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 Glossary 

 

 

 

Acronym/Abbreviation Full Name/Description 

ABC_DJ Artist-to-Business-to-Business-to-Consumer audio branding 
system 

DTW dynamic time warping 

ISP in-store player 

JSON JavaScript Object Notation 

PLG playlist generator 

PoS point of sale 

RMS root-mean-square 

SW software 

xfade cross-fade 
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Executive Summary 

This deliverable describes the work on Task 4.3 Algorithms for sound design and feature 
developments for audio player. The audio player runs on the in-store player (ISP) and 
takes care of rendering the music playlists via beat-synchronous automatic DJ mixing, 
taking advantage of the rich musical content description extracted in T4.2 (beat markers, 
structural segmentation into intro and outro, musical and sound content classification). 

The deliverable covers prototypes and final results on: (1) automatic beat-synchronous 
mixing by beat alignment and time stretching – we developed an algorithm for beat 
alignment and scheduling of time-stretched tracks; (2) compensation of play duration 
changes introduced by time stretching – in order to make the playlist generator 
independent of beat mixing, we chose to readjust the tempo of played tracks such that their 
stretched duration is the same as their original duration; (3) prospective research on the 
extraction of data from DJ mixes – to alleviate the lack of extensive ground truth databases 
of DJ mixing practices, we propose steps towards extracting this data from existing mixes 
by alignment and unmixing of the tracks in a mix. We also show how these methods can 
be evaluated even without labelled test data, and propose an open dataset for further 
research; (4) a description of the software player module, a GUI-less application to run on 
the ISP that performs streaming of tracks from disk and beat-synchronous mixing. 

The estimation of cue points where tracks should cross-fade is now described in D4.7 Final 
Research Report on Auto-Tagging of Music 
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1 Introduction 

This deliverable describes the work on Task 4.3 Algorithms for sound design and feature 
developments for audio player. The audio player runs on the in-store player and takes care 
of rendering the music playlists via beat-synchronous automatic DJ mixing, taking 
advantage of the rich musical content description extracted in T4.2 (beat markers, 
structural segmentation into intro and outro, musical and sound content classification). 
The work is based on 3 sets of example data provided by HearDis!: 

1. example mixes: two DJ mixes in the format of the authoring software MixMeister and 
Ableton Live. They comprise the individual source tracks and the arrangement and mix 
curves for volume and EQ. 

2. cue point examples: a set of 30 example tracks in mp3 format, each in two versions: 

1. the full-length track 

2. the track shortened according to human-decided cue-in and cue-out regions with 
fades 

3. tagged MLM examples: 4 sets of tracks (low, mid, high tempo, classical) with complete 
annotations, each set of a certain tempo group 

The deliverable mainly covers research and development results on: 
• automatic beat-synchronous mixing by beat alignment within the cue point regions and 

time stretching. This is based on algorithms for play duration compensation, and beat 
alignment. 

• prospective research on the extraction of data from DJ mixes 

• a description of the architecture and i/o formats of the software player 
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2 Automatic Beat-Synchronous Mixing 

The parts of the development of T4.3 described in this section concern the automatic DJ 
mixing function of the in-store player (ISP) that is meant to simulate a broadcast or lounge 
DJ mix where tracks are mixed seamlessly with matching tempi and synchronised beats 
during the cross-fade phase. This is based on the tempo and beat detection of T4.2 
Algorithms for extraction, automatic classification and indexing of music. 
For beat-synchronicity, time-stretching will be carried out (without altering the pitch of 
the tracks). For this, three options are conceivable: 

1. Only the first song is slowed down/sped up before the transition to fit the following one. 

2. Both songs are slowed down/sped up to meet at an average BPM. After the transition 
the song returns to original BPM. 

3. Both songs are slowed down/sped up to meet at an average BPM. After the transition, 
the song is slowed down/sped up in the opposite direction to reverse the change in 
duration. 

Option 3, which was chosen for realization, has the advantage of not requiring the playlist 
generator to be aware of the change in duration due to beat-synchronous mixing (because 
the PLG can be used to generate mixes with a certain song playing at a specific predefined 
time point, e.g. for shop closing time, noon, etc.). 
As future work, in case option 3 introduces speed changes (accelerations/slowdowns) that 
are too noticeable1, an alternative approach would be to have the PLG transmit to the ISP 
mixing module which song needs to start at a specific predefined time point, so that that 
this requirement can be met by adapting the speeds of tracks in the playlist up to that point 
(which don’t need to start at a specific time point), thus distributing speed changes over a 
longer period. 

The quality of the algorithms and different settings of parameters generating beat-
synchronous mixes ought to be evaluated by qualitative listening tests performed by 
experts and laypeople at a future point in time. Such experts can be the HearDis! music 
specialists who are able to judge the success of the algorithms in terms of achieving human 
DJ-like mixing quality. 

2.1  Duration Compensation 

In order to realise option 3 from above, we formalised the compensation of play duration 
due to beat-synchronous mixing. We defined a 4-phase time model shown in the following 
figure: 
 

 

Depiction of 4-phase time model for duration compensation. 

The speed curve (yellow line) has 4 linear segments with durations d1…d4, where the cross-
fade segments d1 and d4 are of constant speeds s1 and s3 determined by the previous/next 
track, their duration being determined by the cue-in and cue-out region. Segments d2 and 

                                                   
1 What “too noticeable” means would have to be defined by listening tests. 



Final Research Report for Sound Design and Audio Player         D4.8 

© ABC_DJ Consortium, 2018  9 of 39 

d3 serve to compensate the duration changes introduced thereby such that the sum of the 
durations after applying the speed curve add up to the original duration of the track, i.e. 
𝑑1′ + 𝑑2′ + 𝑑3′ + 𝑑4′ = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 . Here, 𝑑𝑛′  is the notation for stretched duration of a 
segment n after applying its tempo curve. 

The only free parameter is thus the compensation speed s2 and the time point where it is 
reached. We choose the time point in the middle, i.e. 𝑑2 = 𝑑3. As it is easy to see, duration 
compensation is reached when the area under the yellow speed curve is equal to that under 
the dotted original speed curve, or, equivalently, when the area normalised by target track 
duration is equal to 1. This normalised area is given by the sum of the segment areas: 

𝑎𝑟𝑒𝑎 = (𝑎1 + 𝑎2 + 𝑎3 + 𝑎4)/𝑑𝑡𝑎𝑟𝑔𝑒𝑡 

with 

𝑎1 = 𝑠1 ∗ 𝑑1′ 

𝑎2 = (𝑠1 + 𝑠2)/2 ∗ 𝑑2′ = (𝑠2 − 𝑠1)/2 ∗ 𝑑2′ + 𝑠1 ∗ 𝑑2′ 

𝑎3 = (𝑠2 + 𝑠3)/2 ∗ 𝑑3′ = (𝑠3 − 𝑠2)/2 ∗ 𝑑3′ + 𝑠2 ∗ 𝑑3′ 

𝑎4 = 𝑠3 ∗ 𝑑4′ 

Solving for s2 yields 

𝑠2 =
𝑑𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑠1𝑑′1 −

1
2 𝑠1𝑑′2 −

1
2 𝑠3𝑑′3 − 𝑠3𝑑′4

1
2 (𝑑′2 + 𝑑′3)

 

 

This type of duration compensation was prototyped and demoed in a Max/MSP patch 
based on the SuperVP time stretching modules by Ircam: 



Final Research Report for Sound Design and Audio Player         D4.8 

© ABC_DJ Consortium, 2018  10 of 39 

 
Screenshot of duration compensation prototype allowing to test different mix speed 
conditions. 

2.2  Beat Alignment Algorithm 

The key idea for beat-synchronous mixing is, first, to apply time-stretching to align the 
tempo of the cross-fade region of the two tracks to be mixed. This is facilitated by the speed 
curve model described in the previous section, stipulating a constant speed curve during 
cross-fade. Second, we determine a synchronisation point within the cue-region to align 
the beats (see figure). 
 

