

D4.8 Final Research Report for Sound
Design and Audio Player

Report on research and development of specific features for the audio player

Project Reference 688122 — ABC_DJ — H2020-ICT-2015
Deliverable/WP/Task D4.8 WP4 T4.3
Delivery Date 31/12/2018
Main Author(s) Diemo Schwarz, Ircam, schwarz@ircam.fr
Co-Author(s) Dominique Fourer, Ircam, dominique.fourer@univ-evry.fr
Quality Assurance Steffen Lepa, TUB, steffen.lepa@tu-berlin.de

Alessandro Canepa, PIAC, alessandro.canepa@piacenza1733.it
Filename D4.8_ABC_DJ_Final_Research_Report_for_Sound_Design_and_Au-

dio_Player.pdf
Publication Level PU

ABC_DJ - Artist-to-Business-to-Business-to-Consumer Audio Branding System

contact: www.abcdj.eu
email: info@abcdj.eu

mailto:schwarz@ircam.fr
mailto:dominique.fourer@univ-evry.fr
mailto:steffen.lepa@tu-berlin.de
mailto:alessandro.canepa@piacenza1733.it
mailto:info@abcdj.eu

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 2 of 39

Copyright Notice © ABC_DJ Consortium. 2018.

This document contains material, which is the copyright of certain ABC_DJ consortium parties.
This work is licensed under the Creatice Commons Licence CC BY-NC 4.0,
http://creativecommons.org/licenses/by-nc/4.0/ .

Disclaimer Neither the ABC_DJ consortium as a whole, nor a certain party of the ABC_DJ consortium
warrant that the information contained in this document is capable of use, nor that use of the
information is free from risk, and accepts no liability for loss or damage suffered by any person
using this information.

Neither the European Commission, nor any person acting on behalf of the Commission, is
responsible for any use which might be made of the information in this document.

The views expressed in this document are those of the authors and do not necessarily reflect
the policies of the European Commission.

Project Information Full project title ABC_DJ — Artist-to-Business-to-Business-to-Consumer Audio
Branding System

Project Coordinator Stefan Weinzierl / TU Berlin

Project ID 688122 — ABC DJ — H2020-ICT-2015

Acknowledgements

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 688122.

http://creativecommons.org/licenses/by-nc/4.0/

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 3 of 39

Table of Contents

History ... 4

Glossary ... 5

Executive Summary .. 6

1 Introduction ... 7

2 Automatic Beat-Synchronous Mixing ... 8

2.1 Duration Compensation ... 8

2.2 Beat Alignment Algorithm ... 10

2.3 Beat-Synchronous Mixing Prototype Software ... 13

3 Unmixing: Extraction of Ground Truth Data from DJ Mixes .. 15

3.1 Unmixing Introduction... 15

3.2 Related Work .. 16

3.3 DJ Mix Reverse Engineering ... 18

Step 1: Rough Alignment ... 18

Step 2: Sample Alignment ... 20

Step 3: Track Removal ... 20

Step 4: Volume Curve Estimation .. 21

Step 5: Cue Point Estimation ... 22

3.4 The UnmixDB Dataset .. 22

File Formats ... 24

3.5 Evaluation ... 25

3.6 Conclusions and Future Work .. 29

4 In-Store Player Mixing Module .. 31

4.1 Usage .. 32

4.2 Command Scheduling .. 33

4.3 Input JSON Format .. 33

4.4 Output JSON Format.. 35

Status Message .. 35

Event Message ... 36

Error Message .. 37

5 Summary and Conclusions .. 39

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 4 of 39

 History

Version Name Date Remark

V0.1 Diemo Schwarz 2018-12-19 Update from D4.6: move cue
regions to D4.7

V0.2 Diemo Schwarz 2018-12-20 Update unmixdb

V0.3 Diemo Schwarz 2018-12-21 Update mixing module data
formats and scheduling

V0.4 Diemo Schwarz 2018-12-22 Integrate first revisions

V0.5 Diemo Schwarz 2018-12-27 Integrate second revisions

V1.0 Diemo Schwarz 2018-12-30 Submitted to EC

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 5 of 39

 Glossary

Acronym/Abbreviation Full Name/Description

ABC_DJ Artist-to-Business-to-Business-to-Consumer audio branding
system

DTW dynamic time warping

ISP in-store player

JSON JavaScript Object Notation

PLG playlist generator

PoS point of sale

RMS root-mean-square

SW software

xfade cross-fade

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 6 of 39

Executive Summary

This deliverable describes the work on Task 4.3 Algorithms for sound design and feature
developments for audio player. The audio player runs on the in-store player (ISP) and
takes care of rendering the music playlists via beat-synchronous automatic DJ mixing,
taking advantage of the rich musical content description extracted in T4.2 (beat markers,
structural segmentation into intro and outro, musical and sound content classification).

The deliverable covers prototypes and final results on: (1) automatic beat-synchronous
mixing by beat alignment and time stretching – we developed an algorithm for beat
alignment and scheduling of time-stretched tracks; (2) compensation of play duration
changes introduced by time stretching – in order to make the playlist generator
independent of beat mixing, we chose to readjust the tempo of played tracks such that their
stretched duration is the same as their original duration; (3) prospective research on the
extraction of data from DJ mixes – to alleviate the lack of extensive ground truth databases
of DJ mixing practices, we propose steps towards extracting this data from existing mixes
by alignment and unmixing of the tracks in a mix. We also show how these methods can
be evaluated even without labelled test data, and propose an open dataset for further
research; (4) a description of the software player module, a GUI-less application to run on
the ISP that performs streaming of tracks from disk and beat-synchronous mixing.

The estimation of cue points where tracks should cross-fade is now described in D4.7 Final
Research Report on Auto-Tagging of Music

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 7 of 39

1 Introduction

This deliverable describes the work on Task 4.3 Algorithms for sound design and feature
developments for audio player. The audio player runs on the in-store player and takes care
of rendering the music playlists via beat-synchronous automatic DJ mixing, taking
advantage of the rich musical content description extracted in T4.2 (beat markers,
structural segmentation into intro and outro, musical and sound content classification).
The work is based on 3 sets of example data provided by HearDis!:

1. example mixes: two DJ mixes in the format of the authoring software MixMeister and
Ableton Live. They comprise the individual source tracks and the arrangement and mix
curves for volume and EQ.

2. cue point examples: a set of 30 example tracks in mp3 format, each in two versions:

1. the full-length track

2. the track shortened according to human-decided cue-in and cue-out regions with
fades

3. tagged MLM examples: 4 sets of tracks (low, mid, high tempo, classical) with complete
annotations, each set of a certain tempo group

The deliverable mainly covers research and development results on:
• automatic beat-synchronous mixing by beat alignment within the cue point regions and

time stretching. This is based on algorithms for play duration compensation, and beat
alignment.

• prospective research on the extraction of data from DJ mixes

• a description of the architecture and i/o formats of the software player

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 8 of 39

2 Automatic Beat-Synchronous Mixing

The parts of the development of T4.3 described in this section concern the automatic DJ
mixing function of the in-store player (ISP) that is meant to simulate a broadcast or lounge
DJ mix where tracks are mixed seamlessly with matching tempi and synchronised beats
during the cross-fade phase. This is based on the tempo and beat detection of T4.2
Algorithms for extraction, automatic classification and indexing of music.
For beat-synchronicity, time-stretching will be carried out (without altering the pitch of
the tracks). For this, three options are conceivable:

1. Only the first song is slowed down/sped up before the transition to fit the following one.

2. Both songs are slowed down/sped up to meet at an average BPM. After the transition
the song returns to original BPM.

3. Both songs are slowed down/sped up to meet at an average BPM. After the transition,
the song is slowed down/sped up in the opposite direction to reverse the change in
duration.

Option 3, which was chosen for realization, has the advantage of not requiring the playlist
generator to be aware of the change in duration due to beat-synchronous mixing (because
the PLG can be used to generate mixes with a certain song playing at a specific predefined
time point, e.g. for shop closing time, noon, etc.).
As future work, in case option 3 introduces speed changes (accelerations/slowdowns) that
are too noticeable1, an alternative approach would be to have the PLG transmit to the ISP
mixing module which song needs to start at a specific predefined time point, so that that
this requirement can be met by adapting the speeds of tracks in the playlist up to that point
(which don’t need to start at a specific time point), thus distributing speed changes over a
longer period.

