
FAKULTÄT II

MATHEMATIK UND

NATURWISSENSCHAFTEN

Institut für Mathematik

ON THE COMPLEXITY OF SCHEDULING

UNIT-TIME JOBS

WITH OR-PRECEDENCE CONSTRAINTS

by

BERIT JOHANNES

No. 2003/50

On the Complexity of Scheduling Unit-Time Jobs

with OR-Precedence Constraints

Berit Johannes

November 2003

Abstract

AND/OR-networks are an important generalization of ordinary precedence constraints in various

scheduling contexts. AND/OR-networks consist of traditional AND-precedence constraints, where

a job can only be started after all its predecessors are completed, and OR-precedence constraints,

where a job is ready as soon as any of its predecessors is completed. Hence, scheduling prob-

lems with AND/OR-constraints inherit the computational hardness of the corresponding problems

with AND-precedence constraints. On the other hand, the complexity status of various scheduling

problems with OR-constraints has remained open. In this paper, we present several complexity re-

sults for scheduling unit-time jobs subject to OR-precedence constraints. In particular, we give a

polynomial-time algorithm for minimizing the makespan and the total completion time on identical

parallel machines. This algorithm can also be applied if the number of available machines does not

decrease over time. In the general case of profile scheduling, scheduling jobs with OR-precedence

constraints to minimize the makespan or the total completion time is strongly NP-hard. Furthermore,

it is not possible to approximate the makespan with a constant ratio, unless P=NP. In contrast to the

makespan and the total completion time, minimizing the total weighted completion time is strongly

NP-hard, even on a single machine.

1 Introduction

We consider the following class of scheduling problems. We are given a directed graph on a set of n

unit-time jobs that represents OR-precedence constraints between these jobs. This graph is also called an

OR-network. If there is a path from node i to node j, then i is called a predecessor of j and j is a successor

of i. If there is an arc from i to j, then i is an immediate predecessor of j and j is an immediate successor

of i, formally denoted by i ≺· j. An assignment of start or completion times to jobs is called a schedule.

The completion time of a job j is denoted by C j. A job j satisfies its OR-precedence constraints if it does

not start before at least one of its immediate predecessors is completed, that is if C j > mini≺·j (Ci)+ 1.

Moreover, there are m identical parallel machines. Each job has to be processed on one machine for

one unit of time. No more than m jobs may be scheduled at the same time. A schedule is feasible if it

assigns a start time to every job, does not process more than m jobs simultaneously at any given time,

and satisfies the OR-precedence constraints for every job. An instance is feasible if it has a feasible

schedule. Note that the precedence graph does not have to be acyclic. Since all jobs have a positive

processing time, it is easy to detect whether a given OR-network has a feasible solution or not, as was

shown by Igelmund and Radermacher [IR83] for the more general AND/OR-networks, where both kind

of precedence constraints coexist (see also Möhring, Skutella, and Stork [MSS]).

In this paper, we consider the objective functions makespan, i.e. the maximum completion

time Cmax := max j C j, the sum of completion times ∑ j C j, and the weighted sum of completion

times ∑ j w jC j, with non-negative weights w j. Following the common scheduling notation [GLLRK79],

we denote the corresponding problems by P |or-prec, p j = 1 |Cmax, P |or-prec, p j = 1 | ∑C j, and

1

1 |or-prec, p j = 1 | ∑w jC j, respectively. OR-precedence constraints are of interest since they are a spe-

cial case of AND/OR-networks. AND/OR-networks find use in a variety of applications like resource-

constrained project scheduling [Sto00, MS00] and assembly and disassembly problems [GM99].

Scheduling of unit-time jobs with AND-precedence constraints is known to be strongly NP-hard for

all three objective functions [Ull75, Law78, LR78]. Of course, these results carry over to AND/OR-

networks. Naturally, the question about the complexity of scheduling jobs with OR-precedence con-

straints has been raised [Woe03]. One might suspect that this problem is at least as hard as scheduling

jobs with AND-precedence constraints, since we also have to decide for each job for which immediate

predecessor it has to wait. However, we will show that, if we want to minimize the makespan or the total

completion time, OR-networks can be reduced to a special case of AND-precedence constraints, making

the corresponding scheduling problems solvable in polynomial time. The presented algorithm and its

analysis also work if the number of available machines does not increase over time. However, the prob-

lem to minimize the makespan or the total completion time becomes strongly NP-hard, if the number of

available machines can vary arbitrarily. Actually, we show that the makespan is not approximable within

a factor better than 3/2, unless P=NP.