 
[fig:beatalign] Beat alignment and cue-regions for cross-fade between tracks. 

cue-in A cue-out A

cue-in B cue-out B

crossfade region

track A

track A stretched 

track B stretched

track B

speed curve SA

speed curve SB
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Note that three time scales have to be managed: The source track A’s and B’s original times, 
in which the respective cue-regions and beat markers are given, and the actual playing time 
(real time), given by the speed curves applied to both tracks to achieve beat 
synchronisation and duration compensation. 

The beat alignment algorithm was prototyped in JavaScript within the prototyping 
environment Max/MSP for easy transfer to the ISP implementation in C++. We provide 
here the equations necessary to calculate the schedule interval schedB_rt to start playing 
the next track B, and the start time in track B seekB, given the tracks’ bpm, duration, beat 
markers, and cue-regions, and the current track A’s seek time seekA and cross-fade region 
bpm. See the following diagram for an explanation of the different time measures 

calculated by the algorithm. ∫ 𝑆𝐴  is the function mapping track A’s time to real time, 
depending on the speed curve 𝑆𝐴. 

 

[fig:syncparams] Beat alignment algorithm parameters and measures. 

 

The formulas needed to calculate the beat-aligned scheduling values are given by the 
following equations: 

𝑡𝑟𝑎𝑐𝑘𝑋 with 𝑋 = 𝐴|𝐵 contains the metadata of one track, where A is the current track, B is 
the next track to be mixed with A: 

𝑡𝑟𝑎𝑐𝑘𝑋𝑏𝑒𝑎𝑡𝑚𝑎𝑟𝑘𝑒𝑟𝑠 position of beats in track (ms) 

𝑡𝑟𝑎𝑐𝑘𝑋𝑏𝑝𝑚 speed of track 

𝑡𝑟𝑎𝑐𝑘𝑋𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 original duration (ms) 

𝑡𝑟𝑎𝑐𝑘𝑋𝑐𝑢𝑒𝑖𝑛 cue-in region as list of (starttime, length) in ms 

𝑡𝑟𝑎𝑐𝑘𝑋𝑐𝑢𝑒𝑜𝑢𝑡 cue-out region as list of (starttime, length) in ms 

Function 𝑓𝑖𝑙𝑙𝑏𝑒𝑎𝑡𝑠(𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑏𝑒𝑎𝑡𝑠, 𝑏𝑝𝑚)  returns the list of beats in the given segment, 
completed according to bpm and position of existing beats. 

Function 𝑔𝑒𝑡𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒𝑠(𝑐𝑢𝑒𝑠𝑒𝑔, 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠)  calculates the synchronisation points in the 
two respective tracks: first (filled) beat or cue start: 

cueinlenArt cueoutlenArt

cueinlenBrt cueoutlenBrt

track A stretched 

track B stretched

syncparams2

durationArt

seekA

seekBrt

cue-in A cue-out A

cue-in B cue-out B

track A

track B

speed curve SA

speed curve SB

seekArt

schedBtimeschedAtime

schedBrt

seekB

countdownArt

countdownA
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𝑔𝑒𝑡𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒𝑠(𝑐𝑢𝑒𝑠𝑒𝑔, 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠) =

{
 
 
 
 

 
 
 
 

(𝑐𝑢𝑒𝑠𝑒𝑔𝐴0, 𝑐𝑢𝑒𝑠𝑒𝑔𝐵0) if 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐴𝑙𝑒𝑛𝑔𝑡ℎ = 0

or 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐵𝑙𝑒𝑛𝑔𝑡ℎ = 0

(if one has no beats: 

easy, no beat sync necessary,

sync on cuein/out start)
(𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐴0, 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐵0) otherwise, both segments have beats:

fill cue segments with  continuing 

beats according to bpm

 

with 

𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐴 = 𝑓𝑖𝑙𝑙𝑏𝑒𝑎𝑡𝑠(𝑐𝑢𝑒𝑠𝑒𝑔𝐴, 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐴, 𝑡𝑟𝑎𝑐𝑘𝐴𝑏𝑝𝑚)
𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐵 = 𝑓𝑖𝑙𝑙𝑏𝑒𝑎𝑡𝑠(𝑐𝑢𝑒𝑠𝑒𝑔𝐵, 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐵, 𝑡𝑟𝑎𝑐𝑘𝐵𝑏𝑝𝑚)

 

Now, given the current position in track A, we can calculate the play data for mixing in 
track B: the real time schedule interval relative to when track A was started (at 𝑠𝑒𝑒𝑘𝐴 ) 
𝑠𝑐ℎ𝑒𝑑𝐵𝑟𝑡 and the seek time 𝑠𝑒𝑒𝑘𝐵, based on the following values: 

𝑐𝑢𝑟𝑏𝑝𝑚 = current bpm (constant)
𝑠𝑒𝑒𝑘𝐴 = previous seek time in track A
𝑑𝑢𝑟𝐴𝑟𝑡 = 𝑡𝑟𝑎𝑐𝑘𝐴𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

 

Note that the length compensation guarantees that track A’s duration is maintained 
despite time-stretching for beat sync mixing. We first calculate the speed factors (track 
time to real time) and cueoutA, cueinB (start, length) in track time and real time: 

𝑠𝑝𝑒𝑒𝑑𝐴 = 𝑐𝑢𝑟𝑏𝑝𝑚/𝑡𝑟𝑎𝑐𝑘𝐴𝑏𝑝𝑚
𝑠𝑝𝑒𝑒𝑑𝐵 = 𝑐𝑢𝑟𝑏𝑝𝑚/𝑡𝑟𝑎𝑐𝑘𝐵𝑏𝑝𝑚
𝑐𝑢𝑒𝑜𝑢𝑡𝐴 = 𝑡𝑟𝑎𝑐𝑘𝐴𝑐𝑢𝑒𝑜𝑢𝑡
𝑐𝑢𝑒𝑖𝑛𝐵 = 𝑡𝑟𝑎𝑐𝑘𝐵𝑐𝑢𝑒𝑖𝑛

𝑐𝑢𝑒𝑜𝑢𝑡𝑙𝑒𝑛𝐴𝑟𝑡 = 𝑐𝑢𝑒𝑜𝑢𝑡𝐴1/𝑠𝑝𝑒𝑒𝑑𝐴
𝑐𝑢𝑒𝑖𝑛𝑙𝑒𝑛𝐵𝑟𝑡 = 𝑐𝑢𝑒𝑖𝑛𝐵1/𝑠𝑝𝑒𝑒𝑑𝐵

 

final xfade length in real time: minimum of both 

𝑐𝑢𝑒𝑙𝑒𝑛𝑟𝑡 = 𝑚𝑖𝑛(𝑐𝑢𝑒𝑜𝑢𝑡𝑙𝑒𝑛𝐴𝑟𝑡, 𝑐𝑢𝑒𝑖𝑛𝑙𝑒𝑛𝐵𝑟𝑡) 

The final cue segments in track time and cue beats in final xfade period (time relative to 
tracks) are: 

𝑐𝑢𝑒𝑠𝑒𝑔 = ( (𝑐𝑢𝑒𝑜𝑢𝑡𝐴0, 𝑐𝑢𝑒𝑙𝑒𝑛𝑟𝑡 ∗ 𝑠𝑝𝑒𝑒𝑑𝐴),

(𝑐𝑢𝑒𝑖𝑛𝐵0, 𝑐𝑢𝑒𝑙𝑒𝑛𝑟𝑡 ∗ 𝑠𝑝𝑒𝑒𝑑𝐵))
𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠 = ( 𝑔𝑒𝑡_𝑚𝑎𝑟𝑘𝑒𝑟𝑠_𝑤𝑖𝑡ℎ𝑖𝑛(𝑐𝑢𝑒𝑠𝑒𝑔𝐴, 𝑡𝑟𝑎𝑐𝑘𝐴𝑏𝑒𝑎𝑡𝑚𝑎𝑟𝑘𝑒𝑟𝑠),

