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ON THE SMOOTHING PROPERTY OF LINEAR DELAY PARTIAL
DIFFERENTIAL EQUATIONS*

R. ALTMANN AND C. ZIMMER'

ABSTRACT. We consider linear partial differential equations with an additional delay
term, which — under spatial discretization — lead to ordinary differential equations with
fixed delay of retarded type. This means that the semi-discrete solution gains smoothness
over time. For the concept of classical, mild, and weak solutions we analyse whether this
effect also takes place in the original system. We show that some systems behave in a
neutral way only. As a result, the smoothness of the exact solution remains unchanged
instead of gaining smoothness over time.
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1. INTRODUCTION

Partial differential equations (PDEs) with delay appear in many applications such as
control theory [Wan75], population dynamics [Mur76], genetic repression [MP84], chemical
reactions [Pa097], climate models [Het97], or fluid dynamics [CRO1]. One specific example
is given by the heat equation with delayed feedback control, i.e.,

u(t,z) — Au(t,x) = f(t,x) + u(t — 7, 2).

Therein, 7 denotes the fixed delay modeling the needed reaction time of the system. In
this paper, we analyse the smoothing effect of such a delay term with a single delay time
7 for linear time-dependent PDEs. For the corresponding ordinary differential equation
(ODE), which appears after a discretization in space, there exists a classification into
retarded, neutral, and advanced type. This is based on the structure of the equation but
is directly related to smoothing properties of the solution. Thus, a correct classification is
also of importance for the correct numerical treatment of such systems, since the numerical
scheme should be adapted to the expected regularity of the solution.

A corresponding classification for delay PDEs is not as common. However, the notion of
retarded and neutral is used for example in [Sin84] and [Hal94, AE98, WGO08], respectively,
based on the structure of the system as in the ODE case. More precisely, this means that
the system

(1.1) t+au(-—7)+Ku=f+pu(-—71)

with a linear operator I is called retarded if 8 # 0, « = 0 and neutral in the case of o # 0.
The analysis presented in this paper shows that this may not reflect the actual behaviour of
the PDE if the operator K does not generate an analytic semigroup or satisfies a Garding
inequality.
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2 ON THE SMOOTHING PROPERTY OF LINEAR DELAY PDES

This paper is restricted to linear PDEs as in (1.1) with « = 0, i.e., systems which lead
to retarded delay ODEs after spatial discretization. This includes parabolic PDEs such
as the heat equation mentioned above as well as the transport equation. The assumed
structure implies that the semi-discrete solution attains more regularity over time. For
the PDE, however, this may not be the case. We analyse this kind of smoothing property
and discuss regularity assumptions on the data such that the PDE with delay behaves
retardedly as well. By means of the transport equation, which is not retarded in this
sense, we illustrate the obtained results also numerically.

The paper is structured as follows. In Section 2 we recap the notion of retarded, neutral,
and advanced delay ODEs and illustrate the connection to the smoothing property of the
solution. Afterwards, we discuss the different solution concepts for PDEs with delay in
Section 3, i.e., we give the definitions for classical, mild, and weak solutions in the given
setting. The main analysis of the smoothing property is then part of Section 4. Therein,
we use Bellman’s method of steps to analyse the change of regularity in each interval of
length 7. In the numerical example of Section 5, we consider the transport equation with
periodic boundary conditions. Finally, we conclude in Section 6.

Throughout this paper we consider the delay PDE on a bounded time domain [0, 7]
and assume that the end time T is a multiple of the delay 7, i.e., T = N7. To shorten
notation we define the open, left-open, and closed intervals

I; = ((k — ), kT), I, = ((k — ), kT], I, = [(k — 1), kT].

Furthermore, we introduce the notion u,(s) := u(s — 7).

2. CLASSIFICATION FOR DELAY ODEs

This section gives a short recap of known results for delay ODEs. In particular, we
recall the definitions of retarded, neutral, and advanced systems and the connection to
the smoothing property of the solution. The here considered finite-dimensional setting
consists of delay differential equations of the form

(2.1a) G+ Kqg=f+q

with a square matrix K € R™™. The unique solvability of the system requires an initial
value qo as well as a history function ® € C([—7,0),R"), i.e., we demand

(2.1b) q(t) = @(t) on [-7,0),  ¢(0) = qo.

We say that ¢ € C([0,T],R") is a (classical) solution of (2.1) if is piecewise continuously
differentiable, i.e., q|]g € CY(I3,R"), and the function

_ o Je(t), te[-T,0)
att) = {q(t), t € [0,

satisfies the differential equation (2.1a) almost everywhere as well as (2.1b). Here, almost
everywhere means that the differential equation is satisfied pointwise for ¢ £ k7.
For the classification of delay ODEs we consider a scalar equation of the form

(2.2) apd = a1gr + Boq + Brgr + f,

for which we distinguish three types, cf. [BZ03, Ch. 1] or [Wall4]. This classification is
characterized by the smoothing properties of the solution. Note that such a classification
is reasonable, since numerical methods rely on this kind of properties [AP95]. Thus, it
has a direct influence on the behaviour of numerical methods.
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FIGURE 2.1. Solution of the delay ODE in Example 2.1.

We say that (2.2) with fixed delay 7 is retarded if ap,1 # 0 and a3 = 0, which
implies that the solution gets smoother with time. This can be seen as follows. Assuming
f € C*(]0,T]) and a history function ® € C(|—7,0]) with ®(0) = ¢p, we obtain on

I = [0, 7] a differential equation with a continuous right-hand side, namely

aoq(t) = Boq(t) + Bra(t — 7) + f(t) = Boq(t) + B1®(t — 7) + f(?).

