
Chi Ching Chi, Mauricio Alvarez-Mesa, Ben Juurlink

Low power high efficiency 
video decoding using general 
purpose processors

Article, Postprint version
This version is available at http://dx.doi.org/10.14279/depositonce-6343

Suggested Citation
Chi,  C. C.; Alvarez-Mesa, M.; Juurlink, B.: Low-Power High-Efficiency Video Decoding using General-Purpose 
Processors. - In: ACM Transactions on Architecture and Code Optimization - (TACO). - ISSN: 1544-3973 
(online), 1544-3566 (print). - 11(2015), 4. - article nr. 56. - DOI: 10.1145/2685551. (Postprint version is cited. 
Page number differs.)

Terms of Use
© ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for 
your personal use. Not for redistribution. The definitive version was published in ACM 
Transactions on Architecture and Code Optimization - (TACO), {VOL 11, ISS 24 (2015)} https://
dl.acm.org/citation.cfm?doid=2695583.2685551.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Low Power High Efficiency Video Decoding using General Purpose
Processors

CHI CHING CHI, Technishe Universität Berlin

MAURICIO ALVAREZ-MESA, Technishe Universität Berlin

BEN JUURLINK, Technishe Universität Berlin

In this paper we investigate how code optimization techniques and low power states of general purpose

processors improve the power efficiency of HEVC decoding. The power and performance efficiency of the use

of SIMD instructions, multicore architectures, and low power active and idle states are analyzed in detail for

offline video decoding. In addition, the power efficiency of techniques such as “race to idle” and “exploiting

slack” with DVFS are evaluated for real-time video decoding. Results show that “exploiting slack” is more

power efficient than “race to idle” for all evaluated platforms representing smartphone, tablet, laptop and

desktop computing systems.

Categories and Subject Descriptors: B [Hardware]: Power estimation and optimization; C.4 [Computer

Systems Organization]: Performance of systems; C.1.4 [Computer systems organization]: Parallel ar-

chitectures; D.4.8 [Operating Systems]: Performance

General Terms: HEVC, H.265, parallel, multicore, SIMD, DVFS, low power, UHD

Additional Key Words and Phrases: Video decoding, parallel processing, low power computing

1. INTRODUCTION

Recent demands to support higher video resolutions such as 4k or Ultra HD (UHD) in
consumer video devices have driven the video codec development towards higher com-
pression rates. To meet these demands the Joint Collaborative Team on Video Coding
(JCT-VC) of ITU-T and ISO/IEC has developed a new video coding standard, referred
to as HEVC, aiming to reduce the bitrate of the H.264/AVC video codec by another
50% [Sullivan et al. 2012].

It has been demonstrated that by using SIMD and multithreading it is possible
to achieve very high performance for HEVC decoding on recent computer architec-
tures [Bossen et al. 2012; Chi et al. 2014; Bross et al. 2013]. As a result, much higher
than real-time frame rates can be achieved even for UHD resolution videos on com-
modity desktop and mobile processors. While achieving high performance for video
decoding can be beneficial for some applications, for instance, in offline transcoding
and video analytics applications, video decoding is mostly utilized as a real-time ap-

This work is supported by the European Community’s Seventh Framework Programme [FP7/2007-2013]
under the LPGPU Project (www.lpgpu.org), grant agreement No. 288653.
Author’s addresses: Technische Universität Berlin. Institut für Technische Informatik und Mikroelektronik
(TIME). Sekretariat EN 12. Einsteinufer 17. D-10587 Berlin. Germany.



plication in video playback. In video playback a steady frame decoding rate, measured
in frames per second, is required as compared to decoding the full sequence as fast as
possible in offline decoding scenarios. If the processor have more performance than re-
quired for real-time operation the unused capacity can be employed to improve power
efficiency.

In the last years power consumption has become one of the main design consider-
ations of computing platforms. To address this concern processor architectures and
offchip memory have incorporated many low power states, which allow the proces-
sor to consume less energy when idle or at lower activity levels. On recent proces-
sors this has resulted primarily in so called P-States and C-states, which control the
power consumption at lower processor activity. With these power states achieving the
highest performance also improves the power efficiency. For real-time video decoding,
increased performance allows the processor to go longer and more frequent in lower
power C-states, resulting in overall less power consumption. Alternatively, lower power
can be achieved when more than real-time performance can be reached at the nominal
frequency by reducing the clock frequency, which allows the processor to run on a more
efficient voltage-frequency operating point (P-state).

In research these strategies often called “race to idle” [Steigerwald 2011] and “ex-
ploiting slack” with dynamic frequency voltage scaling (DVFS) [Chandrakasan et al.
1992; Kaxiras and Martonosi 2008]. Several works have shown that DVFS benefits
power efficiency [Simunic et al. 2001; Choi et al. 2002; Gu et al. 2006; Liang et al.
2013] for multimedia applications, while others claim that due to diminishing benefits
in future process technologies DVFS will disappear in favor of idle states [Le Sueur
and Heiser 2010; 2011] or that only specialized cores will deliver the required power
efficiency [Esmaeilzadeh et al. 2012; Hardavellas 2012]. Clearly there are multiple
ways towards higher power efficiency, but the applicability of the approaches depends
on the particular platform and application.

The goal of the paper is to give more insight on which strategy achieves the best
power efficiency for HEVC video decoding, both in real-time and offline decoding
modes. This is performed through the following contributions:

— The power efficiency impact of code optimization techniques, such as SIMD and mul-
tithreading, and the use of low power states is investigated for offline and real-time
HEVC decoding.

— The the two strategies “race to idle” and “exploiting slack” are compared for real-time
video decoding.

— The effectiveness of the current software stack controlling the processor low power
modes is investigated.

— The evaluation is performed on systems ranging from ultra mobile platforms to PCs,
and focuses on the power consumption of the processor (cores and uncore) and off-
chip memory.

This paper is organized as follows: Section 2 provides an overview of architectural
low power states available on modern processors, and present a description of how
these low power states are exploited by the operating system. Section 3 presents re-
lated work in low power software video decoding. Section 4 discusses the opportunities
for lower-power video decoding for both offline and real-time scenarios. In Section 5
the experimental setup is presented, detailing the hardware platforms, the software
stack, and the test sequences utilized in the experiments. Section 6 presents the power
characteristics of the platforms under idle and load, followed by the power and power
efficiency results in Section 7 for both offline and realtime scenarios. Finally, conclu-
sions are drawn in Section 8.



2. LOW POWER MODES AND OS SUPPORT

In this section we perform a review of the low power modes available in recent micro-
processors, and also present a description of the current operating system support for
using these low power modes.

2.1. Architectural Low Power States

Modern GPPs incorporate various low power states. These states can generally be
classified in two kinds, states that reduce power consumption when the processor is
executing instructions, and states that reduce the power when the processor compo-
nents are idle. Techniques such as DVFS and asymmetric processing belong mainly to
the former kind, while clock gating and power gating belong to the latter kind. Each of
these techniques influences the total power consumption of the processor Pcpu which
at a high level is given as

Pcpu = αCV 2

ddf
︸ ︷︷ ︸

Pdynamic

+ IscVdd
︸ ︷︷ ︸

Pshortcircuit

+ IleakVdd
︸ ︷︷ ︸

Pleakage

, (1)

where α represents the switching activity, C is the circuit capacitance, Vdd is the supply
voltage, f is the operating frequency, Isc is the short circuit current, and Ileak is the
leakage current [Chandrakasan et al. 1992; Li et al. 2013].

2.1.1. DVFS. A processor supporting DVFS has multiple voltage-frequency operating
points and can dynamically change the operating point. The technique exploits the fact
that the supply voltage can be lowered at lower frequencies [Burd et al. 2000]. Low-
ering the supply voltage reduces both the static and dynamic power, and in addition
the power dissapation is proportional to the square of the supply voltage. Because the
frequency is lowered a tradeoff with performance has to be made, but in many realtime
applications, including video playback, rarely the maximum performance is required
at all times. Deciding which voltage-frequency point to use is mostly controlled by the
operating system. On recent Intel processors the control of the higher frequencies have
moved to hardware under the feature called Turboboost [Intel 2008]. These processors
enter the Turboboost frequencies when when the thermal and power threshold are not
exceeded.

2.1.2. Clock Gating. Clock gating [Kathuria et al. 2011] is also widely used in modern
processors. This technique lowers the dynamic power consumption when the processor
is idle. Clock gating stops the propagation of the clock signals to the processor compo-
nents, which essentially reduces the dynamic power (Pdynamic) to zero. This technique
can be implemented by placing a latch and an AND-gate between the clk in and the
clk signal. A clk enable signal can then be used to propagate or stop the clocks. Clock
gating can be applied on many levels of the processor, ranging from functional units to
complete cores. In its basic form clock gating has a relatively short transition latency,
as the clock generation is still active and simply stopped from reaching the compo-
nents. In an extended form also the phase-locked-loop (PLL) that generates the clock
is turned off to reduce power consumption further. The drawback is the longer wake-up
latency, since the PLL must restabilize to the correct frequency.

