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Abstract–From a system-theoretic standpoint, a constrained state-space model for train traffic in a large 
railway network is developed. The novelty of the work is the transformation or rather reduction of the 
directed graph of the network to some parallel lists.  Mathematization of this sophisticated problem is 
thus circumvented. All the aspects of a real network (such as that of the German Rail) are completely 
captured by this model. Some degrees of freedom as well as some robustness can be injected into the 
operation of the system. The problem of time-optimal train traffic in large networks is then defined and 
solved using the maximum principle. The solution is obtained by reducing the boundary value problem 
arising  from  the  time-optimality  criterion  to  an  initial  value  problem  for  an  ordinary  differential 
equation. A taxonomy of all possible switching points of the control actions is presented. The proposed 
approach is  expected  to  result  in faster-than-real-time  simulation  of  time-optimal  traffic  in  large 
networks and thus  facilitation of  real-time control of the network by dispatchers. This expectation is 
quantitatively  justified  by  analysis  of  simulation  results  of  some  small  parts  of  the  German  Rail 
Network. 
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I.   INTRODUCTION
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Train traffic control is an important issue in modern passenger and freight transportation systems. An 
enhanced transportation system in the sense of faster transportation, shorter delays, lesser consumed 
energy, etc. yields in large economical savings and higher customer satisfaction.
 

Railway networks are at the heart of public transportation systems in many countries. Part of a 
typical railway network is shown in Figure 1, where the connections A1−A2  and B1−B2  use the 
same  physical  tracks.  In  this  network  transportation  between  A0  and  A3  can  be  done  through 
A0−A1−A2−A3 ,  and  between  B0  and  B3  via  B0−B1−B2−B3 ,  both  by different  types  of 

trains. From a system-theoretic point of view, the problem of stability (or analogously, safety) can be 
defined as  the avoidance  of any  crash  between  trains  coming  to  a  join  like  A1  and  between 
consecutive trains. The complexity of the problem is  better touched when noting that some trains are 
fast trains and do not stop at all stations, there may be construction sites, trains may break down and 
block part of the network and there exist schedule-based correspondences between some trains which 
have to be met. Currently it is also discussed to have variable maximal allowable velocities for every 
train in different parts of the network.
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Fig. 1: Part of the Network

        
A clearly  defined  schedule  alone  is  not  the  solution  to  this  problem,  since  it  may  not  be 

followed for a number of reasons as discussed above and, furthermore, it happens frequently that trains 
get out of the planned schedule.  In this  case,  the operation of the network requires fast,  real  time 
decisions of the network operator or even automatic model based decision making, based on the current 
status of the network. To allow such model based decision making and real time control, an appropriate 
model of the existing network is required, which should be compatible with the existing theory and the 
real network at hand. Decision making would require a tool that allows the prediction of the dynamics 
of the whole network based on certain decision, such as having a train wait for a delayed train, or 
having one train pass another train to proceed faster. Such a model, furthermore, should allow real time 
computation  for  large  realistic  networks  of  thousands  of  kilometers  of  rail  and hundreds  of  trains 
interacting in a complicated way with each other. This concerns in particular the inclusion of special 
trains that are added during the normal operation of the network, like cargo trains that do not operate on 
a regular basis. At this stage there are only very crude  tools available, and even in a large network, like 
that of the German rail network, most of the decision making is still based on human observation of the 
status of the network.  This situation motivates the development of a simulation tool that allows the 
prediction of the dynamic development of the whole network for a complete day of operation based on 
the actual status. The status is observed by a continuous stream and updating of train positions in the 
rail network and a comparison with the schedule based planned positions.  

What is necessary in automated decision making or decision support is that at a current time 
point the actual position of all interacting trains is observed, based on this observation and the current 
operation plan a simulation is carried out and the evolvement of the network for the remainder of the 
operation period is predicted. Based on this prediction and a given decision and control algorithm, then 
the  guidance  system interacts  with  the  network.  Such a  process  requires  real  time  simulation  and 



prediction algorithms which in turn require an appropriate mathematical model. The development of 
such a mathematical model that allows real time simulation and automated decision making is the topic 
of this paper. In deriving such a model for the real network of the German rail network extra difficulties 
that have to be dealt with, are decentralized control centers and, in particular, the fact that in the current 
situation the position information of trains is updated in a very fast way, but the velocity information for 
most trains is not continuously available. This makes the real time simulation very difficult and requires 
a completely new approach to the simulation of the network that will be discussed as well. Our new 
approach will be based on the fast computation of time-optimal controls. 

A summary of the existing results and current trends in train traffic can be found in  [1],[3]-
[8],[11],[13],[16]-[20],[22]-[27] and the references therein.  In the broad sense, the design objective in 
almost all of the existing results is one of the following: (O1) time optimality, (O2) energy optimality, 
(O3) mixed time and energy optimality, or (O4) model (i.e., trajectory or schedule) reference behavior. 
Moreover, most of the existing results have employed the maximum principle. In [1] based on the initial 
and terminal speed values, all optimal regimes and their possible sequences were classified. In [16],[17] 
the existence and parameterization of the optimal strategy for driving the train along a level track were 
considered. Numerical methods including genetic algorithms were suggested in a number of works, 
e.g., [6],[7],[17],[19],[23],[25]. The minimization of energy consumption was addressed e.g.
in  like [6],[7],[13],[17],[19],[22]. In [19] the energy-optimal operation of a train on a variable grade 
profile subject to arbitrary speed restrictions was studies. A multi-objective trajectory (i.e., mixed time 
and energy) minimization problem was tackled in [26].  Through the goal-coordination method, the 
optimal  schedule  problem  (i.e.,  model  reference  behavior)  was  handled  in  [8].  Fuzzy-logic  and 
decentralized control ideas were employed in [18] and [20], respectively. A discrete-event model was 
also developed in [27].

This work presents and extends the results of [4],[5],[24] on (O1). We present a model for time-
optimal train traffic in a schedule-based large network and explain how this model may be used for the 
purpose of fast simulation. As we have already mentioned above, a major reason for adopting (O1) is 
the  missing velocity  information for  different  trains  and the  fact  that  there  are  only asynchronous 
position measurements. This lack of information, nevertheless, is overcome by the assumption that the 
operation of each train follows a bang-bang control. This allows to compute the necessary velocity 
information in a fast and sufficiently accurate way. 

The novelty of the advocated approach is the transformation or rather reduction of the network, 
which in fact is a directed graph, to as many parallel lists as the number of trains. These lists and a very 
simple interaction procedure between these lists allow a simulation in faster than real time, because 
much of the information can be pre-computed off-line and just  looked up in tables,  thus reducing 
significantly the complexity of the problem. In other words, unlike the existing literature, the derivation 
of a complicated mathematical model for this sophisticated problem is partially avoided. 

The list  of  every train comprises  its  physical  parameters,  the  specifications of its  path and 
schedule, and the information which describes the interaction caused by that train on the other trains. 
Based  on  this  representation, the  system of  ordinary  differential  equations  (ODEs)  describing  the 
dynamics of all the trains is then solved, but real integration of the ODE is only carried out in the case 
of some interactions. To simulate the network online, in a round-robin fashion, using a fixed step-size, 
the lists of the trains which have interaction with some others are swept in parallel and by resolving all 
interactions between them their position and velocity are found versus time. The simulation of the rest 
of the network, i.e., trains with no interactions, is done in the same manner but beforehand and offline 
and the actual values are obtained from tables. As will be discussed, this is the advantage of using 
parallel lists instead of the graph of the network, and results not only in faster-than-real-time simulation 
of train traffic in large networks, but also in a quantitative analysis and estimate of the simulation time. 
None of the existing methods has achieved on-line simulation and this is the first work in this field. 

The organization of this paper is as follows. In Section  II, a constrained state-space model is 
developed for a network such as that of the German railway. In Section III, the problem of time-optimal 
train traffic in large networks is defined and solved. The solution is obtained by reducing the boundary 



value  problem arising  from the  time-optimality  criterion  to  an  initial  value  problem for  an  ODE, 
whereby all the static switching points of the control actions are computed offline. The computational 
methods for  the  aforementioned procedures  are  presented in  Section  IV,  where  a taxonomy of  all 
possible switching points of the control actions is also given. In Section V, the general specifications of 
an actual network like that of the German railway are applied to the proposed model. It is shown that 
these  specifications  in  fact  lead  to  some  simplifications  under  which  the  simulation  is  greatly 
accelerated. In Section VI it is explained how this model should be used for the purpose of simulation. 
Section VII is devoted to worked-out examples. The modeling procedure is illustrated in details and 
some  simulation  results  are  offered.  The  simulation  results  not  only  show the  pragmatism of  the 
advocated methodology for modeling, analysis, synthesis, and simulation of time-optimal train traffic in 
large networks, but also quantitatively exhibit the on-line simulation capability of the approach. These 
are discussed in Section VIII, where concluding remarks and future work are drawn.

II.   MODELING

The model is obtained by transforming (reducing) the directed graph of the network to some parallel 
lists in the following four steps. The first step is as follows: it is assumed that every train has its sole 
individual  path.  In  order  to  obtain  faster-than-real-time  simulation,  the  following  simplifying 
assumption  is  made:  every  train  is  considered  as  a  single  mass  point  moving  on  a  straight  path. 
Defining x  t =[ s t  v  t  ]T  where s t   and v t   denote the position and velocity of a train at 
time  t,  respectively,  the  dynamics  of  the  train  is  governed  by  the  following  minimal  state-space 
representation: 

                        ẋ=[0 1
0 0 ] x[ 0

1/mr ] u ,                                                            (1)

where  mr denotes the mass of the train including the effect of its rotational parts, i.e.,  rm m> , see 

[5],[21]  for  details.  The  total  force  acting  on  the  system  is  given  by  u=uuc  s , v ucv  .  The 
uncontrollable part  uuc  includes the air resistance, friction and gravitational effect. The controllable 
part uc  is applied by the driver (or the control system) and is constrained by the maximal braking force 
umin  s  t  , v  t    approximated by  umin s  t  , v  t  =ma  where the deceleration  a is  a  position-

dependent constant and the maximal thrust approximated by  umax  v  t  =Pmax /v  t  . In turn, Pmax  
denotes the maximal power of the engine, and is constant over a velocity interval,  see [5] and the 
references therein for more details. 