This gives a solution ¢ € Cl(Il) and we proceed to the next time interval. On Iy =
[7,27] we insert ¢; for the delay term and get a differential equation with a continuously
differentiable right-hand side such that the solution satisfies go € C?(I2). This can be
repeated and yields q|;, = qx € C*(I},).

The gain of regularity can also be seen in a different way. For f € C°°(]0,7T]) one may
consider the evolution of the (jump) discontinuity of the derivatives of ¢ in ¢t = 0. Even for
smooth data, in general, we have ®(07) # ¢(01). In t = 7 the right and left derivatives
coincide but the second derivative has a discontinuity. This can be seen by Bellman’s
method of steps, cf. [Bel61] or [BZ03, Ch. 3.4].

Example 2.1. Consider the delay equation
¢=—¢r, q(t)=1on[-70]

On the interval I; we have the ODE ¢ = —1 with initial condition ¢(0) = 1. This yields
q(t) =1—tfor t < 7. On I we need to consider ¢ = (t — 7) — 1 with initial condition
q(t) = 1— 7. Thus, we get q(t) =1 —t+ 4(t — 7)% for t € I,. This procedure may be
continued sequentially. An illustration of the solution for 7 = 0.7 is given in Figure 2.1.
The derivatives of ¢ at time points ¢ = k7 satisfy the following. At t = 0 we have ®(07) =
0#—-1=¢(0"). Att=7wehave (7)) =—-1=¢(rT) but §(r7)=0#1=g(r"). In
general, we get for t = k7,

¢PE7) = (1) =g @"), ¢ =04 (DM =MDt

For equations of neutral type we have g # 0 and a1 # 0. In this case the solution retains
its smoothness (neither gain nor loss of smoothness), since the equation also contains the
derivative of ¢ at prior times. Finally, the equation is called advanced whenever ag = 0
and a1 # 0. This means, that the ODE depends on future events and that the solution
looses regularity in every time step of size 7, cf. [BC63, Ch. 5.1].

Apparently, such a classification is also available for systems of delay ODEs. Here,
however, it may happen that the system includes variables of different type. In this paper,
we only consider delay ODEs of the form (2.1), which are retarded, i.e., all variables gain
smoothness over time. This means, in particular, that the derivative of the solution of
(2.1) may only be discontinuous in ¢ = 0 or ¢ = 7. The aim of this paper is to analyse the
smoothness properties of their infinite-dimensional analogon, i.e., time-dependent PDEs,
which lead to (2.1) after spatial discretization.
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3. SOLUTION CONCEPTS

In this section, we recapitulate different solution concepts and existence results for linear
PDEs without delay, i.e., for equations of the type

(3.1) i+ Ku = f, u(0) = uo.

For a classical solution and the weaker notion of a mild solution we assume that the
operator —K: D(—K) = D(K) C ‘H — H generates a Cp-semigroup. Note that in this
framework the operator I is, in general, unbounded. Furthermore, we discuss weak solu-
tions, which correspond to the weak formulation of (3.1). In this case, the operator K is
assumed to be bounded as mapping K: V — V*, based on a Gelfand triple ¥V — H < V*.

The various solution concepts for PDEs are then extended to the delay case. For this,
we add an additional (discrete) delay term and consider

(3.2) U+ Ku=f+ur, u(t) = ®(t) on t € [-7,0), u(0) = up.

Recall that u, is defined by u,(s) = u(s — 7) and that ® is the needed history function
in order to make the right-hand side of the differential equation meaningful. The corre-
sponding ODE case, i.e., equation (3.2) after a spatial disretization, equals equation (2.1)
and was discussed in Section 2.

3.1. Mild solutions. If the Cy-semigroup generated by —K is denoted by S(¢) and the
right-hand side satisfies f € L*(0,T;H), then the mild solution of (3.1) is defined by

(3.3) u(t) = S(t)uo + /0 S(t—s)f(s)ds.

Note that S(t — s)f(s) is integrable for f € L'(0,7;H) and that this implies u €
C(]0,T],H). Furthermore, we only need uy € H, i.e., the operator —K may not be
applicable for the initial value. More details can be found in [Paz83, Ch. 4.2].

Similarly, we can define the mild solution for the delay equation (3.2) by an explicit
solution formula. Again we assume that —K generates the Cp-semigroup S(¢), an initial
value ug € H, and a right-hand side f € L'(0,7;#). In addition, we need an integrable
history function ®. This then leads to the following definition.

Definition 3.1 (mild solution). Consider an initial value up € H and a history function
® € L*(—7,0;H). A function u € C([0,T],H) is called mild solution of (3.2) if u(0) = ug
and u|;, =y, for k=1,..., N with u € C(I},H) defined by

ui(t) = S(t)uop +/0 S(t—s)[f(s)+P(s—7)]ds

and
t

ug(t) = St — (k — 1)T)ugo + /(k_l) S(t—s)[f(s) + up—1(s —7)] ds

for k > 2, respectively. Therein, the initial value uy o is given by up o = up—1((k — 1)7).

Note that, in general, this mild solution is not differentiable. If we search for a contin-
uously differentiable solution, then we need to switch to the notion of classical solutions
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3.2. Classical solutions. Classical solutions of (3.1) are functions v € C([0,T];H),
which are continuously differentiable in (0,7] and satisfy u(t) € D(K) as well as the
differential equation in (0,77 and u(0) = up. In this setting, we again assume that —/C
generates a Cy-semigroup and an initial value ug € D(K). We emphasize that the ad-
ditional regularity of wg is not sufficient for the existence of a classical solution, cf. the
discussion in [Paz83, Ch. 4.2]. One sufficient condition is that — in addition to ug € D(K)
— the right-hand side satisfies f € C*([0,T]; H). However, we analyse a slightly different
situation here.

