THE MAXIMUM CAPACITY OF A LINE PLAN IS
INAPPROXIMABLE

CHRISTINA PUHL AND SEBASTIAN STILLER

ABSTRACT. We consider a basic subproblem which arises in line plan-
ning with upper capacities: How much can be routed maximally along
all possible lines? The essence of this problem is the Path Constrained
Network Flow (PCN) problem. We explore the complexity of this prob-
lem. In particular we show that it is as hard to approximate as MAX
CLIQUE. We also show that the PCN problem is hard for special graph
classes, interesting both from a complexity and from a practical per-
spective. Finally, we present a relevant graph class for which there is a
polynomial-time algorithm.

1. INTRODUCTION

Motivation. A classical step in the hierarchy of planning scheduled trans-
portation networks is line planning. Its task is to determine the lines and
their frequencies along which the transportation service shall be offered.
Given a network, i.e., a directed graph with upper capacities on the arcs,
a line plan is a set of lines, i.e., paths in the network, and an integer as-
signed to each line, its frequency. A line plan is feasible if it satisfies a
given transportation demand and respects the upper arc-capacities of the
underlying network. Moreover, the lines that can be used, i.e., the trips
a physical train and its crew can serve, are subject to various regulations
such as length bounds, limits to the number of terminals and several other,
partly very specific requirements. Therefore, line planning often relies on a
so-called line pool, i.e., an explicitly given set of possible path to which the
line plan is restricted.

The objective in line planning is usually some minimization of opera-
tion cost or cost of passengers’ discomfort. Special events, like world cups,
fairs, concerts, or temporary exhibitions could create exceptional demand
for which special line plans have to be designed. In other cases, construc-
tion or maintenance works create exceptionally low upper capacities in the
network. Again special line plans are required. Finally, even daily, high uti-
lization of a scarce infrastructure may demand for the construction of a line
plan that makes the system work to its capacity. Therefore, it is a natural
subproblem of line planning to ask for the maximum demand that can be
met given a network, upper arc-capacities and a line pool.

E-mail: puhl@math.tu-berlin.de, stiller@math.tu-berlin.de
This work has partially been supported by the ARRIVAL project, within the 6th Frame-
work Program of the European Commission under contract no. FP6-021235-2.
1

2 CHRISTINA PUHL AND SEBASTIAN STILLER

We examine the complexity of this question, showing that even its single-
source, single-sink version is NP-complete and in a strong sense inapprox-
imable. Moreover, we study the problem on special graph classes like planar
graphs, graphs with bounded treewidth, and a certain class derived from
trees, for which we devise a non-trivial, polynomial-time algorithm.

Our complexity results also apply to the closely related Path Constraint
Network Flow Problem, which has already been mentioned in [4].

Related Work. Usually an instance of a line planning problem is given by
a directed graph G = (V, A), with arc-capacities ¢ : A — R, and projected
demands, e.g., how many passengers intend to travel from node x to node
y. Moreover, we are given explicitly or implicitly the set of possible lines in
G, i.e., the line pool denoted by P. A feasible line plan is an assignment of
integer frequencies f;, to the lines in p € P, such that the capacity of each
arc a is respected, i.e., ZpEP:aEp fp < c(a), and the demand can be fulfilled.

Whether the demand, i.e., a certain amount of transportation for each
origin-destination pair, can be fulfilled by a fized line plan is itself a non-
trivial problem. The passengers have to be routed along the chosen lines
respecting on their part the capacities offered by the line plan. In practice,
the routing constructed by a central optimization may not coincide with the
routing actually chosen by the individual passengers. Hereby, violations of
capacities may arise in the real, individual routing even though a feasible,
central routing exists.

There are different approaches in the literature to address this issue. For
example, in the work of Bussieck et al. [2] a system split in optimization is
used. Prior to constructing the line plan the passengers are routed through
the network GG according to their origin and destination, and some assump-
tions on their routing behavior. This entails a (fractional) multi-commodity
flow problem. The total resulting flow on an arc a is interpreted as its lower
arc capacity ¢(a). Then an instance of a line planning problem is a quintuple
(G, e, l, P, cost) consisting of a network, upper and lower capacities on each
arc, a line pool, and some cost function cost. The optimization problem can
be expressed as:

min cost(f)

l(a) < Z fp<cla) Vac A
pEP:aEp
f=0

For f restricted to integer vectors, this is known to be NP-hard [2].