𝑔𝑒𝑡_𝑚𝑎𝑟𝑘𝑒𝑟𝑠_𝑤𝑖𝑡ℎ𝑖𝑛(𝑐𝑢𝑒𝑠𝑒𝑔𝐵, 𝑡𝑟𝑎𝑐𝑘𝐵𝑏𝑒𝑎𝑡𝑚𝑎𝑟𝑘𝑒𝑟𝑠))

 

We can now align the beats by calculating sync times in respective tracks: 

Calculate real time of sync time:  

𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒 = 𝑔𝑒𝑡𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒𝑠(𝑐𝑢𝑒𝑠𝑒𝑔, 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠) 

Duration between sync point to end of track A:  

𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛𝐴 = 𝑡𝑟𝑎𝑐𝑘𝐴𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒𝐴 

 …in real time2  

                                                   
2  Length compensation guarantees that track duration is maintained despite time-
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𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛𝐴𝑟𝑡 = 𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛𝐴/𝑠𝑝𝑒𝑒𝑑𝐴 

 duration of cueseg before sync point:  

𝑝𝑟𝑒𝑐𝑜𝑢𝑛𝑡𝐵 = 𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒𝐵 − 𝑐𝑢𝑒𝑠𝑒𝑔𝐵0 

 …in real time  

𝑝𝑟𝑒𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑡 = 𝑝𝑟𝑒𝑐𝑜𝑢𝑛𝑡𝐵/𝑠𝑝𝑒𝑒𝑑𝐵 

 last seek time within A in real time  

𝑠𝑒𝑒𝑘𝐴𝑟𝑡 = 𝑠𝑒𝑒𝑘𝐴/𝑠𝑝𝑒𝑒𝑑𝐴 

We can now calculate the schedule interval to start playing B at 𝑠𝑒𝑒𝑘𝐵  relative to last 
schedule time (starting to play A at 𝑠𝑒𝑒𝑘𝐴) and the seek time in B (<= 𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒𝐵) to be 
started after 𝑠𝑐ℎ𝑒𝑑𝐵𝑟𝑡. 

𝑠𝑐ℎ𝑒𝑑𝐵𝑟𝑡 = 𝑑𝑢𝑟𝐴𝑟𝑡 − 𝑠𝑒𝑒𝑘𝐴𝑟𝑡 − 𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛𝐴𝑟𝑡 − 𝑝𝑟𝑒𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑡
𝑠𝑒𝑒𝑘𝐵 = 𝑐𝑢𝑒𝑠𝑒𝑔𝐵0

 

 

An open development question still to be resolved by human-listener evaluation of the 
algorithm on a more extensive set of tracks is: 

• What to do when one cue-region is a cut (a very short fade-in or fade-out)? For example: 
when the cue-in is of duration 0, should cue-out fade out normally, fade out quickly, or 
be cut, too? 

2.3  Beat-Synchronous Mixing Prototype Software 

The prototype for a beat-synchronous mixing patch in Max/MSP is shown below. It allows 
to choose two tracks from the example set and mix them beat-synchronously using the 
algorithm described above. It applies high-quality time-stretching using the SuperVP 
engine by IRCAM, and linear cross-fades. 

                                                   
stretching for beat sync mixing. 
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[fig:beatmix] Screenshot of beat-synchronous mixing prototype. 
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3 Unmixing: Extraction of Ground Truth Data from DJ 
Mixes 

A further direction of prospective research motivated by the work in the present WP was 
to generate a systematic approach for collecting examples of annotated mixes and tracks. 
In general, there is a scarcity of available ground truth databases that are able to deliver 
stable hypotheses about usual cross-fade times and styles, and typical DJ practices in 
general. 

A proposal how to tackle this problem technically was presented at ISMIR 20173  and 
ISMIR 2018 and is summarised in the following. 

3.1  Unmixing Introduction 

This work offers one missing brick in a larger research agenda aiming at systematically 
analysing and understanding  DJ practices—an important part of popular music culture. 
The possible benefits from such efforts are many, for instance musicological research in 
popular music, cultural studies on DJ practice and reception, development of new music 
technologies and software products for computer support of DJing, automation of DJ 
mixing for entertainment or commercial purposes. So far, DJ techniques are not very well 
researched, not least due to the lack of annotated databases of DJ mixes. 

 

[fig:schema] Overview of the larger context of information retrieval from DJ practices. 

                                                   
3 Diemo Schwarz, Dominique Fourer. Towards Extraction of Ground Truth Data from DJ 
Mixes. International Symposium on Music Information Retrieval (ISMIR), Oct 2017, 
Suzhou, China. hal-01671768 
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In order to be able to annotate recorded mixes automatically, several components are 
needed, see the overview figure [fig:schema]. 

Identification 
of the contained tracks (e.g. by acoustic fingerprinting) to obtain the playlist, 

Alignment 
 to determine where in the mix each track starts and stops 

Time-scaling 
to determine what tempo changes were applied to achieve beat-synchronicity, 

Unmixing 
to estimate the cue-regions where the cross-fades between tracks happen, the curves for 
volume, bass and treble, and the parameters of other effects (compression, echo, etc.) 

Content and metadata analysis 
to derive the genre and social tags attached to the music to inform about the choices a DJ 
makes when creating a mix. 

Most of these necessary future components have been addressed by recent MIR research, 
except the alignment part for which we will provide here a first attempt that draws on 
multi-scale correlation and dynamic time warping (DTW) techniques. 

With some refinements, a massive amount of training data from the vast number of 
collections of existing DJ mixes could be made amenable to musicological research on DJ 
practices, cultural studies, and for development of automatic mixing methods. 

As a working definition, it is possible to roughly distinguish 3 levels of mixing: 

• Level 1, let’s call this broadcast mixing, is a simple volume crossfade without paying 
attention to, or changing content (as it is performed by consumer audio players such as 
iTunes, or in a broadcast context). 

• Level 2, lounge mixing, is beat-synchronous mixing with adaptation of the tempo of the 
tracks and possibly additional EQ fades, while playing the tracks mostly unchanged. 

• Level 3, performative mixing, is using the DJ deck as a performance instrument by 
creative use of effects, loops, and mashups with other tracks. 

Our work applies to broadcast or lounge mixing with simple crossfades, while 
performative DJ mixing tends to blur the identifiability of the source tracks too much. 

3.2  Related Work 

First of all, there is much more existing research in the field of studio mixing, where a 
stereo track is to be produced from individual multi-track recordings and software 
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instruments by means of a mixing desk or DAW4 ,5 ,6 ,7 . This research field has produced 
ground truth databases8 and has some overlap with DJ mixing, when we see the latter as 
mixing just two source tracks, but the studied parameters and influencing factors differ too 
much from what is needed for DJ mixing. 

Furthermore, there are some existing research works on tools to help DJs produce 
mixes9 ,10,11,12,13, but much less regarding information retrieval from recorded mixes. 

The work of Sonnleitner, Arzt and Widmer that has been opening up research on 
information retrieval from DJ mixes14 tackles the identification of the tracks within the mix 
by fingerprinting. The authors also produce an extensive database of ground truth 
annotations of playlists with approximate start and stop times of tracks on a large number 
of Creative-Commons licensed mixes made from open-licensed dance tracks published on 
the Mixotic net label.15 This dataset16 provides 10 dance music mixes with a total duration 
of 11 hours and 23 minutes, the 118 source tracks, and the playlists with hand-annotated 

                                                   
4  Enrique Perez-Gonzalez and Joshua Reiss. Automatic gain and fader control for live 
mixing. In Applications of Signal Processing to Audio and Acoustics, 2009. WASPAA’09. 
IEEE Workshop on, pages 1–4. IEEE, 2009. 

5 Jacob A Maddams, Saoirse Finn, and Joshua D Reiss. An autonomous method for multi-
track dynamic range compression. In Proceedings of the 15th International Conference on 
Digital Audio Effects (DAFx-12), 2012. 