The quality of the algorithms and different settings of parameters generating beat-
synchronous mixes ought to be evaluated by qualitative listening tests performed by
experts and laypeople at a future point in time. Such experts can be the HearDis! music
specialists who are able to judge the success of the algorithms in terms of achieving human
DJ-like mixing quality.

2.1 Duration Compensation

In order to realise option 3 from above, we formalised the compensation of play duration
due to beat-synchronous mixing. We defined a 4-phase time model shown in the following
figure:

Depiction of 4-phase time model for duration compensation.

The speed curve (yellow line) has 4 linear segments with durations d1…d4, where the cross-
fade segments d1 and d4 are of constant speeds s1 and s3 determined by the previous/next
track, their duration being determined by the cue-in and cue-out region. Segments d2 and

1 What “too noticeable” means would have to be defined by listening tests.

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 9 of 39

d3 serve to compensate the duration changes introduced thereby such that the sum of the
durations after applying the speed curve add up to the original duration of the track, i.e.
𝑑1′ + 𝑑2′ + 𝑑3′ + 𝑑4′ = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 . Here, 𝑑𝑛′ is the notation for stretched duration of a
segment n after applying its tempo curve.

The only free parameter is thus the compensation speed s2 and the time point where it is
reached. We choose the time point in the middle, i.e. 𝑑2 = 𝑑3. As it is easy to see, duration
compensation is reached when the area under the yellow speed curve is equal to that under
the dotted original speed curve, or, equivalently, when the area normalised by target track
duration is equal to 1. This normalised area is given by the sum of the segment areas:

𝑎𝑟𝑒𝑎 = (𝑎1 + 𝑎2 + 𝑎3 + 𝑎4)/𝑑𝑡𝑎𝑟𝑔𝑒𝑡

with

𝑎1 = 𝑠1 ∗ 𝑑1′

𝑎2 = (𝑠1 + 𝑠2)/2 ∗ 𝑑2′ = (𝑠2 − 𝑠1)/2 ∗ 𝑑2′ + 𝑠1 ∗ 𝑑2′

𝑎3 = (𝑠2 + 𝑠3)/2 ∗ 𝑑3′ = (𝑠3 − 𝑠2)/2 ∗ 𝑑3′ + 𝑠2 ∗ 𝑑3′

𝑎4 = 𝑠3 ∗ 𝑑4′

Solving for s2 yields

𝑠2 =
𝑑𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑠1𝑑′1 −

1
2 𝑠1𝑑′2 −

1
2 𝑠3𝑑′3 − 𝑠3𝑑′4

1
2 (𝑑′2 + 𝑑′3)

This type of duration compensation was prototyped and demoed in a Max/MSP patch
based on the SuperVP time stretching modules by Ircam:

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 10 of 39

Screenshot of duration compensation prototype allowing to test different mix speed
conditions.

2.2 Beat Alignment Algorithm

The key idea for beat-synchronous mixing is, first, to apply time-stretching to align the
tempo of the cross-fade region of the two tracks to be mixed. This is facilitated by the speed
curve model described in the previous section, stipulating a constant speed curve during
cross-fade. Second, we determine a synchronisation point within the cue-region to align
the beats (see figure).

[fig:beatalign] Beat alignment and cue-regions for cross-fade between tracks.

cue-in A cue-out A

cue-in B cue-out B

crossfade region

track A

track A stretched

track B stretched

track B

speed curve SA

speed curve SB

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 11 of 39

Note that three time scales have to be managed: The source track A’s and B’s original times,
in which the respective cue-regions and beat markers are given, and the actual playing time
(real time), given by the speed curves applied to both tracks to achieve beat
synchronisation and duration compensation.

The beat alignment algorithm was prototyped in JavaScript within the prototyping
environment Max/MSP for easy transfer to the ISP implementation in C++. We provide
here the equations necessary to calculate the schedule interval schedB_rt to start playing
the next track B, and the start time in track B seekB, given the tracks’ bpm, duration, beat
markers, and cue-regions, and the current track A’s seek time seekA and cross-fade region
bpm. See the following diagram for an explanation of the different time measures

calculated by the algorithm. ∫ 𝑆𝐴 is the function mapping track A’s time to real time,
depending on the speed curve 𝑆𝐴.

[fig:syncparams] Beat alignment algorithm parameters and measures.

The formulas needed to calculate the beat-aligned scheduling values are given by the
following equations:

𝑡𝑟𝑎𝑐𝑘𝑋 with 𝑋 = 𝐴|𝐵 contains the metadata of one track, where A is the current track, B is
the next track to be mixed with A:

𝑡𝑟𝑎𝑐𝑘𝑋𝑏𝑒𝑎𝑡𝑚𝑎𝑟𝑘𝑒𝑟𝑠 position of beats in track (ms)

𝑡𝑟𝑎𝑐𝑘𝑋𝑏𝑝𝑚 speed of track

𝑡𝑟𝑎𝑐𝑘𝑋𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 original duration (ms)

𝑡𝑟𝑎𝑐𝑘𝑋𝑐𝑢𝑒𝑖𝑛 cue-in region as list of (starttime, length) in ms

𝑡𝑟𝑎𝑐𝑘𝑋𝑐𝑢𝑒𝑜𝑢𝑡 cue-out region as list of (starttime, length) in ms

Function 𝑓𝑖𝑙𝑙𝑏𝑒𝑎𝑡𝑠(𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑏𝑒𝑎𝑡𝑠, 𝑏𝑝𝑚) returns the list of beats in the given segment,
completed according to bpm and position of existing beats.

Function 𝑔𝑒𝑡𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒𝑠(𝑐𝑢𝑒𝑠𝑒𝑔, 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠) calculates the synchronisation points in the
two respective tracks: first (filled) beat or cue start:

cueinlenArt cueoutlenArt

cueinlenBrt cueoutlenBrt

track A stretched

track B stretched

syncparams2

durationArt

seekA

seekBrt

cue-in A cue-out A

cue-in B cue-out B

track A

track B

speed curve SA

speed curve SB

seekArt

schedBtimeschedAtime

schedBrt

seekB

countdownArt

countdownA

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 12 of 39

𝑔𝑒𝑡𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒𝑠(𝑐𝑢𝑒𝑠𝑒𝑔, 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠) =

{

(𝑐𝑢𝑒𝑠𝑒𝑔𝐴0, 𝑐𝑢𝑒𝑠𝑒𝑔𝐵0) if 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐴𝑙𝑒𝑛𝑔𝑡ℎ = 0

or 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐵𝑙𝑒𝑛𝑔𝑡ℎ = 0

(if one has no beats:

easy, no beat sync necessary,

sync on cuein/out start)
(𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐴0, 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐵0) otherwise, both segments have beats:

fill cue segments with continuing

beats according to bpm

with

𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐴 = 𝑓𝑖𝑙𝑙𝑏𝑒𝑎𝑡𝑠(𝑐𝑢𝑒𝑠𝑒𝑔𝐴, 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐴, 𝑡𝑟𝑎𝑐𝑘𝐴𝑏𝑝𝑚)
𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐵 = 𝑓𝑖𝑙𝑙𝑏𝑒𝑎𝑡𝑠(𝑐𝑢𝑒𝑠𝑒𝑔𝐵, 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠𝐵, 𝑡𝑟𝑎𝑐𝑘𝐵𝑏𝑝𝑚)

Now, given the current position in track A, we can calculate the play data for mixing in
track B: the real time schedule interval relative to when track A was started (at 𝑠𝑒𝑒𝑘𝐴)
𝑠𝑐ℎ𝑒𝑑𝐵𝑟𝑡 and the seek time 𝑠𝑒𝑒𝑘𝐵, based on the following values:

𝑐𝑢𝑟𝑏𝑝𝑚 = current bpm (constant)
𝑠𝑒𝑒𝑘𝐴 = previous seek time in track A
𝑑𝑢𝑟𝐴𝑟𝑡 = 𝑡𝑟𝑎𝑐𝑘𝐴𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