The dynamics of every train is thus governed by (1) subject to the constrained control:

                u=uuc  s , v uc v  ,                                                              (2)
                ucv ∈[umin  s t  , v t  , umax  v  t  ] ,                                                   (3)

as well as some other constraints, namely: (C1) the maximal allowable velocity in certain intervals of 
the line and the restriction that the train cannot  move backwards; (C2) reaching some position in a 
certain time window; and (C3) leaving some position in a certain time window. In this paper the time-
window constraints (C2) and (C3) will be omitted for the consideration of time optimality, because they 
model a more schedule-based driving strategy.

In the second step of modeling, the constraints (C1) are transformed into some mathematical 
constraints to be embedded into the above-derived model. For this, in the actual network the path of 
every train is divided into some adjacent intervals, in each a maximal speed being allowed1. Hence, 

1  The main factors that determine the beginning and end points of an interval as well as its maximal allowable velocity 
are the environment, type of the tracks, and trains. For instance, it is clear that near and in stations and in sharp bends 
some intervals must be properly placed whose maximal allowable velocities are low enough to guarantee safe operation 



analogously, it  is assumed that the path of every train is divided into some adjacent intervals as in 
Figure  2.  The  starting  point  of  interval   i is  given  by  si−1  which  is  the  end  point  of  interval 
i−1i≥1  ,  s0  is  the  starting  point  and  sn  the  end point  of  the  path.  The  maximal  allowable 

velocity over the whole path is thus a piecewise continuous function with possible jumps at the interval 
boundaries.  Therefore  v  s  t ∈[ 0, vmax  s t ]  in  which  vmax  s  t  =v max

i  s  t   for 

s∈[ si−1 , s i ] , i=1,. .. , n , denotes the maximal allowable velocity in the ith interval. 

s0 s2 si-1 s i sn-1s1 s i+1 ns

I
1

I
2

I
i

I
i+1
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n

Fig. 2: Intervals

The third modeling step is the transformation of the operating system for safe traffic into some 
constraints. The safe-traffic operating system or the safety concept is as follows. All the pathways of 
the network are divided into some overlapping  safety blocks. These safety blocks have some special 
characteristics, in particular: a) in each safety block at a given time there may be at most one train, and 
b) only at the end of a safety block a train is allowed to and may have to stop. Leaving and entering 
these safety blocks is detected by sensors. In order to stop a train at the end of a safety block a red light 
is signaled and the driver starts to brake at a braking point (to be exactly defined in Section IV) which 
is determined by a Pre-Signal, see Figure 3. Also, in order to let a train resume its journey after a 
stopping point a green light is signaled at a Main-Signal, see Figure 3.

Here,  analogously,  for  every  train  the  above  partitioning  is  exactly  considered  over  the 
supposed sole individual path; i.e., every train has its own exclusive safety blocks as in Figure 3. This 
figure illustrates the situation of two consecutive trains, one of the only two situations in which a crash 
may occur. In this figure, while the 1st Train is in the block l, the 2nd Train is not allowed to enter it 
which means that it must stop at the end of the block  j, and only when the 1st Train has left the block l, 
the 2nd Train is allowed to leave the block j. These conditions are transformed to the following simple 
blocking and unblocking conditions: <l> BLOCKS <j>  and  <l> UNBLOCKS <j>. 

The other situation for a possible crash is that of two trains coming to a join. In this case also a 
proper set of blocking and unblocking conditions will prevent the crash. In the actual network, priorities 
at a join – i.e., which train should pass first when some come to a join together – correspondences, and 
sequencing of trains are also treated by proper blocking and unblocking conditions at the right time by 
the dispatchers.

The preceding blocking/unblocking condition is the heart of the safety concept and is applied to 
the whole network. In this way safe operation in the whole network is always guaranteed regardless of 
the driving strategy. More precisely, no matter what speed the trains travel on, and more particularly, no 
matter the trains follow the bang-bang strategy of Section III or not, the safe operation in the whole 
network is always assured.

of trains and safety of the environment, see Example 7.1.
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Fig. 3: Safety Concept

In the fourth and last  step of modeling, the simple blocking and unblocking conditions are 
extended to some  extended blocking and unblocking conditions which address all the explicit times, 
correspondences, priorities and sequencing in the network. More specifically, the following are some 
extended blocking/unblocking conditions:

<a> UNBLOCKED at SDT,
<b> UNBLOCKED at LDT,
<c> UNBLOCKED after MaxWT,
<d> UNBLOCKS <e> after MinWT,

in which SDT, LDT, MaxWT and MinWT stand for the Soonest Departure Time, Latest Departure Time, 
Maximum Waiting Time, and Minimum Waiting Time, respectively.

Starts  of  journeys  are  handled  by  the  first  of  the  above  conditions  along  with  the  simple 
condition <a> INITIALLY BLOCKED, which together mean that the block a is initially blocked and 
then is unblocked at  SDT. Thus, by  a  proper definition of the block  a (i.e., the end of the block  a 



should  be  the  starting  point  of  a  path)  the  start  of  a  journey  will  be  addressed.  Analogously, 
correspondences, priorities and sequencing are captured by the first and last of the above rules along 
with some INITIALLY BLOCKED rules and some properly defined safety blocks. In the simulation 
software, entering and leaving these blocks are detected by some counters. 

Remark 2.1: By way of SDT and MinWT all the time correspondences, priorities and sequencing of the 
trains are encapsulated in the extended blocking/unblocking conditions. 

Remark 2.2: By the introduction of LDT and MaxWT some degrees of freedom (flexibility) and some 
robustness are injected into the operation of the whole network. The flexibility is due to the freedom in 
the starting time from the first and midway stations. The robustness is achieved because no train will 
wait  unreasonably  long  (in  theory,  forever)  for  another  train  if  it  does  not  meet  its  scheduled 
correspondence/priority with that train. This is  somehow analogous to the lower and upper bounds of 
the system performance in robust quantitative feedback theory (QFT) [15]. This robustification will be 
further interpreted in Remark 3.3. 
 

Based on the above developments, the dynamics of a large railway network with nz  trains is 
given by the following constrained state-space model: 

           [ ẋ1

⋮
ẋn z

]=[A1 0

⋱
0 Anz

] [ x1

⋮
xnz

][ B1u1

⋮
Bnz

unz
] ,                                        (4)

subject to the simple and extended blocking and unblocking conditions, where for i=1, ,n z :

                                x i=[si

v i
] ,                                                                       (5)

                Ai=[0 1
0 0 ] ,                                                                    (6)

                             Bi=[ 0
1/mi

r ] ,                                                                    (7)

                   v i s t ∈[0, v i
max

 s  t  ] ,                                                          (8)

                     ui=u i
uc
 s , v u i

c
 v  ,                                                           (9)

        ui
c
v ∈[ ui

min
 s  t  , v  t  ,u i

max
v  t  ] .                                            (10)

The contribution of  the above model  is  worth paraphrasing.  This is  a  decentralized model, 
which has been obtained by transforming or, more exactly, reducing the graph of the network to some 
parallel lists. The interactions between the trains, which are not transparent in this decentralized model, 
have been encapsulated in the  simple and extended blocking and unblocking conditions.  As will be 
seen,  it  is  this  model  that  enables:  i)  faster-than-real-time  simulation  of  the  network,  and  ii)  a 
quantitative analysis and estimate of the simulation time. In turn, these will enable online control and 
decision making in the whole network, as discussed in Section I.

It is noteworthy that the second feature – a quantitative measure of the simulation time – is very 
desirable. On the one hand, it quantitatively proves (see Section VIII) the on-line simulation capability 
of the advocated methodology and on the other hand, especially in the status quo that decision making 
is done manually, it guarantee a time for dispatchers to ponder and carefully consider the situation in 
order to make the right decision.   

Some remarks are in order. 



Remark 2.3:  The model is generic and can be used to establish an operating system for new railway 
networks. More precisely, it can be used for analysis and synthesis of existing networks. To this end, the 
following points  must  be considered:  (P1)  Interval  placement:  This  depends  on the  specific  actual 
network,  its  location,  neighborhood  and  physical  restrictions  which  govern  the  maximal  allowable 
velocities. (P2) Safety block placement: This depends on the specific actual network, but must in any 
case guarantee the safe operation of the whole network. Every station (or allowable midway stopping 
point) should be the end point of some safety block. 

Remark 2.4: The total force acting on a train is given by (9). The controllable part uc  depends on the 
type  of  the  train  (i.e.,  the  engine dynamics)  and  the  dynamics  of  the  network.  It  will  be  shortly 
explained, see the remainder of the paper, that it is either full thrust, full brake, or such that the maximal 
allowable velocities in the intervals are kept. The uncontrollable part  uuc  is given by uc af gu u u= + , 

where afu  accounts for the air resistance and friction, and gu  denotes the gravitational effect. The air 
resistance and friction depend on the type of the train and are nonlinear functions of its velocity; they 
should be found by experiment  and identification.  (Some details  about  this  nonlinear  function for 
different  trains  of  the  German  rail  can  be  found  in  [5],[24],[25]  and  the  references  therein.)  The 
gravitational effect is given by mg ρ  where m  is the mass of the train, g  is the gravity acceleration 
and  ρ  is the slope of the track which depends on its  position.  In case of an acclivity ( ρ0 )  it 
opposes acceleration and in case of a declivity ( ρ0 ) it helps acceleration.