A different way to define the demand satisfaction is pursued by [1, 8.
Here the multi-commodity flow problem of routing the passengers is part
of the line planning optimization procedure. The articles of Borndorfer and
Pfetsch, and of Bussieck et al. contain a comprehensive overview on the
literature for their specific approach.

Our question is basic to both approaches, and crucial whenever upper
capacities become tight.

The problem we consider is a slight specialization of the Path Constraint
Network Flow (PCN) problem defined already in Gary and Johnson ([4],
Problem ND34). They stated that the PCN problem is—among some other

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE 3

complexity features—NP-complete. Our hardness and inapproximability
results carry over to the original PCN as we consider a specialization.

For the proof of hardness Garey and Johnson refer to a private communi-

cation with H.J. Promel. To our knowlege no proof has ever been published
and Promel himself in a further private communication with the authors
kindly stated that he was no longer in possession of one. The proofs we
give recover all results stated in [4] and add several complexity results, in
particular the inapproximability of the optimization problem. Moreover, we
add results for special graph classes.
Definition of the PCN Problem. In the classical flow theory, flow is
send in a network from source to sink respecting arc capacities. In the
60s Ford and Fulkerson showed that any flow can be decomposed in path
flows and circle flows [3]. In the general case the set of paths used for the
decomposition is not restricted. In our case we are given a set of paths P.
We are now interested in flows that can be decomposed using only the paths
in P. We give the formal definition of the PCN problem according to Gary
and Johnson [4]:

Definition 1.1 (Path Constrained Network Flow Problem). Let G = (V, A)
be a directed graph with capacities ¢(a) € N for each a € A, a source s € V
and a sink ¢ € V. Furthermore a collection P of directed paths in G and
a requirement K € N is given. The set of paths P, C P is the set of
all paths in P containing the arc a. The question is whether there is a
function y : P — N such that for the flow function f : A — N defined by
f(a) =>_,cp,. the following three conditions hold:

(1) f(a) < c(a) for all a € A,
(2) for each v € V\{s,t}, flow is conserved at v, and
(3) the net flow into ¢ is at least K.

We will consider two slightly different PCN problems: the (s,¢)-PCN by
restricting the set of paths P to a set of (s,t)-paths and the (s,¢)-PCN;
problem by additionally demanding unit capacities on the arcs. Note that
flow conservation (2) is automatically given in this case. Due to the unit
capacities any solution for the (s,¢)-PCN; consists of arc disjoint (s, ¢)-paths.
It is easy to see that any result of hardness for the (s,t)-PCN; holds for the
PCN problems.

As we also consider inapproximability we have to define a PCN optimiza-
tion problem. Thereby, the objective is to maximize the value of the net
flow K. We will refer to both problems as PCN problem, as it will be clear
from the context whether the optimization or the decision problem is meant.
Results and Techniques. We give positive and negative results for the
(s,t)-PCN problem and the (s,t)-PCN; problem. Note that the hardness
results carry over to the more general cases.

In detail we proof NP-hardness for (s,¢)-PCN; problem, the questions
whether its integrality gap, respectively its duality gap is zero. We proof
that the maximum value of an (s,¢)-PCN; cannot be approximated within
a constant factor unless, P = NP. We extend the inapproximability of the
(s,t)-PCNj problem for graphs with bounded treewidth and planar graphs,
and for the (s,t)-PCN problem on grid graphs.

4 CHRISTINA PUHL AND SEBASTIAN STILLER

We will present two paradigmatic reductions in detail. All hardness and
inapproximability results are shown by reductions similar to those. We
consider these reductions paradigmatic because they introduce a new and
powerful technique to analyze complexity of line planning problems. Path
constraint network flows are a central aspect of line planning.

