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Zusammenfassung

Diese Dissertation befasst sich mit polyedrischen Strukturen von kardinalitätsbeschränkten kom-
binatorischen Optimierungsproblemen. Aus einem kombinatorischen Optimierungsproblem er-
hält man ein kardinalitätsbeschränktes kombinatorisches Optimierungsproblem, indem man nur
solche Lösungen erlaubt, deren Kardinalitäten Elemente einer festgelegten Menge von nichtneg-
ativen ganzen Zahlen sind.

Wir beschäftigen uns sowohl mit der polyedrischen Analyse ausgewählter kombinatorischer
Optimierungsprobleme als auch mit allgemeinen Methoden, um starke gültige Ungleichungen
herzuleiten, die einen Bezug zu Kardinalitätsbeschränkungen haben.

Im Mittelpunkt der Arbeit steht die Untersuchung der Facettialstrukturen der kardinalitätsbe-
schränkten Matroid-, Wege-, und Kreis-Polytope. Wie es exemplarisch für Matroid-, Wege-, und
Kreis-Polytope gezeigt wird, ist eine facettendefinierende Ungleichung für ein nicht-kardinalitäts-
beschränktes Polytop gewöhnlich auch für die kardinalitätsbeschränkte Version facettendefinie-
rend. Insbesondere interessieren wir uns aber für Ungleichungen, die solche Lösungen abschnei-
den, die für das Basisproblem zulässig sind, aber nicht für dessen kardinalitätsbeschränkte Ver-
sion. Die wichtigste Klasse von Ungleichungen sind in diesem Zusammenhang die sogenannten
forbidden cardinality inequalities. Das sind Ungleichungen, die für ein mit einem kardinalitäts-
beschränkten kombinatorischen Optimierungsproblem assoziiertem Polytop gültig sind, unab-
hängig von dessen kombinatorischer Struktur. Diese Ungleichungen verwenden wir als Prototyp
für Ungleichungen,die kombinatorische Strukturen eines gegebenen Problems einbinden. Auf diese
Weise gelingt es uns, für verschiedene kardinalitätsbeschränkte Probleme facettendefinierende Un-
gleichungen herzuleiten, insbesondere für die oben namentlich genannten Polytope. Außerdem
präsentieren wir weitere Klassen facettendefinierender Ungleichungen, die einen Bezug zu Kar-
dinalitätsbeschränkungen haben, für kardinalitätsbeschränkte Wege- und Kreis-Polytope. Ins-
besondere befassen wir uns auch mit solchen Ungleichungen, die spezifisch für gerade/ungerade
Kreise/Wege oder Wege mit höchstens k Kanten sind.

Die Arbeit präsentiert und benutzt verschiedene Methoden und Ideen, um starke gültige
Ungleichungen, die einen Bezug zu Kardinalitätsbeschränkungen haben, herzuleiten: matroidale
Relaxierungen, Lifting, Projektion oder auch algorithmische Aspekte. Es wird beispielsweise
gezeigt, dass die dem Moore-Bellman-Ford Algorithmus innewohnende Struktur dazu verwendet
werden kann, um facettendefinierende Ungleichungen für das Polytop der gerichteten (s, t)-Wege
mit höchstens k Kanten, herzuleiten. Für zwei Relaxierungen dieses Polytops liefert unser Ansatz
eine Klassifizierung aller facettendefinierenden Ungleichungen mit Koeffizienten in {0, 1} bzw.
{−1, 0, 1}.

Schlüsselworte: Kardinalitätsbeschränkungen, Matroid-Polytop, Polymatroid, Kreis- und We-
ge-Polyeder, Dynamische Programmierung, Projektion
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Abstract

This thesis deals with polyhedral structures of cardinality constrained combinatorial optimization
problems. Given a combinatorial optimization problem, we obtain a cardinality constrained
version of this problem by permitting only those solutions whose cardinalities are elements of a
specified set of nonnegative integral numbers.

We study both the polyhedral analysis of selected cardinality constrained combinatorial opti-
mization problems and general methods for deriving strong valid inequalities that bear relations
to cardinality restrictions.

The focus of this thesis is the investigation of the facial structure of the cardinality constrained
matroid, path and cycle polytopes. As it might be expected and is exemplarily shown for path,
cycle, and matroid polytopes, an inequality that induces a facet of the polytope associated with
the ordinary problem usually induces a facet of the polytope associated with the cardinality re-
stricted version. However, we are in particular interested in inequalities that cut off the incidence
vectors of solutions that are feasible for the ordinary problem but infeasible for its cardinality
restricted version. In this context, the most important class of inequalities for this thesis are the
so-called forbidden cardinality inequalities. These inequalities are valid for a polytope associated
with a cardinality constrained combinatorial optimization problem independent of its specific
combinatorial structure. Using these inequalities as prototype for inequalities incorporating com-
binatorial structures of a problem, we derive facet defining inequalities for polytopes associated
with several cardinality constrained combinatorial optimization problems, in particular, for the
above mentioned polytopes. Moreover, for cardinality constrained path and cycle polytopes we
derive further classes of facet defining inequalities related to cardinality restrictions, also those
inequalities specific to odd/even path/cycles and hop constrained paths.

The thesis presents and uses different methods and ideas for deriving strong inequalities re-
lated to cardinality restrictions: matroidal relaxations, lifting, projection, and also algorithmic
ingredients. For example, it will be shown that the inherent structure of the Moore-Bellman-Ford
algorithm can be used to find facet defining inequalities for the hop constrained path polytope,
that is, the convex hull of the incidence vectors of paths having at most k arcs. For two relax-
ations of this polytope, our approach yields a classifications of all facet defining inequalities with
coefficients in {0, 1} and {−1, 0, 1}, respectively.

Keywords: cardinality constraints, matroid polytope, polymatroid, path and cycle polyhedra,
dynamic programming, projection
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Introduction

Given a combinatorial optimization problem and a finite subset N of the
nonnegative integral numbers Z+, we obtain a cardinality constrained version
of this problem by permitting only those feasible solutions whose cardinalities
are elements of N .

Well-known examples of cardinality constrained combinatorial optimiza-
tion problems are the traveling salesman problem and the minimum odd
cycle problem. Both problems are for themselves combinatorial optimization
problems, but in the line of sight of the minimum cycle problem, they are
cardinality restricted versions of the latter problem.

We give now formal definitions of combintorial optimization problems and
their cardinality constrained versions.

Definition 0.1. Let E be a finite set, I a subset of the power set 2E of E,
and w : E → R, e 7→ w(e) a weight function. For any F ⊆ E and any
y ∈ RE , we set y(F ) :=

∑

e∈F ye. The mathematical program

max{w(F ) : F ∈ I}

is called a combinatorial optimization problem (COP). We also refer to it as
the triple Π = (E, I, w). Elements of I are called feasible solutions.

As usual, we apprehend a combinatorial optimization problem also as the
collection of all its problem instances. But we do not distinguish between
the problem Π⋆ and its instances Π = (E, I, w). Moreover, if we say that
an algorithm A solves the COP Π = (E, I, w) in polynomial time, then we
mean, strictly speaking, that there is an integer r such that A runs in time
O(nr), where n is the input size of the given instance, and all numbers in
intermediate computations can be stored with O(nr) bits.

By setting cardinality constraints on the set of feasible solutions, we ob-
tain a cardinality constrained version of a COP. The cardinality of any finite
set M , denoted by |M |, is the number of its elements.

Definition 0.2. Let Π = (E, I, w) be a COP and N ⊆ Z+ a finite set of
nonnegative integral numbers. Then, the mathematical program

max{w(F ) : F ∈ I, |F | ∈ N},

1



2 Introduction

also denoted by ΠN = (E, I, w,N), is said to be the cardinality constrained
version of Π. It is also called a cardinality constrained combinatorial opti-
mization problem (CCCOP). W.l.o.g. we assume that maxN ≤ |E|.

Throughout this thesis, N will be represented by a so-called cardinality
sequence, which is a sequence c = (c1, c2, . . . , cm) of integers such that

0 ≤ c1 < c2 < . . . cm ≤ |E|

and N = {c1, . . . , cm}. Moreover, ΠN will be identified with Πc. The set
of feasible solutions with respect to Πc will also be denoted by Ic, that is,
Ic := {I ∈ I : |I| = cp for some p}. Πc is, considered for itself, again a COP.
If c = (k) for some k ∈ Z+, we speak of a k-COP and write Πk instead of
Π(k) provided that it is clear from the context that c refers to a sequence and
k to an integer. An overview on k-COPs is given by Bruglieri et al. [16].

This thesis focuses on polyhedral aspects of cardinality constrained combi-
natorial optimization problems. Many combinatorial optimization problems
are polyhedrally well studied. Given a COP Π = (E, I, w), the polyhedral
investigation usually refers to the associated polytope PI(E) defined as the
convex hull of the incidence vectors χI of the feasible solutions I ∈ I. Here,
we study the polytope

P c
I(E) := conv{χI ∈ RE : I ∈ Ic},

that is, the convex hull of the incidence vectors of feasible solutions with
respect to Πc. Since Ic ⊆ I, it follows that P c

I(E) ⊆ PI(E). Thus, any valid
inequality for PI(E) is also valid for P c

I(E). It stands to reason that many
facet defining inequalities for PI(E) are also facet defining or at least strong
inequalities for P c

I(E). Although the manifestation of this conjecture might
be interesting in its own right and gets some place in this thesis, we are more
interested in strong valid inequalities that cut off solutions that are feasible
for Π but forbidden for Πc.

Throughout this thesis, we assume the reader to be familiar with ba-
sic concepts of complexity theory, polyhedral combinatorics, linear program-
ming, and combinatorial optimization. For complexity theory, we refer to the
book of Garey and Johnson [39]. For polyhedral combinatorics, linear pro-
gramming, and combinatorial optimization we refer to the books of Grötschel,
Lovász, and Schrijver [46], Nemhauser and Wolsey [67], and Schrijver [74, 76].

Nevertheless, since some notions are used in the entire thesis, we ex-
plicitely introduce some basic definitions. Let P ⊆ Rn be a polyhedron and
aTx ≤ a0 a valid inequality for P . Any point x′ ∈ P satisfying aTx′ = a0 is
said to be tight (with respect to the inequality aTx ≤ a0). In our context,
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P is usually PI(E) or P c
I(E) and x′ is the incidence vector of some feasible

solution I. In such a case, we also refer to I as tight. The inequality aTx ≤ a0

is called an implicit equation if every x′ ∈ P is tight. Let aTx ≤ a0 and
bTx ≤ b0 be two valid inequalities for P . We say that aTx ≤ a0 is (strictly)
dominated by bTx ≤ b0, if the face {x ∈ P : aTx = a0} is (strictly) contained
in {x ∈ P : bTx = b0}. They are said to be equivalent if one can be obtained
from the other by multiplication with a positive scalar and adding appro-
priate multiples of implicit equations for P . Clearly, equivalent inequalities
induce the same face of P .

Finally, we repeat the definitions of the membership and the separation
problem. Given a polyhedron P ⊆ Rn and a point x∗ ∈ Rn, the membership
problem consists of deciding whether x⋆ ∈ P or not. The separation problem
consists of the membership problem and the additional task to find a valid
inequality bTx ≤ b0 for P that is violated by x⋆ in case of x⋆ /∈ P . For
practical reasons, the separation problem is often considered for families of
valid inequalities for P . This is the case, for instance, if one has only a partial
description of P by valid inequalities. The separation problem for a family
F of valid inequalities for P consists of finding a violated member of F , i.e.,
an inequality bTx ≤ b0 belonging to F such that bTx∗ > b0, or to assert that
x⋆ satisfies all inequalities of F .

Sometimes it is profitable to find a most violated member, i.e., an in-
equality bTx ≤ b0 belonging to F and maximizing the degree of violation
bTx∗−b0 (optimization version), because sometimes a maximally violated in-
equality exhibit a strong combinatorial structure, which can be exploited for
separation. Furthermore, note that the complexity of the separation problem
depends strongly on the exact definition of the family F . For example, it can
arise the case that the separation problem for F is solvable in polynomial
time but for a subclass F ′ ⊆ F it could be NP-hard.

The thesis is organized as follows.

CHAPTER 1: In this chapter, we first briefly touch the question under which
conditions a COP Π and its cardinality constrained version Πc belong to the
same complexity class. We conjecture that they usually belong to the same
complexity class. The aim of this chapter is not to give a concluding answer
to this question, but to mark the challenges to answer this question if we do
not study a specific COP. The arising difficulties result, among other things,
from missing information about the structure of the set of feasible solutions.

Next, we present an important family of linear inequalities for the poly-
hedral investigation of CCCOPs, which we call forbidden cardinality inequal-
ities, FC-inequality for short. These inequalities were independently intro-
duced by Maurras [62] and Grötschel [45]. Together with the cardinality
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bounds

c1 ≤
∑

e∈E

xe ≤ cm

they cut off solutions that are feasible for Π, but forbidden for Πc. This
results into an integer programming formulation for Πc provided we know
one for Π.

CHAPTER 2: This chapter is dedicated to cardinality constrained matroids
and polymatroids. It serves, among other things, as an example for the poly-
hedral analysis of the cardinality constrained version of a polynomial time
solvable combinatorial optimization problem. Maurras [61] has given a com-
plete linear description of the cardinality constrained matroid polytope. We
give an elementary proof of this result. Moreover, we characterize the facets
of this polytope and state a polynomial time separation procedure. Based
on the results for the cardinality constrained matroid, we give a complete
linear description of the cardinality constrained polymatroid and present a
polynomial time algorithm that solves the associated separation problem.

CHAPTER 3: As an example of NP-hard cardinality constrained combi-
natorial optimization problems, we extensively study polyhedra associated
with cardinality constrained versions of path and cycle problems defined on
directed and undirected graphs. We show that a modification of forbidden
cardinality inequalities leads to strong inequalities related to cardinality con-
straints. Moreover, as one would expect, inequalities that define facets of the
polytope associated with the ordinary problem usually define facets of the
polytope associated with the cardinality constrained version.

CHAPTER 4: In their original form, forbidden cardinality inequalities are
mostly not facet defining for the polyhedra associated with a given CCCOP.
Based on the polyhedral insights of Chapter 2 and 3, we give three recommen-
dations for deriving strong valid inequalities that are related to cardinality
constraints.

CHAPTER 5: In this chapter, we again study polyhedra associated with
cardinality constrained paths, namely, those connected to hop constrained
paths, that is, paths that use at most k arcs. The polyhedra are the hop
constrained path polytope, which is the convex hull of the incidence vectors
of hop constrained paths, and two of its relaxations: its dominant and the
hop constrained walk polytope. To differentiate between general cardinality
constrained paths (walks) and those that use at most k arcs (or edges), we
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decided to declare them as hop constrained paths (walks) as it is done, for
instance, in [22, 23].

The aim of this chapter is to show how the inherent structure of the
Moore-Bellman-Ford algorithm, which can be essentially expressed by the
well known Bellman equations, helps to derive facet defining inequalities for
the hop constrained path polytope via projection. Our findings result into
characterizations of all facet defining 0/1-inequalities for the dominant and
all facet defining 0/ ± 1-inequalities for the hop constrained walk polytope.
Although the derived inequalities are already known, such classifications were
not previously given by the best knowledge of the author. Moreover, we
derive a further class of facet defining inequalities for the hop constrained
walk polytope, with coefficients not all in {−1, 0, 1}.





Chapter 1

General aspects of cardinality

constrained combinatorial optimization

problems

This chapter summarizes some observations about cardinality constrained
combinatorial optimization problems that can be made independently of the
special structure of a given COP Π and its cardinality constrained version
Πc. As one would expect, to make a general statement seems to be difficult
as long as we do not have additional information about the combinatorial
structure of Π.

Section 1.1 raises the question under which conditions Π and Πc are in the
same complexity class. We give no concluding answer, but mark the arising
difficulties to classify those COPs.

In Section 1.2, we present the most important family of linear inequal-
ities for the polyhedral investigation of CCCOPs, which we call forbidden
cardinality inequalities. These inequalities were independently introduced
by Maurras [62] and Grötschel [45]. Together with the cardinality bounds
c1 ≤ x(E) ≤ cm they cut off solutions that are feasible for Π, but forbidden
for Πc. This results into an integer programming formulation for Πc provided
we have one for Π. These are the good news. The bad news are that the
forbidden cardinality inequalities are usually quite weak for the cardinality
constrained version of a given COP Π. This means that these inequalities
usually induce low dimensional faces of the polytope associated with Πc.

We will illustrate some aspects of this chapter by examples from ma-
troid and graph theory. The definitions of the notions used can be found in
Chapters 2 and 3.

1.1 Complexity

We briefly study conditions under which a COP and its cardinality con-
strained version belong to the same complexity class. For simplicity, we re-
strict our considerations to the classes of polynomial time solvable problems
(P) and nondeterministic polynomial time solvable problems (NP).

7



8 General aspects about CCCOPs

Let Π = (E, I, w) be a COP. For fixed k, the k-COP Πk can be solved
in polynomial time by enumeration on all (nk) subsets I of E of cardinality k.
Thus, independent of the complexity of the ordinary problem Π, Πc can be
solved in polynomial time if the cardinality sequence c is fixed.

Bruglieri et al. [16] argue that several polynomial time solvable COPs of
the form

min{w(F ) : F ∈ I}

with a nonnegative weight function w : E → R+ become NP-hard as soon as
one requires that the feasible solutions have cardinality k. For example, one
can find in polynomial time a shortest simple cycle, that is, a simple cycle of
minimum weight, if the weight function is nonnegative, but the TSP, which
arises by taking k as the number of nodes, is NP-hard. Or, in order to give
another example, the min-cut problem can be solved in polynomial time for
a nonnegative weight function, but most of the cardinality constrained cut
problems are NP-hard (e.g. the equicut problem).

The observation of Bruglieri et al. is of course correct. We believe, how-
ever, that less the cardinality restriction itself is responsible for the NP-
hardness of some k-COP, but rather the fact that the original problem is also
NP-hard as soon as one admits negative weights, or, in order to formulate
it more tentative, both ingredients “arbitrary weights” and “cardinality re-
striction” for a COP seem to be equivalent in many cases with respect to the
complexity of a COP. One argument for this hypothesis is that the restriction
to nonnegative weights is irrelevant for k-COPs: For any M ∈ R and any
two feasible solutions F1, F2 of a k-COP Πk we have w(F1) ≤ w(F2) if and
only if w′(F1) ≤ w′(F2), where w′

e := we + M . That means, Πk is invariant
under shifting of the weights by a constant. By setting M := 0 if all weights
are already nonnegative, and M := |min{we : e ∈ E}| otherwise, the weights
w′
e are nonnegative. Moreover, the input size of w′ is polynomial in w.

We would like to support our hypothesis by two examples. The above
mentioned polynomial-time solvable shortest cycle problem becomes NP-hard
if arbitrary weights are admitted or the set of feasible solutions is limited
to Hamiltonian cycles, see Garey and Johnson [39]. Denoting by CYCLE
the shortest cycle problem, the latter fact implies that CYCLEk is NP-hard
for arbitrary k belonging to the input. For instance, let G = (V,E) with
n := |V | be an instance of the TSP. Adding to G a set V ′ of n isolated nodes,
we obtain a graph G′ = (V ∪ V ′, E) of order m := 2n. Every Hamiltonian
cycle in G is obviously a cycle of cardinality ⌊m/2⌋ in G′, and vice versa.
Thus, the TSP can be polynomially reduced to the problem of finding in a
graph on n nodes a shortest cycle of cardinality ⌊n/2⌋. This implies that
CYCLE⌊n/2⌋ is NP-hard. Even more, if CYCLEk is NP-hard for arbitrary
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k, then it is very unlikely to find a polynomial time algorithm that solves
the general cardinality constrained shortest cycle problem CYCLEc for an
arbitrary cardinality sequence c.

Another example is the maximum weight independent set problem over a
matroid, where the independence system is given by an independence oracle.
We denote the problem by IND. It can be solved in polynomial time with the
greedy algorithm for arbitrary weights. In accordance with our hypothesis,
also the cardinality constrained version of this problem INDk can be solved
in polynomial time for each k and hence, also for each c, see Chapter 2.

To our knowledge there is no polynomial time solvable combinatorial
optimization problem discussed in the literature for which the cardinality
constrained version is NP-hard (supposed that arbitrary weights are ad-
mitted). However, classes of polynomial time solvable combinatorial opti-
mization problems that are completely irrelevant but whose cardinality con-
strained versions are NP-hard, can be constructed quite easily. For instance,
let G = (V,E, w) be a weighted graph on n = |V | nodes and consider the
embedded traveling salesman problem (ETSP) defined as follows:

min{w(T ) : T ⊆ E, if |T | = n, then T is a tour}.

It can obviously be solved in polynomial time. To this end, let T ⋆ := {e ∈ E :
we < 0}. If |T ⋆| 6= n or |T ⋆| = n and T ⋆ is a Hamiltonian cycle, then T ⋆ is
optimal. Otherwise, that is, in the case |T ⋆| = n and T ⋆ is not a Hamiltonian
cycle, let e− ∈ T ⋆, e+ ∈ E \ T ⋆ (if E \ T ⋆ 6= ∅) be edges of maximal and
minimal weight, respectively. By construction, w(e−) < 0 and w(e+) ≥
0. Now it follows immediately that w(F ) ≥ min{w(T ⋆ \ {e−}), w(T ⋆ ∪
{e+})} for all F ⊆ E with |F | 6= n. Moreover, for any Hamiltonian cycle
T we have w(T ) ≥ w(T ⋆ \ {e−}). Hence, T ⋆ \ {e−} or T ⋆ ∪ {e+} is the
optimal solution. So, the ETSP can indeed be solved in polynomial time.
However, the cardinality constrained version ETSPn of ETSP is the TSP
which is known to be NP-hard. Of course, such a construction – namely the
embedding of an NP-hard combinatorial optimization problem into a trivial
setting – can be done not only for the TSP but also for other NP-hard COPs
like the linear ordering problem.

The discussion in the previous paragraph shows that, in general, we are
not able to extrapolate from the polynomial time solvability of a COP to the
polynomial time solvability of its cardinality constrained version. We can
only give a much weaker result. Let Π = (E, I, w) be a COP, let nmax =
max{|I| : I ∈ I}, and nmin = min{|I| : I ∈ I}. The maximum cardinality
COP Πmax is the optimization problem

max{w(I) : I ∈ I, |I| = nmax}.
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Similarly, the minimum cardinality COP Πmin is the optimization problem

max{w(I) : I ∈ I, |I| = nmin}.

Theorem 1.1. If a COP Π = (E, I, w) can be solved in polynomial time for
all weightings w : E → R, the same holds for Πmax and Πmin. Hence, if Πmin

or Πmax is NP-hard, then Π is too.

Proof. The optimal solutions of Πmax and Πmin are invariant under shifting
of the weights by a constant. For any instance Π = (E, I, w), set M :=
|E| ·W + 1, where W = max{|we| : e ∈ E}. Then, an optimal solution X1

of Π with weights w1
e := we +M is of maximum cardinality and an optimal

solution X2 of Π with weights w2
e := we −M is of minimum cardinality. In

particular, X1 and X2 are optimal solutions for Πmax and Πmin, respectively.
Since the transformations are polynomial, the claim follows.

Maybe better results are obtainable if one excludes such artificial COPs
as the ETSP. This can be perhaps achieved when adding requirements on the
homogeneity of the feasible solutions. For instance, one could require that
all feasible solutions of Π have some common property P independent of the
cardinality of the solutions. The ETSP could easily be excluded by adding
the constraint that each feasible solution has to be a cycle.

During this section we collected three conditions for the comparison of
the complexity of an arbitrary COP Π and its cardinality constrained version
Πc to be meaningful – provided P 6= NP (otherwise the distinction makes no
sense):

• c may not to be fixed;

• w is an arbitrary objective function;

• the set I of feasible solutions is in some sense homogeneous.

1.2 Integer programming formulations

In this section, we present an important class of inequalities for describing car-
dinality constrained combinatorial optimization problems polyhedrally. Let
Π = (E, I, w) be any COP, Πc its cardinality constrained version, and PI(E)
and P c

I(E) the polytopes associated with Π and Πc, respectively. Recall
that Ic denotes the set of feasible solutions I ∈ I with |I| = cp for some p.
The facial structure of P c

I(E) is essentially determined by the combinatorial
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structures coming from both the combinatorial optimization problem and the
cardinality conditions.

Uncoupled from the combinatorial structure of the optimization prob-
lem, the polyhedral structure induced by the cardinality constraints can be
described as follows. The set

CHSc(E) := {F ⊆ E : |F | = cp for some p}

is called a cardinality homogeneous set system. It follows immediately that
Ic = I ∩ CHSc(E) and hence,

P c
I(E) = conv{χI ∈ RE : I ∈ I ∩ CHSc(E)}.

The polytope associated with CHSc(E), that is, the convex hull of the inci-
dence vectors of I ∈ CHSc(E), is completely described by the trivial inequal-
ities 0 ≤ xe ≤ 1, e ∈ E, the cardinality bounds

c1 ≤ x(E) ≤ cm, (1.1)

and the forbidden cardinality inequalities

(cp+1 − |F |)x(F ) − (|F | − cp)x(E \ F ) ≤ cp(cp+1 − |F |)
for all F ⊆ E with cp < |F | < cp+1 for some p ∈ {1, . . . , m− 1},

(1.2)

see Maurras [62] and Grötschel [45]. Here, for any subset F of E, x(F ) :=
∑

e∈F xe. Maurras and Grötschel investigated the polytope associated with
CHSc(E) independent of each other. Maurras calls inequalities (1.2) cropped
inequalities, while Grötschel calls them cardinality forcing inequalities. We
have chosen the name forbidden cardinality inequalities, since the inequality
class consists of exactly one inequality for each subset F of E of forbidden
cardinality between the lower bound c1 and the upper bound cm.

For an illustration of the forbidden cardinality inequalities, see Figure 1.1.
There we show the support graph of a forbidden cardinality inequality as-
sociated with a subset F of cardinality 5. Since c = (2, 3, 8, 9), it follows
immediately p = 2, that is cp = c2 = 3 and cp+1 = c3 = 8. Thus, the coef-
ficients associated with the elements in F are c3 − |F | = 3, those associated
with the elements which are not in F are −(|F | − c2) = −2, and the right
and side of the inequality is c2(c3 − |F |) = 9.

The cardinality bounds (1.1) exclude all subsets of E whose cardinalities
are less than the lower bound c1 or greater than the upper bound cm, while the
forbidden cardinality inequalities do this for all subsets of E with forbidden
cardinality between the lower and the upper bound. To see this, let F ∈ E
with cp < |F | < cp+1 for some p ∈ {1, . . . , m − 1}. Then the forbidden
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n = 9
c = (2, 3, 8, 9)

|F | = 5
p = 2
cp = 3

cp+1 = 8

F

+3

+3

+3

+3

+3

E \ F

-2 -2

-2-2

≤ 9

Figure 1.1: Support graph of a forbidden cardinality inequality.

cardinality inequality associated with F is violated by the incidence vector
χF of F :

(cp+1−|F |)χF (F ) − (|F |−cp)

=0
︷ ︸︸ ︷

χF (E \ F ) = |F |(cp+1−|F |) > cp(cp+1−|F |).

However, every I ∈ CHSc(E) satisfies the inequality associated with F . If
|I| ≤ cp, then

(cp+1 − |F |)χI(F ) −

>0
︷ ︸︸ ︷

(|F | − cp)

≥0
︷ ︸︸ ︷

χI(E \ F )
≤ (cp+1 − |F |)χI(I ∩ F ) ≤ cp(cp+1 − |F |),

and equality holds if |I| = cp and I ⊆ F . If |I| ≥ cp+1, then

(cp+1 − |F |)

≤|F |
︷ ︸︸ ︷

χI(F )−(|F | − cp)

≥cp+1−|F |
︷ ︸︸ ︷

χI(E \ F )
≤ (cp+1 − |F |)|F | − (|F | − cp)(cp+1 − |F |) = cp(cp+1 − |F |),

and equality holds for |I| = cp+1 and I ∩ F = F .
Although the class of forbidden cardinality inequalities consists of expo-

nentially many members, Grötschel [45] showed that the associated separa-
tion problem is solvable in polynomial time by the greedy algorithm. Let
x⋆ ∈ RE be any nonnegative vector satisfying the cardinality bounds (1.1).
Sort the components of x⋆ such that x⋆e1 ≥ x⋆e2 ≥ · · · ≥ x⋆e|E|

. Then, for each
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integer q with cp < q < cp+1, x
⋆ satisfies the forbidden cardinality inequality

associated with F q := {e1, . . . , eq} if and only if x⋆ satisfies all forbidden
cardinality inequalities associated with sets F ⊆ E of cardinality q. In other
words, the separation problem can be solved by checking the forbidden car-
dinality inequality associated with F q for each forbidden integer q between
c1 and cm.

Inequalities (1.2) and the cardinality bounds (1.1) can be straightfor-
wardly included in an integer programming formulation for Π to derive one
for Πc.

Theorem 1.2. Let

max wTx
s.t. Ax ≤ b

xe ∈ {0, 1} for all e ∈ E
(1.3)

be an integer programming formulation for a COP Π = (E, I, w). Further-
more, let c = (c1, . . . , cm) be any cardinality sequence. Then, system (1.3)
together with the cardinality bounds (1.1) and the forbidden cardinality in-
equalities (1.2) provide an integer programming formulation for Πc.

Proof. First, note that inequalities (1.2) are valid for P c
I(E), since Ic ⊆

CHSc(E). Next, the inequality system Ax ≤ b together with the integrality
constraints xe ∈ {0, 1} for e ∈ E ensure that x is the incidence vector of
some I ∈ I. Finally, the cardinality bounds (1.1) and the forbidden cardi-
nality inequalities (1.2) exclude all incidence vectors of I ∈ I of forbidden
cardinality.

Clearly, if Π incorporates cardinality restrictions a priori as for perfect
matchings, minimal spanning trees, or the TSP, the approach is nonsense.

So far, we have seen that the polyhedral structure induced by CHSc(E)
can easily be gotten under control. Moreover, we immediately obtain an inte-
ger programming formulation for Πc provided we have one for Π. Adding the
forbidden cardinality inequalities (1.2) to an integer programming formula-
tion, however, does not necessarily result in facet defining inequalities of the
associated polytope. For instance, consider cardinality constrained matroids.
The linear program

max
∑

e∈E

we xe

s.t. x(F ) ≤ r(F ) for all ∅ 6= F ⊆ E, (1.4)

xe ≥ 0 for all e ∈ E
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is a well-known formulation for finding a maximum weight independent set in
a matroid M = (E, I), see Edmonds [29]. Here, for any F ⊆ E, r(F ) denotes
the rank of F , which is defined to be the maximum size of an independent
set I ⊆ F . Given a cardinality sequence c = (c1, . . . , cm) with 0 ≤ c1 < · · · <
cm ≤ |E|, the cardinality restricted version of this problem can be formulated
as follows:

max
∑

e∈E

we xe

s.t. x(E) ≥ c1,
x(E) ≤ cm,

(cp+1 − |F |)x(F ) − (|F | − cp)x(E \ F ) ≤ cp(cp+1 − |F |)
for all F ⊆ E with vcp < |F | < cp+1 for some p,

x(F ) ≤ r(F ) for all ∅ 6= F ⊆ E,
xe ∈ {0, 1} for all e ∈ E.

(1.5)

By Theorem 1.2, the integer points of the associated cardinality constrained
matroid polytope

P c
M
(E) := conv{χI ∈ RE : I ∈ I ∩ CHSc(E)}

are described by the constraints of the integer program (1.5). However, the
above IP-formulation for finding a maximum weight independent set I ∈
I∩CHSc(E) is quite weak, since, in general, none of the forbidden cardinality
inequalities is facet defining for the cardinality constrained matroid polytope.

For instance, let M = (E, I) be the graphic matroid defined on the graph
G = (V,E) shown in Figure 1.2, that is, I is the collection of all forests of G.
Figure 1.2 illustrates the support graph of the forbidden cardinality inequal-
ity associated with the set F of bold edges with respect to the cardinality
sequence c = (3, 5, 12, 14). Denote the inequality by aTx ≤ 15. If x is the
incidence vector of a forest with exactly three edges, which are all in F , then
the left hand side of the inequality evaluates to 9. As is easily seen, 9 is
the maximum that can be obtained by the incidence vector of a forest that
satisfies the cardinality restrictions. In other words, the depicted inequality
is completely irrelevant, since no feasible point of the associated cardinality
constrained matroid polytope satisfies the inequality at equality.

We can make a similar observation when I represents the collection of all
simple cycles of G. Now we can find cycles of cardinality 5 whose incidence
vectors satisfy the inequality aTx ≤ 15 at equality, namely the 5-cycles whose
edges are all in F . However, it is not hard to see that there is no cycle of
feasible cardinality that contains a dashed edge and satisfies aTx ≤ 15 at
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≤ 15

c = (3, 5, 12, 14)

|F| = 9
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(a) Graph G = (V,E)

≤ 15
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|F| = 9
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(b) Support graph of an FC-inequality

Figure 1.2: Illustration of a forbidden cardinality inequality.

equality. This immediately implies that the inequality aTx ≤ 15 does not
induce a facet of the polytope associated with cardinality constrained cycles.

The problem how one can derive strong inequalities related to cardinality
conditions is the topic of Chapters 2-4.





Chapter 2

Cardinality constrained matroids and

polymatroids

This chapter is dedicated to cardinality constrained matroids and polyma-
troids. The part on matroids in Section 2.1 is joint work with Jean François
Maurras and appears in [65].

After a short introduction to the necessary foundations of matroid theory,
we give a complete linear description of the cardinality constrained matroid
polytope according to [61] and present an elementary proof of this result.
Moreover, we characterize the facet defining inequalities and give a polyno-
mial time procedure to solve the separation problem. Based on the results
for the cardinality constrained matroid, we give in Section 2.2 a complete
linear description of the cardinality constrained polymatroid and present a
polynomial time algorithm that solves the associated separation problem.

2.1 The cardinality constrained matroid polytope

Let E be a finite set and I a subset of the power set of E. The pair (E, I)
is called an independence system if (i) ∅ ∈ I and (ii) whenever I ∈ I then
J ∈ I for all J ⊂ I. If I ⊆ E is in I, then I is called an independent
set, otherwise it is called a dependent set. Dependent sets {e} with e ∈ E
are called loops. For any set F ⊆ E, B ⊆ F is called a basis of F if
B ∈ I and B ∪ {e} is dependent for all e ∈ F \ B. The rank of F is
defined by rI(F ) := max{|B| : B basis of F}. The set of all bases B of E is
called a basis system. There are many different ways to characterize when an
independence system is a matroid. Fur our purposes the following definition
will be most comfortable. (E, I) is called a matroid, and then it will be
denoted by M = (E, I), if

(iii) I, J ∈ I, |I| < |J | ⇒ ∃K ⊆ J \ I : |I ∪K| = |J |, K ∪ I ∈ I.

Equivalent to (iii) is the requirement that for each F ⊆ E all its bases have
the same cardinality. Throughout this chapter we deal only with loopless ma-
troids. The results of the chapter can be easily brought forward to matroids
containing loops.

17
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Let M = (E, I) be a matroid. A set F ⊆ E is said to be closed if
rI(F ) < rI(F ∪ {e}) for all e ∈ E \ F . It is called inseparable if there are
no sets F1 6= ∅ 6= F2 with F1 ∪̇F2 = F such that rI(F1) + rI(F2) ≤ rI(F );
otherwise it is separable.

Given any independence system (E, I) and any weights we ∈ R on the
elements e ∈ E, the combinatorial optimization problem maxw(I), I ∈ I
is called the maximum weight independent set problem. The convex hull of
the incidence vectors of the feasible solutions I ∈ I is called the independent
set polytope and will be denoted by PIND(E). If (E, I) is a matroid, then
PIND(E) is also called the matroid polytope and will be always denoted by
PM(E). The cardinality constrained versions of PIND(E) and PM(E) are the
cardinality constrained independent set polytope P c

IND
(E) and the cardinality

constrained matroid polytope P c
M(E), respectively. Throughout the chapter

we assume that the cardinality sequence c = (c1, . . . , cm) consists of at least
two members.

As it is well known, the maximum weight independent set problem on a
matroid can be solved to optimality with the greedy algorithm. Moreover,
the matroid polytope PM(E) is determined by the rank inequalities and the
nonnegativity constraints (see Edmonds [29]), i.e., PM(E) is the set of all
points x ∈ RE satisfying

x(F ) ≤ rI(F ) for all ∅ 6= F ⊆ E,
xe ≥ 0 for all e ∈ E.

(2.1)

The rank inequality associated with F is facet defining for PM(E) if and only
if F is closed and inseparable (see Edmonds [29]).

Let (E, I) be an independence system, c a cardinality sequence, and w :
E → R an objective function. The combinatorial optimization problem
max{w(I) : I ∈ I ∩CHSc(E)} is called the cardinality constrained maximum
weight independent set problem. Provided that (E, I) is a matroid, it can
be solved in polynomial time with the greedy algorithm (see Algorithm 1),
since each intermediate greedy-solution Ik ∈ I of cardinality k is an optimal
solution over all feasible solutions I ∈ I of cardinality k. Thus, choosing a
best solution among {Icp : p = 1, . . . , m} yields an optimal solution.

Turning to the polyhedral aspects, we have already shown in Chapter 1
that the system

x(F ) ≤ rI(F ) for all ∅ 6= F ⊆ E,
(cp+1 − |F |)x(F ) − (|F | − cp)x(E \ F ) ≤ cp(cp+1 − |F |) for all F ⊆ E

with cp < |F | < cp+1 for some p,
x(E) ≥ c1,
x(E) ≤ cm,
xe ∈ {0, 1} for all e ∈ E
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Algorithm 1: Greedy algorithm for cardinality constrained matroids.

Input: Matroid M = (E, I) by an independence testing oracle, a
cardinality sequence c = (c1, . . . , cm) such that cm ≤ rI(E),
and weights we ∈ R for all e ∈ E.

Output: I ∈ I with |I| = cp for some p ∈ {1, . . . , m} that
maximizes w.

(Sort) Number the elements e ∈ E such that we1 ≥ we2 ≥ . . . ≥ we|E|
.

Set I0 := ∅, p := 0, i := 1.
for p := 1 to m do

Set Ip := Ip−1.
while |Ip| < cp do

if Ip ∪ {ei} ∈ I then
Ip := Ip ∪ {ei}.
i := i+ 1.

end

end

if p ≥ 2 and w(Ip) ≤ w(Ip−1) then
return Ip−1.

end

end

return Im.

characterizes the integer points of the cardinality constrained matroid poly-
tope P c

M
(E), since P c

M
(E) is contained in the intersection of both polytopes

PM(E) and P c(E), where P c(E) denotes the polytope associated with cardi-
nality homogeneous set system CHSc(E), that is,

P c(E) := conv{χI ∈ RE : I ∈ CHSc(E)}.

However, usually P c
M
(E) = PM(E) ∩ P c(E) does not hold. As a coun-

terexample, consider the graphic matroid defined on the complete graph
K4 = (V,E) on four nodes together with the cardinality sequence c = (1, 3).
I is the collection of all forests of K4. The point x⋆ := [1, 0.5, 0.5, 0, 0, 0],
whose support graph is depicted in Figure 2.1, is the sum of the incidence
vectors of the forests {e1, e2} and {e1, e3} divided by two. Hence, x⋆ ∈ PM(E).
Moreover, x⋆ ∈ P (1,3)(E), which can be easily verified by application of
Grötschel’s separation routine for F2 := {e1, e2}, which has been explained
in Section 1.2 of Chapter 1. The forbidden cardinality inequality associated
with F2 is the inequality xe1 + xe2 − xe3 − xe4 − xe5 − xe6 ≤ 1. The point x⋆

satisfies this inequality, and hence it satisfies all forbidden cardinality inequal-
ities. However, x⋆ /∈ P

(1,3)
M (E). Suppose, for the sake of contradiction, that
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x⋆ ∈ P
(1,3)
M (E). Then exist λI ≥ 0 for I ∈ I(1,3) = I ∩ CHS(1,3)(E) such that

x⋆ =
∑

I∈I(1,3)
λIχ

I and
∑

I∈I(1,3)
λI = 1. Since x⋆i = 0 for i = 4, 5, 6, it fol-

lows immediately that λI = 0 for all I ∈ I(1,3) with I∩{e4, e5, e6} 6= ∅. Thus,
x⋆ = λI1χ

I1 + λI2χ
I2 + λI3χ

I3, where Ij := {ej} for j = 1, 2, 3. This in turn
implies λI1 = 1 and λI2 = λI3 = 0.5, a contradiction, since λI1 +λI2 +λI3 = 2.

Consequently, the forbidden cardinality inequalities (1.2) together with
the other valid inequalities are usually not sufficient to provide a complete
linear description of P c

M(E). The reason is that the inequalities (1.2) usually
define very low dimensional faces of PM as we have already observed at the
end of Chapter 1. Consider again the example there depicted in Figure 2.2(a).
None of the forests of cardinality 3, 5, 12, or 14 is tight with respect to the
illustrated inequality. However, if we fill up F with further edges such that
we obtain an edge set, say F ′, of rank 9, then the resulting inequality, which
is illustrated in Figure 2.2(b), is still valid, and in addition, there shows up
tight forests of cardinality 5 and 12.

We call an inequality as shown in Figure 2.2(b) rank induced forbidden
cardinality inequality. Maurras [61] proved in his Phd Thesis that the follow-
ing system provides a complete linear description of P c

M
(E):

FCF (x) := (cp+1 − rI(F ))x(F ) − (rI(F ) − cp)x(E \ F )
≤ cp(cp+1 − rI(F ))

for all F ⊆ E with cp < rI(F ) < cp+1,
p = 1, . . . , m− 1,

(2.2)

x(E) ≥ c1, (2.3)

x(E) ≤ cm, (2.4)

x(F ) ≤ rI(F ) for all ∅ 6= F ⊆ E, (2.5)

xe ≥ 0 for all e ∈ E. (2.6)

e1

e6 e2

e5

e3

e4

K4 = (V, E) with E = {e1, e2, e3, e4, e5, e6}

c = (1, 3)

1

0.5

0

Figure 2.1: Support graph of x⋆ = [1, 0.5, 0.5, 0, 0, 0].
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(a) Support graph of an ordinary FC-inequality
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c = (3, 5, 12, 14)
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(b) Support graph of a rank induced FC-inequality

Figure 2.2: Ordinary FC-inequality and rank induced FC-inequality.

In the following subsection, we give an elementary proof of this result.
The rank induced forbidden cardinality inequality FCF (x) ≤ cp(cp+1 −

rI(F )) associated with F , where cp < rI(F ) < cp+1, is valid as can be seen as
follows. The incidence vector of any I ∈ I of cardinality at most cp satisfies
the inequality, since |I ∩ F | = rI(I ∩ F ) ≤ cp:

(cp+1 − rI(F ))χI(F ) − (rI(F ) − cp)χ
I(E \ F ) ≤ (cp+1 − rI(F ))χI(F )

≤ (cp+1 − rI(F ))cp.

The incidence vector of any I ∈ I of cardinality at least cp+1 satisfies also the
inequality, since rI(I ∩F ) ≤ rI(F ) and thus rI(I ∩ (E \F )) ≥ cp+1 − rI(F ):

(cp+1 − rI(F ))χI(F ) − (rI(F ) − cp)χ
I(E \ F )

≤ (cp+1 − rI(F ))rI(F ) − (rI(F ) − cp)χ
I(E \ F )

≤ (cp+1 − rI(F ))rI(F ) − (rI(F ) − cp)(cp+1 − rI(F ))

= cp(cp+1 − rI(F )).

However, it is not hard to see that some incidence vectors of independent
sets I with cp < |I| < cp+1 violate the inequality.

When M = (E, I) is the trivial matroid, i.e., all F ⊆ E are independent
sets, then I ∩ CHSc(E) = CHSc(E). Thus, cardinality constrained matroids
are a generalization of cardinality homogenous set systems.

2.1.1 A complete linear description

Let M = (E, I) be a matroid. As already mentioned, PM(E) is determined
by (2.1). For any natural number k ≤ rI(E), the independence system
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Mk := (E, Ik) defined by Ik := {I ∈ I : |I| ≤ k} is again a matroid and
is called the k-truncation of M . Therefore, the matroid polytope PMk

(E)
associated with the k-truncation of M is defined by system (2.1), where the
rank inequalities are indexed with Ik instead of I. Following an argument of
Gamble and Pulleyblank [38], the only set of the k-truncation which might be
closed and inseparable with respect to the truncation, but not with respect
to the original matroid M is E itself, and the rank inequality associated with
E is the cardinality bound x(E) ≤ k. Hence, we have shown

Theorem 2.1. Let M = (E, I) be a matroid and Mk := (E, Ik) its k-
truncation. Then, PMk

(E) is determined by

x(F ) ≤ rI(F ) for all ∅ 6= F ⊆ E,
x(E) ≤ k,
xe ≥ 0 for all e ∈ E.

(2.7)

�

Of course, the connection to cardinality constraints is obvious, since
PMk

(E) = P
(0,...,k)
M (E). The basis system of Mk is the set of all bases B

of E with respect to Mk, and all bases have cardinality k. The associated
polytope

conv{χB ∈ RE : B basis of E with respect to Mk}

is determined by

x(F ) ≤ rI(F ) for all ∅ 6= F ⊆ E,
x(E) = k,
xe ≥ 0 for all e ∈ E.

(2.8)

These preliminary remarks are sufficient to present the complete linear
description. In what follows, we denote the rank function by r instead of rI .

Theorem 2.2 (Maurras [61]). The cardinality constrained matroid polytope
P c

M(E) is completely described by system (2.2)-(2.6).

We give an elementary proof of this theorem.

Proof. Since all inequalities of system (2.2)-(2.6) are valid, P c
M
(E) is con-

tained in the polyhedron defined by (2.2)-(2.6). To show the converse, we
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consider any valid inequality bTx ≤ b0 for P c
M
(E) and associate with the

inequality the following subsets of E:

P := {e ∈ E : be > 0},

Z := {e ∈ E : be = 0},

N := {e ∈ E : be < 0}.

We will show by case by case enumeration that the inequality bTx ≤ b0
is dominated by some inequality of the system (2.2)-(2.6). By definition,
E = P ∪̇Z∪̇N , and hence, if P = Z = N = ∅, then E = ∅, and it is nothing
to show. By a scaling argument we may assume that either b0 = 1, b0 = 0,
or b0 = −1.

(1) b0 = −1.

(1.1) c1 = 0. Then 0 ∈ P c
M(E), and hence 0 = b·0 ≤ −1, a contradiction.

(1.2) c1 > 0.

(1.2.1) P = Z = ∅, N 6= ∅. Assume that there is some tight I ∈ I
with |I| = cp, p ≥ 2. Then, for any J ⊂ I with |J | = c1 holds:
χJ ∈ P c

M(E) and bTχJ > bTχI = −1, a contradiction. There-
fore, if any I ∈ I ∩ CHSc(E) is tight, then |I| = c1. Thus,
bTx ≤ −1 is dominated by the cardinality bound x(E) ≥ c1.

(1.2.2) P ∪ Z 6= ∅, N = ∅. Then, bT y ≥ 0 for all y ∈ P c
M
(E), a

contradiction.

(1.2.3) P ∪ Z 6= ∅, N 6= ∅. If c1 ≤ r(P ∪ Z), then there is some
independent set I ⊆ P∪Z of cardinality c1, and hence, bTχI ≥
0, a contradiction. Thus, c1 > r(P ∪Z). Assume, for the sake
of contradiction, that there is some tight independent set J of
cardinality cp with p ≥ 2. If J ⊆ N , then the incidence vector
of any K ⊂ J with |K| = c1 violates bTx ≤ −1. Hence,
J ∩ (P ∪ Z) 6= ∅. On the other hand, J ∩ N 6= ∅ due to
cp > c1 > r(P ∪ Z). However, by removing any (cp − c1)
elements in N ∩ J , we obtain some independent set K of
cardinality c1 whose incidence vector violates the inequality
bTx ≤ −1, a contradiction. Therefore, if any T ∈ I∩CHSc(E)
is tight, then |T | = c1. Thus, bTx ≤ −1 is dominated by the
bound x(E) ≥ c1.

(2) b0 = 0.
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(2.1) P ∪ Z 6= ∅, N = ∅. Then, either bTx ≤ 0 is not valid or b = 0.

(2.2) P = ∅, Z ∪N 6= ∅. Then, bTx ≤ 0 is dominated by the nonneg-
ativity constraints xe ≥ 0 for e ∈ N or b = 0.

(2.3) P 6= ∅, N 6= ∅.

(2.3.1) c1 > 0. If c1 ≤ r(P ∪ Z), then there is some independent
set I ⊆ P ∪ Z with I ∩ P 6= ∅ of cardinality c1, and hence,
bTχI > 0, a contradiction. Thus, c1 > r(P ∪ Z). Assume, for
the sake of contradiction, that there is some tight independent
set J of cardinality cp with p ≥ 2. Since cp > c1 > r(P ∪ Z)
and J is tight, J ∩ (P ∪ Z) 6= ∅ 6= J ∩ N . From here, the
proof for this case can be finished as the proof for the case
(1.2.3) with b0 = 0 instead of b0 = −1 in order to show that
bTx ≤ 0 is dominated by the cardinality bound x(E) ≥ c1.

(2.3.2) c1 = 0. As in case (2.3.1), it follows immediately that c2 >
r(P ∪ Z), and if I ∈ I ∩ CHSc(E) is tight, then |I| = c1 = 0,
that is, I = ∅, or |I| = c2. Moreover, if I ∈ I with |I| = c2
is tight, then follows |I ∩ (P ∪ Z)| = r(P ∪ Z). Hence, bTx ≤
b0 is dominated by the rank induced forbidden cardinality
inequality FCF (x) ≤ 0 with F = P ∪ Z.

(3) b0 = 1.

(3.1) P = ∅, Z∪N 6= ∅. Then, b ≤ 0, and hence bTx ≤ 1 is dominated
by any nonnegativity constraint xe ≥ 0, e ∈ E.

(3.2) P ∪ Z 6= ∅, N = ∅. Assume that there is some I ∈ I, I /∈
CHSc(E) with |I| < cm that violates bTx ≤ 1. Then, of course,
all independent sets J ⊃ I violate bTx ≤ 1, in particular, those J
with |J | = cm, a contradiction. Hence, bTx ≤ 1 is not only a valid

inequality for P c
M(E) but also for P

(0,1,...,cm)
M (E), that is, bTx ≤ 1

is dominated by some inequality of the system (2.7) with k = cm.

(3.3) P 6= ∅, N 6= ∅. Let p ∈ {1, . . . , m} be minimal such that there
is a tight independent set I⋆ of cardinality cp. Of course, cp > 0,
because otherwise I⋆ could not be tight. If p = m, then bTx ≤ 1
is dominated by the cardinality bound x(E) ≤ cm, because then
all tight J ∈ I ∩ CHSc(E) have to be of cardinality cp = cm. So,
let 0 < cp < cm. We distinguish 2 subcases.

(3.3.1) cp ≥ r(P ∪ Z). Suppose, for the sake of contradiction, that
there is some tight independent set I of cardinality cp such
that |I ∩ (P ∪ Z)| < r(P ∪ Z). Then, I ∩ (P ∪ Z) can be
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completed to a basis B of P ∪ Z, and since |B| ≤ |I|, there
is some K ⊆ I \ B such that I ′ := B ∪K ∈ I and |I ′| = |I|.
K is maybe the empty set. Anyway, by construction, I ′ is
of cardinality cp and violates the inequality bTx ≤ 1. Thus,
|I ∩ (P ∪ Z)| = r(P ∪ Z). For the same reason, any tight
J ∈ I ∩CHSc(E) satisfies |J ∩ (P ∪Z)| = r(P ∪Z), and since
p is minimal, |J | ≥ cp. Now, with similar arguments as in
case (1.2.3) one can show that if T ∈ I ∩ CHSc(E) is tight,
then |T | = cp. Thus, cp = c1 > 0 and bTx ≤ 1 is dominated
by the cardinality bound x(E) ≥ c1.

(3.3.2) cp < r(P ∪ Z). Following the argumentation line in (3.3.1),
we see that I ⊆ P ∪ Z and |I ∩ P | has to be maximal for
any tight independent set I of cardinality cp. Assume that
cp+1 ≤ r(P ∪ Z). Then, from any tight independent set I
with |I| = cp we can construct a tight independent set J with
|J | = cp+1 by adding some elements e ∈ Z. However, it is
not hard to see that there is no tight K ∈ I ∩ CHSc(E) that
contains some e ∈ N . Thus, when cp+1 ≤ r(P ∪ Z), bTx ≤ 1
is dominated by the nonnegativity constraints ye ≥ 0, e ∈ N .
Therefore, cp+1 > r(P ∪Z). The following is now immediate:
If I ∈ I ∩ CHSc(E) is tight, then |I| = cp or |I| = cp+1; if
|I| = cp, then I ⊂ P ∪Z, and if |I| = cp+1, then |I∩(P ∪Z)| =
r(P ∪Z) and cp+1 > r(P ∪Z). Thus, bTx ≤ 1 is dominated by
the rank induced forbidden cardinality inequality FCP∪Z(x) ≤
cp(cp+1 − r(P ∪ Z)).

2.1.2 Facets

We first study the facial structure of a single cardinality constrained matroid
polytope P

(k)
M (E). All points of P

(k)
M (E) satisfy the equation x(E) = k, and

hence, any inequality x(F ) ≤ r(F ) is equivalent to the inequality x(E \
F ) ≥ k − r(F ). Motivated by this observation, we introduce the following
definitions. For any F ⊆ E, the number rk(F ) := k − r(E \ F ) is called
the k-rank of F . Due to the submodularity of r we have rk(F1) + rk(F2) ≤
rk(F ) for all F1, F2 with F = F1∪̇F2, and F is said to be k-separable if
equality holds for some F1 6= ∅ 6= F2, otherwise k-inseparable. Due to the
equation x(E) = k, dimP

(k)
M (E) ≤ |E| − 1, and in fact, in the most cases

we have equality. However, if dimP
(k)
M (E) < |E| − 1, then at least one rank

inequality x(F ) ≤ r(F ) with ∅ 6= F ( E is an implicit equation. As is
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easily seen, this implies that an inequality x(F ′) ≤ r(F ′) (or x(F ′) ≥ rk(F ′))

does not necessarily induce a facet of P
(k)
M (E), although F is inseparable

(k-inseparable). To avoid the challenges involved, we only characterize the

polytopes P
(k)
M (E) of dimension |E| − 1.