Remark  2.5:  It  is  clear  that  there  are  some  degrees  of  freedom  in  the  interval  and  safety  block 
placements. It is currently under investigation how to exploit this freedom to achieve some other design 
objectives  like  fuel  efficiency,  wear  and  tear  (of  trains  and  tracks)  minimization,  and  economical 
implementation. Note that for economical implementation the number of safety blocks should be the 
minimum possible, since every safety block is  equipped with two sensors at  its beginning and end 
which  communicate  with  some other  sensors  and  also  with  the  dispatching  center.  Moreover,  the 
implementation of variable maximal allowable velocities for different trains and the effect of maximal 
allowable velocities on passengers comfort are being studied [25].

The modeling procedure  and the above points  and remarks  will  be  illustrated in  details  in 
Example 7.1.

In the following section, the problem of time-optimal traffic in large networks is addressed. 
Prior to this, some explanations about Figure 3 are in order. This figure illustrates the situation of two 
consecutive trains. As explained before, every train is assumed to have its own exclusive safety blocks, 
as  depicted  on top of  the figure.  In  (a),  solid  lines  are  the  given maximal  allowable  velocities  in 
intervals,  previously  denoted  by  vmax  s  t  =v max

i  s  t   for  s∈[ si−1 , s i ] ,  i=1,. .. , n .  Dashed 
lines are the curves on which the 2nd train speeds up, and dotted lines are the curves on which the 2nd 
train slows down (see next section, Definitions 3.1 and 3.2). It is clear that in order to meet the maximal 
allowable velocity at the beginning of a proceeding interval, the 2nd train must slow down on the dotted 
lines, and thus (b) is the maximal allowable velocity due to (the braking curves, Definition 3.2, of the) 
intervals. On the other hand, as stated before, at the end of a safety block a train is allowed to and may 
have to stop, and thus (c) is the maximal allowable velocity due to safety blocks. Finally, (d) illustrates 
the maximal allowable velocity in total which is the minimum of the above three velocities (a),(b),(c), 
whenever a curve in (c) is to be realized. In this scenario b j  is realized due to the safety block concept 
explained in the third step of modeling. This will be completely clarified by Remarks 4.1 and 4.2, read 
through.

III.   TIME–OPTIMAL TRAFFIC

Problem 3.1: The problem of time-optimal traffic (ride) for one train is to minimize  t n−t 0   subject  to 



(4)-(10) for 1zn = , where  t 0  and  t n  denote the times at the beginning and the end of the journey, 

and thus t n−t 0  is the total traveling time. 

Based on the classical theory of optimal control [12],[14] (maximum principle), it is clear that 
the solution is  given by a bang-bang control  subject to the constraints. In other words,  the control 
switches between its extremal values unless a constraint is reached in which case the control action is 
dictated by the constraint. The numerical computations to find the switching points – where the control 
switches  between its  extremal  values  or  where  the  constraints  are  reached or  left  –  are given in  
Section IV. 

In this context, it is not relevant how long a train has to wait at a station or a midway point (due 
to a constraint or a break-down) or when it restarts after a stop; this merely leads to an offset in the total 
time.
 
Remark 3.1: To find the control action and the switching points for all the objectives (O1)-(O4), in fact 
a boundary value problem should be solved which can be done by finite element, finite difference or 
multiple shooting methods [10]. For the case of time-optimality, however, this task is greatly simplified: 
the static switching points are computed simply and offline by reducing the boundary value problem to 
an initial value problem for an ODE, see Section IV.

Problem 3.2: The problem of time-optimal train traffic for a large railway network defined by (4)-(10) 

is to minimize t
i
n−t

i
0

 for i=1, ,n z , i.e., all the individual traveling times, under all the constraints – 

i.e., maximal allowable velocities, safe interaction, correspondences, priorities and sequencing. As in 
the case of a time-optimal ride for one train, the control action of every train is given by a bang-bang 
control unless a constraint is reached in which case the control is dictated by the constraint.

Remark 3.2: Due to the freedom mentioned in the Remark 2.2, the traffic in the network is not uniquely 
specified in the sense that there is some freedom in the departure times from the first and midway 
stations. 

Remark 3.3: The bang-bang control strategy alone does not close any feedback loop over the system, 
i.e., it is a kind of open loop control or schedule prescription. (It is currently under investigation how to 
close the feedback loop theoretically,  see Section VIII.) Nevertheless,  the introduction of  LDT and 
MaxWT (Remark 2.2) sort of closes an inherent (not a control) feedback loop. Recall that without this a 
minimum quantity (the time of a time-optimal ride) could become infinity. Thus, precisely speaking, 
this robustification makes the problem mathematically well defined. 

Remark 3.4: In the literature the problem of time-optimal traffic in large networks has been defined in 
different   ways.  These include  the  minimization  of  the  total  traveling  time  of  the  network (

∑
i=1

nz

t i
n−t i

0 ) and  the minimization of individual or total delays as well as waiting times at stations.

The following definitions are helpful in the forthcoming development.

Definition 3.1: An acceleration curve is a path on which a train accelerates with full thrust. It can be 
either static or dynamic. A static acceleration curve starts from either the beginning of an interval or the 
end point of a safety block. The former is called an interval acceleration curve and the latter a safety 
block acceleration curve. As will be seen in the next section,  all  static  acceleration curves may be 
determined offline. A dynamic acceleration curve starts from a dynamic reverse point (see next section) 
and has to be determined during the simulation process.

Definition 3.2: A braking curve is a path on which a train decelerates with full brake. If it ends at the 
end of an interval, it is called an interval braking curve and if it ends at the end point of a safety block, 



it is called a safety block braking curve. A braking curve has a static nature and can always be found 
offline. 

For an illustration of acceleration and braking curves see Figure 4. In this figure, D2-A2, D3-
A3,  D5-C1, D6-C3 and  D6-C4 are interval acceleration curves,  D1-A1 and D4-C2 are safety 
block acceleration curves, B2-E1, C1-E3, C2-E3, C4-E4, B3-E6, F4-E6 and B4-E9 are interval 
braking curves,  B1-E2,  C3-E5,  F1-E8, F2-F3-E7 and F5-E10 are safety block braking curves, 
and F1-F2, F3-F4  and F5-G1 are dynamic acceleration curves.

IV.   COMPUTATION OF SWITCHING POINTS

Numerical algorithms for the computation of all possible switching points are presented in this Section.
To this end, first a taxonomy of all possible switching points in the time-optimal ride is presented. A 
switching point may be either static or dynamic. 

A static  switching  point  can  be  found offline  and  is  one  of  the  following:  (SS1)  A  static  
reaching point where an interval velocity constraint is reached after speeding up on a static acceleration 
curve by full thrust; (SS2) a leaving point or a braking point where an interval velocity constraint is left 
(after being on the constraint) by full brake and a braking curve starts; (SS3) a  static reverse point 
where the control reverses from full thrust on a static acceleration curve to full brake on a braking 
curve; (SS4) an at least turn-on point which is the beginning of a static acceleration curve; (SS5) an at 
most turn-off point which is the end of a braking curve.

A dynamic switching point cannot be computed offline (see  Remark 4.3) and is one of the 
following: (DS1) a dynamic reverse point where the control reverses from full brake on a safety block 
braking curve to full thrust on a dynamic acceleration curve, or vice versa, where the control switches 
from full  thrust on a dynamic acceleration curve to full  brake on a braking curve. More precisely, 
suppose a train is on a safety block braking curve. If suddenly the blocking condition is removed, then 
the control must be switched from full brake to full thrust. This point is called a dynamic reverse point 
whence a dynamic acceleration curve starts. If this dynamic acceleration curve ends on a braking curve, 
then this point is also called a dynamic reverse point; (DS2) a dynamic reaching point where a dynamic 
acceleration curve ends on an interval velocity constraint. 

For an illustration of static and dynamic switching points see Figure 4. In this  figure, A1-A3 
are static reaching points, B1-B4 are leaving points, C1-C4 are static reverse points, D1-D6 are at 
least turn-on points, E1-E10 are at most turn-off points, F1-F5 are dynamic reverse points, and G1 is 
a dynamic reaching point.
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                                           Fig. 4:  Acceleration/Braking Curves and Switching Points

The  above  taxonomy  provides  the  language  of  the  proceeding  development  to  find  the 
switching points.

A.   Static Reaching Points

To comply with the bang-bang control  policy,  a  train must  accelerate with full  thrust  to reach the 
constraint whenever its velocity is less than the velocity constraint. Therefore it is considered that the 
velocity of the train is less than the velocity constraint in interval  i. The train must speed up and the 



reaching point will be in say interval  j  j≥i ; if interval  i  is short and/or the acceleration force is not 
enough, then the train reaches the constraint in interval  ji ,  otherwise  j=i ). To find the static 
reaching  point,  the  time  t  when  the  velocity  reaches  the  velocity  constraint,  i.e.,  when 
v  t =vmax  s  t   will  be  found.  This  time  instant  is  the  root  of  the  monotone  function 
σ r  t =vmax  s  t  −v  t   which  can  be computed by any root-finding method like  the bisection, 

Newton's, or fixed-point iteration method [10]. In the following, the bisection method is adopted.

Algorithm 4.1.1 [5]: Bisection method to compute the time instant when a velocity constraint is reached 
(from below). 