Our factor preserving reduction from MAX CLIQUE for the inapproxima-
bility is reversible. Therefore, any practical algorithm for MAX CLIQUE
can easily be turned into an algorithm for the (s,¢)-PCN; problem.

Finally, we devise a polynomial time algorithm for the (s,)-PCN; prob-
lem on (s, t)-extended outtrees, which we define in this paper. The problem
on this graph class is equivalent to the transshipment problem on outtrees.
Moreover, (s,t)-extended outtrees are a generalization of trees motivated
by transportation systems, which are trees except for the connection to a
common depot of the vehicles.

Note that the fractional PCN problem in general is easy as it can be

formulated as an LP of polynomial size.
Structure of this Paper. In Section 2 we compile the general complexity
results and the paradigmatic proofs. In Section 3 and 4 we give the positive
and negative results for special graph classes. In particular, we present the
algorithm for (s, t)-extended outtrees.

2. COMPLEXITY AND INAPPROXIMABILITY OF THE PCN PROBLEM

In this section we show the NP-completeness of the PCN problem. All
PCN problems considered are in NP: Given a path multiplicity vector
y € NIPI we can calculate its value in polynomial time, construct the cor-
responding flow and check its feasibility. By our reductions for the PCN
problem it will become clear that a certificate that would only comprise the
flow without the decomposition could not be checked in polynomial time to
be decomposable into paths in P unless P = NP.

We start by showing that the (s,t)-PCN; problem is strongly NP-complete
by using a reduction from 3SAT.

Recall that a decision problem & is called strongly NP-hard, iff there is a
polynomial p such that the restriction of X to the set of instances x where the
largest integer in the input of x is bounded from above by p(inputsize(z)) is
still NP-hard (cf. [6]). (We can assume that the input contains no numbers
other than integers.) In other words, even a unary encoding of the numbers

in the input, would not allow for algorithms polynomial in the input size,
unless P = NP.

Theorem 2.1. The (s,t)-PCNy is strongly NP-complete.

Proof. We reduce from 3SAT. Let I be an instance of 3SAT with n variables
x1,...,op and m clauses C1, ..., Cy, C {21, T1,...,ZTn} with |C;] = 3.

We start with the construction of G and P. The set P contains for every
variable z; a path p,, and a path pz both crossing the arc e;. For every
clause C; there are three paths p;1,p;2 and p;3 in P traversing the arc
en+j and three arcs c;1,cj2 and c¢;j3. Each arc c¢j; represents exactly one
literal z;; of Cj. The path p;; traverses arc cj;. Any other path p, with
z € {z1,71,...,xn, Ty} contains arc ¢;; if and only if z;; = Z (Fig. 1). To
complete the construction of an (s,t)-PCN; instance we set K to n + m.

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE 5

Note the following properties of the construction:

(1) Any feasible function y must meet y(ps,) + y(pz,) < 1 and y(p;1) +
y(pj2) + y(pj3) <1 for capacity reasons on the arcs ey.
(2) Any feasible function y with net flow n 4+ m must satisfy y(pg,) +

y(pz,) = 1and y(pj1)+y(pj2)+y(pj3) = 1 duetothe cut {ei, ..., entm}.

Cn+m

F1GURE 1. The set of paths P contains 2n + 3m s, t- paths.

Now we show, that there exists a function y : P — N with value n +m
and > p y(p) <1 for all arcs a € A if and only if the instance I can be

satisfied.

Let y : P — Nbea function with > p» y(p) < land 3 py(p) = n+m.

Define the vector x by

1 ify(ps,) =1
T; =
0 ify(pz)=1.

Due to the obeservation (2) x is well defined.

We now show that x satisfies all clauses. Suppose there exists a clause C;
which is not satisfied. Then y(p.,) = y(pz,) = y(ps;) = 1 for z; = Z;; and
due to capacity no other path passing arc c¢; 1, ¢;j2 or ¢;3 contains any flow.
Therefore y(pj1) + y(pj2) + y(p;3) = 0, a contradiction to observation (2).
Let now x be a vector that satisfies all clauses. We compose a function
y: P — Nwith Y . y(p) <1 by

y(p) {0 else and y(pz) {0 else.