6  Stuart Mansbridge, Saorise Finn, and Joshua D Reiss. An autonomous system for 
multitrack stereo pan positioning. In Audio Engineering Society Convention 133. Audio 
Engineering Society, 2012. 

7  Brett Brecht De Man, R; King, and J. D. Reiss. An analysis and evaluation of audio 
features for multitrack music mixtures. In ISMIR, 2014. 

8 Brecht De Man, Mariano Mora-Mcginity, György Fazekas, and Joshua D Reiss. The open 
multitrack testbed. In Audio Engineering Society Convention 137. Audio Engineering 
Society, 2014. 

9 Hiromi Ishizaki, Keiichiro Hoashi, and Yasuhiro Takishima. Full-automatic DJ mixing 
system with optimal tempo adjustment based on measurement function of user discomfort. 
In ISMIR, pages 135–140, 2009. 

10 Dave Cliff. Hang the DJ: Automatic sequencing and seamless mixing of dance-music 
tracks. HP Laboratories Technical Report HPL, 104, 2000. 

11  Tsuyoshi Fujio and Hisao Shiizuka. A system of mixing songs for automatic dj 
performance using genetic programming. In 6th Asian Design International Conference, 
2003. 

12 Felipe X Aspillaga, Jonathan Cobb, and Ching-Hua Chuan. Mixme: A recommendation 
system for djs. In Late-break Session of the 12th International Society for Music 
Information Retrieval Conference, 2011. 

13 Pablo Molina, Martin Haro, and Sergi Jorda. Beat-jockey: A new tool for enhancing DJ 
skills. In NIME, pages 288–291. 2011. 

14  Reinhard Sonnleitner, Andreas Arzt, and Gerhard Widmer. Landmark-based audio 
fingerprinting for DJ mix monitoring. In ISMIR, New York, NY, 2016. 

15 http://www.mixotic.net 

16 http://www.cp.jku.at/datasets/fingerprinting 
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time points relevant for fingerprinting, namely the moment from which only the next track 
in the playlist is present in the mix. Unfortunately, this dataset does not give information 
about the start point of the track in the mix, and is not accurate enough for our aims of DJ 
mix analysis, let alone reverse engineering. 

Barchiesi and Reiss17 first used the term mix reverse engineering (in the context of multi-
track studio mixing) for their method to invert linear processing (gains and delays, 
including short FIR filters typical for EQ) and some dynamic processing parameters 
(compression). 

Ramona and Richard 18  tackle the unmixing problem for radio broadcast mixes, i.e. 
retrieving the fader positions of the mixing desk for several known input signals (music 
tracks, jingles, reports), and one unknown source (the host and guests’ microphones in the 
broadcast studio). They model the fader curves as a sigmoid function and assume no time-
varying filters, and no speed change of the sources (which is correct in the context of radio 
broadcast practice). 

These two latter references both assume having sample-aligned source signals at their 
disposal, with no time-scaling applied, unlike our use-case, where each source track only 
covers part of the mix, can appear only partially, and can be time-scaled for beat-matched 
mixing. 

There is at present only rare work on the inversion of other processing applied to the 
signal19, notably compression20. 

3.3  DJ Mix Reverse Engineering 

The starting point for our method is the result of the previous stage of identification and 
retrieval on existing DJ mixes (see [fig:schema]), or specially contrived databases for the 
study of DJ practices: We assume a recorded DJ mix, a playlist (the list of tracks played in 
the correct order), and the audio files of the original tracks. 

Our method proceeds in five steps, from a rough alignment of the concatenated tracks with 
the mix by dynamic time warping (DTW), that is then refined in order to approach sample 
precision, then verified by subtracting the track out of the mix, and is then finally extended 
by the estimation of gain curves and cue-regions. 

Step 1: Rough Alignment 

The rough alignment uses the MFCC data of the mix and the concatenated MFCCs of the 
tracks as input. We use the MIRToolbox21 MFCC with 13 coefficients, a window size of 0.05 

                                                   
17 Daniele Barchiesi and Joshua Reiss. Reverse engineering of a mix. Journal of the Audio 
Engineering Society, 58(7/8):563–576, 2010 

18 Mathieu Ramona and Gael Richard. A simple and efficient fader estimator for broadcast 
radio unmixing. In Proc. DAFX ’11, pages 265–268, September 2011. 

19 Stanislaw Gorlow and Sylvain Marchand. Reverse engineering stereo music recordings 
pursuing an informed two-stage approach. In 2013 International Conference on Digital 
Audio Effects (DAFx-13), pages 1–8, 2013. 

20  Stanislaw Gorlow and Joshua D Reiss. Model-based inversion of dynamic range 
compression. IEEE Transactions on Audio, Speech, and Language Processing, 21(7):1434–
1444, 2013 

21  Olivier Lartillot, Petri Toiviainen, and Tuomas Eerola. A matlab toolbox for music 
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s and a small hop size of 0.0125 s. We chose the Mel frequency band representation because, 
compared to an FFT representation, it is more robust against pitch changes due to 
resampling of the source tracks. 

Since the tracks are largely unchanged in terms of the level 2 mixes we are interested in, 
DTW can latch on to large valleys of low distance, although the fade regions are dissimilar 
to either track, and occur separately in the concatenated track MFCC stream (see [fig:dtw]). 
To ease catching up with the shorter time of the mix, we provide a neighbourhood that 
allows the path 𝑝  to perform larger vertical and horizontal jumps as follows, given the 
initial condition 𝑝(1,1) = 𝑑(1,1) on the local distance matrix 𝑑: 

 

𝑝(𝑚, 𝑛) = min

{
 
 

 
 

𝑝(𝑚 − 1, 𝑛 − 1)  + 𝑑(𝑚, 𝑛)

𝑝(𝑚 − 1, 𝑛) + 𝑑(𝑚, 𝑛)

𝑝(𝑚 − 2, 𝑛) + 𝑑(𝑚, 𝑛)

𝑝(𝑚, 𝑛 − 1) + 𝑑(𝑚, 𝑛)

𝑝(𝑚, 𝑛 − 2) + 𝑑(𝑚, 𝑛)}
 
 

 
 

 

 

[fig:dtw] DTW distance matrix, alignment path (red), track boundaries and found slope 
lines on a complete dance DJ mix. 

The DTW alignment path not only gives us the relative positioning of the tracks in the mix, 
but also their possible speed up or slow down to achieve beat-synchronous mixing or 
smoother evolution of the tempo of the mix. To retrieve the tempo change, we assume that 
the change is constant for each track, and analyse the mean slope of the alignment path in 
a window of half the track length, centred around the middle of the track. This also gives 

                                                   
information retrieval. In Data analysis, machine learning and applications, pages 261–268. 
Springer, 2008. 
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us an estimate of the start of the track in the mix, by calculating the intercept of the slope 
for the start frame of the track (see [fig:dtw]). 

Note that that start position expresses the offset of the start of the full source track with 
respect to the mix, and not the point from where on the track is present in the mix. Since 
the source tracks are mixed with non-zero volume only between the cue-in and cue-out 
regions, the track start point can be negative. (See section The UnmixDB Dataset for an 
explanation how the cue-regions of our dataset are chosen.) 

Step 2: Sample Alignment 

Given the rough alignment and tempo estimation by DTW, we then search for the best 
sample alignment of the source tracks time-scaled according to the estimated tempo. We 
shift a window of the size of an MFCC frame, taken from the middle of the time-scaled 
track, around its predicted rough frame position in the mix, trying displacements up to 2 
hop sizes in either direction. The minimum sum of square distances then determines the 
sample alignment. 

Step 3: Track Removal 

The accuracy of the resulting sample alignment can be verified by attempting to remove 
the aligned and time-scaled track from the mix: For this we need to subtract its signal from 
the mix and observe the resulting drop in energy. Note that this verification of sample 
alignment can be done even when the ground truth is not given or inexact. 