Input: Accuracy  tolerance  ε ,  starting  step-size  Δ  t   and  initial  values  t 0 ,  s0  and  v0  
(corresponding to the given initial point in the interval  i).
Output: Numerical value for the time instant t r

j  and the position sr
j  where the constraint is reached in 

interval  j  j≥i  .

1. Set  t 0=t 0  and x 0=[ s0 v0 ]T .

2. Set t 1= t 0Δ t  .

3. Compute σ r  t1   by solving the initial value problem:

         ( )max( ( ), ( )) ( ( ))ucx Ax B u s t v t u v t= + +˙ , t∈[ t 0 , t 1]  ,  x  t 0 =x 0 .                          (11)

4. If  ∣σ r  t1 ∣ε , then set: t r
j := t1 , sr

j :=s  t 1   and  STOP.

5. If σ r  t1 0 , the constraint has been violated. Divide the step-size Δ  t := 1
2

Δ  t  .

6. If σ r  t1 0 , the constraint has not been reached yet. Set: x 0 :=x  t 1  , t 0 := t 1 .
7. GOTO Step 2.

B. Leaving Points

To comply  with  the  velocity  constraint  at  the  beginning  of  an  interval  whose  maximal  allowable 
velocity is less than that of the preceding interval (or to stop at the end of a safety block), the constraint 
in the/a preceding interval must be left at a leaving point, or, there must be a static reverse point in the/a 
preceding  interval.  Thus,  if  the  velocity  constraint  drops  at  the  end  of  interval  k,  i.e., 

1
max max( 0) ( 0)k k k kv s v s+ + < − , (or if the end point of a safety block is in interval k) it is necessary to find 

the corresponding leaving point in say interval j  j≤k ; if interval  k  is short and/or the braking force 
is not enough, then the train must start deceleration in interval  jk ,  otherwise  j=k ). It is also 
assumed that the would-be leaving point in interval j is after its reaching point, if any. (Otherwise, if the 
would-be leaving point in interval  j  is  found to be before its reaching point, then in fact neither a 
reaching point nor a leaving point but a static reverse point is in that interval. This situation is addressed 
in the next subsection.)

A leaving point is found by backward computation. The kth interval braking curve is addressed 
in the following formulation. (A safety block braking curve is treated in a similar way). Analogous to 
the case of a reaching point, Algorithm 1 can be used with:

        ( )min( ( ), ( )) ( ( ))ucx Ax B u s t v t u v t= + − −˙  , max(0) [0, ( 0)]k Tx v s= + ,           (12)

and the initial  values  t=0  and  s=0 .  The solution will  be the length of the braking curve, i.e., 
k j

b ls s s= − , and the absolute time t b  spent on the braking curve. The actual position of the leaving 



point is thus given by j k
l bs s s= − . The actual time of the leaving point is given by t l

j=t r
j t c

j  where 

t r
j  is known from Section IV.A and  t c

j  is the time spent on the constraint in interval j, i.e., t c
j  is 

the  root  of  σ c t =s  t −sl
j  in  which  s t   is  the  solution  of  the  initial  value  problem 

ṡ t =v max  s  t  , s t r
j =sr

j .

C. Static Reverse Points

As stated before, if the would-be leaving point in an interval is found to be before its reaching point, 
then in that interval there is neither a reaching point nor a leaving point but a static reverse point. A 
static reverse point is given by the intersection of a braking curve and a static acceleration curve. It is 
clear that the velocity at a static reverse point is less than or equal to the interval velocity constraint at 
that point.

To find the static reverse point in interval j, the trajectory of the velocity v fw  of the forward 
initial value problem (11) and the trajectory of the velocity vbw  of the backward initial value problem 
(12)  are  intersected.  To  this  end,  the  time  instant   t 1  at  which   v fw  t1 =vbw  t 1   and 

1 1( ) ( ) k
fw bws t s t s+ =  has  to  be  determined.  Thus,  t 1  is  the  answer  if  it  is  the  root  of 

σ rev t 1=v fw  t 1 −vbw  t1   subject  to  1 1
ˆ( ) ( )k

fw bws t s s t= −  where  v fw  t1   is  the  solution  of  the 

forward initial value problem (11) and sbw  t1   and vbw  t1   are the solutions of the backward initial 
value problem (12). The above procedure is performed by the following Algorithm.

Algorithm 4.3.1 [5]: Bisection method to compute the time instant when the control reverses from full 
thrust to full brake.

Input: Accuracy tolerance  ε , starting step-size  Δ  t  , position  s0 , velocity  v0  and time  t 0  at a 

given point in interval  i, the velocity constraint  1( 0)k kv s+ +  and the position  ks  at the beginning of 
interval k1 .
Output: Numerical value for the time instant  t rev

j , the position  srev
j  and the velocity  vrev

j  where 
control reverses from full thrust to full brake. 

1. Set t 0=0 .
2. Set t 1=t 0Δ t  .

3. Solve the initial value problem (12) for  t∈[ t 0 , t1 ]  and 0 max( ) 0, ( 0)
Tkx t v s = +   to find  sbw  t1   

and vbw  t1  .

4. Solve the initial value problem (11) for t∈[ t 0 , t 1]  and 0 0 0
ˆ( ) [ , ]Tx t s v=  to find the time t 1  at which 

1 1
ˆ( ) ( )k

fw bws t s s t= − . At this time instant compute v fw  t1  .

5. Compute σ rev t 1=v fw  t 1 −vbw  t1  .

6. If   ∣σ rev t 1 ∣ε  then set: 

t rev
j := t1 , 

t b :=t 1 ,

srev
j :=s fw  t1  ,        1( ( ))k

bws s t= −  

vrev
j :=v fw  t 1 ,    =vbw  t 1 

STOP.
7. If σ rev t10 , then the static reverse point has not been reached yet. Set: t 0 :=t 1 .



8. If  σ rev  t 10 , the static reverse point has been passed. Divide the step-size: Δ  t := 1
2

Δ  t .  

9. GOTO 2.

Thus,  the  static  switching points  (SS1)-(SS3) are computed offline  by the above numerical 
algorithms. However, it is clear that the at least turn-on and the at most turn-off points (SS4) and (SS5) 
may be found even analytically.

Remark 4.1:  Only if  the  corresponding blocking and unblocking conditions emerge will  the  safety 
blocks related static switching points materialize. For example, in Figure 3 only if the 2nd train enters 
the safety the block  j while the 1st Train is in the safety block  l does the switching point due to the 
braking curve of the safety block  j, i.e.,  b j ,  and thus  b j  itself, materialize. Materialization of a 
safety block related switching point may prevent that of some switching points. For instance, in Figure 
4, materialization on D1-A1 does not prevent that of D2, but materialization of E2 does prevent that of 
B2.

Remark 4.2: The maximal allowable velocity (Figure 3, d) is given by the minimum of the velocities 
dictated by the interval velocity constraints and interval braking curves (Figure 3, b) and by the safety 
block braking curves (Figure 3, c) whenever and whichever materialized (Remark 4.1). 

Remark 4.3:  A dynamic reverse point which is the beginning of a dynamic acceleration curve may 
emerge (due to an unblocking condition) only in the course of online simulation. Thus, it cannot be 
computed  offline.  However,  the  end  of  a  dynamic  acceleration  curve  (which  is  either  a  dynamic 
reaching point or a dynamic reverse point) can be computed semi-offline. In other words, when the 
beginning of a dynamic acceleration curve emerges, its end can be computed before it materializes. To 
this end, whenever the beginning of a dynamic acceleration curve emerges, its end is found like a static 
reaching point or a static reverse point but in the course of online simulation.

V.   ACTUAL NETWORKS

In  an  actual  network,  like  that  of  the  German railway,  some specifications may be relaxed.  More 
precisely, in many real networks the following assumptions can be made: (A1) Within all intervals the 
maximal allowable velocity is a constant function of the position (as shown in Figure 3 and Figure 4); 
(A2) the acceleration and braking forces are constant functions of the position and continuous functions 
of the velocity; (A3) at the end point of intervals jumps in the controllable force uc  are realizable.

It  is  easy to  check that  under  these  assumptions there  is  no need to  solve an initial  value 
problem to find a braking curve. Instead, a braking curve is given by the following simple algebraic 

formulae  v  s =a  t−t
0
v s 0 =v2 s02a  s−s0   in  which  the  constant  a  is  the  maximal 

deceleration and  s , v ,t   and  s0 , v0 , t 0   denote the position, velocity and time of two of its points. 
In particular,   s0 , v0   can be chosen the end point of the braking curve, since the at most turn-off 
points are known without any computations. Moreover, provided uc=umax  v   is enough to satisfy a 
velocity constraint, there is no need to solve an ODE and the following simple algebraic formula holds 
on an interval velocity constraint: v=at .

Remark 5.1: It is observed that only on acceleration curves one needs to solve initial value problems. As 
soon as a train reaches its maximal allowable velocity (Remark 4.2) its next position and velocity are 
given by some inexpensive algebraic computations. Consequently, the aforementioned assumptions are 
in effect some simplifications under which the simulation of the network is accelerated significantly.

VI.   SIMULATION STRATEGY



To simulate the network, i.e., to find the position and velocity of every train versus time, a simulation 
software must be written. Such an industrial software is currently under development. Already available 
is a pilot simulation program by which some small-scale but real networks have been simulated. These 
results will be presented in the next Section. Prior to this, we explain the simulation strategy in the 
following. 
 

