:RoleConcept hozo:RoleHolder))

Class(hozo:RoleConcept partial
restriction(hozo:dependOn cardinarity(1))
restriction(hozo:playedBy maxCardinarity(1)))
restriction(hozo:heldBy maxCardinarity(1)))

Class(hozo:RoleHolder partial
restriction(hozo:inheritFrom cardinarity(2))
restriction(hozo:inheritFrom

someValuesFrom(hozo:RoleConcept))
restriction(hozo:inheritFrom

someValuesFrom(hozo:BasicConcept)))
Class(TeacherRole partial hozo:RoleConcept

restriction(hozo:dependOn allValuesFrom(School))
restriction(hozo:playedBy allValuesFrom(person)))

Class(Teacher partial hozo:RoleHolder
restriction(hozo:inheritFrom

someValuesFrom(TeacherRole))
restriction(hozo:inheritFrom

someValuesFrom(Person)))
Class(School partial

restriction(hozo:hasStructuralComponent
someValuesFrom(TeacherRole))

restriction(hozo:hasComponent
someValuesFrom(Person)))

Antecedent Consequent

Rule-01 hozo:playedBy(?x, ?y) ∧
hozo:hasStructuralComponent(?z, ?x) hozo:hasComponent(?z, ?y)

Rule-02 hozo:playedBy(?x, ?y) ∧ hozo:hasComponent(?z, ?y) hozo:hasComponent(?z, ?x)

Rule-03 hozo:structuralComponent (?x, ?y) hozo:dependOn (?y, ?x)

Rule-04 hozo:dependOn (?x, ?y) hozo:structuralComponent (?y, ?x)

Rule-05 hozo:playedBy(?x, ?y) hozo:heldBy(?x, ?z)

Rule-06 hozo:heldBy(?x, ?y) hozo:playedBy(?y, ?x)

Rule-07 hozo:playedBy(?x, ?y) ∧ hozo:heldBy(?x, ?z) hozo:inheritFrom(?z, ?x)

Rule-08 hozo:inheritFrom(?x, ?y) ∧ hozo:RoleConcept(?y) hozo:heldby(?y, ?x)

Rule-09 hozo:aggregateOf(?x, ?y) ∧ hozo:playedBy(?x, ?z) hozo:playedBy(?y, ?z)

Rule-10 hozo:aggregateOf(?x, ?y) ∧ hozo:playedBy(?y, ?z) hozo:playedBy(?x,?z)

Rule-11 aggregateOf(?x, ?y) differentFrom(?x, ?y)

Example：Rule-01
Implies(Antecedent(hozo:playedBy(I-variable(x) I-variable(y))

hozo:hasStructuralComponent(I-variable(z) I-variable(x)))
Consequent(hozo:hasComponent(I-variable(z)) I-variable(y)))

Fig. 4. Role represntation model in Hozo

44

(7) Individuals of role concepts: (a) By a restriction on cardinalities of
hozo:dependOn in hozo:RoleConcept and Rule-03 and 04 in Table 2, it is described
that an individual of a role concept exists always accompany with an instance of its
context. (b) Two states of a role: played or un-played are distinguished by whether
the role has hozo:playedBy or not. (c) Individuals of role concepts are identified as
instances of hozo:RoleConcept.

(8) Individuals of role-holders: An instances of a role holder exists iff hozo:playedBy
holds between an instance of its role concept and one of its player. And, the
instance of role-holder inherits the definitions from instances of the role concept
and the player by hozo:inheritFrom (Rule-05~09 in Table 2).

(9) Disappearance of individuals of role-holders: Restrictions on properties of
hozo:RoleHolder and Rule-05~09 described in (8) mean also that iff their onditions
are not fulfilled, an individuals of role-holder cannot exist.

(10) Solution of counting problem: An instance of a player and one of a role-holder
are distinguished by their own identities. Counting Problem can be solved by
counting them separately.

(11) Players of compound role concepts: Rule-10~12 in Table 2 describe that a
player of a compound role must also play other roles connected with the compound
role by hozo:aggregateOf simultaneously.

4. Related Work

W3C has started up Semantic Web Best Practice and Deployment Working Group for
providing typical semantic primitives of ontologies as Ontology Engineering Patterns.
For example, in the draft on simple part-whole relations3, it is described that “It is
important to realize that making, e.g. Engine a subclass of e.g. CarPart means that all
engines are car parts - which is simply not true”. These problems show exactly why
we need to discriminate roles from the others for development of ontology. In the role
representation model presented in this paper, CarPart and Engine are regarded
respectively as a role concept and as a player of the role. In this way, the role
representation model contributes to assure semantic interoperability of roles.