Theorem 3.2 (classical solution without delay). Assume that —IC generates a Cy-semigroup,
upg € D(K), and a right-hand side f € C([0,T],H) with f(s) € D(K) for all s € [0,T] and
Kf € LY0,T;H). Then, equation (3.1) has a unique classical solution u, which satisfies
in addition Ku € C([0,T),H) — L*(0,T,H).

Proof. By the given assumptions, the result in [Paz83, Ch. 4, Cor. 2.6] implies that the
mild solution u € C([0,T],H) is continuously differentiable on (0,7") and u(t) € D(K) for
t < T. Since we can extend the right-hand side to a function f € C([0,T + €], ) with
f(s) € D(K) and Kf € LY(0,T 4 &;H), u is also differentiable in ¢t = T. Applying the
operator K to the mild solution (3.3), we get

Ku(t) = KS(t)uo —|—IC/OtS(t —8)f(s)ds = S(t)Kug +/0t S(s)Kf(t—s)ds.

Here we have used ug € D(K) together with basic properties of the semigroup S, cf. [Paz83,
Ch. 1, Th. 2.4]. Since K f is integrable and S is a bounded operator, we obtain u(t) € D(K)
for all t € [0,7]. Note that this equation also implies Ku € C([0,T],H) due to the
continuity of the semigroup. O

In the following, we extend the concept of a classical solution to the delay case, i.e., the
solution being a continuous function u, which is piecewise continuously differentiable in

(0, T] and satisfies u(t) € D(K).

Definition 3.3 (classical solution). Consider an initial value vy € D(K) and a history
function ® € C([—7,0],H) with ®(s) € D(K) for all s € [-7,0], K& € L'(—7,0;H), and
®(0) = up. We call a function u € C([0,T], H) with ulse € CHI3,H) a classical solution
of (3.2) if u(s) € D(K) for all s € [0,T] and u € C([—7,T],H), given by

_Je(t), te[-T,0)
i) = {u(t), telo,T]

)

satisfies the differential equation in (3.2) almost everywhere.

We emphasize that the existence of a classical solution requires an initial value ug €
D(K) as well as the consistency condition ®(0) = ug.

3.3. Weak solutions. Finally we consider the weak solution concept based on a Gelfand
triple V, H, V*, cf. [Zei90, Ch. 23.4]. To shorten notation we introduce the space

L1(0,T) := L*0,T; V*) + LY(0, T; H).

Within the weak formulation of equation (3.1) we consider a linear, continuous operator
K:V — V* which satisfies a Garding inequality, i.e.,

(3.4) pllvll3; — &llvlF < (Ko, v)
for all v € V and fixed p > 0, k > 0.
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Remark 3.4. If the operator K satisfies a Garding inequality (3.4), then —K generates an
analytic semigroup on H, see [Paz83, Ch. 7, Th. 2.7].

In the weak setting, the operator equation (3.1) should be understood in the variational
sense, i.e.,

(3.5) §i (W v)a + (Ku,v) = (f,0)

for all test functions v € V. A function u € C([0,T);H) N L*(0,T;V) with @ € LT(0,T),
which satisfies (3.5) and u(0) = ug, is then called a weak solution. An existence result for
weak solutions for a right-hand side f € L™(0,T) is given by the theorem of Lions-Tartar,
see e.g. [Tar06, Lem. 19.1]. This result, together with a stability estimate, is subject of
the following theorem.

Theorem 3.5 (weak solution without delay). Let the linear and bounded operator K: V —
V* satisfy a Garding inequality (3.4). Assume an initial value uy € H and a right-hand
side f = f1 + fo with fi € L*(0,T;V*) and fo € L'(0,T;H). Then, system (3.1) has a
unique weak solution u € C([0, T); H) N L?(0,T;V). Furthermore, it holds for all t € [0,T)
that

2 2
lullEo,,20 + #Iull 20,60y

< [(Iuali+ [ 31sce)

Proof. The existence of a unique solution is proven in [Tar06, Lem. 19.1]. For the proof of
the estimates we follow the idea of [Tar06, p. 112]. For this, we test equation (3.1) with
the solution u and integrate over [0, t]. Together with (3.4) this yields

2

1/2 t
2, ds) +/0 e || f2(5) || ds] o2t

t t
a7+ w1 [ Nullpds < Hluoll + [ (GIA I + 26l + 20 f2llallulls ) ds.
0 0 K

We set ¢(t) := |Ju(t)||3,. The previous estimate implies for every s € [0,¢] that

o(5) <05 i= A+ [ (20l + 2 o) e/ )

with the s-independent constant A := |jug||3, + fot %Hfl (n)]|3+ dn. The derivative of 1)
satisfies

0(s) = 260(s) + 2| o)l v/ 0 (5) < 2680(s) + 21| fo ) [/ (9)-

Furthermore, the function

s 2
(36) (0= (VA+ [CeInlhean)
satisfies the differential equation Z = 2kz + 2| fa||%/z with initial value 2(0) = A =

1(0). The theory of differential inequalities thus implies 9 (s) < z(s) for all s € [0,t] and
especially for s = t. The claimed estimates finally follow from

lu(®) 2, + p /0 lu()[3 ds < (t) < =(0). 0

Including delay, we still assume a right-hand side f € L*(0,7) and an initial value
up € H. Furthermore, we need a history function ® € L*(—7,0).
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Definition 3.6 (weak solution). A function v € L?(0,T;V) with @ € L*(0,T) is called a
weak solution of (3.2) if u(0") = up € H and the function

_ o ]@(t), te[-T,0)
) = {u(t), te[0,T]

satisfies the differential equation (3.2) in the variational sense.