Note that the length compensation guarantees that track A’s duration is maintained
despite time-stretching for beat sync mixing. We first calculate the speed factors (track
time to real time) and cueoutA, cueinB (start, length) in track time and real time:

𝑠𝑝𝑒𝑒𝑑𝐴 = 𝑐𝑢𝑟𝑏𝑝𝑚/𝑡𝑟𝑎𝑐𝑘𝐴𝑏𝑝𝑚
𝑠𝑝𝑒𝑒𝑑𝐵 = 𝑐𝑢𝑟𝑏𝑝𝑚/𝑡𝑟𝑎𝑐𝑘𝐵𝑏𝑝𝑚
𝑐𝑢𝑒𝑜𝑢𝑡𝐴 = 𝑡𝑟𝑎𝑐𝑘𝐴𝑐𝑢𝑒𝑜𝑢𝑡
𝑐𝑢𝑒𝑖𝑛𝐵 = 𝑡𝑟𝑎𝑐𝑘𝐵𝑐𝑢𝑒𝑖𝑛

𝑐𝑢𝑒𝑜𝑢𝑡𝑙𝑒𝑛𝐴𝑟𝑡 = 𝑐𝑢𝑒𝑜𝑢𝑡𝐴1/𝑠𝑝𝑒𝑒𝑑𝐴
𝑐𝑢𝑒𝑖𝑛𝑙𝑒𝑛𝐵𝑟𝑡 = 𝑐𝑢𝑒𝑖𝑛𝐵1/𝑠𝑝𝑒𝑒𝑑𝐵

final xfade length in real time: minimum of both

𝑐𝑢𝑒𝑙𝑒𝑛𝑟𝑡 = 𝑚𝑖𝑛(𝑐𝑢𝑒𝑜𝑢𝑡𝑙𝑒𝑛𝐴𝑟𝑡, 𝑐𝑢𝑒𝑖𝑛𝑙𝑒𝑛𝐵𝑟𝑡)

The final cue segments in track time and cue beats in final xfade period (time relative to
tracks) are:

𝑐𝑢𝑒𝑠𝑒𝑔 = ((𝑐𝑢𝑒𝑜𝑢𝑡𝐴0, 𝑐𝑢𝑒𝑙𝑒𝑛𝑟𝑡 ∗ 𝑠𝑝𝑒𝑒𝑑𝐴),

(𝑐𝑢𝑒𝑖𝑛𝐵0, 𝑐𝑢𝑒𝑙𝑒𝑛𝑟𝑡 ∗ 𝑠𝑝𝑒𝑒𝑑𝐵))
𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠 = (𝑔𝑒𝑡_𝑚𝑎𝑟𝑘𝑒𝑟𝑠_𝑤𝑖𝑡ℎ𝑖𝑛(𝑐𝑢𝑒𝑠𝑒𝑔𝐴, 𝑡𝑟𝑎𝑐𝑘𝐴𝑏𝑒𝑎𝑡𝑚𝑎𝑟𝑘𝑒𝑟𝑠),

𝑔𝑒𝑡_𝑚𝑎𝑟𝑘𝑒𝑟𝑠_𝑤𝑖𝑡ℎ𝑖𝑛(𝑐𝑢𝑒𝑠𝑒𝑔𝐵, 𝑡𝑟𝑎𝑐𝑘𝐵𝑏𝑒𝑎𝑡𝑚𝑎𝑟𝑘𝑒𝑟𝑠))

We can now align the beats by calculating sync times in respective tracks:

Calculate real time of sync time:

𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒 = 𝑔𝑒𝑡𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒𝑠(𝑐𝑢𝑒𝑠𝑒𝑔, 𝑐𝑢𝑒𝑏𝑒𝑎𝑡𝑠)

Duration between sync point to end of track A:

𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛𝐴 = 𝑡𝑟𝑎𝑐𝑘𝐴𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒𝐴

 …in real time2

2 Length compensation guarantees that track duration is maintained despite time-

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 13 of 39

𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛𝐴𝑟𝑡 = 𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛𝐴/𝑠𝑝𝑒𝑒𝑑𝐴

 duration of cueseg before sync point:

𝑝𝑟𝑒𝑐𝑜𝑢𝑛𝑡𝐵 = 𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒𝐵 − 𝑐𝑢𝑒𝑠𝑒𝑔𝐵0

 …in real time

𝑝𝑟𝑒𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑡 = 𝑝𝑟𝑒𝑐𝑜𝑢𝑛𝑡𝐵/𝑠𝑝𝑒𝑒𝑑𝐵

 last seek time within A in real time

𝑠𝑒𝑒𝑘𝐴𝑟𝑡 = 𝑠𝑒𝑒𝑘𝐴/𝑠𝑝𝑒𝑒𝑑𝐴

We can now calculate the schedule interval to start playing B at 𝑠𝑒𝑒𝑘𝐵 relative to last
schedule time (starting to play A at 𝑠𝑒𝑒𝑘𝐴) and the seek time in B (<= 𝑠𝑦𝑛𝑐𝑡𝑖𝑚𝑒𝐵) to be
started after 𝑠𝑐ℎ𝑒𝑑𝐵𝑟𝑡.

𝑠𝑐ℎ𝑒𝑑𝐵𝑟𝑡 = 𝑑𝑢𝑟𝐴𝑟𝑡 − 𝑠𝑒𝑒𝑘𝐴𝑟𝑡 − 𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛𝐴𝑟𝑡 − 𝑝𝑟𝑒𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑡
𝑠𝑒𝑒𝑘𝐵 = 𝑐𝑢𝑒𝑠𝑒𝑔𝐵0

An open development question still to be resolved by human-listener evaluation of the
algorithm on a more extensive set of tracks is:

• What to do when one cue-region is a cut (a very short fade-in or fade-out)? For example:
when the cue-in is of duration 0, should cue-out fade out normally, fade out quickly, or
be cut, too?

2.3 Beat-Synchronous Mixing Prototype Software

The prototype for a beat-synchronous mixing patch in Max/MSP is shown below. It allows
to choose two tracks from the example set and mix them beat-synchronously using the
algorithm described above. It applies high-quality time-stretching using the SuperVP
engine by IRCAM, and linear cross-fades.

stretching for beat sync mixing.

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 14 of 39

[fig:beatmix] Screenshot of beat-synchronous mixing prototype.

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 15 of 39

3 Unmixing: Extraction of Ground Truth Data from DJ
Mixes

A further direction of prospective research motivated by the work in the present WP was
to generate a systematic approach for collecting examples of annotated mixes and tracks.
In general, there is a scarcity of available ground truth databases that are able to deliver
stable hypotheses about usual cross-fade times and styles, and typical DJ practices in
general.

A proposal how to tackle this problem technically was presented at ISMIR 20173 and
ISMIR 2018 and is summarised in the following.

3.1 Unmixing Introduction

This work offers one missing brick in a larger research agenda aiming at systematically
analysing and understanding DJ practices—an important part of popular music culture.
The possible benefits from such efforts are many, for instance musicological research in
popular music, cultural studies on DJ practice and reception, development of new music
technologies and software products for computer support of DJing, automation of DJ
mixing for entertainment or commercial purposes. So far, DJ techniques are not very well
researched, not least due to the lack of annotated databases of DJ mixes.

[fig:schema] Overview of the larger context of information retrieval from DJ practices.

3 Diemo Schwarz, Dominique Fourer. Towards Extraction of Ground Truth Data from DJ
Mixes. International Symposium on Music Information Retrieval (ISMIR), Oct 2017,
Suzhou, China. hal-01671768

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 16 of 39

In order to be able to annotate recorded mixes automatically, several components are
needed, see the overview figure [fig:schema].

Identification
of the contained tracks (e.g. by acoustic fingerprinting) to obtain the playlist,

Alignment
 to determine where in the mix each track starts and stops

Time-scaling
to determine what tempo changes were applied to achieve beat-synchronicity,

Unmixing
to estimate the cue-regions where the cross-fades between tracks happen, the curves for
volume, bass and treble, and the parameters of other effects (compression, echo, etc.)

Content and metadata analysis
to derive the genre and social tags attached to the music to inform about the choices a DJ
makes when creating a mix.