Lemma 2.3. Let M = (E, I) be a matroid and for any k ∈ N, 0 < k < r(E),
Mk = (E, Ik) the k-truncation of M with rank function rk. Then, E is
inseparable with respect to rk.

Proof. Let E = F1∪̇F2 with F1 6= ∅ 6= F2 be any partition of E. We
have to show that rk(F1) + rk(F2) > rk(E). By definition, rk(E) = k.
First, let r(Fi) ≤ k for i = 1, 2. Then, rk(Fi) = r(Fi) and consequently,
rk(F1) + rk(F2) = r(F1) + r(F2) ≥ r(E) > k due to the submodularity of r.
Next, let w.l.o.g. r(F1) > k. Then, rk(F1) = k and, since F2 6= ∅, rk(F2) > 0.
Thus, rk(F1) + rk(F2) = k + rk(F2) > k.

Lemma 2.4. Let M = (E, I) be a matroid, Mk = (E, Ik) its k-truncation
with rank function rk, ∅ 6= F ⊆ E, and F̄ = E \ F be closed with r(F̄ ) <
k < r(E). Then, F is k-inseparable with respect to rk.

Proof. r(F̄ ) < k implies rk(F̄ ) = r(F̄ ), and since beyond it F̄ is closed with
respect to r, it is also closed with respect to rk. Let F = F1∪̇F2 be a proper
partition of F . We have to show that rkk(F1)+r

k
k(F2) < rkk(F ). First, suppose

that I ∈ I with |I| = k and |I∩ F̄ | = rk(F̄ ) implies I∩F1 = ∅ or I∩F2 = ∅.
Since F̄ is closed with respect to rk, it follows that rkk(F1) = rkk(F2) = 0, while
rkk(F ) = k − rk(F̄ ) > 0. So assume that there is some independent set I ′ of
cardinality k such that |I ′ ∩ F̄ | = rk(F̄ ) and I ′ ∩ Fi 6= ∅ for i = 1, 2. Since
k < r(E), there is some element e such that I := I ′∪{e} is independent with
respect to r. Set I1 := I \ {f1} and I2 := I \ {f2} for f1 ∈ I ∩F1, f2 ∈ I ∩F2.
Then, rkk(F1) ≤ |I1 ∩ F1| and rkk(F2) ≤ |I2 ∩ F2|. Hence, rkk(F1) + rkk(F2) ≤
|I1 ∩ F1| + |I2 ∩ F2| < |I1 ∩ F1| + |I1 ∩ F2| = |I1 ∩ F | = rkk(F ).

Lemma 2.5. Let M = (E, I) be a matroid, ∅ 6= F ⊆ E, and A the matrix
whose rows are the incidence vectors of I ∈ I with |I| = k that satisfy the
inequality x(F ) ≥ rk(F ) at equality. Moreover, denote by AF the submatrix
of A restricted to F . Then, rank(AF ) = |F | if and only if rk(F ) ≥ 1,
F̄ := E \ F is closed, and (i) F is k-inseparable or (ii) k < r(E).

Proof. Necessity. The inequality x(F ) ≥ rk(F ) is valid for P
(k)
M (E). As

is easily seen, if rk(F ) ≤ 0, then rank(AF ) < |F |. Next, assume that F̄
is not closed. Then, there is some e ∈ F such that r(F̄ ∪ {e}) = r(F̄ )
which is equivalent to rk(F ) = rk(F \ {e}). Thus, x(F ) ≥ rk(F ) is the
sum of the inequalities x(F \ {e}) ≥ rk(F \ {e}) and xe ≥ 0. This implies
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χIe = 0 for all incidence vectors of independent sets I with |I| = k satisfying
x(F ) ≥ rk(F ) at equality. Again, it follows rank(AF ) < |F |. Finally, suppose
that neither k < r(E) nor F is k-inseparable. Then, k = r(E) and F is
r(E)-separable. Thus, the inequality x(F ) ≥ rr(E)(F ) is the sum of the valid
inequalities x(F1) ≥ rr(E)(F1) and x(F2) ≥ rr(E)(F2) for some F1 6= ∅ 6= F2

with F = F1∪̇F2. Setting λ := rr(E)(F2)χ
F1
F − rr(E)(F1)χ

F2
F , we see that for

any |F | × |F | submatrix ÃF of AF we have ÃFλ = 0, that is, the columns of
ÃF are linearly dependent which implies rank(AF ) < |F |.

Suffiency. First, let k = r(E). Suppose rank(AF ) < |F |. Then, AFλ = 0
for some λ ∈ RF , λ 6= 0. Since F̄ is closed and rk(F ) ≥ 1 (that is, r(F̄ ) < k),
for each e ∈ F there is an independent set I with |I| = k that contains e and
whose incidence vector satisfies x(F ) ≥ rk(F ) at equality. Thus, AF does
not contain a zero-column. Moreover, AF ≥ 0, and hence, F1 := {e ∈ F :
λe > 0} and F2 := {e ∈ F : λe ≤ 0} defines a proper partition of F . Let
J ⊆ F̄ with |J | = r(F̄ ) be an independent set. For i = 1, 2, let Bi ⊆ F
be an independent set such that J ∪ Bi is a basis of E and J ∪ (Bi ∩ Fi)
is a basis of F̄ ∪ Fi. Set Si := Bi ∩ Fi and Ti := Bi \ Si (i = 1, 2). By
construction, T1 ⊆ F2 and T2 ⊆ F1. By matroid axiom (iii), to J ∪ S1 there
is some U1 ⊆ J ∪ B2 such that K := J ∪ S1 ∪ U1 is a basis of F . Clearly,
U1 ⊆ (B2 ∩ F2) = S2. Since the incidence vectors of J ∪ B1 and K are rows
of A, it follows immediately λ(T1) = λ(U1). With an analogous construction
one can show that there is some U2 ⊆ S1 such that λ(U2) = λ(T2). It follows,
λ(T2) = −λ(S2) ≥ −λ(U1) = −λ(T1) = λ(S1) ≥ λ(U2) = λ(T2). Thus,
between all terms we have equality implying λ(S1) = λ(U2). Moreover, since
U2 ⊆ S1 and λe > 0 for all e ∈ S1, it follows S1 = U2. Hence, K = J∪S1∪S2.
This, in turn, implies that F is k-separable, a contradiction.

It remains to show that the statement is true if k < r(E). Let Mk =
(E, Ik) be the k-truncation of M with rank function rk. By hypothesis, all
conditions of Lemma 2.4 hold. Hence, F is k-inseparable with respect to
rk. Thus, all conditions of the lemma hold for rk instead of r and hence,
rank(AF ) = |F |.

Theorem 2.6. Let M = (E, I) be a matroid and k ∈ N, 0 < k ≤ r(E).

(a) P
(k)
M (E) has dimension |E|−1 if and only if E is inseparable or k < r(E).

(b) Let dimP
(k)
M (E) = |E| − 1 and ∅ 6= F ( E. The inequality x(F ) ≤

r(F ) defines a facet of P
(k)
M (E) if and only if F is closed and inseparable,

r(F ) < k, and (i) F̄ := E \ F is k-inseparable or (ii) k < r(E).

Proof. (a) First, let k = r(E). For any ∅ 6= F ⊆ E, the rank inequality
x(F ) ≤ r(F ) defines a facet of PM(E) if and only if F is closed and insepa-

rable. Consequently, the polytope P
(r(E))
M (E), which is a face of PM(E), has
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dimension |E| − 1 if and only if E is inseparable. Next, let 0 < k < r(E).
By Lemma 2.3, E is inseparable with respect to the rank function rk of the
k-truncation Mk = (E, Ik). Consequently, x(E) ≤ rk(E) = k defines a facet

of PIk
(E) and hence, dimP

(k)
M (E) = |E| − 1.

(b) Clearly, x(F ) ≤ r(F ) does not induce a facet of P
(k)
M (E) if F is

separable or not closed, since dimP
(k)
M (E) = |E|−1, and hence, any inequality

that is not facet defining for PM(E) is also not facet defining for P
(k)
M (E).

Next, if r(F ) ≥ k, then holds obviously x(F ) ≤ x(E) = k ≤ r(F ), that
is, either F is not closed, x(F ) ≤ r(F ) is an implicit equation, or the face
induced by x(F ) ≤ r(F ) is the emptyset. Finally, assume that F is closed
but neither (i) nor (ii) holds. Then, k = r(E) and F̄ is k-separable. Thus,
there are nonempty subsets F̄1, F̄2 of F̄ with F̄ = F̄1∪̇F̄2 such that rk(F̄ ) =
rk(F̄1) + rk(F̄2). Now, the inequality x(F̄ ) ≥ rk(F̄ ), which is equivalent to
x(F ) ≤ r(F ), is the sum of the valid inequalities x(F̄i) ≥ rk(F̄i), i = 1, 2,
both not being implicit equations.

To show the converse, let F satisfy all conditions mentioned in Theorem
2.6 (b). The restriction of M = (E, I) to F is again a matroid. Denote it by
M ′ = (F, I ′) and its rank function by r′. F remains inseparable with respect
to r′. Thus, the restriction of x(F ) ≤ r(F ) to F , denoted by xF (F ) ≤ r(F ) =
r′(F ), induces a facet of PI′(F ). A set of affinely independent vectors whose
sum of components is equal to some ℓ, is also linearly independent. Thus,
there are |F | linearly independent vectors χI

′
j of independent sets I ′j ∈ I ′

of cardinality r′(F ) (j = 1, . . . , |F |). The sets I ′j are also independent sets
with respect to I. Due to the matroid axiom (iii), P := I ′1 can be completed
to an independent set I1 of cardinality k. Since P ⊆ F and |P | = r(F ),
Q := I1 \P ⊆ F̄ . Now, I ′j , I1 ∈ I, I ′j ⊆ F , and r(F ) = |I ′j| < |I1| = k. Hence,
Ij := I ′j ∪ Q ∈ I for all j. Consequently, we have |F | linearly independent

vectors χIj ∈ P
(k)
M (E) satisfying x(F ) ≤ r(F ) at equality.

Next, let A be the matrix whose rows are the incidence vectors of tight
independent sets and AF̄ its restriction to F̄ . By Lemma 2.5, AF̄ contains a
|F̄ | × |F̄ | submatrix B of full rank. By construction, each row Bi of B is an
incidence vector of an independent set J ′

i ⊆ F̄ with |J ′
i| = rk(F̄ ). W.l.o.g.

we may assume that B1 = χQ, that is, Q = J ′
1. By a similar argument as

above, the independent sets Ji := J ′
i ∪ P are tight and its incidence vectors

are linearly independent.
Alltogether we have |F | linearly independent vectors χIj with Ij ∩ F̄ = Q

and |F̄ | linearly independent vectors χJi with Ji ∩ F = P , where J1 = I1.
As is easily seen, this yields a system of |F | + |F̄ | − 1 = |E| − 1 linearly
independent vectors satisfying x(F ) ≤ r(F ) at equality.
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Theorem 2.7. P c
M
(E) is fulldimensional unless c = (0, r(E)) and E is sepa-

rable.

Proof. Clearly, dimP c
M
(E) ≥ dimP

(cp)
M (E) + 1 for all p, since the equation

x(E) = cp is satisfied by all y ∈ P
(cp)
M (E) but violated by at least one vector

z ∈ P c
M(E).

If 0 < cp < r(E) for some p, then, by Theorem 2.6, dimP
(cp)
M (E) = |E|−1,

and consequently dimP c
M
(E) = |E|. If there is no such p, then c = (0, r(E)).

Again by Theorem 2.6, dimP
(r(E))
M (E) = |E|−1 if and only if E is inseparable.

Since dimP
(0,r(E))
M (E) = dimP

(r(E))
M (E) + 1, it follows the claim.

Theorem 2.8. For any ∅ 6= F ⊆ E, the rank inequality x(F ) ≤ r(F ) defines
a facet of P c

M
(E) if and only if one of the following conditions holds.

(i) 0 < r(F ) < cm−1 and F is closed and inseparable.

(ii) 0 < cm−1 = r(F ) < cm < r(E), and F is closed and inseparable.

(iii) 0 < cm−1 = r(F ) < cm = r(E), F is closed and inseparable, F̄ is
cm-inseparable, and E is inseparable.

(iv) 0 < cm−1 < cm = r(F ), F = E, and cm < r(E) or E inseparable.

(v) cm−1 = c1 = 0, cm = r(E), and r(F ) + r(E \ F ) = r(E).

Proof. We prove the theorem by case by case enumeration.
(a) Let 0 < r(F ) < cm−1. It is not hard to see that if F is separable or

not closed, then x(F ) ≤ r(F ) does not define a facet of P c
M
(E). So, let F

be closed and inseparable. By Theorem 2.6, x(F ) ≤ r(F ) defines a facet of

P
(cm−1)
M (E) and dimP

(cm−1)
M (E) = |E| − 1. Thus, it defines also a facet of

P c
M(E).

(b) Let 0 < cm−1 = r(F ) < cm < r(E). Clear by interchanging cm−1 and
cm in item (a).

(c) Let 0 < cm−1 = r(F ) < cm = r(E). The conditions mentioned in (iii)

are equivalent to the postulation that x(F ) ≤ r(F ) defines a facet of P
(cm)
M (E)

and dimP
(cm)
M (E) = |E| − 1. If, indeed, the latter is true, then x(F ) ≤ r(F )

induces a facet also of P c
M(E). To show the converse, suppose, for the sake

of contradiction, that x(F ) ≤ r(F ) does not induce a facet of P
(cm)
M (E) or

dimP
(cm)
M (E) < |E|−1. Let B := {χIj : Ij ∈ I, |Ij| = cm, j = 1, . . . , z, } be an

affine basis of the face of P
(cm)
M (E) induced by x(F ) ≤ r(F ). By hypothesis,

z ≤ |E| − 2. Moreover, set J := I1 ∩F and K := I1 \ J . Then, any incidence
vector of an independent set L ⊆ F with |L| = cm−1 can be obtained as an
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affine combination of the set B′ := B ∪ {χJ}, which can be seen as follows:
L, I1 ∈ I, and |L| = r(F ) implies L∪K ∈ I. Consequently, χL = χL∪K−χK .
Now, χK = χI1 − χJ and χL∪K =

∑z
j=1 λjχ

Ij with
∑z

j=1 λj = 1, since L∪K

is tight. Thus, χL =
∑z

j=1 λjχ
Ij − χI1 + χJ , that is, χL is in the affine hull

of B′. Since |B′| ≤ |E| − 1, x(F ) ≤ r(F ) is not facet defining for P c
M
(E), a

contradiction.
(d) Let 0 < cm−1 < r(F ) < cm. Since none of the independent sets I with

|I| = cp is tight for p = 1, . . . , m− 1, x(F ) ≤ r(F ) defines a facet of P c
M
(E) if

and only if it is an implicit equation for P
(cm)
M (E) and dimP

(cm)
M (E) = |E|−1.

However, dimP
(cm)
M (E) = |E| − 1 implies cm < r(E) or E is inseparable. In

either case, it follows that x(F ) ≤ r(F ) is an implicit equation for P
(cm)
M (E)

if and only if F = E. Thus, r(F ) = cm, a contradiction.
(e) Let 0 < cm−1 < cm = r(F ). Clearly, if F ⊂ E, then x(F ) ≤ r(F )

is strictly dominated by the cardinality bound x(E) ≤ cm. Consequently,

F = E and x(F ) ≤ r(F ) is an implicit equation for P
(cm)
M (E). For the

same reasons as in (d), dimP
(cm)
M (E) = |E| − 1. Hence, cm < r(E) or E is

inseparable.
(f) Let cm−1 = c1 = 0. Again, x(F ) ≤ r(F ) defines a facet of P c

M(E) if

and only if it is an implicit equation for P
(cm)
M (E). This is the case if and

only if cm = r(E) and r(F ) + r(E \ F ) = r(E).
(g) Let r(F ) > cm. Then, x(F ) ≤ x(E) ≤ cm < r(F ), that is, the face

induced by x(F ) ≤ r(F ) is the empty set.

Theorem 2.9. Let F ⊆ E with cp < r(F ) < cp+1 for some p ∈ {1, . . . , m−1}.
Then, the rank induced forbidden cardinality inequality FCF (x) ≤ cp(cp+1 −
r(F )) defines a facet of P c

M(E) if and only if

(a) cp = c1 = 0 and x(F ) ≤ r(F ) defines a facet of P
(cp+1)
M (E), or

(b) cp > 0, F is closed and (i) F̄ := E \F is cp+1-inseparable or (ii) cp+1 <
r(E).

Proof. For P
(cp+1)
M (E), the inequality FCF (x) ≤ cp(cp+1 − r(F )) is equivalent

to x(F ) ≤ r(F ), while for P
(cp)
M (E), it is equivalent to x(F ) ≤ cp. Hence, in

case cp = c1 = 0, FCF (x) ≤ cp(cp+1 − r(F )) induces a facet of P c
M
(E) if and

only if it induces a facet of P
(cp+1)
M (E). When dimP

(cp+1)
M (E) = |E|−1, this is

the case if and only if F is closed and inseparable and (i) F̄ is cp+1-inseparable
or (ii) cp+1 < r(E), see Theorem 2.6 (b).

In the following, let cp > 0. Let A be the matrix whose rows are the
incidence vectors of I ∈ I with |I| = cp or |I| = cp+1 that satisfy the
inequality FCF (x) ≤ cp(cp+1 − r(F )) at equality. Denote by AF and AF̄
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the restriction of A to F and F̄ , respectively. By Theorem 2.7, P c
M
(E) is

fulldimensional. Hence, FCF (x) ≤ cp(cp+1 − r(F )) is facet defining if and
only if the affine rank of A is equal to |E|.

If F is not closed, then there is some e ∈ F̄ with r(F ∪ {e}) = r(F ).
Thus, FCF ′(x) ≤ cp(cp+1 − r(F ′)) is a valid inequality for P c

M(E), where
F ′ := F ∪ {e}, and FCF (x) ≤ cp(cp+1 − r(F )) is the sum of this inequality
and −(cp+1 − cp)xe ≤ 0. Next, assume that neither (i) nor (ii) holds. Then,
cp+1 = r(E) and F̄ is r(E)-separable. Thus, there is a proper partition
F̄ = F̄1∪̇F̄2 of F̄ with rr(E)(F̄1) + rr(E)(F̄2) = rr(E)(F̄ ). Since F is closed, it
is not hard to see that rr(E)(F̄i) > 0 which implies cp < r(F ∪ F̄i) < r(E) for
i = 1, 2, and hence, the inequalities FCF∪F̄1

(x) ≤ cp(cp+1 − r(F ∪ F̄1)) and
FCF∪F̄2

(x) ≤ cp(cp+1 − r(F ∪ F̄2)) are valid. One can check again that then
FCF (x) ≤ cp(cp+1 − r(F )) is the sum of these both rank induced forbidden
cardinality inequalities.

To show the converse, let MF = (F, IF ) with IF := {I ∩ F : I ∈ I} be
the restriction of M to F and MF

cp = (F, IFcp) the cp-truncation of MF . Since
0 < cp < r(F ), Lemma 2.3 implies that F is inseparable with respect to the
rank function of MF

cp . Consequently, the restriction of x(F ) ≤ cp to F defines
a facet of PIF

cp
(F ). Hence, A contains an |F | × |E| submatrix B such that

BF is nonsingular and BF̄ = 0. Next, since F is closed, rcp+1(F̄ ) ≥ 1, and (i)
F̄ is cp+1-inseparable or (ii) cp+1 < r(E), Lemma 2.5 implies that A contains
a |F̄ | × |E| submatrix C such that CF̄ is nonsingular. Thus,

D :=

(
BF 0
CF CF̄

)

is a nonsingular |E| × |E| submatrix of A (or a row permutation of A).

2.1.3 Separation problem

Given any matroidM = (E, I), any cardinality sequence c, and any x⋆ ∈ RE ,
the separation problem consists of finding an inequality among (2.2)-(2.6) vi-
olated by x⋆ if there is any. This problem should be solvable efficiently,
due to the polynomial time equivalence of optimization and separation (see
Grötschel, Lovász, and Schrijver [46]). By default, we may assume that
x⋆ satisfies the cardinality bounds (2.3), (2.4) and the nonnegativity con-
straints (2.6). A violated rank inequality among (2.5) (if there is any) can
be found by a polynomial time algorithm proposed by Cunningham [20]. So,
we are actually interested only in finding an efficient algorithm that solves
the separation problem for the class of rank induced forbidden cardinality
inequalities (2.2). If r(F ) = |F | for all F ⊆ E, then the separation routine
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proposed by Grötschel [45] can be applied. As is already mentioned, it works
as follows. For each forbidden cardinality k one just needs to take the first
k greatest weights, say x⋆e1 , . . . , x

⋆
ek
, and check whether the rank induced for-

bidden cardinality inequality associated with F := {e1, . . . , ek} is violated by
x⋆. Otherwise we shall see that the separation problem for the rank induced
forbidden cardinality inequalities can be transformed to that for the rank
inequalities.

The separation problem for the class of rank induced forbidden cardinality
inequalities consists of checking whether or not

(cp+1 − r(F ))x⋆(F ) − (r(F ) − cp)x
⋆(E \ F ) ≤ cp(cp+1 − r(F ))

for all F ⊆ E with cp < r(F ) < cp+1 for some p ∈ {0, . . . , m− 1}.

For any F ⊆ E,

(cp+1 − r(F ))x⋆(F ) − (r(F ) − cp)x
⋆(E \ F ) ≤ cp(cp+1 − r(F ))

⇔ (cp+1 − cp)x
⋆(F ) − (r(F ) − cp)x

⋆(E) ≤ cp(cp+1 − r(F ))

⇔ x⋆(F ) ≤ cp(cp+1−r(F ))+(r(F )−cp)x⋆(E)

(cp+1−cp)
=: γF .

Moreover, for any k ∈ {1, . . . , r(E)}, the right hand sides of the inequalities
x⋆(F ) ≤ γF for F ⊆ E with r(F ) = k are equal and differ only by a constant
to the right hand sides of the corresponding rank inequalities x(F ) ≤ r(F ) =
k. Thus, both the separation problem for the rank inequalities and rank
induced forbidden cardinality inequalities could be solved by finding, for each
k ∈ {1, . . . , |E|}, a set F ⋆ ⊆ E of rank k that maximizes x⋆(F ). If x⋆(F ⋆) >
k, then the inequality x(F ⋆) ≤ r(F ⋆) is violated by x⋆. If, in addition,
cp < k < cp+1 for some p ∈ {1, . . . , m − 1} and x⋆(F ⋆) > γF ⋆, then x⋆

violates the rank induced forbidden cardinality inequality associated with
F ⋆.

This natural generalization of Grötschel’s separation algorithm, however,
seems usually not to result in an efficient separation routine. In order to
mark the difficulties, we investigate the above approach for the class of rank
inequalities, when M = (E, I) is the graphic matroid defined on some graph
G = (V,E). It is well known that the closed and inseparable rank inequalities
for the graphic matroid are of the form x(E(W )) ≤ |W | − 1 for ∅ 6= W ⊆
V . If we would tackle the separation problem for this class of inequalities
by finding, for each k ∈ {1, . . . , |V |} separately, a set W ⋆

k that maximizes
x⋆(E(W )) such that |W | = k, then we would run into trouble, since for each
k, such a problem is the weighted version of the densest k-subgraph problem
which is known to be NP-hard (see Feige and Seltser [31]).
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The last line of argument indicates that it is probably not a good idea to
split the separation problem for the rank induced forbidden cardinality in-
equalities (2.2) into many separation problems by defining for each forbidden
cardinality k between c1 and cm a subclass of inequalities

FCF (x) ≤ cp(cp+1 − k) for all F ⊆ E with r(F ) = k.

It would be rather better to approach it as “non-cardinality constrained”
problem. And this is exactly what Cunningham did for the rank inequalities.

In what follows, we firstly remind of some important facts regarding Cun-
ningham’s algorithm for the separation of the rank inequalities. Afterwards,
we show how the separation problem for the rank induced forbidden cardi-
nality inequalities can be reduced to that for the rank inequalities.

The theoretical background of Cunningham’s separation routine is the
following min-max relation.

Theorem 2.10 (Edmonds [28]). For any x⋆ ∈ RE
+,

max{y(E) : y ∈ PM(E), y ≤ x⋆} = min{r(F ) + x⋆(E \ F ) : F ⊆ E}.

�

Indeed, for any y ∈ PM(E) with y ≤ x⋆, y(E) = y(F ) + y(E \ F ) ≤
r(F ) + x⋆(E \ F ), and equality will be attained if only if y(F ) = r(F ) and
y(E \ F ) = x⋆(E \ F ). Theorem 2.10 guarantees that any F minimizing
r(F ) + x⋆(E \ F ) maximizes x⋆(F ) − r(F ). For any matroid M = (E, I)
given by an independence testing oracle and any x⋆ ∈ RE

+, Cunningham’s
algorithm finds a y ∈ PM(E) with y ≤ x⋆ maximizing y(E), a decomposition
of y as convex combination of incidence vectors of independent sets, and a
set F ⋆ ⊆ E with r(F ⋆) + x⋆(E \ F ⋆) = y(E) in strongly polynomial time.
The vector y will be constructed by path augmentations along shortest paths
in an auxiliary digraph.

Next, we return to the separation problem for the rank induced forbidden
cardinality inequalities (2.2). In what follows, we suppose that x⋆ satisfies
the rank inequalities (2.5).

Lemma 2.11. Let x⋆ ∈ RE
+ satisfying all rank inequalities (2.5). If a rank

induced forbidden cardinality inequality FCF (x) ≤ cp(cp+1−r(F )) with cp <
r(F ) < cp+1 is violated by x⋆, then cp < x⋆(E) < cp+1.

Proof. First, assume that x⋆(E) ≤ cp. Then x⋆(F ) ≤ cp, and hence,

(cp+1 − r(F ))x⋆(F ) − (r(F ) − cp)x
⋆(E \ F )

≤ (cp+1 − r(F ))cp − (r(F ) − cp)x
⋆(E \ F )

≤ cp(cp+1 − r(F )).
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Next, assume that x⋆(E) ≥ cp+1. By hypothesis, x⋆ satisfies all rank
inequalities (2.5), in particular, x(F ) ≤ r(F ). Thus,

(cp+1 − r(F ))x⋆(F ) − (r(F ) − cp)x
⋆(E \ F )

= (cp+1 − cp)x
⋆(F ) − (r(F ) − cp)x

⋆(E)
≤ (cp+1 − cp)r(F ) − (r(F ) − cp)x

⋆(E)
≤ (cp+1 − cp)r(F ) − (r(F ) − cp)cp+1

= cp(cp+1 − r(F )).

Lemma 2.12. Let x⋆ ∈ RE
+ satisfying all rank inequalities (2.5), and let

cp < x⋆(E) < cp+1 for some p ∈ {1, . . . , m − 1}. Then for any F ⊆ E we
have: If (cp+1 − r(F ))x⋆(F ) − (r(F ) − cp)x

⋆(E \ F ) > cp(cp+1 − r(F )), then
cp < r(F ) < cp+1.

Proof. Let F ⊆ E, and assume that r(F ) ≤ cp. Then,

(cp+1 − r(F ))x⋆(F ) − (r(F ) − cp)x
⋆(E \ F ) − cp(cp+1 − r(F ))

= (cp+1 − cp)x
⋆(F ) − (r(F ) − cp)x

⋆(E) − cp(cp+1 − r(F ))
≤ (cp+1 − cp)r(F ) − (r(F ) − cp)x

⋆(E) − cp(cp+1 − r(F ))
= (cp+1 − x⋆(E))
︸ ︷︷ ︸

>0

(r(F ) − cp)
︸ ︷︷ ︸

≤0

≤ 0.

Next, if r(F ) ≥ cp+1, then

(cp+1 − r(F ))x⋆(F ) − (r(F ) − cp)x
⋆(E \ F ) − cp(cp+1 − r(F ))

= (cp+1 − cp)x
⋆(F ) − (r(F ) − cp)x

⋆(E) − cp(cp+1 − r(F ))
≤ (cp+1 − cp)x

⋆(E) − (r(F ) − cp)x
⋆(E) − cp(cp+1 − r(F ))

= (cp+1 − r(F ))
︸ ︷︷ ︸

≤0

(x⋆(E) − cp)
︸ ︷︷ ︸

>0

≤ 0.

Thus, (cp+1 − r(F ))x⋆(F ) − (r(F )− cp)x
⋆(E \ F ) > cp(cp+1 − r(F )) only

if cp < r(F ) < cp+1.

Theorem 2.13. For any P c
M(E) and any x⋆ ∈ RE

+ satisfying all rank inequal-
ities (2.5), the separation problem for x⋆ and the rank induced forbidden
cardinality inequalities (2.2) can be solved in strongly polynomial time.

Proof. By Lemmas 2.11 and 2.12 we know that x⋆ violates a rank induced
forbidden cardinality inequality only if cp < x⋆(E) < cp+1 for some p ∈
{1, . . . , m − 1}. Thus, if x⋆(E) = cq for some q ∈ {1, . . . , m}, then x⋆ ∈
P c

M
(E).
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Suppose that cp < x⋆(E) < cp+1 for some p ∈ {1, . . . , m− 1}. We would
like to find some F ′ ⊆ E such that

(cp+1 − r(F ′))x⋆(F ′) − (r(F ′) − cp)x
⋆(E \ F ′) − cp(cp+1 − r(F ′)) > 0

if there is any. Lemma 2.12 says that cp < r(F ′) < cp+1, and thus, the
inequality FCF ′(x) ≤ cp(cp+1 − r(F ′)) is indeed a rank induced forbidden
cardinality inequality among (2.2) violated by x⋆. If there is no such F ′,
then for all F ⊆ E with cp < r(F ) < cp+1 the associated rank induced
forbidden cardinality inequality with F is satisfied by x⋆, and by Lemma
2.11, all other rank induced forbidden cardinality inequalities among (2.2)
are also satisfied by x⋆.

To find such a subset F ′ of E, set δ := x⋆(E)−cp
cp+1−cp

. Since cp < x⋆(E) < cp+1,

0 < δ < 1. Moreover,
cp+1−x⋆(E)

cp+1−cp
= 1 − δ. For any F ⊆ E it now follows:

(cp+1 − cp)x
⋆(F ) − (r(F ) − cp)x

⋆(E) − cp(cp+1 − r(F )) > 0

⇔ x⋆(F ) − r(F )x⋆(E)+cpx⋆(E)−cpcp+1+cpr(F )

cp+1−cp
> 0

⇔ x⋆(F ) − r(F )x
⋆(E)−cp
cp+1−cp

− cp
cp+1−x⋆(E)

cp+1−cp
> 0

⇔ x⋆(F ) − r(F )δ > cp(1 − δ)

⇔ x⋆(F )
δ

− r(F ) > cp
(1−δ)
δ
.

Setting x′ := 1
δ
x⋆, we see that the last inequality is equivalent to x′(F ) −

r(F ) > cp
(1−δ)
δ

. Thus, we can apply Cunningham’s algorithm to find some

F ⊆ E that maximizes x′(F ) − r(F ). If x′(F ) − r(F ) > cp
(1−δ)
δ

, then cp <
r(F ) < cp+1 and the rank induced forbidden cardinality inequality associated
with F is violated by x⋆.

Consequently, we suggest a separation routine that works as follows. As-
sume that the fractional point x⋆ satisfies the nonnegativity constraints and
the cardinality bounds. First, compute with Cunningham’s algorithm a sub-
set F of E maximizing x⋆(F )−r(F ). If x⋆(F )−r(F ) > 0, then the associated
rank inequality x(F ) ≤ r(F ) is violated by x⋆. If x⋆(F ) − r(F ) ≤ 0, then x⋆

satisfies all rank inequalities (2.5), and if, in addition, x⋆(E) = cp for some
p, then we know that x⋆ ∈ P c

M(E). Otherwise, i.e., if cp < x⋆(E) < cp+1 for
some p ∈ {1, . . . , m − 1}, we check whether or not there is a violated rank
induced forbidden cardinality inequality among (2.2) by applying Cunning-
ham’s algorithm on M = (E, I) and x′ = 1

δ
x⋆.

Corollary 2.14. Given a matroid M = (E, I) by an independence testing
oracle, a cardinality sequence c, and a vector x⋆ ∈ RE

+, the separation problem
for x⋆ and P c

M
(E) can be solved in strongly polynomial time. �
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2.1.4 Extensions

The cardinality constrained matroid polytope turns out to be a useful object
to enhance the theory of polyhedra associated with cardinality constrained
combinatorial optimization problems. Imposing cardinality constraints on
a combinatorial optimization problem does not necessarily turn it into a
harder problem: The cardinality constrained version of the maximum weight
independent set problem in a matroid is manageable on the algorithmic as
well as on the polyhedral side without any difficulties. Facets related to
cardinality restrictions (rank induced forbidden cardinality inequalities) are
linked to well known notions of matroid theory (closed subsets of E). The
analysis of the separation problem for the rank induced forbidden cardinality
inequalities discloses that it is sometimes better not to split a cardinality
constrained problem into “simpler” cardinality constrained problems but to
transform it into one or more non-cardinality restricted problems.

It stands to reason to investigate the intersection of two matroids with
regard to cardinality restrictions. As it is well known, if an independence sys-
tem I defined on some ground set E can be described as the intersection of
two matroids M1 = (E, I1) and M2 = (E, I2), then the optimization problem
maxw(I), I ∈ I can be solved in polynomial time, for instance with Lawler’s
weighted matroid intersection algorithm [56]. This algorithm solves also the
cardinality constrained version maxw(I), I ∈ I ∩ CHSc(E), since for each
cardinality p ≤ r(E) it generates an independent set I of cardinality p which
is optimal among all independent sets J of cardinality p. Thus, from an algo-
rithmic point of view the problem is well studied. However, there is an open
question regarding the associated polytope P c

IND(E). As it is well known,
PIND(E) = PM1(E) ∩ PM2(E), that is, the non-cardinality constrained inde-
pendent set polytope PIND(E) is determined by the nonnegativity constraints
xe ≥ 0, e ∈ E, and the rank inequalities x(F ) ≤ rj(F ), ∅ 6= F ⊆ E, j = 1, 2,
where rj is the rank function with respect to Ij . We do not know, however,
whether or not P c

IND
(E) = P c

M1
(E)∩P c

M2
(E) holds. So far, we have not found

any counterexample contradicting the hypothesis that equality holds.

2.2 The cardinality constrained polymatroid

Let S be a finite set and f a set function on S, that is, f : 2S → R. The
function f is called submodular if

f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U)

for all T, U ⊆ S. For instance, the rank function of a matroid is submodular.
The function f is called integer if f(T ) ∈ Z for all T ⊆ S. It is said to be
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nondecreasing if f(T ) ≤ f(U) whenever T ⊆ U ⊆ S.
Let f be a submodular set function on S. Then, the polyhedron

Pf (S) := {x ∈ RS : x ≥ 0, x(T ) ≤ f(T ) for all T ⊆ S}

is called the polymatroid associated with f . Pf (S) is bounded, and thus a
polytope.

In the following let f be an integer nondecreasing submodular set function
on S with f(∅) = 0. Since f is integer, Pf(S) is integer. Thus it makes sense
to introduce cardinality constraints. Let c = (c1, . . . , cm) be a cardinality
sequence with cm ≤ f(S). We call

P c
f (S) := conv{x ∈ Pf(S) ∩ ZS : x(S) = cp for some p}

the cardinality constrained polymatroid.
We notice that, strictly speaking, we leave the context of combinato-

rial optimization, since the feasible integer points are not necessarily binary.
However, integer polymatroids can be reduced to matroids. We present the
reduction, which, for instance, can be found in Schrijver [76, vol. 2, p.
776]. Associate with each s ∈ S a set Es of size f({s}), such that the set
E :=

⋃

s∈S Es is a disjoint union of the sets Es. Define a set function r on E
by

r(F ) := min
T⊆S

(|F \
⋃

s∈T

Es| + f(T ))

for F ⊆ E. Then, r is the rank function of a matroid M = (E, I),

f(T ) = r(
⋃

s∈T

Es) (2.9)

for all T ⊆ S, and

Pf(S) = conv{x ∈ ZS+ : ∃ I ∈ I with xs = |I ∩Es| ∀ s ∈ S}, (2.10)

see [76]. We say that M induces the polymatroid Pf (S).

2.2.1 Complete linear description

Theorem 2.15. Let S be a finite set and f an integer nondecreasing sub-
modular set function on S with f(∅) = 0. Moreover, let M = (E, I) be a
matroid that induces Pf(S). Then

P c
f (S) = {x ∈ RS : ∃ y ∈ P c

M(E) such that xs = y(Es) ∀ s ∈ S}. (2.11)
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Proof. Clearly, equation (2.11) is equivalent to

P c
f (S) = conv{x ∈ ZS+ : ∃ I ∈ I ∩ CHSc(E) with xs = |I ∩Es| ∀ s ∈ S},

Denote the polyhedron on the right hand side of the equation by Q. First,
we show that P c

f (S) ⊆ Q. Since P c
f (S) is an integer polyhedron, it suffices

to prove that x ∈ P c
f (S) ∩ ZS implies x ∈ Q. Let x ∈ P c

f (S) ∩ ZS. Since
P c
f (S) ⊆ Pf(S), it follows that x ∈ Pf(S) ∩ ZS, and hence exists I ∈ I such

that xs = |I ∩Es| for all s ∈ S by equation (2.10). Moreover,

|I| =
∑

s∈S

|I ∩Es| =
∑

s∈S

xs = x(S),

and thus |I| = cp for some p. This implies x ∈ Q.
Next, let x ∈ Q be an integer point. By definition of Q there is I ∈

I ∩ CHSc(E) such that xs = |I ∩ Es| for all s ∈ S. I ∈ I implies x ∈
Pf(S) by equation (2.10), while I ∈ CHSc(E) implies x(S) = cp for some p.
Consequently, x ∈ P c

f (S).

Lemma 2.16. Let S be a finite set and f an integer nondecreasing submod-
ular set function on S with f(∅) = 0.

(i) Let u ∈ Pf(S) ∩ ZS, T ⊆ S, and k ∈ Z+ such that u(T ) ≤ k ≤ f(T ).
Then exists v ∈ Pf(S)∩ZS such that v(S) = k, vs ≥ us for s ∈ T , and
vs = 0 for s ∈ S \ T .

(ii) Let u ∈ Pf(S) ∩ ZS and T ⊆ S such that f(T ) ≤ u(S). Then exists
v ∈ Pf(S)∩ZS such that v(S) = u(S), v(T ) = f(T ), vs ≥ us for s ∈ T ,
and vs ≤ us for s ∈ S \ T .

Proof. Let M = (E, I) be a matroid that induces Pf(S).
(i) Since u ∈ Pf (S) ∩ ZS, it exists I ∈ I such that us = |I ∩ Es| for all

s ∈ S. Let ET :=
⋃

s∈T Es and J := I ∩ ET . It follows immediately from
the matroid axioms that J ∈ I and that there is some K ∈ I such that
J ⊆ K ⊆ ET and |K| = k. Consequently, v defined by vs := |K ∩ Es| for
s ∈ S is a point as required.

(ii) It follows immediately from (i) that there is some w ∈ Pf(S) ∩ ZS
such that w(T ) = f(T ), vs ≥ us for s ∈ T , and vs = 0 for s ∈ S \ T . Since
u, w ∈ Pf(S)∩ZS, it exist I, J ∈ I with us := |I ∩Es| and ws := |J ∩Es| for
s ∈ S. By construction, |J | = r(ET ) ≤ |I|. By the third matroid axiom, there
is some K ⊆ I \J such that J ∪K ∈ I and |J ∪K| = |I|. Since |J | = r(ET ),
we have K ⊆ I \ T . Consequently, w defined by ws := |(J ∪K) ∩Es| for all
s ∈ S is a point as required.



2.2 The cardinality constrained polymatroid 39

Theorem 2.17 (see Schrijver [76], vol. 2, p. 781). Let S be a finite set and
f an integer nondecreasing submodular set function on S with f(∅) = 0.
Moreover, let c = (0, 1, . . . , k) for some k ∈ Z+. Then P c

f (S) is determined
by the system

x(S) ≤ k, (2.12)

x(T ) ≤ f(T ) for all ∅ 6= T ⊆ S, (2.13)

xs ≥ 0 for all s ∈ S. (2.14)

�

Theorem 2.18. Let S be a finite set and f an integer nondecreasing sub-
modular set function on S with f(∅) = 0. Then P c

f (S) is determined by the
inequalities (2.13), (2.14),

x(S) ≥ c1, (2.15)

x(S) ≤ cm, (2.16)

(cp+1 − f(T ))x(T ) − (f(T ) − cp)x(S \ T ) ≤ cp(cp+1 − f(T )) (2.17)

for all T ⊆ S with cp < f(T ) < cp+1 for some p.

Inequalities (2.17) are called f -induced forbidden cardinality inequalities.

Proof. To prove Theorem 2.18 we adapt large parts of the proof to Theo-
rem 2.2. In the following let M = (E, I) be a matroid that induces Pf (S).

Clearly, inequalities (2.13)-(2.16) are valid. To prove the validity of in-
equalities (2.17), let T be any subset of S such that cp < f(T ) < cp+1 for
some p. By equation (2.9), f(T ) = r(ET ), where ET :=

⋃

s∈T Es. Thus,

(cp+1 − r(ET ))y(ET ) − (r(ET ) − cp)y(E \ ET ) ≤ cp(cp+1 − r(ET ))

is a valid inequality for P c
M(E). By Theorem 2.15, the projection is given by

the equations xs = Es for s ∈ S. Therefore, the inequality

(cp+1 − f(T ))x(T ) − (f(T ) − cp)x(S \ T ) ≤ cp(cp+1 − f(T ))

is valid for P c
f (S).

Since all inequalities of system (2.13)-(2.17) are valid, P c
M(E) is contained

in the polyhedron defined by (2.13)-(2.17). To show the converse, we consider
any valid inequality bTx ≤ b0 for P c

f (S) and associate with the inequality the
following subsets of S:

P := {s ∈ S : bs > 0},

Z := {s ∈ S : bs = 0},

N := {s ∈ S : bs < 0}.
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We will show by case by case enumeration that the inequality bTx ≤ b0 is
dominated by some inequality of the system (2.12)-(2.16). By definition,
S = P ∪̇Z∪̇N , and hence, if P = Z = N = ∅, then S = ∅, and there is
nothing to show. By a scaling argument we may assume that either b0 = 1,
b0 = 0, or b0 = −1.

(1) b0 = −1.

(1.1) c1 = 0. Then 0 ∈ P c
f (E), and hence 0 = bT 0 ≤ −1, a contradic-

tion.

(1.2) c1 > 0.

(1.2.1) P = Z = ∅, N 6= ∅. Assume that there is some tight x ∈
P c
f (S) ∩ ZS with x(S) = cp, p ≥ 2. Then, for any x′ ∈ ZS+

with x′ ≤ x and x′(S) = c1 holds: x′ ∈ P c
f (S) and bTx′ >

bTx = −1, a contradiction. Therefore, if any x ∈ P c
f (S) ∩ ZS

is tight, then x(S) = c1. Thus, the inequality bTx ≤ −1 is
dominated by the cardinality bound x(S) ≥ c1.

(1.2.2) P ∪ Z 6= ∅, N = ∅. Then, bTx ≥ 0 for all x ∈ P c
f (S), a

contradiction.

(1.2.3) P ∪ Z 6= ∅, N 6= ∅. First, assume that c1 ≤ f(P ∪ Z).
With u = 0, T = P ∪ Z, and k = c1 we see by Lemma 2.16
that there is x′ ∈ P

(c1)
f (S) such that supp(x′) ⊆ P ∪ Z. Thus

bTx′ ≥ 0, which is a contradiction, and hence, c1 > f(P ∪
Z). Assume, for the sake of contradiction, that there is some
tight x′ ∈ P c

f (S) ∈ ZS such that x′(S) = cp for p ≥ 2. If
supp(x′) ⊆ N , then any x̂ ∈ ZS+ with x̂ ≤ x′ and x̂(S) = c1 is
a point of P c

f (S) and violates the inequality bTx ≤ −1. Hence,
supp(x′)∩(P ∪Z) 6= ∅. On the other hand, supp(x′)∩N 6= ∅

due to cp > c1 > f(P ∪Z). The latter inequality chain implies
that

∑

s∈N x
′
s ≥ cp − c1. Consequently, there exists x′′ ∈

P c
f (S) ∩ ZS such that x′′s = x′s for s ∈ P ∪ Z and x′′(S) = c1.

Clearly, x′′ violates the inequality bTx ≤ −1, a contradiction.
Therefore, if any x′ ∈ P c

f (S) is tight, then x′(S) = c1. Thus,
bTx ≤ −1 is dominated by the cardinality bound x(S) ≥ c1.

(2) b0 = 0.

(2.1) P ∪ Z 6= ∅, N = ∅. Then, either bTx ≤ 0 is not valid or b = 0.

(2.2) P = ∅, Z ∪N 6= ∅. Then, bTx ≤ 0 is dominated by the nonneg-
ativity constraints xs ≥ 0 for s ∈ N or b = 0.

(2.3) P 6= ∅, N 6= ∅.
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(2.3.1) c1 > 0. If c1 ≤ f(P ∪ Z), then by Lemma 2.16 there is some
x′ ∈ P c

f (S)∩ZS such that supp(x′) ⊆ P∪Z, supp(x′)∩P 6= ∅,
and x′(S) = c1. Hence, bTx′ > 0, a contradiction. Thus,
c1 > f(P ∪ Z). Assume, for the sake of contradiction, that
there is some tight x′ ∈ P c

f (S) such that x′(S) = cp for p ≥ 2.
Since cp > c1 > f(P ∪Z) and x′ is tight, supp(x′)∩ (P ∪Z) 6=
∅ 6= supp(x′) ∩ N . From here, the proof for this case can be
finished as the proof for the case (1.2.3) with b0 = 0 instead
of b0 = −1 in order to show that bTx ≤ 0 is dominated by the
cardinality bound x(E) ≥ c1.

(2.3.2) c1 = 0. As in case (2.3.1), it follows immediately that c2 >
f(P ∪ Z), and if x′ ∈ P c

f (S) is tight, then x′(S) = c1 = 0,
that is, x′ = 0, or x′(S) = c2. Moreover, if x′ ∈ P c

f (S)
with x′(S) = c2 is tight, then follows

∑

s∈P∪Z x
′
s = f(P ∪ Z).

Hence, bTx ≤ b0 is dominated by the f -induced forbidden
cardinality inequality FCF (x) ≤ 0 with F = P ∪ Z.

(c2 − f(T ))x(T ) − f(T )x(S \ T ) ≤ 0,

where T := P ∪ Z.

(3) b0 = 1.

(3.1) P = ∅, Z∪N 6= ∅. Then, b ≤ 0, and hence bTx ≤ 1 is dominated
by any nonnegativity constraint xs ≥ 0, s ∈ S.

(3.2) P ∪ Z 6= ∅, N = ∅. Assume that there is some x′ ∈ Pf(S) ∩ ZS
such that x′(S) 6= cp for p = 1, . . . , m, x′(S) < cm, and bTx′ > 1.
Then, of course, all x′′ ∈ Pf(S) ∈ ZS with x′′ ≥ x′ violate bTx ≤ 1,
in particular, those x′′ with x′′(S) = cm, a contradiction. Hence,
the inequality bTx ≤ 1 is not only a valid inequality for P c

f (S)

but also for P
(0,1,...,cm)
f (S), that is, bTx ≤ 1 is dominated by some

inequality of the system (2.12)-(2.14), where k = cm.

(3.3) P 6= ∅, N 6= ∅. Let p ∈ {1, . . . , m} be minimal such that there
is x⋆ ∈ P c

f (S) ∈ ZS with x⋆(S) = cp. Of course, cp > 0, because
otherwise x⋆ could not be tight. If p = m, then bTx ≤ 1 is
dominated by the cardinality bound x(S) ≤ cm, because then all
tight x′ ∈ P c

f (S) satisfy x′(S) = cm. So, let 0 < cp < cm. We
distinguish 2 subcases.

(3.3.1) cp ≥ f(P ∪ Z). Suppose, for the sake of contradiction, that
there is some tight x′ ∈ P c

f (S) ∈ ZS such that x′(S) = cp and
∑

s∈P∪Z x
′
s < f(P ∪Z). By Lemma 2.16, it exists x̂ ∈ Pf ∩ZS
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such that x̂(S) = f(P ∪Z), x̂s ≥ x′s for s ∈ P ∪Z, and x̂s = 0
for s ∈ N . Since x̂(S) ≤ cp, there is some x̄ ∈ P c

f (S) ∩ ZS
with x̄(S) = cp, x̄s = x̂s for s ∈ P ∪Z, and x̄s ≤ x′s for s ∈ N
by Lemma 2.16. By construction, x̄ violates the inequality
bTx ≤ 1. Thus,

∑

s∈P∪Z x
′
s = f(P ∪Z). For the same reason,

any tight x̃ ∈ P c
f (S)∩ZS satisfies

∑

s∈P∪Z x̃s = f(P ∪Z), and
since p is minimal, x̃(S) ≥ cp. Now, with similar arguments
as in case (1.2.3) one can show that if x̃ ∈ P c

f (S)∩ZS is tight,
then x̃(S) = cp. Thus, cp = c1 > 0 and bTx ≤ 1 is dominated
by the cardinality bound x(E) ≥ c1.

(3.3.2) cp < f(P ∪ Z). Following the argumentation line in (3.3.1),
we see that supp(x′) ⊆ P ∪Z and

∑

s∈P x
′
s has to be maximal

for any tight x′ ∈ P c
f (S) ∈ ZS with x′(S) = cp. Assume that

cp+1 ≤ f(P ∪ Z). One easily observes that from any tight
x′ ∈ P c

f (S) ∈ ZS with x′(S) = cp we can construct a tight
vector x′′ ∈ P c

f (S) ∈ ZS with x′(S)′ = cp+1 such that x′′s = x′s
for s ∈ P ∪N and x′′s ≥ x′s for s ∈ Z. However, it is not hard
to see that there is no tight x̃ ∈ P c

f (S) ∈ ZS such that x̃s > 0
for some s ∈ N . Thus, if cp+1 ≤ f(P ∪ Z), then bTx ≤ 1 is
dominated by the nonnegativity constraints xs ≥ 0, s ∈ N .
Therefore, cp+1 > f(P ∪Z). The following is now immediate:
If x′ ∈ P c

f (S) ∈ ZS is tight, then x′(S) = cp or x′(S) = cp+1; if
x′(S) = cp, then supp(x′) ⊂ P ∪ Z, and if x′(S) = cp+1, then
∑

s∈P∪Z x
′
s = f(P ∪Z) and cp+1 > f(P ∪Z). Thus, bTx ≤ 1 is

dominated by the f -induced forbidden cardinality inequality

(cp+1 − f(T ))x(T ) − (f(T ) − cp)x(S \ T ) ≤ cp(cp+1 − f(T )),

where T := P ∪ Z.

2.2.2 Extensions

The separation problem for the f -induced forbidden cardinality inequali-
ties (2.17) can be reduced to that for the inequalities (2.13). The construction
is straightforward along the lines of Section 2.1.3. The optimization version of
the separation problem for inequalities (2.13) is known as submodular func-
tion minimization, which can be performed with combinatorial algorithms in
strongly polynomial time, see Iwata, Fleischer, and Fujishige [51] and Schrij-
ver [75]). Thus, we have the following



2.2 The cardinality constrained polymatroid 43

Theorem 2.19. Let f : S → R be an integer nondecreasing submodular
function given by a value giving oracle. Moreover, let c be a cardinality
sequence and x⋆ ∈ RS

+. Then, the separation problem for x⋆ and P c
f (S) can

be solved in strongly polynomial time. �

We pass on a characterization of facets.





Chapter 3

Cardinality constrained paths and cycles

This chapter analyzes polyhedra associated with cardinality constrained ver-
sions of path and cycle problems defined on directed and undirected graphs.
Let D = (N,A) be a directed graph on n nodes that has neither loops nor
parallel arcs. An (s, t)-walk is a sequence of arcs W = (a1, a2, . . . , ar) such
that ai = (ip−1, ip) for p = 1, . . . , r with i0 = s and ir = t. If all nodes ip are
distinct, then W is called a path. If s = t, then W is a cycle, and if, in addi-
tion, all other nodes are distinct, then W is called a simple cycle. Usually we
refer to simple cycles as cycles. In what follows, we perceive paths and cycles
as subsets of the arc set A. However, directed simple paths and cycles will be
sometimes denoted by a tuple of nodes. For instance, the tuple (i1, i2, i3, i4)
denotes the path {(i1, i2), (i2, i3), (i3, i4)}; the tuple (i1, i2, i3, i4, i1) denotes
the cycle {(i1, i2), (i2, i3), (i3, i4), (i4, i1)}. Moreover, denote by Ps,t(D) and
C(D) the collection of all simple directed (s, t)-paths and the collection of all
simple directed cycles in D, respectively.

Let c = (c1, . . . , cm) be a cardinality sequence with c1 ≥ 1 and cm ≤ n.
The directed cardinality constrained (s, t)-path polytope, which will be denoted
by P c

s,t-path(D), is the convex hull of the incidence vectors of simple directed
(s, t)-paths P such that |P | = cp holds for some p ∈ {1, . . . , m}, that is,

P c
s,t-path(D) := {χP ∈ RA : P ∈ Ps,t(D) ∩ CHSc(A)}.