The input to the simulation software is all the information of the network supplied through an 
interface e.g. an XML file [2],[9]. Inside the simulation program the interface file is read using e.g. a 
SAX-oriented  XML C++  parser  [2],[9].  It  is  sorted  so  that  the  simple  blocking  and  unblocking 
conditions which are induced by the motion of each train on the motion of other trains are identified 
and categorized in the data structure of that train. Inside the simulation program, the data structure is 
like that of some nested classes. There is a big class of trains with ′

zn  trains as its objects, where ′
zn  

denotes the total number of trains having interaction with some others. (This will be later defined in 
Definitions 6.1-6.3, read through.) Each object, i.e., each train, includes the specifications of the train 
ID and its wagons plus four classes,  the class of locomotives,  the class of intervals, that of safety 
blocks, and that of all extended and simple blocking and unblocking conditions (which are caused by its 
motion). In turn, each object of the class of locomotives includes the class of its power-velocity data in 
addition to some other specifications (like its mass – describing its dynamics) needed to solve (4)-(10).

The simulation is based on the flowchart given in Figure 5. In this figure β  (of a safety block) 
denotes the indicator function of a safety block defined as the number of blockings of that safety block 
(see Section VII, Example 7.1), and vmax

¿  denotes the maximal allowable velocity (Remark 4.2). The 
simulation starts by offline computation of all possible static switching points, the initial value of the 
indicator functions of all safety blocks and the initial maximal allowable velocity of all the trains. Then 
online simulation starts as follows. In a round-robin fashion for every train the following is done with 
the local step-size  Δ  tl  : By checking the current velocity and the indicator function of the current 
safety block, it is checked if the train can go forward or has to wait. If it has to wait the program goes to 
the next train. If it can go forward, it is checked if the train is on its maximal allowable velocity. Hence, 
there are the following two cases: 

a) The train is not on its maximal allowable velocity. Thus, the train must accelerate with full 
thrust (represented by amax

 ) on a static/dynamic acceleration curve. Then it is checked if the maximal 
allowable  velocity  is  violated.  If  not,  the  program  goes  to  the  next  train.  Otherwise,  the  above 
computation is  corrected (using interpolation) so that  the  corresponding static  reaching point/static 
reverse point/dynamic reaching point/dynamic reverse point is arrived at; then the program goes to the 
next train.

b) The train is on the maximal allowable velocity. Then it is checked if the train is on a braking 
curve. If so, the train decelerates with full brake (represented by amin

− ); if not, the train moves with the 
same speed. In either case it is then checked if the train is still on its maximal allowable velocity. If so, 
the program goes to the next train. If not, the above computation is corrected (using interpolation) such 
that  the  corresponding  at  most  turn-off  point  or  leaving  point  is  arrived  at,  respectively;  then  the 
program goes to the next train.
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Fig. 5: Flowchart of the Simulation Strategy

After each round of the above procedure, it is checked if the global step-size Δ  t g   has been 
reached.  If  not,  the above procedure is  repeated.  If  so,  the following is  done for  every train.  It  is 
checked if a safety block has been left or entered. If not, the program goes to the next train. If so, the 



indicator functions of the corresponding safety blocks of other trains which are affected by the current 
safety block of this train, if any, are decremented or incremented, respectively, considering the time. 
(Note that the extended blocking and unblocking conditions incorporate some explicit times.) Then the 
program goes to the next train. It should be noted that at this stage, that all the indicator functions of the 
safety  blocks  are  checked  for  possible  updates,  the  corresponding  maximal  allowable  velocities 
(Remark 4.2) are updated if necessary. The simulation ends when all the trains have reached their end 
points.

The  purpose  of  the  introduction  of  the  two local  and  global  step-sizes  is  to  speed  up  the 
simulation. By the local step-size selection strategy, the desired accuracy of the simulation of each train 
motion is achieved. By the global step-size it is checked if a safety block is entered or left. Since in 
general a safety block is not entered or left at a local step-size and because the exact time a safety block 
is entered or left is not needed, the approximate time a safety block is entered or left is found via the 
global step-size which is larger than the local step-size. 

Remark 6.1: The local and global step-sizes are two positive constants. To choose them the following 
should be considered: a) the desired accuracy of the simulation (inverse relation), and b) the desired 
speed of the simulation (inverse relation). Note that the accuracy itself depends on the ODE in question. 
This specifically means that every train (every ODE) has its own (maximum allowable) local step-size. 
However, there is a unique local step-size for the network (used in the simulation software) which is the 
minimum of  the  maximum allowable  local  step-sizes,  see  [5],[10],[24]  for  more  details  and some 
comparative studies.   

The philosophy behind ′
zn  (in Figure 5) can be explained as follows. In a real network not every 

train is interacting with some others. Moreover, none of the trains that have interaction with some other 
trains is all the time interacting with them. The following definitions, which are useful in the ensuing 
discussions, are a classification of trains versus interaction.

Definition 6.1: The trains having no interaction with any other train are called the non-interactive trains.

Definition 6.2: The trains having interaction with some other train(s) are the so-called interactive trains. 
The total  number  of  them is  denoted by  ′

zn .  (In actual  large-scale  networks  nz
' << nz ,  where  zn  

denotes the total number of trains.)

Definition 6.3: The interactive trains while interacting are called the active-interactive trains. (Note that 
they form a non-empty, non-full  subset of interactive trains, and that the size and members of this 
subset depend on time, more precisely, on the status of the whole network at any given time.)

Remark 6.2: In a large-scale system with nz , nz
' >> 1  trains (in the German railway nz≃4000 ), each 

causing in average N (extended and simple) blocking and unblocking conditions, the list of all blocking 
and unblocking conditions has  nz

' N  elements. This list must be swept for each train at each global 
step size. By the classification of blocking/unblocking conditions as explained in the first paragraph of 
this section,  each train will have its exclusive list with (about)  N elements; thus,  nz

' −1 N≃nz
' N  

supernumerary  elements  are  expunged  from that  list  of  each  train.  The  simulation  is  thus  highly 
accelerated.

Remark 6.3:  Only the interactive trains are included in the flowchart of online simulation. In other 
words,  the simulation of non-interactive trains is  done offline and this greatly expedites the online 
simulation. Some general picture about the number of active-interactive, interactive and non-interactive 
trains in a typical large-scale network is offered in Section VII.

Remark 6.4: The simulation of non-interactive trains can be done using the same flowchart as that in 
Figure 5. The only difference is that in the lower dashed box (entitled “Updating blocking/unblocking 



conditions”) there are no safety blocks of other trains. Note that this box is considered, since there may 
be some safety blocks of the same train due to extended blocking and unblocking conditions.

Remark  6.5:  Based on  this  strategy,  faster-than-real-time  simulation  of  the  simulation  is  obtained, 
because: a) there is no graph to go through, there are some lists in parallel; the approach is well suited 
for parallel processing and can be implemented on parallel processors, b) all possible static switching 
points and maximal allowable velocities are computed offline, c) only on acceleration curves there are 
initial value problems to be solved – as soon as a train gets on its  maximal allowable velocity its 
position and velocity in the next iteration are obtained by some inexpensive algebraic computations, 
and d) some lengthy and superfluous computations are circumvented by d1) the inclusion of interactive 
trains only,  and d2)  the introduction of the global and local step sizes and the classification of the 
(extended and simple) blocking and unblocking conditions in the data structure of every train. As will 
be discussed in Section VII, the above-mentioned expected computational speed is realistic.

VII.   WORKED OUT EXAMPLES

To illustrate the pragmatism of the proposed methodology for modeling and simulation of time-optimal 
train traffic in large networks, some real small-scale networks (which are parts of the German railway 
network)  have been simulated by a  pilot  simulation program [24].  The implementation  in  the real 
operating centers of the German railway system is currently being considered. 

Prior to giving some simulation results, the general procedure and guidelines of Section II are 
illustrated in a concrete example. To this end, the construction of a model and its associated simple and 
extended blocking and unblocking conditions for a given physical network are detailed.  

Example 7.1:  Given the  network  in  Figure  6,  which can represent  part  of  a  real  network.  In  this 
network, ST-A, ST-B, and ST-X stand for Station A, Station B, and Station X, respectively, and M-F 
represents Merge F. M-F and ST-X are connected by one track only. From among the many trains 
traveling in this network only six are considered, which have the following routes: 1st Train and 2nd 
Train:                ST-A––M-F––ST-X––y1,2, 3rd Train and 4th Train: ST-B––M-F––ST-X––y3,4, 8th 
Train and         9th Train: x8,9––ST-X––y8,9. Besides, P-I, P-J, P-M, and P-N denote Point I, Point J, 
Point M, and Point N, respectively. These points refer to some points on the routes where there are 
some sharp bends. In particular, P-I and P-N are on some bridges on which a train is not allowed to stop 
but to pass.

It is clear that in case of no safety observation there is a possibility of crash between any two or 
more of 1st Train, 2nd Train, 3rd Train, and 4th Train, and also between 8th Train and 9th Train, but not 
between these two groups since ST-X is a station not a join (for the paths of these two groups of trains). 
As such, a model is required for this network, which will be built in the ensuing development in line 
with the modeling steps of Section II.
 
Step 1. We consider every train as a mass point moving on its own supposed sole individual path/track 
which itself is considered as a straight line. However, due to lack of space, and in order to emphasize 
that trains with the same route share the same track, in Figure 7 only one track is depicted for any such 
trains. Also, for the sake of clarity a train is shown by a wagon not by a mass point.
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Fig. 6: A representative part of a real network

Step 2. The path of every train is divided into some adjacent intervals, in each a maximal velocity being 
allowed. As stated in Section I, it is possible and it is currently under investigation to have different 
maximal allowable velocities for different trains. However, for the sake of simplicity, and without loss 
of generality, we suffice to a unique maximal allowable velocity for each point of the tracks. Thus, as 
depicted in Figure 7, for instance, all the trains passing through ST-B––M-F have the same maximal 
allowable  velocity  on  ST-B––M-F,  and  all  the  trains  passing  through  M-F––ST-X have  the  same 
maximal allowable velocity on M-F––ST-X. Moreover, note that the intervals containing P-I, P-J, P-M, 
and P-N have reasonably small maximal allowable velocities because of the sharp bends.
 