2.1.3. Power Gating. Power gating reduces the power consumption even more than
clock gating and also reduces the static power consumption to virtually zero. This is
accomplished by placing a special low leakage power gate transistor between the sup-
ply voltage and the processor components. In a power gated state the core is turned off
and consumes near zero power. Power gating is used in state-of-the-art processors, and
with the more significant leakage power of smaller process technology, it has become



Table I. C-states for Intel Haswell processors. States are additive, meaning higher C-states contain the previous
ones in their behavior

Core Package

C-State Description C-State Description

C0 Core is execution code C0 One or more cores are executing code
C1 Core is halted most clocks are

stopped
C3 L3 may be flushed and power gated,

memory in self-refresh, some uncore
clocks stopped, some voltages reduced

C1E Voltage reduced to Pn C6 All uncore clocks stopped
C3 Core L1/L2 flushed to L3, PLL

stopped
C7 L3 flushed and power gated, more

uncore voltages reduced
C6-C10 Core state saved and power gated C8 Most uncore power gated

C9 FIVR in low power state
C10 FIVR turned off

essential for achieving low idle power without sacrificing clock speed. The transition la-
tency of power gating is larger than clock gating, because in addition the architectural
state must be saved and restored. Also power gating must be performed gradually to
control in-rush and out-rush currents [Kosonocky 2011].

2.1.4. Asymetric Cores. Using asymmetric cores, also known as single ISA heteroge-
neous multicore [Kumar et al. 2004], has shown good potential for improving power
efficiency when complex cores cannot be utilized fully. The first actual implementation
of asymmetric cores to save power in GPPs was introduced in 2011 by ARM under
their big.Little [Greenhalgh 2011] design. In this approach several high performance
cores are coupled with lower performance low power cores on the same die. Different
from the original idea these approaches do not target micro-architectural slack, but are
implemented to extend the effectiveness of DVFS at lower performance requirements.

DVFS is effective in improving energy efficiency until it reaches a voltage frequency
point that is close to the threshold voltage, afterwhich the energy efficiency decreases
again [Jain et al. 2012]. To improve energy efficiency beyond this point a processor that
has been optimized for a lower performance level must be used instead. A drawback of
asymetric cores is that operating systems must implement core migration and apply a
cost model for each different type of processor.

2.2. Operating System Power Management

The usage of the architectural power states is mainly decided by the operating system.
In this section we provide an overview of the most important interfaces and drivers
controlling these states for operating systems using the Linux kernel.

2.2.1. ACPI. The Advanced Configuration and Power Interface (ACPI) stan-
dard [Brown 2005] specifies among others the power states for the device on several
levels. In the global states the state of the device is specified such as working, hi-
bernating, and standby. In the working state the processor can be in different power
states referred to as C-states. In C0 the processor is executing code, C1 the processor
is halted, C2 the clocks are stopped, and in C3 the cache is additionally flushed and
does not have to respond to snoop requests. Higher C-states save more power but have
a higher transition time.

In recent Intel processors more C-states are defined than in ACPI to further reduce
power. Additionally, Intel also defines C-states for the package, which reduce the power
of the components in the uncore (L3 cache,DRAM controller, system agent, etc). These
package states can be entered if all processing cores are in the same or higher C-states.
A short overview of the core and package C-states is listed in Table I



In C0, the active state, the cores can be in different DVFS points which in ACPI is
referred to as P-states. In P0 the core is in the highest performance state, while in Pn
the core is in the lowest active performance state with the lowest available frequency
and voltage. Modern processors define m any DVFS p oints, o ften o ne i s available for
each frequency multiplier.

In recent Intel processors also a feature called Turboboost is available. This feature
allows, provided the core is P0 state, to dynamically overclock itself when there is
power and thermal headroom. For big.Little ARM devices the low performance P-states
also act as an interface for switching to the Little cores. The P-states of the Little cores
are mapped to the low performance P-states, and when such a P-state is selected a
switch from the big cores to the Little cores is made or vice versa.

Both C-states and P-states have to be controlled by the operating system. A so-called
governor decides which C-state or P-state to enter. In the next sections an overview is
given on how this is performed in Linux (3.11 and higher).

2.2.2. Cpuidle Governors. The cpuidle subsystem [Pallipadi et al. 2007] controls the
usage of the available C-states. Of the two available idle governors, menu and ladder,
the former is more commonly used. To determine which C-state to enter a balance
must be struck with transition latency, energy cost, and wakeup latency. The menu
governor predicts the length of the next idle based on previous idle periods and based
on this prediction selects the best C-state to transit to.

For each processor the characteristics of the C-states are different. For this reason
vendor specific cpuidle drivers are contributed to Linux. In addition to acpi idle, for in-
stance intel idle and exynos idle are available for Intel and Samsung ARM processors,
respectively. For intel processors the C-state is selected if the idle governor predicts an
idle period that is roughly 3× longer than the wakeup latency. The processor itself can
still demote and promote these requests based on its own internal control algorithms.

2.2.3. DVFS Governors. The cpufreq subsystem [Pallipadi and Starikovskiy 2006] con-
trols the usage of the available P-states. Depending on the driver, several governors
are available of which the dynamic ones commonly base their decision on the observed
processor load.

Using the acpi freq driver, the powersave, conservative, ondemand, performance,
and userspace governors are available. Both conservative and ondemand are dynamic
load-based governors, but ondemand responds to load changes more aggressively. The
exynos cpufreq driver provides in addition the interactive governor. The interactive gov-
ernor acts like ondemand, and in addition also switches to the highest performance
state when an interrupt from a user interface sensor is received, making devices more
responsive.

Recently, Intel provides the intel pstate driver, which only exposes the powersave and
performance governors to generalize the P-state control. The intel pstate powersave
governor acts like the acpi freq ondemand governor, and allows the user to map the
usable frequency range to a relative performance interface. Based on the load, a PID
control algorithm is used to select the target performance level.

3. RELATED WORK

Several techniques have been proposed to use DVFS for reducing energy in video de-
coding applications [Choi et al. 2002; Ma et al. 2011; Akyol and van der Schaar 2008;
Mesarina and Turner 2003]. Most of them are based on a model that predicts the com-
plexity of a decoding unit (usually a frame) and uses the prediction to adjust the fre-
quency and voltage of the processor in order to meet the frame deadlines. In [Choi et al.
2002] the authors present a DVFS algorithm for MPEG-2 decoding using a prediction
model based on frame history. The technique was implemented on an StrongARM pro-



cessor and allows to save more than 50% CPU energy. In [Ma et al. 2011] authors
proposed a similar complexity model for H.264 decoding and used it to predict and
adapt the processor frequency. The system was implemented for Intel mobile X86 and
TI ARM Cortex A8 processors resulting in power savings of 73% and 55% respectively,
when compared to ondemand governors.

Some other works have proposed a combination of DVFS and dynamic idle states
exploitation for video decoding [Simunic et al. 2001; Akyol and van der Schaar 2008].
In this case, a complexity prediction model and processor energy model is extended to
take into account also the power at idle states. In [Akyol and van der Schaar 2008]
authors present a DVFS technique that also includes a video decoding buffer to reduce
the total processing requirements, and takes into account the frame structure of the
encoded video for making task scheduling and DVFS decisions.

Compared to our work most of the previous studies only take into account power
consumed by the CPU, excluding memory and uncore modules, which can have a big
impact in the total power consumption. In a similar way, most of the related works
only take into account dynamic power, ignoring the static power component which has
become more relevant in recent processor technologies. The main difference with the
previous work is that in this paper we take an analysis of power consumption of a
state-of-the-art video codec (HEVC) using on several recent processors and includes
the CPU (or core) power as well as the memory and “uncore” power, giving a more
complete picture of the total power consumption.

4. LOW POWER HEVC DECODING

In this section we describe the power saving techniques that can be applied to two
HEVC decoding application scenarios. The first one is offline decoding where the de-
coding is unconstrained by timing, and the second one is real-time decoding where
frames must be delivered at a constant rate. In both use cases increased performance
offers more opportunities to the power saving techniques.

Performance improvements through general code optimizations and the use of SIMD
instructions are likely to increase the power efficiency, because the performance im-
provements can be large and these code optimizations typically do not significantly
contribute to the dynamic power consumption of the core. The effect of multithreading
and using the low power states of a platform on the power efficiency are, however, less
obvious and different for the two application scenarios. To maximize the power effi-
ciency for offline decoding we only have to consider the power efficiency of the active
states as their is no idle time. In offline decoding the processor can be fully loaded to
decode frames as fast as possible, and the highest power efficiency can be achieved by
using the most efficient voltage-frequency point and processor core count of a given
processor/system.