The directed cardinality constrained cycle polytope P c
C(D), similar defined, is

the convex hull of the incidence vectors of simple directed cycles C ∈ C(D)
with |C| = cp for some p. Note, since D does not have loops, we may assume
c1 ≥ 2 when we investigate cycle polytopes. If it is clear from the con-
text, P c

s,t-path(D) and P c
C(D) are usually just called cardinality constrained

path polytope and cardinality constrained cycle polytope, respectively. The
undirected counterparts of these polytopes are defined similarly. We denote
them by P c

s,t-path(G) and P c
C(G), where G is an undirected graph. The asso-

ciated polytopes without cardinality restrictions are denoted by Ps,t-path(D),
Ps,t-path(G), PC(D), and PC(G).

Since solving the associated linear problems is in general NP-hard, we
cannot expect to obtain complete and tractable linear characterization of

45
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Table 3.1: Literature survey on path and cycle polyhedra. D denotes a directed graph,
G an undirected graph.

Schrijver [76], chapter 13: dominant of the directed path polytope

dmt(Ps,t-path(D)) := Ps,t-path(D) +RA
+

Dahl, Gouveia [23]: hop constrained path polytope

P≤k

s,t-path(D) := P
(1,...,k)

s,t-path(D)

Dahl, Realfsen [25]: P≤k

s,t-path(D), D acyclic

Dahl, Foldnes, Gouveia [22]: hop constrained walk polytope P≤k

s,t-walk(D)

Nguyen [68]: dominant of the undirected

hop constrained path polytope

dmt(P≤k

s,t-path(G)) := P≤k

s,t-path(G) +RA
+

Balas, Oosten [4]: directed cycle polytope PC(D)

Balas, Stephan [5]: PC(D) and relaxations

Coullard, Pulleyblank [19], Bauer [9]: undirected cycle polytope PC(G)

Hartmann, Özlük [48]: directed k-cycle polytope P
(k)
C (D)

Nguyen, Maurras [63, 64],

Girlich et al. [42]: undirected k-cycle polytope P
(k)
C (G)

Bauer, Savelsbergh, Linderoth [10]: undirected hop constrained cycle

polytope P≤k
C (G)

Huygens, Mahjoub, Pesneau [50],

Dahl, Huygens, Mahjoub, Pesneau [24], k edge-disjoint hop constrained

Huygens, Labbé, Mahjoub, Pesneau [49]: path polyhedra

these polytopes neither for the ordinary polytopes nor for the cardinality
constrained versions.

Cycle and path polytopes, with and without cardinality restrictions, are
already well studied. For a literature survey on these polytopes see Table 3.
However, those publications that treat cardinality restrictions, discuss only
the cases ≤ k or = k.

The main contribution of this chapter will be the presentation of IP-
models (or IP-formulations) for cardinality constrained path and cycle poly-
topes whose inequalities generally define facets with respect to complete
graphs and digraphs. Moreover, the associated separation problems can be
solved in polynomial time.
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The basic idea to derive strong integer characterizations for cardinality
constrained path and cycle polytopes can be presented best for cycle poly-
topes. According to Balas and Oosten [4], the integer points of the ordinary
cycle polytope PC(D) can be characterized by the system

x(δout(i)) − x(δin(i)) = 0 for all i ∈ N,
x(δout(i)) ≤ 1 for all i ∈ N,

−x((S : N \ S)) + x(δout(i)) + x(δout(j)) ≤ 1 for all S ⊂ N,
2 ≤ |S| ≤ n− 2,
i ∈ S, j ∈ N \ S,

x(A) ≥ 2,
xij ∈ {0, 1} for all (i, j) ∈ A.

(3.1)

Here, δout(i) and δin(i) denote the set of arcs leaving and entering node i,
respectively; for any subsets S and T of N , (S : T ) denotes the set of arcs
{(i, j) ∈ A : i ∈ S, j ∈ T}. In case of T = N \ S, the arc set (S : T ) is called
a directed cut. If, in addition, s ∈ S and t ∈ T , (S : T ) is also said to be a
(directed) (s, t)-cut.

Next, for any S ⊆ N , we denote by A(S) the subset of arcs whose both
endnodes are in S. Moreover, for any B ⊆ A, N(B) denotes the set of nodes
covered by B.

In order to obtain a characterization of the integer points of P c
C(D) we

just have to add the cardinality bounds (1.1)

c1 ≤ x(A) ≤ cm

and the forbidden cardinality inequalities (1.2)

(cp+1 − |F |)x(F ) − (|F | − cp)x(A \ F ) ≤ cp(cp+1 − |F |)
for all F ⊆ A with cp < |F | < cp+1 for some p ∈ {1, . . . , m− 1},

by Theorem 1.2. However, as is already mentioned, the forbidden cardinality
inequalities in this form are quite weak, that is, they define very low dimen-
sional faces of P c

C(D). The key for obtaining stronger forbidden cardinality
inequalities for P c

C(D) is to count the nodes of a cycle rather than its arcs.
The trivial, but crucial observation here is that, for the incidence vector
x ∈ {0, 1}A of a cycle in D and for every node i ∈ N , we have x(δout(i)) = 1
if the cycle contains node i, and x(δout(i)) = 0 if it does not. Thus, for every
W ⊆ N with cp < |W | < cp+1 for some p ∈ {1, . . . , m− 1}, the node induced
forbidden cardinality inequality

(cp+1−|W |)
∑

i∈W

x(δout(i))−(|W |−cp)
∑

i∈N\W

x(δout(i)) ≤ cp(cp+1−|W |), (3.2)
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is valid for P c
C(D), cuts off all cycles C, with cp < |C| < cp+1, that visit

min{|C|, |W |} nodes of W , and is satisfied with equation by all cycles of
cardinality cp or cp+1 that visit min{|C|, |W |} nodes of W . Using these
inequalities one obtains the following integer characterization for P c

C(D):

x(δout(i)) − x(δin(i)) = 0 for all i ∈ N,
x(δout(i)) ≤ 1 for all i ∈ N,

−x((S : N \ S)) + x(δout(i)) + x(δout(j)) ≤ 1 for all S ⊂ N,
2 ≤ |S| ≤ n− 2,
i ∈ S, j ∈ N \ S,

c1 ≤ x(A) ≤ cm,

(cp+1 − |W |)
∑

i∈W

x(δout(i))

−(|W | − cp)
∑

i∈N\W

x(δout(i))

−cp(cp+1 − |W |) ≤ 0 ∀W ⊆ N : ∃ p :
cp < |W | < cp+1,

xij ∈ {0, 1} for all (i, j) ∈ A.

(3.3)

However, in the polyhedral analysis of cardinality constrained path and
cycle polytopes we will focus on the directed cardinality constrained path
polytope for a simple reason: valid inequalities for P c

s,t-path(D) can easily
be transformed into valid inequalities for the other polytopes. In particular,
from the IP-model for P c

s,t-path(D) that we present in Section 3.4 we derive IP-
models for the remaining polytopes P, as illustrated in Figure 3.1, such that
a transformed inequality is facet defining for P when the original inequality
is facet defining for P c

s,t-path(D).

We describe briefly the tools that are used to derive facet defining in-
equalities for the polytopes P from facet defining inequalities for P c

s,t-path(D).

The first tool is Theorem 3.6, which can be used to lift facet defining
inequalities for the directed cardinality constrained path polytope to facet
defining inequalities for the directed cardinality constrained cycle polytope
provided both polytopes are defined on appropriate digraphs. It uses the fact
that the former polytope is isomorphic to a facet of the latter polytope.

The second tool uses the concept of symmetric inequalities, which will be
explained using the example of the cycle polytopes. Suppose that the directed
cardinality constrained cycle polytope is defined on the complete digraph
Dn = (N,A). An inequality bTx ≤ β, with b ∈ RA, is called symmetric if



49

bij = bji for all i < j. One can show that the undirected counterpart
∑

1≤i<j≤n

bijyij ≤ β

of a symmetric valid inequality bTx ≤ β is valid for P c
C(Kn), where Kn de-

notes the complete undirected graph on n nodes. Moreover, it induces a
facet of P c

C(Kn) if bTx ≤ β induces a facet of P c
C(Dn). This follows from an

argument of Fischetti [32], originally stated for the ATSP and STSP, which
is also mentioned in Hartmann and Özlük [48] in the context of directed and

undirected k-cycle polytopes P
(k)
C (Dn) and P

(k)
C (Kn). This concept can be

adapted to the directed and undirected path polytopes in a modified ver-
sion. For this, we refer to Subsection 3.3.2. Since the nontrivial inequalities
presented in the IP-models for the directed cardinality constrained cycle and
path polytopes are facet defining and equivalent to symmetric inequalities,
their undirected counterparts induce facets of the undirected cardinality con-
strained cycle and path polytopes, respectively.

We do not start off with the polyhedral analysis of the directed cardi-
nality constrained path polytope P c

s,t-path(D) itself, but with its subpolytopes

P
(cp)
s,t-path(D). Theorem 3.4 and Table 3.2 imply that they are of codimension 1

whenever 4 ≤ cp ≤ n− 1, provided that we have an appropriate digraph D.

Thus, any facet defining inequality bTx ≤ β for P
(cp)
s,t-path(D) which is also valid

for P c
s,t-path(D) can easily be shown to be facet defining also for P c

s,t-path(D)

if bTx′ = β holds for some x′ ∈ P c
s,t-path(D) \ P

(cp)
s,t-path(D).

According to the previous observations, this chapter is subdivided into
the following eight parts. Section 3.1 shows that the directed cardinality
constrained path polytope is usually isomorphic to a facet of the directed
cardinality constrained cycle polytope, which makes the application of stan-
dard lifting techniques very easy. Next, Sections 3.2 and 3.3 study the single
cardinality constrained path polytope P

(k)
s,t-path(D) and related polytopes. In

Section 3.4 we present an IP-model for the directed cardinality constrained
(s, t)-path polytope P c

s,t-path(D) and give necessary and sufficient conditions
for the inequalities of this model to be facet defining. Moreover, we derive a
couple of further valid inequalities for this polytope. Most of these inequali-
ties can be transformed into valid inequalities for the undirected counterpart
of this polytope as well as the directed and undirected cardinality constrained
cycle polytope by application of polyhedral standard techniques. This is the
topic of Sections 3.5-3.7. Moreover, we derive some further strong valid in-
equalities for the directed cardinality constrained cycle polytope that are
not derived from the associated path polytope. Finally, Section 3.8 briefly
sketches the separation problems for some interesting inequalities.
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P c
C(G) P c

C(D)

P c
s,t-path(G) P c

s,t-path(D)P c
s,t-path(D)

P
(cp)
s,t-path(D)

deorienting

lifting

deorienting

lifting

Figure 3.1: P c
s,t-path(D) and related polytopes.

This is joint work with Volker Kaibel with the exception of Section 3.2,
3.3 and some parts of Section 3.5 and Section 3.8. The contents appear
in [52, 77, 78].

3.1 The relationship between directed path and cycle
polytopes

In the following we investigate the cardinality constrained path polytope
P c

0,n-path(D) defined on a digraph D = (N,A) with node set N = {0, . . . , n}.
In particular, s = 0 and t = n. Since (0, n)-paths do not use arcs entering 0
or leaving n, we may assume that δin(0) = δout(n) = ∅. Next, suppose that
A contains the arc (0, n) and the cardinality sequence c starts with c1 = 1.
Then,

dimP
(c1,c2,...,cm)
0,n-path (D) = dimP

(c2,...,cm)
0,n-path (D) + 1.

Moreover, an inequality αTx ≤ α0 defines a facet of P
(c2,...,cm)
0,n-path (D) if and only

if the inequality αTx+α0x0n ≤ α0 defines a facet of P
(1,c2,...,cm)
0,n-path (D). Thus, the

consideration of cardinality sequences starting with 1 does not give any new
insights into the facial structure of cardinality constrained path polytopes.
So we may assume that A does not contain the arc (0, n). So, for our purposes
it suffices to suppose that the arc set A of D is given by

A = {(0, i), (i, n) : i = 1, . . . , n− 1}
⋃

{(i, j) : 1 ≤ i, j ≤ n− 1, i 6= j}. (3.4)
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Therefore, by default, we will deal with the directed graph D̃n = (Ñn, Ãn),
where Ñn = {0, 1, . . . , n} and Ãn = A in (3.4).

Let D′ be the digraph that arises by removing node 0 from D̃n and iden-
tifying δout(0) with δout(n). Then, D′ is a complete digraph on node set
{1, . . . , n} and the set P(D̃n) of simple (0, n)-paths becomes the set Cn(D′)
of simple cycles that visit node n. The convex hull of the incidence vectors
of cycles C ∈ Cn(D′) in turn is the restriction of the cycle polytope defined
on D′ to the hyperplane x(δout(n)) = 1. Balas and Oosten [4] showed that
the degree constraint

x(δout(i)) ≤ 1

induces a facet of the cycle polytope defined on a complete digraph. Hence,
the path polytope P0,n-path(D̃n) is isomorphic to a facet of the cycle polytope
PC(D′). From the next theorems we conclude that this relation holds also
for cardinality constrained path and cycle polytopes. We start with some
preliminary statements from linear algebra.

Lemma 3.1. Let k 6= ℓ be natural numbers, let x1, x2, . . . , xr ∈ Rp be vectors
satisfying the equation 1Txi = k, where 1T is the vector of all ones, and let
y ∈ Rp be a vector satisfying the equation 1Ty = ℓ. Then the following holds:

(i) y is not in the affine hull of the set {x1, . . . , xr}.

(ii) The points x1, . . . , xr are affinely independent if and only if they are
linearly independent.

Proof. (i) Assume that y =
∑r

i=1 λix
i for some λ1, . . . , λr ∈ R with

∑r
i=1 λi =

1. Then it follows that ℓ = 1Ty =
∑r

i=1 λi(1
Txi) = k

∑r
i=1 λi = k, a contra-

diction.
(ii) The suffiency is clear. To show the necessity, assume that the points

are not linearly independent. Then for one point, say xr, it exist real numbers
λ1, λ2, . . . , λr−1 such that

xr =

r−1∑

i=1

λix
i.

It follows

k = 1Txr =
r−1∑

i=1

λi 1
Txi
︸︷︷︸

=k

= k
r−1∑

i=1

λi

⇒
r−1∑

i=1

λi = 1,

a contradiction.
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According to the terminology of Balas and Oosten [4], for any digraph
D = (N,A) on n nodes we call the polytope

P c
CL(D) := {(x, y) ∈ P c

C(D) × Rn : yi = 1 − x(δout(i)), i = 1, . . . , n}

the cardinality constrained cycle-and-loops polytope. Its integer points are
the incidence vectors of spanning unions of a simple cycle and loops.

Lemma 3.2. The points x1, . . . , xp ∈ P c
C(D) are affinely independent if and

only if the corresponding points (x1, y1), . . . , (xp, yp) ∈ P c
CL(D) are affinely

independent.

Proof. The map f : P c
CL(D) → PC(D), (x, y) 7→ x is an affine isomorphism.

Theorem 3.3 (Hartmann and Özlük [48]). Let Dn = (N,A) be the complete
digraph on n nodes and k ∈ N.

(i)

dimP
(k)
C (Dn) =







|A|/2 − 1, if k = 2 and n ≥ 2,
n2 − 2n, if 2 < k < n and n ≥ 5,
n2 − 3n+ 1, if k = n and n ≥ 3,

(3.5)

and dimP
(3)
C (D4) = 6.

(ii) For any node i ∈ N , the degree constraint x(δout(i)) ≤ 1 defines a facet

of P
(k)
C (Dn) whenever 4 ≤ k < n. �

Theorem 3.4. Let Dn = (N,A) be the complete digraph on n ≥ 3 nodes
and c = (c1, . . . , cm) a cardinality sequence with c1 ≥ 2, cm ≤ n, and m ≥ 2.
Then the following holds:

(i) The dimension of P c
C(Dn) is (n− 1)2.

(ii) For any node i ∈ N , the degree constraint x(δout(i)) ≤ 1 defines a facet
of P c

C(Dn).

Proof. (i) Balas and Oosten [4] proved that dimPC(Dn) = (n − 1)2. Since
P c
C(Dn) ⊆ PC(Dn), it follows immediately that dimP c

C(Dn) ≤ (n − 1)2.

When n = 3, m ≥ 2 implies P c
C(Dn) = PC(Dn), and thus dimP

(2,3)
C (D3) = 4.

When n = 4, the statement can be verified using a computer program, for
instance, with polymake [41]. For n ≥ 5 the claim follows from Lemma 3.1 (i)
and Theorem 3.3 (i) unless c = (2, n): it exists some cardinality cp, with
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2 < cp < n, and thus there are n2 − 2n + 1 affinely independent vectors

xr ∈ P
(cp)
C (Dn) ⊂ P c

C(Dn). Moreover, since m ≥ 2, there is a vector y ∈
P c
C(Dn) of another cardinality which is affinely independent from the points
xr. Hence, P c

C(Dn) contains n2 − 2n+ 2 affinely independent points proving
dimP c

C(Dn) = (n− 1)2.
The case c = (2, n) requires a higher amount of technical detail, because

the dimensions of both polytopes P
(2)
C (Dn) and P

(n)
C (Dn) are less than n2−2n.

Setting dn := dimP
(n)
C (Dn), we see that there are dn+1 = n2−3n+2 linearly

independent points xr ∈ P
(2,n)
C (Dn)∩P

(n)
C (Dn) satisfying xr(A) = n. Clearly,

the points (xr, yr) ∈ P
(2,n)
CL are also linearly independent. Next, consider the

point (x23, y23), where x23 is the incidence vector of the 2-cycle {(2, 3), (3, 2)},
and n − 1 further points (x1i, y1i), where x1i is the incidence vector of the
2-cycle {(1, i), (i, 1)}. The incidence matrix Z whose rows are the vectors
(xr, yr), r = 1, 2, . . . , dn + 1, (x23, y23), and (x1i, y1i), i = 2, 3, . . . , n, is of the
form

Z =

(
X 0
Y Q

)

,

where

Q =

(
1 0 0 1 · · · 1

0 E − I

)

.

E is the (n−1)×(n−1) matrix of all ones and I the (n−1)×(n−1) identity
matrix. E − I is nonsingular, and thus Q is of rank n. X is of rank dn + 1,
and hence rank (Z) = dn + 1 + n = n2 − 2n+ 2. Together with Lemma 3.2,
this yields the desired result.

(ii) When n ≤ 4, the statement can be verified using a computer program.
When n ≥ 5 and 4 ≤ cp < n for some index p ∈ {1, . . . , m}, the claim can be
showed along the lines of the proof to part (i) using Theorem 11 of Hartmann

and Özlük [48] saying that the degree constraint defines a facet of P
(cp)
C (Dn).

It remains to show that the claim is true for

c ∈ {(2, 3), (2, n), (3, n), (2, 3, n)},

where n ≥ 5. W.l.o.g. consider the inequality x(δout(1)) ≤ 1. When c =
(2, 3), consider all 2- and 3-cycles whose incidence vectors satisfy x(δout(1)) =
1. This are exactly n2 − 2n + 1 cycles, namely the 2-cycles {(1, j), (j, 1)},
j = 2, . . . , n, and the 3-cycles {(1, j), (j, h), (h, 1)} for all arcs (j, h) that are
not incident with node 1. Their incidence vectors are affinely independent,
and hence, the degree constraint is facet defining for P

(2,3)
C (Dn). This implies

also that it induces a facet of P
(2,3,n)
C (Dn). Turning to the case c = (2, n),
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note that the degree constraint is satisfied with equality by all Hamiltonian
cycles. Hence, we have dn + 1 linearly independent Hamiltonian cycles and
again, the 2-cycles {(1, i), (i, 1)}, which are linearly independent of them.
Finally, let c = (3, n). Beside dn + 1 Hamiltonian cycles, consider the 3-
cycles (1, 3), (3, 4), (4, 1) and {(1, 2), (2, j), (j, 1)}, j = 3, . . . , n. Then the
n2 − 2n + 1 corresponding points in P c

CL(Dn) build a nonsingular matrix.
Hence, by Lemma 3.2, it follows the desired result.

Corollary 3.5. (i) Let 4 ≤ k < n. Then,

dimP
(k)
0,n-path(D̃n) = n2 − 2n− 1.

(ii) Let c = (c1, . . . , cm) be a cardinality sequence with m ≥ 2 and c1 ≥ 2.
Then,

dimP c
0,n-path(D̃n) = n2 − 2n.

Another important fact can be derived from both theorems. Facet defin-
ing inequalities for P c

0,n-path(D̃n) can easily be lifted to facet defining inequal-
ities for P c

C(Dn). For sequential lifting, see Nemhauser and Wolsey [67].

Theorem 3.6. Let c = (c1, . . . , cm) be a cardinality sequence with 4 ≤ c1 < n
if m = 1, and 2 ≤ c1 < . . . < cm ≤ n otherwise. Moreover, let αTx ≤ α0

be a facet defining inequality for P c
0,n-path(D̃n) and γ the maximum of α(C)

over all cycles C in D̃n with |C| = cp for some p. Setting αni := α0i for
i = 1, . . . , n− 1, the inequality

n∑

i=1

n∑

j=1
j 6=i

αijxij + (γ − α0)x(δ
out(n)) ≤ γ (3.6)

defines a facet of P c
C(Dn). �

This fact implies that it would be profitably to study first the facial struc-
ture of the cardinality constrained directed path polytope and afterwards that
of the corresponding cycle polytope. However, for the (0, n)-k-path polytope
we will proceed in the opposite direction, since the k-cycle polytope is already
well studied. This means, starting from the results for the k-cycle polytope
P

(k)
C (Dn) given by Hartmann and Özlük [48] we will prove in many cases

analogous results for the (0, n)-k-path polytope (D̃n) and it is not surpris-
ing that this can often be done along the lines of the proofs of the authors
mentioned above.

No similar relationship seems to hold between undirected cycle and path
polytopes.
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3.2 The directed (0, n)-k-path polytope

Since the directed k-cycle polytope is already well studied by Hartmann and
Özlük [48] and this and the directed (0, n)-k-path polytope are closely related
to each other, it seems likely that many theorems and proof methods used in
this section are very similar to that in [48]. Indeed, one part of this section

is to translate those results in [48] into related results for P
(k)
0,n-path(D).

Let D = (N,A) be a digraph on node set N = {0, . . . , n} whose arc set

A contains neither loops nor parallel arcs. The integer points of P
(k)
0,n-path(D)

are characterized by the system

x(δin(0)) = 0, (3.7)

x(δout(n)) = 0, (3.8)

x(δout(i)) − x(δin(i)) =







1 if i = 0,
0 if i ∈ N \ {0, n},

−1 if i = n,
(3.9)

x(A) = k, (3.10)

x(δout(i)) ≤ 1 ∀ i ∈ N \ {0, n}, (3.11)

x((S : N \ S)) ≥ x(δout(j)) ∀S ⊂ N, 3 ≤ |S| ≤ n− 2, (3.12)

0, n ∈ S, j ∈ N \ S,

xij ∈ {0, 1} ∀ (i, j) ∈ A. (3.13)

The incidence vectors of node-disjoint unions of a (0, n)-path and cycles
on node set N \ {(0, n)} are described by the equations (3.7)-(3.8), the flow
conservation constraints (3.9), degree constraints (3.11), and the integrality
constraints (3.13). The one-sided min-cut inequalities (3.12) are satisfied
by all (0, n)-paths but violated by the union of a (0, n)-path and cycles on
N \ {0, n}. Finally, the cardinality constraint (3.10) ensures that all (0, n)-
paths are of cardinality k.

Complete linear descriptions of P
(k)
0,n-path(D) for k = 1, 2, 3 are given in

Table 3.2, where D = D̃n. The results for k = 2 and k = 3 follow from the
fact that a (0, n)-2-path visits exactly one internal node and a (0, n)-3-path
contains exactly one internal arc. Here, a node i ∈ Ñn\{0, n} will be called an
internal node. Arcs connecting two internal nodes are called internal arcs.
Since the number of internal nodes is n− 1, the dimension of P

(2)
0,n-path(D̃n) is

n− 2, and since the number of internal arcs is (n− 1)(n− 2), the dimension

of P
(3)
0,n-path(D̃n) is equal to (n − 1)(n − 2) − 1 = n − 3n + 1. The (0, n)-1-

path polytope P
(1)
0,n-path(D̃n) has clearly dimension 0 and is determined by the
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Table 3.2: Polyhedral Analysis of P
(k)

0,n-path(D̃n).

k Dimension Complete linear description

x0n = 1
1 0

xij = 0 ∀ (i, j) ∈ Ãn \ {(0, 1)}
x(δin(0)) = 0
x(δout(n)) = 0

xij = 0 ∀ (i, j) ∈ Ãn(Ñn \ {0, n})2 n− 2
x(δout(0)) = 1

x0j − xjn = 0 ∀ j ∈ Ñn \ {0, n}

x0j ≥ 0 ∀ j ∈ Ñn \ {0, n}
x(δin(0)) = 0
x(δout(n)) = 0

x(Ã′
n) = 1, Ã′

n := Ãn(Ñn \ {0, n})3 n2 − 3n+ 1
x(δout(i)) = x0i + xin ∀ i ∈ Ñn \ {0, n}
x(δin(i)) = x0i + xin ∀ i ∈ Ñn \ {0, n}

xij ≥ 0 ∀ (i, j) ∈ Ãn(Ñn \ {0, n})

Partial linear description

4
... n2 − 2n− 1

equations (3.7)-(3.10)

n− 1
see Section 3.2.2

Remark

n n2 − 3n+ 1 equivalent to the ATSP

equations x0n = 1 and xij = 0 for all (i, j) ∈ Ãn \ {(0, n)}. As is already

mentioned in Section 3.1, the dimension of P
(k)
0,n-path(D̃n) is equal to n2−2n−1

whenever 4 ≤ k < n. Finally, when k = n, P
(k)
0,n-path(D̃n) is isomorphic to

the asymmetric traveling salesman polytope (ATSP) which has dimension
n2 − 3n+ 1 (see [44]).

3.2.1 Basic results

This subsection adapts essentially Section 2 of Hartmann and Özlük [48].
Lemma 3.7 amalgamates Lemmas 2 and 6 of [48] for our purposes. The other
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statements of this section can be proved in the same manner as the original
statements in [48]; so we omit their proofs.

Lemma 3.7 (cf. Lemmas 2 and 6 of Hartmann and Özlük [48]). Let 3 ≤

k < n, c ∈ RÃn , s, t ∈ Ñn, s 6= t, and R ⊆ Ñn \ {s, t, 0, n}. There are λ, πs,
πt, and πj , j ∈ R, with

csi = λ+ πs − πi ∀ i ∈ R,
cit = λ+ πi − πt ∀ i ∈ R,

cij = λ+ πi − πj ∀ (i, j) ∈ Ãn(R),

if one of the following conditions holds:

(i) |R| ≥ 5 and cih + chj = ciℓ + cℓj for all distinct nodes i ∈ R ∪ {s},
j ∈ R ∪ {t}, h, ℓ ∈ R.

(ii) |R| ≥ k ≥ 4 and c(P ) = γ for all (s, t)-k-paths P , whose internal nodes
are all in R.

(iii) |R| = k− 1, c(P ) = γ for all (s, t)-k-paths P , whose internal nodes are
all the nodes of R, and c(P ) = δ for all (s, t)-r-paths P , all r − 1 of
whose internal are in R, for some 2 ≤ r < k.

(iv) k = 3, |R| ≥ 3, c(P ) = γ for all (s, t)-3-paths P , whose internal nodes
are all in R, and c(P ) = δ for each (s, t)-2-path P whose inner node is
in R.

Proof. (i) In particular, cih+chj = ciℓ+cℓj for all distinct nodes i, j, h, ℓ ∈ R.
Using Lemma 2 of Hartmann and Özlük [48], it follows that there are λ and
πj , j ∈ R, with

cij = λ+ πi − πj ∀ (i, j) ∈ Ãn(R).

Next, setting πs := csh + πh − λ and πt := λ + πh − cht for some h ∈ R, we
derive

csi = csh + chℓ − ciℓ = λ+ πs − πi,

cit = cht + cℓh − cℓi = λ+ πi − πt

for all i ∈ R.

(ii) First, let |R| ≥ 5. Since |R| ≥ k, for all distinct nodes i, j, h, ℓ ∈ R
there is an (s, t)-k-path that contains the arcs (i, h) and (h, j) but does not
visit node ℓ. Replacing node h by node ℓ in P yields another (s, t)-k-path
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and thus cih + chj = ciℓ + cℓj for all distinct nodes i, j, h, ℓ ∈ R. Lemma 2 of
Hartmann and Özlük implies that there are λ and πj, j ∈ R, such that cij =
λ+πi−πj for all (i, j) ∈ Ãn(R). Set πs := csh+πh−λ and πt := λ+πℓ− cℓt
for some h 6= ℓ ∈ R. Any (s, t)-k-path whose internal nodes are in R and
that uses the arcs (s, h), (ℓ, t) yields γ = kλ + πs − πt. Further, considering
for i ∈ R an (s, t)-k-path P whose internal nodes are in R and that uses the
arcs (s, i), (ℓ, t) yields csi = λ + πs − πi for all i ∈ R. Analogously, it follows
that cjt = λ+ πj − πt for all j ∈ R.

Next, let |R| = k = 4. Without loss of generality, we may assume that
R = {1, 2, 3, 4}. Setting Q := {1, 2, 3} and identifying the nodes s and t,
Theorem 23 of Grötschel and Padberg [47] implies that there are αs, βt,
{αj : j ∈ Q}, and {βj : j ∈ Q} such that

csi = αs + βi ∀ i ∈ Q,

cij = αi + βj ∀ (i, j) ∈ Ãn(Q),
cit = αi + βt ∀ i ∈ Q.

Considering for any two nodes i 6= j ∈ Q the (s, t)-4-paths (s, 4, h, i, t) and
(s, 4, h, j, t), where h is the remaining node inQ, we see that chi+cit = chj+cjt
which implies that αi + βi = αj + βj for all i, j ∈ Q. Denoting by λ this
common value and setting πs := αs, πj := αj for j = 1, 2, 3, and πt := λ−βt,
yields csi = λ+πs−πi, cit = λ+πi−πt for i = 1, 2, 3, and cij = λ+πi−πj for
all (i, j) ∈ Ãn(Q). Now setting π4 := λ+πs−cs4, we see that c4t = λ+π4−πt,
ci4 = λ+ πi − π4, and c4i = λ+ π4 − πi for i = 1, 2, 3.

(iii) This is Lemma 6 of Hartmann and Özlük [48].

(iv) Without loss of generality, let 1, 2 ∈ R. Condition (iii) implies that
there are λ, πs, π1, π2, and πt with the required property restricted on Q :=
{1, 2}. Further, it follows that γ = 3λ+πs−πt and δ = 2λ+πs−πt. Setting
πi := λ+πs−csi for all i ∈ R\Q, we see immediately that cit = λ+πi−πt for
all i ∈ R \Q. Thus we also obtain cij = λ+πi−πj for all (i, j) ∈ Ãn(R).

Equivalence of inequalities is an important matter when studying poly-
hedra. The next results can be used to identify equivalent inequalities with
respect to P

(k)
0,n-path(D̃n). Before stating them, we introduce some notions and

recall some facts.
First, note that two valid inequalities for the polytope P

(k)
0,n-path(D̃n) are

equivalent if one can be obtained from the other by multiplication with a
positive scalar and adding appropriate multiples of the flow conservation
constraints (3.9) and the cardinality constraint (3.10). Clearly, two valid

inequalities define the same facet of P
(k)
0,n-path(D̃n) if and only if they are
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equivalent, because the mentioned equations are all implicit equations for
this system.

Next, let Cy = d be a linear equation system with C ∈ Rk×r and d ∈ Rr,
let J be the column index set of C, and denote the jth column of C by Cj.
A subset K of J or the set of variables associated with K is said to be a basis
of the system Cy = d if the columns Cj , j ∈ K are linearly independent and
if the set {Cj | j ∈ K} spans the linear hull of A, that is, of {Aj | j ∈ J }.

Finally, we introduce the following two definitions: a balanced cycle is
a (not necessarily directed) simple cycle that contains the same number of
forward and backward arcs and an unbalanced 1-tree is a subgraph of D
consisting of a spanning tree T plus an arc (h, ℓ) whose fundamental cycle
C(h, ℓ) is not balanced.

Theorem 3.8 (cf. Theorem 3 of Hartmann and Özlük [48]). Let n ≥ 2
and let H be a subgraph of D. The variables corresponding to the arcs of H
form a basis for the linear equality system (3.9), (3.10) if and only if H is an
unbalanced 1-tree. �

Corollary 3.9 (cf. Corollary 4 of Hartmann and Özlük [48]). Let cTx ≤ c0
be a valid inequality for P

(k)
0,n-path(D̃n), and let values bij be specified for the

arcs (i, j) in an unbalanced 1-tree H . Then there is an equivalent inequality
c̃Tx ≤ c̃0 for which c̃ij = bij for all arcs (i, j) ∈ H . �

Corollary 3.10 (cf. Corollary 5 of Hartmann and Özlük [48]). Let 3 ≤ k <

n, c ∈ RÃn , s ∈ Ñn \ {n}, t ∈ Ñn \ {0}, s 6= t, R ⊆ Ñn \ {s, t, 0, n} with
|R| ≥ 2, let either of the conditions of Lemma 3.7 be satisfied, and suppose
that cij = β holds for all (i, j) in an unbalanced 1-tree H on R. Then cij = β
for all i, j ∈ R. Moreover, there are σ and τ with csi = σ and cit = τ for all
i ∈ R.

Proof. In either case, Lemma 3.7 implies that there are λ, πj , j ∈ R, πs, and
πt with

csi = λ+ πs − πi ∀ i ∈ R,
cit = λ+ πi − πt ∀ i ∈ R,

cij = λ+ πi − πj ∀ (i, j) ∈ Ãn(R),

Without loss of generality, let πh = 0 for some h ∈ R. Theorem 3.8 then
implies that λ = β and πj = 0 for all j ∈ R. Thus, csi = β + πs and
cit = β − πt for all i ∈ R.

The next result can be used to lift facet defining inequalities for the
(0, n)-k-path polytope defined on D̃n into facet defining inequalities for the
(0, n)-k-path polytope defined on Dn+r+1 − (δ−(0) ∪ δ+(n)). Here, Dn+r+1
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denotes the complete digraph on node set {0, 1, . . . , n + r}. Moreover, for
any subset B of the arc set A of a directed graph D = (N,A), D−B denotes
edge deletion: D − B := (N,A \B).

Before stating the next theorem we need some definitions. A subset B ⊆
Ãn of cardinality k is called a k-bowtie if it is the union of a (0, n)-path P
and a simple cycle C connected at exactly one node. The k-bowtie B is said
to be tied at node h if Ñn(P ) ∩ Ñn(C) = {h}. A facet F of P

(k)
0,n-path(D̃n) is

called regular if it is defined by an inequality cTx ≤ c0 that is not equivalent
to a nonnegativity constraint xij ≥ 0 or a broom inequality

x((δout(i)) ≥ xji + xih (3.14)

for some internal node i, where j = h is an internal node or j = 0 and
h = n. Note that F is already regular if for each internal node h, there is a
(0, n)-k-path P with c(P ) < c0 that does not visit node h (see [48]).

Theorem 3.11 (cf. Theorem 8 of Hartmann and Özlük [48]). Suppose that

cTx ≤ c0 induces a regular facet of P
(k)
0,n-path(D̃n), where 3 < k < n. Let h be

an internal node such that c(B) ≤ c0 for all k-bowties B tied at node h and
let δh be the maximum of c(Γ) over all 0, n-paths Γ of cardinality k − 1 that
visit node h. Then

cTx+

n−1∑

i=0
i6=h

cihxi,n+1 +

n∑

j=1
j 6=h

chjxn+1,j + (c0 − δh)[xh,n+1 + xn+1,h] ≤ c0 (3.15)

defines a regular facet of P
(k)
0,n-path(D

′), where D′ is the digraph obtained by
subtracting from the complete digraph on node set {0, . . . , n+1} the arc sets
(δin(0) and δout(n)). �

Since inequality (3.15) is obtained by copying the coefficient structure of
node h, one refers to this process as “lifting by cloning node h”. Clearly,
repeating this process r times, we end up with a facet defining inequality for
the (0, n)-k-path polytope defined on the digraph Dn+r+1 − (δ−(0) ∪ δ+(n))
provided we started with a facet defining inequality for the (0, n)-k-path
polytope defined on D̃n. In order to show that a class K of regular inequalities
define facets of the (0, n)-k-path polytope it suffices to show it for a subclass
K′ ⊂ K from which the remaining inequalities in K \ K′ can be obtained by
cloning internal nodes. The members of a minimal subclass K′ (minimal with
respect to set inclusion) are said to be primitive.

Before stating the last theorem of this section we need again some def-
initions. Let F be a subset of Ãn, the auxiliary graph GF is an undi-
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rected bipartite graph on 2n nodes v0, . . . , vn−1, w1, . . . , wn, with the prop-
erty that (i, j) ∈ F if and only if GF contains the arc (vi, wj). More-
over, we define the following equivalence relation on the arc set Ãn: two
arcs (i, j) and (h, ℓ) are related with respect to cTx ≤ c0, if there is an arc
(f, g) ∈ Ãn with aij = afg = ahℓ and two tight (0, n)-k-paths Pij, Phℓ such
that (i, j), (f, g) ∈ Pij and (h, ℓ), (f, g) ∈ Phℓ.

Theorem 3.12 (cf. Theorem 9 of Hartmann and Özlük [48]). Let b ∈ RÃn
+

and bTx ≤ β be a facet defining inequality for P
(k)
0,n-path(D̃n), where 3 < k < n.

Suppose that the auxiliary graph GZ for the arc set Z := {(i, j) ∈ Ãn : bij =
0} is connected, every tight (0, n)-k-path with respect to bTx ≤ β contains at
least one arc (i, j) ∈ Z, and every arc (i, j) belongs to the same equivalence
class with respect to bTx ≤ β. Let R be a set of nodes, set q := k + |R|, and
let t be the smallest number such that

bTx+ t
∑

j∈R

x(δout(j)) ≤ β + |R|t (3.16)

is valid for all (0, n)-q-paths on Ñn ∪ R, and if |R| ≥ 2 suppose that at
least one tight (0, n)-q-path with respect to (3.16) visits r nodes in R with
0 < r < |R|. Then (3.16) is facet defining for the (0, n)-q-path polytope on
Ñn ∪ R. �

3.2.2 Facets and valid inequalities

In what follows, we will show that the inequalities given in the IP-formulation,
the nonnegativity constraints xij ≥ 0, as well as some more inequalities

are in general facet defining for P
(k)
0,n-path(D̃n). Throughout, we assume that

4 ≤ k ≤ n − 1. The inequalities considered in Theorems 3.13 - 3.17 were
shown to be valid for the k-cycle polytope in Hartmann and Özlük [48]. So

they are also valid for P
(k)
0,n-path(D̃n), since the (0, n)-k-path polytope on D

can be interpreted as the restriction of the k-cycle polytope on Dn to the
hyperplane defined by x(δout(n)) = 1.

Trivial inequalities

Theorem 3.13 (cf. Theorem 10 of Hartmann and Özlük [48]). The non-
negativity constraint

xij ≥ 0 (3.17)

is valid for P
(k)
0,n-path(D̃n) and induces a facet of P

(k)
0,n-path(D̃n) whenever 4 ≤

k ≤ n− 1.
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Proof. When n ≤ 6 and k = 4 or k = 5, (3.17) can be proved to induce a
facet by application of a convex hull code (e.g. Polymake [41]), so we assume

that n ≥ 7. Suppose that cTx = c0 is satisfied by every x ∈ P
(k)
0,n-path(D̃n)

with xij = 0. At least one of the two nodes i and j is an internal node,
because (0, n) /∈ Ãn. Without loss of generality, we may assume that j ∈
{1, . . . , n− 1} and set R := Ñn \ {0, n, j}. By Corollary 3.9, we may assume
that cjw = c0w = cwn = 0 for some w ∈ R and chℓ = 0 for all arcs (h, ℓ) in
some unbalanced 1-tree on R.

Let q ∈ R ∪ {0}, r, s ∈ R, t ∈ R ∪ {n} be distinct nodes, and let P be a
(0, n)-k-path that contains the arcs (q, r) and (r, t) but does not visit node s
or use the arc (i, j). Substituting node r by node s in P we obtain another
(0, n)-k-path that does not use (i, j). Hence condition (3.7) of Lemma 3.7
holds, and Corollary 3.10 implies that chℓ = 0 for all (h, ℓ) ∈ Ãn(Ñn \ {j})
which also implies that c0 = 0.

Each (0, n)-k-path that uses the arc (j, w) but does not use the arc (i, j)
also satisfies (3.17) with equality, so chj = 0 for all h ∈ Ñn \{i, n, w}. Similar
considerations yield cjh = 0 for all h ∈ Ñn \ {0} and cwj = 0 if w 6= i.
Thus, chℓ = 0 for all arcs (h, ℓ) 6= (i, j) and therefore cTx = c0 is simply
cijxij = 0.

Theorem 3.14 (cf. Theorem 11 of Hartmann and Özlük [48]). Let j be an
internal node. The degree constraint

x(δout(j)) ≤ 1 (3.18)

is valid for P
(k)
0,n-path(D̃n) and induces a facet of P

(k)
0,n-path(D̃n) whenever 4 ≤

k ≤ n− 1.

Proof. Without loss of generality, we will show that x(δout(1)) ≤ 1 defines

a facet of P
(k)
0,n-path(D̃n). First we will show that Theorem 3.14 holds when

k = 4. If n = 5, x(δout(1)) ≤ 1 can be proved to define a facet using a convex
hull code. Theorem 3.11 applied to node 2 yields then the result when n ≥ 6.

Secondly, we will investigate the case k ≥ 5. Suppose that cTx = c0 is
satisfied by every x ∈ P

(k)
0,n-path(D̃n) with x(δout(1)) = 1. By Corollary 3.9,

we may assume that c21 = c02 = c2n = 0 and cij = 0 in some unbalanced
1-tree on R := {2, 3, . . . , n− 1}. Since |R| ≥ k − 1 ≥ 4 and c(P ) = c0 − c01
for all (1, n)-paths P of cardinality k − 1 whose internal nodes are all in R,
condition (3.7) of Lemma 3.7 holds. Thus, cij = 0 for all (i, j) ∈ Ãn(R∪{n})
and c1j = 1 for all j ∈ R using Corollary 3.10. Now it is easy to see that
cTx = c0 is simply x(δout(1)) = 1.
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S

0

n

Ñn \ S

≥ 1

Figure 3.2: Illustration of a min-cut inequality for k = 5 and |S| = 5.

Cut inequalities

Theorem 3.15 (cf. Theorem 12 of Hartmann and Özlük [48]). Let S ⊂ Ñn

and 0, n ∈ S. The min-cut inequality

x((S : Ñn \ S)) ≥ 1 (3.19)

is valid for P
(k)
0,n-path(D̃n) if and only if |S| ≤ k. Furthermore, it induces a

facet of P
(k)
0,n-path(D̃n) if and only if 3 ≤ |S| ≤ k and |Ñn \ S| ≥ 2.

Figure 3.2 sketches the support graph of a min-cut inequality for k = 5
and |S| = 5. As is easily seen, each (0, n)-5-path has to use at least one cut
arc (i, j) ∈ (S : Ñn \ S) depicted by the arrow from S to Ñn \ S.

Proof of Theorem 3.15. The min-cut inequality (3.19) is valid for P
(k)
0,n-path(D̃n)

if and only if |S| ≤ k, since a (0, n)-k-path can be obtained in S if and only if
|S| ≥ k+1. When |S| = 2, (3.19) is an implicit equation. When |Ñn\S| = 1,
n ≤ k. So we suppose that 3 ≤ |S| ≤ k and |Ñn \ S| ≥ 2.

First let |S| = 3. When |Ñn \ S| ≤ 4, (3.19) can be shown to be facet
defining by means of a convex hull code, so let |Ñn \ S| ≥ 5. Let w.l.o.g.

S = {0, 1, n} and suppose that cTx = c0 is satisfied by every x ∈ P
(k)
0,n-path(D̃n)

that satisfies (3.19) with equality. Using Corollary 3.9, we may assume that
c01 = 0, c0w = c0 and cwn = 0 for some w ∈ Ñn \ S, as well as cij = 0 for all
arcs (i, j) in some unbalanced 1-tree H on Ñn \ S.

Let i ∈ (Ñn\S)∪{0}, j ∈ (Ñn\S)∪{n}, h, l ∈ Ñn\S be distinct nodes, and
let P be a tight (0, n)-k-path that contains the arcs (i, h), (h, j) but does not
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visit node ℓ. Such a path P exists even when k = 4. Replacing node h by node
ℓ yields another tight (0, n)-k-path, and hence condition (3.7) of Lemma 3.7
holds. Corollary 3.10 implies that cij = 0 for all (i, j) ∈ Ãn(Ñn \S), c0i = c0,
and cin = 0 for all i ∈ Ñn\S. Now it is easy to see that c1i = c0 and ci1+c1n =
0 for all i ∈ Ñn \ S. Subtracting c1n times the equation x(δin(n)) = 1 and
adding c1n times the equation x((Ñn \ S : S)) − x((S : Ñn \ S)) = 0, we see
that cTx = c0 is equivalent to (c0 − c1n)x(S : Ñn \ S) = c0 − c1n.

Secondly, let |S| ≥ 4. Let w.l.o.g. S = {0, 1, 2, . . . , q, n} for some q <

k and suppose that cTx = c0 is satisfied by every x ∈ P
(k)
0,n-path(D̃n) that

satisfies (3.19) with equality. Using Corollary 3.9, we may assume that c01 =
c1n = 0, c1i = c0 for all i ∈ (Ñn \ S), and cij = 0 for all arcs (i, j) in some
unbalanced 1-tree on R := S \ {0, n}.

Let P be the path (q + 1, . . . , k − 1, n) and Q the path (q + 1, . . . , k, n).
Then c(Γ) = c0 − c(P ) for all (0, q+ 1)-paths Γ, whose internal nodes are all
the nodes of R. Further, c(∆) = c0 − c(Q) for all (0, q + 1)-paths ∆, all q
of whose internal nodes are in R. Therefore, condition (3.7) of Lemma 3.7
holds and Corollary 3.10 implies that cij = 0 for all (i, j) ∈ Ãn(R∪ {0}) and
ci,q+1 = c0 for all i ∈ R. Replacing node q + 1 by any other node in Ñn \ S
(in the above argumentation), we obtain cij = c0 for all (i, j) ∈ (R : Ñn \ S).

Next, consider for any arc (i, j) ∈ Ãn(Ñn \S) a tight (0, n)-k-path P that
uses the arcs (0, 1), (1, 2), (2, j) and skips node i. Then, the (0, n)-k-path
P ′ := (P \ {(0, 1), (1, 2), (2, j)}) ∪ {(0, 2), (2, i), (i, j)} is also tight. Thus,
we derive that cij = 0 for all (i, j) ∈ Ãn(Ñn \ S). Furthermore, from the
tight (0, n)-k-paths that start with the arc (0, 1) and use some arc (i, n)
with i ∈ Ñn \ S we deduce cin = 0 for all those arcs (i, j). Moreover, from
the tight (0, n)-k-paths starting with the arc (0, 2) and ending with the arcs
(i, 1), (1, n) for some i ∈ Ñn \ S we obtain ci1 = 0 for i ∈ Ñn \ S. It is now
easy to see that c0i = c0 for all i ∈ Ñn \ S, cjn = 0 for all j ∈ R, and cij = 0
for all (i, j) ∈ (Ñn \S : R) (distinguish the cases k = 4 and k ≥ 5). Therefore
cTx = c0 is simply c0x((S : Ñn \ S)) = c0. �

Theorem 3.16 (cf. Theorem 13 of Hartmann and Özlük [48]). Let S ⊂ Ñn

and 0, n ∈ S. The one-sided min-cut inequality

x((S : Ñn \ S)) ≥ x(δout(ℓ)) (3.20)

is valid for P
(k)
0,n-path(D̃n) for all ℓ ∈ Ñn \S, and facet defining for P

(k)
0,n-path(D̃n)

if and only if |S| ≥ k + 1 and |Ñn \ S| ≥ 2.

Proof. The one-sided min-cut inequality (3.20) is valid, because all (0, n)-k-
paths that visit some node ℓ ∈ Ñn \ S use at least one arc in (S : Ñn \ S). If
|Ñn \ S| = 1, then (3.20) is the flow constraint x(δin(ℓ)) − x(δout(ℓ)) = 0. If,
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indeed, |Ñn \S| ≥ 2 but |S| ≤ k, then (3.20) can be obtained by summing up
the min-cut inequality (3.19) and the degree constraint −x(δout(ℓ)) ≥ −1.

So suppose that |S| ≥ k + 1 and |Ñn \ S| ≥ 2. Let w.l.o.g. ℓ = 1 and set
R := S∪{1}. By adding to (3.20) the flow constraint x(δout(1))−x(δin(1)) =
0, it can be easily seen that (3.20) is equivalent to

x((S : Ñn \R)) −
∑

i∈Ñn\R

xi1 ≥ 0. (3.21)

Suppose that cTx = c0 is satisfied by every x ∈ P
(k)
0,n-path(D̃n) that satis-

fies (3.21) with equality. By Corollary 3.9, we may assume that cin = 0 for
all i ∈ Ñn \R and cij = 0 for all arcs (i, j) in some unbalanced 1-tree on R.
Condition (3.7) of Lemma 3.7 is satisfied; hence, from Corollary 3.10 follows
that cij = 0 for all (i, j) ∈ Ãn(R) which also implies that c0 = 0.

Any (0, n)-k-path that contains the arcs (1, i), (i, n) for some i ∈ Ñn \ R
and whose remaining arcs are in Ãn(R) satisfies (3.21) with equality. Since
cin = 0 and ca = 0 for all a ∈ Ãn(R), it follows that c1i = 0 for all i ∈ Ñn \R.
Now considering tight (0, n)-k-paths that contain the arcs (1, i), (i, j), (j, n)
for some (i, j) ∈ Ãn(Ñn \R) and whose remaining arcs are in Ãn(R), we see
that cij = 0 for all (i, j) ∈ Ãn(Ñn \ R). Further, the (0, n)-k-paths that use
the arcs (1, i), (i, j) for i ∈ Ñn \R, j ∈ S \ {n} and whose remaining arcs are
in Ãn(R) yield cij = 0 for all (i, j) ∈ (Ñn \R : S \ {n}). Finally, considering
for each (i, j) ∈ (S : Ñn \ R) and h ∈ Ñn \ R a tight (0, n)-k-path that
contains the arcs (i, j), (j, 1) and a tight (0, n)-k-path that contains the arcs
(i, j), (j, h), (h, 1), we see that cj1 = ch1 for all j, h ∈ Ñn \ R, cij = chg for
all (i, j), (h, g) ∈ (S : Ñn \ R), and cij + ch1 = 0 for all (i, j) ∈ (S : Ñn \ R),
h ∈ Ñn \R. Thus cTx = c0 is simply cjhx((S : Ñn \R))− cjh

∑

i∈Ñn\R
xi1 = 0

for some (j, h) ∈ (S : Ñn \R).

Theorem 3.17 (cf. Theorem 15 of Hartmann and Özlük [48]). Let Ñn =
R ∪̇S ∪̇T be a partition of Ñn and let 0, n ∈ S. The generalized max-cut
inequality

x((S : T )) +
∑

i∈R

x(δout(i)) ≤ ⌊(k + |R|)/2⌋ (3.22)

is valid for the (0, n)-k-path polytope P
(k)
0,n-path(D̃n) for k ≥ 4 and facet defin-

ing for P
(k)
0,n-path(D̃n) if and only if k + |R| is odd, |S \ {n}| > (k − |R|)/2,

|T | > (k − |R|)/2, and

(i) k = |R| + 3, |R| ≥ 2, and |S| = 3, or

(ii) k ≥ |R| + 5.
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Proof. Necessity. From x((S : T )) ≤ x((T : S)) + x((T : R)) and x(Ãn) = k
we derive the inequality 2x((S : T )) +

∑

i∈R x(δ
out(i)) ≤ k. Adding the

inequality
∑

i∈R x(δ
out(i)) ≤ |R|, dividing by two, and rounding down, we

obtain (3.22). When k+|R| is even, then (3.22) is obtained with no rounding,
and hence it is not facet defining. When |S \ {n}| ≤ (k − |R|)/2 or |T | ≤
(k − |R|)/2, then (3.22) is implied by degree constraints x(δout(i)) ≤ 1.

Let P be any (0, n)-k-path and denote by r the number of nodes in R
visited by P . Then |v(P ) ∩ (S \ {n} ∪ T )| = k − r and hence χP ((S :
T )) ≤ (k − r)/2. This in turn implies that there is no tight (0, n)-k-path if
r ≤ |R| − 2, where |R| ≥ 2. Now, when k = |R| + 3 and |S| ≥ 4, (3.22) is
dominated by nonnegativity constraints xij ≥ 0 for (i, j) ∈ Ãn(S \ {0, n}).
Further, when k = |R| + 3, |S| = 3, and |R| = 1, (3.22) is dominated by the
inequality (3.28). Finally, when k ≤ |R| + 1, (3.22) is dominated by some
nonnegativity constraints, for example, cin = 0 for some i ∈ T .

Suffiency. First we will show that (3.22) is facet defining if R = ∅. In
this case, the resulting inequality

x((S : T )) ≤ ⌊k/2⌋ = q (3.23)

where k = 2q + 1, is called max-cut inequality. First, we show that (3.23) is

facet defining for P
(k)
0,n-path(D̃n). If k = 5 and |S \ {n}| = 3 or |T | = 3, we

will show that (3.23) defines a facet using Theorem 3.11. The only primitive
inequalities are those with n = 6 and by application of a convex hull code,
we see that in this case (3.23) is facet defining for P

(k)
0,n-path(D̃n). Moreover,

(3.23) is regular, since for each inner node h there is a non-tight (0, n)-k-path
that does not visit h. Without loss of generality, let T = {1, 2, . . . , t} and
S = {t+ 1, . . . , n, 0} for some 4 ≤ t ≤ n− 4.