Guarino and his colleagues aim to establish a formal framework for dealing with
roles [3, 7]. And Gangemi and Mika introduce an ontology for representing a context
and states of affairs, called D&S, and its application to roles [2]. Our notions of role

3 http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

School

Staff
Role

Teaching
Agent Role

Organi-
zation

Person
Teacher

Teaching
Action

Staff

rdfs:subClassOf
rdfs:subClassOf

hozo:dependOn

hozo:has
Structural
Component

hozo:hasStructural
Component

hozo:
aggregateOf

hozo:PlayedBy
hozo:inherit

From

hozo:inherit
From

hozo:inherit
From

hozo:inherit
From

hozo:heldBy

hozo:has
Component

hozo:dependOn

hozo:
PlayedBy

Compound
Role

Concept

Compound
Role

ConceptTeacher
Role

ObjectProperty(hozo:aggregateOf
domain(hozo:RoleConcept)
range(hozo:RoleConcept))

Class(Teaching Agent Role partial hozo:RoleConcept
restriction(hozo:playedBy

allValuesFrom(Person)))
Class(Teacher Role partial Staff Role

restriction(hozo:dependOn
allValuesFrom(School))

restriction(hozo:playedBy
allValuesFrom(Person))

restriction(hozo:aggregateOf
allValuesFrom(

Teaching Agent Role)))

Fig. 5. Representation model for Role Aggregation in Hozo

45

concepts share a lot with their theory of roles; that is, context-dependence,
specialization of roles, and so on. But our role model differs from their work on other
two points. Firstly, we focus on context-dependence of a role concept. So, time
dependence of a role concept is treated implicitly in our framework because an entity
changes its roles to play according to its aspect without time passing. Secondly, we
distinguish role concepts and role holders.

5. Conclusion and Future Work

In this paper, we have discussed characteristics of roles and developed a role
representation model using OWL and SWRL. The model covers major important
aspects of roles and is available to represent role and their characteristics. It not only
contributes to semantic interoperability of ontologies but also affords clues for solving
problems caused by confusion of roles, the counting problem and so on.

As future work, we plan to investigate some other characteristics of roles such as
instance management of roles (when it is created or deleted?), categories of roles, and
so on. The instance management is the most serious among them. In order to clearly
understand playable, playing, depend-on relations, we need to investigate when and
how the related instances appear and disappear in what interdependence.

References

1. Fan, J., Barker, K.,et al.: Representing Roles and Purpose. In Proc. of the International
Conference on Knowledge Capture (K-Cap2001), pp.38–43, Victoria, B.C., Canada (2001)

2. Gangemi, A., Mika, P.: Understanding the Semantic Web through Descriptions and
Situations, ODBASE 2003, Catania, Italy (2003)

3. Guarino, N.: Concepts, attributes and arbitrary relations, Data & Knowledge Engineering 8
(1992) 249-2615.

4. Guizzardi, G. “Agent Roles, Qua Individuals and The Counting Problem”, in Software
Engineering of Multi-Agent Systems, vol. IV, Springer-Verlag, 2006.

5. Guizzardi, G., “Ontological Foundations for Structural Conceptual Models”, Telematica
Instituut Fundamental Research Series, Universal Press, The Netherlands, 2005

6. Loebe, F.: Abstract vs. Social Roles - A Refined Top-Level Ontological Analysis. Papers
from the AAAI Fall Symposium Technical Report FS-05-08, pp.93-100, USA (2005)

7. Masolo, C., Vieu, L., Bottazzi, E., et al.: Social Roles and their Descriptions. In Proc. of the
9th International Conference on the Principles of Knowledge Representation and Reasoning
(KR2004), pp.267–277, Whistler, Canada (2004)

8. Steimann, F.: On the Representation of Roles in Object-oriented and Conceptual Modeling,
Data & Knowledge Engineering 35 (2000) 83-106

9. Sowa, J. F. 1988. Using a lexicon of canonical graphs in a semantic interpreter, in Relational
models of the lexicon (1988)

10. Sunagawa, E., Kozaki, K., Kitamura, Y., Mizoguchi, R.: A Framework for Organizing Role
Concepts in Ontology Development Tool: Hozo, Papers from the AAAI Fall Symposium
Technical Report FS-05-08, pp. 136-143, USA (2005)

11. Wieringa, R. J., Jonge W. de, Spruit P. A.: Using Dynamic Classes and Role Classes to
Model Object Migration. Theory and Practice of Object Systems 1 (1995) 61-83

46

Towards a Definition of Roles for Software
Engineering and Programming Languages

Frank Loebe

Research Group Ontologies in Medicine (Onto-Med)
Institute of Medical Informatics, Statistics and Epidemiology (IMISE)

University of Leipzig, Germany
frank.loebe@imise.uni-leipzig.de

http://www.onto-med.de

1 An Analytic, Ontology-oriented View on Roles

Analyzing the notion of role in the literature yields a plurality of views and
definitions. In [1–3], we study a broad range of approaches in order to interrelate
and harmonize them (where possible) in the context of an ontological framework,
whose central component is the top-level ontology General Formal Ontology
(GFO)1 [4].

A major goal of our work is the provision of a role definition which maxi-
mizes the coverage of applications of the term “role”. To the extent possible this
should be independent from specific application areas, spanning from conceptual
modeling to software engineering to linguistics, etc. This leads to a very general,
yet weak, analytical definition for the notion of role:

Definition 1 A role is an entity which is dependent on two other entities, re-
ferred to as the player of the role and the context of the role.