Figure [fig:remove 1] shows this on one mix from our dataset: we can observe that for all 
tracks the mix energy shows a drop of around 10 dB. Because of the missing sub-sample 
alignment, mainly the low-frequency material is suppressed. Another example is figure 
[fig:remove 2] on a mix from Sonnleitner et. al., where we can immediately see which 
tracks were not correctly aligned (the second and last ones). 

 

 

[fig:remove 1] Suppression of tracks from a mix in dB. 
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[fig:remove 2] Suppression of tracks from a complete mix in dB. 

Step 4: Volume Curve Estimation 

We propose here a novel method which operates in the time-frequency plane to estimate 
the volume curve that is applied to each track in order to obtain the mix. Given a mix signal 
denoted 𝑥(𝑛) and the constituent sample-aligned and time-scaled tracks 𝑠𝑖(𝑛), we aim at 
estimating the mixing function 𝑎𝑖(𝑛) such that we have:  

𝑥(𝑛) =∑𝑎𝑖

𝑖

(𝑛)𝑠𝑖(𝑛) + 𝑏(𝑛) ∀𝑛 ∈ 𝐙 

 where 𝑏(𝑛) corresponds to an additional noise signal. 

Considering a “correctly” aligned track 𝑠𝑖, we estimate its corresponding volume curve 𝑎𝑖 
through the following steps: 

1. compute the short-time Fourier transforms of 𝑥 and 𝑠𝑖 denoted 𝑆𝑖(𝑛,𝑚) and 𝑋(𝑛,𝑚) (𝑛 
and 𝑚 being respectively the time and frequency indices) 

2. estimate the volume curve at each instant 𝑛 by computing the median of the mix/track 
ratio computed at all the frequencies 𝑚′ where 𝑆𝑖(𝑛,𝑚′) contains energy, such as:  

𝑎𝑖(𝑛) = {
median (

|𝑋(𝑛,𝑚′)|

|𝑆𝑖(𝑛,𝑚′)|
)
∀𝑚′

if|𝑆𝑖(𝑛,𝑚′)| > 0

0 otherwise

 

3. post-process 𝑎𝑖(𝑛) to obtain a smooth curve by removing outliers using a median filter. 

The resulting volume curve can then be used to estimate the cue points (the time instants 
when a fading effect begins or stops) at the next step. 
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Step 5: Cue Point Estimation 
In order to estimate the DJ cue points, we apply a linear regression of 𝑎𝑖  at the time 
instants located at the beginning and at the end of the resulting volume curve (when 
𝑎𝑖(𝑛) < 𝛤 , 𝛤  being a threshold defined arbitrarily as 𝛤 = 0.7max(𝑎) ). Assuming that a 
linear fading effect was applied, the cue points can easily be deduced from the two affine 
equations resulting from the linear regression. The four estimated cue points correspond 
respectively to: 

1. the time instant when the fade-in curve is equal to 0 

2. the time instant when the fade-in curve is equal to max(𝑎𝑖) 

3. the time instant when the fade-out curve is equal to max(𝑎𝑖) 

4. the time instant when the fade-out curve is equal to 0. 

In order to illustrate the efficiency of the entire method (steps 4 and 5), we present in Fig. 
[fig:fading_cuepoint] the results obtained on a real-world DJ-mix extracted from our 
proposed dataset. 

 

 
[fig:fading_cuepoint]  Estimated volume curve (black), linear fades (blue), over ground 
truth fades (red) 

3.4  The UnmixDB Dataset 

In order to evaluate the DJ mix analysis and reverse engineering methods described above, 
we created a dataset of excerpts of open licensed dance tracks and automatically generated 
mixes based on these. This dataset was uploaded to the OpenAIRE-indexed open data 
repository Zenodo22, and was presented at the ISMIR 2018 late breaking session23. 

Possible uses of the dataset are the evaluation of track identification methods when 
monitoring DJ mixes, or the precise annotation or even reverse engineering of DJ-mixes 
when constituent tracks are available. In the latter project, we perform alignment to 
determine the exact offset of each track in the mix, and then estimate cue points  and 
volume fade curves, in order to learn about the decisions a DJ makes when creating a mix. 

The UnmixDB dataset is based on the curatorial work of Sonnleitner et. al., for 
identification of the tracks within human-made DJ mixes by fingerprinting. They collected 
Creative-Commons licensed source tracks of 10 free dance music mixes from the Mixotic 

                                                   
22 http://zenodo.org/record/1422385 
23  D. Schwarz and D. Fourer, “Unmixdb: A Dataset for DJ-Mix Information Retrieval,” International 
Symposium on Music Information Retrieval (ISMIR) late breaking session, Paris, France, Sep. 2018. 

http://zenodo.org/record/1422385
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netlabel. 24  Their dataset 25  provides the mixes, the full tracks, and the ground-truth 
playlists with hand-annotated time points from which only the next track in the playlist is 
present in the mix. Unfortunately, this does not give information about the start point of 
the track in the mix, and is not accurate enough for our aims of DJ mix analysis, let alone 
reverse engineering. 

We used their collected full tracks to produce our track excerpts, but regenerated beat-
synchronous and thus “ecologically valid” artificial mixes with perfectly accurate ground 
truth, see [fig:unmixdb-creation]. 

 

 
[fig:unmixdb-creation] Data flow and file types of the UnmixDB dataset. 

We used track excerpts because of the runtime and memory requirements, especially for 
methods such as DTW, which is of quadratic memory complexity. We could also not have 
scaled the dataset up to the many playlists and variants when using full tracks. 

Each track excerpt contains about 20 s of the beginning and 20s of the end of the full source 
track (not included in the dataset, but available from Sonnleitner et. al.26). However, the 
exact choice is made taking into account the metric structure of the track. The cue-in region, 
where the fade-in will happen, is placed on the second beat marker starting a new measure 
(as analysed by the beat tracker IrcamBeat), and lasts for 4 measures. The cue-out region 
ends with the 2nd to last measure marker. We assure at least 20s for the beginning and 
end parts by extending them accordingly. The cut points where they are spliced together is 
again placed on the start of a measure, such that no artefacts due to beat discontinuity are 
introduced. 

Each mix is based on a playlist that mixes 3 track excerpts beat-synchronously, in such a 
way, that the middle track is embedded in the realistic context of beat-aligned linear cross 
fading to the surrounding tracks. The first track’s BPM is used as the tempo seed onto 
which the other tracks are adapted. 

Each playlist of 3 tracks was mixed 12 times with every combination of 4 variants of effects 
and 3 variants of time scaling using the treatments of the sox open source command-line 
program.27 The 4 effects were: 

none no effect 

bass +6 dB bass boost using a low-shelving biquad filter below 100 Hz 

                                                   
24 http://www.mixotic.net 
25 http://www.cp.jku.at/datasets/fingerprinting 
26 Reinhard Sonnleitner, Andreas Arzt, and Gerhard Widmer. Landmark-based Audio Fingerprinting for DJ 
Mix Monitoring. In Proc. ISMIR, New York, NY, 2016.  
27 http://sox.sourceforge.net 

full track beat tracking

full track.beat.xmlcreate-excerpt.py

excerpt.mp3 excerpt.cue.txt

excerpt.mp3 excerpt.cue.txt

create-mix.py

mix.mp3 mix.labels.txt

http://www.mixotic.net/
http://www.cp.jku.at/datasets/fingerprinting
http://sox.sourceforge.net/
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compressor heavy dynamics compression (ratio of 3:1 above -60 dB, -5 dB makeup 
gain) 

distortion heavy saturation with +20 dB gain 

 

These effects were chosen to cover treatments likely to be applied to a DJ set (EQ, 
compression), and also to introduce non-linear treatments (distortion) to test the limits of 
MIR methods. 