6 CHRISTINA PUHL AND SEBASTIAN STILLER

For any clause there exists a literal z;;+ = 1. Therefore no flow is passing
through arc c¢;;+. Define y(p; ;<) = 1 and y(p;;) = 0 for ¢ # i*. The function
y therefore fulfills all capacity restrictions and has the value m + n.

O

The constuction in this proof leads to two further reductions concerning
the dual gap and the LP- and IP-relation of the PCN optimization problems.

The (s,t)-PCN (or (s,t)-PCNy) problem with non-integral flow is equiv-
alent to linear programming and therefore polynomially solvable. But the
question whether the best rational flow fails to exceed the best integral flow
is NP-complete. With the construction of G and P in Theorem 2.1 this is
easy to see. A rational flow y* : P — QP! with value n + m and satisfying
all capacities is always given by y*(p,) = % for all z € {z1,ZT1,..., 20, Tn}
and y*(pj,) = % forall j=1,...,mandi=1,2,3.

Theorem 2.2. Given an (s,t)-PCN; instance, the decision whether the best
rational flow fails to exceed the best integral flow is NP-complete.

Furthermore the decision problem whether for the (s,¢)-PCN; optimiza-
tion problem the dual gap equals zero is NP-complete. The dual opti-
mization problem asks for a subset of arcs, A’, with minimum cardinality
|A’| such that every path p € P traverses at least one arc of A’. For the
(s,t)-PCNjy instance in Theorem 2.1 an optimal dual solution A’ consists of
the arcs {e1, ..., €ntm} with the value n + m. This observation is sufficient
to show the following theorem:

Theorem 2.3. Given an (s,t)-PCN; instance, the decision whether the dual
gap s greater than zero is NP-complete.

We are now interested in the approximability of the PCN optimization
problems. A certain type of reduction, called L-reduction, preserves approx-
imability (whereas in general polynomial tranformations do not). Recall that
to establish an L-reduction (cf. [6]) from an optimization problem X" to an
optimization problem X’ we have to devise a pair of functions f and g, both
computable in polynomial time, and two constants «, 3 > 0 such that for
any instance z of X:

e f(x) is an instance of P’ with OPT(f(x)) < «OPT(z);
e For any feasible solution 3’ of f(x), g(x,y’) is a feasible solution of
x such that [cz(g(z,y")) — OPT(2)| < Bleg) (v) — OPT(f(2))],
where ¢, is the cost function of the instance x.

In the following theorem we introduce an L-reduction from MAX CLIQUE
to the (s,t)-PCN;j problem. In Section 3 this reduction from MAX CLIQUE
will be transfered to other PCN instances with graphs from special graph
classes.

Theorem 2.4. The MAX CLIQUE problem is L-reducible to the (s,t)-PCNy
problem with constants « = 8 =1 and vice versa.

Proof. We define an L-reduction from MAX CLIQUE to (s,t)-PCN;. Given
a graph G = (V, F) as a MAX CLIQUE instance I we want to construct
an (s,t)-PCNy instance I’ such that for any clique C' C V in G one easily

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE 7

obtains a set of arc disjoint (s,?)-paths with the same cardinality |C| and
vice versa.

To this end, the instance I’ shall consist of a graph G' = (V/, E’) and
a set of (s,t)-paths P’ such that for any v € V there exists an (s,t)-path
py € P, and we have: p, and p,, are arc disjoint if and only if the arc (u,v)
is in E. We will call a graph G’ together with a set of paths P’ that fulfills
those requirements clique-reducing.

There is an easy way to construct a clique-reducing pair (G',P’) for a
MAX CLIQUE instance G with at most n? nodes and at most 6n? + n arcs
in G’: Assume V to be indexed by {1,...,n}. We start with n-parallel
(disjoint) paths from s to t. We change the graph and the paths successivly
from 1 to n. For each n > ¢ > j > 1 and {v;,v;} ¢ E we deviate the path
Dy, corresponding to node v; such that it intersects on an exclusive arc of
path p,,. Caerfully inserting necessary arcs for this construction we can end
up with a path of at most 5n + 2.