Maximizing the power efficiency for real-time performance is more complex as the
idle power consumption has to be considered in addition to the active power consump-
tion. On a modern processor the idle power depends heavily on which C-state it resides
in. A deeper C-state can be entered when a longer idle period is predicted, saving more
power. To reduce the power consumption for real-time decoding one can either finish
the decoding sooner using more cores and/or higher frequency in order to idle longer
and deeper (“race to idle”), or try to exploit the idle time by running at a lower fre-
quency (“exploiting slack”).

Additionally, for real-time performance the frames of a video sequence have to be de-
livered at a constant rate. The complexity of decoding a frame, however, varies heavily
from frame to frame. To compress a video sequence more efficiently not all coded pic-
tures in a video sequence contain the same number of bits. For instance, frames that
are used as reference frames are coded with higher quality and more bits to serve as



0 50 100 150 200 250 300 350 400 450 500
0

20

40

Frame

F
ra

m
e
ti

m
e

(m
s)

Tbuf1

Tbuf4

Tbuf8

Fig. 1. Frame times of a 7Mbps 1080p50 sequence. Without playback buffers even high performance pro-
cessors cannot guarantee real-time playback.

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

1s

R
e
a
d

y
b
u

ff
e
r

Frame

Fig. 2. Buffer occupancy over time when burst decoding a 7Mbps 1080p50 sequence. In the red periods the
processor can run at full load, while between them frames only need to be released.

a good prediction. Moreover, even when frames have a similar coded size the decoding
complexity can still be quite different due to a different use of coding tools. This leads
to high variability in decoding frame time even within a video sequence.

In Figure 1 the frame times are plotted of decoding the 1080p 50Hz sequence Bas-
ketballDrive on an Intel Haswell@2.3GHz processor with a single core. The average
frame time is 12.76 ms (78.4 fps). Periodic spikes can be observed for complex frames
with a maximum of decoding time of 46.47 ms. To achieve a real-time performance of
50 fps, a new frame must be ready every 20 ms, which would not be possible in this
case even on a high performance processor. Addressing this issue with more computing
resources would be wasteful as the average frame rate is more than sufficient. Instead
in video players a display buffer is used to account for this variability. Figure 1 shows
that applying a display buffer of 4 (Tbuf4) and 8 (Tbuf8) pictures reduces the spikes
considerably, providing more opportunity to exploit lower power active states of the
processor.

Buffering also improves the effectiveness of the deeper idle states. Because frames
have to be decoded periodically, finishing early might not allow the processor to enter
a deep idle state, because the next wakeup is predicted to occur soon. To increase the
deeper C-state residency, a burst buffer could be used to allow the processor to pre-
decode a longer part of the sequence (e.g. 1-second) at full speed and then go to near
idle until the buffer is almost empty. In the (mostly) idle time only periodically a frame
is released from the buffer. When the number of frames in the buffer drops below some
threshold, the next burst decode is triggered. Figure 2 illustrates the buffer occupancy
over time for burst decoding.



Table II. Architecture parameters of the platforms used in the evaluation.

Series Model Cores SMT
Cache Memory

Private Shared Type Bus Size

Haswell i5-4670T 4 - 32kB/32kB/256kB 6MB DDR3L-1600 2x64b 8GB
Haswell ULT i5-4200U 2 2w 32kB/32kB/256kB 3MB DDR3L-1600 2x64b 8GB
Baytrail-T Z3740 4 - 24kB/32kB/- 2MB LPDDR3-1066 2x64b 2GB

Exynos 5410-A7 4 - 32kB/32kB/- 512kB LPDDR3-1600 2x32b 2GB
5410-A15 4 - 32kB/32kB/- 2MB LPDDR3-1600 2x32b 2GB

5. EXPERIMENTAL SETUP

In this section the experimental setup is described. First, we describe the used ar-
chitectural parameters of hardware platforms and what power consumption can be
measured on each platform. Second, we will detail software stack, such as the used op-
erating systems and compilers. Finally, a description of the test sequences is provided,
focused on the coding configuration and resulting bitrates in particular.

5.1. Platforms and Power Measurement

To investigate the power efficiency of HEVC decoding on general purpose processors,
several state-of-the-art mobile as well as desktop platforms are used, on which power
could be measured. In total three Intel platforms are used, two based on the Haswell
microarchitecture [Hammarlund et al. 2014] and one based on the Silvermont microar-
chitecture. The ARM platform is based on the big.Little architecture.

The first Haswell-based platform is centered around a quad-core Haswell 4670T pro-
cessor and with a a thermal design power (TDP) of 45 W it represent the low power
desktop as well as high-performance notebook platforms. The second Haswell platform
contains an ultra low TDP (ULT) dual-core processor with simultaneous multithread-
ing (SMT) and has a TDP of 15 W. These processors are used in thin-and-light note-
books (ultrabooks), larger tablets, 2-in-1 devices, and convertibles. The platform based
on the Silvermont microarchitecture is Intel’s Baytrail platform which combines 4 Sil-
vermont cores in a SoC designed for low cost tablets and has a scenario design power
(SDP) of 2 W.

The three Intel platforms allow power and energy to be measured using their Run-
ning Average Power Limit (RAPL) architectural power counters [Rotem et al. 2012].
RAPL is a feature included in Intel processors since the Sandy Bridge generation and
estimates with an accurate architectural power model the power consumed by the x86
cores, GPU, and processor package. On some processors a power model of the off-chip
DRAM is also included. The power and energy of the x86 cores and the total package
power are available on all platforms.

The ARM platform, the Odroid XU-E development board, uses the Exynos 5410 Sys-
tem on Chip (SoC) with 4 A7 cores and 4 A15 cores on the same die. The Exynos
5410 SoC is most notably used in Android tablets and smartphones. Unlike the Intel
platforms, the Exynos 5410 does not expose architectural power counters. Power mea-
surements have to be performed by the platform, for which the Odroid XU-E board
provides 4 external power sensors. These four sensors measure the voltage and cur-
rent supplied to the A15 cores, the A7 cores, the PowerVR GPU, and the on-package
DRAM.

An overview of the architectural and technology parameters, as well as the compo-
nents for which the power can be measured are provided in Tables II and III. Not every
platform can measure all power statistics. In the results, unless specified otherwise,
the sum of all measurable power and energy statistics for each platform is presented.



Table III. Technology parameters of the platforms used in the evaluation.

Series Model Process Die size
Nominal

TDP
Measurable power

Frequencya Cores Uncore DRAM

Haswell i5-4670T 22nm Tri-gate 177mm2 2300MHz 45W ✓ ✓ ✓

Haswell ULT i5-4200U 22nm Tri-gate 134mm2 1600MHz 15W ✓ ✓ ✓

Baytrail-T Z3740 22nm SoC 102mm2 1866MHz - ✓ ✓ ✗

Exynos 5410 28nm HKMG 122mm2 1.6/1.2 GHz - ✓ (GPU) ✓

aSustained maximum frequency at which the processor can run at full load in video.

100020003000
0

0.5

1

V
d
d

Haswell 4670T

Haswell 4200U

BayTrail Z3740*

Exynos A15

Exynos A7

MHz

Fig. 3. Available core voltage-frequency points for each platform. *Baytrail based on VID readout
HWinfo32.

Each platform can operate at different voltage-frequency points. These points are
plotted in Figure 3. It shows that the frequency span of each processor is quite wide,
with a 2 to 4× difference between the lowest and highest frequency. On all platforms
a P-state is defined for every frequency multiplier, which depending on the base clock
results in a P-state every 100MHz to 133MHz. The observed frequency jumps, for ex-
ample from 1.33GHz to 1.86GHz, are due to the Turboboost feature, which puts the
hardware in control of the higher frequency bins. Finally, the figure also shows the ad-
vantage of Intel’s 22nm Tri-gate process technology: the Intel chips can run at a higher
clock frequency with lower supply voltage than the Exynos chips. When comparing the
power efficiency the process technology advantage should considered as well.

5.2. Software Environment

The HEVC decoder was compiled using GCC 4.8.1 with -O3, but without auto vector-
ization. Instead, all the vectorizable kernels are hand-optimized using SIMD: AVX2 is
used for Haswell, SSE4.1 for Baytrail, and NEON for ARM. More information can be
found in [Chi et al. 2014].