4. CLASSIFICATION FOR DELAY PDES

This section is devoted to the classification of delay PDEs of the form (3.2). The aim
is to transfer the given classification of delay ODEs from Section 2 into the context of
delay PDEs. Recall that in the finite-dimensional case the different types of delay were
characterized only by the structure of the equation. As mentioned in the introduction,
one may use a similar classification for PDEs, based on the existence of the terms (t)
and 4(t — 7). In this paper, however, we are interested in the change of smoothness of the
solution, since this is the crucial property for delay differential equations. More precisely,
we consider history functions, which are only continuous or even integrable in time and
analyse the smoothness of the solution in the intervals (kT,T.

Throughout this section, we assume that —K either generates a Cy-semigroup or satisfies
a Garding inequality, which implies the existence of an analytic semigroup according to
Remark 3.4. Note that the operator K already includes appropriate boundary conditions.

4.1. Mild setting. Consider the PDE with delay (3.2) with initial data ug € H and a his-
tory function ® € L'(—7,0;H). Let the right-hand side moreover satisfy f € L'(0,T;H).
In this subsection we show that the mild solution behaves, in general, neutrally, i.e., the
regularity of the solution remains unchanged. Only in the case of —KC generating an ana-
lytic semigroup we are able to prove a retarded solution behaviour as in the corresponding
ODE case.

In order to analyse the regularity of the solution, we first consider equation (3.2) with
given initial value and history function on the interval I; = [0, 7]. Here we have

U+ Ku=f+ o, u(0) = uo.

Since the right-hand side f + @, is in L'(0,7;%), there exists a unique mild solution
uy € C(I1,H), cf. [Paz83, Ch. 4.2]. This solution is given by

uﬂwzsumyﬁésu—sﬂﬂg+®@—rﬂ®.

On the subsequent interval Iy = [7, 27| equation (3.2) has the form
U+ Ku=f+ur, u(T) = ug,0 == w1 (7).

Note that the right-hand side is now in L!(r,27;H), since we have u; € L'(0,7;H) from
the previous step. Thus, again by [Paz83, Ch. 4.2], we obtain a unique mild solution
ug € C(l2,H) given by

"LLQ(t):S(t—T)UZO‘i‘/ S(t—s)[f(s) +ui(s—7)] ds.

Advancing with this procedure, we obtain in each subinterval a solution uy for k =
1,..., N. In summary, the function

(4.1) mw:{w’ £=0

ug(t), te Iy
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is continuous because of the chosen initial condition in each step and thus, is the mild
solution of the delay equation (3.2). We summarize this result in form of a theorem.

Theorem 4.1 (mild solution). Consider f € L'(0,T;H), ug € H, and a history function
® € L'(—7,0;H). Furthermore, let —K generate a Cy-semigroup. Then, the constructed
function uw € C([0,T],H) from (4.1) is the unique mild solution of equation (3.2).

Note that this implies that the delay PDE behaves at least neutrally, since no regularity
is lost over time. It remains to analyse whether the system may even behave retardedly,
i.e., whether the solution may gain regularity over time. For this, we now assume f €

C>([0,T],H).

4.1.1. Strongly continuous semigroup. We show that the mild solution does, in general, not
behave retardedly if —/C generates a strongly continuous but not an analytic semigroup.
For this, we first discuss by means of the equations that a retarded behaviour is not to be
expected and second, we consider the transport equation as a counterexample.

We differentiate equation (3.2), which (formally) yields an evolution equation for v := 1,
namely

(4.2) v+ Kv=f+uv,  olty) =ulto).

Now the question is whether there exists a tg > 7 such that this equation has a mild
solution. In order to use the existence result for mild solutions, we need an initial value
v(tg) € H and an integrable right-hand side, meaning in particular @ € L'(tg—7,T —7; H).
The evolution equation in (3.2) implies

v(to) = u(to) = f(to) + ur(to) — Ku(to),

where f(tg) € H by assumption and u,(tg) = u(tg — 7) € H, since u is the mild solution
of the original delay system. The remaining term Ku(ty) is an element of # if and only if
u(tg) € D(K). Thus, in order to gain regularity in time, the solution has to gain regularity
in space as well. Since such a smoothing property is not to be expected in this case, we
cannot guarantee that there exists a time tp such that the initial value v(tp) is smooth
enough for the existence of a mild solution. Thus, in the case that —/C does not satisfy
the analytic smoothing property, we are lead to assume that the solution of the evolution
equation behaves neutrally. Finally, we give an example, which illustrates the missing
smoothing property.

Example 4.2. Consider = R and the semigroup S(t): L?(2) — L?(f2) given by the
(left) shift operator S(t)u(x) := u(x + t). The corresponding generator is given by

Au(z) = }g% S(t)u(xg —u(z) _ %1_% u(x + ti —u(z) _ azg(xx)

=: Oyu(x).

The domain of A is given by H!(2). The semigroup is strongly continuous [BFR17,
Ex. 9.11] but not analytic, since Ae** = AS(t) is not bounded. In other words, no
smoothness is gained by a shift. If we consider the delay equation

(4.3) U+ Opu =0+ u,, u(t) = ®(t) on t € [-1,0), u(0) = up,

then the solution is given by

(4.4) u(t,x) :S(t)uo(x)—i—/o S(t— s)ur(s,x) ds=uo(x+t)+/0 u(s —T,x+t—s)ds.
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Note that u has to be replaced by ® in the integral for s < 7. Let us now consider an
initial function uy with a discontinuity at = 0. Since the integral term in (4.4) vanishes
for t — 0, there exists a constant ag < 7 such that

w(t,—t+) — u(t, —1) = up(07) — up(07) + /Ot B(s— 7, —5T) — B(s — 7 —s) ds £ 0

for almost every t € (0,a9). Accordingly, we obtain for ¢t > 7,

u T — + = U 7'i ! 8—7'—8—7'i S t’U, S—’T—S—Ti S.
(tr = %) =ulr*) + [ 8= 7= = 1) dst [ uls =i ~(s = 7)) d

Note that the second integral differs for 7" and 7~ for all ¢ € (7,a0 + 7). Hence, there
exists a positive constant a; < ag such that there is a jump at © = 7 — ¢ for almost
every time point ¢ € (7,a1 + 7). Repeating these arguments for all £ € N, we observe a
discontinuity at = k7 — t for almost all ¢t € (k7,ar + k7), 0 < a < ag—1. As a result,
there is no gain of regularity for the given example, which implies that the delay system
is not retarded in terms of the smoothing property.