For instance, a student role requires an individual human being as a player,
and the role arises in a social context, e.g. as established by a particular univer-
sity. In general, entities recognizable as players or contexts are hardly constrained
in our approach. However, the dependence between roles and contexts frequently
involves kinds of part-of relationships.

To render these issues more precisely, a major aspect of our approach must
be noted: we distinguish role individuals and role classes.2 Given this distinc-
tion, role individuals satisfy Definition 1 literally. Player and role individuals are
distinct entities in our approach, and players are characterizable independently
of the role and its context, by means of other kinds of classes, often called nat-
ural types or object types. On the class level, the notion of player class is thus
merely of indirect relevance, because role individuals require player individuals.
However, context classes are strongly intertwined with role classes, where we
advocate that the two exhibit definitional interdependences, cf. also [5].
1 http://www.onto-med.de/ontologies/gfo/
2 We use role classes here to align with object-oriented terminology. In [1–3], role

classes are called role universals.

47

Furthermore, analyses of the ontological categories of typical role contexts
result in different role kinds. According to those categories identified – relations,
processes, and social systems – we distinguish relational, processual and social
roles. Relational and processual roles are unified into abstract roles, because
especially role classes of these two kinds are defined primarily externally, with
respect to certain contexts, as discussed in [1, sect. 2.3]. In contrast, the context
of social roles remains often vague, whereas internal characteristics like typical
behavior, properties, and relations form important aspects exhibited by social
roles. Moreover, in connection with social roles, dynamicity (e.g. that entities
may gain or lose roles) and anti-rigidity are two important notions [5, 6], which
we understand as referring to interrelations of role classes and natural types.

2 Towards a Definition for Software Engineering and
Programming Languages

Theories of programming and software engineering, in different shapes like ob-
ject-, agent-, or aspect-orientation, form a major area of using and applying
roles in computer science. In this context it does not appear reasonable to argue
for the direct adoption of Definition 1 above, which would be too weak while
the broadness of coverage is not necessary. Most occurrences of roles in this
area seem to require properties for roles and involvement in complex systems,
closely resembling social roles from above (a slight generalization to non-social
objects may be required). For a common use of “role” in this area we propose
the following adaptation of Definition 1 as a working hypothesis:3

Definition 2 A role R is an entity which mediates between a context C, com-
prehended as a system or a society of interrelated entities E1, E2, . . ., and
exactly one of these entities, Ei. R depends on both, Ei and C, and it exhibits
specific properties and behavior (which for pure roles are based exclusively
on the context C).

Note that this definition exhibits some similarity to the UML 2.0 definition
of role [7, p. 575]. Several further strengthened definitions may be developed
for specific fields, by incorporating roles into their domain vocabulary which
then allows one to express a number of additional features. For instance, in
object-oriented approaches one may augment Definition 2 with features of the
interconnections between (type) objects and role objects, e.g. that the plays
relation connecting objects with roles is an m:n relation, which should be usable
dynamically at run-time, cf. [6].

Unlike many other approaches, we argue that an explicit dependence of roles
on relations (instead of contexts, systems, etc.) should be avoided if relations
themselves are available as specific modeling elements, because of an imminent
confusion with relational roles (for which a new name may be needed).

3 For pure roles, see [1, sect. 3.10].

48

References

1. Loebe, F.: Abstract vs. social roles – towards a general theoretical account of roles.
Applied Ontology (in press 2007)

2. Loebe, F.: Abstract vs. social roles: A refined top-level ontological analysis. In
Boella, G., Odell, J., van der Torre, L., Verhagen, H., eds.: Proceedings of the
2005 AAAI Fall Symposium ’Roles, an Interdisciplinary Perspective: Ontologies,
Languages, and Multiagent Systems’, Arlington, Virginia, Nov 3-6. Number FS-05-
08 in Fall Symposium Series Technical Reports, Menlo Park (California), AAAI
Press (2005) 93–100

3. Loebe, F.: An analysis of roles: Towards ontology-based modelling. Onto-Med Re-
port 6, Research Group Ontologies in Medicine, Institute for Informatics, University
of Leipzig (2003) Master’s Thesis.

4. Herre, H., Heller, B., Burek, P., Hoehndorf, R., Loebe, F., Michalek, H.: General
Formal Ontology (GFO) – A foundational ontology integrating objects and pro-
cesses [Version 1.0]. Onto-Med Report 8, Research Group Ontologies in Medicine,
Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig
(2006)

5. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., Guarino,
N.: Social roles and their descriptions. In Dubois, D., Welty, C., Williams, M.A.,
eds.: Principles of Knowledge Representation and Reasoning: Proceedings of the 9th
International Conference (KR2004), Whistler, Canada, Jun 2-5, Menlo Park, AAAI
Press (2004) 267–277

6. Steimann, F.: On the representation of roles in object-oriented and conceptual
modelling. Data & Knowledge Engineering 35(1) (2000) 83–106

7. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. 2 edn. Addison Wesley, Reading, Massachusetts (2005)

49

Structure and Function - Roles as the
Connecting Concept

Holger Mügge

Institute of Computer Science III, University of Bonn
Römerstr. 164, 53117 Bonn, Germany

muegge@cs.uni-bonn.de

Abstract. As Riedl states in [1], p. 10, structure and function seem to
be tied together forming a dichotomy1. Function requires structure, and
structure always has a function in the sense that it affects some thing.
We can distinguish two main ways of dealing with both: analyzing struc-
tures to understand functionality and synthesizing them to construct
functionality. Roles play a central role both, as part of structure and as
aggregate of function.