All platforms use a derivative of the (K)Ubuntu 13.10 Linux distributions. The x86
platforms run the 64-bit version and the ARM platform runs a 32-bit version of the
operating system. The Linux kernels used are, however, different from the standard
one. For the ARM platform a modified kernel of Linux 3.4 is used, which is maintained
by the platform manufacturer and includes the necessary drivers. The x86 platforms
use Linux 3.12, 3.13rc2, and a modified v ersion o f L inux 3 .13rc2, f or H aswell ULT,
Haswell, and Baytrail, respectively. The standard kernel (3.11) could not or only to a
lesser extend exploit the C-states available on the platform. For Baytrail-T the support
for deeper sleep states was not enabled in the intel idle driver, but has been enabled
with a small kernel modification (only for the cores).



Table IV. Kernel and power state drivers.

Series Model Kernel DVFS driver Idle driver Core C-state Pkg C-state

Haswell 4670T 3.13rc2 intel pstate intel idle C7 C3
Haswell ULT 4200U 3.12 intel pstate intel idle C7 C7
Baytrail-T Z3740 3.13rc2(m) acpi cpufreq intel idle C6 C1

Exynos 5410 3.4.67 exynos cpufreq exynos idle C2 n/a

In addition to employing an appropriate Linux kernel, the platform intrinsic de-
vices are configured to use their lower power states. This is needed to reach deeper
package C-states on the x86 platforms. All kernels were booted with forcing the use
of Active State Power Management (ASPM) for PCI-Express and Active Link Power
Management (ALPM) was enabled for each SATA link to reduce the interrupt rate to
the processor. While these settings allow longer residences in deeper C-states, not all
package C-states could be reached, except for the Haswell ULT platform. The Haswell
platform could enter only C3 for the package, while Baytrail could not use a deeper
package C-state at all. The C-state support for these platforms are still maturing and
it is expected that in future Linux kernel editions this improves. The possible addi-
tional power savings, however, are relatively small and will not influence the presented
results significantly. An overview of the kernel, DVFS driver, idle driver and the reach-
able sleep states are listed in Table IV.

5.3. Test sequences

For the experiments the Joint Collaborative Team on Video Coding (JCT-VC) class B
(1080p) and EBU UHD1 [Hoffman et al. 2012] (2160p) test sets are used. From both
test sets 5 videos are selected. The 1080p sequences are encoded using the HEVC
reference encoder HM-12.1 with the random access main configuration (8-bit), and
the 2160p sequences are encoded using the random access main10 configuration (10-
bit) [Bossen 2013]. All videos sequences are encoded for each quantization pararameter
(QP) value between 22 and 38. With the random access configuration a repeating con-
stant QP cascading pattern of 8 pictures is employed, In this pattern the QP of pictures
are increased with respect to the base QP for pictures 0 to 8 as follows: +0 (I-frame) ,
+4, +3, +4, +2, +4, +3, +4, +1. The QP increment pattern for pictures 1 to 8 is repeated
for the next group of pictures.

For the experiments only the encoded sequences with QPs with bitrates that fit
into a certain bits/frame range are selected. For the 1080p sequences this range is
between 40kb/frame to 200kb/frame. For the 2160p sequences the range is between
100kb/frame to 500kb/frame. The characteristics of the encoded test sequences are
listed in Table V.

6. PLATFORM POWER CHARACTERISTICS

To provide more insight on the effect of the different power states on the actual power
consumed by the processors and memory, we have measured the power during sev-
eral idle states and active states with different core counts. The results are shown in
Figures 4a to 4d. On the processors different idle states have been measured by manip-
ulating the maximum allowed wake-up latency of the system. If the maximum allowed
wake-up latency is lower than a particular C-state’s wake-up latency, that particular
C-state is not entered by the operating system. The active states are measured using
multiple instances of burnP6 or burnCortexA9 program from the cpuburn package to
load the processor. These test programs are constructed to have high (integer) instruc-
tion level paralellism, but does consume as much dynamic power as, for instance, a



Table V. The selected video sequences from the JCT-VC and EBU-UHD1 test
sets

Video Resolution Bitdepth Hz Frames QP range

BasketballDrive

1920×1080 8-bit

50 500 25-34
BQTerrace 60 600 26-31
Cactus 50 500 25-34
Kimono 24 241 23-32
ParkScene 24 240 25-35

FountainLady

3840×2160 10-bit

50 500 26-35
LuppoConfeti 50 500 24-36
RainFruits 50 500 22-31
StudioDancer 50 500 22-32
WaterfallPan 50 500 27-35

SIMD floating point based test program, but for the measured power is close to the
power consumed by HEVC decoding under similar circumstances.

Figure 4a shows that during idle periods On the Haswell systems it can be observed
that during idle most of the energy is consumed by the memory and uncore. The power
savings of the cores in C-states above C1E is small, but the savings on the package
idle power is significant, especially for the Haswell ULT 4200U ultrabook processor.
For the 4-core Haswell the C3 and C7 states are not as gainful as on the ULT variant.
This is because the package never enters the C7 state of the package even when all
the cores are in C7. Additionally, the processor resides only upto 60% of the time in
the C3 package state. As stated earlier the support for Haswell is still maturing. On
Baytrail the uncore is using much less power. Reasons for this are likely a combination
of process technology, less area, and a design more tuned for this performance level.

When active, the cores obviously start using more power. On Haswell this only be-
comes more significant at the higher frequencies. On Baytrail and Exynos 5410 the
power difference between the low frequency active states and the high frequency states
are more significant than on the Haswell due to a lower uncore power. The difference
between the big A15 and the Little A7 cores is also relatively large, with the A15 con-
suming around 5× more power at the same frequency.

Because only the GPU part of the Exynos 5410 uncore power can be measured di-
rectly, the uncore power in Figure 4d has been derived from the total platform power.
Similar to the other platforms, the GPU is not active and uses negligible power. The
uncore power is derived using the following model,

Pexynos uncore = 0.9 ∗ (Pplatform − 1.2W )− Psensors (2)

where Pplatform is the platform power measured after AC-DC conversion, and Psensors

is the total power measured by the sensors. In the model, 90% efficiency is estimated
for the on-package voltage conversion, and 1.2W is estimated for the peripheral power.
These numbers result from the assumption that the SoC uses 0.5W at idle. The abso-
lute value of the uncore value highly depends on the actual power consumed by the
board peripherals, and for this reason this model is not used in other results in this
paper. It serves more as an indication of the power characteristics of the uncore.

The Exynos 5410 DRAM consumes around 10× less power than the DRAM on
Haswell. The memory is mostly idle, because the working set of the load program
is very small. The same relative difference has also been observed for a memory in-
tensive benchmark, that stresses the memory subsystem more. For this benchmark
the memory consumes around 4× more power on both platforms. The memory of the
Haswell platform is of type DDR3L and 8 GB versus the 2 GB LPDDR3 on Exynos
5410. LPDDR3 has a lower supply voltage and is designed for mobile devices, which



80
0
15

00
23

00

tu
rb

o
80

0
15

00
23

00

tu
rb

o
80

0
15

00
23

00

tu
rb

o
80

0
15

00
23

00

tu
rb

o
80

0
15

00
23

00

tu
rb

o
80

0
15

00
23

00

tu
rb

o
80

0
15

00
23

00

tu
rb

o
80

0
15

00
23

00

tu
rb

o
0

10

20

30

W
a
tt

Uncore Cores Dram

C7 C3 C1E C1 1 core 2 core 3 core 4 core

(a) Haswell i5-4670T

80
0
12

00
16

00

tu
rb

o
80

0
12

00
16

00

tu
rb

o
80

0
12

00
16

00

tu
rb

o
80

0
12

00
16

00

tu
rb

o
80

0
12

00
16

00

tu
rb

o
80

0
12

00
16

00

tu
rb

o
80

0
12

00
16

00

tu
rb

o
0

5

10

W
a
tt

C7 C3 C1E C1 1 core 2 core 2 core (SMT)

(b) Haswell ULT i5-4200U

53
2
93

1
13

30
18

60 53
2
93

1
13

30
18

60 53
2
93

1
13

30
18

60 53
2
93

1
13

30
18

60 53
2
93

1
13

30
18

60 53
2
93

1
13

30
18

60
0

2

4

6

W
a
tt

C6 C1 1 core 2 cores 3 cores 4 cores

(c) Baytrail Z3740

L-5
00

L-8
00

L-1
20

0

b-
80

0

b-
12

00

b-
16

00

L-5
00

L-8
00

L-1
20

0

b-
80

0

b-
12

00

b-
16

00

L-5
00

L-8
00

L-1
20

0

b-
80

0

b-
12

00

b-
16

00

L-5
00

L-8
00

L-1
20

0

b-
80

0

b-
12

00

b-
16

00

L-5
00

L-8
00

L-1
20

0

b-
80

0

b-
12

00

b-
16

00

L-5
00

L-8
00

L-1
20

0

b-
80

0

b-
12

00

b-
16

00
0

2

4

6

8

W
a
tt

C2 C1 1 core 2 cores 3 cores 4 cores

(d) Exynos 5410.*Uncore power derived from total platform power.