On the other hand, we show that the minimization of the weighted sum of completion times for jobs

in OR-networks is strongly NP-hard even on a single machine. This in fact matches the complexity of

the corresponding problem with AND-precedence constraints, for which Lawler [Law78] and Lenstra

and Rinnooy Kan [LR78] showed strong NP-hardness.

2 Minimizing the Makespan and Total Completion Time

In this section, we present a polynomial-time algorithm that produces a schedule that is simultaneously

optimal for the makespan and the total completion time objective. Let us first give an outline of the

algorithm, which proceeds in two steps. We first select for every job j the immediate predecessor for

which it has to wait in the solution. In this way we reduce the precedence graph to a subset of precedence

constraints such that every job has exactly one immediate predecessor. Hence, the new precedence graph

has the form of an outforest and can therefore be interpreted as a set of AND-precedence constraints. We

then apply Hu’s algorithm [Hu61] for scheduling unit-time jobs subject to AND-precedence constraints

in the form of an outtree. For the sake of completeness, we will include a description of Hu’s algorithm

as well, which amounts to scheduling jobs greedily by giving higher priority to jobs which have a longer

tail. Of course, the resulting schedule is also feasible for the original set of OR-precedence constraints.

Theorem 2.1 and Corollary 2.2 ensure that the choice of immediate predecessors in Step 1 of the al-

gorithm results in an instance with AND-constraints of the same objective function value. A detailed

description of the algorithm is given below.

Algorithm 1: Scheduling unit-time jobs in OR-networks

Input : n jobs of unit-time length with OR-precedence constraints,

m machines

Output : feasible schedule Sm that minimizes the makespan and total completion time

(1) Determine the Earliest Start Time Schedule S∞ and construct outforest T ;

(2a) Let the rank f j of job j be its height in the tree T ;

(2b) List-schedule jobs by considering the precedence constraints in T

and give priority to jobs with higher rank f j.

In order to select the immediate predecessors in Step 1, we use the concept of Earliest Start Time

Schedule, which is an optimal but not necessarily feasible schedule since it assumes to have an unlimited

2

number of machines at its disposal. In other words, the restriction of having just m machines is relaxed

and only the processing times and precedence constraints are taken into account. The Earliest Start

Time Schedule S∞ can formally be described as the component-wise minimal schedule such that S∞
j > 0

and S∞
j > mini≺·j S∞(i)+ 1 for all jobs j. It can be determined as follows. For each job j without any

OR-predecessor, we set S∞
j := 0. Every unlabeled job j that has an immediate predecessor with starting

time i receives S∞
j := i + 1, and we introduce a red arc between these two jobs. (If an unlabeled job j

has two or more immediate predecessors of the same starting time, we only introduce a red arc from one

of them to j.) The set of red arcs defines the outforest T of AND-precedence relations. Thus, if there

is an arc (i, j) in T , then the job j can start only after the job i has been completed. Once the subset T

of precedence constraints is determined, we will exclusively work with these precedence relations and

disregard all others.

Clearly, an instance is feasible if and only if there is a feasible Earliest Start Time Schedule, i.e. every

job is labeled with a value S∞
j ; see also [IR83, MSS]. Moreover, S∞

j is a lower bound for the starting time

of job j in any feasible schedule with m machines, for each job j.

Step 2a of the algorithm determines the rank f j of each job j, which will be used as its priority in the

list-scheduling procedure in Step 2b. The higher the rank of a job, the higher its priority. The rank f j of

job j corresponds to the length of the longest chain of job j within the outforest T . Thus, the rank of a

leaf i in T is fi := 1, and for every other job i we have fi := max
i≺·j

f j + 1.

In Step 2b, we actually assign the jobs to the machines in a greedy fashion. Whenever a machine

is available, we schedule an available job with the highest priority, i.e. a job of highest rank among all

unscheduled jobs whose immediate predecessors in T are already completed.

Note that Algorithm 1 produces a feasible schedule Sm and runs in polynomial time.

Theorem 2.1. The schedule Sm returned by Algorithm 1 minimizes the makespan for any feasible in-

stance of the problem P |or-prec, p j = 1 |Cmax.