Most of these necessary future components have been addressed by recent MIR research,
except the alignment part for which we will provide here a first attempt that draws on
multi-scale correlation and dynamic time warping (DTW) techniques.

With some refinements, a massive amount of training data from the vast number of
collections of existing DJ mixes could be made amenable to musicological research on DJ
practices, cultural studies, and for development of automatic mixing methods.

As a working definition, it is possible to roughly distinguish 3 levels of mixing:

• Level 1, let’s call this broadcast mixing, is a simple volume crossfade without paying
attention to, or changing content (as it is performed by consumer audio players such as
iTunes, or in a broadcast context).

• Level 2, lounge mixing, is beat-synchronous mixing with adaptation of the tempo of the
tracks and possibly additional EQ fades, while playing the tracks mostly unchanged.

• Level 3, performative mixing, is using the DJ deck as a performance instrument by
creative use of effects, loops, and mashups with other tracks.

Our work applies to broadcast or lounge mixing with simple crossfades, while
performative DJ mixing tends to blur the identifiability of the source tracks too much.

3.2 Related Work

First of all, there is much more existing research in the field of studio mixing, where a
stereo track is to be produced from individual multi-track recordings and software

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 17 of 39

instruments by means of a mixing desk or DAW4 ,5 ,6 ,7 . This research field has produced
ground truth databases8 and has some overlap with DJ mixing, when we see the latter as
mixing just two source tracks, but the studied parameters and influencing factors differ too
much from what is needed for DJ mixing.

Furthermore, there are some existing research works on tools to help DJs produce
mixes9 ,10,11,12,13, but much less regarding information retrieval from recorded mixes.

The work of Sonnleitner, Arzt and Widmer that has been opening up research on
information retrieval from DJ mixes14 tackles the identification of the tracks within the mix
by fingerprinting. The authors also produce an extensive database of ground truth
annotations of playlists with approximate start and stop times of tracks on a large number
of Creative-Commons licensed mixes made from open-licensed dance tracks published on
the Mixotic net label.15 This dataset16 provides 10 dance music mixes with a total duration
of 11 hours and 23 minutes, the 118 source tracks, and the playlists with hand-annotated

4 Enrique Perez-Gonzalez and Joshua Reiss. Automatic gain and fader control for live
mixing. In Applications of Signal Processing to Audio and Acoustics, 2009. WASPAA’09.
IEEE Workshop on, pages 1–4. IEEE, 2009.

5 Jacob A Maddams, Saoirse Finn, and Joshua D Reiss. An autonomous method for multi-
track dynamic range compression. In Proceedings of the 15th International Conference on
Digital Audio Effects (DAFx-12), 2012.

6 Stuart Mansbridge, Saorise Finn, and Joshua D Reiss. An autonomous system for
multitrack stereo pan positioning. In Audio Engineering Society Convention 133. Audio
Engineering Society, 2012.

7 Brett Brecht De Man, R; King, and J. D. Reiss. An analysis and evaluation of audio
features for multitrack music mixtures. In ISMIR, 2014.

8 Brecht De Man, Mariano Mora-Mcginity, György Fazekas, and Joshua D Reiss. The open
multitrack testbed. In Audio Engineering Society Convention 137. Audio Engineering
Society, 2014.

9 Hiromi Ishizaki, Keiichiro Hoashi, and Yasuhiro Takishima. Full-automatic DJ mixing
system with optimal tempo adjustment based on measurement function of user discomfort.
In ISMIR, pages 135–140, 2009.

10 Dave Cliff. Hang the DJ: Automatic sequencing and seamless mixing of dance-music
tracks. HP Laboratories Technical Report HPL, 104, 2000.

11 Tsuyoshi Fujio and Hisao Shiizuka. A system of mixing songs for automatic dj
performance using genetic programming. In 6th Asian Design International Conference,
2003.

12 Felipe X Aspillaga, Jonathan Cobb, and Ching-Hua Chuan. Mixme: A recommendation
system for djs. In Late-break Session of the 12th International Society for Music
Information Retrieval Conference, 2011.

13 Pablo Molina, Martin Haro, and Sergi Jorda. Beat-jockey: A new tool for enhancing DJ
skills. In NIME, pages 288–291. 2011.

14 Reinhard Sonnleitner, Andreas Arzt, and Gerhard Widmer. Landmark-based audio
fingerprinting for DJ mix monitoring. In ISMIR, New York, NY, 2016.

15 http://www.mixotic.net

16 http://www.cp.jku.at/datasets/fingerprinting

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 18 of 39

time points relevant for fingerprinting, namely the moment from which only the next track
in the playlist is present in the mix. Unfortunately, this dataset does not give information
about the start point of the track in the mix, and is not accurate enough for our aims of DJ
mix analysis, let alone reverse engineering.

Barchiesi and Reiss17 first used the term mix reverse engineering (in the context of multi-
track studio mixing) for their method to invert linear processing (gains and delays,
including short FIR filters typical for EQ) and some dynamic processing parameters
(compression).

Ramona and Richard 18 tackle the unmixing problem for radio broadcast mixes, i.e.
retrieving the fader positions of the mixing desk for several known input signals (music
tracks, jingles, reports), and one unknown source (the host and guests’ microphones in the
broadcast studio). They model the fader curves as a sigmoid function and assume no time-
varying filters, and no speed change of the sources (which is correct in the context of radio
broadcast practice).

These two latter references both assume having sample-aligned source signals at their
disposal, with no time-scaling applied, unlike our use-case, where each source track only
covers part of the mix, can appear only partially, and can be time-scaled for beat-matched
mixing.

There is at present only rare work on the inversion of other processing applied to the
signal19, notably compression20.

3.3 DJ Mix Reverse Engineering

The starting point for our method is the result of the previous stage of identification and
retrieval on existing DJ mixes (see [fig:schema]), or specially contrived databases for the
study of DJ practices: We assume a recorded DJ mix, a playlist (the list of tracks played in
the correct order), and the audio files of the original tracks.

Our method proceeds in five steps, from a rough alignment of the concatenated tracks with
the mix by dynamic time warping (DTW), that is then refined in order to approach sample
precision, then verified by subtracting the track out of the mix, and is then finally extended
by the estimation of gain curves and cue-regions.

Step 1: Rough Alignment

The rough alignment uses the MFCC data of the mix and the concatenated MFCCs of the
tracks as input. We use the MIRToolbox21 MFCC with 13 coefficients, a window size of 0.05

17 Daniele Barchiesi and Joshua Reiss. Reverse engineering of a mix. Journal of the Audio
Engineering Society, 58(7/8):563–576, 2010

18 Mathieu Ramona and Gael Richard. A simple and efficient fader estimator for broadcast
radio unmixing. In Proc. DAFX ’11, pages 265–268, September 2011.

19 Stanislaw Gorlow and Sylvain Marchand. Reverse engineering stereo music recordings
pursuing an informed two-stage approach. In 2013 International Conference on Digital
Audio Effects (DAFx-13), pages 1–8, 2013.

20 Stanislaw Gorlow and Joshua D Reiss. Model-based inversion of dynamic range
compression. IEEE Transactions on Audio, Speech, and Language Processing, 21(7):1434–
1444, 2013

21 Olivier Lartillot, Petri Toiviainen, and Tuomas Eerola. A matlab toolbox for music

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 19 of 39

s and a small hop size of 0.0125 s. We chose the Mel frequency band representation because,
compared to an FFT representation, it is more robust against pitch changes due to
resampling of the source tracks.

Since the tracks are largely unchanged in terms of the level 2 mixes we are interested in,
DTW can latch on to large valleys of low distance, although the fade regions are dissimilar
to either track, and occur separately in the concatenated track MFCC stream (see [fig:dtw]).
To ease catching up with the shorter time of the mix, we provide a neighbourhood that
allows the path 𝑝 to perform larger vertical and horizontal jumps as follows, given the
initial condition 𝑝(1,1) = 𝑑(1,1) on the local distance matrix 𝑑:

𝑝(𝑚, 𝑛) = min

{

𝑝(𝑚 − 1, 𝑛 − 1) + 𝑑(𝑚, 𝑛)

𝑝(𝑚 − 1, 𝑛) + 𝑑(𝑚, 𝑛)

𝑝(𝑚 − 2, 𝑛) + 𝑑(𝑚, 𝑛)

𝑝(𝑚, 𝑛 − 1) + 𝑑(𝑚, 𝑛)

𝑝(𝑚, 𝑛 − 2) + 𝑑(𝑚, 𝑛)}

[fig:dtw] DTW distance matrix, alignment path (red), track boundaries and found slope
lines on a complete dance DJ mix.