Fig. 4. Idle and load power of the Cores, Uncore, and the offchip Dram. The power is measured for different
active cores counts and core frequencies.



typically use only one chip per memory channel. DDR3(L) typically has many chips
per channel (commonly 16), and is designed to support larger memory capacities.

Although the power consumption of the different platforms covers a wide span, one
common observation can be made. At low frequencies, the power of the cores is rel-
atively low compared to when the cores are running at high frequencies. While the
power consumed by the cores scale with the aggregate performance (frequency×cores),
the same cannot be said for the uncore and the memory (small spike uncore Exynos
5410 with 4 cores@1.6GHz is caused by the increased temperature). In the next section
we will investigate how these power characteristics relate to the power efficiency.

7. POWER AND ENERGY RESULTS FOR HEVC DECODING

In this section the experimental results are organized in four parts. In Section 7.1,
we first present how code optimizations (SIMD and multithreading) affect the energy
efficiency. T hen i n S ection 7 .2 w e f ocus o n h ow D VFS c hanges t he e nergy efficiency
of offline d ecoding. T his i s f ollowed i n S ection 7 .3 b y a n a nalysis o f t he p ower con-
sumption of real-time decoding. There the experiments will focus on the comparison of
“exploiting slack” with DVFS and “race to idle”. Finally, in Section 7.4, we investigate
how effective the current dynamic DVFS governors are in controlling the P-states.

7.1. Impact of Code Optimizations (SIMD and multithreading) on Energy Efficiency

In video decoding the performance, as well as the power consumption, depend on the
decoder implementation and the input sequences. Therefore, in this section we present
results for the scalar implementation of the decoder, the SIMD implementation of the
decoder, and the SIMD implementation of the decoder combined with multithreading.
Figures 5a, 5b, and 5c depicts results for the scalar, SIMD, and SIMD with multi-
threading implementation, respectively. For these experiments the frequency of the
platforms was fixed to their nominal frequency, and all multithreading results are us-
ing 4 threads. In the figures the energy per frame is plotted against the average kbits
per frame (kbpf). A single point represents the average result of the sequences that
have similar kbpf values.

The figures show that the energy required per frame is higher for higher bitrates,
and also for higher resolutions at the same bitrate. With SIMD optimizations the effect
of bitrate on the performance becomes more relevant as the non-vectorizable entropy
decoding stage becomes more dominant. What cannot be seen directly from the figure
is that sequences with the same bitrate can have quite different decoding complexi-
ties, with variations of up to ±20%. This also causes the irregularities in the 2160p
results at the 400 and 480 kbpf points, for which some more complex sequences are
not represented (no QP value generated a bitstream for that range).

The use of SIMD instructions increases the energy efficiency s ignificantly fo r all
sequences. The increase is largely proportional to the speedup SIMD provides (2.3 -
4.9×). Multithreading also improves the energy efficiency, but to a lesser extent (1.14 -
1.74×) as more power is required to accelerate the decoding.

When comparing the platforms it can be observed that ARM A7 and A15 proces-
sors have a relatively high energy efficiency c ompared t o t he I ntel p rocessors when
running scalar code, but lose ground when using the SIMD and multithreading opti-
mizations. The Exynos 5410 using the A15 cores moves from being twice as efficient
as the Haswell platforms when executing the scalar code to becoming around 15% less
efficient with 2160p sequences using SIMD+MT. The Baytrail platform is at any point
more energy efficient than the Exynos 5410 when using the A15 cores, and comes close
to matching energy efficiency o f t he A 7 c ores w hen e xecuting w ith S IMD a nd mul-
tithreading. This is the case even without including the uncore power of the Exynos
5410.



50 100 150 200
0

200

400

600

Kb/frame

m
J
/f

ra
m

e

1080p

Haswell 4670T BayTrail Z3740 Exynos A7

Haswell 4200U Exynos A15

100 200 300 400 500
0

500

1000

1500

2000

Kb/frame

2160p

(a) Scalar code

50 100 150 200
0

50

100

150

Kb/frame

m
J
/f

ra
m

e

1080p

100 200 300 400 500
0

200

400

Kb/frame

2160p

(b) SIMD code

50 100 150 200
0

20

40

60

80

100

Kb/frame

m
J
/f

ra
m

e

1080p

100 200 300 400 500
0

100

200

300

Kb/frame

2160p

(c) SIMD+MT

Fig. 5. Energy per frame with different levels of decoder optimizations.



Table VI. Performance, energy-efficiency, and power of SIMD and multithreading (MT) optimizations on different
platforms

1080p 8-bit
Scalar SIMD SIMD + MT

fps mJ/f W fps mJ/f W fps mJ/f W

Haswell 4670T 20.6 507 10.12 107.1 104 10.70 388.4 60 22.30
Haswell 4200U 14.3 452 6.26 74.7 94 6.74 168.5 63 10.19
Baytrail Z3740 7.4 215 1.55 25.4 53 1.31 93.2 32 2.92
Exynos 5410 A15 7.5 242 1.75 24.1 84 1.99 77.7 64 4.90
Exynos 5410 A7 3.4 94 0.31 9.0 35 0.31 31.2 24 0.74

2160p 10-bit
Scalar SIMD SIMD + MT

fps mJ/f W fps mJ/f W fps mJ/f W

Haswell 4670T 6.6 1609 10.09 29.9 373 10.87 110.6 214 23.14
Haswell 4200U 4.6 1469 6.33 21.1 333 6.86 49.3 220 10.58
Baytrail Z3740 2.2 718 1.49 6.7 195 1.26 25.3 118 2.89
Exynos 5410 A15 2.2 832 1.71 6.1 307 1.82 19.8 268 5.20
Exynos 5410 A7 1.0 325 0.31 2.3 139 0.31 7.9 96 0.74

In Table VI the results are summarized (averaged over all test sequences) and sup-
plemented with the average performance and power results, shown in the metrics
frames per second (fps), millijoules per frame (mJ/f), and watts (W). Table VII list
application characteristics, such as the average number of instructions per frame (in
million instruction per frame (minsn/f)), the fraction of SIMD instructions, as well as
the instructions per cycle (IPC). As mentioned before, for the multithreading (MT) re-
sults 4 threads have been used (i.e. all the cores of each processor are used). It can
be seen that part of the reason why the A15 and A7 based processors consume less
power for scalar code is that they executes around 10% fewer instructions. The ARM
NEON SIMD instruction set, however, is less effective in reducing the number of in-
structions than SSE4.1 and AVX2 used on Baytrail and Haswell, respectively. Com-
pared to SSE4.1, NEON requires between 10% and 30% more instructions. The mixed
64/128-bit SIMD ISA is less effective than the full 128-bit Intel ISA. With the AVX2
ISA extension most SIMD operations are widened to 256-bit with 3 operands, allowing
the instruction count to be reduced further. We have observed with instruction profil-
ing that around 66% of the executed SIMD instructions are 256-bit AVX2 instruction
on the Haswell processors, meaning that around 80% of the 128-bit SIMD instructions
could be replaced with 256-bit SIMD.

When using SIMD, the power consumption increases slightly compared to the scalar
code on most platforms. This is mainly due to the increased power consumed by the
off-chip memory and not the cores themselves. Since around 50% of the executed in-
structions are SIMD, one could expect that the power consumption would increase due
to the increased datapath width and wider memory accesses. The extra power usage
is, however, balanced out with an IPC reduction of around 40%. For Baytrail the power
usage even decreases when using SIMD. Mainly this is due the partial out-of-order
design to Baytrail in which the integer instructions are processed out-of-order and the
floating-point/SIMD µops remain processed in-order. This results in less activation of
the out-of-order logic when using SIMD instructions.