The 3 timescale variants were: 

none no time scaling, ie. the tracks are only aligned on the first beat in the cue 
region and then drift apart 

resample linked time and pitch scaling by resampling (sox speed effect) 

stretch time stretching while keeping the pitch (sox tempo effect using WSOLA) 

 

These 3 variants allow to test simple alignment methods not taking into account time 
scaling, and allow to evaluate the influence of different algorithms and implementations of 
time scaling. 

The dataset is organised in 6 individually downloadable sets of tracks and mixes, between 
500 MB and 1 GB in size, for a total of 4 GB. Table [tab:dbstats] provides more details 
about the initial content of one of the sets. In the near future, the dataset may be extended 
by more songs, more mixes, and mixes of the full source tracks. We also publish the Python 
source code28 to generate the excerpts and mixes, such that other researchers can create 
test data from other track collections or in other variants. 

Average duration of mixes [s] 107 

Total duration of tracks [min] 1016 

Total duration of mixes [min] 2743 

Median tempo of tracks [bpm] 128 

Minimum tempo of tracks [bpm] 67 

Maximum tempo of tracks[bpm]  140 

[tab:dbstats] Basic statistics of the Unmixdb dataset. 

File Formats 

The UnmixDB dataset contains the ground truth for the source tracks and mixes 
in .labels.txt files with tab-separated columns starttime, endtime, label. For each mix, 
the start, end, and cue points of the constituent tracks are provided, along with their BPM 
and speed factors. We use the convention that the label starts with a number indicating 
which of the 3 source tracks the label refers to. 

The song excerpts are accompanied by their cue region and tempo information in .txt files 
in table format. 

Additionally, we provide the .beat.xml files containing the beat tracking results for the full 
tracks available from Sonnleitner et. al. 

                                                   
28 http://github.com/Ircam-RnD/unmixdb-creation 

http://github.com/Ircam-RnD/unmixdb-creation
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3.5  Evaluation 

We applied the DJ mix reverse engineering method on our unmixdb collection of mixes 
and compared the results to the ground truth annotations. To evaluate the success of our 
method we defined the following error metrics: 
frame error: 
absolute error in seconds between the frame start time found by the DTW rough alignment 
(step 1) and the ground truth (virtual) track start time relative to the mix 

sample error: 
absolute error in seconds between the track start time found by the sample alignment (step 
2) and the ground truth track start time relative to the mix 

speed ratio: 
ratio between the speed estimated by DTW alignment (step 1) and the ground truth speed 
factor (ideal value is 1) 

suppression ratio: 
ratio of time where more than 15 dB of signal energy could be removed by subtracting the 
aligned track from the mix, relative to the time where the track is fully present in the mix, 
i.e. between fade-in end and fade-out start (step 3, bigger is better) 

fade error: 
the total difference between the estimated fade curves (steps 4 and 5) and the ground truth 
fades. This can be seen as the surface between the 2 linear curves over their maximum time 
extent. The value has been expressed in dB•s, i.e. for one second of maximal difference 
(one curve full on, the other curve silent), the difference would be 96 dB. 

Figures [fig:frameerror]–[fig:fadeerror] show the quartile statistics of these metrics, 
broken down by the 12 mix variants (all combinations of the 4 mix effects and 3 time-
scaling methods). The numeric alignment results given in [tab:sampleerror] show that the 
ground truth labels can be retrieved with high accuracy: the median error is 25 
milliseconds, except for the mixes with distortion applied, where it is around 100 ms. The 
fade curve volume error in [fig:fadeerror]  shows a median of 5 dB•s, which corresponds 
to an average dB distance of 0.3 dB, considering that the fades typically last for 16 seconds. 

 

[fig:frameerror] absolute error in track start time found by DTW 
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[fig:sampleerror] absolute error in track start time found by sample alignment 

 

[fig:speedratio] ratio between estimated and ground truth speed 

 

[fig:suppratio] ratio of removal time (bigger is better) 



Final Research Report for Sound Design and Audio Player         D4.8 

© ABC_DJ Consortium, 2018  27 of 39 

 

[fig:fadeerror] volume difference of fades 

 

[fig:risampleerror] absolute error in track start time found by sample alignment when 
re-injecting ground truth speed 

 

[fig:risuppratio] ratio of removal time when re-injecting ground truth speed (bigger is 
better) 
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 mean std min median max 

none none 0.0604 0.2469 0.0010 0.0251 2.1876 

none bass 0.1431 0.7929 0.0005 0.0254 7.7191 

none compressor 0.0806 0.4424 0.0010 0.0251 4.4995 

none distortion 1.3376 3.3627 0.0011 0.1042 23.7610 

resample none 1.1671 7.0025 0.0002 0.0270 71.0080 

resample bass 1.3337 7.2079 0.0005 0.0277 73.1192 

resample compressor 6.8024 17.0154 0.0010 0.0372 134.2811 

resample distortion 1.8371 3.8551 0.0013 0.1483 23.8355 

stretch none 0.2502 1.1926 0.0002 0.0251 10.0048 

stretch bass 0.3300 1.4249 0.0005 0.0264 9.6626 

stretch compressor 0.1520 1.0025 0.0008 0.0251 10.1076 

stretch distortion 1.0629 2.2129 0.0014 0.0911 10.3353 

all 1.2131 6.2028 0.0002 0.0282 134.2811 

[tab:sampleerror] Statistics of absolute error in track start time found by sample 
alignment. 

 

 mean std min median max 

none none -0.0025 0.0122 -0.0341 0.0000 0.0430 

none bass -0.0025 0.0209 -0.0549 0.0000 0.0919 

none compressor -0.0022 0.0133 -0.0531 0.0000 0.0449 

none distortion -0.0030 0.0359 -0.0877 0.0000 0.0931 

resample none -0.0063 0.0225 -0.0737 -0.0011 0.0848 

resample bass -0.0012 0.0272 -0.0779 0.0000 0.0919 

resample compressor -0.0049 0.0343 -0.0999 0.0000 0.0970 

resample distortion -0.0049 0.0346 -0.0857 -0.0042 0.0931 

stretch none -0.0072 0.0208 -0.0985 -0.0012 0.0430 

stretch bass -0.0029 0.0265 -0.0768 0.0000 0.0919 

stretch compressor -0.0059 0.0180 -0.0574 0.0000 0.0385 

stretch distortion -0.0068 0.0341 -0.0779 -0.0043 0.0961 

all -0.0042 0.0262 -0.0999 0.0000 0.0970 

[sample_to_risample] Improvement of sample-alignment error when reinjecting 
ground truth speed. 

 

While developing our method, we noticed the high sensitivity of the sample alignment and 
subsequent track removal (steps 2 and 3) on the accuracy of the speed estimation. This is 
due to the resampling of the source track to match the track in the mix prior to track 
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removal.  An estimation error of a tenth of a percent already results in desynchronisation 
after some time. To estimate this loss in accuracy, we produced a second set of the sample 
error and suppression ratio metrics based on a run of steps 2 and 3 with the ground truth 
speed re-injected into the processing. The rationale is that the speed estimation method 
could be improved in future work, if the resulting reductions of error metrics are 
worthwhile. Also note that the tempo estimation is inherently inaccurate due to it being 
based on DTW’s discretisation into MFCC frames. In mixes with full tracks, the slope can 
be estimated more accurately than with our track excerpts simply because more frames are 
available. 

Figures [fig:risampleerror] and [fig:risuppratio] show the quartile statistics of the sample 
error and suppression ratio with re-injected ground truth speed. We can see how most 
variants are improved in error spread for the former, and 4 variants are greatly improved 
for the latter, confirming the sensitivity of the track removal step 3 on the speed estimation. 
The sample alignment itself is less sensitive to the speed estimation, as seen in 
[tab:sample_to_risample], which shows the statistics of the difference between sample-
alignment error metrics with and without ground truth speed re-injected: only a few 
variants obtain improvements of 1 or 4 ms. 

 

[fig:dtw short] DTW distance matrix, alignment path (red), track boundaries and found 
slope lines on an artificial DJ mix from our dataset 

Some of our experiments with the database tracks also demonstrate the limits of our 
approach, as can be seen in [fig:dtw short], where the heuristics of choosing the middle of 
the track as anchor, and the mean slope approach failed to estimate the correct slope for 
the last track (which was mixed here with double tempo). 