The DTW alignment path not only gives us the relative positioning of the tracks in the mix,
but also their possible speed up or slow down to achieve beat-synchronous mixing or
smoother evolution of the tempo of the mix. To retrieve the tempo change, we assume that
the change is constant for each track, and analyse the mean slope of the alignment path in
a window of half the track length, centred around the middle of the track. This also gives

information retrieval. In Data analysis, machine learning and applications, pages 261–268.
Springer, 2008.

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 20 of 39

us an estimate of the start of the track in the mix, by calculating the intercept of the slope
for the start frame of the track (see [fig:dtw]).

Note that that start position expresses the offset of the start of the full source track with
respect to the mix, and not the point from where on the track is present in the mix. Since
the source tracks are mixed with non-zero volume only between the cue-in and cue-out
regions, the track start point can be negative. (See section The UnmixDB Dataset for an
explanation how the cue-regions of our dataset are chosen.)

Step 2: Sample Alignment

Given the rough alignment and tempo estimation by DTW, we then search for the best
sample alignment of the source tracks time-scaled according to the estimated tempo. We
shift a window of the size of an MFCC frame, taken from the middle of the time-scaled
track, around its predicted rough frame position in the mix, trying displacements up to 2
hop sizes in either direction. The minimum sum of square distances then determines the
sample alignment.

Step 3: Track Removal

The accuracy of the resulting sample alignment can be verified by attempting to remove
the aligned and time-scaled track from the mix: For this we need to subtract its signal from
the mix and observe the resulting drop in energy. Note that this verification of sample
alignment can be done even when the ground truth is not given or inexact.

Figure [fig:remove 1] shows this on one mix from our dataset: we can observe that for all
tracks the mix energy shows a drop of around 10 dB. Because of the missing sub-sample
alignment, mainly the low-frequency material is suppressed. Another example is figure
[fig:remove 2] on a mix from Sonnleitner et. al., where we can immediately see which
tracks were not correctly aligned (the second and last ones).

[fig:remove 1] Suppression of tracks from a mix in dB.

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 21 of 39

[fig:remove 2] Suppression of tracks from a complete mix in dB.

Step 4: Volume Curve Estimation

We propose here a novel method which operates in the time-frequency plane to estimate
the volume curve that is applied to each track in order to obtain the mix. Given a mix signal
denoted 𝑥(𝑛) and the constituent sample-aligned and time-scaled tracks 𝑠𝑖(𝑛), we aim at
estimating the mixing function 𝑎𝑖(𝑛) such that we have:

𝑥(𝑛) =∑𝑎𝑖

𝑖

(𝑛)𝑠𝑖(𝑛) + 𝑏(𝑛) ∀𝑛 ∈ 𝐙

 where 𝑏(𝑛) corresponds to an additional noise signal.

Considering a “correctly” aligned track 𝑠𝑖, we estimate its corresponding volume curve 𝑎𝑖
through the following steps:

1. compute the short-time Fourier transforms of 𝑥 and 𝑠𝑖 denoted 𝑆𝑖(𝑛,𝑚) and 𝑋(𝑛,𝑚) (𝑛
and 𝑚 being respectively the time and frequency indices)

2. estimate the volume curve at each instant 𝑛 by computing the median of the mix/track
ratio computed at all the frequencies 𝑚′ where 𝑆𝑖(𝑛,𝑚′) contains energy, such as:

𝑎𝑖(𝑛) = {
median (

|𝑋(𝑛,𝑚′)|

|𝑆𝑖(𝑛,𝑚′)|
)
∀𝑚′

if|𝑆𝑖(𝑛,𝑚′)| > 0

0 otherwise

3. post-process 𝑎𝑖(𝑛) to obtain a smooth curve by removing outliers using a median filter.

The resulting volume curve can then be used to estimate the cue points (the time instants
when a fading effect begins or stops) at the next step.

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 22 of 39

Step 5: Cue Point Estimation
In order to estimate the DJ cue points, we apply a linear regression of 𝑎𝑖 at the time
instants located at the beginning and at the end of the resulting volume curve (when
𝑎𝑖(𝑛) < 𝛤 , 𝛤 being a threshold defined arbitrarily as 𝛤 = 0.7max(𝑎)). Assuming that a
linear fading effect was applied, the cue points can easily be deduced from the two affine
equations resulting from the linear regression. The four estimated cue points correspond
respectively to:

1. the time instant when the fade-in curve is equal to 0

2. the time instant when the fade-in curve is equal to max(𝑎𝑖)

3. the time instant when the fade-out curve is equal to max(𝑎𝑖)

4. the time instant when the fade-out curve is equal to 0.

In order to illustrate the efficiency of the entire method (steps 4 and 5), we present in Fig.
[fig:fading_cuepoint] the results obtained on a real-world DJ-mix extracted from our
proposed dataset.

[fig:fading_cuepoint] Estimated volume curve (black), linear fades (blue), over ground
truth fades (red)

3.4 The UnmixDB Dataset

In order to evaluate the DJ mix analysis and reverse engineering methods described above,
we created a dataset of excerpts of open licensed dance tracks and automatically generated
mixes based on these. This dataset was uploaded to the OpenAIRE-indexed open data
repository Zenodo22, and was presented at the ISMIR 2018 late breaking session23.

Possible uses of the dataset are the evaluation of track identification methods when
monitoring DJ mixes, or the precise annotation or even reverse engineering of DJ-mixes
when constituent tracks are available. In the latter project, we perform alignment to
determine the exact offset of each track in the mix, and then estimate cue points and
volume fade curves, in order to learn about the decisions a DJ makes when creating a mix.

The UnmixDB dataset is based on the curatorial work of Sonnleitner et. al., for
identification of the tracks within human-made DJ mixes by fingerprinting. They collected
Creative-Commons licensed source tracks of 10 free dance music mixes from the Mixotic

22 http://zenodo.org/record/1422385
23 D. Schwarz and D. Fourer, “Unmixdb: A Dataset for DJ-Mix Information Retrieval,” International
Symposium on Music Information Retrieval (ISMIR) late breaking session, Paris, France, Sep. 2018.

http://zenodo.org/record/1422385

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 23 of 39

netlabel. 24 Their dataset 25 provides the mixes, the full tracks, and the ground-truth
playlists with hand-annotated time points from which only the next track in the playlist is
present in the mix. Unfortunately, this does not give information about the start point of
the track in the mix, and is not accurate enough for our aims of DJ mix analysis, let alone
reverse engineering.

We used their collected full tracks to produce our track excerpts, but regenerated beat-
synchronous and thus “ecologically valid” artificial mixes with perfectly accurate ground
truth, see [fig:unmixdb-creation].

[fig:unmixdb-creation] Data flow and file types of the UnmixDB dataset.

We used track excerpts because of the runtime and memory requirements, especially for
methods such as DTW, which is of quadratic memory complexity. We could also not have
scaled the dataset up to the many playlists and variants when using full tracks.

Each track excerpt contains about 20 s of the beginning and 20s of the end of the full source
track (not included in the dataset, but available from Sonnleitner et. al.26). However, the
exact choice is made taking into account the metric structure of the track. The cue-in region,
where the fade-in will happen, is placed on the second beat marker starting a new measure
(as analysed by the beat tracker IrcamBeat), and lasts for 4 measures. The cue-out region
ends with the 2nd to last measure marker. We assure at least 20s for the beginning and
end parts by extending them accordingly. The cut points where they are spliced together is
again placed on the start of a measure, such that no artefacts due to beat discontinuity are
introduced.

Each mix is based on a playlist that mixes 3 track excerpts beat-synchronously, in such a
way, that the middle track is embedded in the realistic context of beat-aligned linear cross
fading to the surrounding tracks. The first track’s BPM is used as the tempo seed onto
which the other tracks are adapted.