Multithreading increases the power consumption because more cores are active.
The increase in power, however, is relatively lower than the increase of the number
of cores, leading to a higher power efficiency w hen u sing m ultiple t hreads. Further-
more, the performance of the platforms varies widely between, for instance, there is
around a factor 13× performance difference between the Exynos 5410 A7 and Haswell
4670T. The power consumption difference is even larger with more than 30× differ-
ence. The power efficiency differences between a high performance architecture, such



Table VII. Application instruction characterization

1080p 8-bit
50 kbpf 170 kbpf Average IPC

minsn/f
scalar

minsn/f
SIMD

fraction
SIMD

minsn/f
scalar

minsn/f
SIMD

fraction
SIMD

scalar SIMD

Haswell 319.2 33.8 44.3% 376.6 54.0 34.6% 2.97 1.84
Baytrail Z3740 319.3 52.6 57.9% 376.7 76.0 47.9% 1.32 0.81
Exynos 5410 A15 288.4 66.5 N/A 345.8 87.0 N/A 1.41 1.09
Exynos-5410-A7 288.4 66.5 N/A 345.8 87.0 N/A 0.85 0.50

2160p 10-bit
120 kbpf 440 kbpf Average IPC

minsn/f
scalar

minsn/f
SIMD

fraction
SIMD

minsn/f
scalar

minsn/f
SIMD

fraction
SIMD

scalar SIMD

Haswell 1027.7 115.0 50.2% 1378.2 143.7 44.8% 2.98 1.72
Baytrail Z3740 1027.7 196.1 64.8% 1378.3 231.2 59.7% 1.23 0.78
Exynos 5410 A15 958.3 260.2 N/A 1277.9 296 N/A 1.35 1.06
Exynos 5410 A7 958.3 260.2 N/A 1277.9 296 N/A 0.81 0.53

as the Haswell 4670T, and a energy efficient architecture employed in the Exynos 5410
are much smaller, however, with a 2.2-2.5× in favor of the slower Exynos 5410 A7 cores.
In reality, the efficiency difference is slightly lower as the uncore power of the Exynos
5410 is not taken into account.

7.2. Impact of DVFS in Engergy Efficiency in Offline Video Decoding Scenario

Offline decoding, used for example in video analytics and transcoding, often run in
throughput/cloud computing environments. In this use case the videos are decoded at
full speed and the average energy consumed per frame is used as the efficiency metric.
As described earlier, each platform can run at different voltage-frequency points (P-
states). When the frequency is reduced the supply voltage is lowered as well, which
increases the energy efficiency. The energy consumption for all P-states have been
measured and the energy efficiency results are depicted in Figure 6 for each platform.
Each point represents the average joules per frame. In addition to the total measurable
energy (Etot) also the energy contributed by the cores only is plotted (Ecore), for the
sequential decoder using 1 thread (T1), and multithreading decoder results with 2
threads and 4 threads (T2 and T4). For space reasons, only for Haswell 4670T 2160p
results are provided in addtion to the 1080p results.

A main observation is that the joules per frame consumed exhibit a similar trend on
all platforms, and for both resolutions (the not presented 2160p figures depict a near
identical shape as their 1080p counterparts). First, it can be seen that employing more
threads lowers the total energy consumption in all cases. Second, on most platforms
the most energy efficient P-state is not the one with the lowest frequency. Mostly a
moderate frequency in the middle of the frequency span is the most efficient one. Fi-
nally, the energy consumed by the cores exhibits a different trend than that of the total
energy consumption. The number of threads does not change the energy efficiency of
the cores much, and the most energy efficient P-state is the one with the lowest fre-
quency. Thus, lower frequencies result in less energy spent in the cores, with up to an
order of magnitude difference between the highest and the lowest frequencies.

Because on current platforms voltage and frequency is mainly applied to the cores,
the total energy consumption does not always improve with lower frequencies. When
decreasing the frequency the runtime increases proportionally, but off-chip memory
and uncore structures, such as the memory controller, I/O hubs, and L3 caches, either
do not perform DVFS at all, perform DVFS in a coarser grained manner, or have less
headroom for voltage scaling. As a result, the power usage of these uncore structures
does not scale down as much as the cores when less performance is required.



100015002000250030003500
0

50

100

150

MHz

m
J
/f

ra
m

e

Haswell 4670T - 1080p

T1 Etot T2 Etot T4 Etot

T1 Ecore T2 Ecore T4 Ecore

100015002000250030003500
0

200

400

MHz

Haswell 4670T - 2160p

1000150020002500
0

50

100

MHz

m
J
/f

ra
m

e

Haswell 4200U - 1080p

500100015002000
0

20

40

60

80

100

MHz

m
J
/f

ra
m

e

Baytrail Z3740 - 1080p

8001000120014001600
0

20

40

60

80

MHz

m
J
/f

ra
m

e

Exynos 5410 A15 - 1080p

60080010001200
0

10

20

30

40

MHz

m
J
/f

ra
m

e

Exynos 5410 A7 - 1080p

Fig. 6. Energy consumed per frame at different voltage-frequency points (P-states).



The energy consumption of the Cortex-A7 cores show a slightly different behavior
than the observed trend at low frequencies. The Cortex A7 cores do not benefit from
reducing the frequency below 800MHz. While the frequency can be reduced further
down to 500 MHz, the voltage remains constant from 800 MHz on. The energy effi-
ciency results are, therefore, in line with the expectation as scaling only the frequency
does not improve energy efficiency. Frequency-only scaling P-states can only improve
the power consumption during idle periods when the core is not power gated to reduce
clocking power, but in general should not be considered when the core is active.

For offline decoding, DVFS provides limited energy efficiency benefits for the tested
platforms. If we would also consider the power consumed by the components outside
of the processor and memory, such as hard disks and I/O chips, the energy efficiency
benefits would decrease further and the most efficient point would move closer to the
maximum frequency. DVFS can improve the energy efficiency for offline decoding only
on platforms where the processor consumes most of the energy.

7.3. Power Consumption in Real-time Scenario: “Race to Idle” vs “Exploiting Slack”

In the second scenario we focus on real-time video decoding, as is required for video
playback. In contrast to offline decoding, using a faster or higher clocked processor
does not reduce the decoding time of the video in real-time decoding. Because a cer-
tain frame rate must be achieved the decoding time is always fixed to the length of
the video sequence. Therefore, for real-time decoding the power consumption is equiv-
alent to power efficiency because the runtime is the same. Not all videos, however,
can be decoded at the required frame rate for all platform, core count, and frequency
combinations. Therefore, only a selection of test sequences is used to have compara-
ble results. In Figures 7 to 9 the power consumption of all platforms is plotted for
real-time decoding of 1080p24 2.1 Mbps sequences (ParkScene@qp30, Kimono@qp27),
and 1080p50 4.5 Mbps sequences (BasketballDrive@qp29, Cactus@qp29). The power
consumption for the 2160p50 12 Mbps sequences (FountainLady@qp30, LupoCon-
fetti@qp29, RainFruits@qp26, StudioDancers@qp26, WaterfallPan@qp30) is only pre-
sented for the Haswell 4670T platform, since this platform is the only that is fast
enough.

The power consumption is plotted against the frequencies associated with each the
P-state that were capable of decoding the sequences in real-time. Each experiment
is performed with a frame buffer of 8 frames to smooth the frame-to-frame decoding
time variations. Additionally, the same experiments have been performed with an ad-
ditional burst buffer able to hold 1-second of decoded video frames. The results of these
experiments are shown on the right side of the figures.

The figures show that the power efficiency behavior of real-time decoding responds
very differently to DVFS than offline decoding. On all platform less power is consumed
when decoding the same sequences at lower frequencies. Furthermore, using more
threads than required for real-time decoding mostly increases the power consumption.
Compared to offline decoding, the power consumption behavior of only the cores is
similar, though, as it reduces with lower frequencies.

The main difference between offline decoding and real-time decoding is that faster
processors and higher frequencies do not translate in shorter runtimes, but instead
more idle time is introduced with a non-zero power consumption. The figures show
that for all platforms, decoding faster at higher frequencies and/or by using more cores
(“race to idle”) never yields the lowest power consumption for real-time decoding. In-
stead lower power consumption is achieved by spreading out the computation over
more active time running at a lower frequency (“exploiting slack”).

Even when performing burst decoding, in order to stay in deeper C-states longer, the
power consumption behavior does not change much. Additional experiments showed



10001500200025003000
0

5

10

MHz

W
a
tt

8 frames buffer

T1 Ptot T2 Ptot T4 Ptot Ondemand

T1 Pcore T2 Pcore T4 Pcore

10001500200025003000
0

5

10

MHz

8 + 24 frames burst buffer

(a) 1080p24 2.1 Mbps

10001500200025003000
0

5

10

MHz

W
a
tt

8 frames buffer

10001500200025003000
0

5

10

MHz

8 + 50 frames burst buffer

(b) 1080p50 4.5 Mbps

10001500200025003000
0

5

10

15

20

MHz

W
a
tt

8 frames buffer

10001500200025003000
0

5

10

15

20

MHz

8 + 50 frames burst buffer

(c) 2160p50 12 Mbps

Fig. 7. Power of real-time decoding video at different voltage-frequency points for Haswell 4670T.