The numerical example discussed in Section 5 is a slightly modified version of (4.3) but
shows the same behaviour.

Remark 4.3. The shift operator from Example 4.2 can also be formulated on the bounded
domain Q = (0,1) with appropriate boundary conditions, cf. [BFCO12, Sect. 2.3]. This
again results in a Cp-semigroup, which is not analytic.

4.1.2. Analytic semigroup. In this subsection, we discuss the case where —C generates an
analytical semigroup. This means that the mapping ¢ — S(t¢) is analytic as a mapping
from (0,77 to L(H), i.e., the space of linear and bounded maps from #H to H, cf. [Lun95].
Furthermore, this implies the parabolic smoothing property, i.e., the existence of a constant
C > 0 such that

IKSW)llcon <Ct™Y,  0<t<T.

This means, in particular, that ug € H implies S(t)ug € D(K) for all £ > 0.

Further we assume in this subsection that ® € C([—7,0],H) with the continuity con-
dition ug = u(0) = ®(0). We address the general case ® € L!'(—7,0;H) in Remark 4.5
below. Because of Theorem 4.1 and the assumptions on ® we know that the right-hand
side of (3.2) satisfies f + u, € C([0,T],H) — LP(0,T;#) for all p > 1. The theory of
abstract Cauchy problems, cf. [Paz83, Ch. 4, Th. 3.1], then implies that u € C%"([5,T], H)
for all exponents r € (0,1) and ¢ > 0. Here, C%"([a,b], ) denotes the space of Holder
continuous functions with exponent .

For the right-hand side of (3.2) this in turn implies f+u, € C%"([r+5,T], H). Following
[Paz83, Ch. 4, Th. 3.5], we obtain for the mild solution

Ku,u € CO([r +¢,T], H).

This means that the solution has gained regularity in time after one step of size 7 (plus
some arbitrary small ). Thus, in contrast to the finite-dimensional case, the gain of
regularity does not appear immediately at ¢ = 7. We consider once more the evolution
equation, which we obtain by differentiation, i.e., we consider equation (4.2) with v = 4.
As starting value we take v(7 + ¢) € H. The right-hand side of this equation satisfies
f+wv =f+1a, € CO(2r +¢,T],H) such that [Paz83, Ch. 4, Th. 3.5] implies for the
unique mild solution,
Kv, o =i € CO([27 4 2¢,T], H).
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. 3 € C3(H
U9 €CZ(H) ,u)
r T
ue C([0, 7], H) \ :
1 1 121 131 1 N
I T T T T ?
t=20 t=r1 t =21 t =3t t=A4r

FIGURE 4.1. Illustration of the gain of regularity in the case of —K gen-
erating an analytic semigroup. For u; := u|[k,7+k87T] we obtain that

up € CH(H) := CF([kr + ke, T], H).

This procedure can now be repeated for the following time intervals, cf. the illustration
in Figure 4.1. This means that we consider the derivative of (4.2) on the time interval
[27 4 2¢,T] and so on.

As a result, the delay PDE (3.2) with —C generating a Cy-semigroup behaves neutrally,
whereas a generator of an analytic semigroup leads to a — more or less — retarded behaviour.
For the limit case € — 0 the considerations above lead to the following theorem.

Theorem 4.4. Consider f € C*([0,T],H) and a history function ® € C([—7,0], H) with
®(0) = ug. Furthermore, let —KC generate an analytic semigroup. Then, the mild solution

ue C([0,T],H) of (3.2) satisfies
u(kr,1) € C*((kr,T],H) fork=0,...,N —1.

Remark 4.5. In the general case ® € L'(—7,0;H) we need one time step of size T to obtain
a right-hand side, which is continuous and consistent. Thus, we obtain the same result as
in Theorem 4.4 but shifted by one time step. More precisely, we obtain in this case

ulerr € CF N (kT T, 1) fork=1,...,N —1.

Remark 4.6. Theorem 4.4 remains valid if we insert a linear and bounded operator B: H —
‘H in front of the delay term, i.e., if we consider the delay equation

U+ Ku= f+ Bu,, u(t) = ®(t) on t € [—71,0), u(0) = ug.

4.2. Classical setting. We switch to the setting of classical solutions. For this, we
consider the delay system (3.2) with initial data up € D(K) and a history function ® €
C([-7,0],H) satisfying ®(t) € D(K) for all ¢, ®(0) = ug, and K® € L*(—7,0;H). For
the applied force we assume similarly f € C([0,7T],H) with f(¢t) € D(K) for all ¢ and
Kf € LY(0,T;H). We first show, that these assumptions imply the existence of a classical
solution u. Afterwards, we analyse the smoothing property of the solution in the case of
a strongly continuous as well as an analytic semigroup.

As for the mild solution we use Bellman’s method of steps and consider first equation
(3.2) on the interval I; = [0, 7]. The right-hand side is then given by f + ®, and satisfies
the assumptions of Theorem 3.2. Thus, there exists a unique classical solution u; €
C(I,H), which is differentiable for ¢ > 0 and satisfies u1(t) € D(K) for all ¢ € I; and
Kuy € C(I1,H). Equation (3.2) on the interval Iy = [r,27] has then the right-hand side
f + w1, and as initial value u;(7) € D(K). A consecutive application of Theorem 3.2 on
the intevals Iy, k = 2,..., N then implies the existence of a classical solution on the entire
interval [0,7]. We summarize this result in the following theorem.