Each playlist of 3 tracks was mixed 12 times with every combination of 4 variants of effects
and 3 variants of time scaling using the treatments of the sox open source command-line
program.27 The 4 effects were:

none no effect

bass +6 dB bass boost using a low-shelving biquad filter below 100 Hz

24 http://www.mixotic.net
25 http://www.cp.jku.at/datasets/fingerprinting
26 Reinhard Sonnleitner, Andreas Arzt, and Gerhard Widmer. Landmark-based Audio Fingerprinting for DJ
Mix Monitoring. In Proc. ISMIR, New York, NY, 2016.
27 http://sox.sourceforge.net

full track beat tracking

full track.beat.xmlcreate-excerpt.py

excerpt.mp3 excerpt.cue.txt

excerpt.mp3 excerpt.cue.txt

create-mix.py

mix.mp3 mix.labels.txt

http://www.mixotic.net/
http://www.cp.jku.at/datasets/fingerprinting
http://sox.sourceforge.net/

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 24 of 39

compressor heavy dynamics compression (ratio of 3:1 above -60 dB, -5 dB makeup
gain)

distortion heavy saturation with +20 dB gain

These effects were chosen to cover treatments likely to be applied to a DJ set (EQ,
compression), and also to introduce non-linear treatments (distortion) to test the limits of
MIR methods.

The 3 timescale variants were:

none no time scaling, ie. the tracks are only aligned on the first beat in the cue
region and then drift apart

resample linked time and pitch scaling by resampling (sox speed effect)

stretch time stretching while keeping the pitch (sox tempo effect using WSOLA)

These 3 variants allow to test simple alignment methods not taking into account time
scaling, and allow to evaluate the influence of different algorithms and implementations of
time scaling.

The dataset is organised in 6 individually downloadable sets of tracks and mixes, between
500 MB and 1 GB in size, for a total of 4 GB. Table [tab:dbstats] provides more details
about the initial content of one of the sets. In the near future, the dataset may be extended
by more songs, more mixes, and mixes of the full source tracks. We also publish the Python
source code28 to generate the excerpts and mixes, such that other researchers can create
test data from other track collections or in other variants.

Average duration of mixes [s] 107

Total duration of tracks [min] 1016

Total duration of mixes [min] 2743

Median tempo of tracks [bpm] 128

Minimum tempo of tracks [bpm] 67

Maximum tempo of tracks[bpm] 140

[tab:dbstats] Basic statistics of the Unmixdb dataset.

File Formats

The UnmixDB dataset contains the ground truth for the source tracks and mixes
in .labels.txt files with tab-separated columns starttime, endtime, label. For each mix,
the start, end, and cue points of the constituent tracks are provided, along with their BPM
and speed factors. We use the convention that the label starts with a number indicating
which of the 3 source tracks the label refers to.

The song excerpts are accompanied by their cue region and tempo information in .txt files
in table format.

Additionally, we provide the .beat.xml files containing the beat tracking results for the full
tracks available from Sonnleitner et. al.

28 http://github.com/Ircam-RnD/unmixdb-creation

http://github.com/Ircam-RnD/unmixdb-creation

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 25 of 39

3.5 Evaluation

We applied the DJ mix reverse engineering method on our unmixdb collection of mixes
and compared the results to the ground truth annotations. To evaluate the success of our
method we defined the following error metrics:
frame error:
absolute error in seconds between the frame start time found by the DTW rough alignment
(step 1) and the ground truth (virtual) track start time relative to the mix

sample error:
absolute error in seconds between the track start time found by the sample alignment (step
2) and the ground truth track start time relative to the mix

speed ratio:
ratio between the speed estimated by DTW alignment (step 1) and the ground truth speed
factor (ideal value is 1)

suppression ratio:
ratio of time where more than 15 dB of signal energy could be removed by subtracting the
aligned track from the mix, relative to the time where the track is fully present in the mix,
i.e. between fade-in end and fade-out start (step 3, bigger is better)

fade error:
the total difference between the estimated fade curves (steps 4 and 5) and the ground truth
fades. This can be seen as the surface between the 2 linear curves over their maximum time
extent. The value has been expressed in dB•s, i.e. for one second of maximal difference
(one curve full on, the other curve silent), the difference would be 96 dB.

Figures [fig:frameerror]–[fig:fadeerror] show the quartile statistics of these metrics,
broken down by the 12 mix variants (all combinations of the 4 mix effects and 3 time-
scaling methods). The numeric alignment results given in [tab:sampleerror] show that the
ground truth labels can be retrieved with high accuracy: the median error is 25
milliseconds, except for the mixes with distortion applied, where it is around 100 ms. The
fade curve volume error in [fig:fadeerror] shows a median of 5 dB•s, which corresponds
to an average dB distance of 0.3 dB, considering that the fades typically last for 16 seconds.

[fig:frameerror] absolute error in track start time found by DTW

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 26 of 39

[fig:sampleerror] absolute error in track start time found by sample alignment

[fig:speedratio] ratio between estimated and ground truth speed

[fig:suppratio] ratio of removal time (bigger is better)

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 27 of 39

[fig:fadeerror] volume difference of fades

[fig:risampleerror] absolute error in track start time found by sample alignment when
re-injecting ground truth speed

[fig:risuppratio] ratio of removal time when re-injecting ground truth speed (bigger is
better)

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 28 of 39

 mean std min median max

none none 0.0604 0.2469 0.0010 0.0251 2.1876

none bass 0.1431 0.7929 0.0005 0.0254 7.7191

none compressor 0.0806 0.4424 0.0010 0.0251 4.4995

none distortion 1.3376 3.3627 0.0011 0.1042 23.7610

resample none 1.1671 7.0025 0.0002 0.0270 71.0080

resample bass 1.3337 7.2079 0.0005 0.0277 73.1192

resample compressor 6.8024 17.0154 0.0010 0.0372 134.2811

resample distortion 1.8371 3.8551 0.0013 0.1483 23.8355

stretch none 0.2502 1.1926 0.0002 0.0251 10.0048

stretch bass 0.3300 1.4249 0.0005 0.0264 9.6626

stretch compressor 0.1520 1.0025 0.0008 0.0251 10.1076

stretch distortion 1.0629 2.2129 0.0014 0.0911 10.3353

all 1.2131 6.2028 0.0002 0.0282 134.2811

[tab:sampleerror] Statistics of absolute error in track start time found by sample
alignment.

 mean std min median max

none none -0.0025 0.0122 -0.0341 0.0000 0.0430

none bass -0.0025 0.0209 -0.0549 0.0000 0.0919

none compressor -0.0022 0.0133 -0.0531 0.0000 0.0449

none distortion -0.0030 0.0359 -0.0877 0.0000 0.0931

resample none -0.0063 0.0225 -0.0737 -0.0011 0.0848

resample bass -0.0012 0.0272 -0.0779 0.0000 0.0919

resample compressor -0.0049 0.0343 -0.0999 0.0000 0.0970

resample distortion -0.0049 0.0346 -0.0857 -0.0042 0.0931

stretch none -0.0072 0.0208 -0.0985 -0.0012 0.0430

stretch bass -0.0029 0.0265 -0.0768 0.0000 0.0919

stretch compressor -0.0059 0.0180 -0.0574 0.0000 0.0385

stretch distortion -0.0068 0.0341 -0.0779 -0.0043 0.0961

all -0.0042 0.0262 -0.0999 0.0000 0.0970

[sample_to_risample] Improvement of sample-alignment error when reinjecting
ground truth speed.

While developing our method, we noticed the high sensitivity of the sample alignment and
subsequent track removal (steps 2 and 3) on the accuracy of the speed estimation. This is
due to the resampling of the source track to match the track in the mix prior to track

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 29 of 39

removal. An estimation error of a tenth of a percent already results in desynchronisation
after some time. To estimate this loss in accuracy, we produced a second set of the sample
error and suppression ratio metrics based on a run of steps 2 and 3 with the ground truth
speed re-injected into the processing. The rationale is that the speed estimation method
could be improved in future work, if the resulting reductions of error metrics are
worthwhile. Also note that the tempo estimation is inherently inaccurate due to it being
based on DTW’s discretisation into MFCC frames. In mixes with full tracks, the slope can
be estimated more accurately than with our track excerpts simply because more frames are
available.