50010001500
0

0.5

1

1.5

2

MHz

W
a
tt

8 frames buffer

T2 Ptot T4 Ptot Ondemand

T2 Pcore T4 Pcore

50010001500
0

0.5

1

1.5

2

MHz

8 + 24 frames burst buffer

(a) 1080p24 2.1 Mbps

50010001500
0

1

2

3

MHz

W
a
tt

8 frames buffer

50010001500
0

1

2

3

MHz

8 + 50 frames burst buffer

(b) 1080p50 4.5 Mbps

Fig. 8. Power of real-time decoding video at different voltage-frequency points for Baytrail Z3740.

that, when using more threads, the deeper C-state residency did not increase as much
as should have been possible. Mostly even the time spent in the deeper C-state resi-
dency is reduced, which is the cause of the observed higher power consumption when
using multiple threads. For instance, the C-state residency of encoding a 1080p24 2.1
Mbps sequence on Haswell 4670T changes from CO(22%) - C1(18%) - C7(370%) when
running 1 thread, to CO(33%) - C1(205%) - C7(162%) when running 4 threads. Also
the package C-state residency is affected, and changes from PC0(32%) - PC7(68%) to
PC0(90%) - PC7(10%), respectively, for 1 thread and 4 threads. While this could origi-
nate from hardware limitations to put multiple cores to a deeper C-states simultane-
ously, it is more likely that this is caused by adverse effects to the idle time predictor
in the kernel idle driver. We observed that the idle periods are predicted more conser-
vatively when multiple threads were running.

From the results can be concluded that using lower frequencies and fewer threads for
real-time decoding is more advantageous than “race to idle”. The technique itself, how-
ever, is not always inferior for real-time decoding and other real-time applications. On
platform-application combinations for which running at a higher frequency increases



8001000120014001600
0

0.5

1

1.5

2

MHz

W
a
tt

8 frames buffer

A7 T4 Ptot A15 T2 Ptot A15 T4 Ptot Ondemand

A7 T4 Pcore A15 T2 Pcore A15 T4 Pcore

8001000120014001600
0

0.5

1

1.5

2

MHz

8 + 24 frames burst buffer

(a) 1080p24 2.1 Mbps

8001000120014001600
0

1

2

3

MHz

W
a
tt

8 frames buffer

8001000120014001600
0

1

2

3

MHz

8 + 50 frames burst buffer

(b) 1080p50 4.5 Mbps

Fig. 9. Power of real-time decoding video at different voltage-frequency points for Exynos 5410.

the power consumption relatively little, and the deep idle states consume significantly
less power than the lowest possible active state, and these deep idle states can have
high residency, “race to idle” can be more effective. These cases, however, are the ex-
ception rather than the rule. This situation could arise for instance in a hypothetical
leakage dominated design. Some have predicted that leakage power would dominate
the total power consumption when left unattended [Kim et al. 2003; Agarwal et al.
2004], but architectural and process enhancements have been able keep the leakage
power in check so far and are likely able to continue this in the foreseeable future [Kaul
et al. 2012].

What can be observed further is that the power consumption of the high performance
(Haswell) platforms does not differ significantly at low activity levels. For instance, on
the Haswell 4670T, the 1080p50 sequences requiree roughly twice as much processing
compared to the 1080p24 sequences, but the lowest achievable power consumption is
5.6 W and 4.5 W, respectively. The reason for this is that most of the power at these
points is consumed by the uncore and memory, and, as in the offline scenario, it is very



important to consider the power consumption of the entire processor, especially in the
low power modes.

In addition to the hardware not being able to scale down power consumption at
low activity, the software stack controlling the low power modes also limits the effec-
tiveness of DVFS. This is evident by the fact that the OS-controlled ondemand DVFS
governor is not able to select the most efficient P-state. The ondemand DVFS governor
actually tends to select the P-states that result in the highest possible power con-
sumption. In the next section we investigate these hardware and software inefficiency
further.

7.4. Effectiveness of Current Dynamic DFVS Governors

Current OS DVFS drivers (at least the ones in Linux) change frequencies based on
the observed load, and respond quite rapidly to prevent performance regressions for
latency sensitive applications. In the previous section we found that ondemand DVFS
does not achieve the lowest power consumption with real-time video decoding and ac-
tually is closer to worst case power consumption. The analysis was limited to a small
selection of video sequences. A more detailed and focused analysis is performed cover-
ing the complete test set in this section.

Figure 10 shows the power consumption of the OS ondemand DVFS governor and
best manual DVFS configuration for each sequence that could be decoded in real-time
on the different platforms. The power consumption is plotted against the required ac-
tivity level (required active cycles per second) to decode the sequence in real-time. For
the ondemand DVFS experiments the number of decoding threads is set equal to the
core count (no SMT), and for all experiments a frame buffer of size 8 is used.

The figures show that for all platforms and nearly all sequences, ondemand DVFS
does not achieve lower power consumption than using the optimal manually selected
static threads-frequency combination. At high and very low activity levels the two
converge. At high activity levels the cores have to operate at/near the maximum to
be able to decode the sequences in real-time. At low loads the power consumption of
the cores is relatively low and, independent of the method, DVFS is not able to reduce
the power consumption much further. For the other sequences, corresponding to mid-
activity levels, more than 50% higher power consumption is required by ondemand
DVFS.

The static DVFS approach is infeasible for real-world scenarios, however, since the
complexity of video sequences change heavily in full length videos. Due to complex-
ity variations in a sequence a static approach would also not be able to achieve the
minimum power consumption. The frequency must be high enough to decode the most
complex 8 consecutive frames in real-time, since there are that many frame buffers.
The ondemand DVFS approach, on the other hand, is not currently bot able to use the
P-states of a modern processor effectively.

8. CONCLUSIONS

The fact that modern multicore CPUs can achieve higher performance than is required
for video decoding can, to a certain degree, be exploited to lower the power consump-
tion. To reduce power, modern CPUs provide various low power states that reduce the
active as well as the idle power. In this paper we have investigated how both code
optimization of the application and employing the exposed low power states of the pro-
cessor can improve power efficiency. This investigation has been performed for both
offline as well as real-time video decoding scenarios.

In the offline scenario, the exploitation of SIMD and multithreading improves the
performance and (hence) the power efficiency on all platforms. The energy savings
SIMD provides are, in most cases, proportional to the speedup it provides, since the



0 5000 10000
0

10

20

30

Activity (MCycles/s)

W
a
tt

Haswell 4670T

1080p man. A7 1080p manual 1080p ondemand 2160p manual 2160p ondemand

0 2000 4000
0

5

10

15

Activity (MCycles/s)

Haswell 4200U (no SMT)

0 2000 4000 6000
0

2

4

Activity (MCycles/s)

W
a
tt

Baytrail Z3740

0 2000 4000 6000
0

2

4

Activity (MCycles/s)

Exynos 5410

Fig. 10. Power consumption of real-time decoding with best manual configuration and ondemand DVFS.

power consumption of the SIMD code is hardly higher than that of the scalar code.
Multithreading also improves the performance and the power efficiency, but since the
power consumption increases when using multiple cores the power efficiency gain are
lower. Employing DVFS in the offline decoding scenario reduces the energy consump-
tion of the processor even further, and the most energy efficient f requency i s often
found in the middle of the frequency range of the processor. Utilizing these frequen-
cies for offline d ecoding, h owever, s hould o nly b e c onsidered i f t he e nergy consumed
by the cores is a large fraction of the total energy consumed by the entire platform.
On systems where the processor consumes only a small fraction of the energy, reduc-
ing the frequency would actually increase the total energy consumption due to longer
execution times.

The optimal strategy for the real-time decoding scenario is different from the optimal
strategy for offline decoding. For real-time decoding running at a higher frequency and
employing a faster processor does not reduce the execution time, but instead introduces
more idle time during which the platform consumes the idle power of the system. As
for offline d ecoding, S IMD a lso p rovides p ower s avings f or r eal-time v ideo decoding.
Multithreading, however, often increases power consumption when less threads would
have been also sufficient for reaching real-time performance. Often the deeper C-state
residency decreases when more threads are used to perform the same work and as a
result it increases the average idle power. Instead of finishing faster in order to idle
longer, referred to as “race-to-idle”, we found that for real-time decoding “exploiting



slack” by lowering the frequency and using more cores provided the highest power
efficiency.

Current operating and runtime systems, however, do not exploit the power saving
modes of the processor effectively. Deep C-states are not entered as often as possi-
ble and the ondemand DVFS strategy the OS applies runs the processor most of the
time at the highest frequency, providing sub-optimal power savings. Significant power
reductions (≥ 30%) are still possible for real-time HEVC decoding by improving the
effectiveness of the exploitation of the power saving modes, which is future work.

Additionally, our results indicate that architectural improvements are required to
reduce the power consumption of the platform at low loads. At loads that demand
little processing power, the high performance Haswell platform consume about 10×
as much power as the mobile SoC platforms, in particular the Exynos 5410 with A7
cores. At full load, on the other hand, the Exynos 5410 is only 3× as power efficient
as the Haswell 4670T. Improving the power-performance characteristics at low loads
would lengthen the battery life more than improving them at high loads. For exactly
this reason ARM introduced the big.LITTLE heterogeneous architecture consisting of
so-called big high performance A15 cores and little power efficient A7 cores. Although
this technology improves the power efficiency of the processor, our results show that at
low loads more power is consumed by the uncore and the memory than by the cores.