3.6  Conclusions and Future Work 

The presented work is a first step towards providing the missing link in a chain of methods 
that allow the retrieval of rich data from existing DJ mixes and their source tracks. 
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An important result is the validation of track suppression as a metric for the accuracy of 
sample alignment. This metric can be obtained even without ground truth. A massive 
amount of training data extracted from the vast number of collections of existing mixes 
could thus be made amenable to research in DJ practices, cultural studies, and automatic 
mixing methods. 

With some refinements, our method could become robust and precise enough to allow the 
inversion of fading, EQ and other processing. First, the obtained tempo slope could be 
refined by searching for sample alignment at several points in one source track. This would 
also extend the applicability of our method to mixes with non-constant tempo curves. 
Second, a sub-sample search for the best alignment should achieve the neutralisation of 
phase shifts incurred in the mix production chain. 

Extension to mixes with varying tempo within a track is straightforward by extracting a 
segmented alignment curve from the DTW path. We could also check whether a DTW with 
relaxed endpoint condition29 for the beginning and end of a mix could be advantageous. 

Furthermore, the close link between alignment, time-scaling, and unmixing in [fig:schema] 
hints at the possibility of a joint estimation algorithm, maximising the match in the three 
search spaces simultaneously. 

 

 

                                                   
29 Diego Furtado Silva, Gustavo Enrique de Almeida Prado Alves Batista, Eamonn Keogh, 
et al. On the effect of endpoints on dynamic time warping. In SIGKDD Workshop on 
Mining and Learning from Time Series, II. Association for Computing Machinery- ACM, 
2016. 
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4 In-Store Player Mixing Module 
The ISP player module is a GUI-less stand-alone program to be run on the ISP hardware 
that takes care of beat-synchronous mixing and audio playback. It is controlled only by the 
ISP scheduler (the control program running on the ISP, responsible for scheduling 
playlists and communicating with the HearDis! servers and cockpit unit) and thus only 
dependent on local data and commands. Please see D2.10 Basic Version of ABC_DJ 
System Architecture for details about the system architecture and the role of the ISP 
scheduler. 

The player communicates via Unix FIFOs (named pipes) with the ISP scheduler. It receives 
the next track to play from the playlist in JSON format (see below), and outputs status 
information (about which track is starting/playing/stopping, current bpm and play 
position) and command acknowledgments. The input format contains all metadata and 
annotations necessary for beat-synchronous mixing, such as track bpm, beat markers, cue-
regions. 

The program streams audio data from disk in a background thread and runs two instances 
of the SuperVP time-stretching engine, the speed factors of which are controlled as 
described above by the algorithms for play duration compensation and beat-synchronous 
mixing. Audio output is realised via the cross-platform PortAudio library30, which maps to 
CoreAudio for the Mac prototype version, to ALSA for the Linux production version, and 
to any of the audio APIs (MME, DirectSound, WASAPI, WDM/KS, ASIO) for the Windows 
demonstrator. 

Since with the start of a track, it is already known (from the playlist) at which point in time 
the next track has to be started, we can work with very large audio buffer sizes. This helps 
distributing CPU load peaks over time, which results from the fact that, during cross-fade 
in the cue-regions, two SuperVP time-stretching engines have to run in parallel. 

For the project, the SuperVP time-stretching library was ported to the ARMv7l processor 
architecture of the player hardware (similar to Raspberry Pi model 3, which was the testing 
environment). 

The architecture is multi-threaded in order to distribute the processing load over the 4 
processor cores of the player hardware, as depicted in the following diagram: 

 

 
[fig:isp-arch] ISP Mixing Module Architecture. 

  

                                                   
30 http://portaudio.com 

Task 4.3 

ISP Player Architecture
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commands
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Audio File Reader Thread 
- audio decoding 
- ring buffer

audio data
Th

audio datacommands

• Distribute load of SuperVP time stretching over processor cores
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4.1  Usage 

The invocation and options of the mixing module are given here. It reads play commands 
in the form of JSON records described in section 4.2  unterhalb from the given input pipe 
(can be ‘-‘ for stdin) and outputs status information in formats described in section 4.4  
unterhalb to the output pipe (or “-“ for stdout).  

A typical invocation in a production context would be: 

mkfifo /tmp/isp-control 

mkfifo /tmp/isp-status 

./isp-player -r /data/tracks /tmp/isp-control /tmp/isp-status 

 

The full list of options of the mixing module are: 

 

USAGE:  
 
   ./isp-player  [-r <path>] [-s <seconds>] [--time <datetime|time>] 
                 [--splitchannels] [-n] [-c] [-P] [-p] [-t] [--] 
                 [--version] [-h] <infile> <outfile> 
 
Where:  
 
   -r <path>,  --root <path> 
     audio file root dir 
 
   -s <seconds>,  --timeout <seconds> 
     status reporting interval 
 
   --time <datetime|time> 
     for testing: set clock date and time, special value: 'first': use 
     first playlist schedule time as clock time 
 
   --splitchannels 
     for testing: split voices to left/right channel 
 
   -n,  --nostretch 
     mix continuously according to cue-regions and beat-markers, don't 
     apply time-stretch 
 
   -c,  --continuous 
     mix continuously according to cue-regions, ignoring track start times 
     from playlist 
 
   -P,  --prettyevents 
     json event status output pretty printed and multi-line, running status 
     still one line 
 
   -p,  --pretty 
     json status output pretty printed and multi-line 
 
   -t,  --textoutput 
     status output in text instead of json 
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   --,  --ignore_rest 
     Ignores the rest of the labeled arguments following this flag. 
 
   --version 
     Displays version information and exits. 
 
   -h,  --help 
     Displays usage information and exits. 
 
   <infile> 
     name of input pipe or '-' for stdin 
 
   <outfile> 
     name of status output file, pipe, or '-' for stdout 
 
 
   ABC_DJ in-store player audio player and mixer module. 
 
   Expects playlist entries in json format on input, outputs status 
   information in json on output. 

4.2  Command Scheduling 

There are two constraints for when certain commands can be sent from the ISP scheduler 
to the mixing module: 

1. After starting the mixing module, the ISP scheduler must wait for it to initialise, after 
which it will send the “startup” event. Only then can tracks be scheduled for playing. 

2. The play command must not be given when the instance of the corresponding SuperVP 
engine is still busy. In other words, to schedule track n+1, the ISP scheduler must wait at 
least for the end of track n-1. A safe possibility is to send the play command for track n+1 
a few seconds before its start according to the playlist.  

4.3  Input JSON Format 

The input format sent by the ISP scheduler contains the scheduling information for a track 
(start time, file path), and all metadata and annotations necessary for beat-synchronous 
mixing, such as track bpm, beat markers, cue-regions. Below is an example for one track, 
that will be sent to the ISP mixing module’s control FIFO. All fields used by the module are 
marked in bold. 

For testing purposes, the ISP player also accepts the command “play <filepath>” to mix a 
file immediately into the running stream with a default fade-in and fade-out of 10s. 