Figures [fig:risampleerror] and [fig:risuppratio] show the quartile statistics of the sample
error and suppression ratio with re-injected ground truth speed. We can see how most
variants are improved in error spread for the former, and 4 variants are greatly improved
for the latter, confirming the sensitivity of the track removal step 3 on the speed estimation.
The sample alignment itself is less sensitive to the speed estimation, as seen in
[tab:sample_to_risample], which shows the statistics of the difference between sample-
alignment error metrics with and without ground truth speed re-injected: only a few
variants obtain improvements of 1 or 4 ms.

[fig:dtw short] DTW distance matrix, alignment path (red), track boundaries and found
slope lines on an artificial DJ mix from our dataset

Some of our experiments with the database tracks also demonstrate the limits of our
approach, as can be seen in [fig:dtw short], where the heuristics of choosing the middle of
the track as anchor, and the mean slope approach failed to estimate the correct slope for
the last track (which was mixed here with double tempo).

3.6 Conclusions and Future Work

The presented work is a first step towards providing the missing link in a chain of methods
that allow the retrieval of rich data from existing DJ mixes and their source tracks.

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 30 of 39

An important result is the validation of track suppression as a metric for the accuracy of
sample alignment. This metric can be obtained even without ground truth. A massive
amount of training data extracted from the vast number of collections of existing mixes
could thus be made amenable to research in DJ practices, cultural studies, and automatic
mixing methods.

With some refinements, our method could become robust and precise enough to allow the
inversion of fading, EQ and other processing. First, the obtained tempo slope could be
refined by searching for sample alignment at several points in one source track. This would
also extend the applicability of our method to mixes with non-constant tempo curves.
Second, a sub-sample search for the best alignment should achieve the neutralisation of
phase shifts incurred in the mix production chain.

Extension to mixes with varying tempo within a track is straightforward by extracting a
segmented alignment curve from the DTW path. We could also check whether a DTW with
relaxed endpoint condition29 for the beginning and end of a mix could be advantageous.

Furthermore, the close link between alignment, time-scaling, and unmixing in [fig:schema]
hints at the possibility of a joint estimation algorithm, maximising the match in the three
search spaces simultaneously.

29 Diego Furtado Silva, Gustavo Enrique de Almeida Prado Alves Batista, Eamonn Keogh,
et al. On the effect of endpoints on dynamic time warping. In SIGKDD Workshop on
Mining and Learning from Time Series, II. Association for Computing Machinery- ACM,
2016.

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 31 of 39

4 In-Store Player Mixing Module
The ISP player module is a GUI-less stand-alone program to be run on the ISP hardware
that takes care of beat-synchronous mixing and audio playback. It is controlled only by the
ISP scheduler (the control program running on the ISP, responsible for scheduling
playlists and communicating with the HearDis! servers and cockpit unit) and thus only
dependent on local data and commands. Please see D2.10 Basic Version of ABC_DJ
System Architecture for details about the system architecture and the role of the ISP
scheduler.

The player communicates via Unix FIFOs (named pipes) with the ISP scheduler. It receives
the next track to play from the playlist in JSON format (see below), and outputs status
information (about which track is starting/playing/stopping, current bpm and play
position) and command acknowledgments. The input format contains all metadata and
annotations necessary for beat-synchronous mixing, such as track bpm, beat markers, cue-
regions.

The program streams audio data from disk in a background thread and runs two instances
of the SuperVP time-stretching engine, the speed factors of which are controlled as
described above by the algorithms for play duration compensation and beat-synchronous
mixing. Audio output is realised via the cross-platform PortAudio library30, which maps to
CoreAudio for the Mac prototype version, to ALSA for the Linux production version, and
to any of the audio APIs (MME, DirectSound, WASAPI, WDM/KS, ASIO) for the Windows
demonstrator.

Since with the start of a track, it is already known (from the playlist) at which point in time
the next track has to be started, we can work with very large audio buffer sizes. This helps
distributing CPU load peaks over time, which results from the fact that, during cross-fade
in the cue-regions, two SuperVP time-stretching engines have to run in parallel.

For the project, the SuperVP time-stretching library was ported to the ARMv7l processor
architecture of the player hardware (similar to Raspberry Pi model 3, which was the testing
environment).

The architecture is multi-threaded in order to distribute the processing load over the 4
processor cores of the player hardware, as depicted in the following diagram:

[fig:isp-arch] ISP Mixing Module Architecture.

30 http://portaudio.com

Task 4.3

ISP Player Architecture

Main Thread
- command input
- status output

Audio Thread
- SuperVP player

Audio File Reader Thread
- audio decoding
- ring buffer

commands

status
audio data

Worker Thread
- SuperVP player

Audio File Reader Thread
- audio decoding
- ring buffer

audio data
Th

audio datacommands

• Distribute load of SuperVP time stretching over processor cores

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 32 of 39

4.1 Usage

The invocation and options of the mixing module are given here. It reads play commands
in the form of JSON records described in section 4.2 unterhalb from the given input pipe
(can be ‘-‘ for stdin) and outputs status information in formats described in section 4.4
unterhalb to the output pipe (or “-“ for stdout).

A typical invocation in a production context would be:

mkfifo /tmp/isp-control

mkfifo /tmp/isp-status

./isp-player -r /data/tracks /tmp/isp-control /tmp/isp-status

The full list of options of the mixing module are:

USAGE:

 ./isp-player [-r <path>] [-s <seconds>] [--time <datetime|time>]
 [--splitchannels] [-n] [-c] [-P] [-p] [-t] [--]
 [--version] [-h] <infile> <outfile>

Where:

 -r <path>, --root <path>
 audio file root dir

 -s <seconds>, --timeout <seconds>
 status reporting interval

 --time <datetime|time>
 for testing: set clock date and time, special value: 'first': use
 first playlist schedule time as clock time

 --splitchannels
 for testing: split voices to left/right channel

 -n, --nostretch
 mix continuously according to cue-regions and beat-markers, don't
 apply time-stretch

 -c, --continuous
 mix continuously according to cue-regions, ignoring track start times
 from playlist

 -P, --prettyevents
 json event status output pretty printed and multi-line, running status
 still one line

 -p, --pretty
 json status output pretty printed and multi-line

 -t, --textoutput
 status output in text instead of json

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 33 of 39

 --, --ignore_rest
 Ignores the rest of the labeled arguments following this flag.

 --version
 Displays version information and exits.

 -h, --help
 Displays usage information and exits.

 <infile>
 name of input pipe or '-' for stdin

 <outfile>
 name of status output file, pipe, or '-' for stdout

 ABC_DJ in-store player audio player and mixer module.

 Expects playlist entries in json format on input, outputs status
 information in json on output.

4.2 Command Scheduling

There are two constraints for when certain commands can be sent from the ISP scheduler
to the mixing module:

1. After starting the mixing module, the ISP scheduler must wait for it to initialise, after
which it will send the “startup” event. Only then can tracks be scheduled for playing.

2. The play command must not be given when the instance of the corresponding SuperVP
engine is still busy. In other words, to schedule track n+1, the ISP scheduler must wait at
least for the end of track n-1. A safe possibility is to send the play command for track n+1
a few seconds before its start according to the playlist.

4.3 Input JSON Format

The input format sent by the ISP scheduler contains the scheduling information for a track
(start time, file path), and all metadata and annotations necessary for beat-synchronous
mixing, such as track bpm, beat markers, cue-regions. Below is an example for one track,
that will be sent to the ISP mixing module’s control FIFO. All fields used by the module are
marked in bold.

For testing purposes, the ISP player also accepts the command “play <filepath>” to mix a
file immediately into the running stream with a default fade-in and fade-out of 10s.