FIGURE 2. The arc (1,2) and (1, k) are not in E, but the arc
(1,3). Therefore the (s,t)-paths p; and pa, and p; and py of
P’ have a common arc, whereas p; and p3 are disjoint.

Let P be a subset of P’ and C := {v € V|p, € P}. By construction C is
a clique if and only if all paths in P are arc disjoint. Therefore any optimal
solution of the (s,t)-PCN; instance yields an optimal solution for the MAX
CLIQUE instance with the same optimal value.

In a similar way an L-reduction from (s,?)-PCN; to MAX CLIQUE can
be constructed. (]

The complexity of MAX CLIQUE is well studied and belongs to the high-
est class, Class IV, of approximation problems as classified in [5]. In par-
ticular, an n%°~¢ approximation is NP-hard. Due to the given L-reduction
these results transfer to the PCN problems.

Corollary 2.5. There exists an € > 0 such that approximating (s,t)-PCNy
within a factor of |P|¢ is NP-hard.

By the L-reduction from (s,¢)-PCN; to MAX CLIQUE any algorithm,
heuristic or algorithmic result for the MAX CLIQUE problem directly trans-
fers to the (s,t)-PCN; problem. Note that we have no L-reduction from the
(s,t)-PCN without unit capacity to MAX CLIQUE.

8 CHRISTINA PUHL AND SEBASTIAN STILLER

3. PLANAR GRAPHS AND BOUNDED TREEWIDTH

In many cases NP-complete problems can be solved efficiently on special
graph classes, as the MAX CLIQUE problem on interval or perfect graphs.
We studied the PCN problem on graphs with bounded tree width and planar
graphs. In both cases the complexity of the problems remained the same.

In the 80s Robertson and Seymour introduced the notion of treewidths

[7].
Definition 3.1. A tree-decomposition of a graph G = (V,FE) is a pair
{Xili € I},T = (I,F)) with {X;|i € I} a family of subsets of V', one
for each node of T', and T a tree such that
o Uies Xi =V,
e for all arcs (v,w) € E, there exists an ¢ € [with v € X; and w € Xj,
e forall i, j,k € I: if j is on the path from ¢ to k in T', then X; N X C
X;.
The treewidth of a tree-decompositon ({X;|i € I},T = (I, F)) is max;es | X;|—
1. The treewidth of a graph G is the minimum treewidth over all possible
tree-decompositions of G.

For many NP-complete problems on graphs there exists a polynomial,
often even a linear algorithm on graphs with bounded treewidth. For the
PCN problem this is not the case. The clique-reducible pair (G’,P’) in the
reduction of the proof of Theorem 2.4 can be constructed such that G’ is
a chain graph: A chain graph consists of n nodes vy, ..., v, and parallel
arcs between two nodes v; and v;11. A simple tree-decomposition of a chain
graph is definied by X; := {v;,v;y1} for i € I = {1,...,n — 1} and the path
T = (I, E) with arcs (i,7+ 1) € E. The treewidth of this decomposition is
1. Due to the parallel arcs we can construct an (s,t)-PCNj instance I’ on a
chain graph for any MAX CLQIUE instance I such that two paths p, and
py are arc disjoint if and only if the vetices u and v are connected by an arc
in I (Fig. 3). Therefore we have:

Theorem 3.2. The MAX CLIQUE problem is L-reducible to the (s,t)-PCNy
problem on graphs with bounded treewidth.

s =19 t

FiGUrRE 3. The L-reduction in Theorem 2.4 can be trans-
fered to chain graphs.
Since chain graphs are planar the result holds for this graph class, too.
Corollary 3.3. The (s,t)-PCN; problem on planar graphs is NP-complete.

An interesting class of graphs for line-planning are grid graphs since the
street network of cities like Manhattan or Mannheim are based on this struc-
tur. Moreover the class of grid graphs has unbounded treewidth. But even

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE 9

on this class of well structured graphs the (s,¢)-PCN problem cannot be
approximated within a constant factor, unless P = NP.

Theorem 3.4. The MAX CLIQUE problem is L-reducible to the (s,t)-PCN
problem on grid graphs.