Analysis

Structure is what we as humans perceive first and easily. Function is what we
have to observe consciously. One might say, we perceive structures and explain
functionalities. I try to demonstrate this with a visual example, a piece of a
carpet made of coarse jute threads as shown in figure 1.

Fig. 1. A piece of fabric made of jute

Now let’s observe ourselves in slow-motion while we perceive the material
and start to think about it. One of our first perceptions is probably the regular
arrangement of lighter and darker spots (cf. fig. 2 (a)). The next step might
be to detect a lattice made of strings crossing rectangularly (cf. fig. 2 (b)). A
short moment later, we might recognize that the thread overlappings alternate
in a further regular manner (cf. fig. 2 (c)) and concentrate on this. The latter
is shown in fig. 2 (d) at a larger scale.
1 With the exception of physics on a microscopic level where waves and particles

conceptually glue together.

50

Lattice Structure

(a) Dark and light spots (b) Rectangular lattice
Woven Lattice Structure Overlapping of Strings

(c) Woven strings (d) Alternating overlappings

Fig. 2. Perception of the fabric structure

Our perceptions give rise to role candidates while the structure evolves. First,
the light and dark spots evoke a role, let’s call it ”connections”. Then, the
straight lines of strings we perceive give us a second role candidate (”lines”).
Both ”connections” and ”lines” become role candidates because they occur not
only as unique elements but as repetitive figures and in a regular manner.

Up to now, we consider structure only. Let’s assume, we start to think about
why the jute threads do overlap and in such a regular manner. Now, a more
conscious and analytical process starts leading us eventually to some not so
obvious insights about textile manufacturing. Basically, the overlappings ensure
the cohesion of the fabric. That’s where function comes into play.

Summing up, beside the fabric as a whole, we identified strings playing the
role of basic material, and overlappings2 playing the role of keeping it together.
I want to point out here in (our) analysis roles show up naturally and serve as
anchors of functionality.

But roles are not the only ”source”3 of function, often only a specific cooper-
ation of roles causes the functionality. The function of cohesion is not supplied
by single overlappings. If all vertical strings were lying on top of all horizontal
strings, they would not form a fabric. It is the regular distribution, the alter-
nation of ups and downs of the string crossings in relation to each other that
provides a cohesive fabric. Hence, we must consider relation also as ”source” of
function.

2 One could argue that the overlappings should be modeled as relations between strings
rather than as roles in their own right. But how then could one describe their regular
distribution on a grid?

3 I hesitate to describe roles as ”source” of function. Other words equally mistakable
are: ”location”, ”home”, or ”origin”.

51

Synthesis

Now, we take the opposite direction. Assume, our task is to build a mat out of
some given thin ropes. Without further knowledge this might easily be frustrat-
ing. We depend on the idea of weaving4. There is no incremental and contiguous
way to get to the solution and build a coherent fabric out of strings. We would
probably prefer to agglutinate some leafs together or go hunting bears to get
their skin, if we do know the structure of woven fabric and in particular the role
strings and their overlappings can play.

Of course, many tasks do not require such inventional ideas and can be
achieved instead by combining more obvious solutions. But in principle the sit-
uation is often the same, we need knowledge in form of structures made up of
roles and their interrelations.

Knowledge

The little example presented in the previous sections illustrates two ”facts” about
knowledge: first, gathering already applied knowledge by analysis can be driven
by structural decomposition. The fabric analysis is relatively easy because its
structure can be disclosed visually, a task that inheres human cognitive capa-
bilities. Roles and the relations between them can guide the the observer to
understand the system he investigates.

Second, finding not so obvious solutions often has a footprint in the structure
of the constructed object or system. It is usually difficult to reconstruct this idea
from the solution as in our example. This strongly asks for support knowledge
transfer and persistence by making structures visible, in particular if their not
visual by nature. And it also holds when the idea is not newly invented but
reused.

Roles can provide the vocabulary of the idea behind the solution on an ab-
stract level, that allows for mapping the solution to largely different situations.
E.g. in the fabric example, the role of the threads might be taken by metal
rods , when instead of a mat the system is an iron gating covering a basement
window. Further abstraction of this structure might leave solely a grid. Hence,
abstraction needs to be applied with care, when the resulting structure shall
remain meaningful. Piaget gives in [3] an example of successful abstraction that
leads to a widely applicable structure which still remains significant, namely the
mathematical concept of a group. He calls the process that has led to it reflective
abstraction.

4 ”Archeologists believe that basket making and weaving were probably the first
”crafts” developed by humans. [...] there is evidence of cloth being made in
Mesopotamia and in Turkey as far back as 7000 to 8000 BC.” (cited from [2])

52

Software-Engineering

In most natural sciences analysis is more prominent than synthesis. Not so in
computer science. Here, analysis relates to readability of programs, understand-
ability of designs etc. But these issues apply only afterwards, i.e. when the pro-
gram already has been constructed. Hence, synthesis is the more valued5 issue.