Proof. Consider the schedule Sm. Let t⋆ be its length. If all machines are busy in all time peri-

ods 1, . . . , t⋆ −1, then Sm is optimal. Let therefore [t −1, t), with t < t⋆, be the first time period when at

least one machine is idle.

Claim 1. There is a job bi scheduled in time period t − i with rank at most i for every i = 1, . . . , t −1.

Claim 1 is easily proved by induction. There is a job b1 scheduled in time period t −1 that does not

have a successor because T is an outforest and at least one machine is idle during period t. Hence, b1 has

rank 1. For i > 1, suppose that all jobs in period t − i−1 have rank at least i+1. Since T is an outforest,

this implies that there are at least m different jobs of rank at least i available for scheduling in the next

period t − (i−1). However, by induction hypothesis, the algorithm has scheduled the job bi−1 with rank

at most i−1 in that period, which is a contradiction. Hence, there is a job bi+1 in period t − (i+ 1) with

rank at most i+ 1.

We will show in the following that all jobs that are completed in S∞ by time t, will be completed

in Sm by time t as well. Suppose there is a job a1 with completion time at most t in S∞, which completes

in Sm only after time t. Since there is an idle machine in Sm between time t − 1 and time t, it follows

that job a1 is not yet available at time t − 1. This implies that there is a predecessor a2 of a1 in T that

completes at time t. Moreover, we know that a2 has rank at least 2.

Claim 2. There is a chain of jobs (at+1,at , . . . ,a2,a1) such that ai completes at time t − i+ 2 and ai is a

predecessor of ai−1 in T (for i = 2, . . . , t +1). In particular, each ai has rank at least i (for i = 1, . . . , t +1).

We have already constructed a1 and a2. Let us more generally assume that we have constructed

a chain (ai,ai−1, . . . ,a2,a1) with these properties for some 2 6 i 6 t. Since bi−1 has a smaller rank

than ai, but is scheduled before ai, it follows that there must be a predecessor ai+1 of ai in T that is being

3

processed in time period t − i+ 1. Thus, we have extended the chain and an inductive argument implies

Claim 2.

Hence, the earliest completion time of job a1 in any schedule that obeys the precedence constraints

is at least t + 1, in contradiction to our assumption that a1 is completed in S∞ by time t. Thus, all jobs

that are completed in S∞ by time t are completed in Sm by time t as well. We can therefore partition the

schedules Sm and S∞ at time t and apply the same argument to all jobs completed after time t.

Let us now consider the objective function sum of completion times. Since all jobs have the same

length and weight, the proof of Theorem 2.1 implies the following result.

Corollary 2.2. Algorithm 1 solves the problem 1 |or-prec, p j = 1 | ∑C j to optimality.

Thus, Algorithm 1 minimizes both objective functions, the makespan and the sum of completion times

simultaneously.

3 OR-Precedence Constraints and Profile Scheduling

In the literature, one is often concerned with the more general profile scheduling problem. Instead of m

machines being available at all times, we are given a so-called profile p, which specifies for all time

intervals [t −1, t) the number pt 6 m of available machines. If pt is non-increasing in t, Algorithm 1 and

its analysis still apply to the problems Pt |or-prec, p j = 1 |Cmax and Pt |or-prec, p j = 1 | ∑C j. However,

if pt is non-decreasing, both problems turn out to be NP-hard.

Theorem 3.1. The problems Pt |or-prec, p j = 1 |Cmax ≤ 2 and Pt |or-prec, p j = 1 | ∑C j are strongly

NP-hard.

Proof. We give a reduction from the MINIMUM COVER problem, which is NP-complete [Kar72]. An

instance can be described as follows. We are given a collection C of subsets of a finite set S and a positive

integer k with k < |C| and k < |S|. The question is whether C contains a cover for S of size k or less,

i.e. a subset C′ ⊆C with |C′| 6 k such that every element of S belongs to at least one member of C′. We

assume w.l.o.g. that there is no element in S that is not contained in one of the sets in C.

We define the corresponding instance of the profile scheduling problem as follows. The number of

available machines in time period 1 is k, and it is |C|+ |S| − k thereafter. For every subset in C we

introduce a C-job and for each element in S we introduce an S-job. If the element of S that corresponds

to the S-job j is contained in the subset associated with the C-job i, we introduce an arc from i to j. The

resulting graph represents the OR-precedence constraints. For the makespan problem, we ask whether

there exists a feasible schedule of length at most 2. For the sum of completion times objective, we are

interested in a schedule of cost at most 2|C|+ 2|S|− k.