Theorem 4.7 (classical solution). Consider the delay PDE (3.2) with —K generating a
Co-semigroup, initial data ug € D(K), and f € C([0,T],H) satisfying f(t) € D(K) for
all t and KCf € LY(0,T;H). Let the history function ® € C([—,0],H) satisfy in addition
®d(s) € D(K), ®(0) = ug, and K& € LY(—7,0;H). Then, there exists a unique classical
solution uw € C([0,T], D(K)).
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Note that this again implies that the solution does not lose regularity and thus, behaves
at least meutrally. In order to see whether the solution gains regularity over time, we
distinguish once more the cases of —/IC generating a strongly continuous or even analytic
semigroup. In any case, we assume that the applied force is given by a smooth function

in the sense that f € C*°([0,7], D(K)).

4.2.1. Strongly continuous semigroup. Let —K generate a strongly continuous but not
analytic semigroup. As in Section 4.1 we consider the derivative of the evolution equation
with v := a, cf. equation (4.2). We first show that there exists a mild solution v for ¢t > 7.
Second, we check whether this v could even be a classical solution.

For t = 7 the initial value is given by v(7) = u(r) = f(r) + u(0) — Ku(r) € H.
Furthermore, the right-hand side f + 1, of (4.2) is bounded in L'(7,T;H), since f is
smooth and u is the classical solution with Ku € L'(0,T;%H). Thus, we have

T—1
lirll ey = Nl Lo —rime) = /0 | f(t) +u(t —7) — Ku(t)] dt < oc.

As a result, Section 3.1 implies that there exists a unique mild solution v € C([r,T], H).
The question is whether v is a classical solution as well, at least from some point in
time t9 > 7 on. This requires that for ¢y we attain v(t) € D(K) for t > t5. This in turn
means that we obtain some kind of smoothing property for mild solutions, which is not to
be expected in the considered case, cf. Section 4.1.1.

4.2.2. Analytic semigroup. Let —IC now generate an analytic semigroup and v denote the
mild solution of (4.2). Aim of this subsection is to show that v is indeed a classical solution
for t > 27.

Theorem 4.8. Consider the delay PDE (3.2) with —K generating an analytic semigroup.
Further assume f € C*([0,T], D(K)) and a history function ® € C([—,0],H) with ®(s) €
D(K), ®(0) = ug, and K® € LY(—7,0;H). Then, the classical solutionu € C([0,T], D(K))
satisfies for k=0,..., N — 1 that

u’(k'r,T] € Ck(<k7_7 T]a H)a u‘((k-i—l)T,T} € Ck(((k + 1)7—7 T]7 D(’C)) .
Proof. Since u is the classical solution of (3.2) we know that v := @ € C([0,T],H). For
t > 7 we consider the delay equation
(4.5) b+ Kv=f+o,

with initial value v(7) := u(7) = f(7) + u(0) — Ku(r) € H and corresponding history
function
D, = U|[0,T] € C([O’T]7H)
Theorem 4.4 implies that the mild solution v € C([r,T],H) satisfies (for k = 1) that
u‘(QT,T] = U|(27’,T} € Cl((27-7 T]aH)

Note that equation (4.5) then implies that K € C((27,T],H). Thus, v is a classical
solution of (4.5) for ¢ > 27. This procedure can be repeated consecutively, which then
yields the assertion. O

Remark 4.9. With additional assumptions on the history function, we can achieve that
Ul(err) € CFTH(RT,T), 1) for k=0,...,N — 1.
A sufficient condition for this is ® € C%"([—7,0],H) for any 7 € (0,1], cf. Theorem 4.4.

Remark 4.10. As in the mild setting, we may include a linear and bounded operator
B: H — H in front of the delay term w, without changing the result of Theorem 4.8.
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4.3. Weak setting. Let us now consider the weak solution concept, cf. Definition 3.6.
We use Belman’s method of steps as in Section 4.1, i.e., we split the interval [0, 7] into
equidistant intervals of length 7. For a given right-hand side f € L*(0,7), a history
function ® € LT (—7,0), and an initial value uy € H we first consider system (3.2) on
L =1[0,7], i.e.,
O+ Ku=f+u =f+o,.

This is an evolution equation without delay and with a right-hand side in L™ (0, 7). Thus,
following the existence result in Theorem 3.5, we obtain a unique solution u; € L?(0,7; V)N
C([0,7],H) with ©; € L*(0,7). By an iterative application we obtain a weak solution on
the entire interval [0, T7].

Theorem 4.11 (weak solution). Assume that the linear, bounded operator K:V — V*
satisfies a Garding inequality (3.4) and that the initial data fulfills ug € H. Suppose
that the right-hand side is given by f = f1 + fo € L1(0,T) with f1 € L?(0,T;V*), fa €
LY(0,T;H). Accordingly, let the history function be given by ® = &1 + &3 € LT(—1,0)
with ®; € L?>(—7,0;V*) and ®3 € LY(—7,0;H). Then, system (3.2) has a unique weak
solution u € C([0,T);H) N L*(0,T;V) with & € LT(0,T). Furthermore, the solution is
bounded by
HUHQC([o,t],H) + MHUH%Z(O,IS;V) < 2(t),
where the function z € C([0,T)) is defined by

2 [t 1/2
0 = |l + 2 [ 151 + 191013 )

t 2
n /O e (| ol + |B2r X0 12) ds] (e,

Proof. The existence and uniqueness of the weak solution u was already discussed in the
beginning of this subsection. For the bounds we observe that

t T
2/<uT,u>ds</ 2]
0 o ¥

t
< /0 2@ xpo 5 + Ellulls + P2 X0 Il ds + 2[[ulF, ds

t
b+ 8l + el ds + [ B+l ds
(4.6) '

for all £ > 7. Now we can follow the steps within the proof of Theorem 3.5 and replace
inequality (3.6) by