Software typically is ”written” as a large collection of texts. Its structure
is not easy to visualize. Therefore, supporting the perception of structure is an
important task. It must be performed during construction to save the knowledge
of the innovations.

Prominent examples of such structural knowledge in software-engineering are
software patterns (cf. [4]). They typically describe structures, give them a name,
describe the most important roles, and provide examples of their usage. Relations
are often less clearly specified. Beside making the discovery or invention behind
the pattern reusable it allows us to speak in terms of the language it provides
by naming the roles it comprises (cf. [5]).

Some further Statements

– Roles without relations do not form a structure. Single roles are nothing but
abstraction of function.

– Roles are tightly interconnected with symmetry. They provide the variable
parts of structure without changing the structure.

– The structural rules can rely upon relations or roles. In the latter case the
feature of roles as connection between structure and function becomes par-
ticularly obvious6.

References

1. Riedl, R.: Strukturen der Komplexität. Springer, Berlin (2000)
2. Wylly, S.C.: The Art and History of Weaving. Georgia College & State University,

(http://www.faculty.de.gcsu.edu/ dvess/ids/fap/weav.html)
3. Piaget, J.: Le structuralisme. Press Universitaire de France (1968)
4. Gabriel, R.P.: Patterns of Software. Oxford University Press (1996)
5. Unger, B., Tichy, W.F.: Do design patterns improve communication?

In: Workshop on Empirical Studies of Software Maintenance (WESS),
http://hometown.aol.com/geshome/wess2000/metricsandmodels.htm (2000)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley
(1994)

5 In my opinion, not only the relative valuing of analysis and synthesis is in computer
science inverse to most natural sciences, but also the tendency. While e.g. biology in
term of genetics gets more and more a synthesizing flavor, computer science nowa-
days constructs systems that are so large, that analysis becomes more and more
important.

6 A concrete example of the area of software-engineering is the notifier role in the
observer pattern (cf. [6]), which is typically realized by a type’s method.

53

Roles and Classes

in Object Oriented Programming

Trygve Reenskaug

University of Oslo
Department of informatics

PO box 1080 Blindern, 0316 Oslo, Norway.
http://folk.uio.no/trygver

Abstract. The value of a system is greater than the sum of its parts; the sys-
tem organization giving the added value. In this article we show how a sys-
tem description can be split into state and behaviour parts. State is described
in terms of classes and associations; behaviour is described in terms of roles
and connectors. This article focuses on the behaviour part and its most impor-
tant contribution is the use of selection to bind roles to objects and thus to
classes. This leads to a balanced paradigm for describing the state and behav-
iour of object systems.

Key words: object systems, collaboration, role, object, class, data model.

1 Introduction

Objects encapsulate state and behaviour. Object state is represented in the object’s in-
stance variables. Object behaviour is specified in the object’s methods. The execution
of a method is triggered by the object receiving a message. The binding of message to
method is dynamic and depends on the implementation of the receiving object.1

The value of a system is greater than the sum of its parts. The parts have their own
intrinsic value, and the added value stems from the system organization. The properties
of a system are similar to the properties of an unattached object. System state is the ac-
cumulated state of its objects and their associations. System behaviour is triggered by
messages that the system receives from its environment and is accomplished through an
organized process of message interaction between its objects.

Current mainstream programming languages are class oriented; they specify sets of
objects with common properties. Class based languages work well in simple cases; but
they are less than ideal in complex cases where the system as a whole tends to be hidden
among the details of the classes and methods. In this article, we remedy this deficiency
by showing how class centred programming can be augmented by role centred pro-
gramming where system behaviour is specified explicitly in terms of collaborations and
roles.

1. In some cases it also depends on the nature of the sending object.

54

The role is a slippery concept. Roles cannot be defined by their shape or their con-
stitution, only by what they do in the context of a system. The essence of object orien-
tation is that a system of objects collaborate to achieve a common goal. Roles are ref-
erences to participating objects; each role represents the contribution these objects
make towards a system goal

The work reported in this article is part of a project we call BabyUML . The project
goal is to create a programming environment with explicit specification of system state
and behaviour; this article describes the conceptual underpinnings of this environment.
The project motivation and initial ideas are presented in [1]. A project status report will
appear in [2].

Section 2 introduces the collaboration as a context for roles. Section 3 builds an in-
tuition about the nature of roles based on analogies with common usages of the word.
Section 4 defines the concepts of role and class as they are used in BabyUML. Finally,
we conclude in section 5 by summing up how roles and classes give two independent
perspectives on systems of interacting objects.

2 The Collaboration

A system of interacting objects is called a collaboration. Its primary purpose is to de-
scribe how the system works when performing a task. Only those aspects of the objects
that are required for the task need to be described. Thus, details, such as the identity or
precise class of the actual participating objects are suppressed.