 
{ 
    "filepath": "/data/tracks/02_David Bowie_Lazarus.wav", 
    "created" : "2018-11-29T15:45:39.000+0000", 
    "startTime": "2017-09-14T00:00:00", 
    "endTime": "2017-09-14T00:02:04.627", 
    "manualMetadata" : { 
        "timeReference" : "2010", 
        "type" : "music" 
    }, 
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    "id" : "e9aec19b-43d5-4ca5-a3c0-6f58041922e4", 
    "embeddedMetadata" : { 
        "length" : 355.58, 
        "tracknumber" : 2, 
        "label" : "Columbia", 
        "album" : "Blackstar", 
        "heardis_id" : "HD_2016_1663680881", 
        "codec" : "mp3", 
        "createDate" : "2016", 
        "artist" : "David Bowie", 
        "resolution" : 320, 
        "year" : 2016, 
        "sampleRate" : 44100, 
        "title" : "Lazarus" 
    }, 
    "automaticMetadata" : { 
        "mono" : true, 
        "subStyles" : [ 
            "indie-pop", 
            "aor", 
            "fusion-jazz" 
        ], 
        "genre" : "blues", 
        "instrumentation" : "electric-guitar", 
        "lowQuality" : false, 
        "vocals" : true, 
        "mainStyle" : "indie-dance", 
        "bpm" : 130, 
        "cuePoints" : [ 
            { 
                "id" : "15", 
                "type" : "cue-in", 
                "description" : "intro", 
                "startTime" : 18.63, 
                "source" : "ircam", 
                "length" : 10 
            }, 
            { 
                "type" : "cue-out", 
                "id" : "15", 
                "description" : "outro-loudenough", 
                "source" : "ircam", 
                "startTime" : 336.14, 
                "length" : 10 
            } 
        ], 
        "loudness" : 4.32, 
        "beats" : [ 
            0.24, 
            0.71, 
            1.17, 
            1.62, 
            2.08, 
            2.54, 
            3, 
            3.46, 
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            ... 
        ] 
    } 
} 

4.4  Output JSON Format 

The player outputs the following status information in JSON format: 

• The current player state is sent as a heartbeat every few seconds (configurable), so that 
the ISP scheduler can always monitor the current player state and transmit it to the 
cockpit unit. The state contains the following information: 

– currently playing track names and bpms 

– position within playing tracks 

– current and next track start time 

– current global volume 

• Event information is sent as direct feedback after control input is received: 

– player startup feedback 

– acknowledgement of scheduling of next track with the scheduled start time 

– events when a track starts or stops playing 

• Error messages alert the ISP scheduler about unforeseen conditions (missing files, 
audio I/O errors, buffer underruns, invalid metadata, etc.) 

 
In the following we give JSON templates (with the most important fields) and examples 
for the three types of messages.  

Status Message 

The status message contains the current time and the data for the currently playing tracks: 

 

{ 
  "messagetype": "status", 
  "time":        <time since player start in seconds>, 
  "timestamp" : "<clock time>", 
  "tracks":  
  [  
    {  
      "trackname":  "<track name>",  
      "position":   <position in track in s>, 
      "starttime":  <player time of track start>, 
      "stoptime":   <player time of track end>, 
      "trackbpm":   <original BPM>, 
      "currentbpm": <current BPM>, 
      "volume" :    <current track volume>, 
      "voice" :     <voice index 0 or 1> 
    }, 
    { /* possibly second playing track */ } 
  ] 
  "volume": <current volume factor> 
} 
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Below is a full example of a status message when two tracks are playing: 
 
{ 
  "messagetype" : "status", 
  "numplaying" : 2, 
  "time" : 13.838918648019899, 
  "timestamp" : "2018-12-20T13:35:33", 
  "tracks" :  
  [ 
    { 
      "bpmend" : 110.0, 
      "bpmstart" : 110.0, 
      "cueinend" : 4.8636363636363633, 
      "cueinstart" : 0.5, 
      "cueoutend" : 15.77209090909091, 
      "cueoutstart" : 11.409090909090908, 
      "currentbpm" : 110.0, 
      "currentspeed" : 1.0, 
      "duration" : 60.5, 
      "voice" : 0, 
      "position" : 13.507528344671202, 
      "starttime" : 0.83648833801271394, 
      "status" : "fadeout", 
      "trackbpm" : 110.0, 
      "trackname" : "clicktrack-110bpm+0.5s.aiff", 
      "volume" : 0.50033760070800781 
    }, 
    { 
      "bpmend" : 120.0, 
      "bpmstart" : 120.0, 
      "cueinend" : 4.5, 
      "cueinstart" : 0.5, 
      "cueoutend" : 14.5, 
      "cueoutstart" : 10.5, 
      "currentbpm" : 110.00000953674316, 
      "currentspeed" : 0.91666674613952637, 
      "duration" : 60.5, 
      "voice" : 1, 
      "position" : 2.4665532879818595, 
      "starttime" : 11.745579247103624, 
      "status" : "fadein", 
      "trackbpm" : 120.0, 
      "trackname" : "clicktrack-120bpm+0.5s.aiff", 
      "volume" : 0.48910710215568542 
    } 
  ] 
} 

Event Message 

The event feedback message can contain optional track data: 
 

{ 
  "messagetype": "event", 
  "time":        <time since player start in seconds>, 
  "timestamp" : "<clock time>", 
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  "eventtype": "startup|schedule|trackstart|trackend", 
  "tracks":  
  [  
    {  
      "trackname":  "<track name>",  
      "position":   <position in track in s>, 
      "startedat":  "<clock time of scheduled track start>", 
      "stoptime":   "<clock time of scheduled track end>", 
      "trackbpm":   <original BPM> 
      "currentbpm": <current BPM> 
    } 
  ] 
} 

 

Here is an example of the event feedback to the play command: 
 

{ 
  "eventtype" : "play", 
  "messagetype" : "event", 
  "time" : 1.8580194360110909, 
  "timestamp" : "2018-12-20T13:35:21", 
  "tracks" :  
  [ 
    { 
      "bpmend" : 120.0, 
      "bpmstart" : 120.0, 
      "cueinend" : 4.5, 
      "cueinstart" : 0.5, 
      "cueoutend" : 14.5, 
      "cueoutstart" : 10.5, 
      "currentbpm" : 120.0, 
      "currentspeed" : 1.0, 
      "duration" : 60.5, 
      "voice" : -1, 
      "position" : 0.0, 
      "starttime" : 11.745579247103624, 
      "status" : "uninitialized", 
      "trackbpm" : 120.0, 
      "trackname" : "clicktrack-120bpm+0.5s.aiff", 
      "volume" : 0.0 
    } 
  ] 
} 

Error Message 

{ 
  "messagetype":  "error", 
  "time":        <time since player start in seconds>, 
  "timestamp" : "<clock time>", 
  "errormessage": "message", 
} 
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Two examples of error messages: 
 
{ 
  "errormessage" : "ioerror", 
  "messagetype" : "error", 
  "time" : 123.456, 
  "timestamp" : "2018-12-20T13:44:08", 
  "tracks" : null 
} 
 
{ 
  "errormessage" : "no embeddedMetadata in json for clicktrack-120bpm.aiff", 
  "messagetype" : "error", 
  "time" : 0.72091909596929327, 
  "timestamp" : "2018-12-20T15:34:40", 
  "tracks" : null 
} 
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5 Summary and Conclusions 

This deliverable describes research results, datasets, and software delivered to the project 
partners pertaining to automatic DJ mixing on the ABC_DJ in-store player. We still expect 
some further adaptation of the software (in WP 5 Integration) after more experience with 
real-world data and playlists.  

We had initially foreseen that the publication of the ISMIR 2017 position paper Towards 
Ground Truth Extraction of DJ Mixes, and the ISMIR 2018 Unmixdb open dataset for DJ 
mix reverse engineering would improve the repeatability of DJ-related MIR and would 
help to establish it as a research field in its own right. This hope seems to have been fulfilled, 
since we were contacted by a young researcher whose master’s thesis31 was, in his own 
words, “basically building upon the concepts in your paper Towards Ground Truth 
Extraction of DJ Mixes”. It treats the extraction of ground truth from DJ Mixes in order to 
make them amenable to machine learning to advance automatic methods for DJ support. 
He published software and a database of DJ mixes hand-crafted in the Ableton Live 
software from which he can extract ground truth annotations to test his methods. This 
database is perfectly complementary to our automatically generated Unmixdb dataset. 

 

                                                   
31 Werthen-Brabants, Lorin, and Tijl De Bie. Ground Truth Extraction & Transition Analysis of DJ Mixes. 
Master of Science in Computer Science Engineering, August 2018. 
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