{
 "filepath": "/data/tracks/02_David Bowie_Lazarus.wav",
 "created" : "2018-11-29T15:45:39.000+0000",
 "startTime": "2017-09-14T00:00:00",
 "endTime": "2017-09-14T00:02:04.627",
 "manualMetadata" : {
 "timeReference" : "2010",
 "type" : "music"
 },

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 34 of 39

 "id" : "e9aec19b-43d5-4ca5-a3c0-6f58041922e4",
 "embeddedMetadata" : {
 "length" : 355.58,
 "tracknumber" : 2,
 "label" : "Columbia",
 "album" : "Blackstar",
 "heardis_id" : "HD_2016_1663680881",
 "codec" : "mp3",
 "createDate" : "2016",
 "artist" : "David Bowie",
 "resolution" : 320,
 "year" : 2016,
 "sampleRate" : 44100,
 "title" : "Lazarus"
 },
 "automaticMetadata" : {
 "mono" : true,
 "subStyles" : [
 "indie-pop",
 "aor",
 "fusion-jazz"
],
 "genre" : "blues",
 "instrumentation" : "electric-guitar",
 "lowQuality" : false,
 "vocals" : true,
 "mainStyle" : "indie-dance",
 "bpm" : 130,
 "cuePoints" : [
 {
 "id" : "15",
 "type" : "cue-in",
 "description" : "intro",
 "startTime" : 18.63,
 "source" : "ircam",
 "length" : 10
 },
 {
 "type" : "cue-out",
 "id" : "15",
 "description" : "outro-loudenough",
 "source" : "ircam",
 "startTime" : 336.14,
 "length" : 10
 }
],
 "loudness" : 4.32,
 "beats" : [
 0.24,
 0.71,
 1.17,
 1.62,
 2.08,
 2.54,
 3,
 3.46,

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 35 of 39

 ...
]
 }
}

4.4 Output JSON Format

The player outputs the following status information in JSON format:

• The current player state is sent as a heartbeat every few seconds (configurable), so that
the ISP scheduler can always monitor the current player state and transmit it to the
cockpit unit. The state contains the following information:

– currently playing track names and bpms

– position within playing tracks

– current and next track start time

– current global volume

• Event information is sent as direct feedback after control input is received:

– player startup feedback

– acknowledgement of scheduling of next track with the scheduled start time

– events when a track starts or stops playing

• Error messages alert the ISP scheduler about unforeseen conditions (missing files,
audio I/O errors, buffer underruns, invalid metadata, etc.)

In the following we give JSON templates (with the most important fields) and examples
for the three types of messages.

Status Message

The status message contains the current time and the data for the currently playing tracks:

{
 "messagetype": "status",
 "time": <time since player start in seconds>,
 "timestamp" : "<clock time>",
 "tracks":
 [
 {
 "trackname": "<track name>",
 "position": <position in track in s>,
 "starttime": <player time of track start>,
 "stoptime": <player time of track end>,
 "trackbpm": <original BPM>,
 "currentbpm": <current BPM>,
 "volume" : <current track volume>,
 "voice" : <voice index 0 or 1>
 },
 { /* possibly second playing track */ }
]
 "volume": <current volume factor>
}

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 36 of 39

Below is a full example of a status message when two tracks are playing:

{
 "messagetype" : "status",
 "numplaying" : 2,
 "time" : 13.838918648019899,
 "timestamp" : "2018-12-20T13:35:33",
 "tracks" :
 [
 {
 "bpmend" : 110.0,
 "bpmstart" : 110.0,
 "cueinend" : 4.8636363636363633,
 "cueinstart" : 0.5,
 "cueoutend" : 15.77209090909091,
 "cueoutstart" : 11.409090909090908,
 "currentbpm" : 110.0,
 "currentspeed" : 1.0,
 "duration" : 60.5,
 "voice" : 0,
 "position" : 13.507528344671202,
 "starttime" : 0.83648833801271394,
 "status" : "fadeout",
 "trackbpm" : 110.0,
 "trackname" : "clicktrack-110bpm+0.5s.aiff",
 "volume" : 0.50033760070800781
 },
 {
 "bpmend" : 120.0,
 "bpmstart" : 120.0,
 "cueinend" : 4.5,
 "cueinstart" : 0.5,
 "cueoutend" : 14.5,
 "cueoutstart" : 10.5,
 "currentbpm" : 110.00000953674316,
 "currentspeed" : 0.91666674613952637,
 "duration" : 60.5,
 "voice" : 1,
 "position" : 2.4665532879818595,
 "starttime" : 11.745579247103624,
 "status" : "fadein",
 "trackbpm" : 120.0,
 "trackname" : "clicktrack-120bpm+0.5s.aiff",
 "volume" : 0.48910710215568542
 }
]
}

Event Message

The event feedback message can contain optional track data:

{
 "messagetype": "event",
 "time": <time since player start in seconds>,
 "timestamp" : "<clock time>",

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 37 of 39

 "eventtype": "startup|schedule|trackstart|trackend",
 "tracks":
 [
 {
 "trackname": "<track name>",
 "position": <position in track in s>,
 "startedat": "<clock time of scheduled track start>",
 "stoptime": "<clock time of scheduled track end>",
 "trackbpm": <original BPM>
 "currentbpm": <current BPM>
 }
]
}

Here is an example of the event feedback to the play command:

{
 "eventtype" : "play",
 "messagetype" : "event",
 "time" : 1.8580194360110909,
 "timestamp" : "2018-12-20T13:35:21",
 "tracks" :
 [
 {
 "bpmend" : 120.0,
 "bpmstart" : 120.0,
 "cueinend" : 4.5,
 "cueinstart" : 0.5,
 "cueoutend" : 14.5,
 "cueoutstart" : 10.5,
 "currentbpm" : 120.0,
 "currentspeed" : 1.0,
 "duration" : 60.5,
 "voice" : -1,
 "position" : 0.0,
 "starttime" : 11.745579247103624,
 "status" : "uninitialized",
 "trackbpm" : 120.0,
 "trackname" : "clicktrack-120bpm+0.5s.aiff",
 "volume" : 0.0
 }
]
}

Error Message

{
 "messagetype": "error",
 "time": <time since player start in seconds>,
 "timestamp" : "<clock time>",
 "errormessage": "message",
}

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 38 of 39

Two examples of error messages:

{
 "errormessage" : "ioerror",
 "messagetype" : "error",
 "time" : 123.456,
 "timestamp" : "2018-12-20T13:44:08",
 "tracks" : null
}

{
 "errormessage" : "no embeddedMetadata in json for clicktrack-120bpm.aiff",
 "messagetype" : "error",
 "time" : 0.72091909596929327,
 "timestamp" : "2018-12-20T15:34:40",
 "tracks" : null
}

Final Research Report for Sound Design and Audio Player D4.8

© ABC_DJ Consortium, 2018 39 of 39

5 Summary and Conclusions

This deliverable describes research results, datasets, and software delivered to the project
partners pertaining to automatic DJ mixing on the ABC_DJ in-store player. We still expect
some further adaptation of the software (in WP 5 Integration) after more experience with
real-world data and playlists.

We had initially foreseen that the publication of the ISMIR 2017 position paper Towards
Ground Truth Extraction of DJ Mixes, and the ISMIR 2018 Unmixdb open dataset for DJ
mix reverse engineering would improve the repeatability of DJ-related MIR and would
help to establish it as a research field in its own right. This hope seems to have been fulfilled,
since we were contacted by a young researcher whose master’s thesis31 was, in his own
words, “basically building upon the concepts in your paper Towards Ground Truth
Extraction of DJ Mixes”. It treats the extraction of ground truth from DJ Mixes in order to
make them amenable to machine learning to advance automatic methods for DJ support.
He published software and a database of DJ mixes hand-crafted in the Ableton Live
software from which he can extract ground truth annotations to test his methods. This
database is perfectly complementary to our automatically generated Unmixdb dataset.

31 Werthen-Brabants, Lorin, and Tijl De Bie. Ground Truth Extraction & Transition Analysis of DJ Mixes.
Master of Science in Computer Science Engineering, August 2018.

	Project Info
	Imprint
	Table of Contents
	History
	Glossary
	Executive Summary
	1 Introduction
	2 Automatic Beat-Synchronous Mixing
	3 Unmixing: Extraction of Ground Truth Data from DJ Mixes
	4 In-Store Player Mixing Module
	5 Summary and Conclusions