Step 3: The supposed sole individual path of every train is divided into some overlapping safety blocks, 
as shown in Figure 7. In this figure, in the exclusive index ,i j  (written over each safety block) the first 
argument (i) refers to the train number and the second argument (j) refers to the number of that safety 
block, where {1,2,3,4,8,9}i ∈  and {1,2,...}j ∈ . We will refer to the jth safety block of the ith train by 
< ,i j >. 

Moreover, for the sake of clarity, the beginning and end points of those safety blocks which are 
physically the same are connected by dashed lines, e.g., <1,8>,<2,8>,<3,7>,<4,7>. Besides, such safety 
blocks which  also represent trains with the same route have the same arguments, e.g.,  <1,4>,<2,4>; 
<3,8>,<4,8>;  <8,18>,<9,18>.  It  is  clear that another scheme may also be used to index the safety 
blocks.  

 
It is also noted that because P-I and P-N refer to some bridges, no safety block ends on these 

points. In fact, the end points of the safety blocks containing P-I and P-N are far enough so that in case 
a train has to stop in those safety blocks, it does not stop on the bridge.

The safety concept can simply be explained as follows. While Train 1 is in <1,3>, Train 2 is not 
allowed to enter  <2,3> (physically the same as  <1,3>) which means that it must stop at the end of 
<2,1>. When Train 1 has left  <1,3>, Train 2 is allowed to enter <2,3> which means that it can leave 
<2,1>. The same applies to <1,k> and <2,k-2> for the rest of the path. Thus, 

{3,4,...}k ∈ :
<1,k> BLOCKS <2,k-2>,
<1,k> UNBLOCKS <2,k-2>.

On the other hand, the converse is also valid if Train 2 is leading Train 1. That is, we must also have,
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Fig. 7: The first three steps of modeling of the network in Figure 6. The length scale does not apply to the trains. 
In the given scale a train should be shown by a point “ . ” but it is depicted as a wagon for the sake of clarity.



{3,4,...}k ∈ :
<2,k> BLOCKS <1,k-2>,
<2,k> UNBLOCKS <1,k-2>.   

In practice both of the above sets of rules are needed even if sequencing enforce only one situation, that 
e.g. Train 1 leads Train 2. The reason is that if the required sequencing is not followed for any reason, 
safety must still be observed. 

Similar arguments apply to the other four trains. Consequently,

{3,4,...}k ∈ :
<3,k> BLOCKS <4,k-2>,
<3,k> UNBLOCKS <4,k-2>, 

{3,4,...}k ∈ :
<4,k> BLOCKS <3,k-2>,
<4,k> UNBLOCKS <3,k-2>,   

and, assuming that  Trains 8 and 9 share the same physical safety blocks with the same arguments 
throughout their path,

{3,4,...}k ∈ :
<8,k> BLOCKS <9,k-2>,
<8,k> UNBLOCKS <9,k-2>,   

{3,4,...}k ∈ :
<9,k> BLOCKS <8,k-2>,
<9,k> UNBLOCKS <8,k-2>.   

The proceeding sets of simple blocking and unblocking conditions guarantee the safe operation 
of trains with the same route up to their interaction due to M-F––ST-X. To resolve this, consider  Trains 
1 and 3, where the former leads the latter. The following set of rules is needed:

<1,7> BLOCKS <3,4>,
<1,7> UNBLOCKS <3,4>,    
<1,8> BLOCKS <3,5>,
<1,8> UNBLOCKS <3,5>,     
<1,9> BLOCKS <3,6>,
<1,9> UNBLOCKS <3,6>,     
<1,10> BLOCKS <3,7>,
<1,10> UNBLOCKS <3,7>.  

If Train 3 leads Train 1, the following set of rules is needed:

<3,6> BLOCKS <1,5>,
<3,6> UNBLOCKS <1,5>,
<3,7> BLOCKS <1,6>,
<3,7> UNBLOCKS <1,6>,
<3,8> BLOCKS <1,7>,
<3,8> UNBLOCKS <1,7>,
<3,9> BLOCKS <1,8>,
<3,9> UNBLOCKS <1,8>.
   



With a similar argument, it is clear that in practice both of the above sets of rules are required. 

Similar rules are needed for Trains 1 and 4, as follows:

<1,7> BLOCKS <4,4>,
<1,7> UNBLOCKS <4,4>,     
<1,8> BLOCKS <4,5>,
<1,8> UNBLOCKS <4,5>,     
<1,9> BLOCKS <4,6>,
<1,9> UNBLOCKS <4,6>,    
<1,10> BLOCKS <4,7>,
<1,10> UNBLOCKS <4,7>,

<4,6> BLOCKS <1,5>,
<4,6> UNBLOCKS <1,5>,
<4,7> BLOCKS <1,6>,
<4,7> UNBLOCKS <1,6>,
<4,8> BLOCKS <1,7>,
<4,8> UNBLOCKS <1,7>,
<4,9> BLOCKS <1,8>,
<4,9> UNBLOCKS <1,8>.

Analogously, the following rules are required for Trains 2  and 3:
   
<2,7> BLOCKS <3,4>,
<2,7> UNBLOCKS <3,4>,
<2,8> BLOCKS <3,5>,
<2,8> UNBLOCKS <3,5>,
<2,9> BLOCKS <3,6>,
<2,9> UNBLOCKS <3,6>,
<2,10> BLOCKS <3,7>,
<2,10> UNBLOCKS <3,7>,  

<3,6> BLOCKS <2,5>,
<3,6> UNBLOCKS <2,5>,
<3,7> BLOCKS <2,6>,
<3,7> UNBLOCKS <2,6>,
<3,8> BLOCKS <2,7>,
<3,8> UNBLOCKS <2,7>,
<3,9> BLOCKS <2,8>,
<3,9> UNBLOCKS <2,8>.

All the above rules together will guarantee safe operation in the network, i.e., there will not be 
any crash between consecutive trains or those coming to a join. Nevertheless, they do not address any 
schedule. This will be handled in the sequel.

Step 4. In this step initialization of the journeys, sequencing, correspondences and priorities at joins are 
examined in details, but for the sake of brevity not for all trains. 

Initialization: Suppose Train 1 is to start at 0
1t t= . The sequel set of extended blocking and unblocking 

conditions is used:

<1,1> INITIALLY BLOCKED,



<1,1> UNBLOCKED at 0
1t .

The first command prevents  Train 1 from starting by blocking <1,1>. The second command releases 

the blocking of <1,1> at 0
1t . 

Sequencing: If it is required that Train 2 follows Train 1, then it suffices to add,
 
<2,1> INITIALLY BLOCKED,
<1,3> UNBLOCKES <2,1>.

Thus, Train  2 will start its journey when Train  1 has left <1,3>. On the other hand, if it is desired that 

Train 2 starts at 0
2t t= , then, 

<2,1> INITIALLY BLOCKED,

<2,1> UNBLOCKED at 0
2t ,

is used. Note that this automatically enforces some sequencing depending on which starting time is 
smaller (sooner).

Priorities: Suppose that Train 3 is desired to lead Train 1on M-F––ST-X. In other words, suppose that 
that Train 3 has priority over Train 1 at M-F, then this can be realized by

<1,5> INITIALLY BLOCKED,
<3,6> UNBLOCKS <1,5>,

with the following explanation. The first command means that Train 1 has to stop at the end of <1,5>, 
and the second command means that Train 1 resumes its journey when Train 3 has left  <3,6>. More 
precisely, if the dynamics of the network is such that Train 1 has priority over Train 3 at M-F, then, 
because of these commands, Train 1 stops at the end of <1,5>, and resumes its journey when Train 3 
has left  <3,6>. On the other hand, if the dynamics of the network is such that Train 3 has left  <3,6> 
before Train 1 reaches the braking point of <1,5>, then Train 1 will not stop in <1,5>.

Equivalently, this can be achieved by,

<1,6> INITIALLY BLOCKED,
<3,7> UNBLOCKS <1,6>,

with a similar explanation.
 
Correspondences: Given that Train 9 is required to wait for Train 2 at ST-X, and that 1 minute after 
Train 2 starts its journey it should move. This situation can represent the case that some passengers of 
Train 2 want to transfer to Train 2 at  ST-X, and that  they have 1 minute to catch it.  This  can be 
accomplished by,

<9,21> INITIALLY BLOCKED,

<2,9> UNBLOCKS <9,21> after 9 1minMinWTt = ,

with  the  subsequent  effect.  The  first  command  requires  that  Train  9  waits  at  ST-X.  The  second 
command allows it to resume its journey 1 minute after Train 2 has resumed its journey from ST-X. 

However, the above will not take place in the following situation. Suppose Train 9 reaches the 
braking point of <9,21> (in order to stop at ST-X) more that one minute after Train 2 has left <2,9>. 



This means that Train 9 will not stop and thus the passengers of Train 2 who are waiting for it cannot 
take it. Hence, the following rules are also needed: 

<9,21> INITIALLY BLOCKED,

<9,21> UNBLOCKED after 9
MaxWTt ,

which make Train 9 stop at ST-X and resume its journey after the prescribed Maximum Waiting 
Time 9

MaxWTt . It is also possible to replace the second command with,

<9,21> UNBLOCKED at 9
LDTt ,

in which 9
LDTt  denotes the prescribed Latest Departure Time. 

Robustness: In the above correspondence it is clear that Train 9 should not wait unreasonably long for 
Train  2,  if  the  latter  does not  arrive  at  ST-X at  the  planned time.  Thus,  to  the above two sets  of 
commands (i.e., four commands) we can add,

<9,21> UNBLOCKED after 9
MaxWTt ,

which allows Train  9 to resume its journey after a prescribed maximum waiting time 9
MaxWTt . 