The UML collaborations stem from the OOram role modelling technology. We first
used it in our own development work from the early eighties; our tool was demonstrated
in the Tektronix booth at the first OOPSLA in 1986. It was first mentioned in print in
an article by Rebecca Wirfs-Brock [3], and later in a JOOP article [4]. A full treatment
including the parts that have still not made it into UML is in [5]. Egil Andersen gives a
theory of role modelling with special emphasis on system behaviour and model inher-
itance (synthesis) in [6]. We use the term collaboration in the BabyUML project rather
than role model because we are into programming with roles, not merely modelling
with them.

As a collaboration example, consider the Observer pattern from the Design Pat-
terns book [7]. This pattern maintains consistency between related objects called sub-
ject and observers. The subject is an object that holds some state. The ob-
servers are objects that need to be informed about any change to this state.

Figure 1 The Observer collaboration.
Figure 1 show the Observer pattern as a collaboration. There are three roles that repre-
sent the participating objects. The role names are aliases for the objects that will occupy
the respective positions in the structure during an execution.

subject[1]

observer[*]

inputter[1]

55

Figure 2 shows how the Observer collaboration maintain consistency between the
subject and observer objects when the state of the subject object is changed
by a stimulus from an inputter object. The diagram is a BabyUML sequence dia-
gram that describes sequential interaction. A filled arrow denotes message transmis-
sion. A thin, vertical rectangle denotes a method execution. Any number of objects may
be bound to the observer role; they work in lock-step so that their updates appear to
occur simultaneously.

Figure 2 The Observer pattern interaction
Many objects may play the observer role in different contexts and at different times,
but we are only concerned with the objects that play the role in an occurrence of the in-
teraction. A role may be played by many objects and an object may play many roles. In
this example, an object playing the inputter role often also plays the observer
role. The object diagram in Design Patterns [7] mandated this by showing two objects
called aConcreteObserver and anotherConcreteObserver respectively;
the first also playing the inputter role.

Every message has a sender and a receiver, both are equally important from the per-
spective of system design. The collaboration reflects this; there are no messages without
both a sender and a receiver. This in contrast with classes where the handling of re-
ceived messages is specified explicitly, while the sending of messages is hidden within
the methods.

The BabyUML project has UML in its name to indicate that we see UML [8] as a
rich source of alternative and consistent ways of describing system behaviour; the se-
quence diagram of Figure 2 is a specialization of one of them.

3 The Word Role in Common Usage

We will now look at how the word role is generally used and see how this usage can
help us build an intuition about our use of the word in object oriented programming.

Most people will probably associate the word role with a part played by an actor in
a theatrical performance. Oxford [9] gives its origin: "from obsolete French roule ‘roll’,
referring originally to the roll of paper on which an actor’s part was written." (Note that this
means the script, not the performance!) Oxford [10] has a fitting definition: "Actor’s
part; one’s function, what one is appointed or expected or has undertaken to do." This maps
nicely on to our use of roles for naming the participants in a system of collaborating ob-
jects; the role is a reference to an object1; it represents the object’s function, what it is
delegated or expected or is required to do.

observer[*]

setState()

notify()

update()

getState()

inputter[1]subject[1]

56

A collaboration is analogues to a play where its code is analogues to the written dra-
ma. A role is a part in a collaboration just as a role is a part in a play. An Object plays
a role in an execution of a collaboration; an actor plays a role in a particular performance
of a play. An Object is selected to play a particular role at a certain time and in a certain
context. An actor is selected to play a particular role in a particular performance.

An actor interprets a given role in his personal way; other actors do it differently.
An object playing a particular role is selected from a pool of candidate objects. These
objects may play the role differently because they can be instances of different classes
even if they all satisfy the role’s requirements.

Steven Pinker in How the Mind Works [11] claims that the meaning of a system
comes from the meaning of the parts and from the way they are combined. Consider this
very simple example taken from the Pinker’s book:

The baby ate the slug
The slug ate the baby.

Each of the three words "baby", "ate", and "slug" has its own meaning. The two diamet-
rically different meanings arise from the roles played by the words in the sentences. An-
alogically, an object system gets part of its meaning from its objects. It gets the rest of
the meaning from the roles played by the objects and the way those roles are organized.
As an example, consider how the Observer pattern is described in terms of roles in Fig-
ure 1 and Figure 2. The roles tell a part of the story; it is only completed when the roles
are bound to actual objects.

4 Roles and classes -- a Set of Definitions

The value of a system of interacting objects stems partly from the value of its objects
taken separately, and partly from the way the objects are organized to represent system
state and behaviour. Figure 3 illustrates how a system can be organized to realize its be-
haviour. A collaboration describes how the system performs a task. Objects are repre-
sented by the roles they play as they make their contribution towards this task. These
objects are selected at run time from a pool of objects by some selection mechanism.
The selected objects are instances of one or more classes, thus completing the bridge
from the performance of a task via roles to classes.