Suppose that cTx = c0 holds for all x ∈ P
(k)
0,n-path(D̃n) satisfying (3.23)

with equality. By Corollary 3.9, we may assume that c02 = 1, ct+1,n = 0,
cj1 = 1 for all j ∈ S \ {n}, and c1i = 0 for all i ∈ T .

First, consider any (0, n)-2q-path P that alternates between nodes in S
and nodes in T , but does not visit node 1. Replacing any arc (i, j) ∈ P with
i ∈ S, j ∈ T by the arcs (i, 1), (1, j) we obtain a tight (0, n)-k-path, and
therefore c(P ) − cij = c0 − 1 holds for all (i, j) ∈ P ∩ (S : T ). This in turn
implies that cij = 1 for all (i, j) ∈ (S : T ), since we have 3 ≤ t ≤ n − 3 and
c02 = 1. Next, consider any tight (0, n)-k-path that uses arcs (i, h), (h, j) for
i, j ∈ S \ {0, n}, h ∈ T but does not visit some node ℓ ∈ T . Replacing node
h by node ℓ yields another tight path which implies immediately cih + chj =
ciℓ + cℓj. Similarly we obtain chi + ciℓ = chj + cjℓ and thus cih + chi = cjℓ + cℓj
for all i, j ∈ S \{0, n} and h, ℓ ∈ T . Since t ≥ 3 and cih = cjℓ = 1, we see that
there is some σ with chi = σ for all h ∈ T , i ∈ S \ {0, n}. Now consider any



3.2 The directed (0, n)-k-path polytope 67

tight path that contains the arcs (1, t+ 1), (t+ 1, n) and does not visit some
node ℓ ∈ T . Replacing node t+1 by node ℓ yields another tight (0, n)-k-path
and hence c1,t+1 +ct+1,n = c1ℓ+cℓn. Since c1,t+1 = σ and ct+1,n = c1ℓ = 0, this
implies cℓn = σ for all ℓ ∈ T , ℓ 6= 1. Of course, it follows also that c1n = σ.

Finally, any tight (0, n)-k-path contains exactly one arc (i, j) ∈ Ãn(S) ∪
Ãn(T ), so cij = c0−q(1+σ) for all (i, j) ∈ Ãn(S)∪ Ãn(T ). Due to ct+1,n = 0,
this implies that cij = 0 for all (i, j) ∈ Ãn(S) ∪ Ãn(T ). Adding σ times the
equation x((S : T )) − x((T : S)) = 0, we see that cTx = c0 is equivalent
x((S : T )) = q. This proves that (3.23) is also facet defining when 0, n ∈ T .

When R 6= ∅, we prove the claim by showing that the conditions of
Theorem 3.12 hold for (3.23). Since w = k − |R| is odd and w ≥ 5, the
inequality x((S : T )) ≤ ⌊w/2⌋ induces a facet of the (0, n)-w-path polytope
defined on the digraph D+ = (Ñn \ R, Ãn(Ñn \ R)). Let us denote this
inequality by dTx ≤ d0. It is easy to see that the auxiliary graph GZ for
the arc set Z = {(i, j) : dij = 0} is connected (cf. [48]). Furthermore, each
tight (0, n)-w-path contains two arcs (i, j) and (h, ℓ) which are not adjacent,
and hence all arcs in Z are in the same equivalency class with respect to
dTx ≤ d0. Since there are tight (0, n)-k-paths with respect to (3.22) that
visit |R| − 1 of the nodes in R, Theorem 3.12 implies that (3.22) induces a

facet of P
(k)
0,n-path(D̃n) unless k = |R| + 3, |R| ≥ 2, and |S| = 3.

Finally, suppose that k = |R| + 3, |R| ≥ 2, and |S| = 3. Without loss of
generality, we may assume that S = {0, 1, n}, 2, 3 ∈ R, and 4, 5 ∈ T . Suppose

that cTx = c0 is satisfied by every x ∈ P
(k)
0,n-path(D̃n) that satisfies (3.22) with

equality. By Corollary 3.9, we may assume that c2j = 1 for all j ∈ R, ci2 = 0
for all i ∈ T , c32 = 1, c21 = 1, c1n = 0, and c04 = 1. There are tight (0, n)-k-
paths that visit a node ℓ ∈ T followed by all |R| (or any |r| − 1) nodes in R
and a node 1. Applying Lemma 3.7, we see that

cℓj = λ+ πℓ − πj (j ∈ R)
cij = λ+ πi − πj (i, j ∈ R)
cim = λ+ πi − πm (i ∈ R)

for some λ, πj , j ∈ R, πℓ, and π1. Let w.l.o.g. π2 = 0. Theorem 3.8 then
implies that λ = 1 and πj = 0 for all j ∈ R, ci2 = 0 implies that πℓ = −1,
and c21 = 1 implies that π1 = 0. Thus, cij = 1 for all (i, j) ∈ Ãn(R),
cij = 0 for all i ∈ T, j ∈ R, and ci1 = 1 for all i ∈ R. Next, considering any
tight (0, n)-k-path P that uses the arcs (0, 4), (2, 1), (1, n) and visits all |R|
nodes in R yields c0 = |R| + 1. Replacing node 4 by another node j ∈ T
yields c0j = 1 for all j ∈ T . Next, consider any tight (0, n)-k-path P that
uses the arcs (0, i), (i, j), (j, 1) for some i, j ∈ R. Then the (0, n)-k-path
P ′ := (P \ {(0, i), (i, j), (j, 1)})∪ {(0, j), (j, i), (i, 1)} is also tight, and hence,
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c0i = c0j for all i, j ∈ R. Denote this common value by σ. From the tight
(0, n)-k-paths that visit the nodes 1 and t for some t ∈ T and all nodes in
R, we derive cij = 1 − σ for all i ∈ R, j ∈ T . Now it is easy to see that
cin = 1 + σ for all i ∈ T . Considering any tight (0, n)-k-path that uses the
arcs (0, 2), (2, 1), (1, 4), (4, 3), and (m,n) for an appropriate m ∈ R yields
σ = 0. Thus, c0i = 0 and cin = 1 for all i ∈ R, c1j = 1 for all j ∈ T , and
cij = 1 for all i ∈ R, j ∈ T . Determining the coefficients of the remaining
arcs is an easy task. So we see that cTx = c0 is simply (3.22).

Theorem 3.18. Let Ñn = R ∪̇S ∪̇T be a partition of Ñn and let 0, n ∈ T .
The generalized max-cut inequality

x((S : T )) +
∑

i∈R

x(δout(i)) ≤ ⌊(k + |R|)/2⌋ (3.24)

is valid for the (0, n)-k-path polytope P
(k)
0,n-path(D̃n) for k ≥ 4 and facet

defining for P
(k)
0,n-path(D̃n) if and only if k + |R| is odd, |S| > (k − |R|)/2,

|T \ 0| > (k − |R|)/2, and

(i) k = |R| + 3, |R| ≥ 2, and |T | = 3, or

(ii) k ≥ |R| + 5.

�

Theorem 3.19. Let Ñn = R ∪̇S ∪̇T be a partition of Ñn, let 0 ∈ S, and let
n ∈ T . The generalized max-cut inequality

x((S : T )) +
∑

i∈R

x(δout(i)) ≤ ⌊(k + |R| + 1)/2⌋ (3.25)

is valid for the (0, n)-k-path polytope P
(k)
0,n-path(D̃n) for k ≥ 4 and facet defin-

ing for P
(k)
0,n-path(D̃n) if and only if k+|R| is even, k ≥ |R|+4, |S| > (k−|R|)/2,

and |T | > (k − |R|)/2.

Proof. From the inequality x((S : T )) ≤ x((T : S)) + x((T : R)) + 1 and the
equation x(Ãn) = k we derive the inequality 2x((S : T )) +

∑

i∈R x(δ
out(i)) ≤

k + 1. Adding the inequality
∑

i∈R x(δ
out(i)) ≤ |R|, dividing by two, and

rounding down yields (3.25). If k + |R| is odd we obtain (3.25) without

rounding and hence it is not facet defining for P
(k)
0,n-path(D̃n). When |S| ≤

(k − |R|)/2 or |T | ≤ (k − |R|)/2, (3.25) is dominated by degree constraints
x(δout(j)) ≤ 1. Furthermore, we have to show that (3.25) is not facet defining
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if k ≤ |R| + 2. When R = ∅, this is clear. Otherwise consider any (0, n)-k-
path P and denote the number of nodes in R visited by P by r. It is easy to
see that P is tight only if r ≥ |R| − 1. For the sake of contradiction, assume
that k ≤ |R| and P is tight. Then we have r = |R|−1 and thus k = |R| which
implies ⌊(k+|R|+1)/2⌋ = |R|. But χP ((S : T ))+

∑

i∈R χ
P (δout(i)) = |R|−1,

so P is not tight, a contradiction. Hence, the only possibility is that k = |R|+
2. Now, k = |R|+2 implies that |S|, |T | ≥ 2 and ⌊(k+ |R|+1)/2⌋ = |R|+1.
But then (3.25) is dominated by the nonnegativity constraints xij ≥ 0 for all
(i, j) ∈ Ãn(S) ∪ Ãn(T ).

First, we show that (3.25) is facet defining when R = ∅. In this case, k
is even and (3.25) is the max-cut inequality

x((S : Ñn \ S)) ≤ ⌊(k + 1)/2⌋ = k/2. (3.26)

If k = 4 and |S| = 3 or |Ñn \ S| = 3, we will show that (3.26) defines a

facet of P
(k)
0,n-path(D̃n) using Theorem 3.11. The only primitive members of

family (3.26) with k = 4 are those with |S| = |Ñn \ S| = 3. Inequality (3.26)
is obviously regular, and using a convex hull code, we see that (3.26) de-

fines a facet of P
(k)
0,n-path(D̃n). Moreover, all k-bowties tied at an inner node

satisfy (3.26).

If k ≥ 6 suppose that the equation cTx = c0 is satisfied by every x ∈
P

(k)
0,n-path(D̃n) that satisfies (3.26) with equality. Let w.l.o.g. 1, 2 ∈ Ñn \ S.

By Corollary 3.9, we may assume that c02 = 1, ci1 = 1 for all i ∈ S, and
c1j = 0 for all j ∈ Ñn \ S, j 6= 1. Since |S|, |Ñn \ S| ≥ 4, we can apply the
same argumentation as in the proof to Theorem 3.17. Thus cij = 1 for all
(i, j) ∈ (S : Ñn \ S), cij = σ for all (i, j) ∈ (Ñn \ (S ∪ {n}) : S \ {0}), for
some σ, and cij = 0 for all (i, j) ∈ Ãn(S) ∪ Ãn(T ). Evaluating the costs of
tight (0, n)-k-paths yields c0 = k

2
+ (k

2
− 1)σ which implies that cTx = c0 is

the equation x((S : Ñn \ S)) + σx((Ñn \ S : S)) = k
2

+ σ(k
2
− 1). Adding σ

times the equation x((S : Ñn \ S)) − x((Ñn \ S : S)) = 1, we see that (3.26)
is equivalent to x((S : Ñn \ S)) = k/2.

Applying Theorem 3.12 to the (0, n)-w-path polytope defined on the di-
graph D∗ = (Ñn \ R, Ãn(Ñn \ R)), where w = k − |R|, proves that (3.25) is

facet defining for P
(k)
0,n-path(D̃n) even for R 6= ∅.

Theorem 3.20. Let Ñn = R ∪̇S ∪̇T be a partition of Ñn, let 0 ∈ T , and let
n ∈ S. The generalized max-cut inequality

x((S : T )) +
∑

i∈R

x(δout(i)) ≤ ⌊(k + |R| − 1)/2⌋ (3.27)
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is valid for the (0, n)-k-path polytope P
(k)
0,n-path(D̃n) for k ≥ 4 and facet defin-

ing for P
(k)
0,n-path(D̃n) if and only if k+|R| is even, k ≥ |R|+4, |S| > (k−|R|)/2,

and |T | > (k − |R|)/2. �

Remark 3.21. If R = ∅, inequality (3.27) is equivalent to the inequality

x((T : S)) ≤ ⌊(k + 1)/2⌋,

since in this case holds the equation x((S : T )) = x((T : S)) − 1.

Theorem 3.22. Let ∅ 6= T = Ñn \ {0, 1, 2, 3, n}. The inequality

x03 − x3n + 3x12 − x21 + 2x13 − 2x31 − 2x2n + 2x((T : {3}))
+x(Ãn(T )) + x(({1} : T )) − x((T : {1})) + x((T : {2})) − x(({2} : T ) ≥ 0

(3.28)

is facet defining for P
(4)
(s,t)-path(D).

Proof. When |T | = 1, the claim can be verified with a convex hull code. For
|T | ≥ 2 we apply Theorem 3.11.

Jump inequalities

Dahl and Gouveia [23] introduced a class of valid inequalities for the hop
constrained path polytope P≤k

0,n-path(D̃n) they called jump and lifted jump
inequalities. Given a partition

Ñn =
k+1⋃

p=0

Sp

of Ñn into k + 2 node sets, where S0 = {0} and Sk+1 = {n}, the associated
jump inequality encode the fact that a (0, n)-path P of cardinality at most
k must make at least one ”jump” from a node set Si to a node set Sj , with
j − i ≥ 2:

k−1∑

i=0

k+1∑

j=i+2

x((Si : Sj)) ≥ 1. (3.29)

By Dahl, Foldnes, and Gouveia [22], a jump inequality (3.29) induces a facet
of the dominant of P≤k

0,n-path(D̃n), see Theorem 5.28. However, it is not facet

defining for P≤k
0,n-path(D̃n) and P

(k)
0,n-path(D̃n). Following an idea of Dahl and

Gouveia [23], decreasing the coefficients on arcs in (Sk−1 ∪ Sk : S1 ∪ S2)
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by 1, we obtain a facet defining inequality for P
(k)
0,n-path(D̃n). The resulting

inequality

k−1∑

i=0

k+1∑

j=i+2

x((Si : Sj)) − x((Sk−1 ∪ Sk : S1 ∪ S2)) ≥ 1 (3.30)

is called lifted jump inequality. For a deeper investigation of these inequalities
we refer to Chapter 5.6.

Theorem 3.23. Let

Ñn =
k+1⋃

p=0

Sp

be a partition of Ñn, where S0 = {0} and Sk+1 = {n}. Then, the associated
lifted jump inequality (3.30) is facet defining for the (0, n)-k-path polytope

P
(k)
0,n-path(D̃n) if |Si| ≥ 2 for i = 1, . . . , k.

Proof. We refer to an arc (i, j) as forward arc if (i, j) ∈ (Sh : Sℓ) for some
h < ℓ and as backward arc if (i, j) ∈ (Sq : Sr) for some q > r. We say,
the (0, n)-k-path P makes a “jump” with respect to (3.30) if P uses an arc
(i, j) ∈ (Sh : Sℓ) for some 0 ≤ h < ℓ ≤ k + 1 with ℓ ≥ h+ 2.

The lifted jump inequality (3.30) is valid for P
(k)
0,n-path(D̃n), since it is valid

for the path polytope P≤k
0,n-path(D̃n) (see [23]).

To show that (3.30) is facet defining for P
(k)
0,n-path(D̃n), we apply Theo-

rem 3.11. So we have to verify that the conditions of Theorem 3.11 hold
for the primitive members of (3.30), that is, when |Si| = 2 for i = 1, . . . , k,
which implies n = 2k+ 1. In what follows, let dTx ≥ 1 be such a lifted jump
inequality.

Let B = P ∪ C be any k-bowtie , where C is a simple cycle and P is
a simple (0, n)-path. Since |P | ≤ k, d(P ) ≥ 1. When d(C) ≥ 0, it follows
d(B) ≥ 1, too. Otherwise d(C) = −1 and C is a cycle in

(
k−2⋃

j=2

(Sj : Sj+1)

)

∪ (Sk−1 : S2),

since |C| ≤ k − 2. Thus, the cardinality of C is equal to k − 2 and P is a
(0, n)-2-path that makes two “jumps”. Therefore, the lifted jump inequality
dTx ≥ 1 is satisfied by all k-bowties.

Furthermore, dTx ≥ 1 is regular, since to each internal node h there exists
a non-tight (0, n)-k-path that does not visit node h.



72 Cardinality constrained path and cycles

It remains to be shown that dTx ≥ 1 is facet defining for P
(k)
0,n-path(D̃n).

Without loss of generality, let Si = {i, k + i} for i = 1, . . . , k. When k = 4
or k = 5, the inequality dTx ≥ 1 can be seen to be facet defining using
a convex hull code. So let k ≥ 6. Suppose that cTx = c0 is satisfied by
every x ∈ P

(k)
0,n-path(D̃n) that satisfies (3.30) with equality. Denoting by P

the (0, 2k+ 1)-path (0, . . . , k, 2k+ 1), we may assume by Corollary 3.10 that
c(P ) = 0, c0,k+1 = 0, and ci,k+i = 0 for i = 1, . . . , k. Substituting two
connected arcs (i, j), (j, h) ∈ P by the arc (i, h), we see that cm−1,m+1 = c0
for m = 1, . . . , k−1, and ck−1,2k+1 = c0. Next, replacing three connected arcs
(i, j), (j, h), (h, ℓ) ∈ P with i > 0 by the arcs (i, k + i), (k + i, ℓ), we see that
c2k−2,2k+1 = c0 and ck+i,i+3 = c0 for i = 1, . . . , k − 3. Furthermore, replacing
in these (0, n)-k-paths node i by node k+ i− 1 (for i ≥ 2) yields cm,m+1 = 0
for m = k + 1, . . . , 2k − 3, and considering successively the (0, n)-k-paths

(0, k + 1, 4, . . . , q, k + q, . . . , 2k + 1)

for q = k, . . . , 4, we see that even cm,m+1 = 0 for m = k + 1, . . . , 2k, since
k ≥ 6. We can now easily deduce that ci,k+i+1 = ck+i,i+1 = ck+i,i = 0 for
i = 1, . . . , k, ca = c0 for all a ∈ (Si : Si+2) (i = 0, . . . , k − 1), and ca = c0 for
all a ∈ (Si : Si+3) (i = 0, . . . , k−2). Furthermore, for each arc a ∈ (Si : Si+4),
i = 0, . . . , k − 3, there is a tight (0, n)-k-path containing a that does not use
any backward arc, which implies that ca = c0 for all those arcs a. Moreover,
for each arc a ∈ (Sm : Sm−1) there is a tight (0, n)-k-path that uses a, makes
a jump from Si to Si+4 for some i, and does not use any further backward
arcs. Hence, ca = 0 for all a ∈ (Sm : Sm−1), m = 2, . . . , k + 1. It is now
easy to see that the remaining coefficients can be determined as required,
and therefore, cTx = c0 is simply c0d

Tx = c0.

Cardinality-path inequalities

The cardinality-path inequalities were originally formulated for the cardi-
nality constrained cycle polytope P≤k

C (G) defined on an undirected graph
G = (N,E). They say that an undirected simple cycle of cardinality at most
k never uses more edges of an undirected simple path P of cardinality k than
internal nodes of P . Denoting by Ṗ the internal nodes of such a path, this
can be expressed as

y(P ) ≤
1

2

∑

v∈Ṗ

y(δ(v)). (3.31)

Inequality (3.31) is called cardinality-path inequality. This idea can be trans-
ferred to the directed (0, n)-k-path polytope.
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Figure 3.3: Support graph of a cardinality-path inequality for n = 9, k = 6, and the
path P = (1, 2, 3, 4, 5, 6).

Theorem 3.24. Let s, t be internal nodes, P an (s, t)-path of cardinality
k−1, and bid(P ) := P ∪{(i, j) : (j, i) ∈ P}. The cardinality-path inequality

∑

i∈Ṗ

x(δin(i)) − x(bid(P )) ≥ 0 (3.32)

is valid for the (0, n)-k-path polytope P
(k)
0,n-path(D̃n) and induces a facet of

P
(k)
0,n-path(D̃n) if and only if k ∈ {4, 5} and n ≥ k+2 or k ≥ 6 and n ≥ 2k−3.

Proof. Without loss of generality, let P = (1, 2, . . . , k). An illustration of
the inequality for n = 9 and k = 6 is given in Figure 3.3. Missing arcs have
coefficients 0.

Necessity. When k ∈ {4, 5} and n = k+1, (3.32) can be seen not to induce
a facet using a convex hull code. When k ≥ 6 and k+1 ≤ n ≤ 2k− 4, (3.32)
is dominated by the nonnegativity constraints x2,k−1 ≥ 0 and xk−1,2 ≥ 0.

Suffiency. When the conditions in Theorem 3.24 are satisfied and the
cardinality of the node set S := {1, k, k + 1, . . . , n − 1} is at most 4, (3.32)
can be seen to induce a facet using a convex hull code. So suppose that
|S| ≥ 5 and that an equation cTx = c0 is satisfied by every x ∈ P

(k)
0,n-path(D̃n)

that satisfies (3.32) with equality. By Corollary 3.10 we may assume that
cj,j+1 = 0 for j = 1, . . . , k − 2, c0,n−1 = cn−1,n = 0, and cij = 0 for all arcs
(i, j) in some unbalanced 1-tree on S.

For any four distinct nodes i ∈ S ∪ {0}, j, h ∈ S, and ℓ ∈ S ∪ {n}
there is a tight (0, n)-k-path that uses the arcs (i, h), (h, j) and skips node
ℓ. Replacing node h by node ℓ yields another tight (0, n)-k-path and thus
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cih + chj = ciℓ + cℓj. Using Corollary 3.10 we obtain cij = 0 for all (i, j) ∈
Ãn(S ∪ {0, n}) and therefore also c0 = 0.

In the following we distinguish the three cases k = 4, k = 5, and k ≥ 6.

CASE 1: k = 4.

From the (0, n)-4-paths (0, 5, 1, 2, n) and (0, 1, 2, 3, n) we derive c2n =
c3n = 0, and from the (0, n)-4-paths (0, 1, 2, i, n) for i = 4, . . . , n − 1 we
derive c2i = 0.

Next, considering the (0, n)-4-paths (0, 5, 4, 3, n) and (0, 4, 3, 2, n) yields
c43 = c32 = 0. Hence, we can also deduce that c3j = 0 for all j ∈ S \ {4}.

Further, from all tight (0, n)-4-paths that use the arc (3, 4) we deduce
that cij + c34 = 0 for (i, j) ∈ {(0, 2), (0, 3), (1, 3)} ∪ (S : {3}). Analogously,
it follows that chℓ + c21 = 0 for all (h, ℓ) ∈ {(0, 2), (0, 3), (4, 2)} ∪ (S : {2}).
In particular, c02 + c21 = c02 + c34 = 0 which implies that c21 = c34 and
hence, cij + chℓ = 0 for all (i, j) ∈ {(1, 3), (4, 2)} ∪ (S ∪ {0} : {2, 3}) and
(h, ℓ) ∈ {(2, 1), (3, 4)}. So cTx = c0 is obviously equivalent to (3.32).

CASE 2: k = 5.

This case can be carried out similar as the case k = 4; so we omit this
part of the proof.

CASE 3: k ≥ 6.

From the (0, n)-k-path (0, . . . , k − 1, n) we derive that ck−1,n = 0. Fur-
thermore, setting T := {3, . . . , k − 2}, it can be easily seen that cij = 0 for
all i ∈ T, j ∈ (S \ {1}) ∪ {n}. Next, for any arc (i, j) ∈ (Ṗ \ {k − 1} :
S ∪ {n} ∪ {(k − 1, n)}) there is a tight (0, n)-k-path that uses the arcs
(i, j) and (h, h + 1) for h = 1, . . . , i − 1 and whose remaining arcs are in
Ãn(S ∪ {0, n}). Hence, cij = 0 for all those arcs (i, j). Further, from the
(0, n)-k-path (0, . . . , k − 3, k, k − 1, n) we derive that ck,k−1 = 0. More-
over, for any node i ∈ S \ {1} there is a tight (0, n)-k-path that uses the
arcs (0, 1), (1, 2), (2, i), (k, k − 1), (k − 1, n) and whose remaining arcs are in
Ãn(S). Thus, c2i = 0 for all i ∈ S \ {1}. Considering further tight (0, n)-
k-paths on node set S ∪ {0, 2, k − 1, n}, we see that also ck−1,i = 0 for all
i ∈ S \ {k} and c2n = 0. Finally, considering successively the (0, n)-k-paths
(0, . . . , i− 2, k, k − 1, . . . , i, n) for i = k − 2, . . . , 2, we find that ci+1,i = 0 for
i = 2, . . . , k − 2.

It remains to be shown that c21 = ck−1,k = σ and cij = −σ for all

arcs (i, j) in
⋃k−1
h=2 δ

in(h) \ bid(P ) for some σ. From the two tight (0, n)-k-
paths (0, 4, 5, . . . , k+2, n) and (0, 4, 3, 2, 1, k+ 1, k+ 2, . . . , n) we derive that
c21 = ck−1,k. Denote this common value by σ. Since to each arc (i, j) ∈
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⋃k−1
h=2 δ

in(h) \ bid(P ) there is a tight (0, n)-k-path that uses either the arc
(2, 1) or (k − 1, k), and therefore, cij = −σ for all those arcs (i, j). Thus,
cTx = c0 is simply

σx(bid(P )) − σ
∑

i∈Ñn(Ṗ )

x(δin(i)) = 0.

3.3 Facets of polytopes related to the (0, n)-k-path polytope

In this section, we derive some new facet defining inequalities for the directed
k-cycle polytope using Theorem 3.6. Furthermore, we derive facet defining
inequalities for the undirected [0, n]-k-path polytope from facet defining in-
equalities for the (0, n)-k-path polytope using the concept of symmetric in-
equalities. At the beginning of this chapter we have explained this concept
in connection with cycle polytopes. Fortunately, it can be easily adapted to
path polytopes. For this, we refer to Section 3.3.2.

To the best of the knowledge of the author, the undirected [0, n]-k-path
polytope has not been studied before. Hence, we also give a short polyhedral
analysis of this polytope.

3.3.1 New facets of the directed k-cycle polytope

Hartmann and Özlük have presented many nontrivial and interesting in-
equalities that are facet defining for the directed k-cycle polytope P

(k)
C (Dn).

Applying Theorem 3.6 to Theorems 3.19 and 3.20, we obtain some new facet
defining inequalities for P

(k)
C (Dn).

Corollary 3.25. Let N = {j} ∪̇R ∪̇S ∪̇T be a partition of N . The inequal-
ity

x((S : {j})) + x(({j} : T )) + x((S : T ))
+
∑

i∈R x(δ
out(i)) ≤ ⌊(k + |R| + 1)/2⌋

(3.33)

defines a facet of the k-cycle polytope P
(k)
C (Dn) if k+ |R| is even, k ≥ |R|+4,

|S| > (k − |R|)/2 − 1, and |T | > (k − |R|)/2 − 1. �

Corollary 3.26. Let N = {j} ∪̇R ∪̇S ∪̇T be a partition of N . The inequal-
ity

x(δout(r)) + x((S : T )) +
∑

i∈R

x(δout(i)) ≤ ⌊(k + |R| + 1)/2⌋ (3.34)
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defines a facet of the k-cycle polytope P
(k)
C (Dn) if k+ |R| is even, k ≥ |R|+4,

|S| > (k − |R|)/2 − 1, and |T | > (k − |R|)/2 − 1. �

3.3.2 Facets of the undirected [0, n]-k-path polytope

The undirected [0, n]-k-path polytope P
(k)
0,n-path(Kn+1) is the symmetric coun-

terpart of the directed (0, n)-k-path polytope P
(k)
0,n-path(D̃n). Here, Kn+1 =

(N,E) denotes the complete graph on node set N = {0, . . . , n}. Table 3.3

gives linear descriptions of P
(1)
0,n-path(Kn+1) and P

(2)
0,n-path(Kn+1). The complete

polyhedral analysis of the [0, n]-k-path polytope P
(3)
0,n-path(Kn+1) begins with

the next theorem. Afterwards we will turn to the [0, n]-k-path polytopes

P
(k)
0,n-path(Kn+1) with 4 ≤ k ≤ n− 1.

Theorem 3.27. Let Kn+1 = (N,E) be the complete graph on node set
N = {0, . . . , n}. Then

dimP
(3)
0,n-path(Kn+1) = |E| − n− 2.

Proof. First note that each internal edge e = [i, j] corresponds to two inci-
dence vectors P (i,j) and P (j,i) of [0, n]-3-paths as follows: P (i,j) = χ{[0,i],[i,j],[j,n]}

and P (j,i) = χ{[0,j],[j,i],[i,n]}. Consider the points P (h,n−1), P (n−1,h) for h =
1, . . . , n − 2 and P (i,j) for 1 ≤ i < j ≤ n − 2. It is easy to see that these
|E| − n − 1 points are linearly independent and thus, dimP

(3)
0,n-path(Kn+1) ≥

|E| − n− 2.
Next, all incidence vectors of [0, n]-3-paths satisfy the following system of

linearly independent equations:

y0n = 0, (3.35)

y(δ(0)) = 1, (3.36)

y(δ(n)) = 1, (3.37)

y(δ(i)) − 2(y0i + yin) = 0, i = 1, . . . , n− 1, (3.38)

where δ(j) denotes the set of edges which are incident with node j and y(F ) =
∑

e∈F ye for any F ⊆ E. This implies that dimP
(3)
0,n-path(Kn+1) ≤ |E| −n− 2,

which completes the proof.

Remark 3.28. Adding the equations (3.36)-(3.38), subtracting two times
(3.35), and dividing by two, yields the equation

n−2∑

i=1

n−1∑

j=i+1

yij = 1. (3.39)
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Table 3.3: Polyhedral analysis of P
(1)

0,n-path(Kn+1) and P
(2)

0,n-path(Kn+1).

p Dimension Complete linear description

y0n = 1
1 0

yij = 0 ∀ [i, j] ∈ E \ {[0, n]}

y0n = 0
y(δ(0)) = 1

2 n− 2 y0i − yin = 0 i = 1, . . . , n− 1
y0i ≥ 0 i = 1, . . . , n− 1
yij = 0 1 ≤ i < j ≤ n− 1

Theorem 3.29. A complete and nonredundant linear description of the
[0, n]-3-path polytope P

(3)
0,n-path(Kn+1) is given by the equations (3.35)-(3.38),

the nonnegativity constraints yij ≥ 0 for 1 ≤ i < j ≤ n, and the inequalities
∑

i∈W

yin +
∑

[i,j]∈EW

yij ≤ 1 (3.40)

for all W ⊆ {1, . . . , n− 1} with 1 ≤ |W | ≤ n− 2, where EW := {[i, j] ∈ E :
1 ≤ i, j ≤ n− 1, i, j /∈ W}.

Proof. Validity. Let W ⊆ {1, . . . , n−1}, let 1 ≤ |W | ≤ n−2, and let cTy ≤ 1
be the inequality of family (3.40) associated with W . The edge set of the
support graph G = (N,F ), defined by F := {e ∈ E : ce = 1}, decomposes
into two disconnected subsets F n := {[i, n] ∈ F : i ∈W} and F¬n := F \F n.
As is easily seen, each [0, n]-3-path P uses at most one edge of F in the

subgraph G ⊂ Kn+1. Hence, cT y ≤ 1 is valid for P
(k)
0,n-path(Kn+1).

Nonredundancy. Since the equations (3.35)-(3.38) are linearly independ-
ent, they induce a nonredundant description of the lineality space of the
polytope P

(3)
0,n-path(Kn+1).

Next, we prove that the inequalities given in Theorem 3.29 are nonredun-
dant by showing that the set of induced faces is an anti-chain. Let F1 and
F2 be two faces of P

(3)
0,n-path(Kn+1) that are induced by different inequalities.

When F1 and F2 are induced by nonnegativity constraints, they are clearly
not contained into each other. If only one of them is induced by a nonnega-
tivity constraint yij ≥ 0 (1 ≤ i < j ≤ n), say F1, it follows immediately that
F2 6⊂ F1. Since |N(F¬n)| ≥ 2, there is also a point P (h,ℓ) in F1 that is not in
F2 and thus, F1 6⊂ F2.

Finally, let both faces not induced by nonnegativity constraints. Denote
the edge sets of the support graphs corresponding to F1 and F2 by E1 and
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E2, respectively. Since E1 6⊂ E2 and E2 6⊂ E1, it follows also that F1 6⊂ F2

and F2 6⊂ F1.
Completeness. We will show that each facet defining inequality dTx ≤ d0

for P
(3)
0,n-path(Kn+1) is equivalent to a nonnegativity constraint yij ≥ 0 or an

inequality of family (3.40).

(i) d0i = 0 for i = 1, . . . , n,

(ii) dzn = 0 for some internal node z,

(iii) duw = 0 for some internal edge [u, w], and

(iv) dij ≥ 0 for 1 ≤ i < j ≤ n.

This immediately implies that d0 > 0 and 0 ≤ de ≤ d0 for all e ∈ E.
Next, we will show that de ∈ {0, d0} for all e ∈ E. Suppose, for the sake

of contradiction, that M := {[i, j] ∈ E : 0 < dij < d0} 6= ∅. Assuming that
there is some internal edge [h, ℓ] ∈ M with [h, n], [ℓ, n] /∈ M , we see that
dhn = dℓn = 0, since dhℓ + dℓn ≤ d0 and dhℓ + dhn ≤ d0. Thus, dTy ≤ d0

is dominated by the inequality d̃Ty ≤ d0, where d̃hℓ = d0 and d̃e = de for
all e ∈ E \ {[h, ℓ]}. Assuming that there is some edge [m,n] such that
[i,m] /∈ M for all internal nodes i 6= m, yields dim = 0 for all internal nodes
i 6= m. Therefore dTy ≤ d0 is dominated by the inequality d̂Ty ≤ d0, where
d̂mn = d0 and d̂e = de for all e ∈ E \ {[m,n]}. So, in what follows, we may
assume:

(a) [i, n] ∈M or [j, n] ∈ M for each internal edge [i, j] ∈M ;

(b) for each edge [h, n] ∈M there is an internal edge [i, h] ∈M .

In particular, we deduce that M ∩ {[i, j] : 1 ≤ i < j ≤ n − 1} 6= ∅ and
M ∩ {[i, n] : 1 ≤ i ≤ n− 1} 6= ∅.

Let drs be the minimum over all edges in M ∩ {[i, j] : 1 ≤ i < j ≤ n− 1}
and dvn be the minimum over all edges in M ∩ {[i, n] : 1 ≤ i ≤ n − 1}. We
now construct two different inequalities aTy ≤ a0 and bT y ≤ b0 that together
imply dTy ≤ d0. The coefficients of the both inequalities we set as follows:

a0 = b0 = d0,
aij = bij = dij ∀ [i, j] ∈ E \M,
aij = dij − drs for 1 ≤ i < j ≤ n− 1,
ahn = dhn + drs for 1 ≤ h ≤ n− 1,

bij = dij + dvn for 1 ≤ i < j ≤ n− 1,
bhn = dhn − dvn for 1 ≤ h ≤ n− 1.
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It can be easily seen that dTy ≤ d0 is a convex combination of aTy ≤ a0

and bT y ≤ b0:

(d, d0) =
dvn

drs + dvn
(a, a0) +

drs
drs + dvn

(b, b0).

Furthermore, all three inequalities are pairwise nonequivalent; so it re-
mains to be shown that the inequalities aTy ≤ a0 and bT y ≤ b0 are valid for
P

(3)
0,n-path(Kn+1). This can be done by checking aij+ajn ≤ a0 and bij+bjn ≤ b0

for all 1 ≤ i, j ≤ n− 1 with i 6= j.
Let i and j be distinct nodes in {1, . . . , n− 1}.

CASE 1: [i, j], [j, n] /∈M .
We have aij = bij = dij and ajn = bjn = djn. Thus, aij + ajn ≤ a0 and

bij + bjn ≤ b0, since dij + djn ≤ d0.

CASE 2: [i, j] ∈M , [j, n] /∈M .
Since 0 < dij < d0, djn ∈ {0, d0}, and dij + djn ≤ d0, we deduce that

djn = 0. Hence, also ajn = bjn = 0. Since aij = dij−drs < dij , it follows that
aij + ajn ≤ a0. Due to (a), [i, n] ∈ M , and since din ≥ dvn, we deduce that
dij ≤ d0 − dvn. Thus, bij + bjn = dij + dvn ≤ d0 = b0.

CASE 3: [i, j] /∈M , [j, n] ∈M .
This implies that aij = bij = dij = 0 and thus, bij + bjn ≤ b0. Due to

(b), there is some internal node ℓ such that [ℓ, j] ∈ M . Since dℓj ≥ drs, we
deduce that djn ≤ d0 − drs and hence, aij + ajn = djn + drs ≤ d0 = a0.

CASE 4: [i, j], [j, n] ∈M .
Clear.

Thus, in all four cases, the inequalities aTy ≤ a0 and bT y ≤ b0 are valid
for P

(3)
0,n-path(Kn+1). So we have shown that de ∈ {0, d0} for all e ∈ E and

without loss of generality, we may assume that d0 = 1.
We resume: the facet defining inequality dTy ≤ d0 satisfies (i)-(iii), d0 = 1,

and de ∈ {0, 1} for all e ∈ E. Note that dℓn = 1 for some internal node ℓ
implies that diℓ = 0 for all internal nodes i 6= ℓ.

When din = 0 for 1 ≤ i ≤ n − 1, we deduce that de = 1 for all internal
edges e 6= [u, w], i.e., dTy ≤ d0 is equivalent to the nonnegativity constraint
yuw ≥ 0.

When din = 1 for all internal nodes i 6= z, we see that de = 0 for all
internal edges e. Then, dTy ≤ d0 is equivalent to the nonnegativity constraint
yzn ≥ 0.
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In all other cases, i.e., for 1 ≤
∑n−1

i=1 din ≤ n− 2, the inequality dTy ≤ d0

is not equivalent to a nonnegativity constraint which implies that for each
edge e there is a tight [0, n]-3-path containing e. Thus, dij = 1 for all internal
edges [i, j] for which din = djn = 0. Therefore, dTy ≤ d0 is the member of
family (3.40) associated with W := {i ∈ {1, . . . , n− 1} : din = 1}.

Next, we turn to the polytopes P
(k)
0,n-path(Kn+1) when 4 ≤ k ≤ n− 1. The

integer points in P
(k)
0,n-path(Kn+1) are characterized by the following model:

y0n = 0, (3.41)

y(δ(0)) = 1, (3.42)

y(δ(n)) = 1, (3.43)

y(δ(j)) ≤ 2 for all j ∈ N \ {0, n}, (3.44)

y(δ(j) \ {e}) − ye ≥ 0 for all j ∈ N \ {0, n}, e ∈ δ(j), (3.45)

y((S : N \ S)) ≥ y(δ(j)) for all S ⊂ N, 3 ≤ |S| ≤ n− 2, (3.46)

0, n ∈ S, j ∈ N \ S,

y(E) = k, (3.47)

xe ∈ {0, 1} for all e ∈ E. (3.48)

Here, for any node sets S, T of N , y((S : T )) is short for
∑

i∈S

∑

j∈T yij.
The parity constraints (3.45) together with the degree (3.44) and the

integrality constraints (3.48) ensure that every internal node has degree 0 or
2. Hence, constraints (3.41)-(3.45) and the integrality constraint (3.48) are
satisfied by the incidence vector of the node disjoint union of a simple [0, n]-
path and simple cycles on the set of internal nodes. The one-sided min-cut
inequality (3.46) is satisfied by the incidence vectors of simple [0, n]-paths
but violated by the incidence vectors of the union of a simple [0, n]-path and
simple cycles. Finally, the cardinality constraint (3.47) excludes all incidence
vectors of [0, n]-paths which have a cardinality that is not equal to k.

Lemma 3.30. Let 4 ≤ k ≤ n− 1 and n ≥ 6. If the equation

cTy = c0

is satisfied by all [0, n]-k-paths, then there are α, β, γ, such that c0i = α,
cin = β for all i ∈ {1, . . . , n− 1} and cij = γ for all i, j ∈ {1, . . . , n− 1}.

Proof. Set S := {1, . . . , n − 1}, let i, j, h, ℓ be any distinct nodes in S, and
consider any [0, n]-k-path P that uses the edges [i, j], [j, h] but does not visit
node ℓ. Replacing node j by node ℓ yields cij + cjh = ciℓ+ chℓ. Next, consider
any [0, n]-k-path P ′ that uses the edges [j, i], [i, ℓ] but does not visit the node
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h. Replacing node i by node h yields cij + ciℓ = cjh + chℓ. We deduce
that cij =hℓ and since |S| ≥ 5, we see that cij = chℓ for all distinct nodes
i, j, h, ℓ ∈ S. Denoting this common value by γ, it follows immediately that
there are α, β with c0i = α and cin = β for all i ∈ S.

We are now well prepared to determine the dimension of P
(k)
0,n-path(Kn+1)

in dependence of n and k. For the sake of completeness we determine also
the dimension of P

(k)
0,n-path(Kn+1) when k = n.

Theorem 3.31. Let n ≥ k ≥ 4. Then

dimP
(k)
0,n-path(Kn+1) =

{
|E| − 4 if k ≤ n− 1,

|E| − n− 2 if k = n ≥ 4.

Proof. Using a convex hull code we see that dimP
(4)
0,6-path(K6) = 11. Next,

suppose that n ≥ 6 and 4 ≤ k ≤ n− 1. We will show that (3.41)-(3.43) and

(3.47) is a minimal equality subsystem for P
(k)
0,n-path(Kn+1). Since the equa-

tions (3.41)-(3.43) and (3.47) are linearly independent, dimP
(k)
0,n-path(Kn+1) ≤

(n+1)n
2

− 4. It remains to be shown that any equation that is satisfied by all

y ∈ P
(k)
0,n-path(Kn+1) is a linear combination of (3.41)-(3.43) and (3.47). Let

cTy = c0 be such an equation. By Lemma 3.30, there are α, β, γ with c0i = α,
cin = β for all internal nodes i and cij = γ for all internal nodes i 6= j. Thus,

(cTy, c0) = γ(y(E), k)
+(α− γ)(y(δ(0)), 1)
+(β − γ)(y(δ(n)), 1)
+(c0n + γ − α− β)(y0n, 0).

Finally, let k = n ≥ 4. Theorem 7 of Grötschel and Padberg [47] implies

that the dimension of the traveling salesman polytope P
(n+1)
C (Kn+1) defined

on the complete graph on node set N is equal to |E| − n − 1 for n ≥ 2 and
Theorem 8 of the same authors says that the inequalities xe ≤ 1 induce facets
Fe of P

(n+1)
C (Kn+1) for n ≥ 3. Since F0n is isomorphic to P

(n)
0,n-path(Kn+1), we

obtain the required result.

Next, we use the concept of symmetric inequalities to derive facet defin-
ing inequalities for the undirected [0, n]-k-path polytope P

(k)
0,n-path(Kn+1) from

facet defining inequalities for the directed (0, n)-k-path polytopeP
(k)
0,n-path(D̃n).

An inequality cTx ≤ c0 with c ∈ RÃn is said to be symmetric if cij = cji for all
1 ≤ i < j ≤ n− 1. It is easy to see that the undirected counterpart c̄Ty ≤ c0
of a symmetric inequality cTx ≤ c0 (obtained by setting c̄0i := c0i, c̄in := cin
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for all internal nodes i, and c̄ij := cij = cij for all 1 ≤ i < j ≤ n − 1) is

facet defining for P
(k)
0,n-path(Kn+1) if cTx ≤ c0 is facet defining for P

(k)
0,n-path(D̃n)

(cf. [48]). The argument that can be used to prove the statement is the fol-

lowing: assuming that c̄Ty ≤ c0 does not induce a facet of P
(k)
0,n-path(Kn+1),

then there is a facet inducing inequality d̄Ty ≤ d0 for P
(k)
0,n-path(Kn+1) such

that {y ∈ P
(k)
0,n-path(Kn+1) : c̄Ty = c0} ( {y ∈ P

(k)
0,n-path(Kn+1) : d̄Ty = d0}.

But then {x ∈ P
(k)
0,n-path(D̃n) : cTy = c0} ( {x ∈ P

(k)
0,n-path(D̃n) : dTy = d0},

where dTx ≤ d0 is the directed counterpart of d̄Ty ≤ d0 (obtained by setting
d0i := d̄0i, din := d̄in for all i ∈ {1, . . . , n − 1}, and dij := dji := d̄ij for all
1 ≤ i < j ≤ n−1). The same argumentation holds for the general cardinality
constrained path polytopes P c

0,n-path(D̃n) and P c
0,n-path(Kn+1).

Following an argument of Boros et al. [15] and Hartmann and Özlük [48],

an inequality cTx ≤ c0 with c ∈ RÃn is equivalent to a symmetric inequality if
and only if the system ti−tj = cij−cji for 1 ≤ i < j ≤ n−1 is consistent, since
the flow conservation constraints are not symmetric themselves. The degree
constraint (3.18) and the cut inequalities (3.19), (3.20), (3.23), and (3.26) are
equivalent to symmetric inequalities. Hence, their undirected counterparts
are facet defining for P

(k)
0,n-path(Kn+1).

Corollary 3.32. Let 4 ≤ k < n.

(i) The degree constraint
y(δ(j)) ≤ 2 (3.49)

induces a facet of P
(k)
0,n-path(Kn+1) for every internal node j of G.

(ii) Let S ⊂ N and 0, n ∈ S. The min-cut inequality

y((S : N \ S)) ≥ 2 (3.50)

induces a facet of P
(k)
0,n-path(Kn+1) if 3 ≤ |S| ≤ k.

(iii) Let S ⊂ N and 0, n ∈ S. The one-sided min-cut inequality

y((S : N \ S)) ≥ y(δ(j)) (3.51)

defines a facet of P
(k)
0,n-path(Kn+1) for every node j ∈ N \ S.

(iv) Let S ⊂ N and 0, n ∈ S. The max-cut inequality

y((S : T )) ≤ k − 1 (3.52)

defines a facet of P
(k)
0,n-path(Kn+1) if k is odd, S\{n} > k/2, and T > k/2.
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(v) Let S ⊂ N and 0 ∈ S and n ∈ T . The max-cut inequality

y((S : T )) ≤ k − 1 (3.53)

induces a facet of P
(k)
0,n-path(Kn+1) if k is even, |S| > k/2, and |T | > k/2.

�

Finally, we show that the nonnegativity constraints xe ≥ 0 define facets
of the [0, n]-k-path polytope P

(k)
0,n-path(Kn+1).

Theorem 3.33. Let 4 ≤ k < n. The nonnegativity constraint

ye ≥ 0 (3.54)

defines a facet of the [0, n]-k-path polytope P
(k)
0,n-path(Kn+1) for all edges e 6=

[0, n] of Kn+1.

Proof. When n ≤ 5, (3.54) can be seen to be facet defining using a convex
hull code; so assume that n ≥ 6. Let cT y = c0 be an equation that is
satisfied by every y ∈ P

(k)
0,n-path(Kn+1) with ye = 0. Since the lineality space

of P
(k)
0,n-path(Kn+1) is determined by the equations (3.41)-(3.43) and (3.47), we

may assume that c0n = 0, c0m = cmn = 0 for some internal node m with
[0, m] 6= e 6= [m,n], and cd = 0 for some internal edge d 6= e.

Let f = [i, j], g = [h, ℓ] ∈ E \ {e} be non-adjacent edges. Without loss
of generality, we may assume that the nodes j and ℓ are not incident with
edge e. Let P be any tight [0, n]-k-path that uses the edges [i, j], [j, h] but
does not visit node ℓ. Replacing node j by node ℓ yields another tight path
and hence, cij + cjh = ciℓ + cℓh. Next, consider any tight [0, n]-k-path P ′

that uses the edges [j, i], [i, ℓ] and does not visit node h. Replacing node i by
node h yields another tight path and thus, cij + cjh = ciℓ + cℓh. Adding both
equations, we obtain cf = cg, and since |N \ {0, n}| ≥ 5, this implies cf = cg
for all internal edges f, g that are not equal to e. Now it is easy to see that
also c0i = c0j and chn = cℓn for all edges [0, i], [0, j], [h, n], [ℓ, n] not equal
to e. Since c0m = cmn = 0 and cd = 0, it follows that cf = 0 for all edges
f 6= e which implies also c0 = 0. Hence, cTx = c0 is simply the equation
ceye = 0.

3.4 Facets of P c
0,n-path(D̃n)

In this section we consider the inequalities of the below-mentioned IP-model
for the directed cardinality constrained path polytope P c

0,n-path(D̃n) and give
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necessary and sufficient conditions for them to be facet defining. Most of
the inequalities studied in Section (3.2) are shown to be facet defining for
P c

0,n-path(D̃n) as well. Moreover, we present some further classes of inequalities
that cut off paths of forbidden cardinality.

Let D = (N,A) be a digraph on node set N = {0, . . . , n}. The integer
points of P c

0,n-path(D) are characterized by the following system:

x(δin(0)) = 0,

x(δout(n)) = 0,

x(δout(i)) − x(δin(i)) =







1 if i = 0,
0 if i ∈ N \ {0, n},

−1 if i = n,

x(δout(i)) ≤ 1 ∀ i ∈ N \ {0, n},

x((S : N \ S)) − x(δin(j)) ≥ 0 ∀S ⊂ N : 0, n ∈ S, j ∈ N \ S,

x(A) ≥ c1, (3.55)

x(A) ≤ cm,

(cp+1 − |W | + 1)
∑

i∈W

x(δout(i))

−(|W | − 1 − cp)
∑

i∈N\W

x(δout(i))

−cp(cp+1 − |W | + 1) ≤ 0 ∀W ⊆ N : 0, n ∈ W, ∃ p

with cp < |W | − 1 < cp+1,

xij ∈ {0, 1} for all (i, j) ∈ A.

Here, the forbidden cardinality inequalities arise in a form different from
inequalities (3.2), since the number of nodes that are visited by a simple
path is one more than the number of arcs in difference to a simple cycle. The
first three and the integrality constraints ensure that x is the incidence vector
of a simple (0, n)-path P (cf. (3.7)-(3.13)). The cardinality bounds and the
forbidden cardinality inequalities guarantee that |P | = cp for some p.

Dahl and Gouveia [23] gave a complete linear description of P
(1,2,3)
0,n-path(D

′),

where D′ = D ∪ {(0, n)}. So, we have also one for P
(2,3)
0,n-path(D). Conse-

quently, from now on we exclude the case c = (2, 3) with respect to directed
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path polytopes. More precisely, in what follows, we consider only the set of
cardinality sequences

CS := {c = (c1, . . . , cm) : m ≥ 2, 2 ≤ c1 < · · · < cm ≤ n, c 6= (2, 3)}.

Due to the flow conservation constraints, two different inequalities that
are valid for P c

0,n-path(D) may define the same face. The next theorem is the
counterpart of Theorem 3.9 for P c

0,n-path(D).

Theorem 3.34. Let αTx ≥ α0 be a valid inequality for P c
0,n-path(D̃n) and let

T be a spanning tree of D. Then for any specified set of coefficients βij for the
arcs (i, j) ∈ T , there is an equivalent inequality ᾱTx ≥ α0 for P c

0,n-path(D̃n)
such that ᾱij = βij for (i, j) ∈ T . �

3.4.1 Facets related to general cardinality restrictions

The cardinality bounds x(Ãn) ≥ c1 and x(Ãn) ≤ cm define facets of the
cardinality constrained path polytope P c

0,n-path(D̃n) if and only if 4 ≤ ci ≤
n− 1 for i = 1, m (see Table 3.2).

Next, we turn to the forbidden cardinality inequalities. Due to the easier
notation, we analyze them for the polytope P ∗ := {x ∈ P c

C(Dn)|x(δout(1)) =
1} which is isomorphic to P c

0,n-path(D̃n).

Theorem 3.35. Let Dn = (N,A) be the complete digraph on n ≥ 4 nodes
and W a subset of N with 1 ∈ W and cp < |W | < cp+1 for some p ∈
{1, . . . , m− 1}. The node induced forbidden cardinality inequality

(cp+1 − |W |)
∑

i∈W

x(δout(i)) − (|W | − cp)
∑

i∈N\W

x(δout(i)) ≤ cp(cp+1 − |W |)

(3.56)
defines a facet of P ∗ if and only if cp+1 − |W | ≥ 2 and cp+1 < n or cp+1 = n
and |W | = n− 1.

Proof. Assuming that |W | + 1 = cp+1 < n, we see that (3.56) is dominated
by nonnegativity constraints xij ≥ 0 for (i, j) ∈ N \W . When cp+1 = n and
n− |W | ≥ 2, (3.56) is dominated by another inequality of the same form for
some W ′ ⊃ W with |W ′| = n − 1. Therefore, if inequalities (3.56) are not
facet defining, then they are dominated by other inequalities of the IP-model
that are facet defining for P ∗.

Suppose that cp+1 − |W | ≥ 2 and cp+1 < n. By choice, |W | ≥ 3 and
|N \W | ≥ 3. Moreover, assume that the equation bTx = b0 is satisfied by all
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points that satisfy (3.56) at equality. Setting ι := cp+1 − |W |, we will show
that

b1i = ι ∀ i ∈ N \ {1}
bi1 = ι ∀ i ∈W \ {1},
bij = κ ∀ i ∈W \ {1}, j ∈ N \ {1},
bij = λ ∀ i ∈ N \W, j ∈ N \ {1},
bi1 = µ ∀ i ∈ N \W

(3.57)

for some κ 6= 0, λ, µ. Then, considering a tight cycle of cardinality cp and
two tight cycles of cardinality cp+1, one using an arc in (N \W : {1}), the
other not, yields the equation system

b0 = 2ι+ (cp − 2)κ
b0 = ι+ (|W | − 1)κ+ (cp+1 − |W | − 1)λ+ µ
b0 = 2ι+ (|W | − 2)κ+ (cp+1 − |W |)λ

which solves to
b0 = 2ι+ (cp − 2)κ

µ = ι+ ( |W |−cp
|W |−cp+1

− 1)κ

λ = |W |−cp
|W |−cp+1

κ.