Finally, some issues are further clarified:

a)  The  number  of  intervals  (i.e.,  their  lengths,  and  also  their  corresponding  maximal  allowable 
velocities) depends on the network (including its environment). In practice the number of intervals may 
be much more than what we have shown in this example, see e.g. Example 7.2, Figures 12, 16-18. 

b) By intuitive and innovative combinations of the four extended blocking and unblocking conditions 
mentioned in Section II, we can model any initialization, sequencing, priority, and correspondence with 
a desired degree of robustness and flexibility (in terms of time). It should also be noted that SDT and 
LDT are explicit times (like 9:05 pm), whereas MinWT and MaxWT are relative times (like 2 min).

c) In Section VI, Figure 5, the parameter β  of a safety block, called its indicator function, was defined 
as the number of blockings of that safety block. From its definition it is clear that β  is a function of 
time:

The initial value of all safety blocks < ,i j > are set to zero,  , 0i jβ = . A blocking on < ,i j > 

increases  ,i jβ  by 1 and an unblocking of < ,i j >  decreases  ,i jβ  by 1.  For  instance, consider the 
commands,

 
< ,i j > BLOCKS < ,k l >,

< ,i j > UNBLOCKS < ,k l >.

When Train I enters < ,i j > (which is a time instant – a dynamic condition), the first command makes 
,k lβ + + , i.e., it increases the current value of  ,k lβ  by 1:  , , 1k l k lβ β= + . When Train i leaves < ,i j > 

(also a time instant – a dynamic condition), the second command makes ,k lβ − − , i.e., it decreases the 

current value of ,k lβ  by 1: , , 1k l k lβ β= − . Moreover,  

< ,i j > INITIALLY BLOCKED,



sets , , 1i j i jβ β= + . Besides,

< ,i j > UNBLOCKED at SDT,
< ,i j > UNBLOCKED at LDT,
< ,i j > UNBLOCKED after MaxWT,

result in ,i jβ − −  at SDT and LDT, and after MaxWT, respectively. On the other hand,

< ,i j > UNBLOCKS < ,k l > after MinWT,

renders ,k lβ − −  after MinWT. 

Two specific examples are as follows. As the first example consider the initialization,

<1,1> INITIALLY BLOCKED,

<1,1> UNBLOCKED at 0
1t .

The first command sets 1,1 0 1 1β = + = , thus the train has to stop (or in this case remain stopped). The 

second command takes effect at 0
1t , with the result 1,1 1 1 0β = − = , and thus the train can move.

The second example is more complicated. Given the earlier-mentioned correspondence between 
Trains 2  and 9, where,

<9,21> INITIALLY BLOCKED,

<2,9> UNBLOCKS <9,21> after 9 1minMinWTt = ,

<9,21> INITIALLY BLOCKED,

<9,21> UNBLOCKED after 9
MaxWTt ,

<9,21> UNBLOCKED after 9
MaxWTt .

The effect of these rules is as follows (supposing that at that time there in no other blocking/unblocking 
condition  on  <9,21>).  The  first  and  third  commands  make  9,21 0 1 1β = + =  and  9,21 1 1 2β = + = , 

respectively. Thus, Train 9 has to stop at the end of <9,21> when it reached there, since  9,21 0β > . 

However,  after  9
MaxWTt ,  9,21 2 1 1 1 1β = − − − = −  if  the  second  command  has  become  active,  and 

9,21 2 1 1 0β = − − =  if the second command has not become active. In either case  9,21β  is not greater 
than zero which means (subject to the following Remark) that Train 9 can resume its journey.

Remark 7.1:  Every , 0i jβ <  is replaced by  , 0i jβ = . Otherwise, for instance in the above situation (
9,21 1β = − ) suppose there is another blocking on  <9,21> by another train. Then,  9,21 1 1 0β = − + = , 

which means there is no blocking on  Train 9 and it can move! This violates the safety concept and 
potentially results in a crash if not in off-the-schedule traffic. This problem, on the other hand, can be 
resolved  by  introducing  some  (small)  dummy  or  imaginary safety  blocks  (just  before  the 
stations/merges) inside the simulation software. However, because it slows down the simulation (due to 
checking their entering and leaving) we do not further address this issue here.

d) In an actual network some routes are circled and some are commuted. In both cases the stations 
from/to  which  some  consecutive  trains  start/go,  have  different  platforms  for  them.  For  instance, 
suppose the three trains, 3, 4, and 5 Train leave/enter ST-B. In case they circle their route, when they 



circle  once  and want  to  do it  for  a  second time,  they are  treated as  different  trains  with different 
numbers (and thus different exclusive safety blocks – physically the same as before but with indices 
whose first arguments are different, denoting the new train number) and probably different schedule. 
The latter means that probably some sequencing, priorities, or correspondences will be different. This in 
turn specifically means that a new set of simple and extended blocking and unblocking conditions are 
needed for the new trains. However, it is noteworthy that simple blocking and unblocking conditions 
will be the same up to the train index. More precisely, call the new trains e.g. Trains 374, 375, and 376, 
representing respectively Trains 3, 4, 5 on their second circle. Thus, instead of,

{3,4,...}k ∈ :
<3,k> BLOCKS <4,k-2>,
<3,k> UNBLOCKS <4,k-2>, 

{3,4,...}k ∈ :
<4,k> BLOCKS <3,k-2>,
<4,k> UNBLOCKS <3,k-2>,   

we will have,

{3,4,...}k ∈ :
<374,k> BLOCKS <375,k-2>,
<374,k> UNBLOCKS <375,k-2>, 

{3,4,...}k ∈ :
<375,k> BLOCKS <374,k-2>,
<375,k> UNBLOCKS <374,k-2>,   

If they commute their route, when they reach their destination and want to come back, with an 
analogous argument as that in the above, they will be treated as new trains (thus new exclusive safety 
blocks and with a new set of  simple and extended blocking and unblocking conditions).  A similar 
argument (with appropriate changes) applies to the new blocking and unblocking conditions as well.

In both cases,  it  is  clear  that with intuitive and elegant indexing the situations can become 
tangible and meaningful.
 
e) As it is observed, the safety concept requires that a minimum distance be always observed between 
consecutive trains,  which depends on their  positions and safety block placement.  For instance, this 
minimum distance is  1,9 1,7

ebs s−  if the leading train is in <1,9>, and 3,5 3,3
ebs s−  if the leading train is in 

<3,5>, where ,i j
bs  and ,i j

es  denote the positions of the beginning and end point of < ,i j >. 

This issue gives rise to a trade-off: the shorter this distance, the more the trains, i.e., the higher 
the flow and capacity of transportation, but the higher the number of safety blocks and the higher the 
implementation cost. As stated in Remark 2.5, this is currently under further investigation. It is clear 
that this is an optimization problem in which many factors are involved, among others the smoothness 
of ride and passengers comfort.

f) In view of the above issue, a double measure can be enforced for the safety concept by lengthening 
the minimum distance. This can be achieved by changing,

{3,4,...}k ∈ :
<1,k> BLOCKS <2,k-2>,
<1,k> UNBLOCKS <2,k-2>,



to,

{5,6,...}k ∈ :
<1,k> BLOCKS <2,k-4>,
<1,k> UNBLOCKS <2,k-4>,

with appropriate changes in other commands.

g) It is evident that whenever there is a priority, it (or equivalently, the network) must be robustified as 
in the case of a correspondence.

h) The situation in Figure 7 is explained as follows. 
h1) The beginning points of the first and second safety blocks of trains with the same route – e.g. 1,1

bs ,
2,1
bs  and 1,2

bs , 2,2
bs  – are  not necessarily the same, since they have no effect.

h2) There is a correspondence between Trains 1 and 8.
h3) Train 3 is not allowed to leave  <3,6> while Train 1 is in  <1,9>. (Note that Train 3 has not yet 
reached the end point of <3,6>.)  
h4) Both Train 2 and 4 are waiting and none of them is allowed to resume its journey as while as Train 
3 is in <3,6>. 
h5) A priority should determine either Train 2 or 4 to resume its journey first.
h6) Train 9 is not allowed to leave <9,19> while Train 8 is in <8,21>. (Note that Train 9 has not yet 
reached the end point of <9,19>.)
 

Some simulation results are presented in the following. More examples can be found in [5],[24]. 

Example 7.2 [5],[24]: This real example illustrates merge of two tracks like ST-A––M-F––ST-X and 
ST-B––M-F––ST-X of the preceding example, with a single train on each. The separate parts, i.e., ST-
A––M-F and ST-B––M-F, have the same length about 13.5 km. The shared part, i.e., M-F––ST-B, is 
about 16.5 km. We present four scenarios.

1) There is no train scheduling. Train 1 starts at time 0 and Train 2 starts at time 90 sec.
2) There is no train scheduling. Train 2 starts at time 0 and Train 1 starts at time 90 sec.
3) There is a train scheduling, enforcing train 1 to pass the switch first. Train 1 starts at time 0 and 

Train 2 at time 90 sec.
4) There is a train scheduling, enforcing train 1 to pass the switch first. Train 2 starts at time 0 and 

Train 1 at time 90 sec.
 

The time-path diagrams are depicted in Figures 8-11, respectively.

Example 7.3 [5],[24]: This example is a demonstration of the computational effort. It has been carried 
out on a Pentium 2, 450 MHz, 384 MB RAM. The simulation consists of a single but interactive train 
over 80 km of a real piece of track called “22127-1013” of the German Rail network with a subdivision 
of  1275  safety  blocks.  The  maximal  allowable  velocity  over  the  whole  path  (consisting  of  many 
intervals) is shown in Figure 12. The uncontrollable part of the control input,  uuc ,  is illustrated in 
Figure 13. Figure 14 demonstrates the maximal braking force, while Figure 15 depicts the maximal 
control input.