Let us assume that the MINIMUM COVER instance has a solution, i.e. there exists a subset C′ ⊆ C

with |C′| 6 k such that every element of S belongs to at least one member of C′. We construct a solution

of makespan 2 to the corresponding scheduling instance as follows. Every C-job whose corresponding

subset in C is also part of C′ is scheduled in the first time period. Since |C′| 6 k there are indeed

sufficiently many machines available for these jobs. In case that |C′| < k we fill the remaining machines

with any unscheduled C-jobs. Since k 6 |C| it is assured that every machine in time period 1 receives

a C-job. All other jobs will be scheduled in time period 2. Since the total number of available spots

equals the number of jobs, every job is assigned a time-period and a machine. Since no C-job has

any predecessor, the precedence constraints for the C-jobs are automatically satisfied. All S-jobs are

scheduled in time period 2 and for every S-job there is an immediate predecessor C-job that completes in

time period 1, since the C-jobs that correspond to the MINIMUM COVER solution are scheduled in time

period 1. Hence, all precedence constraints are satisfied and the schedule is feasible. The makespan of

this schedule is 2, and its total completion time is k + 2(|C|+ |S|− k) = 2|C|+ 2|S|− k.

4

For the other direction, assume that there is a feasible schedule for the constructed scheduling in-

stance of makespan 2 (or of total completion time 2|C|+ 2|S| − k). It follows that all precedence con-

straints are satisfied and all jobs are scheduled in the time periods 1 and 2. Since every S-job has at least

one predecessor C-job, only C-jobs are scheduled in time period 1. Since no job is scheduled after time

period 2, there must be a predecessor scheduled in time period 1 for each S-job in time-period 2. Since

there are only k machines available in time period 1, the C-jobs in that period correspond to a cover of

size k of the elements in S. Hence, the MINIMUM COVER instance has a solution of value at most k.

Note that the profile of the instance constructed in the preceding proof is non-decreasing in t. If one

changes the construction slightly by reducing the number of available machines in time periods 3 to

|C|+ |S| to zero, one obtains the following corollary.

Corollary 3.2. The problem Pt |or-prec, p j = 1 |Cmax cannot be approximated within a factor smaller

than 3/2 for non-decreasing profiles and it does not have a polynomial-time approximation algorithm

with constant performance guarantee for general profiles, unless P=NP.

In fact, even the feasibility problem is NP-complete for general profiles.

4 Minimizing the Total Weighted Completion Time

The problem of minimizing the weighted sum of completion times is strongly NP-hard, even on a single

machine.

Theorem. The problem 1 |or-prec, p j = 1 | ∑w jC j is strongly NP-hard.

Proof. The proof borrows ideas from the NP-hardness proof of 1 |prec, p j = 1 | ∑w jC j by a reduction

from MINIMAL LINEAR ARRANGEMENT due to Lawler [Law78] and Lenstra and Rinnooy Kan [LR78].

Consider the decision version of the MAXIMAL LINEAR ARRANGEMENT problem: given a graph

G = (V,E) and a positive integer K, is there a one-to-one function π : V → {1,2, . . . , |V |} such that

∑
{i, j}∈E

|πi −π j| > K? Let G = (V,E) be the complement of G. For every graph G on n vertices and

every permutation π, the expression ∑
{i, j}∈E

|πi −π j| + ∑
{i, j}∈E

|πi −π j| is constant. Therefore, solving the

MAXIMAL LINEAR ARRANGEMENT in G is equivalent to solving the MINIMAL LINEAR ARRANGE-

MENT problem in G. Garey, Johnson and Stockmeyer [GJS76] showed that the MINIMAL LINEAR

ARRANGEMENT problem is NP-complete. Hence, the MAXIMAL LINEAR ARRANGEMENT problem is

NP-complete as well.

To show the NP-hardness of 1 |or-prec, p j = 1 | ∑w jC j , we give a reduction from MAXIMAL LIN-

EAR ARRANGEMENT. Let a graph G = (V,E) and a positive integer K be given. Let n be the number of

vertices, m the number of edges, and let di be the degree of vertex i, for all i ∈V . We define the following

instance of the scheduling problem 1 |or-prec, p j = 1 | ∑w jC j . For every vertex i ∈ V , we introduce

a chain of t unit-time jobs i1, . . . , it with job ik being an OR-predecessor of job ik+1, k = 1, . . . , t − 1.