Thus, bTx = b0 is the equation

ιx(δout(1)) + ιx(δin(1)) + ( |W |−cp
|W |−cp+1

− 1)κ
∑

i∈N\W

xi1

+κ
∑

i∈W\{1}

x(δout
1 (i)) + |W |−cp

|W |−cp+1
κ
∑

i∈N\W

x(δout
1 (i)) = 2ι+ (cp − 2)κ,

where δout
1 (i) := δout(i)\{(i, 1)}. Adding κ−ι times the equations x(δout(1)) =

1 and x(δin(1)) = 1 and multiplying the resulting equation with − |W |−cp+1

κ
,

we see that bTx = b0 is equivalent to (3.56).
To show (3.57), we may assume without loss of generality that 2 ∈ W

and b1i = cp+1 − |W |, i ∈ N \ {1}, and b21 = cp+1 − |W |, by Theorem 3.34.
Next, let R be the set of subsets of N of cardinality cp+1 that contain W ,
i.e.,

R := {R ⊂ N : |R| = cp+1, R ⊃W}.

For any R ∈ R, the cp+1-cycles on R are tight tours on R. Theorem 23 of
Grötschel and Padberg [47] implies that there are α̃Ri , β̃

R
i for i ∈ R such that

bij = α̃Ri + β̃Rj for all (i, j) ∈ A(R). Setting

αRi := α̃Ri − α̃R1 (i ∈ R),

βRi := β̃Ri − α̃R1 (i ∈ R),
(3.58)
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yields αRi + βRj = bij for all (i, j) ∈ A(R). Since αR1 = 0 and b1i = ι, it
follows that βRi = ι for all i ∈ R \ {1}. In a similar manner one can show
for any S ∈ R the existence of αSi , β

S
i for i ∈ S with αS1 = 0, βSj = ι for

j ∈ S \{1}, and αSi +βSi = bij for all (i, j) ∈ A(S). This implies immediately
that αRi = αSi and βRi = βSi for all i ∈ R ∩ S. Thus, there are αi, βi for all
i ∈ N such that α1 = 0, βi = ι for i ∈ N \ {1}, and bij = αi + βj for all
(i, j) ∈ A.

Next, consider a tight cp-cycle that contains the arcs (1, k), (k, j) but
does not visit node ℓ for some j, k, ℓ ∈W . Replacing node k by node ℓ yields
another tight cp-cycle, and therefore b1k + bkj = b1ℓ + bℓj , which implies that
αk = αℓ for all k, ℓ ∈ W \ {1}. Thus, there is κ such that bij = κ for all
i ∈ W \ {1}, j ∈ N \ {1}. Moreover, it follows immediately that bi1 = ι for
all i ∈W \ {1}. One can show analogously that αi = αj for all i, j ∈ N \W .
This implies the existence of λ, µ with bij = λ for all i ∈ N \W , j ∈ N \ {1}
and bi1 = µ for all i ∈ N \W .

Finally, when |W |+1 = cp+1 = n, we show that there are n2−2n affinely
independent points x ∈ P ∗ satisfying (3.56) at equality. Without loss of
generality, let W = {1, . . . , n−1}. Because each tour is tight with respect to
(3.56), it exist n2−3n+2 linearly independent points (xr, yr) ∈ Q := {(x, y) ∈
P c
CL(Dn)|x(δout(1) = 1)} with yr = 0. Furthermore, consider the incidence

vectors of the n− 2 cycles (1, 2, . . . , cp), (1, 3, 4, . . . , cp + 1), . . . , (1, n− 2, n−
1, 2, 3, . . . , cp − 2), (1, n− 1, 2, 3, . . . , cp − 1). The corresponding points in Q
are linearly independent and they are also linearly independent of the points
(xr, yr). Hence, (3.56) is also facet defining if |W | + 1 = cp+1 = n.

Theorem 3.36. Let Dn = (N,A) be the complete digraph on n nodes, and
let 1 ∈ W ⊂ N with cp < |W | < cp+1 for some p ∈ {1, . . . , m − 1}. The
cardinality-subgraph inequality

2x(A(W ))− (|W |− cp−1)[x((W : N \W ))+x((N \W : W ))] ≤ 2cp (3.59)

is valid for P ∗ and induces a facet of P ∗ if and only if p + 1 < m or cp+1 =
n = |W | + 1.

Figure 3.4 sketches the support graph of a cardinality-subgraph inequality
with respect to P ∗. The coefficients associated with the red arcs (the arcs
(i, j) ∈ A(W )) are 2. Since |W | = 4 and c = (2, 6, 8), that is, cp = c1 = 2,
it follows −[|W | − cp − 1] = −1 for the coefficients associated with the arcs
(i, j) ∈ (W : N \W ) ∪ (N \W : W ). This is illustrated by the green dashed
arrows.

Proof of Theorem 3.36. A cycle of cardinality less or equal to cp uses at
most cp arcs of A(W ) and thus its incidence vector satisfies (3.59). A cycle
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n = 8
c = (2, 6, 8)
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Figure 3.4: Support graph of a cardinality-subgraph inequality with respect to P ∗.

C of cardinality greater or equal to cp+1 uses at most |W | − 1 arcs in A(W )
and if C indeed visits any node in W , then it uses at least 2 arcs in (W :
N \W ) ∪ (N \W : W ) and hence,

2χC(A(W )) − (|W | − cp − 1)[χC((W : N \W )) + χC((N \W : W ))]
≤ 2(|W | − 1) − 2(|W | − cp − 1) = 2cp.

In particular, all cycles of feasible cardinality that visit node 1 satisfy (3.59).
To prove that (3.59) is facet defining, assume that p+1 = m and cm < n.

When cp+1 − cp = 2 holds, then (3.59) does not induce a facet of P ∗ for
the same reason as the corresponding node induced forbidden cardinality
inequality does not induce a facet of P ∗. Indeed, both inequalities define
the same face. When cp+1 − cp > 2, then it is easy to see that the face
induced by (3.59) is a proper subset of the face defined by the node induced
forbidden cardinality inequality (3.56), and thus, it is not facet defining. The
same argumentation holds when p+ 1 = m, cm = n, and n− |W | > 1.

To show that (3.59) defines a facet, when the conditions are satisfied,
we suppose that the equation bTx = b0 is satisfied by every x ∈ P ∗ that
satisfies (3.59) at equality. Using Theorem 3.34 we may assume that bw1 = 2
for some w ∈ W , b1i = 2 for all i ∈ W , and biw = −(|W | − cp − 1) for all
i ∈ N \W .

Let q, r ∈ N \ W be two nodes that are equal if cp+1 = |W | + 1 and
otherwise different. Then, all (q, r)-paths of cardinality |W |+1 whose internal
nodes are all the nodes of W satisfies the equation bTx = b0. (Note, in case
cp+1 = |W |+ 1, the paths are Hamiltonian cycles.) Thus, it exist αq, βr, and
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αj , βj for j ∈W with

bqj = αq + βj (j ∈W )
bir = αi + βr (i ∈W )
bij = αi + βj ((i, j) ∈ A(W )).

Without loss of generality we may assume that βw = 0. Since b1j = 2, it
follows that α1 = 2, βj = 0 for all j ∈ W \ {1}, and αq = |W | − cp − 1.
When cp = 2, then the cycles {(1, j), (j, 1)} for j ∈ W \ {1}. When cp ≥ 3,
then consider a tight cp-cycle that starts with (1, i), (i, j) and skips node k for
some i, j, k ∈ W \ {1}. Replacing the arcs (1, i), (i, j) by (1, k), (k, j) yields
another tight cp-cycle, and thus the equation b1i + bij = b1k + bkj. In either
case, it follows that bj1 = 2 for j ∈W \ {1} and there is λ such that bij = λ
for all (i, j) ∈ A(W \{1}). Summarizing our intermediate results and adding
further, easy obtainable observations, we see that

b1i = 2 (i ∈W \ {1})
bi1 = 2 (i ∈W \ {1})
bij = λ ((i, j) ∈ A(W \ {1}))
bqi = −(|W | − cp − 1) (i ∈W \ {1})
bq1 = −(|W | − cp − 1) + 2 − λ
bir = −(|W | − cp − 1)(λ− 1) (i ∈W \ {1})
b1r = −(|W | − cp − 1)(λ− 1) + 2 − λ
b0 = 4 + (cp − 2)λ

(3.60)

holds.
So, when cp+1 = n, we have q = r and N \W = {q}, and thus, bTx = b0

is the equation

2x(δout(1)) − λx1q + 2x(δin(1)) − λxq1 + λx(A(W \ {1}))
−(|W | − cp − 1)x(δout(q))

−(|W | − cp − 1)(λ− 1)x(δin(q)) = 4 + (cp − 2)λ.

Adding (1 − λ
2
)(|W | − cp − 1) times the equation x(δout(q)) − x(δin(q)) = 0

and (λ−2) times the equations x(δout(1)) = 1 and x(δin(1)) = 1, we see that
bTx = b0 is equivalent to (3.59), and hence (3.59) is facet defining.

Otherwise, that is, if p + 1 < m, (3.60) holds for each pair of nodes
q, r ∈ N \W . Moreover, letting k 6= l ∈ W \ {1}, it can be seen that every
(k, l)-path P of cardinality cp+1 − |W | + 1 or cm − |W | + 1 whose internal
nodes are in N \W satisfies the equation bTx = −λ(|W | − cp − 1). Thus,
there are πk, πl, and πj , j ∈ N \W , such that

bkj = πk − πj (j ∈ N \W )
bjl = πj − πl (j ∈ N \W )
bij = πi − πj ((i, j) ∈ A(N \W )).
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Since bkj = −(|W | − cp − 1)(λ− 1) for j ∈ N \W , it follows that πi = πj for
all i, j ∈ N \W which implies that bij = 0. Hence, bTx = b0 is the equation

2x(δout(1)) + 2x(δin(1)) − λ
∑

i∈N\W (x1i + xi1)

+λx(A(W \ {1})) − (|W | − cp − 1)x((N \W : W ))
−(|W | − cp − 1)(λ− 1)x((W : N \W )) = 4 + (cp − 2)λ.

Adding (1 − λ
2
)(|W | − cp − 1) times the equation

x((N \W : W )) − x((W : N \W )) = 0

and (λ−2) times the equations x(δout(1)) = 1 and x(δin(1)) = 1, we see that
bTx = b0 is equivalent to (3.59), and hence (3.59) is facet defining. �

3.4.2 Facets unrelated to cardinality restrictions

Theorem 3.37. Let c ∈ CS and n ≥ 4. The nonnegativity constraint

xij ≥ 0 (3.61)

defines a facet of P c
0,n-path(D̃n) if and only if c 6= (2, n) or c = (2, n), n ≥ 5,

and (i, j) is an inner arc.

Proof. By Theorem 3.13, (3.61) defines a facet of PP
(k)
0,n-path(D̃n) whenever

4 ≤ k ≤ n − 1. Hence, Lemma 3.1 implies that (3.61) is facet defining for
P c

0,n-path(D̃n) if n ≥ 5 and there is an index p with 4 ≤ cp ≤ n− 1.
It remains to examine the cases c = (2, n), (3, n), and (2, 3, n). When

n = 4, the assertion can be verified using a computer program. For n ≥ 5,
inequalities (3.61) are facet defining for the asymmetric traveling salesman

polytopeP
(n)
C (Dn) (see Grötschel and Padberg [47]). Thus, there are n2 −

3n + 1 linearly independent points xr in P c
0,n-path(D̃n) satisfying 1Txr = n

and xrij = 0. When c = (2, n) and the arc (i, j) is incident with a terminal

node, there are only n2 − 2n− 1 affinely independent points in P c
0,n-path(D̃n)

satisfying (3.61) with equality, since we have only n− 2 paths from 0 to n of
cardinality 2 that do not use (i, j). When c = (2, n) and (i, j) is an inner arc
or c = (3, n), (3.61) can be shown to induce a facet of P c

0,n-path(D̃n) applying
the same techniques as in the proof to Theorem 3.4. Clearly then, (3.61)

induces also a facet of P
(2,3,n)
s,t-path(D).

Theorem 3.38. Let c ∈ CS, n ≥ 4, and i be an internal node of D̃n. The
degree constraint

x(δout(i)) ≤ 1 (3.62)

induces a facet of P c
0,n-path(D̃n) unless c = (2, n).



3.4 Facets of P c
0,n-path(D̃n) 91

Proof. When n ≥ 5 and 4 ≤ cp ≤ n−1 for some index p, (3.62) can be shown
to induce a facet of P c

0,n-path(D̃n) using Lemma 3.1 and Theorem 3.14, saying

that (3.62) induces a facet of P
(cp)
0,n-path(D̃n). So, let c ∈ {(2, n), (3, n), (2, 3, n)}.

All Hamiltonian (0, n)-paths satisfy x(δout(i)) = 1, and n2−3n+2 of them are
linearly independent. So, when c = (2, n), we have only one further affinely
independent (0, n)-path, namely the path {(0, i), (i, n)}. Thus, in this case
(3.62) is not facet defining. Against it, when c = (3, n), we consider the
paths {(0, i), (i, j), (j, n)} for all internal nodes j 6= i. These n− 2 paths are
linearly independent, and they are also linearly independent of the n2−3n+2
Hamiltonian paths which can be proved with the same approach as in the
proof to Theorem 3.4. Consequently, (3.62) induces a facet of P

(3,n)
0,n-path(D̃n)

and P
(2,3,n)
0,n-path(D̃n).

Lemma 3.39. Let 4 ≤ p ≤ n − 1 and Ñn = {0} ∪̇ Q ∪̇ {v} ∪̇ R ∪̇ {n} be
a partition of Ñn with Q and R nonempty and |Q| ≤ p − 2. Moreover, let
bTx = b0 be an equation, with b0i = 0 for i ∈ Q ∪ {v} and b0j = 1 for j ∈ R,
that is satisfied by each (0, n)-path of cardinality p that satisfies the equation
x((Q ∪ {0} : R)) − x((R : {v})) = 0. If |Q| ≥ 5 or |R| ≥ 5, then there are
α, β, γ, δ, ǫ, ζ, η, and θ such that

bij = α ∀ (i, j) ∈ Ãn(Q),

bij = α ∀ (i, j) ∈ Ãn(R),
bij = 1 + α ∀ (i, j) ∈ (Q : R),
bij = β ∀ (i, j) ∈ (R : Q),
bin = γ ∀ i ∈ Q,
biv = δ ∀ i ∈ Q,
bvi = ǫ ∀ i ∈ Q,
bin = ζ ∀ i ∈ R,
biv = η ∀ i ∈ R,
bvi = θ ∀ i ∈ R.

(3.63)

Proof. First, we assume that |Q| ≥ 5 which implies p ≥ 7. Let P1 be
any (0, v)-path of cardinality |Q| that visits all nodes in Q but one, say
l. Complete P1 to a (0, n)-path of cardinality p that satisfies the equation
x((Q∪{0} : R))−x((R : {v})) = 0, and hence also bTx = b0. Substituting any
two arcs (i, k), (k, j) ∈ Ãn(Q) ∩ P by the arcs (i, l), (l, j) yields a new (0, n)-
path that satisfies also the equation bTx = b0, and hence, bik + bkj = bil + bli.
Obviously, we can derive such an equation for all distinct nodes i, j, k, l ∈ Q.
By Lemma 2 of Hartmann and Özlük [48], it exist α, π0, πv, and πj , j ∈ Q,
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with
b0i = α+ π0 − πi ∀ i ∈ R,
biv = α+ πi − πv ∀ i ∈ R,

bij = α+ πi − πj ∀ (i, j) ∈ Ãn(Q).

Without loss of generality, we may assume that πz = 0 for some z ∈ Q, and
since b0i = 0 for i ∈ Q, we have even πi = 0 for all i ∈ Q. Consequently,
bij = α for all (i, j) ∈ Ãn(Q) and biv = α− πv =: δ for all i ∈ Q.

Next, consider a (0, n)- path P of cardinality p with b(P ) = b0 starting
with the arc (0, j) for some j ∈ R and ending with the arcs (k, l), (l,m), (m,n)
for any k, l,m ∈ Q that skips some node i ∈ Q. Substituting the arcs
(0, j), (k, l), (l,m) by the arcs (0, i), (i, j), (k,m), yields a path P̃ for which
b(P̃ ) = b0 holds. Thus, b0j + bkl + blm = b0i + bij + bl,m, which implies that
bij = 1 + α for all (i, j) ∈ (Q : R).

Next, consider a (0, n)-path P of cardinality p with b(P ) = b0 that ends
with the arcs (i, j), (j, n) and skips node k for some i, j, k ∈ Q. Then the
path P̃ := (P \ {(i, j), (j, n)}) ∪ {(i, k), (k, n)} satisfies b(P̃ ) = b0, and thus,
bij+bjn = bik+bkn which implies bjn = bkn, since bij = bik = α. Consequently,
bin = γ for some γ and all i ∈ Q. With a similar construction one can show
that there is ǫ such that bvi = ǫ for i ∈ Q. When |R| = 1, then we have no
more to show. Otherwise, let (i, j) ∈ R and P be a (0, n)-path starting with
(0, i), (i, j), skipping a node k ∈ Q, and satisfying b(P ) = b0. Substituting
node i by k, yields the equation b0i + bij = b0k + bkj, Since b0i = 1, b0k = 0,
and bkj = 1 + α, it follows bij = α. It can be shown with similar arguments
that the remaining equations of system (3.63) also holds.

Second, let |R| ≥ 5. When p ≥ 5, the proof can be performed similarly by
showing firstly that the equation bik+bkj = bil+blj holds for any distinct nodes
i, j, k, l ∈ R, and applying Lemma 2 of Hartmann and Özlük [48]. When
p = 4, the method fails, because it does not exist a (0, n)-path of cardinality
4 that satisfies the equation bTx = b0 and visits 3 nodes in R. So, let p = 4
which implies |Q| ≤ 2. Consider the paths {(0, i), (i, v), (v, k), (k, n)} and
{(0, j), (j, v), (v, k), (k, n)} for some i, j ∈ R and k ∈ Q. Since both paths
satisfy the equation bTx = b0, it follows that biv = bjv. Hence, biv = η for some
η, for i ∈ R. This in turn implies the existence of α such that bij = α holds
for all (i, j) ∈ Ãn(R), by considering the paths {(0, i), (i, j), (j, v), (v, n)}.
Analogous constructions show successively that also the remaining equations
of system (3.63) hold.

Theorem 3.40. Let c = (c1, . . . , cm) ∈ CS, n ≥ 4, S ⊂ Ñn, 0, n ∈ S, and
v ∈ Ñn \ S. The one-sided min-cut inequality

x((S : Ñn \ S)) − x(δin(v)) ≥ 0 (3.64)
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induces a facet of P c
0,n-path(D̃n) if and only if |Ñn \ S| ≥ 2, |S| ≥ c1 + 1, and

c 6= (2, n).

Proof. Necessity. When Ñn \ S = {v}, (3.64) becomes the trivial inequality
0x ≥ 0, and thus it is not facet defining. When |S| ≤ c1, all feasible (0, n)-
paths P satisfy |P ∩ (S : Ñn \ S)| ≥ 1, and hence, (3.64) can be obtained
by summing up the inequality x((S : Ñn \ S)) ≥ 1 and the degree constraint
−x(δin(v)) ≥ −1. Suppose that c = (2, n), |Ñn \ S| ≥ 2, and |S| ≥ 3. With

respect to the polytope P
(n)
0,n-path(Ñn), (3.64) is equivalent to the inequality

x(Ãn(S)) ≤ |S| − 1. The latter inequality is an equivalent of a subtour
elimination constraint defined on Dn which is known to be facet defining for
the ATSP. Thus, (3.64) induces a facet of P

(n)
0,n-path(D̃n) and consequently,

there are n2 − 3n + 1 linear independent incidence vectors of Hamiltonian
(0, n)-paths satisfying (3.64) at equality. From the (0, n)-paths of cardinality
2 are only the paths {(0, i), (i, n)}, i ∈ (S \ {0, n}) ∪ {v} tight which are at
most n− 2. Consequently, there are not enough affinely independent points
satisfying (3.64) at equality, and hence, (3.64) does not induce a facet of

P
(2,n)
0,n-path(D̃n).

Sufficiency. By Theorem 3.16, (3.64) induces a facet of P
(k)
0,n-path(D̃n) for

4 ≤ k ≤ n − 2 if and only if |S| ≥ k + 1 and |Ñn \ S| ≥ 2. Hence, when
|S| ≥ ci + 1 for some index i ∈ {1, . . . , m} with ci ≥ 4 and |D̃n \ S| ≥ 2,
inequality (3.64) is facet defining for P c

0,n-path(D̃n) by applying Lemma 3.1.
In particular, this finishes the proof when i = 1. Note that in case i = m,
ci ≥ 4 and |S| ≥ ci + 1 imply 4 ≤ cm ≤ n− 2, since |S| ≤ n− 1.

It remains to consider the cases c1 = 2 and c1 = 3. Set Q := S \ {0, n}
and R := Ñn \ (S ∪ {v}). Suppose that R 6= ∅, |Q| ≥ c1 − 1, and c 6= (2, n).

First, let c = (3, n) and 2 ≤ |Q| ≤ n−3. We have already mentioned that

inequality (3.64) induces a facet of P
(n)
0,n-path(D̃n), which implies that there are

n2 − 3n + 1 linearly independent incidence vectors xr of Hamiltonian paths
satisfying (3.64) at equality. In addition, consider the paths (0, i), (i, j), (j, n)
for some (i, j) ∈ Ãn(Q), and (0, k), (k, v), (v, n) for each k ∈ Q∪R. All these
n − 1 paths are tight and with linearly independent incidence vectors, and
considering the corresponding points in P c

PL(D̃n) one can see that they are
also linearly independent of the points xr. Consequently, we have found
n2 − 2n affinely independent points satisfying (3.64) with equality.

Next, let c1 = 3, c 6= (3, n), and 2 ≤ |Q| ≤ c2 − 2. Since c 6= (3, n), it
follows that 4 ≤ c2 ≤ n−1. When n ≤ 10, the assertion can be verified using
a computer program. So, let n ≥ 11, which implies that Q or R contains at
least five nodes. Furthermore, let bTx = b0 be an equation that is satisfied
by all (0, n)-paths of feasible cardinality satisfying (3.64) at equality. By
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Theorem 3.34, we may assume that b0i = 0 for i ∈ Q ∪ {v}, bvn = 0, and
b0j = 1 for j ∈ R. By Lemma 3.39, there are α, β, γ, δ, ǫ, ζ, η, and θ such
that equation system (3.63) holds. Since, bvn = 0, a path (0, i), (i, v), (v, n)
with i ∈ Q ∪ R yields δ = b0 and η = b0 − 1. Next, consider a tight (0, n)-
path of cardinality c2 that visits firstly all nodes in Q, then q ≥ 0 nodes
in R, and finally node v. In either case, such a path yields the equation
(c2 − 3)α = 0, and hence, α = 0. Moreover, from the paths (0, i), (i, j), (j, n)
and (0, v), (v, k), (k, n) for some i, j, k ∈ Q we deduce that γ = b0 and ǫ = 0.
Again, consider a tight (0, n)-path of cardinality c2 that visits firstly some
nodes in R, then v, and finally some nodes in Q. Such a path yields the
equation 2b0 = b0, and thus, b0 = 0. Now it is easy to see that β = ζ and
ζ+θ = 0. Summarizing the results, we conclude that bTx = b0 is the equation

x((S : Ñn \ S)) − x(δin(v)) + θ[x(δout(v)) − x((Ñn \ S : S))] = 0.

Since x(δout(v)) = x(δin(v)) and x((S : Ñn \ S)) = x((Ñn \ S : S) for all
x ∈ P c

0,n-path(D̃n), b
Tx = b0 and

x((S : Ñn \ S)) − x(δin(v)) = 0.

are equivalent which proves that (3.64) defines a facet of P c
0,n-path(D̃n) for all

c with c1 = 3 and Q with 2 ≤ |Q| ≤ c2 − 2.
Finally, let c1 = 2 and c 6= (2, n). When c = (2, 3, n) and 2 ≤ |Q| ≤ n−3,

the assertion follows immediately, because (3.64) defines already a facet of

P
(3,n)
0,n-path(D̃n). When c = (2, 3, n) and |Q| = 1, say Q = {q}, then we have

beside n2 −3n+1 linearly independent tight Hamiltonian paths, n−2 paths
(0, i), (i, v), (v, n) for i ∈ Q ∪ R, and the path (0, q), (q, n). These n2 − 2n
paths can be shown to be linearly independent proving the assertion. Finally,
let 4 ≤ c2 ≤ n−1 and 1 ≤ |Q| ≤ c2−2. When n ≤ 10, the claim can be shown
using a computer program. When n ≥ 11, again we assume that an equation
bTx = b0 is satisfied by all points y ∈ P c

0,n-path(D̃n) that satisfies (3.64) at
equality. Moreover, we suppose that b0i = 0 for i ∈ Q ∪ {v}, bvn = 0, b0i = 1
for i ∈ R, and there are α, β, γ, δ, ǫ, ζ, η, and θ such that (3.63) holds. This
time, it follows immediately b0 = 0 and γ = 0 by considering the paths
(0, i), (i, n) for i ∈ Q ∪ {v}. We distinguish three cases:

|R| = 1: Since |R| = 1 implies |Q| = n − 3 and c2 = n − 1, the (0, n)-
paths of cardinality c2 whose internal node are in Q∪{v} yield the equations
(c2 − 3)α + δ, (c2 − 3)α + ǫ = 0, and (c2 − 4)α + δ + ǫ = 0. This in turn
gives α = δ = ǫ = 0. Now it can be easily derived that η = −1, β = ζ ,
and ζ + θ = 0. Hence, the equation bTx = b0 is equivalent to the equation
x((S : Ñn \ S)) − x(δin(v)) = 0.
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|R| ≥ 2 and p = 4: The paths

{(0, q), (q, i), (i, v), (v, n)},
{(0, i), (i, v), (v, q), (q, n)},
{(0, v), (v, i), (i, j), (j, n)},
{(0, v), (v, i), (i, q), (q, n)},
{(0, i), (i, v), (v, j), (j, n)},
{(0, q), (q, v), (v, j), (j, n)}, q ∈ Q, i, j ∈ R

yield an equation system that solves to α = δ = ǫ = 0, η = −1, β = ζ , and
ζ + θ = 0. Thus, also in this case we see that bTx = b0 is equivalent to the
equation x((S : Ñn \ S)) − x(δin(v)) = 0.

|R| ≥ 2 and p ≥ 5: For any subsets N1, N2, . . . , Np of Ñn we say that a path P
goes along N1, N2, . . . , Nk (denoted byN1 → N2 → · · · → Nk) when P can be
decomposed in subsequences P1, P2, . . . , Pk−1 such that Pi ⊆ Ni∪ (Ni : Ni+1)
and Pi∩(Ni : Ni+1) 6= ∅ for i = 1, . . . , k−1. From (0, n)-paths of cardinality
c2 going along 0 → Q → R → v → n, 0 → Q → v → R → n, 0 → R →
v → Q → n, 0 → v → R → Q → n, and 0 → R → v → R → Q → n, we
obtain an equation system which solves to α = ǫ = 0, η = −1, θ + β = 0,
and δ+ ζ + θ = 0. When |Q| = 1, then any (0, n)-path of cardinality c2 that
skips the node in Q and ends with (v, r), (r, n), yields the equation ζ + θ = 0
which implies also δ = 0 and β = ζ . Otherwise, there is a (0, n)-path of
cardinality c2 along 0 → Q → v → R → Q → n from which we obtain
the equation δ + θ + β = 0. Hence, we obtain also δ = 0, β = ζ , and
ζ + θ = 0. In either case, we see that bTx = b0 is equivalent to the equation
x((S : Ñn \ S)) − x(δin(v)) = 0.

Thus, inequality (3.64) defines also a facet of P c
0,n-path(D̃n) for all c and

Q with c1 = 2 and 1 ≤ |Q| ≤ c2 − 2, which finishes the proof.

We introduce a further class of inequalities whose undirected pendants
we need later for the characterization of the integer points of P c

C(Kn).

Theorem 3.41. Let c ∈ CS, n ≥ 4, S ⊂ Ñn, and 0, n ∈ S. The min-cut
inequality

x((S : Ñn \ S)) ≥ 1 (3.65)

is valid for P c
0,n-path(D̃n) if and only if |S| ≤ c1 and facet defining for it if and

only if 3 ≤ |S| ≤ c1 and |Ñn \ S| ≥ 2.

Proof. When c 6= (3, n), the theorem follows from Theorem 3.15, Lemma 3.1,
and the fact that m ≥ 2. When c = (3, n), then |S| = 3 and |Ñn \S| = n−2.
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W.l.o.g. let S = {0, 1, n} and Ñn\S = {2, . . . , n−1}. Identifying nodes 0 and
n we see that the min-cut inequality is equivalent to a subtour elimination
constraint. Thus, there are n2 − 3n + 1 linearly independent Hamiltonian
(0, n)-paths in D̃n that satisfy (3.65) at equality. To see that (3.65) is facet
defining, consider also the 3-paths {(0, 1), (1, i), (i, n)} for i = 2, . . . , n − 1
and {(0, 2), (2, 3), (3, n)}. These are n − 1 affinely independent points, and
they are also affinely independent of the n2 − 3n + 1 Hamiltonian paths
which is easily seen by considering the corresponding points in P c

PL(D̃n).
Thus, we have constructed n2 − 2n points in P c

0,n-path(D̃n) satisfying (3.65)
at equality.

3.4.3 Inequalities specific to odd or even paths

Theorem 3.42. Let c = (c1, . . . , cm) be a cardinality sequence with m ≥ 2,
c1 ≥ 2, and cp even for 1 ≤ p ≤ m, and let Ñn = S ∪̇ T be a partition of Ñn

with 0 ∈ S, n ∈ T . The odd path exclusion constraint

x(Ãn(S)) + x(Ãn(T )) ≥ 1 (3.66)

is valid for P c
0,n-path(D̃n) and defines a facet of P c

0,n-path(D̃n) if and only if (i)
c1 = 2 and |S|, |T | ≥ c2

2
+ 1, or (ii) c1 ≥ 4 and |S|, |T | ≥ c2

2
.

An illustration of inequalities (3.66) is given in Figure 3.5. It shows the
support graph of an odd path exclusion constraint for n = 6. The black arcs
have coefficients 1; all other coefficients are 0. The red arcs depict an odd
path that violates the inequality.

Proof of Theorem 3.42. Clearly, each (0, n)-path of even cardinality uses at
least one arc in Ãn(S) ∪ Ãn(T ). Thus, inequality (3.66) is valid.

When |S| or |T | is less than c2
2
, then there is no (0, n)-path of cardinality

cp, p ≥ 2, that satisfies (3.67) at equality which implies that (3.67) cannot
be facet defining for P c

0,n-path(D̃n). Thus |S|, |T | ≥ c2
2

holds if (3.66) is facet
defining. For c1 = 2 we have to require even |S|, |T | ≥ c2

2
+ 1. For the sake

of contradiction assume w.l.o.g. that |S| = c2
2
. Then follows |T | ≥ c2

2
+ 1.

However, for an inner arc (i, j) ∈ Ãn(S) there is no tight (0, n)-path of
cardinality c2 that uses (i, j).

Next, let (i) or (ii) be true. The conditions imply that for p = 1 or p = 2

cp ≥ 4 and |S|, |T | ≥ cp
2

+ 1 holds. Restricted to the polytope P
(cp)
0,n-path(D̃n)

inequality (3.66) is equivalent to the max-cut inequality x((S : T )) ≤ cp
2

which were shown to be facet defining for P
(cp)
0,n-path(D̃n) (see Theorem 3.17).

Thus there are n2 − 2n − 1 linearly independent points in P c
0,n-path(D̃n) ∩
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0

S

≥ 1

6

T

Figure 3.5: Support graph of an odd path
exclusion constraint for n = 6 and an odd
path that violates it.

P
(cp)
0,n-path(D̃n) satisfying (3.66) at equality. Moreover, the conditions ensure

that there is also a tight (0, n)-path of cardinality cq, where q = 3 − p. By
Lemma 3.1 (i), the incidence vector of this path is affinely independent of
the former points, and hence, (3.66) defines a facet of P c

0,n-path(D̃n). �

Theorem 3.43. Let c = (c1, . . . , cm) be a cardinality sequence with m ≥ 2,
c1 ≥ 3, and cp odd for 1 ≤ p ≤ m, and let Ñn = S ∪̇ T be a partition of Ñn

with 0, n ∈ S. The even path exclusion constraint

x(Ãn(S)) + x(Ãn(T )) ≥ 1 (3.67)

is valid for P c
0,n-path(D̃n) and defines a facet of P c

0,n-path(D̃n) if and only if (i)

c1 = 3, |S| − 1 ≥ c2+1
2

, and |T | ≥ c2−1
2

, or (ii) c1 ≥ 5 and min(|S| − 1, |T |) ≥
c2−1

2
.

Proof. Since the start and end node 0 and n are in the same partition, each
(0, n)-path of odd cardinality uses at least one arc in Ãn(S) ∪ Ãn(T ). Thus,
inequality (3.67) is valid.

To show necessity assume that |S|−1 or |T | is less than c2−1
2

. Then there is
no (0, n)-path of cardinality cr, r ≥ 2, that satisfies (3.67) at equality. Thus,
(3.67) cannot be facet defining. Hence, we must have |S| − 1, |T | ≥ c2−1

2
. In

case c1 = 3 we have to require even |S| − 1 ≥ c2+1
2

, because otherwise there

would be no tight (0, n)-path using an inner arc (i, j) ∈ Ãn(S).
To show sufficiency we firstly suppose that (i) holds. Let bTx = b0 be

an equation that is satisfied by all (0, n)-paths of feasible cardinality sat-
isfying (3.67) at equality. By Theorem 3.34, we may assume that b0i = 0
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for i ∈ T , bin = 1 for j ∈ S \ {0}, and buv = 0 for some particular arc
(u, v) ∈ (T : S \ {0, n}). From the tight path (0, u), (u, v), (v, n) we deduce
that b0 = 1. Furthermore, for i ∈ T , j ∈ S the paths (0, i), (i, j), (j, n) are
tight, b0i = 0, and bjn = 1. Thus, bij = 0 for all i ∈ T , j ∈ S \ {0, n}. Next,
we show that bij = 0 for all i ∈ S \ {0, n}, j ∈ T . Let a1 = (i1, j1), . . . , ap =
(ip, jp) ∈ (S\{0, n} : T ) be any non-adjacent arcs, where p := c2−1

2
. Associate

with each q ∈ {1, . . . , p} a tight (0, n)-path P q of cardinality c2 that uses all
arcs a1, . . . , ap with the exception of aq and whose associated coefficients bij
of the remaining arcs are known. For instance, if q = 1 then

(0, j1), (j1, i2), (i2, j2), . . . , (jp−1, ip), (ip, jp), (jp, i1), (i1, n)

is such a path. These paths yield an equality system of the form

(E − I)b = 0,

where E is the p× p matrix of all ones, I is the p× p identity matrix, and b
is the vector of variables bk = bak

for 1 ≤ k ≤ p. Since E− I is a nonsingular
matrix, we have that bak

= 0 for 1 ≤ k ≤ p. Since the arcs aj were arbitrarily
chosen, it follows that bij = 0 for all i ∈ S \ {0, n}, j ∈ T . Next, considering
the paths (0, i), (i, j), (j, n) for i ∈ S \ {0, n}, j ∈ T we see that bjn = γ
and b0i = 1 − γ for some γ. Further, from the paths (0, i), (i, j), (j, n) with
(i, j) ∈ Ãn(T ) we derive that bij = 1 − γ for all (i, j) ∈ Ãn(T ). Finally, from
any tight path using an arc (i, j) ∈ Ãn(S \ {0, n}), we derive that bij = 1− γ
for those arcs (i, j). Thus, bTx = b0 is the equation

(1 − γ)x(Ãn(S)) + (1 − γ)x(Ãn(T )) + γx(δin(n)) = 1.

Subtracting γ times the equation x(δin(n)) = 1 and dividing by 1−γ, we see
that bTx = b0 is equivalent to (3.67). Consequently, (3.67) defines a facet of
P c

0,n-path(D̃n).

Finally, suppose that (ii) holds. Note, inequality (3.67) is equivalent to

the max-cut inequality x((S : T )) ≤ ⌊ c1
2
⌋ with respect to P

(c1)
0,n-path(D̃n). From

Theorem 3.17 follows that the latter inequality defines a facet of P
(c1)
0,n-path(D̃n),

hence also the former. Since there is also a tight (0, n)-path of cardinality c2,
it follows the claim by Lemma 3.1 (i).

Theorem 3.44. Let Dn = (N,A) be the complete digraph on n ≥ 6 nodes
and c = (c1, . . . , cm) a cardinality sequence with m ≥ 3, c1 ≥ 2, cm ≤ n,
and cp+2 = cp+1 + 2 = cp + 4 for some 2 ≤ p ≤ m − 2. Moreover, let
N = P ∪̇ Q ∪̇ {r} be a partition of N , where P contains node 1 and satisfies
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c = (3, 5, 7, 9)

P

Q = N \ (P ∪ {r})

r
0

≤ 3

+1 +1

+1
1
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-1

-1

-1

1

-1

Figure 3.6: Support graph of a modified node induced forbidden cardinality inequality
with respect to P ∗.

|P | = cp+1 = cp+1−1. Then the modified node induced forbidden cardinality
inequality
∑

v∈P

x(δout(v)) −
∑

v∈Q

x(δout(v)) + x((Q : {r})) − x((P : {r})) ≤ cp (3.68)

defines a facet of P ∗ = {x ∈ P c
C(Dn)|x(δout(1)) = 1.

An illustration of these inequalities is given in Figure 3.6. Here, the node
set P consists of red nodes, where the bigger node is node 1. Q consists of the
green nodes. The coefficients of the missing arcs (the arcs incident with r)
are 0. We have the cardinality sequence c = (3, 5, 7, 9), and the cardinality of
P is 4, which implies cp = 3. The picture shows that a modified node induced
forbidden cardinality inequality is just a node induced forbidden cardinality
inequality on N \ {r}.

Proof of Theorem 3.44. The arcs that are incident with node r have coeffi-
cients zero. Let C be a cycle that visits node 1 and is of feasible cardinality.
If C does not visit node r, C satisfies clearly (3.68), since the restriction
of (3.68) to the arc set A(N \ {r}) is an ordinary node induced forbidden
cardinality inequality (3.56). When C visits node r and uses at most cp arcs
whose corresponding coefficients are equal to one, then C satisfies also (3.68),
since all those coefficients that are not equal to 1 are 0 or −1. So, let C with
|C| ≥ cp+1 visit node r and use as many arcs whose corresponding coefficients
are equal to one as possible. That are exactly |P | arcs which are contained
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in A(P ) ∪ (P : Q). But then C must use at least one arc in A(Q) ∪ (Q : P )
whose coefficient is −1. Hence, also in this case C satisfies (3.68), which
proves the validity of (3.68).

To show that (3.68) is facet defining, suppose that the equation bTx = b0
is satisfied by all points that satisfy (3.68) at equality. By Theorem 3.34, we
may assume that b1r = br1 = 0 and b1i = 1 for i ∈ N \ {1, r}. By considering
the cp+1-cycles with respect to P ∪ {j} for j ∈ N \ P , one can show along
the lines of the proof of Theorem 3.35 that there are αk, βk, k ∈ N , with
bij = αi+βj for all (i, j) ∈ A, α1 = 0, βr = 0, and βj = 1. In particular, when
cp = 2, the tight 2-cycles {(1, i), (i, 1)}, i ∈ P yield αk = αℓ for k, ℓ ∈ P \{1}.
Otherwise one can show as in the proof of Theorem 3.35 that αk = αl for
all k, l ∈ P \ {1}. Thus, there is κ such that αi = κ for i ∈ P , i 6= 1. This
in turn implies that there is λ with αj = λ for j ∈ Q by considering tight
cp+1-cycles. Then, the equation br1 = 0, a tight cycle of cardinality cp, and
two tight cycles of cardinality cp+1, one visiting node r, the other a node
j ∈ Q, yield the equation system

br1 = 0
b0 = (cp − 1)(κ+ 1) + β1

b0 = cp(κ+ 1)
b0 = cp(κ+ 1) + λ+ β1 + 1

which solves to
b0 = cp(κ+ 1)
λ = −κ− 2
β1 = κ+ 1
αr = −κ− 1.

Next, consider for i ∈ P \ {1}, j, k ∈ Q a cp+2-cycle C that starts in node
1, then visits all nodes in P \ {1, i}, followed by the nodes j, r, i, k, and
finally returns to 1. Since C is tight, we can derive the equation

1 + (cp − 1)(κ+ 1) + bjr + (αr + 1) + (κ+ 1) + (λ+ β1) = b0

which solves to bjr = κ. By considering further tight cp+2-cycles one can
deduce that bri = −κ for i ∈ Q and bjk = −κ − 1 for (j, k) ∈ A(Q). Thus,
bTx = b0 is the equation

x(δout(1) \ {(1, r)}) − x((Q : {1}))
+(2κ+ 1)x((P \ {1} : {1}))

+(κ+ 1)
∑

i∈P\{1} x(δ
out(i) \ {(i, 1), (i, r)})

−(κ + 1)
∑

i∈Q x(δ
out(i) \ {(i, 1), (i, r)})

−κx(δout(r) \ {(r, 1)}) + κx(δin(r) \ {(1, r)}) = cp(κ + 1).
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Adding κ times the equations x(δout(1)) − x(δin(1)) = 0 and x(δout(r)) −
x(δin(r)) = 0, we see that bTx = b0 is equivalent to (3.68), and hence, (3.68)
defines a facet. �

3.4.4 Inequalities related to hop constraints

Theorem 3.45. Let c = (c1, . . . , cm) ∈ CS, and let

Ñn =

cm+1⋃

p=0

Ni

be a partition of Ñn such that N0 = {0} and Ncm+1 = {n}. The lifted jump
inequality

cm−1∑

i=0

cm+1∑

j=i+2

x((Ni : Nj)) − x((Ncm−1 ∪Ncm : N1 ∪N2)) ≥ 1 (3.69)

is valid for P c
0,n-path(D̃n) and induces a facet of P c

0,n-path(D̃n) if |Ni| ≥ 2 for
i = 1, . . . , cm.

Proof. This follows immediately from Theorem 3.23, Lemma 3.1, and the
fact that m ≥ 2.

Theorem 3.46. Let c = (c1, . . . , cm) ∈ CS, s, t two distinct internal nodes
of D̃n = (Ñn, Ãn), P an (s, t)-path of cardinality cm − 1, and bid(P ) :=
P ∪ {(i, j) : (j, i) ∈ P}. The cardinality-path inequality

∑

i∈Ṗ

x(δin(i)) − x(bid(P )) ≥ 0 (3.70)

is valid for P c
0,n-path(D̃n) and induces a facet of P c

0,n-path(D̃n) if cm ∈ {4, 5}
and n ≥ cm + 2 or cm ≥ 6 and n ≥ 2cm − 3.

Proof. This follows immediately from Theorem 3.24, Lemma 3.1, and the
fact that m ≥ 2.

3.5 Facets of the directed cardinality constrained cycle
polytope

In this and the next two sections, we derive facet defining inequalities for re-
lated polytopes mentioned in the introduction mostly from facet defining in-
equalities for the directed cardinality constrained path polytope P c

0,n-path(D̃n).
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According to model (3.3), the integer points of the directed cardinality
constrained cycle polytope P c

C(D) defined on a digraph D = (N,A) are
characterized by the system

x(δout(i)) − x(δin(i)) = 0 for all i ∈ N,
x(δout(i)) ≤ 1 for all i ∈ N,

−x((S : N \ S)) + x(δout(i)) + x(δout(j)) ≤ 1 for all S ⊂ N,

2 ≤ |S| ≤ n− 2,

i ∈ S, j ∈ N \ S,

x(A) ≥ c1,
x(A) ≤ cm,

(cp+1 − |W |)
∑

i∈W

x(δout(i))

−(|W | − cp)
∑

i∈N\W

x(δout(i)) ≤ cp(cp+1 − |W |)

for all W ⊆ N with cp < |W | < cp+1, for some p ∈ {1, . . . , m− 1},

xij ∈ {0, 1} for all (i, j) ∈ A.

Corollary 3.47. Let Dn = (N,A) be the complete digraph on n ≥ 3 nodes
and c = (c1, . . . , cm) a cardinality sequence with m ≥ 2 and c1 ≥ 2. Then
the following statements hold:

(a) The nonnegativity constraint xij ≥ 0 defines a facet of P c
C(Dn).

(b) The degree constraint x(δout(i)) ≤ 1 defines a facet of P c
C(Dn) for every

i ∈ N .

(c) Let S be a subset of N with 2 ≤ |S| ≤ n − 2, let v ∈ S and w ∈ N \ S.
The Two-sided min-cut inequality

x(δout(v)) + x(δout(w)) − x((S : N \ S)) ≤ 1 (3.71)

induces a facet of P c
C(Dn) if and only if |S|, |N\S| ≥ c1 and c /∈ {(2, 3), (2, n)}.

(d) For any S ⊂ N with |S|, |N \ S| ≤ c1 − 1, the min-cut inequality

x((S : N \ S)) ≥ 1 (3.72)

is valid for P c
C(Dn) and induces a facet of P c

C(Dn) if and only if |S|, |N\S| ≥ 2.

(e) Let S be a subset of N and j ∈ N \ S. The one-sided min-cut inequality

x((S : N \ S)) − x(δout(j)) ≥ 0 (3.73)
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defines a facet of P c
C(Dn) if and only if |S| ≥ c1 and 2 ≤ |N \ S| ≤ c1 − 1.

(f) The cardinality bound x(A) ≥ c1 defines a facet of P c
C(Dn) if and only if

c1 = 3 and n ≥ 5 or 4 ≤ c1 ≤ n− 1. Analogously, x(A) ≤ cm defines a facet
of P c

C(Dn) if and only if cm = 3 and n ≥ 5 or 4 ≤ cm ≤ n− 1.

(g) Let W be a subset of N with cp < |W | < cp+1 for some p ∈ {1, . . . , m−1}.
The node induced forbidden cardinality inequality (3.56) defines a facet of
P c
C(Dn) if and only if cp+1−|W | ≥ 2 and cp+1 < n or cp+1 = n and |W | = n−1.

(h) Let W be a subset of N such that cp < |W | < cp+1 holds for some p ∈
{1, . . . , m−1}. The cardinality-subgraph inequality (3.59) is valid for P c

C(Dn)
and induces a facet of P c

C(Dn) if and only if p+1 < m or cp+1 = n = |W |+1.

(i) Let cp be even for 1 ≤ p ≤ m and N = S ∪̇ T ∪̇ {n} a partition of N .
The odd cycle exclusion constraint

x(A(S)) + x(A(T )) + x((T : {n})) − x(({n} : T )) ≥ 0 (3.74)

is valid for P c
C(Dn) and defines a facet of P c

C(Dn) if and only if (α) c1 = 2
and |S|, |T | ≥ c2

2
, or (β) c1 ≥ 4 and |S|, |T | ≥ c2

2
− 1.

(j) Let c = (c1, . . . , cm) be a cardinality sequence with m ≥ 2, c1 ≥ 3, and cp
odd for 1 ≤ p ≤ m, and let N = S ∪̇ T be a partition of N . The even cycle
exclusion constraint

x(A(S)) + x(A(T )) ≥ 1 (3.75)

is valid for P c
C(Dn) and defines a facet of P c

C(Dn) if and only if |S|, |T | ≥ c2−1
2

.

(k) Let c = (c1, . . . , cm) be a cardinality sequence withm ≥ 3, c1 ≥ 2, cm ≤ n,
n ≥ 6, and cp+2 = cp+1 + 2 = cp + 4 for some 2 ≤ p ≤ m− 2. Moreover, let
N = P ∪̇ Q ∪̇ {r} be a partition of N , with |P | = cp + 1 = cp+1 − 1. Then
the modified node induced forbidden cardinality inequality (3.68) defines a
facet of P c

C(Dn).

(l) Let j ∈ N , and let

N =

cm⋃

p=0

Np

be a partition of N such that N0 = {j}. The lifted jump inequality

cm−2∑

i=0

cm∑

j=i+2

x((Ni : Nj)) − x((Ncm−1 ∪Ncm : N1 ∪N2))

+
cm−1∑

i=1

x((Ni : N0)) − 2x(δin(j)) ≥ −1

(3.76)

is valid for P c
C(Dn) and induces a facet of P c

C(Dn) if |Ni| ≥ 2 for i = 1, . . . , cm.
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(m) Let r, s, t be three distinct nodes of Dn, P an (s, t)-path of cardinality
cm − 1 such that r /∈ N(P ), and bid(P ) := P ∪ {(i, j) : (j, i) ∈ P}. The
cardinality-path inequality

∑

i∈Ṗ∪{r}

x(δin(i)) − x(bid(P )) ≥ −1 (3.77)

is valid for P c
C(Dn) and induces a facet of P c

C(Dn) if cm ∈ {4, 5} and n ≥ cm+2
or cm ≥ 6 and n ≥ 2cm − 3.

Proof. (a) When n ≤ 4, the statement can be verified using a computer
program. When c = (2, 3) and n ≥ 5, we apply Theorem 10 of Hartmann

and Özlük [48] which says that xij ≥ 0 defines a facet of P
(p)
C (Dn) whenever

p ≥ 3 and n ≥ p + 1. Thus, there are n2 − 2n 3-cycles satisfying xij ≥ 0
at equality. Together with Lemma 3.1 applied on these tight 3-cycles and
any 2-cycle not using arc (i, j), we get the desired result. The remainder
statements of (a) follow by application of Theorem 3.37 and Theorem 3.6.

(b) First, when c = (2, 3) one can show along the lines of the proof to
Proposition 5 of Balas and Oosten [4] that x(δout(i)) ≤ 1 defines a facet of
P c
C(Dn). Next, when (2, 3) 6= c 6= (2, n), the degree constraint can be shown

to induce a facet using theorems 3.38 and 3.6. Finally, when c = (2, n),
consider any n2 − 3n+ 2 affinely independent tours and the n− 1 additional
2-cycles {(i, j), (j, i)} for j ∈ N \ {i}. Note, all tours satisfy the degree
constraint at equation, and hence, these n2 − 2n + 1 constructed points are
tight. Moreover, using Lemma 3.2 they can be easily shown to be facet
defining for P c

C(Dn).

(c) Supposing that c = (2, 3), the inequality (3.71) is dominated by the
nonnegativity constraint xij ≥ 0 for any arc (i, j) ∈ (S : N \ S) ∪ (N \ S :
S) that is neither incident with v nor with w. Next, suppose that c =
(2, n). Inequality (3.71) is equivalent to the subtour elimination constraint

x(A(S)) ≤ |S| − 1 with respect to the ATSP P
(n)
C (Dn). Thus, we have

n2−3n+1 tours satisfying (3.71) at equality. But we have only n−1 tight 2-
cycles, and consequently, (3.71) does not induce a facet. Next, if |S| ≤ c1−1,
then (3.71) is the sum of the valid inequalities x(δout(v))−x((S : N \S)) ≤ 0
and x(δout(w)) ≤ 1. Finally, if |N \S| ≤ c1 − 1, then (3.71) is the sum of the
inequalities x(δout(w))−x((S : N \S)) ≤ 0 and x(δout(v)) ≤ 1 (cf. Hartmann
and Özlük [48, p. 162]).

Suppose that the conditions in (c) are satisfied. First, consider the in-
equality (3.71) on the polytope Q := {x ∈ P c

C(Dn) : x(δout(1)) = 1} which
is isomorphic to the path polytope P c

0,n-path(D̃n). Then, (3.71) is equivalent
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to the one-sided min-cut inequality (3.64) which defines a facet of Q by The-
orem 3.40. Thus, also (3.71) defines a facet of Q. Now, by application of
Theorem 3.6 on Q and (3.71) we obtain the desired result. (When c1 ≥ 4,
then the statement can be proved also with Theorem 14 of Hartmann and
Özlük [48].

(d) Assuming |S| = 1 or |N \ S| = 1 implies that (3.72) is an implicit equa-
tion. So, let |S|, |N \ S| ≥ 2 which implies that c1 ≥ 3. From Theorem 3.41
follows that (3.72) defines a facet of Q := {x ∈ P c

C(Dn) : x(δout(i)) = 1}, and
hence, by Theorem 3.6, it defines also a facet of P c

C(Dn).

(e) When |N \ S| ≥ c1, (3.73) is obviously not valid. When |N \ S| = 1,
(3.73) is the flow constraint x(δin(j))−x(δout(j)) = 0. When |S| ≤ c1−1 and
|N \S| ≤ c1 −1, (3.73) is the sum of the valid inequalities x((S : N \S)) ≥ 1
and −x(δout(j)) ≥ −1.

Suppose that |S| ≥ c1 and 2 ≤ |N \S| ≤ c1−1. Then in particular c1 ≥ 3
holds. For any node i ∈ S, (3.73) defines a facet of Q := {x ∈ P c

C(Dn) :
x(δout(i)) = 1}, by Theorem 3.40. Applying Theorem 3.6 we see that there-
fore (3.73) defines also a facet of P c

C(Dn).

(f) Since dim{x ∈ P c
C(Dn) : x(A) = ci} = dimP

(ci)
C (Dn), the claim follows

directly from Theorem 1 of Hartmann and Özlük [48].

(g)-(i) Necessity can be proved as in the corresponding part of the proof to
Theorem 3.35 (3.36, 3.42) while suffiency can be shown by applying Theo-
rem 3.6 to Theorem 3.35 (3.36, 3.42).