The data of the Figures 12-15 as well as the specifications of this train and its relation with 
others are input to the pilot simulation program through an interface. Reading the interface file, the 
program then executes the following three functions:

a) Offline – Formation of the list of all trains’ data: taking 0.04 s. Note that this is an interactive 
train, i.e., there are some other trains which have interaction with this train and thus the safety 
concept has to be observed.



b) Offline – Computation of the switching points: taking 0.01 s. Some of the switching points are 
shown in Figure 17 which illustrates a cut of the maximal allowable velocities due to intervals, 
corresponding to the cut of the maximal allowable velocities given in Figure 16. 

c) Online – Simulation of the network: taking about 0.24 s. A cut of the velocity-path diagram is 
depicted in Figure 18, while the whole time-path diagram is demonstrated in Figure 19.

The total simulation time is 0.29 s. We have observed that the major part of the time spent on 
online simulation, which itself constitutes the major part of the total simulation time, is devoted to 
checking the other lists so as to observe the safety concept. This has motivated the introduction of the 
local and global step-sizes, as discussed earlier. (The results in this example have not yet used this step-
size strategy.)

VIII.   CONCLUDING REMARKS AND FUTURE WORK

We conclude this  paper  by commenting  on  the  contributions  and future  work,  respectively  in  the 
proceeding subsections.  

A.   Concluding Remark 

A constrained state-space model for train traffic in a network like that of the German railway has been 
developed. The model has been obtained by transforming or, more exactly, reducing the directed graph 
of the network to some parallel lists, along with a simple relevance between them representing the 
interaction and schedule. The model is thus a decentralized one, subject to some dynamic constraints 
called the simple and extended blocking and unblocking conditions representing the above-mentioned 
relevance. Based on this model, the theoretical essentials for time-optimal traffic have been given. The 
construction of an operating system for existing networks by the way of this model has been discussed. 
The simulation of the network has then been examined in full details.
 

It is clear that the proposed approach yields faster simulation than it could be obtained by a 
complete integration of the system and that it has been argued that it actually achieves faster-than-real-
time simulation, but this can only be verified when the system is implemented in real operating centers. 
Nevertheless,  the  following  statements  can  already  be  made  about  the  simulation  time  of  large 
networks. As a rule of thumb, on a sequential processor (i.e., a one-processor machine) the simulation 
time is  proportional  to:  a)  the  number  of  interactions,  b)  the  traveling distance,  c)  the  number  of 
interactive trains, and d) the number of active-interactive trains. In a typical large-scale network (as that 
in Example 7.3) with 2000 trains on the average traveling distance of 500 km, the number of interactive 
trains is about 300 and that of active-interactive ones about 100-200, i.e., on the average only 100-200 
(of the 300 interactive) trains are interacting all over the time. Thus, the simulation time is expected to 
be  on  the  order  of  (100 200 / 1) (500 / 80) 0.29 s 3 6 min− × × ≈ − ,  and  certainly  less  than 
( 300 / 1) (500 / 80) 0.29 s 9 min× × ≈ .  Thus,  on parallel  processors the simulation time will  be even 
shorter. On the other hand, we are aware that the simulation time is inversely proportional to: e) the 
local  and  global  step-sizes,  f)  the  accuracy  tolerance  ε  in  algorithms  4.1.1  and  4.3.1,  g)  the 
interpolation error in the Correction box in Figure 5, and h) the speed and RAM of the machine. This 
goes beyond the objective and scope of this paper and is thus not further followed here.

It should be highlighted that in the first glance a single train has no interaction with others and 
thus the above-given proportions (for the estimation of the simulation time of large-scale networks) 
seem unjustified. However, they are justified and are in fact correct if we note that Example 7.3 is about 
an interactive train and thus  at every safety block the relation to other potential trains is checked in 
order to observe the safety concept, inherently tantamount to the inclusion of interaction. Remarkably, 
this is the advantage of transforming or rather reducing the graph of the network to some parallel lists. 



              To highlight the effectiveness of the advocated methodology, it is worth contrasting an actual 
traveling time with a simulation time. For instance, considering the maximal allowable velocity of 250 
km, since it will not be over the whole paths, the above-described large-scale network takes certainly 
much more than  500 / 250 =  2 hrs  to travel (say 4 hrs), whereas the estimated simulation time is 
less than 9 min . 

The advocated modeling, analysis, synthesis, and simulation methodology has the following 
distinctions: i) it is simple and circumvents the mathematical complexity of the problem, ii) all the 
features of the existing network are completely addressed by this model, iii) it is generic and can be 
used to establish an operating system for new networks, iv) some flexibility as well as some robustness 
can be introduced to the operation of the system, v) it would result in faster-than-real-time simulation, 
vi) it provides a quantitative estimate of the simulation time, and vii) it enables and facilitates real-time 
control and decision making in large-scale networks. These last three features – rendered by the 
proposed model – are the main contribution of this work, sharply distinguishing it from the existing 
methods by its uniqueness. 

We close this part by a discussion about the efficiency of the approach. The natural definition of 
efficiency is, 

η=1−simulation time
actual time ×100 .                                                 (13)

It is clear that e.g. the smaller the number of interactions, the smaller both the simulation time and the 
actual time. This is true for all the aforementioned factors a)-d) to which the simulation time is 
proportional. Consequently, it is not clear how a)-d) affect the efficiency, and this may be firmly 
characterized only when the system is implemented in dispatching centers. On the other hand, the 
abovementioned factors e)-h) affect the simulation time only, and not the actual time. Hence, because of 
the inverse relation, the larger any of these factors the higher the efficiency. A precise characterization 
of this can be obtained after the implementation of the system. Finally, we are aware that 
synchronization of parallel processors and other implementation-related matters may adversely affect 
the efficiency. This can also be firmly characterized only after the implementation of the system.            
 

What is of both practical and theoretical significance is that – for a given network, schedule, 
and simulation settings (factors e)-h)) – the simulation time has an upper bound and the actual time has 
a lower bound and thus the efficiency has a lower bound. To manifest the contribution of the work it is 
worth evaluating this lower bound for the above-described network. On this network the lower bound 
of the efficiency is 96.25 %. In practice, the efficiency is certainly higher than this, since: i) the 
simulation time will be less than 9 min, ii) the actual time may be more than  3 hrs (for different 
reasons). With the simulation time of 3-6 min and the same actual time the efficiency will be 
97.50-98.75 %. If the actual time is more, the efficiency will be higher. It should also be noted that 
on parallel processors all the above-given efficiencies will be higher.

B   Future Work

An industrial simulation software is under development; it would greatly facilitate real-time control of 
the network by dispatchers, since they can observe the would-be result of their prescription beforehand. 
This software also has another usage, since it may be employed to introduce some additional trains into 
the existing network with no/minimum interaction with the existing ones.

In case of  some deviation  from the planned schedule,  the  existing real-time control  of  the 
network is in effect some ad hoc supervisory control, i.e., the feedback loop is  manually closed by 
dispatchers using some heuristic tables, etc.  A faster-than-real-time simulation software thus  would 



greatly facilitate their task, since they can observe the would-be result of their prescription beforehand. 
It is under investigation how to close the feedback loop theoretically. This is a sophisticated multi-rate 
hybrid output-feedback control  problem exacerbated with uncertainty: the only measurements in the 
German railway network are some asynchronous uncertain position measurements; there is no velocity 
measurement. This is a major direction for future research. 

            Moreover, in the first step of modeling some simplifications are done. Consequently, the  
advocated model is an approximate one. To measure its validity/accuracy we need to have some real 
data  to  do  a  model  validation,  see  any  classic  paper  or  textbook  on  identification  e.g.  [28]-[32]. 
However, we cannot do this at this stage, since we do not have all the real data (as stated in the previous 
paragraph). On the other hand, even if we measured and gathered real data, there still would remain the 
fact that we have supposed a bang-bang control by drivers. That is, we cannot guarantee that these data 
are  related  to  an  exact  bang-bang  control.  Consequently,  accuracy  of  the  model  cannot  be  firmly 
considered.  Nevertheless,  it  is  possible  to  attack  this  issue  in  a  probabilistic  framework;  this  is  a 
sophisticated problem and is another major topic for future work.

Last but not least, this work gives rise to the enticing question whether it is possible to apply 
the proposed methodology – i.e.,  transforming or,  more exactly, reducing the directed graph of the 
network  to  some  parallel  lists  –  to  other  large-scale  networks?  Expert  knowledge  of  large-scale 
networks in question is necessary to this end.  
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Fig. 8: Example 7.2, scenario 1, time-path diagram, train 1: solid, train 2: dotted

Fig. 9: Example 7.2, scenario 2, time-path diagram, train 1: solid, train 2: dotted



Fig. 10: Example 7.2, scenario 3, time-path diagram, train 1: solid, train 2: dotted

Fig. 11: Example 7.2, scenario 4, time-path diagram, train 1: solid, train 2: dotted



Fig. 12: Example 7.3, the given v
max  (similar to Figure 3.a)

Fig. 13: Example 7.3, uncontrollable part of the control input u
uc



Fig. 14: Example 7.3, full braking force

Fig. 15: Example 7.3, maximal thrust u
max

 v t  =Pmax /v  t 



Fig. 16: Example 7.3, cut of the given v
max

Fig. 17: Example 7.3, cut of v
max  due to intervals (similar to Figure 3.b)



Fig. 18: Example 7.3, cut of the realized velocity-path diagram

Fig. 19: Example 7.3, the realized time-path diagram