REFERENCES

A. Agarwal, C.H. Kim, S. Mukhopadhyay, and K. Roy. 2004. Leakage in nano-scale technologies: mecha-
nisms, impact and design considerations. In Design Automation Conference, 2004. Proceedings. 41st.
6–11.

E. Akyol and M. van der Schaar. 2008. Compression-Aware Energy Optimization for Video Decoding Sys-
tems With Passive Power. IEEE Transactions on Circuits and Systems for Video Technology 18, 9 (Sept.
2008), 1300–1306.

F. Bossen. 2013. Common test conditions and software reference configurations. Technical Report L1100.
JCTVC.

F. Bossen, B. Bross, K. Suhring, and D. Flynn. 2012. HEVC Complexity and Implementation Analysis. IEEE
Transactions on Circuits and Systems for Video Technology 22, 12 (2012), 1685–1696.

Benjamin Bross, Valeri George, Mauricio Alvarez-Mesa, Tobias Mayer, Chi Ching Chi, Jens Brandenburg,
Thomas Schierl, Detlev Marpe, and Ben Juurlink. 2013. HEVC Performance and Complexity for 4K
Video. In IEEE International Conference on Consumer Electronics - Berlin (ICCE-Berlin).

Len Brown. 2005. ACPI in Linux. In Linux Symposium. 51.

T.D. Burd, T.A. Pering, A.J. Stratakos, and R.W. Brodersen. 2000. A Dynamic Voltage Scaled Microprocessor
System. IEEE Journal of Solid-State Circuits 35, 11 (Nov. 2000), 1571–1580.

AP. Chandrakasan, S. Sheng, and R.W. Brodersen. 1992. Low-Power CMOS Digital Design. IEEE Journal
of Solid-State Circuits 27, 4 (Apr 1992), 473–484. DOI:http://dx.doi.org/10.1109/4.126534

C. C. Chi, M. Alvarez-Mesa, B. Bross, B. Juurlink, and T. Schierl. 2014. SIMD Acceleration for HEVC
Decoding. IEEE Transactions on Circuits and Systems for Video Technology PP, 99 (2014), 1–1.
DOI:http://dx.doi.org/10.1109/TCSVT.2014.2364413

Kihwan Choi, Karthik Dantu, Wei-Chung Cheng, and Massoud Pedram. 2002. Frame-based Dynamic Volt-
age and Frequency Scaling for a MPEG Decoder. In Proceedings of the 2002 IEEE/ACM International
Conference on Computer-aided Design (ICCAD ’02). ACM, New York, NY, USA, 732–737.

Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug Burger. 2012.
Dark Silicon and the End of Multicore Scaling. IEEE Micro 32, 3 (May 2012), 122–134.

Peter Greenhalgh. 2011. Big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7. (Sept. 2011). http:
//www.arm.com/files/downloads/big.LITTLE Final.pdf

Yan Gu, Samarjit Chakraborty, and Wei Tsang Ooi. 2006. Games Are Up for DVFS. In Proceedings of the
43rd Annual Design Automation Conference. 598–603.

P. Hammarlund, A.J. Martinez, A.A. Bajwa, D.L. Hill, E. Hallnor, Hong Jiang, M. Dixon, M. Derr, M. Hun-
saker, R. Kumar, R.B. Osborne, R. Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty,
S. Jourdan, S. Gunther, T. Piazza, and T. Burton. 2014. Haswell: The Fourth-Generation Intel Core
Processor. Micro, IEEE 34, 2 (Mar 2014), 6–20. DOI:http://dx.doi.org/10.1109/MM.2014.10



Nikos Hardavellas. 2012. The Rise and Fall of Dark Silicon. USENIX 37, 2 (April 2012).

Han Hoffman, Adi Kouadio, Yvonne Thomas, and Massimo Visca. 2012. The Turin Shoots. In EBU Tech-i.
Number 13. European Broadcasting Union (EBU), 8–9. http://tech.ebu.ch/docs/tech-i/ebu tech-i 013.pdf

Intel. 2008. Intel Turbo Boost Technology in Intel Core Microarchitecture (Nehalem) Based Processors.
(2008).

S. Jain, S. Khare, S. Yada, V. Ambili, P. Salihundam, S. Ramani, S. Muthukumar, M. Srinivasan, A. Kumar,
S.K. Gb, R. Ramanarayanan, V. Erraguntla, J. Howard, S. Vangal, S. Dighe, G. Ruhl, P. Aseron, H.
Wilson, N. Borkar, V. De, and S. Borkar. 2012. A 280mV-to-1.2V Wide-Operating-Range IA-32 Processor
in 32nm CMOS. In 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC). 66–68.

Jagrit Kathuria, M Ayoubkhan, and Arti Noor. 2011. A Review of Clock Gating Techniques. MIT Interna-
tional Journal of Electronics and Communication Engineering 1, 2 (2011).

H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar. 2012. Near-Threshold
Voltage (NTV)–Opportunities and Challenges. In Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE. 1149–1154.

Stefanos Kaxiras and Margaret Martonosi. 2008. Computer Architecture Techniques for Power-Efficiency (1st
ed.). Morgan and Claypool Publishers.

N.S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J.S. Hu, M.J. Irwin, M. Kandemir, and V. Narayanan.
2003. Leakage Current: Moore’s Law Meets Static Power. Computer 36, 12 (Dec 2003), 68–75.

Stephen Kosonocky. 2011. Practical Power Gating and Dynamic Voltage/Frequency Scaling. (Au-
gust 2011). http://www.hotchips.org/wp-content/uploads/hc archives/hc23/HC23.17.1-tutorial1/HC23.
17.111.Practical PGandDV-Kosonocky-AMD.pdf Hot Chips: A Symposium on High Performance Chips.

Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi, and Keith I. Farkas.
2004. Single-ISA Heterogeneous Multi-Core Architectures for Multithreaded Workload Performance.
SIGARCH Compututer Architecture News 32, 2 (March 2004), 64–.

Etienne Le Sueur and Gernot Heiser. 2010. Dynamic Voltage and Frequency Scaling: The Laws of Dimin-
ishing Returns. In Proceedings of the 2010 International Conference on Power Aware Computing and
Systems (HotPower’10). USENIX Association, Berkeley, CA, USA, 1–8.

Etienne Le Sueur and Gernot Heiser. 2011. Slow Down or Sleep, That is the Question. In Proceedings of
the 2011 USENIX Conference on USENIX Annual Technical Conference (USENIXATC’11). USENIX
Association, Berkeley, CA, USA, 16–16.

Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi.
2013. The McPAT Framework for Multicore and Manycore Architectures: Simultaneously Modeling
Power, Area, and Timing. ACM Transactions on Architecture and Code Optimization 10, 1, Article 5
(April 2013), 29 pages. DOI:http://dx.doi.org/10.1145/2445572.2445577

Wen-Yew Liang, Ming-Feng Chang, Yen-Lin Chen, and Chin-Feng Lai. 2013. Energy Efficient Video De-
coding for the Android Operating System. In IEEE International Conference on Consumer Electronics
(ICCE) 2013. 344–345.

Zhan Ma, Hao Hu, and Yao Wang. 2011. On Complexity Modeling of H.264/AVC Video Decoding and Its
Application for Energy Efficient Decoding. IEEE Trans. on Multimedia 13, 6 (Dec. 2011), 1240–1255.

Malena Mesarina and Yoshio Turner. 2003. Reduced Energy Decoding of MPEG Streams. Multimedia Sys-
tems 9, 2 (2003), 202–213.

Venkatesh Pallipadi, Shaohua Li, and Adam Belay. 2007. cpuidle–Do nothing, efficiently.... In Proceedings
of the Linux Symposium.

Venkatesh Pallipadi and Alexey Starikovskiy. 2006. The Ondemand Governor. In Proceedings of the Linux
Symposium, Vol. 2. sn, 215–230.

E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann. 2012. Power-Management Ar-
chitecture of the Intel Microarchitecture Code-Named Sandy Bridge. IEEE Micro 32, 2 (March 2012),
20–27.

T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. De Micheli. 2001. Dynamic voltage scaling and power
management for portable systems. In Proceedings of the Design Automation Conference. 524–529.

Bob Steigerwald. 2011. Energy Aware Computing. Powerful Approaches for Green System Design. Intel Press,
Hillsboro, Or.

Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. 2012. Overview of the High Effi-
ciency Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems for Video Technology
22, 12 (Dec. 2012), 1649–1668.