5 t 5 (3.4),(4.6) 5 t2 5
Hu(t)HHw/O [ullyds < HuoHH+/O SN + 121, x70,7]

+2(11 f2ll2 + @2, x 10,71 13¢) [l ds. O

For the investigation of the smoothing effect we note that @, can be used as history
function if we consider the derivative of equation (3.2). The choice of the initial value for
this equation is, in general, not as obvious. We apply well-known tools of the weak solution
concept, which includes the consideration of the function tu. This has the advantage that
the initial value equals zero. For the proof of the smoothing property we define for an
interval (a,b] the space

Do) + 205 + D)lullz

Hi(a,0;V) = [ HMa+ebV).
€€(0,b—a)

The following theorem shows that also in the weak setting the smoothing property is
translated to the delay system (3.2), i.e., the system behaves retardedly.
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Theorem 4.12. Consider a right-hand side f € C*°(0,T;V*), a history function ® €
Lt (—7,0), and ug € H. Then, the solution u of (3.2) satisfies for k =0,...,N — 1 that

(4.7) ul(erm) € Hio (K7, T; V) N CF((k7, T), H).

Proof. Let ¢ € (0,7/N) be arbitrary. We show by mathematical induction that

(488’) u‘[k(T-H—:),T} € Hk (k(T + 5)7 Ta V) N Ck([k(T + 8)7 T]vH))
(4.8b) u(k—‘rl)‘[k(TJ’,E)’T} € L+(k(7' + 6),T)
for k =0,...,N — 1. The case k = 0 corresponds to the existence of a weak solution of

the delay PDE (3.2) and is part of Theorem 4.11.
Now consider k£ > 1 and assume that (4.8) has been proven for & — 1. Then, there exist
g1 € L*((k —1)(t 4+ ¢),T;V*) and go € L*((k — 1)(7 +€),T;H) such that

ul®) l[(k=1)(r+),7] = 91 + G2

Note that we also have u* =V ((k — 1)(7 +€)) € H. We define ay. := (k— 1)(1 +¢) + 7
and with this fi € HY(age, T;V*), fo € Whl(ay, T; H) by

t

Ait) = F* D) + / Co(s—7)ds, Folt) = ubD((k— 1)(r+ )+ / gas — 7)ds.

ag e Ak,

Then, in the time interval [aj.,T] the function u*=1 is obviously the solution of the
problem

W+ Kw=fi+ fo= fED 4 oD

with initial value wo = u*"Y(ag.). By [Tar06, p. 115] it holds that (t — aj.)u®) €
L*(age, T;V) N C([ake, T),H). Its derivative satisfies

d

—(t — ap)u® € L (ay., T).

dt ) )

If we restrict the solution to the interval [ay . +¢,T] = [k(7 +¢),T] and divide by t — a,
then we obtain the inclusions in (4.8). Finally, statement (4.7) follows by considering the
limit € \, 0 in (4.8a). O

Remark 4.13. In Theorem 4.12 we restrict ourselves to f € C°°([0,T],V*). This is rea-
sonable, since for every k € N we have the embedding C*([0,T],H) < C*([0,T], V*).
Nevertheless, the assumption on the right-hand side can be weakened to

Fec™N72(0,1);v*) with fON=Y e L*(0,1).

Remark 4.14. We consider once more the situation with an additional linear and bounded
operator B: H — H in front of the delay term. Following Remark 3.4 and [Bal77], we can
translate the smoothing properties from the mild setting in Remark 4.6 to the weak setting
if f and ® take values in H. Note furthermore that u(kﬂ),u(Tk) € L?(ty, T;H) implies
u®) e L?(ty,T;V) by equation (3.2) and the Garding inequality (3.4). In Appendix A we
prove the smoothing property under slightly more restrictive assumptions. This restriction
will lead to a smoothing of the solution after every time step of size 7, without the
assumption of ® being continuous.
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FIGURE 5.1. Numerical solution of the spatial discretized delay PDE (5.1).

5. NUMERICAL EXAMPLE
In Example 4.2 we have mentioned that the solution of the delay PDE
U+ Ogu = ury

does not gain smoothness over time, since the included operator K = 0, only generates
a strongly continuous semigroup. If we consider the same problem on a bounded domain
with periodic boundary conditions and assume that the history function ® has jumps
in space, then the number of jumps can even increase over time. To illustrate this, we
consider the problem

(5.1a) u(t;x) = —0.30u(t;z) +u(t — L;z), (t,z) € (0,T] x (0,1)
(5.1b) u(t;0) = u(t; 1), te0,7)

(5.1c) u(0;z) =0, x € (0,1)

(5.1d) O(t; ) = x(0.3,08(r — 0.31), (t,z) € [-1,0) x (0,1).

Note that we consider 7 = 1 in this example. If we discretize this delay PDE in space
by central differences on a grid of 250 equidistant points, we obtain the solution shown
in Figure 5.1. Within this figure one can observe that the solution becomes smoother
in time and space. This, however, is only caused by dispersion. This means that the
velocities of the traveling waves depend on the corresponding wave numbers, in contrast
to the shift operator generated by K = 0,, cf. Example 4.2. Hence, jumps in space will be
smoothened, since the waves building sharp fronts move with different speeds [Tre82].

To obtain a more accurate approximate solution of the delay PDE (5.1) we introduce
the function w(t; x) := u(t;x + 0.3t) for a fixed z € [0,1). For this function it holds that

(5.1a)

w(t;x) = u(t;x + 0.3t) + 0.3 dpu(t; x + 0.3t) u(t — ;24 0.3t) = w(t — 1;z + 0.3).