(j) By Theorem 15 of Hartmann and Özlük [48], (3.75) defines a facet of

P
(c1)
C (Dn). Moreover, the cardinality conditions for S and T ensure that

there is a tight cycle of cardinality c2, and hence, by Lemma 3.1, (3.75) de-
fines a facet of P c

C(Dn).

(k)-(m) Apply Theorem 3.6 to the Theorems 3.44, 3.45, and 3.46, respec-
tively.

Next, we investigate some inequalities that induce facets of P c
C(Dn) but

have no analogue for P c
0,n-path(D̃n). We start with two preliminary results.

The first one is an adaption of Theorem 3.9 for P c
C(Dn).

Theorem 3.48. Let αTx ≥ α0 be a valid inequality for P c
C(Dn) and let T

be a spanning tree of D. Then for any specified set of coefficients βij for the
arcs (i, j) ∈ T , there is an equivalent inequality ᾱTx ≥ α0 for P c

C(Dn) such
that ᾱij = βij for (i, j) ∈ T . �

Lemma 3.49. Let γTx ≤ γ0 define a facet F of P c
C(Dn) which is not equiv-

alent to a nonnegativity constraint. Then, for any two arcs a, b ∈ A, a 6= b,
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there are at least two points xa, xb ∈ F such that xaa > 0, xab = 0 and xbb > 0,
xba = 0.

Proof. Since γTx ≤ γ0 is not equivalent to a nonnegativity constraint, there
are points xa, xb ∈ F with xaa > 0 and xbb > 0. Assume that xa = xb for all
x ∈ F . Then exist λ > 0 and x∗ ∈ P c

C(Dn) \ F such that

(i) δTx := γTx+ λxa − λxb ≤ γ0 is valid for P c
C(Dn) and

(ii) γTx∗ + λx∗a − λx∗b = γ0.

Since δTx = γ0 for all x ∈ F , it follows F ( {x ∈ P c
C(Dn) : δTx = γ0}.

Hence, F is not a facet of P c
C(Dn), a contradiction.

Linear ordering constraints

At the beginning of this chapter we introduced the inequality

x(A) ≥ 2

as part of an integer programming formulation for the ordinary cycle polytope
PC(D) defined on a directed graph D = (N,A). Of course, this inequality is
valid. However, it can be substituted by a whole class of valid inequalities.
For simplicity assume that D is the complete digraph on n nodes. Then, for
any permutation π of N , the inequality

n−1∑

i=1

n∑

j=i+1

xπ(i),π(j) ≥ 1 (3.78)

is valid for PC(D), see Balas and Ooosten [4]. Moreover, the inequality
x(A) ≥ 2 is the sum of the inequalities (3.78) associated with any permuta-
tion π and its reversal.

Inequalities (3.78) can be generalized for the cardinality constrained cycle
polytope P c

C(D) as follows. If C is a directed cycle of length at least c1 and
N =

⋃r
i=1Ni a partition of N such that the subsets Ni are of cardinality less

than c1, then the inequality

r−1∑

i=1

r∑

j=i+1

x((Ni : Nj)) ≥ 1 (3.79)

says that C uses at least one arc in
⋃

1≤i<j≤r(Ni : Nj).
Inequalities (3.78) and (3.79) are called linear ordering constraints. The

next two theorems show that inequalities (3.78) and (3.79) define usually
facets of P c

C(Dn).
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Theorem 3.50. Let Dn = (N,A) be the complete digraph on n nodes and
c = (c1, . . . , cm) a cardinality sequence. For any permutation π of N , the
inequality (3.78) defines a facet of P c

C(Dn) if and only if one of the following
conditions holds:

(i) P c
C(Dn) = PC(D3);

(ii) k ≥ 4, c = {2, k}, and n ≥ 2k − 2;

(iii) m ≥ 3, c1 = 2, and n ≥ 2c2 − 3.

Proof. Assume w.l.o.g. that (π(1), . . . , π(n)) = (1, . . . , n), that is, we con-
sider the inequality

n−1∑

i=1

n∑

j=i+1

xij ≥ 1 (3.80)

Furthermore, set A∗ := {(3, 2), . . . , (n, n− 1)}.

Sufficiency.
(i): Constraint (3.80) defines obviously a facet of PC(D3).
(ii) and (iii): Let bTx = b0 be an equation that is satisfied by all cycles

C ∈ C(Dn) ∩ CHSc(A) satisfying (3.80) at equality.
Due to Theorem (3.48) we may assume that bi1 = 0 for i = 2, . . . , n.

Moreover, since every 2-cycle satisfies (3.80) at equality, we derive b1i = b0
for i = 2, . . . , n.

Next, consider the coefficients ba, a ∈ A∗. If (ii) is true, we consider the
k-cycles (n− 1, n− 2, . . . , n− k + 3, v + 1, v, 1, n− 1) and (n, n− 1, . . . , n−
k + 3, v + 1, 1, n) for v = 2, . . . , k − 1. We obtain bv+1,v = bn,n−1, v =
2, . . . , k − 1, and thus b32 = · · · = bk,k−1. The cycle (k, k − 1, . . . , 1, k) yields
then b32 = · · · = bk,k−1 = 0, since b1k = b0 and b21 = 0, and with the
cycles (v, v−1, . . . , v−k+2, 1, v), v = k+1, . . . , n, we conclude successively
bv,v−1 = 0, v = k + 1, . . . , n.

If (iii) is true, we consider the k-cycles

(n− 1, n− 2, . . . , n− k + 3, v + 1, v, 1, n− 1)

and

(n, n− 1, . . . , n− k + 3, v + 1, 1, n)

for v = 2, . . . , k − 2. We obtain

b32 = · · · = bk−1,k−2 = bn,n−1. (3.81)
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Furthermore, we derive from the cycles (w,w − 1, . . . , w − k + 4, 3, 2, 1, w)
and (w + 1, w, . . . , w − k + 4, 3, 1, w + 1) the equations

b32 = bk+1,k = . . . = bn,n−1, w = k, . . . , n− 1. (3.82)

It follows from (3.81) and (3.82) that

b32 = · · · = bk−1,k−2 = bk+1,k = · · · = bn,n−1. (3.83)

Since cp > k for some p, we derive from the cycles (k, k − 1, . . . , 1, k) and
(m,m− 1, . . . , 1, m)

m−1∑

i=k

bi+1,i = 0

(3.82)
=⇒ bi+1,i = 0, i = k, . . . ,m− 1
(3.83)
=⇒ bi+1,i = 0, i = 2, . . . , k − 2, k, . . . ,m− 1,

and again the cycle (k, k − 1, . . . , 1, k) yields also bk,k−1 = 0.
Next, consider the coefficients buv and bvu for 1 < u < v ≤ n such that

2 ≤ v−u ≤ n−k+2. Since the node set {1, . . . , u, v, . . . , n} is of cardinality
at least k, there is a k-cycle containing (v, u) whose remaining arcs are in

(A∗ \ {(v, v − 1), . . . , (u+ 1, u)}) ∪ {(2, 1), . . . , (u, 1)} ∪ {(1, v), . . . , (1, n)}.

Clearly, it follows immediately that bvu = 0, and hence we conclude buv = b0.
Finally, consider the coefficients buv and bvu for 1 < u < v ≤ n such that

n−k+3 ≤ v−u ≤ n. The node set {u, u+1, . . . , v} is of cardinality at least
k+1. From the k-cycle (v, v−1, . . . , v−k+2, u, v) we obtain buv = b0, since
bv,v−1 = · · · = bv−k+3,v−k+2 = bv−k+2,u = 0. Moreover, this implies bvu = 0.

To summarize, we have shown that the equation bTx = b0 is equivalent
to (3.80). This proves that (3.80), and hence, (3.78), is facet defining.

Necessity. For 2 ≤ n ≤ 3 the statement is obviously true. Hence let
n ≥ 4, and let us suppose, for the sake of contradiction, that (ii) or (iii) is
not true.

a) Assume that c1 > 2.
Then there is no point x ∈ P c

C(Dn) satisfying (3.80) with x12 > 0, a
contradiction.

b) Assume that m = 1.
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Then follows c = (2) and P c
C(Dn) = P

(2)
C (Dn). Thus, every x ∈ P c

C(Dn)
is tight with respect to (3.80), that is, (3.80) is an implicit equation, a con-
tradiction. Consequently, m ≥ 2.

c) Assume that k ≤ n ≤ 2k − 4.

Consider the arcs (u, v) and (v, u) given by u := 2 and v := n − k + 4.
Since 2 ≤ v − u = n − k + 2 ≤ k − 2, there is neither a cp-cycle containing
(u, v) nor a cq-cycle containing (v, u) whose incidence vectors satisfy (3.80)
at equality for all p, q, with cp, cq ≥ k, that is, only the 2-cycle (u, v, u) is
tight. But this is a contradiction to Lemma 3.49.

d) Suppose that n = 2k − 3 and c = (2, k).

We consider the polytope P ∗ defined by

P ∗ := conv(P c
C(Dn) ∪ C

∗)

where C∗ is the triangle (1, 3, 2, 1). Note that dimP ∗ = dimP c
C(Dn). First

we will show that inequality (3.80) defines a facet F ∗ of P ∗ and then that it

is not facet defining for P
(2,k)
C (Dn).

Let us assume that the equation bTx = b0 is satisfied by all x ∈ P ∗ that
satisfy (3.80) at equality. As is easily seen, it follows b1v = b0, v = 2, . . . , n.
In order to show bv+1,v = 0, v = 2, . . . , n− 1, consider the k-cycles

(n− 1, n− 2, . . . , n− k + 3, v + 1, v, 1, n− 1),
(n, n− 1, . . . , n− k + 3, v + 1, 1, n),

v = 2, . . . , k − 2.

We obtain bn,n−1 = b32 = b43 = · · · = bk−1,k−2. Now the triangle (1, 3, 2, 1)
yields b32 = 0, and hence bn,n−1 = b32 = b43 = · · · = bk−1,k−2 = 0. Further,
the cycle (k, k − 1, . . . , 1, k) yields bk,k−1 = 0.

The remaining coefficients can be determined as in (ii) and (iii) of the
part Sufficiency, since all arguments hold also for n = 2k − 3 and c = (2, k).
Hence, F ∗ is a facet of P ∗.

Now we will prove that (3.80) is not facet defining for P c
C(Dn), n =

2k − 3, by showing that C∗ /∈ aff(F ). The crucial point is that the k-
cycles satisfying (3.80) at equality are linearly independent of the 2-cycles
for n = 2k − 3, while for n ≥ 2k − 2 this is no longer true.

Let us denote by F (k) the k-cycles whose incidence vectors satisfy (3.80)
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at equality. Suppose, for the sake of contradiction, that

χ(1,3,2,1) =

n−1∑

i=1

n∑

j=i+1

λijχ
(i,j,i) +

∑

C∈F (k)

µCχ
C

and
n−1∑

i=1

n∑

j=i+1

λij +
∑

C∈F (k)

µC = 1.

Since the arc (1, 3) is contained only in the cycles (1, 3, 2, 1) and (1, 3, 1), it

follows λ13 = 1. However, χ
(1,3,2,1)
ij = 0 and {C ∈ F (k) : (i, j) ∈ C} = ∅

for all 1 ≤ i < j ≤ n, (i, j) 6= (1, 3), with j − i ≤ k − 1, and hence λij = 0
for those components ij. Similarly, it follows λij = 0 for all 1 ≤ i < j ≤ n

with j − i ≥ k, since χ
(1,3,2,1)
ij = 0 and {C ∈ F (k) | (i, j) ∈ C} = ∅ for those

components ij. Thus,

χ(1,3,2,1) = χ(1,3,1) +
∑

C∈F (k)

µCχ
C

⇔ e32 + e21 − e31 =
∑

C∈F (k)

µCχ
C

⇒ 1 = 1T
∑

C∈F (k)

µCχ
C

⇒ 1 =
∑

C∈F (k)

µC 1TχC
︸ ︷︷ ︸

=k

⇒ 1 = k
∑

C∈F (k)

µC

︸ ︷︷ ︸

=0

⇒ 1 = 0. Contradiction!

Theorem 3.51 (cf. Theorem 16 of Hartmann and Özlük [48]). Let c =
(c1, . . . , cm) be a cardinality sequence such that c1 ≥ 3 and m ≥ 2. Further-
more, let r ∈ N, r ≥ 3, and N =

⋃r
i=1Ni be a partition of N with |Ni| < c1

for 1 ≤ i ≤ r. Then, the following statements are equivalent.

(i) The inequality (3.79) defines a facet of P c
C(Dn).

(ii) |N1| + |Nr| ≥ c1 and |Ni| + |Ni+1| ≥ c1 for i = 1, . . . , r − 1.

Proof.
”(i) ⇒ (ii):”This can be shown along the lines of the proof to Theorem 16

of Hartmann and Özlük [48].
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”(ii) ⇒ (i):” This follows directly from Theorem 16 of Hartmann and
Özlük [48] and Lemma 3.1.

Corollary 3.52. Let Dn = (N,A) be the complete digraph on n ≥ 5 nodes
and c = (c1, . . . , cm) a cardinality sequence with m ≥ 2. Next,

(a) let 3 ≤ cm < n, and let N =
⋃r
i=1Ni be a partition of N with |Ni| < cm

for i = 1, . . . , r for some r ≥ 3 such that conditions (ii) in Theorem 3.51
are satisfied;

(b) let c1 ≤ γ and q = max{p ∈ {1, . . . .m − 1} : cp ≤ γ}, where γ :=
max{|Ni| : i = 1, . . . , r}.

Then, the inequality

x(A) − (cm − cq)
r−1∑

i=1

r∑

j=i+1

x((Ni : Nj)) ≤ cq (3.84)

defines a facet of P c
C(Dn).

Proof. Consider inequality (3.79).

r−1∑

i=1

r∑

j=i+1

x((Ni : Nj)) ≥ 1.

Due to (a), (3.79) induces a facet of P
(cm)
C (Dn). Multiplying (3.79) with

−(cm − cq) and adding the equation

x(A) = cm,

we see that (3.79) is equivalent to (3.84) with respect to P
(cm)
C (Dn).

Thus, it remains to show that (3.84) is valid and that exists a tight
cycle C(Dn) ∩ CHS(c1,...,cm−1)(A), by Lemma 3.1. Both is guaranteed by con-
dition (b). The incidence vectors of all cycles of cardinality at most cq satisfy
the inequality x(A) ≤ cq and hence, all the more (3.84). Next, the incidence
vectors of all cycles of cardinality greater than cq satisfy the cardinality bound
x(A) ≤ cm and (3.79). Thus, they also satisfy (3.84). Finally, c1 ≤ γ guar-
antees that the set Q := {p ∈ {1, . . . .m − 1} : cp ≤ γ} is nonempty. Since
q ∈ Q, this implies that there is a cq-cycle C such that C ⊆ A(Nℓ) for some
ℓ, and since χC(A) = cq, C is tight with respect to (3.84).

Note that inequality (3.84) can be found by applying standard sequential

lifting to (3.79) and P
(cm)
C (Dn).
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3.6 Facets of the undirected cardinality constrained cycle
polytope

Let G = (N,E) be a graph and c = (c1, . . . , cm) a cardinality sequence with
3 ≤ c1 < · · · < cm ≤ n. As is easily seen, the integer points of the undirected
cardinality constrained cycle polytope P c

C(G) are characterized by the system

y(δ(j)) ≤ 2 for all j ∈ N,
y(δ(j) \ {e}) − ye ≥ 0 for all j ∈ N, e ∈ δ(j),

y(δ(i)) + y(δ(j)) − y((S : N \ S)) ≤ 2 for all S ⊂ N,
i ∈ S, j ∈ N \ S,

y(E) ≥ c1,
y(E) ≤ cm,

(cp+1 − |W |)
∑

i∈W

y(δ(i))

−(|W | − cp)
∑

i∈N\W

y(δ(i)) ≤ 2cp(cp+1 − |W |)

for all W ⊂ N with cp < |W | < cp+1 for some p ∈ {1, . . . , m− 1},

xe ∈ {0, 1} for all e ∈ E.

(3.85)

In what follows, we assume thatm ≥ 2 and that the undirected cardinality
constrained cycle polytope is defined on the complete graph Kn on n nodes,
that is, G = Kn. It was shown in [58] and [64] that dimP

(p)
C (Kn) = |E| − 1

for 3 ≤ p ≤ n − 1 and n ≥ 5. Thus, it is easy to verify that dimP c
C(Kn) =

|E| = n(n − 1)/2 for all n ≥ 4, since m ≥ 2. Note, in case of n = 4,
P c
C(Kn) = PC(Kn), and by Theorem 2.3 of Bauer [9], dimPC(K4) = 6 = |E|.

Facet defining inequalities for P c
C(Kn) can be derived directly from the

inequalities mentioned in Corollary 3.47 (b)-(h), since these inequalities are
equivalent to symmetric inequalities. Recall that an inequality cTx ≤ γ with
c ∈ RA is symmetric if cij = cji for all i < j. Furthermore, the inequality
cTx ≤ γ is equivalent to a symmetric inequality if the system ti−tj = cij−cji
is consistent, see Hartmann and Özlük [48] and Boros et al. [15].

Corollary 3.53. Let Kn = (N,E) be the complete graph on n ≥ 3 nodes
and c = (c1, . . . , cm) a cardinality sequence with m ≥ 2 and c1 ≥ 3. Then
holds:

(a) For any e ∈ E, the nonnegativity constraint ye ≥ 0 defines a facet of
P c
C(Kn) if and only if n ≥ 5.

(b) The degree constraint y(δ(i)) ≤ 2 defines a facet of P c
C(Kn) for every
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i ∈ N .

(c) Let S be a subset of N with c1 ≤ |S| ≤ n− c1, let v ∈ S and w ∈ N \ S.
Then, the two-sided min-cut inequality

y(δ(v)) + y(δ(w))− y((S : N \ S)) ≤ 2 (3.86)

induces a facet of P c
C(Kn).

(d) For any S ⊂ N with |S|, |N \ S| ≤ c1 − 1, the min-cut inequality

y((S : N \ S)) ≥ 2 (3.87)

is valid for P c
C(Kn) and induces a facet of P c

C(Kn) if and only if |S|, |N\S| ≥ 2.

(e) Let S be a subset of N such that |N\S| < c1 and j ∈ N\S. The one-sided
min-cut inequality

y((S : N \ S)) − y(δ(j)) ≥ 0 (3.88)

is valid for P c
C(Kn) and defines a facet of P c

C(Kn) if and only if |S| ≥ c1 and
|N \ S| ≥ 2.

(f) The cardinality bound y(E) ≥ c1 defines a facet of P c
C(Kn). The cardi-

nality bound y(E) ≤ cm defines a facet of P c
C(Kn) if and only if cm < n.

(g) Let W be a subset of N with cp < |W | < cp+1 for some p ∈ {1, . . . , m−1}.
The node induced forbidden cardinality inequality

(cp+1 − |W |)
∑

i∈W

y(δ(i))− (|W | − cp)
∑

i∈N\W

y(δ(i)) ≤ 2cp(cp+1 − |W |) (3.89)

defines a facet of P c
C(Kn) if and only if cp+1 − |W | ≥ 2 and cp+1 < n or

cp+1 = n and |W | = n− 1.

(h) Let W be a subset of N such that cp < |W | < cp+1 holds for some
p ∈ {1, . . . , m− 1}. The cardinality-subgraph inequality

2y(E(W ))− (|W | − cp − 1)y((W : N \W )) ≤ 2cp (3.90)

is valid for P c
C(Kn) and induces a facet of P c

C(Kn) if and only if p + 1 < m
or cp+1 = n = |W | + 1.

(i) Let c = (c1, . . . , cm) be a cardinality sequence with m ≥ 2, c1 ≥ 3, and cp
odd for 1 ≤ p ≤ m, and let N = S ∪̇ T be a partition of N . The even cycle
exclusion constraint

y(E(S)) + y(E(T )) ≥ 1 (3.91)

is valid for P c
C(Kn) and defines a facet of P c

C(Kn) if and only if |S|, |T | ≥ c2−1
2

.
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(j) Let r, s, t be three distinct nodes of Kn and P an undirected (s, t)-path
of cardinality cm − 1 such that r /∈ N(P ). The cardinality-path inequality

∑

i∈Ṗ∪{r}

1

2
y(δ(i)) − y(P ) ≥ −1 (3.92)

is valid for P c
C(Kn) and induces a facet of P c

C(Kn) if cm ∈ {4, 5} and n ≥ cm+2
or cm ≥ 6 and n ≥ 2cm − 3.

Proof. (a) When n ≤ 5 the statement can be verified using a computer
program. When n ≥ 6, the claim follows from Proposition 2 of Kovalev,
Maurras, and Vaxés [58], Proposition 2 of Maurras and Nguyen [64], and the
fact that m ≥ 2.

(b)-(j) All directed inequalities occurring in Corollary 3.47 (b)-(h) and (j)
are equivalent to symmetric inequalities. For example, the degree constraint
x(δout(i)) ≤ 1 is equivalent to x(δout(i))+x(δin(i)) ≤ 2. Via the identification
y(δ(i)) ∼= x(δout(i)) + x(δin(i)) we see that y(δ(i)) ≤ 2 defines a facet of
P c
C(Kn) if x(δout(i)) ≤ 1 defines a facet of P c

C(Dn).
Necessity can be shown with similar arguments as for the directed coun-

terparts of these inequalities.

Note that if |N \S| = 2, the inequalities in (e) are equivalent to the parity
constraints

y(δ(j) \ {e}) − ye ≥ 0 (j ∈ N, e ∈ δ(j))

mentioned in the IP-model (3.85).
The odd cycle exclusion constraints (3.74), the modified node induced for-

bidden cardinality inequalities (3.68), and the lifted jump inequalities (3.76)
from Corollary 3.47 are not symmetric nor equivalent to symmetric inequali-
ties. Hence, we did not derive counterparts of these inequalities for P c

C(Kn).
Of course, given a valid inequality cTx ≤ c0 for P c

C(Dn), one obtains a valid
inequality c̃Ty ≤ 2c0 for P c

C(Kn) by setting c̃ij := cij + cji for i < j. How-
ever, it turns out that the counterparts of these two classes of inequalities
are irrelevant for a linear description of P c

C(Kn).

3.7 Facets of the undirected cardinality constrained path
polytope

Let G = (N,E) be a graph with node set N = {0, 1, . . . , n} and c =
(c1, . . . , cm) a cardinality sequence with 1 ≤ c1 < . . . < cm ≤ n. The integer
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points of the undirected cardinality constrained path polytope P c
0,n-path(G)

are characterized by the system

y(δ(0)) = 1,
y(δ(n)) = 1,
y(δ(j)) ≤ 2 for all j ∈ N \ {0, n},

y(δ(j) \ {e}) − ye ≥ 0 for all j ∈ N \ {0, n}, e ∈ δ(j),
y((S : N \ S)) ≥ y(δ(j)) for all S ⊂ N, 0, n ∈ S, j ∈ N \ S,

y(E) ≥ c1,
y(E) ≤ cm,

(cp+1 − |W |)
∑

i∈W

y(δ(i))

−(|W | − cp)
∑

i∈N\W

y(δ(i)) ≤ 2cp(cp+1 − |W |)

for all W ⊂ N with 0, n ∈W , cp < |W | − 1 < cp+1

for some p ∈ {1, . . . , m− 1},

xe ∈ {0, 1} for all e ∈ E.

(3.93)

Recall that the term y((S : T )) is short for
∑

i∈S

∑

j∈T yij.

Theorem 3.54. Let Kn+1 = (N,E) be the complete graph on node set
N = {0, . . . , n}, n ≥ 3, and let c = (c1, . . . , cm) be a cardinality sequence
with m ≥ 2 and c1 ≥ 2. Then

dimP c
0,n-path(Kn+1) = |E| − 3.

Proof. All points y ∈ P c
0,n-path(Kn+1) satisfy the equations

y0n = 0, (3.94)

y(δ(0)) = 1, (3.95)

y(δ(n)) = 1. (3.96)

Thus, the dimension of P c
0,n-path(Kn+1) is at most |E| − 3. When 4 ≤ ci < n

for some i ∈ {1, . . . , m}, then the statement is implied by Theorem 3.31,

saying that dimP
(ci)
0,n-path(Kn+1) = |E| − 4, and the fact that m ≥ 2. So,

assume that c = (2, 3), c = (2, n), c = (3, n), or c = (2, 3, n).
When c = (2, 3), assume that the equation by = b0 is satisfied by [0, n]-

paths of cardinality 2 and 3. Then the equations

y0i + yij + yjn = 0,
y0j + yij + yin = 0,
y0i + yin = 0,
y0j + yin = 0
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imply bij = 0, b0i = b0j , and bin = bjn for 1 ≤ i, j ≤ n− 1. Thus, bTx = b0 is
a linear combination of the equations (3.94)-(3.96).

When c = (2, n), c = (3, n), or c = (2, 3, n), the statement can be verified

using Theorem 3.31 saying that dimP
(n)
0,n-path(Kn+1) = |E|−n−2. Thus, there

are |E| − n − 1 linearly independent Hamiltonian paths. Via the approach
on the path-and-loops polytope defined on an undirected graph we see that
indeed dimP c

0,n-path(Kn+1) = |E| − 3.

In what follows, we confine ourselves to the set CS of cardinality sequences
c = (c1, . . . , cm) with m ≥ 2, c1 ≥ 2, and c 6= (2, 3). Next, we show that
the nonnegativity constraints ye ≥ 0 define facets of P c

0,n-path(Kn+1). Since
this requires for those path polytopes with c ∈ {(3, n), (2, 3, n)} a higher
amount of technical detail we start with a preparing Lemma and a following
definition.

Lemma 3.55. Let Kn+1 = (N,E) be the complete graph on node set N =
{0, . . . , n}, n ≥ 4. For any e ∈ E, e 6= [0, n], the nonnegativity constraint

ye ≥ 0 defines a facet of P
(n)
0,n-path(Kn+1) if and only if e is incident to 0 or n

and n ≥ 4 or e is not incident to both 0 and n and n ≥ 5.

Proof. Let n ≥ 5 and e = [i, j] be an edge whose endnodes are not incident
with 0 and n, say w.l.o.g. e = [n − 2, n − 1]. Consider the Hamiltonian

[n−2, n−1]-path polytope P
(n−2)
n−2,n−1-path(G) defined on the complete subgraph

G = (N ′, E ′) induced by the node set N ′ := {1, . . . , n− 1}. Its dimension is
|E ′| − n by Theorem 3.31. Thus, there are |E ′| − n+ 1 linearly independent
Hamiltonian [n − 1, n− 2]-paths in G that can be extended to Hamiltonian
[0, n]-paths in Kn+1 by adding to each path the edges [0, n − 2] and [n −
1, n]. Their incidence vectors, say Xr, r = 1, . . . , |E ′| − n + 1, are linearly
independent and satisfy xrn−1,n−2 = 0 by construction. But they satisfy also
xr0,n−1 = xrn−2,n = 0 and xr0,k = xrk,n = 0 for k = 1, . . . , n−3. Next, denote by

Y [0,k],[l,n] the incidence vector of a Hamiltonian [0, n]-path that does not use
edge [n−2, n−1], starts with [0, k], and ends with [l, n]. Then, it is easy to see
that the points Y [0,n−1],[1,n], P [0,1],[n−2,n], and P [0,i],[n−1,n], P [0,n−2],[i,n] for i =
1, . . . , n− 3 are linearly independent, and they are also linearly independent
of the points Xr. Since it is a total of (|E ′| − n+ 1) + (2n− 4) = |E| − n− 2

points, the inequality yn−2,n−1 ≥ 0 defines a facet of P
(n)
0,n-path(Kn+1). When

n ≤ 4, then it follows immediately that yn−2,n−1 ≥ 0 is not facet defining.

When the edge e is incident to 0 or n, then a simpler construction starting
with Hamiltonian [i, j]-paths of the complete subgraph G = (N ′, E ′) induced
by the node set N ′ := (N \ {0, n}) ∪ {i, j} yields the desired result.
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The undirected cardinality constrained [0, n]-path-and-loops polytope is the
polytope

P c
PL(Kn+1) :=

{

(y, z) ∈ P c
0,n-path(Kn+1) × Rn−1

∣
∣
∣
∣

zi = 2 − y(δ(i)),
i = 1, . . . , n− 1

}

.

Some points y1, . . . , yp ∈ P c
0,n-path(Kn+1) are affinely independent if and only

if the corresponding points (y1, z1), . . . , (yp, zp) ∈ P c
PL(Kn+1) are affinely in-

dependent.

Theorem 3.56. Let Kn+1 = (N,E) be the complete graph on node set
N = {0, . . . , n} with n ≥ 4, and let c = (c1, . . . , cm) ∈ CS be a cardinality
sequence. For any e ∈ E, e 6= [0, n], the nonnegativity constraint ye ≥ 0
defines a facet of P c

0,n-path(Kn+1) if and only if c 6= (2, n) or c = (2, n) and e
is an internal edge.

Proof. When 4 ≤ ci < n for some i ∈ {1, . . . , m}, then the claim follows
from Theorem 3.33 and the fact that m ≥ 2. Otherwise, c = (2, n), c =
(3, n), or c = (2, 3, n) for n ≥ 4. By Lemma 3.55, ye ≥ 0 defines a facet

of P
(n)
0,n−path(Kn+1). Thus, there are |E| − n − 2 linearly independent points

yr ∈ P
(3,n)
0,n−path(Kn+1) satisfying yre = 0 and 1Tyr = n. Considering the

corresponding points in the path-and-loops polytope P
(3,n)
PL (Kn+1), we see

that they can easily completed to a set of |E|−3 affinely independent points

in P
(3,n)
0,n−path(Kn+1) satisfying ye = 0. Thus, ye ≥ 0 defines a facet. Thus,

it induces also a facet of P
(2,3,n)
0,n−path(Kn+1). Finally, when c = (2, n), we have

n − 1 2-paths satisfying ye = 0 if e is an internal edge, and otherwise only
n− 2. In the former case, these n− 1 2-paths are affinely independent of the
points yr (consider the corresponding points in the path-and-loops polytope

P
(2,n)
PL (Kn+1)), and hence, ye ≥ 0 is facet defining. In the latter case, we have

only a total of |E|−4 affinely independent points satisfying ye = 0, and thus,

ye ≥ 0 does not induce a facet of P
(2,n)
0,n−path(Kn+1).

Finally, we use the concept of symmetric inequalities to transform facet
defining inequalities for P c

0,n-path(D̃n) into those for P c
0,n-path(Kn+1), see Sec-

tion 3.3.2.

Corollary 3.57. Let Kn+1 = (N,E) be the complete graph on node set
N = {0, . . . , n} with n ≥ 4, and let c = (c1, . . . , cm) ∈ CS be a cardinality
sequence. Then we have:

(a) The degree constraint y(δ(i)) ≤ 2 defines a facet of P c
0,n-path(Kn+1) for

every node i ∈ N \ {0, n} unless c = (2, n).
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(b) Let S be a subset of N with 0, n ∈ S and |S| ≤ c1. Then, the min-cut
inequality

y((S : N \ S)) ≥ 2 (3.97)

induces a facet of P c
0,n-path(Kn+1) if and only if |S| ≥ 3 and |V \ S| ≥ 2.

(c) Let S ⊂ N with 0, n ∈ S and j ∈ N \ S. Then, the one-sided min-cut
inequality

y((S : N \ S)) − y(δ(j)) ≥ 0 (3.98)

is valid for P c
0,n-path(Kn+1) and induces a facet of P c

0,n-path(Kn+1) if and only
if |S| ≥ c1 + 1 and |N \ S| ≥ 2.

(d) The cardinality bound y(E) ≥ c1 defines a facet of P c
0,n-path(Kn+1) if

and only if c1 ≥ 4. The cardinality bound y(E) ≤ cm defines a facet of
P c

0,n-path(Kn+1) if and only if cm < n.

(e) Let W be a subset of N with 0, n ∈W and cp < |W | − 1 < cp+1 for some
p ∈ {1, . . . , m− 1}. The node induced forbidden cardinality inequality

(cp+1 − |W | + 1)
∑

i∈W y(δ(i))
−(|W | − cp − 1)

∑

i∈N\W y(δ(i)) ≤ 2cp(cp+1 − |W | + 1)
(3.99)

defines a facet of P c
0,n-path(Kn+1) if and only if cp+1−|W |+1 ≥ 2 and cp+1 < n

or cp+1 = n and |W | = n.

(f) Let W be a subset of N such that 0, n ∈ W and cp < |W | − 1 < cp+1 for
some p ∈ {1, . . . , m− 1}. The cardinality-subgraph inequality

2y(E(W ))− (|W | − cp − 2)y((W : N \W )) ≤ 2cp (3.100)

is valid for P c
0,n-path(Kn+1) and induces a facet of P c

0,n-path(Kn+1) if and only
if p+ 1 < m or cp+1 = n = |W |.

(g) Let c = (c1, . . . , cm) be a cardinality sequence with m ≥ 2, c1 ≥ 2, and
cp even for 1 ≤ p ≤ m, and let N = S ∪̇ T be a partition of N with 0 ∈ S,
n ∈ T . The odd path exclusion constraint

y(E(S)) + y(E(T )) ≥ 1 (3.101)

is valid for P c
0,n-path(Kn+1) and defines a facet of P c

0,n-path(Kn+1) if and only
if (i) c1 = 2 and |S|, |T | ≥ c2

2
+ 1, or (ii) c1 ≥ 4 and |S|, |T | ≥ c2

2
.

(h) Let c = (c1, . . . , cm) be a cardinality sequence with m ≥ 2, c1 ≥ 3, and
cp odd for 1 ≤ p ≤ m, and let N = S ∪̇ T be a partition of N with 0, n ∈ S.
The even path exclusion constraint

y(E(S)) + y(E(T )) ≥ 1 (3.102)
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is valid for P c
0,n-path(Kn+1) and defines a facet of P c

0,n-path(Kn+1) if and only if

(α) c1 = 3, |S|−1 ≥ c2+1
2

, and |T | ≥ c2−1
2

, or (β) c1 ≥ 5 and min(|S|−1, |T |) ≥
c2−1

2
.

(i) Let s, t ∈ N \ {0, n} be two distinct nodes and P an (s, t)-path of cardi-
nality cm − 1. The cardinality-path inequality

∑

i∈Ṗ

1

2
y(δ(i)) − y(P ) ≥ 0 (3.103)

is valid for P c
0,n-path(Kn+1) and defines a facet of P c

0,n-path(Kn+1) if cm ∈ {4, 5}
and n ≥ cm + 2 or cm ≥ 6 and n ≥ 2cm − 3. �

As is already mentioned, the modified node induced forbidden cardinality
inequalities (3.68) and the lifted jump inequalities (3.69) are not equivalent
to symmetric inequalities.

3.8 Separation

In this section we investigate briefly separation problems for the most in-
equalities studied in this chapter. As this thesis is restricted to theoreti-
cal aspects of polyhedral combinatorics associated with CCCOP, we do not
present heuristics for NP-hard separation problems.

The concept of symmetric inequalities, which we used to derive valid
inequalities for the undirected counterparts of the cardinality constrained di-
rected cycle and path polytopes, can also be applied to separation. More
precisely, the separation problem for a class of symmetric inequalities can
be traced back to that for its undirected counterpart. We demonstrate the
mechanism for the cardinality constrained cycle polytopes. Let D = (N,A)
be a directed graph, x⋆ ∈ RA, and bTx ≤ b0 a member of a family F of sym-
metric inequalities. Since D is not necessarily complete, symmetric means
that bij = bji only if (i, j), (j, i) ∈ A. The edge set of the underlying graph
G = (N,E) is given by E := {[i, j] : A({i, j}) 6= ∅}. Defining y⋆ ∈ RE by
y⋆ij := x⋆(A({i, j})) and b̄ ∈ RE by b̄ij := b(A({i, j})) for [i, j] ∈ E, we see
that

bTx⋆ > b0

⇔
∑

(i,j)∈A

bijx
⋆
ij > b0

⇔
∑

i<j

b(A({i, j}))x⋆(A({i, j})) > b0

⇔
∑

[i,j]∈E

bijy
⋆
ij > b0,
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i.e., x⋆ violates the inequality bTx ≤ b0 if and only if y⋆ violates b̄T y ≤ b0. In
other words, the separation problem for F can be solved with a separation
routine for its undirected counterpart.

Since the most inequalities that are valid for cardinality constrained cycle
or path polytopes are equivalent to symmetric inequalities, we proceed as
follows. Whenever possible we study the separation problem of a collection
of inequality classes with respect to the undirected cardinality constrained
cycle polytope. Thus, an instance of the separation problem for a class of
inequalities is usually given by an undirected graph G = (N,E) defined on
n nodes, a cardinality sequence c = (c1, . . . , cm) with c1 ≥ 3, and a vector
y⋆ ∈ RE

+.

Cut inequalities

Class:

Related versions:

Complexity:

Min-cut inequalities (3.87)
{y((S : N \ S)) ≥ 2 : |S|, |N \ S| < c1}
(3.19), (3.50), (3.65), (3.72), (3.97)
NP-hard (see Hartmann and Özlük [48])

Class:

Related versions:

Complexity:

One-sided min-cut inequalities (3.88)
{y((S : N \ S)) ≥ y(δ(j)) :

S ⊂ N, j ∈ N \ S, |N \ S| < c1}
(3.20), (3.51), (3.64), (3.73), (3.98)
depends on the side constraints

For instance, the separation problem for inequalities (3.88) is NP-hard
due to the restriction that |N \S| < c1 (see Hartmann and Özlük [48]), while
for the inequalities (3.98)

{y((S : N \ S)) − y(δ(j)) ≥ 0 : S ⊂ N, 0, n ∈ S, j ∈ N \ S},

which are valid for the undirected cardinality constrained path polytope, it
can be solved in polynomial time by computing a minimum {0, n}-i-cut in G
for each node i ∈ N \ {0, n}.

Class:

Related versions:

Complexity:

Two-sided min-cut inequality (3.86)
{y(δ(v)) + y(δ(w))− y((S : N \ S)) ≤ 2 :

v ∈ S, w ∈ N \ S}
(3.71)
polynomial (see Hartmann and Özlük [48] or
Bauer [9])
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Forbidden cardinality inequalities

Class:

Related versions:

Complexity:

Node induced forbidden cardinality inequali-
ties (3.89)
{(cp+1 − |W |)

∑

i∈W

y(δ(i))

−(|W | − cp)
∑

i∈N\W

y(δ(i)) ≤ 2cp(cp+1 − |W |) :

W ⊆ N, cp < |W | < cp+1, p ∈ {1, . . . , m− 1}}
(3.56), (3.68), (3.99)
polynomial

The node induced forbidden cardinality inequalities can be separated with
a greedy algorithm. To this end, set z⋆i := y⋆(δ(i)) for all i ∈ N and apply
the greedy separation algorithm 8.27 of Grötschel [45] on input data z⋆, N ,
and c.

To separate the modified node induced forbidden cardinality inequali-
ties (3.68) the algorithm in the previous paragraph can be applied n − 1
times as subroutine, namely: for each internal node r of N , apply it to the
subgraph induced by N \{r} of the underlying graph G = (N,E). Note that
these inequalities are valid for the directed cardinality constrained path and
cycle polytope, but they are not symmetric.

Cardinality-subgraph inequalities

Class:

Related versions:

Complexity:

Cardinality-subgraph inequalities (3.90)
{2y(E(W ))−(|W |−cp−1)y((W : N \W )) ≤ 2cp :

W ⊆ N, cp < |W | < cp+1, p ∈ {1, . . . , m− 1}}
(3.59), (3.100)
probably NP-hard

It seems to be very unlikely that there is a polynomial time algorithm
that solves the separation problem for this class of inequalities. In the
special case of m = 2 and cm = c2 − c1 = 2 the separation problem
for the inequalities (3.90) reduces to find a subset W ∗ of N of cardinality
k := c1 + 1 such that y⋆(E(W ∗)) > c1. The associated optimization problem
max{y(E(W )) : W ⊆ N, |W | = k}, is the weighted version of the densest k-
subgraph problem which is known to be NP-hard (see Feige and Seltser [31]).
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Odd/even path/cycle exclusion constraints

Class:

Related versions:

Complexity:

Even cycle exclusion constraint (3.91)
{y(E(S)) + y(E(T )) ≥ 1 : N = S ∪̇T}
Here, cp is odd for p = 1, . . . , m
(3.23), (3.26), (3.52), (3.53), (3.66), (3.67), (3.74),
(3.75), (3.101), (3.102)
NP-hard

The separation problems for these classes of inequalities are equivalent to
the maximum cut problem which is known to be NP-hard.

Cardinality-path inequalities

Class:

Related versions:

Complexity:

Cardinality-path inequalities (3.31)
{y(dir(P )) − 1

2

∑

v∈Ṗ

y(δ(v)) ≤ 0 :

P path in G, |P | = k}
(3.32), (3.70), (3.77), (3.92), (3.103)
NP-hard (see Bauer, Linderoth, and Savels-
bergh [10])

Linear ordering constraints

Class:

Related versions:

Complexity:

Linear ordering constraints (3.79)
{
r−1∑

i=1

r∑

j=i+1

x((Ni : Nj)) ≥ 1 :

N =
r⋃

i=1

Ni, |Ni| < c1, i = 1, . . . , r

}

(3.78)
NP-hard (see Hartmann and Özlük [48])

Here, an instance of the separation problem is given by a directed graph
D = (N,A), a cardinality sequence c = (c1, . . . , cm), and a vector x⋆ ∈ RA

+.
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Lifted jump inequalities

Class:

Related versions:

Complexity:

Lifted jump inequalities (3.45)
{
cm−1∑

i=0

cm+1∑

j=i+2

x((Ni : Nj))

−x((Ncm−1 ∪Ncm : N1 ∪N2)) ≥ 1 :

N =
cm+1⋃

p=0

Ni, N0 = {0}, Ncm+1 = {n}

}

(3.30), (3.76)
probably NP-hard (see Dahl, Flatberg, Foldnes,
and Gouveia [21])

Here, an instance of the separation problem is given by a directed graph
D = (N,A) on node set N = {0, . . . , n}, a cardinality sequence c, and a
vector x⋆ ∈ RA

+.

We conclude that all inequalities of the IP-models (3.3), (3.55), (3.85),
and (3.93) for the directed and undirected cardinality constrained cycle and
path polytopes can be separated in polynomial time.





Chapter 4

Recommendations for deriving strong valid

inequalities related to cardinality

constraints

In the previous chapters we have seen that an appropriate modification of the
ordinary forbidden cardinality inequalities results in facet defining inequali-
ties for polyhedra associated with cardinality constrained combinatorial opti-
mization problems. In this chapter we will give three recommendations how
to derive stronger inequalities than inequalities (1.2) to cut off solutions of
forbidden cardinality.

In what follows, Π = (E, I, w) is a combinatorial optimization problem
(COP) and Πc = (E, I, w, c) its cardinality constrained version, where c =
(c1, . . . , cm) denotes a cardinality sequence. Moreover, denote by PI(E) and
P c
I(E) the polytope associated with Π and Πc, respectively.

4.1 Incorporation of combinatorial structures

In the previous chapters we have observed that the ordinary forbidden car-
dinality inequalities (1.2)

(cp+1 − |F |)x(F ) − (|F | − cp)x(E \ F ) ≤ cp(cp+1 − |F |)
for all F ⊆ E with cp < |F | < cp+1 for some p ∈ {1, . . . , m− 1}

are usually quite weak for the polyhedron associated with the cardinality
constrained version of a COP Π = (E, I, w). An important reason is that
they do no incorporate combinatorial structures of the given problem. To
illustrate this statement, let us return to matroids.

By Edmonds [29], a rank inequality x(F ) ≤ r(F ) is facet defining for the
matroid polytope if and only if F is closed and inseparable. Recall that any
F ⊆ E is said to be closed if r(F ∪ {e}) > r(F ) for all e ∈ E \F . It is called
inseparable if r(F1) + r(F2) > r(F ) for all nonempty partitions F = F1 ∪̇F2

of F . When we renounce of these properties and, in addition, substitute the
right hand side of the rank inequality by |F |, then we obtain a valid inequality,
but usually a quite weak inequality. So, the first and most important reason,

125
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why the rank inequality associated with a closed and inseparable subset F
of E is facet defining, arises from the fact that the bound r(F ) is tighter
than |F | (unless r(F ) = |F |). The second reason is connected to the exposed
position of F among subsets F ′ of E with the same rank as F .

The first observation (r(F ) instead of |F |) can be immediately incorpo-
rated into forbidden cardinality inequalities. We obtain the rank induced
forbidden cardinality inequalities (2.2)

(cp+1 − r(F ))x(F ) − (r(F ) − cp)x(E \ F ) ≤ cp(cp+1 − r(F ))

for all F ⊆ E with cp < r(F ) < cp+1 for some p ∈ {0, . . . , m− 1}.

From the second observation (F closed and inseparable) we can easily
adapt the closeness. If F and F ′ := F ∪{e} for some e ∈ E \F have the same
rank k, where cp < k < cp+1, then the rank induced forbidden cardinality
inequality associated with F is the sum of the rank induced forbidden cardi-
nality inequality associated with F ′ and the inequality −(cp+1 − cp)xe ≤ 0,
which is a multiple of the nonnegativity constraint −xe ≤ 0. In contrast, the
separability seems not to fit into the framework of cardinality constrained
matroids. The essential message of Theorem 2.9 is that the rank induced
forbidden cardinality inequality associated with F usually induces a facet of
P c

M
(E) if and only if F is closed. It shows that only in special cases separa-

bility plays a role for a rank induced forbidden cardinality inequality to be
facet defining.

The observations in the previous paragraphs yield the first of three rec-
ommendations made in this chapter to find valid inequalities that are specific
to cardinality restrictions. In analogy to matroid theory, we define a func-
tion ρ, called rank function, by ρ(F ) := max{|I ∩ F | : I ∈ I} for all F ⊆ E.
Moreover, any subset F of E is called closed if ρ(F ∪ {e}) > ρ(F ) for all
e ∈ E \ F .

Recommendation 1. Instead of investigating the original forbidden cardi-
nality inequalities (1.2), analyze the rank induced forbidden cardinality in-
equalities

FCF (x) := (cp+1 − ρ(F ))x(F ) − (ρ(F ) − cp)x(E \ F ) ≤ cp(cp+1 − ρ(F )),
F ⊆ E closed with cp < ρ(F ) < cp+1 for some p.

(4.1)

Evidently, inequalities (4.1) are valid for P c
I(E). Moreover, they are

stronger than inequalities (1.2). To see this, let F and G be subsets of
E such that F ⊆ G and cp < |F | = ρ(G) < cp+1 for some p. Then, the
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forbidden cardinality inequality associated with F is the sum of the rank
induced forbidden cardinality inequality associated with G and the inequal-
ities −(cp+1 − cp)xe ≤ 0 for e ∈ G \ F . Moreover, it is not hard to see
that the closeness of F is a necessary condition for inequality (4.1) to be
facet defining. Namely, if F is not closed, that is, there exists e ∈ E \ F
such that ρ(F ∪ {e}) = ρ(F ), then (4.1) is the sum of the inequalities
FCF∪{e}(x) ≤ cp(cp+1 − ρ(F ∪ {e})) and −(cp+1 − cp)xe ≤ 0.

Recommendation 1 can be seen as one possibility to incorporate some
combinatorial structure into inequalities that cut off feasible solutions I ∈ I
of forbidden cardinality.

Our computational results with the convex hull codes polymake [41] and
PORTA [17] as well as our theoretical results confirm that the forbidden
cardinality inequalities in the latter form frequently appear in the linear de-
scriptions of many polyhedra associated with CCCOPs. Unfortunately, they
are still not necessarily facet defining, in general not separable in polynomial
time unless P = NP, and sometimes hard to identify.

We give an example for Recommendation 1.

Example A: Cardinality constrained matchings

A matching of a graph G = (N,E) is a set of mutually disjoint edges. A
matching of cardinality |N |/2 is said to be perfect. Given any edge weights
we ∈ R, to find a maximum weight (minimum weight perfect) matching
in G is one of the hardest combinatorial optimization problems solvable in
polynomial time.

As it is well known, the problem of finding a maximum weight matching of
cardinality k ≤ ⌊|N |/2⌋ can be easily transformed into the perfect matching
problem. Add ℓ := |N | − 2k new nodes u1, . . . , uℓ and join each of them
with every node v ∈ N by a (zero-weight) edge. Denote the resulting graph
by G′ = (N ′, E ′). Then, the restriction of any perfect matching M in G′ to
G is a matching of cardinality k, since the node set {u1, . . . , uℓ} is a stable
set. Consequently, for any cardinality sequence c, the associated cardinality
constrained matching problem can be solved in polynomial time.

Let M be the collection of all matchings of G. The matching polytope
PMATCH(E) of G = (N,E) is the convex hull of the incidence vectors of all
matchings M ∈ M. By Edmonds [27], the matching polytope is determined
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by the following inequalities:

xe ≥ 0 for all e ∈ E, (4.2)

x(δ(v)) ≤ 1 for all v ∈ N , (4.3)

x(E(W )) ≤

⌊
1

2
|W |

⌋

for all W ⊆ N, |W | odd. (4.4)

Adding the equation

x(E) = k, (4.5)

we obtain a complete linear description of

P
(k)
MATCH(E) := conv{χM ∈ RE : M ∈ M, |M | = k},

as we want to show now.

Theorem 4.1. P
(k)
MATCH(E) is determined by the inequalities (4.2)-(4.5).

Proof. By Chvátal [18], two vertices of the matching polytope PMATCH(E) are
adjacent if and only if the symmetric difference of the corresponding match-
ings is a path or a cycle. In particular, the cardinalities of both matchings
differ by at most one. Consequently, the hyperplane H defined by x(E) = k
does not intersect an edge of PMATCH(E) in its relative interior. Hence, all
vertices of P := H ∩PMATCH(E) are also vertices of PMATCH(E), which implies

P = P
(k)
MATCH(E).

The set of all matchings M of G forms an independence system. Inequal-
ities (4.3) and (4.4) are rank inequalities with respect to the rank function

r : 2E → Z+, r(F ) := max{|M | : M ∈ M,M ⊆ F}

associated with M. If F = δ(v) for some v ∈ V , then r(F ) = 1 provided that
δ(v) 6= ∅. Next, if F = E(W ) for some W ⊆ V , then r(F ) ≤

⌊
1
2
|W |

⌋
, and

equality holds if, for instance, the subgraph (W,E(W )) is connected. Hence,
inequalities (4.3) and (4.4) are usually indeed rank inequalities.

The aim in this example is to derive rank induced forbidden cardinality
inequalities that are facet defining for the cardinality constrained matching
polytope

P c
MATCH

(E) := conv{χM ∈ RE : M ∈ M∩ CHSc(E)}.

However, it is not so easy to give a meaningful characterization of rank in-
duced forbidden cardinality inequalities, since to determine the rank of a set
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F ⊆ E is a nontrivial task. Let F be any subset of E, and let G′ := (N,F ).
The rank of F is the maximum size of a matching contained in F . By the
Tutte-Berge formula [13, 80], this number is given by

r(F ) = min
U⊆N

1

2
(|N | + |U | − o(G′ − U)),

where for any graph H , o(H) denotes the number of its odd components.
Considering this background, we turn towards an easy case. Let Kn =

(N,E) be the complete graph on n nodes, and let N =
⋃k
i=1Ni be a partition

of N . Then, the rank of F :=
⋃k
i=1E(Ni) is given by r(F ) =

∑k
i=1

⌊
1
2
|Ni|

⌋
.

For a subset of such given sets F ⊆ E, we present facet defining rank induced
forbidden cardinality inequalities.

Theorem 4.2. Let Kn = (N,E) be the complete graph on n nodes and
c = (c1, . . . , cm) a cardinality sequence with m ≥ 2, c1 ≥ 1, and cm ≤ ⌊n

2
⌋−1.

Moreover, let N =
⋃k
i=1Ni be a partition of N to odd subsets Ni such that

cp < r :=
∑k

i=1

⌊
1
2
|Ni|

⌋
< cp+1 for some p ∈ {1, . . . , m − 1}. Then, the

inequality

(cp+1 − r)x(F ) − (r − cp)x(E \ F ) ≤ cp(cp+1 − r) (4.6)

defines a facet of P c
MATCH

(E), where F :=
⋃k
i=1E(Ni).

Proof. Clearly, r = r(F ) and r(F ) matches also with the value ρ(F ). Thus,
following the argumentation after Recommendation 1, inequality (4.6) is
valid. To show that (4.6) defines a facet of P c

MATCH
(E), we assume that there

is an equation bTx = b0 that is satisfied by all points in P c
MATCH

(E) which sat-
isfy (4.6) at equality. If cp = 1, then it follows that be = b0 = b0

cp
for all e ∈ F .

Next, let cp ≥ 2 which implies r ≥ 3. We will show that for any two edges
e, f ∈ F , be = bf holds. If e and f are non-adjacent, then there is a matching
M of cardinality cp + 1 with e, f ∈ F due to r(F ) = r ≥ 3. The matchings
Me := M \ {e} and Mf := M \ {f} are tight, that is, the incidence vectors of
Me and Mf satisfy the inequality (4.6) at equality. Hence, b0 = bχMe = bχMf

which implies immediately be = bf . If e and f are adjacent, then there is
some edge g ∈ F which is adjacent neither to e nor to f . By the former
argumentation, be = bg and bf = bg, and thus, be = bf . Any tight matching
M ⊆ F yields now be = b0

cp
for all e ∈ F .

Next, consider the coefficients be, e ∈ E \ F . If cp+1 = r + 1, we conclude
that that be = −b0

r−cp
cp

= −b0
r−cp

cp(cp+1−r)
. So, let cp+1 > r+1 and e⋆ ∈ E \F be

any edge. Then, one can always find a matching M⋆ ⊆ F with |M⋆| = r such
that M⋆ ∪ {e⋆} is also a matching. Moreover, M⋆ ∪ {e⋆} can be completed
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to a matching M ′ with |M ′| = cp+1 +1 even if cp+1 = cm, since cm ≤ ⌊n
2
⌋−1.