S o
n
n
Py
n
Du
EI

FiGure 4. The paths p, and p, have a common arc since
u, v is not in G.

5 B

The L-reduction is again based on the construction of Theorem 2.4 (Fig.
4). It is possible to construct the clique-reducible pair, such that the graph
is a grid. Yet, in this case it is essential to use arbitrary capacities. In fact
we show in the next section, that there is a polynomial time algorithm for
the (s,t)-PCN; problem.

4. TRACTABLE GRAPH CLASSES

So far we considered only classes of graphs on which the PCN problems
remain difficult. In this section we consider two classes, grid graphs and
tree like graphs, on which at least the (s,¢)-PCN; problem is solvable in
polynomial time.

(s,t)-PCN; on Grids. We have seen before that the (s,¢)-PCN problem
on grid graphs with arbitrary capacities ¢ is NP-hard. In the case of unit
capacities we can exploit the property of an optimal solution to consist of
arc disjoint paths. Since the degree of s is at most 4 any optimal solution
consists of at most 4 different paths. To check the feasibility of any subset of
the set of paths P with at most 4 elements is possible in polynomial time. In
that way we can compute the optimal solution. As the only feature of grids
we used is the constant bound on the degree of s (respectively t), the idea
extends to any (s, t)-PCNj problem for which the minimum of the degree of
s and t is a constant.

(s,t)-PCN on Tree-Like Graphs. On trees the (s,t)-PCN problem is triv-
ial since there exists only one path from s to t. If we set y(p) := min,ep c(a)
with p € P we obtain the optimal solution. A natural extension is to con-
sider transshipments on directed trees, which is equivalent to the (s,t)-PCN

10 CHRISTINA PUHL AND SEBASTIAN STILLER

on (s,t)-extended outtrees: A graph G = (V, A) is an (s, t)-extended outtree
if G—{s,t} is an outtree (Fig. 5). An outtree is a directed tree T' = (V', A")
with a root node r € V' such that there is a directed path (not necessarily
in P) from r to any other node of V.

FIGURE 5. An (s,t)-extended outtree

In an (s,t)-extended outtree G = (V, A) we denote the set of nodes inci-
dent to s with V5 and those incident to ¢t with V;. The nodes of the outtree
T = G — {s,t} can be divided in disjoint sets, called level L;, according
to their distance ¢ to r. An (s,t)-path p in an (s,?)-extended outtree G is
uniquely defined by a pair of nodes (a,b) with a € V5 and b € V;, thus we
will denote this path by [a,b]. On this special class of graphs there exists an
efficient algorithm for the (s,¢)-PCN; problem. W.l.o.g. we assume for the
remainder of this section that every arc is traversed by at least one path of
P, and any path ends in a leaf of T'.

Theorem 4.1. The (s,t)-PCNy problem on (s,t)-extended outtrees is solv-
able in polynomial time.

To sketch the proof of Theorem 4.1, i.e., to describe the algorithm, we fix
some notation. From now on, let G = (V, A) be an (s, t)-extended outtree
and P the path set of the (s,t)-PCN;y instance (G, P) in question. For any
node u € Vs we denote by P, C P the subset of paths containing the arc
(s,u). The level nodes of the outtree T' = G — {s,t} with largest distance
to r shall be L.

Now we devise the pivotal lemma (without proof) for our algorithm, de-
scribing the structure of optimal solutions P*. (As we have unit capacities
a solution is specified by a subset of P.)

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE 11

5@

\\\

()

FIGURE 6. (a) Since v € Vi N V; the path s,v,t € P. (b)
A feasible solution contains at most one path from u to its
children Cy. (c) If w € V; there exist at most two paths
crossing u in a feasible solution.

Lemma 4.2. In the setting described above, with k > 2, v € Ly, a node of
the mazimum level, and the node u its father, the following holds:

(1) In case v € Vg, the path p = (s,v,t) € P, any optimal solution P*
contains a path p’' : v € p', and P** = P* — p' + p is also an optimal
solution (Fig. 6 (a)).