All but the last job of the chain have weight 0 and the last job it has weight wit = m− di. For every

edge {i, j} ∈ E , we introduce an edge job J{i, j} with p{i, j} = 1 and w{i, j} = 2. The edge job J{i, j} has two

OR-predecessors, it and jt . Let t = (n+3)m2 and Y = n(n+1)
2

mt − t(K −1)−m2. It is easy to see that in

every optimal schedule the chain i1, . . . , it will be scheduled uninterruptedly for all i ∈V . In our analysis

we therefore consider the chain i1, . . . , it as one job Ji with processing time t and weight wi = m−di for

all i ∈ V . Let Ci and C{i, j} denote the completion time of job Ji and J{i, j}, respectively. The following

Lemma 4.1 provides more useful information about the structure of any optimal schedule.

5

Lemma 4.1. Let J{i, j} be any edge job with the vertex jobs Ji and J j as its OR-predecessors. Assume

w.l.o.g. that Ji completes before J j. There is no vertex job scheduled between Ji and J{i, j} in every optimal

schedule.

Proof. Assume that in an optimal schedule there is a vertex job Jk scheduled between Ji and J{i, j}. By

processing J{i, j} immediately after Ji and consequently delaying all jobs between Ci and C{i, j}, including

job Jk, by one time unit, the objective function value is increased by

∑
{ℓ:Ci<Cℓ<C{i, j}}

wℓ − 2 ∑
{ℓ:Ci<Cℓ<C{i, j}}

pℓ < ∑
ℓ∈V∪E

wℓ−2pk < ∑
ℓ∈V∪E

m−2t = nm + m2 −2(n+ 3)m2 < 0 .

This contradicts the optimality of the schedule. Note that the resulting schedule is feasible since J{i, j} is

scheduled after one of its OR-predecessors.

Suppose that Ji is scheduled in position πi among the vertex jobs. Thus we have

tπi 6 Ci 6 tπi + m ,

t|πi −π j| 6 |Ci −C j| 6 t|πi −π j|+ m ,

min{Ci,C j} < C{i, j} 6 min{Ci,C j}+ m .

Hence t|πi −π j| 6 |Ci −C j| = −2min{Ci,C j}+Ci +C j 6 −2C{i, j} + 2m +Ci +C j , and

2C{i, j}−Ci −C j > 2min{Ci,C j}−Ci −C j = −|Ci −C j| > −t|πi −π j|−m .

If ∑
{i, j}∈E

|πi −π j| > K, then we have

∑w jC j = m ∑
i∈V

Ci + ∑
{i, j}∈E

(2C{i, j}−Ci −C j)

6 m ∑
i∈V

(tπi + m)− ∑
{i, j}∈E

(t|πi −π j|−2m)

=
n(n+ 1)

2
mt +(n+ 2)m2 − t ∑

{i, j}∈E

|πi −π j|

6
n(n+ 1)

2
mt − t(K −1)−m2 = Y .

If ∑
{i, j}∈E

|πi −π j| 6 K −1, then we have

∑w jC j = m ∑
i∈V

Ci + ∑
{i, j}∈E

(2C{i, j}−Ci −C j)

> m ∑
i∈V

tπi − ∑
{i, j}∈E

(t|πi −π j|+ m)

=
n(n+ 1)

2
mt −m2 − t ∑

{i, j}∈E

|πi −π j|

>
n(n+ 1)

2
mt − t(K −1)−m2 = Y .

This completes the proof.

6

Acknowledgements The author would like to thank Gerhard Woeginger for posing the question about

the complexity of the problem P |or-prec, p j = 1 |Cmax , and Martin Skutella for bringing it to her atten-

tion. Furthermore, the author is also grateful to Gerhard Woeginger for pointing out the application of

Algorithm 1 and its analysis to profile scheduling.

References

[GJS76] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph

problems. Theoretical Computer Science, 1:237–267, 1976.

[GLLRK79] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and

approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete

Mathematics, 5:287–326, 1979.

[GM99] M. H. Goldwasser and R. Motwani. Complexity measures for assembly sequences. Inter-

national Journal of Computational Geometry and Applications, 9:371–418, 1999.