The matchings M ′
f := M ′ \ {f}, f ∈M ′ \M⋆ are tight with respect to (4.6)

which implies bχM
′
f = b0 for all f ∈M ′\M⋆. Hence, it is not hard to see that

bf = −b0
r−cp

cp(cp+1−r(F ))
for all f ∈ M ′\M⋆. In particular, be⋆ = −b0

r−cp
cp(cp+1−r(F ))

,

and since e⋆ were arbitrarily chosen, it follows that be = −b0
r−cp

cp(cp+1−r(F ))
for

all e ∈ E \ F . Thus, bTx = b0 is a multiple of (4.6).
Moreover, since inequality (4.6) is not an implicit equation, P c

MATCH(E) is
fulldimensional, and inequality (4.6) is facet defining.

Inequalities (4.6) turn out to be a cardinality constrained version of in-
equalities (4.4). Moreover, it is worth mentioning that F as given in Theo-
rem 4.2 is closed.

Also inequalities (4.3) have a natural translation to the context of cardi-
nality restrictions:

(2cp+1 − |W |)
∑

v∈W

x(δ(v))

−(|W | − 2cp)
∑

v∈N\W

x(δ(v)) ≤ 2cp(2cp+1 − |W |)

for all W ⊆ N with 2cp < |W | < 2cp+1, p = 1, . . . , m.

(4.7)

However, these inequalities cannot be derived as rank induced forbidden
cardinality inequalities, since they have up to three different coefficients
4cp+1 − 2|W |, 4cp − 2|W |, and 2cp + 2cp+1 − 2|W |, while (rank induced)
forbidden cardinality inequalities have only two. Inequalities (4.7) are easily
seen to be valid for the cardinality constrained matching polytope P c

MATCH(E),
since a matching of cardinality cp covers 2cp nodes for p ∈ {1, . . . , m}. This
means that the cardinality sequence c = (c1, . . . , cm) for the number of al-
lowed edges used in a matching can be directly translated to the cardinality
sequence c̃ := (2c1, . . . , 2cm) for the number of allowed nodes covered by a
matching. We remark that the class of inequalities (4.7) is identically with
the class of node induced forbidden cardinality inequalities (3.89) for the
undirected cardinality constrained cycle polytope in case that the cardinality
sequence only consists of even numbers.

4.2 Combinatorial/matroidal relaxations

In case that Π = (E, I, w) is the maximum independent set problem over a
matroid, the polytope associated with Πc, that is, the cardinality constrained
matroid polytope P c

M
(E), is determined by the system (2.2)-(2.6):

FCF (x) := (cp+1 − r(F ))x(F ) − (r(F ) − cp)x(E \ F ) ≤ cp(cp+1 − r(F ))

for all F ⊆ E with cp < r(F ) < cp+1 for some p ∈ {0, . . . , m− 1},
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x(E) ≥ c1,

x(E) ≤ cm,

x(F ) ≤ r(F ) for all ∅ 6= F ⊆ E,

xe ≥ 0 for all e ∈ E,

see Theorem 2.2. Moreover, all inequalities are separable in polynomial time.
As it is already mentioned in Section 2.1.3 of Chapter 2, the separation
problem for the rank inequalities can be solved by a combinatorial algorithm
proposed by Cunningham [20], while the separation problem for the rank
induced forbidden cardinality inequalities can be traced back to that for the
rank inequalities, cf. Theorem 2.13 and Corollary 2.14.

The question, how we can benefit from the nice polyhedral structure of
cardinality constrained matroids, leads to the second recommendation.

Recommendation 2. Find a “good”combinatorial relaxation (or matroidal
relaxation) Π′ = (E,J , w) of the COP of consideration Π = (E, I, w), or
even better, directly of its cardinality constrained version Πc = (E, I, w, c).

Here, a COP Π′ = (E,J , w) is called a combinatorial relaxation (ma-
troidal relaxation) of Π = (E, I, w) if J ⊇ I (and J is a matroid). Of course,
J ⊇ I or J ⊇ (I∩CHSc(E)) implies that (J ∩ CHSc(E)) ⊇ (I ∩ CHSc(E)).
Hence, valid inequalities for P c

J (E) are also valid for P c
I(E).

The hope behind Recommendation 2 is that “good” combinatorial relax-
ations yield strong inequalities for P c

I(E). In the best case it means that
P c
J (E) has a tractable facial description, and the facet defining inequalities

for P c
J (E) are also facet defining for P c

I(E). If, for instance, J is a matroid,
then P c

J (E) has a tractable facial structure, but this alone does not imply
the tightness of its facet defining inequalities for P c

I(E).
Of course, the quality of a combinatorial (matroidal) relaxation influ-

ences the strength of the associated inequalities with respect to P c
I(E). For

instance, an independence system I defined on some ground set E is the
intersection of finitely many matroids defined on the same set E: The cir-
cuit system C associated to I has only finitely many members. Each circuit
C ∈ C can be used to define a matroid IC by setting IC := {I ⊆ E : C 6⊆ I}.
Then, I = ∩C∈CIC . This is, however, usually not an efficient way to describe
I, since in general I is the intersection of less matroids. From a polyhe-
dral point of view a smaller description of I by matroids probably leads to
stronger inequalities for P c

I(E).
In Recommendation 2 we suggest to use combinatorial (matroidal) re-

laxations of Πc instead of Π. Of course, the combinatorial relaxations of
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Π and Πc are usually the same, but not necessarily. If J ⊇ I, then J ⊇
(I ∩ CHSc(E)). However, K ⊇ (I ∩ CHSc(E)) for some K ⊆ 2E does not
necessarily imply K ⊇ I. This also affects the facial structures of the poly-
topes associated with Π and Πc. Consider an artificial COP as in Section 1.1,
for instance, the embedded directed odd cycle problem (EDOCP)

min{w(C) : C ⊆ E, if |C| ≥ 3 is odd, then C is a simple directed cycle}

defined on a digraph D = (N,A). The associated polytope, namely the
embedded directed odd cycle polytope PEDOC(A) is fulldimensional, since 0 ∈
PEDOC(A) and ua ∈ PEDOC(A) for all a ∈ A. Here, ua denotes the ath unit
vector. Moreover, a trivial inequality xa ≤ 1 defines a facet of PEDOC(A),
since the vectors ua and ua + ub for all b ∈ A \ {a} belong to PEDOC(A),
are linearly independent, and satisfy the inequality at equality. The trivial
inequalities xa ≤ 1 for a ∈ A can be interpreted as rank inequalities for the
trivial matroid I = 2A. The singletons {a}, where a ∈ A, are the closed and
inseparable sets with respect to I. Now, restricting the feasible solutions of
the EDOCP to odd cardinalities ≥ 3, we obtain the so called directed odd
cycle problem (DOCP). Of course, an inequality xij ≤ 1 for a = (i, j) ∈ A is
also valid for the polytope associated with the DOCP, the so called directed
odd cycle polytope

PDOC(A) := conv{χC ∈ RA : C is a simple directed cycle with |C| odd},

but now the inequality is the consequence of other valid inequalities. De-
noting by δout(i) the set of arcs leaving node i, we see that the inequality
xij ≤ 1 is the sum of the degree constraint x(δout(i)) ≤ 1 and the nonnega-
tivity constraints −xik ≤ 0 for all k ∈ δout(i)\{j}, and hence, this inequality
is not facet defining if |δout(i)| ≥ 2. Conversely, x(δout(i)) ≤ 1 is not valid for
PEDOC(A) unless |δout(i)| = 1. Consequently, for this example it is better to
use combinatorial/matroidal relaxations for Πc than Π in order to find strong
valid inequalities for the polytope associated with Πc.

We close the discussion with an example for a favorable application of
Recommendation 2 based on cardinality constrained paths, also see Chap-
ter 3.

Example B: Cardinality constrained paths

Let D = (N,A) be a directed graph and c = (c1, . . . , cm) a cardinality se-
quence. We recall some notations from Chapter 3. For any v ∈ N , we denote
by δin(v) and δout(v) the set of arcs entering and leaving node v, respectively.
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For any two disjoint nodes s, t ∈ N , let Ps,t(D) be the collection of simple
directed (s, t)-paths of D. The polytope

P c
s,t-path(D) := conv{χP ∈ RA : P ∈ Ps,t(D) ∩ CHSc(A)}

is the directed cardinality constrained path polytope.
According to Section 3.4 of Chapter 3, the integer points of P c

s,t-path(D)
can be described by the system

xuv ∈ {0, 1} for all (u, v) ∈ A, (4.8)

x(δout(s)) = x(δin(t)) = 1, (4.9)

x(δin(s)) = x(δout(t)) = 0, (4.10)

x(δout(v)) − x(δin(v)) = 0 for all v ∈ N \ {s, t}, (4.11)

x(δout(v)) ≤ 1 for all v ∈ N \ {s, t}, (4.12)

x(δin(v)) − x((S : N \ S)) ≤ 0 ∀S ⊂ N : s, t ∈ S, v ∈ N \ S, (4.13)

x(A) ≥ c1,

x(A) ≤ cm,

(cp+1 − |W |)
∑

v∈W x(δout(v))
−(|W | − cp)

∑

v∈N\W x(δout(v)) ≤ cp(cp+1 − |W |)

for all W ⊆ N : s ∈W, t ∈ N \W
with cp < |W | < cp+1 for some p.

(4.14)

It is worthwile to have a closer look at the cardinality constrained path
polytope from a matroidal point of view, disclosing that the node induced
forbidden cardinality inequalities (4.14) are originated from matroids. The
collection of all simple (s, t)-paths is contained in the intersection of the
same three matroids that are used to formulate the asymmetric traveling
salesman problem by matroids. The three matroids are the two partition
matroids Mout = (A, Iout) and M in = (A, I in) whose independence systems
are defined by

Iout := {B ⊆ A : |B ∩ δout(v)| ≤ 1 for all v ∈ N},

I in := {B ⊆ A : |B ∩ δin(v)| ≤ 1 for all v ∈ N},

respectively, and the graphic matroid MF = (A, IF ), where IF denotes the
collection of all forests of D. Consequently, the rank and rank induced for-
bidden cardinality inequalities associated with these matroids are valid in-
equalities for P c

s,t-path(D).
The facet defining rank inequalities for P c

Mout(A) are exactly the inequal-
ities x(δout(v)) ≤ 1 for v ∈ N . Thus, inequalities (4.12) are originated from
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the partition matroid Mout. The facet defining forbidden cardinality inequal-
ities for P c

Mout(A) are of the form

(cp+1−|U |)
∑

v∈U

x(δout(v))−(|U |−cp)
∑

v∈N\U

x(δout(v)) ≤ cp(cp+1−|U |), (4.15)

where U ⊆ N with cp < |U | < cp+1 for some p ∈ {1, . . . , m − 1}. If s ∈ U
and t ∈ N \ U , then inequality (4.15) is equivalent to

(cp+1−|U |)
∑

v∈U∪{t}

x(δout(v))−(|U |−cp)
∑

v∈N\(U∪{t})

x(δout(v)) ≤ cp(cp+1−|U |)

due to x(δout(t)) = 0. Setting W := U ∪ {t}, we see that this inequality is
an inequality among (4.14). Thus, inequalities (4.14) are originated from the
cardinality constrained version of Mout. By Theorem 3.35, these inequalities
define facets of P c

s,t-path(D).
Due to the flow conservation constraints (4.11), the inequalities that can

be derived from facet defining rank and rank induced forbidden cardinal-
ity inequalities for P c

M in(A) are equivalent to any of the inequalities (4.12)
and (4.14).

The facet defining rank inequalities for P c
MF (A) are of the form x(A(U)) ≤

|U | − 1 for ∅ 6= U ⊆ N . Due to the equations (4.9) and (4.10), the face
induced by the rank inequality associated with some U is contained in the face
induced by the rank inequality associated with U ′ := U \ {s, t} (with respect
to P c

s,t-path(D)). However, the inequality x(A(U ′)) ≤ |U ′| − 1 is still not facet
defining for P c

s,t-path(D). To this end, consider an inequality among (4.13)
with S := N \ U ′ and some u ∈ U ′:

x(δin(u)) − x((S : N \ S)) ≤ 0.

Adding the inequalities x(δin(v)) ≤ 1 for v ∈ U ′ \ {u}, we obtain x(A(U ′)) ≤
|U ′| − 1. Also, none of the forbidden cardinality inequalities

(cp+1 − rF (W ))x(W ) − (rF (W ) − cp)x(A \W ) ≤ cp(cp+1 − rF (W ))

for closed sets W ⊆ A with respect to the graphic matroid is facet defining
for P c

s,t-path(D) regardless in which partition W,A \W are s and t.

4.3 Iterated inequality-strengthening

A favorite method to obtain insights about the facial structure of a polytope is
to compute the H-representation of a polytope, given by its V-representation,
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with convex-hull codes such as PORTA [17] or polymake [41]. However, since
the used routines have exponential running time (indeed, a polynomial algo-
rithm for the convex hull problem does not exist), this approach works only
for small problem instances. Here general lifting procedures might come into
play. We are perhaps not able to compute the H-representation of a polytope
in reasonable time but to determine quickly the affine space associated with
the face induced by a valid inequality. For example, PORTA returns a set of
linearly independent equations that are satisfied by all points in the face Fa
of a polyhedron P induced by a valid inequality aTx ≤ α. In other words,
the set of equations determines the affine hull of Fa. However, P intersects
usually both half spaces induced by such an equation bTx = β, which means
that neither bTx ≤ β nor bTx ≥ β are valid for P .

Algorithm 2: Inequality-Strengthening.

Input: A 0-1-polytope P ∈ Rd given by its vertex set V, a valid
inequality aTx ≤ α, and an equation bTx = β that is satisfied
by all points v ∈ V that satisfy aTx ≤ α at equality.

Output: A valid inequality cTx ≤ γ such that the face induced by
this inequality contains the face induced by aTx ≤ α.

Set Ṽ := {v ∈ V : bTv > β}.1

if Ṽ = ∅ then2

return “aTx ≤ α”.
end

Set λv := α−aT v
bT v−β for all v ∈ Ṽ.3

Set λ⋆ := min{λv : v ∈ Ṽ}.4

Define a new inequality cTx ≤ γ by c := a+ λ⋆ · b and γ := α + λ⋆ · β.5

return “cTx ≤ γ”.

In this situation, Algorithm 2 can be applied: Ṽ is the set of all vertices
of P that violate the inequality bTx ≤ β. Thus, aTv < α and λv > 0 for all
v ∈ Ṽ, which in turn implies λ⋆ > 0. Now, for every v ∈ V \ Ṽ we have:
aTv ≤ α, bT v ≤ β, and hence cTv ≤ γ. Moreover, for each v ∈ Ṽ we have:
(a + λb) · v ≤ α + λβ for 0 ≤ λ ≤ λv. Hence, cTx ≤ γ is satisfied by every
v ∈ Ṽ. Consequently, cTx ≤ γ is a valid inequality for P . Furthermore, if
Ṽ 6= ∅, then by the choice of λ⋆ in line 4, the face induced by aTx ≤ α is
strictly contained in the face induced by cTx ≤ γ. So, applying Algorithm 2
iteratively, results in a facet defining inequality for P . Of course, the running
time of the procedure is linear in |V|, but in general not polynomial in the
dimension d of the space.

Based on these observations, we give the following recommendation.
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Recommendation 3. If the forbidden cardinality inequalities are not facet
defining for the polytope of consideration, then they can still be used to derive
stronger cardinality specific inequalities. This can be tried, for instance, with
Algorithm 2.

To give an application for Algorithm 2, we consider cardinality con-
strained cuts.

Example C: Cardinality constrained cuts

Let G = (N,E) be a graph. For any S ⊆ N , we denote by δ(S) the set of
edges connecting S and N \ S. A subset C of E is called a cut if C = δ(S)
for some S ⊆ N . The sets S and N \ S are the shores of C. The collection
of all cuts of G is denoted by C. The max cut problem max{w(C) : C ∈ C},
for general weight functions w, is NP-hard. In the following, we consider
cardinality restrictions acting on the shores of the cuts.

Let C ⊆ E be a cut with shores S and T . Then, |T | = |N | − |S|,
that is, the cardinality of S determines that of T and vice versa. Moreover,
min{|S|, |T |} ≤ ⌊n

2
⌋. Consequently, it is sufficient to force only the cardi-

nality of the smaller shore which can be done with cardinality sequences
c = (c1, . . . , cm) with 1 ≤ c1 < . . . < cm ≤ ⌊n

2
⌋. These observations give

reason to define the node cardinality constrained cut polytope

P c
Cut(E) := conv{χδ(S) ∈ RE : S ∈ CHSc(N)}.

In what follows, let P c
Cut(E) be defined on the complete graph Kn =

(N,E) on n nodes. Since the cardinality sequence restricts N and not E, it
seems to be hard to incorporate the forbidden cardinality inequalities. How-
ever, requiring not only S ∈ CHSc(N) for a shore S of a cut, but also s /∈ S
for a fixed node s, gives rise to these inequalities. Denote by S the collec-
tion of all subsets of N not containing s. Then, P̄ c

Cut(E) := conv{χδ(U) ∈RE : U ∈ S ∩ CHSc(N)} is a slight variation of P c
Cut(E). Both polytopes

are related as follows: Let c = (c1, . . . , cm) be a cardinality sequence with
1 ≤ cm < . . . < cm ≤ ⌊n

2
⌋ and c̄ = (c1, . . . , cm, n − cm, . . . , n − c1). Then,

P c
Cut(E) = P c̄

Cut(E) and P c̄
Cut(E) = P̄ c̄

Cut(E), but for cardinality sequences
c = (c1, . . . , cm) with 1 ≤ c1 < c2 < . . . < cm ≤ n − 1, P c

Cut(E) strictly
contains P̄ c

Cut(E) in general. Thus, P̄ c
Cut(E) generalizes P c

Cut(E), that is, the

collection of polytopes {P (c1,...,cm)
Cut (E) : 1 ≤ c1 < c2 < . . . < cm ≤ n − 1}

is contained in the collection of polytopes {P̄ (c1,...,cm)
Cut (E) : 1 ≤ c1 < c2 <

. . . < cm ≤ n − 1}. The difference in the facial structure, however, is small.

For instance, if we restrict ourselves to c = (k), then P̄
(k)
Cut(E) is a face of
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P
(k)
Cut(E). If k ≤ ⌊n

2
⌋, then it is induced by x(δ(s)) ≥ k, if k > ⌊n

2
⌋, then by

x(δ(s)) ≤ k.
Since [s, v] ∈ E for all v ∈ N \ {s}, we have |δ(U) ∩ δ(s)| = |U | for all

U ∈ S ∩ CHSc(N). Thus, the forbidden cardinality inequality

(cp+1 −|W |) x(δ(s)∩ δ(W ))− (|W |− cp) x(δ(s)∩ δ(N \W )) ≤ cp(cp+1 −|W |)

is valid for all W ∈ S with cp < |W | < cp+1 for some p. The inequalities
are not facet defining, but by the application of Algorithm 2 and the right
choice of equations generated by PORTA they can be strengthened. With
this approach we identified a very simple class of n · (m− 1) inequalities

x(E)− (n− cp − cp+1)x(δ(s)) ≤ cpcp+1 ∀ s ∈ N, p ∈ {1, . . . , m− 1}, (4.16)

which will be shown to be facet defining in Theorem 4.6.

Example. We consider the complete graph K13 = (N,E), the cardinality
sequence c = (2, 6, 7, 11), and the forbidden cardinality inequality

2
∑

v∈Y

xsv − 2
∑

v∈Z

xsv ≤ 4,

where s = 1, Y = {2, 3, 4, 5}, and Z = {6, . . . , 13}. All points in Q :=
P c

Cut(E) satisfying the inequality at equality satisfy the equation

x(E(Z)) − 6x((Z : {s})) = 0.

The minimum value λ⋆ in Algorithm 2 will be attained by 4. This results in
the inequality

2
∑

v∈Y

xsv − 26
∑

v∈Z

xsv + 4x(E(Z)) ≤ 4.

Iterating Algorithm 2 with input data

2
∑

v∈Y

xsv − 26
∑

v∈Z

xsv + 4x(E(Z)) ≤ 4,

8 x(E(Y )) + x((Y : Z)) + 2 x(E(Z)) = 48,

we obtain λ⋆ = 2
3

and after scaling the inequality

6
∑

v∈Y

xsv − 78
∑

v∈Z

xsv + 16 x(E(Y )) + 2 x((Y : Z)) + 16 x(E(Z)) ≤ 108.
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Finally, with input data

6
∑

v∈Y

xsv − 78
∑

v∈Z

xsv + 16 x(E(Y )) + 2 x((Y : Z)) + 16 x(E(Z)) ≤ 108,

−6
∑

v∈Y

xsv + 6
∑

v∈Z

xsv − x(E(Y )) + x((Y : Z)) − x(E(Z)) = 0,

we obtain λ⋆ = 7 and

−36x(δ(s)) + 9x(E(N \ {s})) ≤ 108.

The last inequality is a multiple of an inequality of the form (4.16).
The goal of the remainder of this section is to show that inequalities (4.16)

define facets of P c
Cut(E). With respect to P

(cp)
Cut (E), an inequality among (4.16)

is equivalent to x(δ(s)) ≥ cp, since x(E) = cp(n − cp) for all x ∈ P
(cp)
Cut (E).

An analogous observation holds for cp+1. Thus, in order to show that the
inequalities (4.16) are indeed facet defining, we first study the inequalities

x(δ(s)) ≥ k with respect to P
(k)
Cut(E).

To simplify the following proofs we recall some facts from Linear Algebra.
Denote the kernel and the image of a matrix A ∈ Rm×n by ker(A) and im(A),
respectively. Denote by Ai the ith column of A. Let v1, . . . , vk ∈ ker(A) and
vk+1, . . . , vr ∈ Rn. In order to show that these vectors are linearly inde-
pendent, it is sufficient to do so for the vectors v1, . . . , vk and Avk+1, . . . , Avr
separately. Moreover, we need the following lemma.

Lemma 4.3. Let n ∈ N, n ≥ 2, and α, β ∈ R. The n× n matrix A defined
by

aij =

{
α if i = j,
β otherwise

has full rank if and only if α 6= β and α + (n− 1)β 6= 0.

Proof. Clearly, if α = β, then rank(A) < n. If α + (n − 1)β = 0, then
∑n

i=1Ai = 0, which implies that rank(A) < n. To show the converse, define
a new column An+1 := β

α+(n−1)β

∑n
i=1Ai. All entries of An+1 are equal to β.

Thus, the matrix B defined by Bi := Ai−An+1 for i = 1, . . . , n, and Bn+1 =
An+1 has entries α − β on the diagonal of the first n entries. Since α 6= β,
it follows that rank(B) = n. We conclude that rank(A) = rank(A,An+1) =
rank(B) = n.

Denoting by 1n,n the n×n matrix of all ones and by In,n the n×n identity
matrix, the matrix defined in Lemma 4.3 is equal to β1n,n + (α− β)In,n.
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Theorem 4.4. Let Kn = (N,E) be the complete graph on n nodes and
1 ≤ k ≤ ⌊n

2
⌋ be an integer. Then,

dimP
(k)
Cut(E) =







n− 1, if k = 1,
|E| − n, if n is even and k = n/2,
|E| − 1, otherwise.

(4.17)

Proof. In case that k = 1, the statement is clearly true. If n is odd and
k = ⌊n

2
⌋, P (k)

Cut(E) is the face of PCut(E) induced by the inequality x(E) ≤
⌊n

2
⌋⌈n

2
⌉, which by Theorem 2.1 of Barahona and Mahjoub [7] defines a facet of

PCut(E). Since PCut(E) is fulldimensional, it follows dimP
(k)
Cut(E) = |E| − 1.

Next, let n be even and k = n/2. Then, for any s ∈ N , |N s| is odd and ℓ :=

k−1 = ⌊ |Ns|
2
⌋. Hence, dimP

(ℓ)
Cut(E

s) = |Es|−1 = (|E|−n+1)−1 = |E|−n.
Since any cut δs(W ) with |W | = ℓ in Ks

n can be augmented to a cut in Kn

by adding node s to W , it follows immediately that dimP
(k)
Cut(E) ≥ |E| − n.

In order to show equality, we remark that any cut δ(W ) of Kn with |W | = n
2

satisfies the n linearly independent equations x(δ(v)) = n
2
, v ∈ N .

Finally, let 2 ≤ k < ⌊n
2
⌋. Since all points in P

(k)
Cut(E) satisfy the equation

x(E) = k(n− k), (4.18)

it follows that dimP
(k)
Cut(E) ≤ |E| − 1. To show equality, let bTx = β be

an equation that is satisfied by all x ∈ P
(k)
Cut(E). Our goal is to show that

bTx = β is a multiple of (4.18).
Let N = S ∪̇T ∪̇U ∪̇ {v} ∪̇ {w} be a partition of N such that |S| = |T | =

k − 1 and |U | = n− 2k. Similar as in the proof of Lemma 2.5 of Barahona,
Grötschel, and Mahjoub [6] one can show that b((s : U)) = b((t : U)) by
considering the cuts

C1 := (S ∪ {s} ∪ U : T ∪ {t}), C2 := (S ∪ {s} : T ∪ {t} ∪ U)

C3 := (S ∪ {t} ∪ U : T ∪ {s}), C4 := (S ∪ {t} : T ∪ {s} ∪ U).

Here, for any y ∈ N and Z ⊆ N \ {y}, b((y : Z)) denotes the sum
∑

v∈Z byv.
Now let W ⊆ N \ {s, t} be any node set of cardinality n − 2k + 1. Since
U was arbitrarily chosen, we have b((s : W \ {v})) = b((t : W \ {v})) for
each v ∈ W . Defining zv := bsv − btv for v ∈ W , we can write this set of
equations as (1|W |,|W |− I|W |,|W |)z = 0. By Lemma 4.3, 1|W |,|W |− I|W |,|W | is a
nonsingular matrix, and thus z = 0 is the only solution implying bsv = btv for
all v ∈ W . Since s, t, and W were arbitrarily chosen, we can conclude that
be = σ for all e ∈ E for some σ ∈ R, and hence β = σk(n−k). Consequently,
bTx = β is a multiple of (4.18).
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Theorem 4.5. Let Kn = (N,E) be the complete graph on n nodes and
1 ≤ k ≤ ⌊n

2
⌋ integer. Then for any s ∈ N , the inequality

x(δ(s)) ≥ k (4.19)

is valid for P
(k)
Cut(E). It defines a facet of P

(k)
Cut(E) if and only if k = 1,

otherwise it is a face of dimension |E| − n.

Proof. Let F be the face induced by (4.19). In case k = 1, the cuts δ(w) for
w ∈ N \ {s} are tight with respect to (4.19). Since their incidence vectors
are linearly independent, we conclude that F has dimension n − 2, that is,
(4.19) defines a facet. When n is even and k = n

2
, then (4.19) is satisfied

with equality by all points x ∈ P
(k)
Cut(E). Consequently, F = P

(k)
Cut(E) which

by Theorem 4.4 implies dimF = |E| − n.
Next, let 2 ≤ k ≤ n

2
− 1. The incidence vector of a feasible tight cut

satisfies equation (4.18) and the n− 1 equations

xsv −
x(δ(v)) − k

n− 2k
= 0, v ∈ N s. (4.20)

Since these equations are linearly independent, it follows that dimF ≤ |E|−

n. The inequality dimF ≥ |E|−n follows from the fact that dimP
(k)
Cut(E

s) =
|Es| − 1 = |E| − n and any cut δs(W ) with |W | = k in Ks

n corresponds to a
tight cut δ(W ) in Kn.

Finally, let n be odd and k = ⌊n
2
⌋. Clearly, dimF ≤ |E| − n, since the

incidence vector of a tight cut satisfies the equations (4.18) and (4.20). To

show equality, consider the cut polytope P
(k)
Cut(E

s) which can be obtained
by projecting F to REs

. Its dimension is |Es| − |N s|. Consequently, there
are r := |Es| − |N s| + 1 linearly independent incidence vectors of cuts, say
δs(W1), . . . , δ

s(Wr) ofKs
n with |Wi| = k. Since the shores of a cut δs(Wi) have

the same cardinality, we may assume w.l.o.g. that for some t ∈ N s, t ∈ Wi

for i = 1, . . . , r. Of course, the cuts Ci := δ(Wi ∪ {s}), i = 1, . . . , r are tight
with respect to (4.19), and their incidence vectors are linearly independent,
too. In addition, besides (4.18) and (4.20), these vectors satisfy the n − 2
equations

xsv − xtv + xst = 0 for all v ∈ Ñ, (4.21)

where Ñ := N s \ {t}. Since r+ (n− 2) = |E| − n+ 1, it suffices to construct
(n − 2) further tight cuts whose incidence vectors are linearly independent
and linearly independent of the former points. To this end, let w.l.o.g. N ′ =
{1, . . . , n−2} and U = {s, 1, . . . , n−k}. For each v with 1 ≤ v ≤ n−k, C̃v :=
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δ(U \{v}) is a feasible tight cut. Moreover, for each v ∈ {n−k+1, . . . , n−2}
and any u, ũ ∈ {1, . . . , n−k}, the cut C̃v := δ((U∪{v})\{u, ũ}) is tight. Let A
be the matrix associated with the left hand side of the equations (4.21). Since

χCi ∈ ker(A), it remains to show that the matrix B := [AχC̃1 , . . . , AχC̃n−2 ]
has full rank. Indeed, B is of the form

B =

[
2In−k,n−k 0

∗ 2 (1k−2,k−2 − Ik−2,k−2)

]

,

which implies immediately rank(B) = n− 2.

Now we prove that inequalities (4.16) induces facets of P c
Cut(E).

Theorem 4.6. Let Kn = (N,E) be the complete graph on n nodes and
c = (c1, . . . , cm) a cardinality sequence with 1 ≤ c1 < . . . cm ≤ ⌊n

2
⌋. Then,

P c
Cut(E) is fulldimensional. Moreover, the inequality (4.16)

x(E) − (n− cp − cp+1)x(δ(s)) ≤ cpcp+1

defines a facet of P c
Cut(E) for all s ∈ N .

Proof. W.l.o.g, let N s = {1, . . . , n−1}. Let F be the face of P c
Cut(E) induced

by (4.16). We will show that dimF = |E| − 1, which implies that P c
Cut(E) is

fulldimensional due to the fact that not all feasible cuts are tight. It follows
that cp+1 ≥ 2, since m ≥ 2. Inequality (4.16) is equivalent to x(δ(s)) ≥ cp+1

with respect to P
(cp+1)
Cut (E). Hence, by Theorem 4.5, there are q := |E|−n+1

linearly independent incidence vectors of tight cuts Ci := δ(Wi) with s ∈Wi

and |W | = n− cp+1. In what follows, we distinguish three cases.
(1) Let cp+1 < ⌊n

2
⌋. Then, the vectors χCi satisfy the n− 1 equations

xsv +
x(δ(s)) − x(δs(v))

n− 2cp+1 − 1
= 0 ∀ v ∈ N s. (4.22)

Denote by A the matrix associated with the left hand side of (4.22). To
construct n − 1 further points, consider the set U = {s, 1, . . . , r} with r =
n− cp− 2. For each node v ∈ {r+ 1, . . . , n− 1}, the cut C̃v := δ(U ∪ {v}) is
tight, and for each node v ∈ {1, . . . , r} and any two disjoint nodes t, u ∈ {r+
1, . . . , n−1}, the cut C̃v := δ((U∪{t, u})\{v}) is tight. Since χCi ∈ ker(A) for

i = 1, . . . , q, it is sufficient to prove that the matrix B :=
[

AχC̃1 , . . . , AχC̃n−1

]

has full rank. It is not hard to see that B is of the form

B =

[
0 σ · Ir,r

σ(1r̄,r̄ − Ir̄,r̄) ∗

]

,
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where r̄ = n− 1 − r and σ = 1 + 1+2cp−n
n−2cp+1−1

. Clearly, Ir,r and 1r̄,r̄ − Ir̄,r̄ have

full rank, and hence, also B.
(2) Let cp+1 = n

2
. This time the vectors χCi satisfy the equations

x(δ(v)) − x(δ(s)) = 0 ∀ v ∈ N s. (4.23)

Let A be the matrix associated with the left hand side of (4.23). Of course,
χCi ∈ ker(A) for i = 1, . . . , q. Next, consider again the cuts C̃v, v = 1, . . . , n−

1. The matrix B :=
[

AχC̃1 , . . . , AχC̃n−1

]

is of the form

B =

[
0 (n− 2cp)Ir,r

(n− 2cp)(1r̄,r̄ − Ir̄,r̄) ∗

]

.

Since B has obviously full rank, (4.16) defines a facet if cp+1 = n
2
.

(3) Let cp+1 = n−1
2

. When cp > 1, reverse the roles of cp and cp+1 and
apply (1). In what follows, we may assume that cp = 1. The vectors χCi

satisfy the equations

x(δs(v)) − x(δ(s)) = 0 ∀ v ∈ N s. (4.24)

Let A denote the left hand side of the system (4.24). Since χCi ∈ ker(A),
it remains to show that the images of the incidence vectors of the cuts δ(i),
i = 1, . . . , n− 1 are linearly independent. Now, for each i ∈ {1, . . . , n− 1},

x(δs(j)) − x(δ(s)) =

{
n− 3 if j = i,

0 otherwise.

Thus, A ·
[
χδ(1), . . . , χδ(n−1)

]
= (n− 3)In−1,n−1.

Since the argumentation for showing that inequalities (4.16) are facet

defining uses the facial structure of the polytopes P
(k)
Cut(E), very similar results

can be obtained for P̄ c
Cut(E).

4.4 Extensions

The chapter shows that the incorporation of the combinatorial structure of
a COP Π = (E, I, w) into forbidden cardinality inequalities may result in
strong inequalities that cut off feasible solutions I ∈ I of forbidden cardinal-
ity. In particular, well-known attributes of matroid theory (closedness) and
matroidal relaxations might play an important role in this context.

It suggests itself to search for complete linear descriptions of polyhedra
P c
I(E) associated with CCCOPs for those problems for which a complete
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linear description of the polyhedron PI(E) associated with the ordinary COP
is known. For instance, the matching polytope PMATCH(E) is determined by
the inequalities (4.2)-(4.4). However, we do not know whether it is sufficient
to add inequalities (4.7), (4.6), and the cardinality bound c1 ≤ x(E) ≤ cm in
order to obtain a complete linear description of P c

MATCH(E).

If a complete linear description of P
(ci)
I (E) is known for i = 1, . . . , m, then

an extended formulation for P c
I(E) can be obtained via disjunctive program-

ming, which is optimization over the union of polyhedra. The notion extended
formulation will be defined in Chapter 5.1. Below we restate a well-known
result of Balas [2].

Theorem 4.7. Given r polyhedra P i = {x ∈ Rn : Aix ≥ bi} = conv(V i) +
cone(Ri), the following system:

y=
r∑

i=1

xi

Aixi≥λibi, i = 1, . . . , r
r∑

i=1

λi = 1

λi≥ 0, i = 1, . . . , r

(4.25)

provides an extended formulation for the polyhedron

P := conv

(
r⋃

i=1

V i

)

+ cone

(
r⋃

i=1

Ri

)

. �

In our context, r = m and P i = P
(ci)
I (E) for i = 1, . . . , m. In addition,

in many cases the linear descriptions of the polyhedra P
(ci)
I (E) will only

differ in the cardinality constraints x(E) = ci, that is, there is some common

constraint system Ax ≥ b such that P
(ci)
I (E) = {x ∈ Rn : Ax ≥ b, x(E) = ci}

for i = 1, . . . , m. This results in the system

y=
m∑

i=1

xi

Axi≥λib, i = 1, . . . , m
xi(E) = λici, i = 1, . . . , m
m∑

i=1

λi = 1

λi≥ 0, i = 1, . . . , m.

(4.26)

For example, cardinality constrained matchings or the intersection of two
cardinality constrained matroids can be modeled this way. However, our
attempts to derive complete linear descriptions of the associated polytopes
via projection were without success.





Chapter 5

Dynamic programming, projection, and the

hop constrained path polytope

A frequently occurring phenomenon in combinatorial optimization is that
hard problems can be solved in polynomial time for some cases using special
algorithms. For instance, the shortest path problem defined on a directed
graph D = (N,A) with arc weights wa ∈ R is known to be NP-hard, but
if the weights are nonnegative, it can be solved in polynomial time with
Dijkstra’s algorithm [26]. Or, in order to give another example, the maximum
independent set problem, where the independence system is given by an
independence oracle, is NP-hard, but if the independence system forms a
matroid, then the problem can be solved in oracle-polynomial time with
the greedy algorithm. For further aspects of this discussion, we refer to
Chapter 1.

Although such algorithms for limited models are interesting in their own
right, they are even of greater value if there is a way for translating results
to assist with more involved instances. One such way is to derive a par-
tial or even complete linear description of the polyhedron associated with
the limited model. Members of such a linear description are usually valid
inequalities for the polyhedron associated with the harder problem. Hence,
they may provide cutting planes to strengthen the linear programming relax-
ation of the model for the harder problem. Moreover, the separation problem
for those inequalities is quite often efficiently solvable. Aspects of such an ap-
proach in connection with matroidal relaxations of (cardinality constrained)
combinatorial optimization problems have been discussed in Chapter 4.2.

In this chapter, we consider such an approach for the hop constrained
shortest path problem (HCSPP). This problem is defined as follows. Given a
directed graph D = (N,A), a length function d : A→ R, two distinct nodes
s, t ∈ N , and a number k ∈ N, find a shortest (s, t)-path (with respect to d)
using at most k arcs. Clearly, this problem is NP-hard for an arbitrary length
function d. However, if D has no negative cycles with respect to d, it can
be solved with the Moore-Bellman-Ford algorithm [11, 36, 66] – a dynamic
programming algorithm –, in polynomial time.

In the following, we will describe how this algorithm could possibly help

145
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in finding facet defining inequalities for the polytope associated with the
hop constrained shortest path problem, namely the hop constrained path
polytope. In short, we use the inherent structure of the Moore-Bellman-Ford
algorithm, which can be essentially expressed by the well known Bellman
equations, to provide (compact) extended formulations for two relaxations of
the hop constrained path polytope: the dominant of the hop constrained path
polytope and the hop constrained walk polytope. By means of projection we
derive facet defining inequalities for these relaxations and show how these
inequalities are related to the hop constrained path polytope itself.

The chapter is structured as follows. Section 5.1 briefly sketches the main
ideas behind projection. Section 5.2 gives an overview over polyhedral as-
pects of dynamic programming. In particular, we review the fundamental
work of Martin, Rardin, and Campbell [60] who have provided a framework
for deriving linear characterizations of dynamic programs. In Section 5.3,
we review the most important results from the literature related to the hop
constrained path polytope. Moreover, we introduce two relaxations of this
polytope mentioned above corresponding to the cases that the given length
function d is nonnegative or has no negative cycles. Section 5.4 breaks down
the dynamic programming paradigm to the hop constrained shortest path
problem. Next, Section 5.5 relates the separation problems of the two re-
laxations of the hop constrained path polytope to the multicommodity flow
problem and length-bounded cut and flow problems. The results there imply
that it will be quite hard to design combinatorial algorithms that solve these
separation problems in polynomial time. Finally, Section 5.6 characterizes
all 0/1-facet defining inequalities for the dominant of the hop constrained
path polytope and all facet defining inequalities for the hop constrained walk
polytope with coefficients in {−1, 0, 1} using the dynamic program paradigm.
The attained results will be related to already known results.

5.1 Projection

In this section, we briefly describe the general idea from the literature for
obtaining a linear characterization of a polyhedron via projection and address
the separation problem for such a polyhedron. For projection methods in
various settings, we refer to the review article of Balas [3].

Given a polyhedron of the form

Q := {(x, y) ∈ Rp ×Rq : Ax+By ≥ a},

the projection of Q onto the x-space is defined as

Projx(Q) := {x ∈ Rp : ∃ y ∈ Rq with (x, y) ∈ Q}.
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Conversely, a system of the form Ax + Bx ≥ a is said to be an extended
formulation for a polyhedron P ⊆ Rp if P = Projx(Q), where Q := {(x, y) ∈Rp ×Rq : Ax+Bx ≥ a}.

Given a polyhedron of the form

Q := {(x, y) ∈ Rp ×Rq : Ax+By ≥ a}

and the projection Projx(Q) of Q onto the x-space, the polyhedral cone
C := {v : vTB = 0T , v ≥ 0} is called the projection cone.

Given an extended formulation for a polyhedron P ⊆ Rp, the follow-
ing theorem due to Balas [3] addresses the task to derive a complete linear
description (in the space Rp) for this polyhedron. It is based on Benders’
Decomposition Theorem [12].

Theorem 5.1 (Balas [3]). Let Q = {(x, y) ∈ Rp ×Rq : Ax+ By ≥ a} be a
polyhedron. Then,

Projx(Q) = {x ∈ Rp : (vTA)x ≥ vTa for all v ∈ extr(C)},

where extr(C) denotes the set of extreme rays of the projection cone C. �

Usually, it is difficult to determine all extreme rays of C or all those
extreme rays v ∈ extr(C), whose corresponding inequalities (vTA)x ≥ vTa
define facets of Projx(Q). However, sometimes the extreme rays or a subset
of them have a convenient structure.

Another result due to Liu [57] concerns the separation problem for a poly-
hedron characterized by an extended formulation. Before stating a reformu-
lation of this result, we introduce a definition. We say that the separation
problem for a polyhedron P ⊆ Rp and a point x⋆ ∈ Rp is equivalent to a
linear program of the form

min (Cx⋆ − c)Tv
s.t. DTv = 0, v ≥ 0

if the following holds:

(i) x⋆ ∈ P if and only if an optimal solution of the LP is v⋆ = 0, and

(ii) in case of x⋆ /∈ P , every feasible point ṽ with (Cx⋆ − c)T ṽ < 0 defines
a hyperplane (ṽTC)x = ṽT c that separates x⋆ from P .

Theorem 5.2 (Liu [57]). Let P ⊆ Rp and Q := {(x, y) ∈ Rp × Rq : Ax +
By ≥ a} be two polyhedra. Then,

P = Projx(Q)
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if and only if the separation problem for P and any point x⋆ ∈ Rp is equivalent
to the linear program

min (Ax⋆ − a)Tv
s.t. BTv = 0, v ≥ 0.

(5.1)

Proof. The linear program (5.1) has either an optimal solution, – and then
v⋆ = 0 is an optimal solution –, or it is unbounded.

To show the necessity, let P = Projx(Q) and x⋆ ∈ Rp be any point. By
Theorem 5.1, P = Projx(Q) implies immediately P = {x ∈ Rp : (vTA)x ≥
vTa for all v ∈ C}. Thus, x⋆ ∈ P if and only if the LP (5.1) has as optimal
solution v⋆ = 0. Moreover, in case of x⋆ /∈ P , the LP (5.1) is unbounded.
Thus, (Ax⋆−a)T ṽ < 0 for some feasible point ṽ of the linear program. Indeed,
each such point ṽ defines a hyperplane (ṽTA)x = ṽTa that separates x⋆ from
P .

To show the sufficiency, we have to verify that P = Projx(Q). Let z ∈ P .
Since the separation problem for P and x⋆ = z is equivalent to the LP (5.1)
and z ∈ P , we conclude that v⋆ = 0 is an optimal solution of (5.1) with
x⋆ = z. Consequently, (vTA)z ≥ vTa for all v satisfying BTv = 0, v ≥ 0.
Thus, z ∈ P = Projx(Q). Hence, if z ∈ P = Projx(Q), then (vTA)z ≥ vTa
for all v satisfying BTv = 0, v ≥ 0 Consequently, the LP (5.1) is bounded
for x⋆ = z and v⋆ = 0 is an optimal solution. This implies z ∈ P .

5.2 Polyhedral aspects of dynamic programming

In this section, we focus on polyhedral aspects of dynamic programming, also
termed divide-and-conquer. A dynamic programming algorithm decomposes
a problem into a recursive sequence of smaller subproblems, solves these
subproblems, and assembles a solution for the original problem from the
solutions of the subproblems. In the simplest case this scheme can be modeled
by solving a shortest path problem in an acyclic digraph D = (N ,A). The
different states or interim phases that can be taken during the algorithm are
represented by nodes of D, decisions that can be made to switch from state i
to j by arcs (i, j) ∈ A, and the costs of these changes by arc lengths. In this
context, D is called dynamic programming graph, or abbreviated, DP-graph.
A solution for the original problem corresponds to a path from the first node,
say s, to the terminal node, say t. Consequently, the original problem can
be solved by finding a shortest path from s to t in D.

If the dynamic program can be modeled in such a way, a polyhedral
description can be easily derived by writing down the shortest path problem
as a linear program. Martin, Rardin, and Campbell [60] provide a framework
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to derive linear characterizations of more general dynamic programs, namely
if a state relies not only on a single other state but on several ones. This can
be fittingly modeled by an acyclic hypergraph H = (N , E), called dynamic
programming hypergraph or DP-hypergraph. As in the simple case states
of the dynamic program correspond to nodes in the hypergraph, while the
composition of a set J of states to a state ℓ will be represented by a hyperarc
(J, ℓ). The cost of decision (J, ℓ) will be denoted by c[J, ℓ]. The acyclicity
of H will be expressed by a numbering function

σ : N → {1, 2, . . . , m},

with m := |N |, such that

σ(j) < σ(ℓ) for all (J, ℓ) ∈ E , j ∈ J.

As in the simple case of a shortest path conceptualization, an optimal solution
will include exactly one hyperarc pointing into the final state t := σ−1(m).
The associated integer characterization of such a dynamic program is as
follows. For each hyperarc (J, ℓ) introduce a binary variable y[J, ℓ] which
takes the value 1 if decision (J, ℓ) is part of the solution, otherwise 0. In
terms of these variables, the model reads:

min
∑

(J,ℓ)∈E

c[J, ℓ]y[J, ℓ]

subject to
∑

(J,t)∈E

y[J, t] = 1,

∑

(J,ℓ)∈E

y[J, ℓ] −
∑

(J,ℓ̄)∈E:
ℓ∈J

y[J, ℓ̄] = 0 for σ(ℓ) = 1, 2, . . . , m− 1,

y[J, ℓ] ∈ {0, 1} for all (J, ℓ) ∈ E .

The first equation ensures that exactly one decision results in the final state t.
The remaining equations guarantee that whenever some state ℓ ∈ N \ {t} is
part of the solution, then it has been accessed via a decision (J, ℓ) ∈ E and
has to contribute to a decision (J̄ , ℓ̄) ∈ E . Martin, Rardin, and Campbell [60]
showed that the integrality conditions y[J, ℓ] ∈ {0, 1} can be replaced by the
nonnegativity constraints y[J, ℓ] ≥ 0 for all (J, ℓ) ∈ E if each state ℓ can be
connected to a subset I[ℓ] of a so-called reference set I such that

(i) the subsets are consistent with the acyclic order:

I[j] ⊆ I[p] for all (J, p) ∈ E , j ∈ J,

(ii) subsets for different tails of the same hyperarc are disjoint:

I[j] ∩ I[j′] = ∅ for all (J, p) ∈ E , j, j′ ∈ J, j 6= j′.
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Consequently, in this case, we obtain an LP-formulation for the original prob-
lem in terms of the decision variables y(J, ℓ) associated with the dynamic
program:

min
∑

(J,ℓ)∈E

c[J, ℓ]y[J, ℓ]

subject to
∑

(J,t)∈E

y[J, t] = 1,

∑

(J,ℓ)∈E

y[J, ℓ] −
∑

(J,ℓ̄)∈E:
ℓ∈J

y[J, ℓ̄] = 0 for σ(ℓ) = 1, 2, . . . , m− 1,

y[J, ℓ] ≥ 0 for all (J, ℓ) ∈ E .

(5.2)

We collect some easy but important facts about the above LP observed
by Martin, Rardin, and Campbell [60].

Observation 1. If H is just an acyclic digraph, we obtain the usual LP-
formulation for the shortest path problem.

Observation 2. If the dynamic program is polynomial in the input size of
the original problem, then the LP (5.2) is compact, which means that the
linear program is posed over polynomially many variables and constraints.

Observation 3. Let ν be the dual multiplier for the first equation of the
LP (5.2) and u[ℓ] the dual variable for the flow conservation constraint asso-
ciated with ℓ. The construction of an optimal solution of the dual

max ν

subject to ν −
∑

j∈J

u[j] ≤ c[J, t] for all [J, t] ∈ E ,

u[ℓ] −
∑

j∈J

u[j] ≤ c[J, ℓ] for all [J, ℓ] ∈ E , ℓ 6= t

(5.3)

in Algorithm 3 is essentially the dynamic programming computation itself.

Algorithm 3: Construction of an optimal solution ν⋆, u⋆ of (5.3).

for σ(ℓ) := 1 to t do
Set u⋆[ℓ] := min{c[J, ℓ] +

∑

j∈J u
⋆[j] : (J, ℓ) ∈ E}.

end

Set ν⋆ := u⋆[t].
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In view of Observation 2 we remark that a compact linear program can
be solved in polynomial time (e.g., Khachiyan [54], Karmarkar [53]), or more
precisely, in strongly polynomial time (e.g., Orlin [69] and Tardos [79]).

The topic of deriving linear characterizations for combinatorial optimiza-
tion problems via dynamic programs, has been paid some attention, mainly
in the 1980’s and 1990’s. Prodon, Liebling, and Groflin [71] give a dy-
namic programming based polyhedral characterization for Steiner trees on
directed series-parallel graphs (see also Goemans [43]). Barany, Van Roy,
and Wolsey [8], Eppen and Martin [30], and Martin, Rardin, and Camp-
bell [60] provide such formulations for various kinds of lot sizing problems.
Further examples are Martin et al. [60] for k-terminal graphs, Liu [57] for 2-
terminal Steiner trees, and Raffensperger [72] for the cutting stock, the tank
scheduling, and the traveling salesman problem. Recently, Kaibel and Loos
(personal communication) provided a dynamic programming based extended
formulation for full orbitopes.

To derive such linear descriptions for hard combinatorial optimization
problems as the TSP is, however, usually of small use, since their input sizes
become very large already for small problem instances. More interesting is the
question how one can benefit from such linear characterizations for polyno-
mial solvable cases of hard combinatorial optimization problems. The entire
problem is usually formulated in another decision space than the dynamic
program. Hence, one can include the entire characterization of the dynamic
program (5.2) in the relaxation of the harder case in form of an extended
formulation. In addition, one can try to derive a linear characterization of
the relaxation in the original space via projection of the extended formulation
and include it in the formulation for the whole problem if possible.

The decision vectors of the dynamic program and of the relaxation can
be usually connected by a transformation matrix T . Denoting the decision
vectors of the relaxation by x and writing down the equations of the LP (5.2)
in matrix form, the extended formulation reads as follows:

min dTx
s.t. Ay = e

Ty = x
x ≥ 0, y ≥ 0.

(5.4)

For the remainder of this section, denote by Q the set of all feasible
points (x, y) of (5.4). Projecting out the y-variables, we obtain a polyhedral
characterization of the relaxation only in terms of x-variables. For the special
case of (5.4), Martin, Rardin, and Campbell [60] showed the following.
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Theorem 5.3 (Martin et al. [60]).

Projx(Q) = {x ≥ 0 : bTx ≤ −um ∀ (u, b) satisfying uTA+ bTT ≤ 0},

where um denotes the last entry of u. �

Martin, Rardin, and Campbell [60] discuss several advantages and dis-
advantages to using model (5.4) instead of the projected model given by
Theorem 5.3. Most of their arguments favour the use of the unprojected
model: If the DP-graph is of polynomial size, then also the extended formu-
lation (5.4), while the projected model often consists of exponential many
inequalities, which requires separation routines. Moreover, the coefficients of
the constraints of (5.4) are very simple, while the projection often leads to
most unwieldy constraints.

In our opinion, there is no final answer to this question. For example, it
is also worth to be considered to incorporate the extended formulation of the
relaxation of a hard problem implicitly. Namely, it is also possible to work
in the natural decision space of the hard combinatorial optimization problem
and use the equivalence of the separation problem to a linear program, see
Theorem 5.2. In this context, we obtain the following LP:

min −uT e− vTx⋆ + zTx⋆

s.t. uTA+ vTT + wTI = 0
w ≥ 0, z ≥ 0.

(5.5)

Note that, if the extended formulation (5.4) is compact, then also the
LP (5.5), i.e. polynomial in the input size of the original problem and x⋆.
Thus, in this case, the separation problem for Projx(Q) and x⋆ can be solved
in polynomial time.

Nevertheless, the relationship between the LP-formulation over the DP-
graph and the corresponding model in the original space is at least of theoret-
ical interest. Hence, we continue the investigation of projection mechanisms
of dynamic programming based LP-formulations using the example of the
hop constrained shortest path problem defined on a directed graph.

5.3 Facts on the hop constrained path polytope

Let D = (N,A) be a simple digraph. Recall some basic definitions from
Chapter 3. An (s, t)-walk is a sequence of arcs W = (a1, a2, . . . , aq) such that
ai = (ip−1, ip) ∈ A for p = 1, . . . , q with i0 = s and iq = t. If all nodes ip
are distinct, then W is a path. If s = t, then W is a cycle. We denote by
Ws,t(D) the collection of all (s, t)-walks of D and by Ps,t(D) the set of all
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(s, t)-paths. Moreover, for any k ∈ N, we denote by W≤k
s,t (D) and P≤k

s,t (D)
the collection of all (s, t)-walks and -paths with at most k arcs, respectively.
Paths and walks will be usually denoted only as a sequence of nodes, but
their incidence vectors are defined in the arc space RA. Here, for any walk
W , its incidence vector χW ∈ RA is defined by χWa := number of times in
which the arc a is visited by W , for all a ∈ A. Since each path is a walk, its
incidence vector is well-defined. Moreover, this definition is consistent with
the usual definition of the incidence vector of a path. Note that different
walks may have the same incidence vector, while for paths this statement is
not true.