Figure 3 The bridge from role to class

The binding between role and object is dynamic because an object may play different
roles and a role may be bound to different objects. The result of the selection can depend
on many things such as the nature of the task, the process itself, and the current state of

1. One role can reference several objects simultaneously. They will all serve the same pur-
pose in the Collaboration, but we can assume a single object without loss of generality.

collaboration role objects classes

re
fe

re
nc

e

in
st

an
ce

 o
f

se
lec

t f
ro

m

collaboration role objects classes

re
fe

re
nc

e

in
st

an
ce

 o
f

se
lec

t f
ro

m

57

the objects. Contrast with the static binding between object and class; an object is an
instance of the same class throughout its lifetime. The notions of role and class are or-
thogonal. A role represents the usage of an object while the class represents its construc-
tion.

We will now propose a definition for each of the parts in Figure 3. We end in section
4.5 with a discussion of the dynamic step of binding roles to objects.

4.1 The Object
The object is the atom of object oriented data processing systems. Objects encapsulate
state and behaviour and have the following properties:

• Identity: An immutable property that distinguishes an object from all other ob-
jects.

• State: The object’s attributes and their values.

• Interface: The set of messages that can be received by the object.

• Behaviour: The methods that specify the object's processing of incoming messag-
es. This includes changing the object state and sending messages to itself or other
objects.

• An object is an instance of the same class throughout its lifetime.

4.2 The Role
The concept of role conforms to the common usage of the word:

• A role represents a functionality.

• This functionality can be utilized in its collaboration with other roles.

• A role is bound to one or more objects selected from a universe of objects. These
selected objects are called the players of the role.

• A role delegates the performance of its functionality to its players.

• A role specifies requirements for its players. An important property is the set of
messages that its players must understand.

• The required properties can be implemented by several classes so the players need
not be instances of the same class. Different objects can thus perform the same
role in different ways.

4.3 The Collaboration
A collaboration is a structure of interconnected roles that enables the system to perform
one or more tasks.

• A collaboration describes a structure of collaborating roles, each performing a
specialized function, which collectively accomplish some desired functionality.

• A collaboration structure constitutes a graph where the nodes are roles and the
edges are the message interaction paths.

58

4.4 The Class
A class is a specification of the state and behaviour of objects. In the context of a sys-
tem, an object’s state is part of the system state and an object’s behaviour is part of the
system behaviour.

• The state is specified as a set of attributes.

• The behaviour is specified as a dictionary binding messages to methods where a
method is a piece of executable code.

• The instances of a class are objects. They are all different, but they share the fea-
tures described by the class.

• Classes can be organized in an inheritance hierarchy. This hierarchy is independ-
ent of the message interaction structures defined by the collaborations.

4.5 Binding roles to objects by dynamic selection
The concepts discussed above are all well known and there are well established stand-
ards for applying them to software design. UML 2.x [8] can be taken as a starting point.
Roles are here defined as properties of collaborations in UML; this corresponds well
with our notion of a role. UML class diagrams can be used to model the system data.

The crucial point in Figure 3 is the link between role and objects. It is annotated by
select from; this signifies that objects are dynamically selected from a set of relevant
objects to play the roles. Many different selection mechanisms can be used. We will
here consider two; the first is a very simple one and the second more general.

Consider the Observer pattern discussed in section 2. The pattern in [7] specifies
that the subject has a list of observers, each conforming to the simple interface
needed to play that role. This means that an object playing the subject role must un-
derstand messages such as addObserver() and removeObserver(). The selec-
tion mechanism is very simple; any object that happens to be in the list of observers
will receive the update()-message.

A more elaborate example is based on the Data-Collaboration-Algorithm (DCA)
paradigm, a paradigm that makes the collaboration a first class program element [2].
Figure 4 illustrates it with a variant of the Observer pattern:

• The Data part is responsible for knowing all relevant objects. In a typical appli-
cation of the Observer pattern, they can be model, view, and controller objects in
the MVC paradigm. (In Java, the Data part can be implemented in a class defining
a "micro database", see [2].)

• The Collaboration part is an object that has a method for each role. These meth-
ods dynamically select the appropriate player objects. In principle, the methods
should perform the selection on each call to ensure up-to-date mapping. (In [2],
the nature of the example is such that the result of the query depend on the state
of the objects and this state changes on every execution of the Algorithm).

• The Algorithm part is responsible for managing the flow of messages during an
interaction. The algorithm references roles by name, and delegates to the collab-
oration to bind the roles to objects. In our variant of the Observer pattern, the code
could look like this:

59

for (Observer obs : collab.observers()) {

obs.update();

}

Figure 4 The DCA paradigm (Data-Collaboration-Algorithm)

To make the example more concrete, imagine a Dog Breeders Association that keeps a
registry of its of pedigree dogs. There are also dog shows where dogs receive prizes ac-
cording to their merits. After a show, the registry dog records shall be updated with priz-
es received. We let the subject role be played by an object that represents the show
and let the observer role be played by the registry objects that represent the prized
dogs. The code would first set

subject := show

and then select the observers from the dog registry (here coded in an unspecified
pseudo-language):

define observers as
select prized from dogregistry
where priced is in subject.winnersList

The algorithm can then simply augment each observer with the relevant prizes from
the winnersList.