Because of the assumed periodic boundary conditions, for a fixed z € [0,0.1) we can
describe the time evolution of the function w;(t; Z) := w(t; £+0.1(i—1)) with¢ =1,...,10
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FIGURE 5.2. Solution of delay PDE (5.1) using the reformulation as delay ODE.

by a delay ODE of dimension 10, namely

(5.2a) Wi (t; T) = W(it2mod 10)+1(t — 1;7), t € (0,T]
(5.2b) w;(0;Z) =0,
(5.2¢) w;(t;Z) = ®(t; (2 + 0.1(i — 1) + 0.3¢t)mod 1), ¢ € [-1,0).

Note that with the initial condition given in (5.1c) every Z € [0,0.1) generates the same
initial value problem (5.2). Thus, it is sufficient to solve (5.2) in order to describe the
entire dynamics of the delay PDE (5.1). The results shown in Figure 5.2 clearly indicate
that the jumps of the history function indeed do not vanish over time and that the number
of discontinuities even increases in space. Roughly speaking, the number discontinuities
increases, since the jumps are shifted in space by the action of the semigroup and dupli-
cated by the delay term. As a result, the solution neither gains regularity in space nor in
time, cf. Section 4.1.

6. CONCLUSION

The classification of ODEs with delay into retarded, neutral, or advanced type can
be made by means of a structural decision. This classification is then directly related
to smoothness properties of the solution. For a retarded ODE it is well-known that the
solution gains smoothness in each step of size 7.

Although linear PDEs with delay are often classified in the same structural manner, we
have shown in this paper that the solution behaviour does also depend on the semigroup
generated by the considered differential operator. More precisely, we have discussed under
which conditions a linear delay PDE, which leads to a retarded delay ODE under spatial
discretization, behaves retardedly in terms of the smoothing property. In this context we
have considered mild, classical, as well as weak solutions. Furthermore, we have seen that
the smoothing in the retarded case may occur slightly later than in the ODE setting.
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APPENDIX A. WEAK SOLUTIONS WITH AN OPERATOR B

In this section, we investigate delay PDEs of the form

(A1)

i+ Ku= f+ Bu,

with a linear and bounded operator B: H — H in the weak setting. In contrast to
Remark 4.14, in which we have used the smoothing property of the mild setting, we apply
here tools from the theory of weak solutions. For this, we make additional assumptions on
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the right-hand side and the operator K. To be more precise, we consider f € L?(0,T;H)
and K = K1 + Ko, where K1: V — V* is elliptic and symmetric and K9 maps from V to H.
Before we show that under these assumptions the solution becomes smoother over time,
we recap well-known solution properties for the given setting.

Lemma A.1. Let K = K1 + Ko be decomposed into the two linear and bounded operators
Ki:V = V* and Ko: V — H, where Ky is elliptic and symmetric. Then, for every right-
hand side f € L*(0,T;H) and initial value ug € H the operator equation (3.1) has a
unique solution

u € C([0,T), %) N L*(0,T;V) N C((0,T), V) N Hb. (0, T; H).
Furthermore, the solution depends continuously on f and ug.

Proof. Since H = H* is densely embedded in V*, there exists a unique solution u €
L?(0,T;V) of (3.1) by Theorem 3.5. Furthermore, we can rewrite (3.1) as

w4+ Kiw = f — Kyu € L*(0,T; 1),

where we now search for a solution w. Obviously, it holds that w = u. The stated
properties then follow by [Tar06, Lem. 21.1]. O

We can now prove the smoothing property for the delay equation (A.1).

Theorem A.2. Assume that the operator IC can be decomposed as in Lemma A.1, that
B: H — H is linear and bounded, and that f € C*>°([0,T];H). Furthermore, let the initial
data and the history function satisfy ug € H and ® € L*(—7,0;H). Then, the solution u
of the delay equation (A.1) satisfies

Ul(kr1) € CH((kT,T),V) N HEP (b7, T3 1) for k=0,...,N — 1.

loc

Proof. The existence and uniqueness of a solution u is given by Theorem 4.11. For the
smoothing property let ¢ > 0 be small enough such that (N — 1)e < 7. We will show
iteratively that u restricted to the interval [k(7 + ¢),T] has weak derivatives in V up to
the order k£ with

(A.2) u® (hrre).17 € C((B(T +€), T), V) N Hypo(k(7 +€), T3 H)

for k=0,...,N — 1. Taking the limit € — 0 then completes the proof.
For k = 0 statement (A.2) follows by Bellman’s method of steps in combination with
Lemma A.1. Now consider k£ > 0 and assume that (A.2) is proven for k — 1. In this case,

the restriction of f*) 4 Bul®) to the interval (kT + (k — 2)e,T] is an element of L? with
values in H and thus, we also have

(t =kt — (k= He) (f® + Bul®)| [ € LAkt + (k— $)e, T} H).

k4 (k—5)e,T]
Furthermore, we obtain
uF D (kT + (k- 1)) e V.

By [EmmO04, Th. 8.5.3] we conclude that u(k)\[kﬂrka’;p] is continuous in H. Therefore,
u®) (k(1 + ¢)) is well-defined in H. In addition, it holds that

t— k(1 +&)(f® + BuP) | pirioy 1 € LA(k(T +2), T; H)

by (A.2) from the previous step. Finally, the inclusion (A.2) follows from the results
in [Tar06, Lem. 21.1]. O
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Note that in contrast to Remark 4.5, where we could only show that the mild solu-
tion is k-times continuously differentiable for ¢ > (k + 1)7, the weak solution is k-times
continuously differentiable (with values in V) already for t > k7.
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