(2) For the case u ¢ Vs let C,, be the set of children of w. For an (s,t)-
path of an optimal solution [a,b'] € P* entering T at a and leaving
at b, and some path [a,b] € P, where b, V/ € C,, \ Vs, the set of path
P =P* — [a,V] + [a,b] is also an optimal solution (Fig. 6 (b)).

(3) In case u € Vg and |Py| > 1, any optimal solution will contain a
path (s,u,b,t) for some b e Cy, \ Vs (Fig. 6 (c)).

(4) In case uw € Vi, Py, = {[u,b]}, and b ¢ Vs, any optimal solution P*
contains a path p' : b € p'. Further, the path p’ can be replaced by
[u, b] maintaining optimality and feasibility of the solution (Fig. 6

(c)-

The algorithm is based on dynamically delaying decisions. Throughout
the algorithm we will maintain a candidate set for the path of the solution
P’, a stack of arces A’ to store certain decisions, and we will shrink the
graph and correspondingly manipulate the set of paths P.

The basic idea is the following. We shrink the graph from the leaves to
the root reducing our PCN instance. But, the decisions which paths shall
be used in the parts we shrink cannot be taken completely at the moment
of shrinking, because they depend on the part that has not yet been shrunk.
Therefore, we take preliminary decisions choosing sub-paths for the solution.
These decisions are stored in a stack of acrs A’. In a second phase we de-
shrink the graph and can now turn the preliminary sub-paths into complete
paths.

The algorithm itself is quite technical and so is the exact proof. In essence
the optimality relies on the fact that the constructed set of arcs A’ is a

12 CHRISTINA PUHL AND SEBASTIAN STILLER

feasible solution for the dual problem. We will now informally explain the
algorithm. The exact description is given in the Appendix.

The algorithm consists of two phases. In Phase I the algorithm decides
for every node v € Vi whether the constructed solution will contain a path
entering 7" at node v. To this end, all nodes are checked starting with the
ones in the highest levels and going down to the root r. If v is chosen, either
the arc (s,v) or (v, x) (for some = € C,) will be added to the decision saving
stack A’. The exact choice of this arc depends on a case distinction, derived
from the cases (3) and (4) of Lemma 4.2 explained later.

In addition Phase I constructs a set of candidates P’ C P for the path in
P*. The construction ensures that P’ contains for every arc (a,b) € A’ with
a # s at least one path, which contains arc (a,b) and is arc disjoint to all
paths [z,y] € P’ starting in a level lower than a. The set P’ is constructed
by successively deleting paths starting from P as will be described later.

In Phase II an (s,t)-path p € P’ C P is assigned to every arc (a,b) € A’.
Phase I. has two steps. First, we take care of for all v € V5 N V;. Then
there is a path (s, v,t) according to Lemma 4.2 (1), which wants to be part
of our solution.

Therefore, we add (v,t) to A’, delete (s,v) and v from G (v is a leaf) and
all paths [a,v] from P. Finally, we delete all paths [a,v] from P’ except for
(s,v,t).

In the second step all nodes in 7" are checked starting with the nodes in
the highest level Li. Let u be the father of a node in L. We distinguish
three cases corresponding to the cases (2) — (4) of Lemma 4.2.

(1) In case u ¢ Ng, we delete all children C,, of u from u in G, replace
all paths [a,b] € P with b € C,, by the path [a,u| and add the arc
(u,t) to G.

(2) In case u € Ng and |P,| > 1, we save (s,u) in A" and delete (s,u)
from G.

(3) In case u € N, and |P,| = 1, we denote the only path in question
by [u,b]. We save (u,b) in A" and delete (s,u) and (u,b) from G.
Furthermore, we delete all paths from P traversing (u,b). From P’
we remove the same path except for those containing (s, u).

Phase II. We pull the arcs in stack A’ one by one, last-in-first-out. For
each such arc a we choose an arbitrary path P € P’ that contains e. In
addition, we delete all paths P with P N P # @ from P’. Then we pull the
next arc from A’. Our construction of A’ and P’ ensures that for each e
such a path is still in P’. Obviously, the resulting solution is an arc disjoint
set of paths.