One advantage of the Observer pattern defined in [7] is that it provides loose cou-
pling between subject and observer. This DCA variant is even looser; the sub-
ject does not know the observers and the observers do not know the sub-
ject. The link between them only exists during the transfer.

observer[*]

setState()

notify()

update()

getState()

inputter[1]subject[1]

subject[1]

observer[*]

inputter[1]

Data

Algorithm

Collaboration

select

same role

60

5 Conclusion

Objects have state and behaviour; they are specified separately in the instance variables
and in the methods. Systems also have state and behaviour; we separate their specifica-
tion in the two paths of shown in Figure 5. System state is specified in a Data Model;
e.g., in the form of a UML class diagram showing the classes with their attributes and
associations. The classes specify the attributes (state) of the objects; the associations are
specified in the Data Model. System behaviour is specified in the system’s collabora-
tions. The collaboration roles specify the requirements that any object playing that role
must satisfy. Finally, the methods in the participating objects are implemented in the
corresponding classes so as to satisfy these requirements.

We see that the attributes of a class stem from the system’s Data Model; while the
methods of a class stem from the behaviour required for its instances.

The system environment is here symbolized by a human user. The way we describe
systems is recursive; the environment could have been external objects and our system
would then have been a subsystem.

Figure 5 Roles and classes in object oriented programming

The architecture of Figure 5 can be implemented in a language such as Java. The
problem is that there is no Java language construct for explicitly specifying roles and
collaborations. The consequence is that their implementation will be scattered around
in the code.

The goal of the BabyUML project is to make system state and behaviour explicit by
extending object oriented programming with additional projections. Programming with
Roles and Classes; the BabyUML Approach [2] reports on the current state of the project. It
includes the results of a Java experiment and the beginnings of an IDE for the specifi-
cation of systems of interacting objects.

Systems are characterized by their state and behaviour. In this article, we have fo-
cused on system behaviour and have shown how it can be described in terms of collab-
orations and roles. We have also shown how roles can be bound dynamically to objects
and this classes. The BabyUML project wants to make system behaviour explicit in the
code, but our current results are fully applicable to system modelling and design.

Collaboration

Role

System Objects statebehavior

Class

reference

select instantiate

Data Model

realize

Mental Model
system stateUse Cases

system behavior

Collaboration

Role

System Objects statebehavior

Class

reference

select instantiate

Data Model

realize

Mental Model
system stateUse Cases

system behavior

61

Steven Pinker in How the Mind Works [11] claims that we have two independent
ways of dealing with complexity; one is grouping things according to their properties,
another is grouping things according to what they are used for. We use the class for the
first grouping and the role for the second. Both classes and roles are essential abstrac-
tions that we need in order to master the complexity of the world round us. In this arti-
cle, we have shown that the role is the atom of system behaviour. The role should, there-
fore, be granted the status of an ontological primitive.

References

[1] Reenskaug, T,: The BabyUML discipline of programming (where A Program = Data +
Communication + Algorithms). SoSym 5,1 (April 2006). DOI: 10.1007/s10270-006-0008-
x. [web page] http://heim.ifi.uio.no/~trygver/2006/SoSyM/trygveDiscipline.pdf

[2] Reenskaug, T.: Programming with Roles and Classes; the BabyUML Approach; A chapter
in Computer Software Engineering Research; ISBN: 1-60021-774-5; Nova Publishers;
Hauppauge NY; 3rd Q. 2007; [WEB PAGE] http://folk.uio.no/trygver/2007/babyUML.pdf

[3] Rebecca J. Wirfs-Brock , Ralph E. Johnson: Surveying Current Research in Object-Ori-
ented Design. Comm ACM 33(9):104-124. September 1990.

[4] Reenskaug, T.; et.al. ORASS: seamless support for the creation and maintenance of object-
oriented systems; JOOP, 5 6 (October 1992); pp 27-41.

[5] Reenskaug et.al.: Working with objects. The OOram Software Engineering Method; ISBN
1-884777-10-4; Manning, Greenwich, CT. 1996; Out of print. Early version in [web page]
http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects.pdf

[6] Andersen, E. P.; Conceptual Modeling of Objects. A Role Modeling Approach. D.Scient
thesis, November 1997, University of Oslo. [web page] http://heim.ifi.uio.no/~trygver/1997/
EgilAndersen/ConceptualModelingOO.pdf

[7] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J,; (GOF) Design Patterns; ISBN 0-201-
63361-; Addison-Wesley, Reading, MA. 1995.

[8] Unified Modeling Language: Superstructure. Version 2.1.1; Object Management Group;
document formal/2007-02-05; [web page] http://www.omg.org/cgi-bin/doc?formal/07-02-
05.pdf

[9] AskOxford. Oxford Dictionaries.[web page] http://www.askoxford.com/?view=uk

[10] Fowler, H. W.; Fowler, F. G.; McIntosh, E.: The Concise Oxford Dictionary of Current
English. Fifth Edition; ISBN 0 19 861107 2; Claredon Press, Oxford 1975.

[11] Pinker, S.; How the Mind Works; ISBN 0-393-04535-8; Norton; New York, NY, 1997.

Acknowledgements

The author is very grateful to James O. Coplien for his continued interest over many
years, his valuable insights, and not least of all, our very challenging and productive dis-
cussions. The author is also grateful to an anonymous reviewer for valuable comments.

62