[Hu61] T. C. Hu. Parallel sequencing and assembly line problems. Operations Research, 9:841–

848, 1961.

[IR83] G. Igelmund and F. J. Radermacher. Algorithmic approaches to preselective strategies for

stochastic scheduling problems. Networks, 13:29–48, 1983.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.

Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum Press,

New York, 1972.

[Law78] E. L. Lawler. Sequencing jobs to minimize total weighted completion time subject to

precedence constraints. Annals of Discrete Mathematics, 2:75–90, 1978.

[LR78] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling under precedence

constraints. Operations Research, 26:22–35, 1978.

[MS00] R. H. Möhring and F. Stork. Linear preselective policies for stochastic project scheduling.

Mathematical Methods of Operations Research, 52:501–515, 2000.

[MSS] R. H. Möhring, M. Skutella, and F. Stork. Scheduling with AND/OR precedence con-

straints. SIAM Journal on Computing. To appear.

[Sto00] F. Stork. A branch-and-bound algorithm for minimizing expected makespan in stochastic

project networks with resource constraints. Technical Report 613, Technische Universität

Berlin, Institut für Mathematik, Berlin, Germany, 1998, revised July 2000.

[Ull75] J. D. Ullman. NP-complete scheduling problems. Journal of Computer and System Science,

10:384–393, 1975.

[Woe03] G. Woeginger. Personal communication with M. Skutella, February 2003. Technische

Universität Berlin, Berlin, Germany.

7

Reports from the group

“Combinatorial Optimization and Graph Algorithms”

of the Department of Mathematics, TU Berlin

2004/08 Marco E. Lübbecke and Jacques Desrosiers: Selected Topics in Column Generation

2003/49 Christian Liebchen and Rolf H. Möhring: Information on MIPLIB’s timetab-instances

2003/48 Jacques Desrosiers and Marco E. Lübbecke: A Primer in Column Generation

2003/47 Thomas Erlebach, Vanessa Kääb, and Rolf H. Möhring: Scheduling AND/OR-Networks on Identical

Parallel Machines

2003/43 Michael R. Bussieck, Thomas Lindner, and Marco E. Lübbecke: A Fast Algorithm for Near Cost Optimal

Line Plans

2003/42 Marco E. Lübbecke: Dual Variable Based Fathoming in Dynamic Programs for Column Generation

2003/37 Sándor P. Fekete, Marco E. Lübbecke, and Henk Meijer: Minimizing the Stabbing Number of Matchings,

Trees, and Triangulations

2003/25 Daniel Villeneuve, Jacques Desrosiers, Marco E. Lübbecke, and François Soumis: On Compact Formu-

lations for Integer Programs Solved by Column Generation

2003/24 Alex Hall, Katharina Langkau, and Martin Skutella: An FPTAS for Quickest Multicommodity Flows

with Inflow-Dependent Transit Times

2003/23 Sven O. Krumke, Nicole Megow, and Tjark Vredeveld: How to Whack Moles

2003/22 Nicole Megow and Andreas S. Schulz: Scheduling to Minimize Average Completion Time Revisited:

Deterministic On-Line Algorithms

2003/16 Christian Liebchen: Symmetry for Periodic Railway Timetables

2003/12 Christian Liebchen: Finding Short Integral Cycle Bases for Cyclic Timetabling

762/2002 Ekkehard Köhler and Katharina Langkau and Martin Skutella: Time-Expanded Graphs for Flow-

Dependent Transit Times

761/2002 Christian Liebchen and Leon Peeters: On Cyclic Timetabling and Cycles in Graphs

752/2002 Ekkehard Köhler and Rolf H. Möhring and Martin Skutella: Traffic Networks and Flows Over Time

739/2002 Georg Baier and Ekkehard Köhler and Martin Skutella: On the k-splittable Flow Problem

736/2002 Christian Liebchen and Rolf H. Möhring: A Case Study in Periodic Timetabling

Reports may be requested from: Sekretariat MA 6–1

Fakultt II – Institut fr Mathematik

TU Berlin

Straße des 17. Juni 136

D-10623 Berlin – Germany

e-mail: klink@math.TU-Berlin.DE

Reports are also available in various formats from

http://www.math.tu-berlin.de/coga/publications/techreports/

and via anonymous ftp as

ftp://ftp.math.tu-berlin.de/pub/Preprints/combi/Report-number-year.ps