Two natural questions arise from this problem: Is the (s,t)-PCN problem
on (s,t)-extended outtrees solvable in polynomial time? Does an algorithm
exist which solves the (s,t)-PCN problem on (s,t)-extended trees in poly-
nomial time?

ACKNOWLEDGMENT

We are grateful for discussion with Stefan Hougardy, H. J. Promel and
Ines Spenke.

1]
2]
3]

(4]

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE 13

REFERENCES

Ralf Borndorfer, Martin Grotschel, and Marc E. Pfetsch. A path based model for line
planning in public transport. Report ZR-05-18, Zuse Institute Berlin, 2005.

Michael R. Bussieck, Peter Kreuzer, and Uwe T. Zimmernmann. Optimal lines for
railway systems. Fur. J. Oper. Res., 96(1):54-63, 1997.

L.R. Ford Jr. and D.R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, 1962.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.
Dorit S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publish-
ing Company, 1997.

Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer, 2000/2002.

N. Robertson and P.D. Seymour. Graph minors. i. excluding a forest. J. Comb. Theory
Series B, 35:39-61, 1983.

Anita Schobel and Susanne Scholl. Line planning with minimal traveling time. 5th
Workshop on algorithmic methods and models for optimization of railways, Dagstuhl
Seminar Procedings 06901, 2006.

14 CHRISTINA PUHL AND SEBASTIAN STILLER

APPENDIX A. AN ALGORITHM FOR THE (s,t)-PCN; PROBLEM ON
(s,t)-EXTENDED OUTTREES

In section 4 we gave a short overview of the idea of the algorithm. The
exact description is given below (Alg. 1).

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE

Data: (s,t)-extended outtree G = (V, A),

P C {[a,b]] a € Ns,b € V;} set of paths in G

Result: optimal solution P* of the (s,t)-PCN; instance,
optimal solution A of the dual (s,t)-PCN; instance

A =g, P =P, P =0, A" =0
kmax := maximum level of G
Define P, := {p € P| mit (s,u) € p} for all u € N;

1. Step
forall v € NsNV; do
A =AU (v,)
Delete v from G
P := P\ Uaen, [a,v] /* Delete all paths from P which end in v
P i= (P'\ Uaen, [a,v]) Uls,v,t]

2. Step: Contraction of G and P
Po:=P,P,:=P, Ay =4, Go=G,i=0
while knax > 0 do
v := node of Ly
u := father of v
C,, :=set of all children from u
if uw¢ N, then
Git1:=Gi\Cu /* Delete C, from G;
Pit1:="P;
forall [a,b] € P; mit b € C, do

Pit1 := (Piyi\[a,b]) Ula,u] /* Replace path [a,b] by [a,u]

z{+1 = 73{7 A;+1 = A;

max

else
if |Py| > 1 then
Ai+1 = A; U (57’11,)

Giy1:= Gi\(s,u) /* Delete (s,u) from G;
Pit1 = Pi\Puy /* Delete P, from P;i1
Pip =P
Regrad u as father node u ¢ N,

else
[, b] = Py

Ai+1 = AZ U (U, b)
Giy1 = Gi\{b, (s,u), (u,b)} /x Delete b, (s,u), (u,b) from G;
Pit1 =P
forall [a,b] € P; do
L Pit1 := (Piy1\[a,b]) /* Delete all paths [a,b] from P;11
=P
forall p’ € P, with (u,b) € p’ and (s,u) ¢ p’ do
L 73@',+1 = 77{+1\p'

B U})date kmax, Ns and Py, 1 : =1+ 1

A= A

3. Step: Selection of P*

/(0) = A;7 73(,0) = Pz,7 J= 0

while A{;) # @ do
(z,y) := last incoming arc of Af;
Select p € Py;y with (z,y) € p
P*:=P"Up
P§j+1) = P(:j)\{P' € Pyl Np # 2}
{4<j+1) = A\, y)
Jj=7+1

return A", P*

Algorithm 1: (s,t)-PCN; on (s,t)-extended outtrees

15

*/

*/

*/

*/
*/

*/

*/