The digraph D possesses a length function d : A → R. For any path
(or walk) P = (i0, i1, i2, . . . , iq), the number d(P ) :=

∑q
p=1 d((ip−1, ip)) is the

length of P . In the hop constrained shortest path (walk) problem or the k-
hop constrained shortest path (walk) problem we are looking for a path P ∈
P≤k
s,t (D) (a walk W ∈ W≤k

s,t (D)) of minimum length. The hop constrained
shortest walk problem can be solved in polynomial time with the Moore-
Bellman-Ford algorithm [11, 36, 66], while the analogous path problem is
NP-hard. If, however, D has no negative cycles with respect to d, it can also
be solved in polynomial time for every k.

So it is assumed that the hop constrained path polytope P≤k
s,t-path(D), that

is, the convex hull of the incidence vectors of paths P ∈ P≤k
s,t (D), does not

have a tractable facial structure in general.

According to (3.55), the integer points of the hop constrained path poly-
tope P≤k

s,t-path(D) are characterized by the system

x(δin(s)) = 0, (5.6)

x(δout(t)) = 0, (5.7)

x(δout(i)) − x(δin(i)) =







1 if i = s,
0 if i ∈ N \ {s, t},

−1 if i = t,
(5.8)

x(A) ≤ k, (5.9)

x(δout(i)) ≤ 1 ∀ i ∈ N \ {s, t}, (5.10)

x(δout(S)) ≥ x(δout(j)) ∀S ⊂ N, 3 ≤ |S| ≤ |N | − 3, (5.11)

s, t ∈ S, j ∈ N \ S,

xij ∈ {0, 1} ∀ (i, j) ∈ A. (5.12)

Recall that, for any S ⊆ N , δout(S) = {(i, j) ∈ A : i ∈ S, j ∈ N \ S} and
δin(S) = {(i, j) ∈ A : i ∈ N \ S, j ∈ S}. As usual, for nodes j ∈ N , we write
δout(j) and δin(j) instead of δout({j}) and δin({j}), respectively.
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The hop constrained walk polytope P≤k
s,t-walk(D), which is the convex hull

of the incidence vectors of walks W ∈ W≤k
s,t (D), should have a simpler char-

acterization, since the associated linear optimization problem is solvable in
polynomial time. Its integer points are characterized by the flow conser-
vation constraints (5.8), the cardinality bound (5.9), the one-sided min-cut
inequalities (5.11), and the integrality conditions xij ∈ Z+ for all (i, j) ∈ A.
The hop constrained walk polytope can be considered as a relaxation of the
hop constrained path polytope that corresponds to the case that the length
function d : A → R has no negative cycles. In that case, minimizing d over
P≤k
s,t-path(D) is equivalent to minimizing d over P≤k

s,t-walk(D).

We introduce another relaxation of P≤k
s,t-path(D) that corresponds to the

case that d is nonnegative. In this case, the hop constrained shortest path
problem is equivalent to minimizing d over the dominant of the hop con-
strained path polytope dmt(P≤k

s,t-path(D)) := P≤k
s,t-path(D) + RA

+. An integer

characterization of dmt(P≤k
s,t-path(D)) is given by the integrality constraints

xij ∈ Z+ for all (i, j) ∈ A,

the (s, t)-min-cut inequalities

x(C) ≥ 1 for all (s, t)-cuts C, (5.13)

and the jump inequalities (3.29)

k−1∑

i=0

k+1∑

j=i+2

x((Si : Sj)) ≥ 1

for all partitions

N =
k+1⋃

p=0

Sp

of N with S0 = {s} and Sk+1 = {t} (see Fact 1, 5.6).
A third relaxation of the hop constrained path polytope is the dominant

of the hop constrained walk polytope, defined as

dmt(P≤k
s,t-walk(D)) := P≤k

s,t-walk(D) +RA
+.

Since each walk W ∈ W≤k
s,t (D) contains a path P ∈ P≤k

s,t (D), one easily
verifies:

Proposition 5.4.

dmt(P≤k
s,t-walk(D)) = dmt(P≤k

s,t-path(D)).

�
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The aim of this chapter is to derive strong valid inequalities for P≤k
s,t-path(D)

using the dynamic programming paradigm. The polyhedra that correspond
to the case that the hop constrained shortest path problem can be solved
with means of dynamic programming in polynomial time have been identified.
Hence, the next task is to investigate the facial structure of the introduced
relaxations of P≤k

s,t-path(D).

Although one can optimize over P≤k
s,t-walk(D) and dmt(P≤k

s,t-path(D)) in poly-
nomial time, complete linear descriptions of these polyhedra are known only
for a few cases in dependency of k. Following an argument of Dahl and
Gouveia [23], we conjecture that these polyhedra do not have simple H-
representations even if the underlying digraph is acyclic. Consider the binary
knapsack problem

max
n∑

i=1

ciyi

s.t.
n∑

i=1

hiyi ≤ L,

yi ∈ {0, 1} i = 1, . . . , n,

(5.14)

where hi ∈ N for i = 1, . . . , n. This problem can be transformed to a
hop constrained shortest path problem as follows. The acyclic digraph G =
(N,A) to be constructed consists of n blocks, for each item i with height hi
one block. The blocks are defined on a subset of nodes V := {v0, . . . , vn}.
Each block consists of a (vi−1, vi)-path P i of length 0 with exactly hi+1 arcs
and the arc (vi−1, vi) of length ci. For an illustration, see Figure 5.1.

Feasible solutions of the knapsack problem (5.14) and (v0, vn)-paths in G
with at most L+ n arcs are in 1-1-correspondence. Let P be a (v0, vn)-path
using at most L + n arcs. For each block, this path consists of either the
single arc (vi−1, vi) or the“long path”P i with hi+1 arcs. In the first case, set

v0 v1 v2 v3 vn−1 vn

d(P 1) = 0 d(P 2) = 0 d(P 3) = 0 d(Pn) = 0

c1 c2 c3 cn

. . .

h1 + 1 h2 + 1 h3 + 1 hn + 1

Figure 5.1: Illustration of G: for each item i with height hi a block consisting of a
(vi−1, vi)-path P i of length 0 with exactly hi + 1 arcs and the arc (vi−1, vi) of length ci.
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yi := 0, in the second case yi := 1. By construction, y is a feasible knapsack
solution. The length of P is

n∑

i=1

|P ∩ {(vi−1, vi)}|
︸ ︷︷ ︸

= 0 or 1

ci,

while the costs of y are

n∑

i=1

(1 − |P ∩ {(vi−1, vi)}|)ci.

Conversely, it is easily seen, each feasible solution of the knapsack prob-
lem (5.14) yields a (v0, vn)-path with at most L + n arcs. Furthermore, the
shortest such path corresponds to a knapsack solution of maximum costs.

From a polyhedral point of view, the knapsack polytope, that is, the
convex hull of the feasible solutions of (5.14), is the projection of the polytope

{(x, y) ∈ RA ×Rn : x ∈ P≤L+n
v0,vn-path(G), yi = 1 − xvi−1,vi

, i = 1, . . . , n}

onto the y-space. Even more, due to the easy projection mechanism and the
special block structure of G, a complete linear description of P≤L+n

v0,vn-path(G) im-
mediately yields one of the knapsack polytope, and vice versa. For instance,
let

x(δout(v0)) = 1,

x(δin(vn)) = 1,

x(δout(w)) − x(δin(w)) = 0 for all w ∈ N \ {v0, vn},

Bx ≥ b

be a complete linear description of P≤L+n
v0,vn-path(G). Due to the flow conservation

constraints, there is an equivalent formulation

x(δout(v0)) = 1,

x(δin(vn)) = 1,

x(δout(w)) − x(δin(w)) = 0 for all w ∈ N \ {v0, vn},

B̃x ≥ b̃

such that the columns of B̃ associated with the arcs belonging to the “long
paths”P i are zero. The projection can now be performed by just substituting
the variables xvi−1,vi

by the terms 1 − yi. This gives the resulting inequality
system

B′y ≤ b′,
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where b′ := B′1− b and the i-th column of B′ is defined to be the column of
B̃ associated with (vi−1, vi), i = 1, . . . , n.

So the facial structure of P≤L+n
v0,vn-path(G) is essentially the same as of the

knapsack polytope. Since G is acyclic, the polytopes P≤L+n
v0,vn-path(G) and

P≤L+n
v0,vn-walk(G) are identical. Hence, the above observation also holds for

P≤L+n
v0,vn-walk(G).

This relation between the knapsack problem and the hop constrained
shortest path (walk) problem indicates that the hop constrained walk poly-
tope probably does not have a nice linear characterization. Further aspects
supporting this conjecture will be considered in Section 5.5.2. Nevertheless,
one has to argue with caution, as in general the transformation from the
knapsack problem to the hop constrained shortest path problem from above
is not polynomial in the input size of a knapsack problem instance. For
instance, due to the polynomial equivalence of optimization and separation
(Grötschel, Lovász, and Schrijver [46]), P≤L+n

v0,vn-path(G) can be completely de-
scribed by valid inequalities whose input sizes are polynomial in the input
size of G. However, not all of them have necessarily polynomial input sizes
with respect to the input size of the underlying knapsack instance.

Previous work

In the last years, there has been some interest in the hop constrained path
polytope itself and some closely related polyhedra, see, for instance, Dahl and
Gouveia [23] for P≤k

s,t-path(D) itself and Schrijver [76] for the dominant of the
ordinary path polytope. Moreover, Dahl and Realfsen [25] have investigated
P≤k
s,t-path(D) defined on an acyclic digraph D, in particular, if D is a 2-graph.

A digraph D = (N,A) on node set N = {v0, v1, . . . , vn} is called a 2-graph if
A ⊆ {(vi, vj) : 0 ≤ i < j ≤ i+ 2 ≤ n}. Dahl, Foldnes, and Gouveia [22] have
provided a complete linear description of the hop constrained walk polytope
P≤4
s,t-walk(D). Nguyen [68] investigated the facial structure of the dominant of

the hop constrained path polytope defined on an undirected graph. A couple
of papers consider =k-cycle and ≤k-cycle polytopes defined on directed as
well as on undirected graphs. For an overview, see Table 3. Finally, the
results of Chapter 3.2 can easily be adapted to P≤k

s,t-path(D).

In the following, we are listing the most important results of the literature
mentioned above in relation to the hop constrained path polytope.

Fact 1 (Schrijver [76]). The dominant of the ordinary path polytope, that
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is, the polyhedron dmt(Ps,t-path(D)), is determined by the system

x(C) ≥ 1 for all (s, t)-cuts C,
xij ≥ 0 for all arcs (i, j) ∈ A.

(5.15)

Fact 2 (Dahl and Realfsen [25]). A complete linear description of P≤k
s,t-path(D)

defined on a 2-graphD is given by the equations (5.6)-(5.8), the nonnegativity
constraints xij ≥ 0 for all (i, j) ∈ A, and the cardinality bound (5.9).

Fact 3 (Dahl and Gouveia [23]). The (s, t)-2-path polytope P≤2
s,t-path(D) is

determined by the equations (5.6)-(5.8) and xij = 0 for all internal arcs
(i, j), as well as the nonnegativity constraints xij ≥ 0 for all arcs (i, j) with
i = s or j = t.

Fact 4 (Dahl and Gouveia [23]). The nonnegativity constraints xij ≥ 0 for
all (i, j) ∈ A, the equations (5.6)-(5.8), and the inequalities

xsi −
∑

j∈N\{s,t}

xij ≥ 0 for all i ∈ N \ {s, t}

provide a complete linear description of P≤3
s,t-path(D).

Fact 5 (Dahl, Foldnes, and Gouveia [22]). The 4-hop constrained walk poly-
tope P≤4

s,t-walk(D) is determined by the flow conservation constraints (5.8), the
nonnegativity constraints xij ≥ 0 for all (i, j) ∈ A, and the inequalities

∑

i∈I

xsi +
∑

j∈J

xjt −
∑

i∈I,j∈J

xij ≥ 0 for all I, J ⊆ N \ {s, t}. (5.16)

Fact 6. Provided that the arc set of D is given by

A = {(s, i), (i, t) : i ∈ N ′}
⋃

{(i, j) ∈ N ′ ×N ′ : i 6= j}, (5.17)

where N ′ := N \ {s, t} is the set of internal nodes, all inequalities of Chap-
ter 3.2, which have been shown to be facet defining for the (s, t)-k-path poly-

tope P
(k)
s,t-path(D), are also facet defining for P≤k

s,t-path(D) or can easily be lifted

into facet defining inequalities for P≤k
s,t-path(D) using the following theorem.

Theorem 5.5 (cf. Theorem 18 of Hartmann and Özlük [48]). Let cTx ≤ c0
induce a facet of the (s, t)-k-path polytope P

(k)
s,t-path(D), where 4 ≤ k < |N |−1

and the arc set of D = (N,A) is given by (5.17). If µ is the smallest value
such that the inequality

µx(A) + cTx ≤ µk + c0 (5.18)

is valid for the hop constrained path polytope P≤k
s,t-path(D), then this inequality

is also facet inducing for P≤k
s,t-path(D). �
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5.4 The dynamic programming paradigm applied to the hop
constrained shortest path problem

In this section, we derive extended formulations of the the hop constrained
walk polytope and the dominant of the hop constrained path polytope from
the structure inherent to the Moore-Bellman-Ford algorithm [11, 36, 66].

Given a simple directed graph D = (N,A), a fixed node s ∈ N , and a
length function d : A → R, the Moore-Bellman-Ford algorithm computes
(the value of) a shortest (s, j)-path for each node j ∈ N , provided D has no
negative cycles. Using an appropriate variant of this algorithm, it computes
in its main loop the length of a shortest (s, j)-path with at most ℓ arcs for
ℓ = 1, . . . , |N |−1, see Algorithm 4. The correctness of the algorithm is based
on the Bellman Equations

u
(ℓ)
j = min{u(ℓ−1)

j ,min{u(ℓ−1)
i + d((i, j)) : (i, j) ∈ δin(j)}}

for all j ∈ N , ℓ = 1, . . . , |N | − 1,
(5.19)

where u
(ℓ)
j denotes the length of a shortest (s, j)-path with at most ℓ arcs for

ℓ = 0, 1, . . . , |N | − 1.
Suppose that the Moore-Bellman-Ford algorithm will be used to compute

a k-hop constrained shortest (s, t)-path. We construct an acyclic digraph

D = (N ,A) with length function d̃ : A → R as follows. For the state u
(0)
s ,

we introduce a node [s, 0], for the states u
(ℓ)
t , ℓ ∈ {1, . . . , k}, we introduce a

node [t, k], and for each state u
(ℓ)
i , with i ∈ N \ {s, t} and ℓ ∈ {1, . . . , k− 1},

we introduce a node [i, ℓ]. Next, with each node i ∈ N \ {s, t}, we associate
the arcs ([i, ℓ − 1], [i, ℓ]) of length 0, ℓ = 2, . . . , k − 1 (corresponding to the

decision u
(ℓ)
i = u

(ℓ−1)
i ), and with each arc (i, j) ∈ A\({(s, t)}∪δin(s)∪δout(t)),

we associate the arcs ([i, ℓ− 1], [j, ℓ]) of length d((i, j)), where ℓ = 1 if i = s,
ℓ = k if j = t, and ℓ runs from 2 to k− 1 otherwise. Finally, if (s, t) ∈ A, we
introduce the arc ([s, 0], [t, k]) of length d((s, t)). D = (N ,A) is said to be
the dynamic programming graph associated with (D, s, t, k) or just DP-graph
associated with (D, s, t, k). The length function d̃ is called the extension of d
to D.

The hop constrained shortest path problem is now quite easily viewed
as one of finding a shortest ([s, 0], [t, k])-path in the DP-graph D = (N ,A)
provided that D has no negative cycles.

D \ {([s, 0], [t, k])} is a layered digraph with layers

N0 := {[s, 0]},

Nℓ := {[i, ℓ] : i ∈ N \ {s, t}}, ℓ = 1, . . . , k − 1

Nn := {[t, k]}.
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Algorithm 4: Moore-Bellman-Ford algorithm

Input: A digraph D = (N,A), a fixed node s ∈ N , and a length
function d : A→ R such that D has no negative cycles with
respect to d.

Output: For each node j ∈ N and each number ℓ ∈ {0, . . . , |N | − 1},

the length u
(ℓ)
j of a shortest (s, j)-path using at most ℓ arcs

and its predecessor p(j, ℓ) on such a path. If j is not

reachable from s, then u
(ℓ)
j = +∞ and p(j, ℓ) is undefined for

all ℓ.
Set u

(0)
s := 0 and u

(0)
j := +∞ for all j ∈ N \ {s}.

for ℓ := 1 to |N | − 1 do

Set tj := u
(ℓ−1)
j for all j ∈ N .

forall (i, j) ∈ A do

if tj > u
(ℓ−1)
i + d((i, j)) then

set tj := u
(ℓ−1)
i + d((i, j)) and p(j, ℓ) := i.

end

end

Set u
(ℓ)
j := tj for all j ∈ N .

end

The both arc sets A and A are connected via a set function

ϕ : A → A ∪ ∅, ϕ(([i, h], [j, ℓ])) =

{
(i, j) if i 6= j

∅ else.

Suppose that δin(s) = δout(t) = ∅. Denoting by Ps,t(D) the collection of
all ([s, 0], [t, k])-paths in D, we see that each walk W ∈ W≤k

s,t (D) corresponds
to at least one path P ′ ∈ Ps,t(D) and each path P ∈ Ps,t(D) corresponds to
a walk W ′ ∈ W≤k

s,t (D). Walks in W≤k
s,t (D) and paths in Ps,t(D) are not in 1-

1-correspondence due to the arcs of the form ([i, ℓ−1], [i, ℓ]). These arcs have
been incorporated into the model in order to give an easier characterization
of facets later. Arcs of this form are called artificial. The set of all artificial
arcs is denoted by Â. An illustration of the model is given in Figure 5.2.

The DP-approach provides a linear characterization of the HCSPP as flow
formulation in terms of decision variables ya associated with the arcs a =
([h, i], [j, ℓ]) ∈ A. The x- and y-variables are connected via a transformation
matrix T ∈ RA×A that represents the set function ϕ. In the following we
investigate the polyhedral relationships.
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Figure 5.2: A digraph D = (N, A) on node set N = {0, 1, . . . , 7} and associated DP-
graph D = (N ,A) for (D, 0, 7, 5); arc sets are omitted. Illustration of a (0, 7)-walk and
one of its counterparts in D.

Theorem 5.6. Let D = (N,A) be a simple directed graph, let s, t ∈ N
be distinct nodes, let δin(s) = δout(t) = ∅, let k be a natural number, and
let D = (N ,A) be the DP-graph associated with (D, s, t, k). The hop con-
strained walk polytope P≤k

s,t-walk(D) is the projection of the polytope defined
by

y(δout([s, 0])) = 1, (5.20)

y(δin([t, k])) = 1, (5.21)

y(δin([i, ℓ])) − y(δout([i, ℓ])) = 0 for all [i, ℓ] ∈ N \ {[s, 0], [t, k]}, (5.22)

ya ≥ 0 for all a ∈ A, (5.23)

x = Ty (5.24)

onto the x-space.

Proof. We have to show that

P≤k
s,t-walk(D) = {x ∈ RA : ∃ y ∈ P[s,0],[t,k]-path(D) with x = Ty}.

By definition, each x ∈ P≤k
s,t-walk(D) is a convex combination of the inci-

dence vectors of walks W ∈ W≤k
s,t (D). Moreover, by construction of the DP-

graph, for each W ∈ W≤k
s,t (D) there is some P ′ ∈ Ps,t(D) such that ϕ(P ′) =

W . Consequently, for appropriate numbers λP ′ ≥ 0 with
∑

P ′∈Ps,t(D) λP ′ = 1
we have:

x =
∑

P ′∈Ps,t(D)

λP ′χϕ(P ′) =
∑

P ′∈Ps,t(D)

λP ′TχP
′

= T




∑

P ′∈Ps,t(D)

λP ′χP
′



 ,
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that is, x = Ty for y :=
∑

P ′∈Ps,t(D) λP ′χP
′
.

Next, let x ∈ RA for which exists y ∈ P[s,0],[t,k]-path(D) with x = Ty. Since
y is a convex combination of the incidence vectors of paths P ∈ Ps,t(D)
and W ′ := ϕ(P ) ∈ W≤k

s,t (D) for all P ∈ Ps,t(D), we obtain for appropriate
numbers λP ≥ 0 with

∑

P∈Ps,t(D) λP = 1:

x = Ty = T




∑

P∈Ps,t(D)

λPχ
P



 =
∑

P∈Ps,t(D)

λPTχ
P =

∑

P∈Ps,t(D)

λPχ
ϕ(P ),

that is, x is a convex combination of incidence vectors of walks of cardinality
at most k.

Since the dynamic programming polytope P[s,0],[t,k]-path(D) is just an or-
dinary path polytope, its dominant

dmt(P[s,0],[t,k]-path(D)) = P[s,0],[t,k]-path(D) +RA
+

is determined by the system

y(C) ≥ 1 for all ([s, 0], [t, k])-cuts C ⊆ A, (5.25)

ya ≥ 0 for all arcs a ∈ A. (5.26)

Theorem 5.7. Let D = (N,A) be a simple directed graph, let s, t ∈ N be
distinct nodes, let δin(s) = δout(t) = ∅, let k be a natural number, and let
D = (N ,A) be the DP-graph associated with (D, s, t, k). The polyhedron
dmt(P≤k

s,t-path(D)) is the projection of the polyhedron P ⋆ defined by (5.25),
(5.26), and

x ≥ Ty (5.27)

onto the space of x-variables.

Proof. We have to show that

dmt(P≤k
s,t-path(D)) = {x ∈ RA : ∃ y ∈ dmt(P[s,0],[t,k]-path(D)) with Ty ≤ x}.

Let u = v +w ∈ dmt(P≤k
s,t-path(D)) with v ∈ P≤k

s,t-path(D) and w ≥ 0. Since

P≤k
s,t-path(D) ⊆ P≤k

s,t-walk(D), by Theorem 5.6 there is y ∈ P[s,0],[t,k]-path(D) such

that Ty = v. Clearly, for appropriate z ∈ RA
+, T (y + z) ≥ v + w = u.

To show the other set inclusion, let x ∈ RA such that x ≥ Tu for some
u ∈ dmt(P[s,0],[t,k]-path(D)). Then, u = y + z for some y ∈ P[s,0],[t,k]-path(D)
and z ≥ 0. Setting v := Ty and w := Tz, we see that u ≥ v + w ∈
dmt(P≤k

s,t-walk(D)). Since dmt(P≤k
s,t-walk(D)) = dmt(P≤k

s,t-path(D)), it follows the
statement of the theorem.
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In case of k ≥ |N | − 1, dmt(P≤k
s,t-path(D)) equals the dominant of the

ordinary path polytope, and hence it is determined by the inequality sys-
tem (5.15).

5.5 Separation, arc set capacitated and length-bounded cuts
and flows

This section is subdivided into four parts. In the first subsection, we present
compact linear programming formulations for the separation problems for
P≤k
s,t-walk(D) and dmt(P≤k

s,t-path(D)). In the second and third subsection, we

embed the separation problem for dmt(P≤k
s,t-path(D)) into the greater context

of length-bounded and arc set capacitated cut and flow problems. The at-
tained insights will essentially explain why it seems to be difficult to design
a polynomial combinatorial algorithm that solves the separation problem at
least for dmt(P≤k

s,t-path(D)). Moreover, they enhance the theory on length-
bounded flows and cuts by some aspects. Finally, in the fourth subsection,
we point to well-known approximation algorithms for fractional packing and
covering problems that can be applied to the above-mentioned flow and cut
problems. Some parts of this section are joint work with Maren Martens.

5.5.1 Separation

The separation problem for P≤k
s,t-walk(D) can be formulated as a compact linear

program, which, of course, is not surprising in view of the compact extended
formulation for this polytope.

Theorem 5.8. Let D = (N,A) be a simple directed graph, s 6= t ∈ N ,
δin(s) = δout(t) = ∅, and k ∈ N. Moreover, let D = (N ,A) be the DP-graph
associated with (D, s, t, k).

(i) For any x⋆ ∈ RA
+ satisfying the flow conservation constraints (5.8), the

linear program

min
∑

(i,j)∈A

x⋆ijτij

s.t. πiℓ − πjm + τij ≥ 0 for all a = ([i, ℓ], [j,m]) ∈ A \ Â,
πi,ℓ−1 − πiℓ ≥ 0 for all i ∈ N \ {s, t},

ℓ ∈ {2, 3, . . . , k − 1},
πs0 = 0,
πtk = 1,

0 ≤ πiℓ ≤ 1 for all [i, ℓ] ∈ N \ {[s, 0], [t, k]},

(5.28)
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where Â denotes the set of artificial arcs, always has an optimal solution.

(ii) Let (π⋆, τ ⋆) be an optimal solution of (5.28) and ν⋆ its objective value.
Then, x⋆ ∈ P≤k

s,t-walk(D) if and only if ν⋆ ≥ 1. In case of x⋆ /∈ P≤k
s,t-walk(D),

the inequality
∑

(i,j)∈A τ
⋆
ijxij ≥ 1 is a valid inequality for P≤k

s,t-walk(D) violated
by x⋆.

Proof. (i) As is easily seen, the feasible region of the linear program (5.28) is
nonempty. Moreover, due to the constraints πs0 = 0, πtk = 1, and 0 ≤ πvw ≤
1 for [v, w] ∈ N \ {[s, 0], [t, k]}, it follows that τij ≥ −1 for all (i, j) ∈ A.
This implies that the objective value of each feasible solution (π, τ) is at
least −

∑

(i,j)∈A x
⋆
ij . Thus, the linear program (5.28) always has an optimal

solution.
(ii) We introduce dual variables πs0 and πtk for equation (5.20) multiplied

by −1 and equation (5.21), respectively, a dual variable πiℓ for each flow
conservation constraint (5.22) associated with a node [i, ℓ] ∈ N \{[s, 0], [t, k]},
a dual variable σa for each nonnegativity constraint (5.23) associated with
an arc a ∈ A, and a dual variable τij for each equation of the system (5.24)
associated with an arc (i, j) ∈ A. Then, by Theorems 5.2 and 5.6 we see that
the separation problem for P≤k

s,t-walk(D) and any x⋆ ∈ RA is equivalent to the
linear program

min πs0 − πtk +
∑

(i,j)∈A

x⋆ijτij

s.t. πjm − πiℓ + σa − τij = 0 for all a = ([i, ℓ], [j,m]) ∈ A \ Â,

πjm − πiℓ + σa = 0 for all a = ([i, ℓ], [j,m]) ∈ Â,
σa ≥ 0 for all a ∈ A.

(5.29)

Adding a constant M to each entry πiℓ of a feasible solution (π, σ, τ)
for (5.29), we obtain a feasible solution with the same objective value. Thus,
the variables πiℓ can be assumed to be nonnegative. Next, recall that ei-
ther (π, σ, τ) = (0, 0, 0) is an optimal solution of (5.29) or the LP is un-
bounded. In the latter case, any feasible solution (π, σ, τ) with objective value
less than zero provides a valid inequality πs0 − πtk +

∑

(i,j)∈A xijτij ≥ 0 for

P≤k
s,t-walk(D) violated by x⋆. By the former observation, we may assume that
π ≥ 0. Moreover, we may assume that µ := max{πiℓ : [i, ℓ] ∈ N} > 0, be-
cause otherwise the objective value of (π, σ, τ) would be nonnegative. Hence,
(π′, σ′, τ ′) := 1

µ
(π, σ, τ) is also a feasible solution with objective value less

than zero, it provides a valid inequality that separates x⋆ from P≤k
s,t-walk(D),

and it satisfies the trivial inequalities 0 ≤ πiℓ ≤ 1 for all [i, ℓ] ∈ N . Hence,
adding these inequalities to (5.29), removing the slack variables σa, a ∈ A,
and observing that the artificial arcs are of the form ([i, ℓ− 1], [i, ℓ]), we see
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that the separation problem for P≤k
s,t-walk(D) and x⋆ can be expressed as the

linear program

min πs0 − πtk +
∑

(i,j)∈A

x⋆ijτij

s.t. πiℓ − πjm + τij ≥ 0 for all a = ([i, ℓ], [j,m]) ∈ A \ Â,
πi,ℓ−1 − πiℓ ≥ 0 for all i ∈ N \ {s, t},

ℓ ∈ {2, 3, . . . , k − 1},
0 ≤ πiℓ ≤ 1 for all [i, ℓ] ∈ N .

(5.30)

Finally, observe that x⋆ satisfies the flow constraint x(δ+(s)) = 1. Thus,
πs0 +

∑

a∈δ+(s) x
⋆
aτa = (πs0 − λ) +

∑

a∈δ+(s) x
⋆
a(τa + λ) for all λ ∈ R, in

particular, for λ = πs0. Hence, we may assume that πs0 is fixed to zero. For
a similar reason, we may assume that πtk = 1. This leads to the statement
(ii) of the theorem.

Analogously, the separation problem for dmt(P≤k
s,t-path(D)) and any point

x⋆ ∈ RA can be formulated as an LP. Writing down the ([s, 0], [t, k])-min-
cut inequalities (5.25) in matrix form Zy ≥ 1 and applying Theorems 5.2
and 5.7, we derive the LP

min τTx⋆ − ρT1
s.t. ρTZ + σT − τTT = 0

ρ ≥ 0, σ ≥ 0, τ ≥ 0,

which, however, has exponential size. The following theorem implies that the
separation problem for dmt(P≤k

s,t-path(D)) can be written as a slight variation
of the compact linear program (5.28).

Theorem 5.9. Let D = (N,A) be a simple directed graph, s 6= t ∈ N ,
δin(s) = δout(t) = ∅, and k ∈ N. Moreover, let D = (N ,A) be the DP-graph
associated with (D, s, t, k), Â the set of its artificial arcs, and N ′ its set of
internal nodes.

(i) For any x⋆ ∈ RA
+, the dual programs

max ztk

s.t. zs0 + y(δout([s, 0])) = 0,
ztk − y(δin([t, k])) = 0,

y(δout([i, ℓ])) − y(δin([i, ℓ])) = 0 for all [i, ℓ] ∈ N ′,
∑

a∈A:
ϕ(a)=(i,j)

ya ≤ x⋆ij for all (i, j) ∈ A,

ya ≥ 0 for all a ∈ A

(5.31)
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and

min
∑

(i,j)∈A

x⋆ijτij

s.t. πs0 = 0,
πtk = 1,

πiℓ − πjm + τij ≥ 0 for all a = ([i, ℓ], [j,m]) ∈ A \ Â,
πi,ℓ−1 − πiℓ ≥ 0 for all i ∈ N \ {s, t},

ℓ ∈ {2, 3, . . . , k − 1},
τij ≥ 0 for all (i, j) ∈ A

(5.32)

always have optimal solutions.

(ii) Let (π⋆, τ ⋆) be an optimal solution of (5.32) and ν⋆ its objective value.
Then, x⋆ ∈ dmt(P≤k

s,t-path(D)) if and only if ν⋆ ≥ 1. In case that x⋆ does

not belong to dmt(P≤k
s,t-path(D)), the inequality

∑

(i,j)∈A τ
⋆
ijxij ≥ 1 is a valid

inequality for dmt(P≤k
s,t-path(D)) violated by x⋆.

Proof. (i) As is easily seen, (y, z) = (0, 0) and (π, τ) defined by πiℓ := 0 for
all [i, ℓ] ∈ N \ {[t, k]}, πtk := 1, and τij := 1 for all (i, j) ∈ A are feasible
solutions of (5.31) and (5.32), respectively. The Duality Theorem (e.g. [46])
now implies the proposed claim.

(ii) The Flow Decomposition Theorem (Ford and Fulkerson [35], Gal-
lai [37]) implies that each ([s, 0], [t, k])-flow y is a conic combination of the
incidence vectors of paths P ∈ Ps,t(D), since D is acyclic. Thus, for each P ∈
Ps,t(D), there exists λP ≥ 0 such that y =

∑

P∈Ps,t(D) λPχ
P . The value ν of y

is determined by ν =
∑

P∈Ps,t(D) λP . Its projection, x :=
∑

P∈Ps,t(D) λPχ
ϕ(P ),

is a conic combination of walks W ∈ W≤k
s,t (D).

Suppose that (π⋆, τ ⋆) is an optimal solution of (5.32) and ν⋆ its objective
value. By the Duality Theorem, the linear program (5.31) has an optimal
solution (y⋆, z⋆) with the same objective value ν⋆ = z⋆tk. Since y⋆ is a flow
of value ν⋆, it follows immediately that x⋆ ∈ dmt(P≤k

s,t-path(D)) if and only

if ν⋆ ≥ 1, since dmt(P≤k
s,t-walk(D)) = dmt(P≤k

s,t-path(D)). Moreover, in case

of x⋆ /∈ dmt(P≤k
s,t-path(D)), it follows that ν⋆ < 1, and hence the inequality

∑

(i,j)∈A τ
⋆
ijxij ≥ 1 is violated by x⋆. The validity of this inequality also

follows by duality. For any x′ ∈ dmt(P≤k
s,t-path(D)), consider the dual linear

programs (5.31) and (5.32) with x′ instead of x⋆. The objective value of an
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optimal solution of the new linear program (5.31)

max ztk

s.t. zs0 + y(δout([s, 0])) = 0,
ztk − y(δin([t, k])) = 0,

y(δout([i, ℓ])) − y(δin([i, ℓ])) = 0 for all [i, ℓ] ∈ N \ {[s, 0], [t, k]},
∑

a∈A:ϕ(a)=(i,j)

ya ≤ x′ij for all (i, j) ∈ A,

ya ≥ 0 for all a ∈ A

is at least 1, while (π⋆, τ ⋆) is a feasible solution of its dual, the new linear
program (5.32):

min
∑

(i,j)∈A

x′ijτij

s.t. πs0 = 0,
πtk = 1,

πiℓ − πjm + τij ≥ 0 for all a = ([i, ℓ], [j,m]) ∈ A \ Â,
πi,ℓ−1 − πiℓ ≥ 0 for all i ∈ N \ {s, t}, ℓ ∈ {2, 3, . . . , k − 1},

τij ≥ 0 for all (i, j) ∈ A.

Thus,
∑

(i,j)∈A τ
⋆
ijx

′
ij ≥ 1.

We remark that the membership problems for the polyhedra P≤k
s,t-walk(D)

and dmt(P≤k
s,t-path(D)) are exhaustively described by the linear program (5.31)

and the dual of the linear program (5.28), respectively.

5.5.2 Length-bounded cuts and flows

Here and in the following subsection, we collect some arguments indicat-
ing that it is quite hard to design a polynomial combinatorial algorithm for
dmt(P≤k

s,t-path(D)) to solve the separation or membership problem. However,
our observations do not necessarily imply that it is maybe easier to design a
polynomial combinatorial separation (membership) algorithm for P≤k

s,t-walk(D).
The trivial inequalities 0 ≤ πiℓ ≤ 1 can be added to the linear program (5.32),
since there always exists an optimal solution satisfying these constraints, see
Section 5.6.1. Thus, the linear programs (5.28) and (5.32) differ only in the
nonnegativity constraints For the τij . However, this might be an important
aspect. For instance, Dahl, Foldnes, and Gouveia [22] observed that the fa-
cial structure of the 4-hop constrained walk polytope is easier to describe
than that of its dominant. It is an open question whether this difference will
be reflected in the separation problems for both such polyhedra not only for
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k = 4. (Also, see the discussion about polymatroids and extended polyma-
troids in [46].) However, we leave these aspects for future research.

In this subsection, we consider the membership and separation problem
for dmt(P≤k

s,t-path(D)) in the greater context of length-bounded cut and flow
problems. For a broader presentation of length-bounded cut and flow prob-
lems, we refer to Baier et al. [1].

Let D = (N,A) be a directed graph that possesses two independent
weight functions, namely a length function d : A → R+ and a capacity
function u : A → R+. Given two distinct nodes s, t ∈ N and a number
L ∈ R+, an (s, t)-path (-walk) P is L-length-bounded if

∑

a∈P d(a) ≤ L. An
(s, t)-cut C is said to be L-length-bounded if PL

s,t(D \ C, d|D\C) = ∅, that
is, deleting C destroys all (s, t)-paths (and all (s, t)-walks) with length at
most L in D. Here, d|D\C is the restriction of d to D \ C. The set of all
L-length-bounded (s, t)-paths (-walks, -cuts) will be denoted by PL

s,t(D, d)
(WL

s,t(D, d), C
L
s,t(D, d)). The capacity of a (length-bounded) cut C is u(C).

An L-length-bounded (s, t)-flow is a function f : PL
s,t(D, d) → R+ assigning a

flow value fP to each path P ∈ PL
s,t(D, d). The flow f is feasible, if the total

flow on each arc a,
∑

P :a∈P fP , does not exceed its capacity u(a).
The problem of finding a feasible L-length-bounded (s, t)-flow of max-

imum value, called L-length-bounded maximum (s, t)-flow problem, can be
expressed as a linear program:

max
∑

P∈PL
s,t(D,d)

fP

s.t.
∑

P∈PL
s,t(D,d):
P∋a

fP ≤ u(a) for all a ∈ A,

fP ≥ 0 for all P ∈ PL
s,t(D, d).

(5.33)

In the L-length-bounded minimum (s, t)-cut problem we search for an L-
length-bounded (s, t)-cut of minimum capacity. Its linear programming re-
laxation is the dual of (5.33):

min
∑

a∈A

u(a)τa

s.t.
∑

a∈P

τa ≥ 1 for all P ∈ PL
s,t(D, d),

τa ≥ 0 for all a ∈ A.

(5.34)

The optimization problem, expressed by the linear program (5.34), is called
the fractional L-length-bounded minimum (s, t)-cut problem.

The dual linear programs (5.33) and (5.34) are, of course, not compact.
Nevertheless, they always have compact optimal solutions. For the linear
program (5.34), this is clear, since it has only m variables, while for the
linear program (5.33), it follows from the fact that it has only m constraints.
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Proposition 5.10 (Baier et al. [1]). Denote by m the number of arcs in D.
Given an L-length-bounded (s, t)-flow f in D, then there exists an L-length-
bounded (s, t)-flow f̃ with the same length bound and the same flow value
per arc such that f̃P > 0 for at most m paths P ∈ PL

s,t(D, d). �

Length-bounded paths and walks obviously generalize hop constrained
paths and walks. Moreover, the membership problem for dmt(P≤k

s,t-path(D))

and any point x⋆ ∈ RA can be represented by the dual linear programs (5.33)
and (5.34) with L := k, unit-lengths, and u(a) := x⋆a for all a ∈ A, and the
separation problem by the latter one. Conversely, this means that, given
unit-lengths, the dual linear programs (5.33) and (5.34) have also compact
pendants. Using the DP-approach, this is an immediate consequence of The-
orem 5.9.

In what follows, if unit-lengths are given, we speak of hop constraints
instead of length bounds. So length-bounded flows are called hop constrained
flows, and so on.

Corollary 5.11. Let D = (N,A) be a simple directed graph, u : A → R+

a capacity function, s 6= t ∈ N , and k ∈ N. Moreover, let D = (N ,A) be
the DP-graph associated with (D, s, t, k) and Â the subset of its artificial
arcs. The k-hop constrained maximum (s, t)-flow and the fractional k-hop
constrained minimum (s, t)-cut problem on D are equivalent to the linear
programs

max ztk

s.t. zs0 + y(δout([s, 0])) = 0,
ztk − y(δin([t, k])) = 0,

y(δout([i, ℓ])) − y(δin([i, ℓ])) = 0 for all [i, ℓ] ∈ N ,
[s, 0] 6= [i, ℓ] 6= [t, k],

∑

a∈A:
ϕ(a)=(i,j)

ya ≤ u((i, j)) for all (i, j) ∈ A,

ya ≥ 0 for all a ∈ A

(5.35)

and

min
∑

(i,j)∈A

u((i, j))τij

s.t. πs0 = 0,
πtk = 1,

πiℓ − πjm + τij ≥ 0 for all a = ([i, ℓ], [j,m]) ∈ A \ Â,
πi,ℓ−1 − πiℓ ≥ 0 for all i ∈ N \ {s, t},

ℓ ∈ {2, 3, . . . , k − 1},
τij ≥ 0 for all (i, j) ∈ A,

(5.36)
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respectively. �

Note that, in case of hop constrained flows (k = ⌊L⌋, d ≡ 1), any feasible
(optimal) solution of the linear program (5.35) can be polynomially trans-
formed into a feasible solution of the linear program (5.33) with the same
value due to the Flow Decomposition Theorem (Ford and Fulkerson [35],
Gallai [37]), and vice versa. An analogous result holds for fractional hop
constrained cuts. Clearly, if (π′, τ ′) is a feasible (optimal) solution for (5.36),
then τ ′ is one for (5.34). Conversely, if τ ′ is a feasible (optimal) solution
for (5.34), then one for (5.36) can be computed with Dijkstra’s algorithm [26]
as follows. W.l.o.g. assume that δin(s) = δout(t) = ∅. Let τ̃ ′ be the exten-
sion of τ ′ to D. Dijkstra’s algorithm computes for each node [i, ℓ] ∈ N
the length of a shortest ([s, 0], [i, ℓ])-path with respect to τ̃ ′. Denote this
value by dist([i, ℓ]). Since τ̃ ′ is zero along the artificial arcs, it follows that
dist([i, ℓ − 1]) ≥ dist([i, ℓ]) for all i ∈ N \ {s, t}, ℓ ∈ {2, . . . , k − 1}. Next,
because of τ ′(P ) ≥ 1 for all P ∈ P≤k

s,t (D), it follows that dist([t, k]) ≥ 1.

Finally, for each arc a = ([i, ℓ], [j,m]) ∈ A \ Â,

dist([j,m]) ≤ dist([i, ℓ]) + τ̃ ′(([i, ℓ], [j,m]))

and τ̃ ′(([i, ℓ], [j,m])) = τ ′ij implies dist([i, ℓ]) − dist([j,m]) + τ ′ij ≥ 0. Thus,

(π′, τ ′), where π′
iℓ := dist([i,ℓ])

dist([t,k])
for all nodes [i, ℓ] ∈ N , is a feasible (optimal)

solution of the linear program (5.36).

We mention two results of Baier et al. [1], which are interesting in our
context. The first result concerns the complexity of the transformation be-
tween arc- and path-based formulations of length-bounded flows. A given
length-bounded path-flow can easily be transformed into an arc-flow, while
the reverse transformation is NP-hard in general.

Theorem 5.12 (Baier et al. [1]). Unless P = NP, there does not exist a
polynomial algorithm to transform an arc-flow which is known to correspond
to a length-bounded path-flow into a length-bounded path-flow. �

In case of unit-lengths, such an algorithm exists. Even more, one can
check in polynomial time, if a given arc-flow x : A→ R+ actually corresponds
to a hop constrained path-flow. One way for doing this, is using the DP-
model. Set A′ := A \ (δin(s) ∪ δout(t)). If xa > 0 for some arc a ∈ A \ A′,
then x does not correspond to a hop-constrained path-flow, since those flows
only ship flow along (s, t)-paths. Otherwise check, whether or not the linear
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system

y(δout([s, 0])) = x(δout(s)),
y(δout([i, ℓ])) − y(δin([i, ℓ])) = 0 for all [i, ℓ] ∈ N \ {[s, 0], [t, k]},

∑

a∈A:
ϕ(a)=(i,j)

ya = xij for all (i, j) ∈ A′,

ya ≥ 0 for all a ∈ A

is consistent, a task that can be settled with interior point methods in poly-
nomial time.

The second result addresses the fractionality of length-bounded cuts and
flows.

Theorem 5.13 (cf. Theorem 8 of Baier et al. [1]). There are unit-capacity
(acyclic) digraphs of order n such that every k-hop constrained maximum
(s, t)-flow ships more than half of the total flow along paths with flow values
O(1/n). �

The original theorem of Baier et al. [1] has been formulated in the context
of outerplanar graphs and was proven by means of the underlying graph of a
digraph belonging to the family of acyclic digraphs as illustrated in Figure 5.1.
Applied to the directed case, their proof is as follows. Consider the family of
acyclic block digraphs depicted in Figure 5.1 with n = k+2 and |P 1| = k+1,
|P i| = 2 for i = 2, . . . , n. The unique maximum (2k + 2)-hop constrained
(v0, vn)-flow ships flow value k

k+1
along the path (P \{(v0, v1)})∪P 1 and flow

value 1
k+1

along each path (P \ {(vi−1, vi)}) ∪ P i for i = 2, . . . , k + 2, where
P := (v0, v1, . . . , vk+2).

As is mentioned in [1], in view of Theorem 5.13, it seems to be very
unlikely that there is a combinatorial algorithm that computes a hop con-
strained flow of maximum value in polynomial time.

5.5.3 Arc set capacitated cuts and flows

In this subsection, we generalize the hop constrained maximum flow problem
in terms of the compact formulation (5.35).

Let D = (N,A) be any directed graph, let s, t be any two distinct nodes
of N , let (Ai, i ∈ I) be a finite family of subsets of A, and associate with each
subset Ai a capacity u(Ai) ≥ 0. We call the optimization problem expressed
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by the linear program

max x(δout(s)) − x(δin(s))

s.t. x(δin(v)) − x(δout(v)) = 0 for all v ∈ N \ {s, t},
x(Ai) ≤ u(Ai) for all i ∈ I,

xa ≥ 0 for all a ∈ A

(5.37)

the maximum (s, t)-flow problem with capacity constraints on sets of arcs,
briefly arc set capacitated maximum flow problem. The ordinary maximum
flow problem is obtained when (Ai, i ∈ I) consists of the singletons {a},
a ∈ A.

Considering the equivalent LP

max zt

s.t. zs + x(δout(s)) − x(δin(s)) = 0,
zt + x(δout(t)) − x(δin(t)) = 0,

x(δout(v)) − x(δin(v)) = 0 for all v ∈ N \ {s, t},
x(Ai) ≤ u(Ai) for all i ∈ I,

xa ≥ 0 for all a ∈ A,

(5.38)

we see that the dual of (5.37) can be expressed as

min
∑

i∈I

u(Ai)τi

s.t. πs = 0,
πt = 1,

πu − πv +
∑

i∈I:
(u,v)∈Ai

τi ≥ 0 for all (u, v) ∈ A,

τi ≥ 0 for all i ∈ I.

(5.39)

The optimization problem corresponding to the linear program (5.39) is called
the fractional minimum (s, t)-cut problem with capacity constraints on arc
sets, or briefly, fractional arc set capacitated minimum cut problem.

As is easily seen, the arc set capacitated maximum flow problem sub-
sumes the hop constrained maximum flow problem in terms of its compact
formulation (5.35). However, it also subsumes a reformulation of the multi-
commodity flow problem:

Given a directed graph D = (N,A) and a collection of commodities in
form of source-sink pairs (si, ti) ∈ N × N , i = 1, . . . , k, a multicommodity
flow is a k-tupel f = (x1, . . . , xk) of (si, ti)-flows xi. If arc capacities u(a) ≥
0, a ∈ A, are given, then the multicommodity flow f is said to be feasible
if the total flow on each arc a,

∑k
i=1 x

i
a, does not exceed its capacity u(a).



5.5 Separation 173

In the maximum multicommodity flow problem one is interested in finding
a feasible multicommodity flow f = (x1, . . . , xk) of maximum total value
∑k

i=1[x
i(δout(si))− xi(δin(si))]. If, in addition, demands d1, . . . , dk are given,

then one looks for a feasible multicommodity flow f = (x1, . . . , xk) such
that flow xi has value di, for i = 1, . . . , k. The latter problem is called the
multicommodity flow problem.

It is straightforward to write down the maximum multicommodity flow
problem as a linear program in polynomially many variables and constraints:

max
k∑

i=1

[xi(δout(si)) − xi(δin(si))]

s.t. xi(δout(v)) − xi(δin(v)) = 0 for all v ∈ V \ {si, ti},
i = 1, . . . , k,

k∑

i=1

xia ≤ u(a) for all a ∈ A,

xia ≥ 0 for all a ∈ A, i ∈ {1, . . . , k}.

(5.40)

The multicommodity flow problem can be expressed as

xi(δout(si)) − xi(δin(si)) = di i = 1, . . . , k,
xi(δout(v)) − xi(δin(v)) = 0 for all v ∈ V \ {si, ti},

i = 1, . . . , k,
k∑

i=1

xia ≤ u(a) for all a ∈ A,

xia ≥ 0 for all a ∈ A, i ∈ {1, . . . , k}.

(5.41)

The (maximum) multicommodity flow problem can be transformed into
the arc set capacitated maximum flow problem as follows. Introduce k dis-
joint copies of D, for each commodity (si, ti) one copy Di = (N i, Ai) of D.
Denote by vi ∈ N i and ai ∈ Ai the i-th copy of node v ∈ N and arc a ∈ A,
respectively. Next, introduce two additional nodes s and t and join each
node sii with s by the arc (s, sii) and each node tii with t by the arc (tii, t).
Denote the resulting graph by D′ = (N ′, A′). Finally, we introduce a family
(A′

j , j ∈ I) of subsets of A′ by

I := A,

A′
j := {ji : i = 1, . . . , k} for all j ∈ A.

Setting capacities u′(A′
j) := u(j) for j ∈ A, we see that all copies of arc j

share a common capacity. Clearly, if f̄ = (x̄1, . . . , x̄k) is an optimal solution
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of (5.40), then x̄ ∈ RA′
defined by

x̄ai := x̄ia, for all a ∈ A, i = 1, . . . , k,

x̄s,si
i
:= x̄i(δout(si)) − x̄i(δin(si)), i = 1, . . . , k,

x̄tii,t := x̄i(δin(ti)) − x̄i(δout(ti)), i = 1, . . . , k,

is an optimal solution of the arc set capacitated maximum flow problem
defined on D′. Note that the values x̄s,si

i
and x̄tii,t are nonnegative, because

otherwise the multicommodity flow f̄ would not be maximal. Conversely, if x̄
is an arc set capacitated maximum flow in D′, then f̄ = (x̄1, . . . , x̄k) defined
by

x̄ia := x̄ai , for all a ∈ A, i = 1, . . . , k,

is a maximum multicommodity flow in D.

Also if demands d1, . . . , dk are given for the commodities, the multicom-
modity flow problem defined on D can be transformed into the arc set ca-
pacitated maximum flow problem defined on D′ by adding the capacity con-
straints u′((s, sii)) := di for i = 1, . . . , k. Clearly, the value of any feasible
flow with respect to D′ is bounded by d :=

∑k
i=1 di, and system (5.41) is

consistent if and only if the value of the maximum flow is equal to d.

Since a combinatorial algorithm for the multicommodity flow problem is
unknown and due to its close relationship to the hop constrained maximum
flow problem, it seems to be quite hard to find a polynomial combinato-
rial algorithm that solves the latter problem given by the compact formu-
lation (5.35). Clearly, this formulation has a special structure that could
simplify the problem. For instance, the DP-graph D is acyclic and layered.
Moreover, the capacities are defined on a disjoint union of arc sets. These
arc sets themselves consist of non-adjacent arcs. On the other hand, the two
latter properties also hold for the reformulation of the multicommodity flow
problem as the arc set capacitated flow problem. Also, the argument that
D is an acyclic layered network, can be very likely undermined. Ramachan-
dran [73] has shown that the ordinary maximum flow (as well as the ordinary
minimum cut problem) has the same complexity in acyclic digraphs as in a
general digraphs. Moreover, to the best of our knowledge, the ordinary max-
imum flow problem in layered networks is not known to be easier than in
general digraphs. Hence, we suspect that the special structure of D does not
help to simplify the hop constrained maximum flow problem in terms of the
compact linear program (5.35).
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5.5.4 Approximation algorithms

The previous subsections make it appear quite difficult to find polynomial
combinatorial algorithms for arc set capacitated or hop constrained max-
imum flow problems, and hence also for the membership problem for the
dominant of the hop constrained path polytope. Although we have focused
on flow problems, we suspect that their dual problems, which subsume the
separation problem for dmt(P≤k

s,t-path(D)), are not easier to handle. With
this as a backdrop, we briefly refer to a class of combinatorial approxima-
tion algorithms available for hop constrained and arc set capacitated flow
and fractional cut problems. The approximation algorithms that will be de-
rived in this subsection are based on formulations of the above mentioned
problems as packing and covering LPs, respectively. Since they are only
specializations of well-known approximation algorithms by Fleischer [33] and
Garg and Könemann [40] for packing and covering LPs, we do not go into
the details. See e.g. [14, 34, 59, 70], for further literature.

A packing LP is a linear program of the form

max{cTx : Ax ≤ b, x ≥ 0},

where A ∈ Rm×n is a nonnegative matrix and b ∈ Rm, c ∈ Rn are nonnega-
tive vectors. Garg and Könemann [40] describe a primal-dual approximation
algorithm that computes a feasible primal solution with objective at least
(1 − ε) times the optimum by O(ε−2m logm) calls to an oracle. Given a
dual variable vector y′, this oracle either returns a column Ai of A such that
yTAi ≥ ci is a most violated inequality by y′, or asserts that there is no such
column. Using path-formulations, the above mentioned flow problems can
be described by packing LPs, and hence the algorithm of Garg and Köne-
mann [40] can be applied to compute approximative solutions. However, we
prefer to revert to the multicommodity flow approximation algorithm of the
same authors to derive slightly better running times.

Given a directed graph D = (N,A) with capacities u : A → R+ and
k source-sink pairs (s1, t1), . . . , (sr, tr), the maximum multicommodity flow
problem can be expressed by the packing LP

max
∑

P∈P

fP

s.t.
∑

P∈P:
P∋a

≤ u(a) for all a ∈ A,

fP ≥ 0 for all P ∈ P.

Here, P denotes the union of the sets Psi,ti(D), i = 1, . . . , r, and fP is a
variable for the flow sent along the path P ∈ P. Algorithm 5 by Garg and



176 DP, projection, and the hop constrained path polytope

Könemann [40] computes a feasible multicommodity flow whose total value
is at least 1

1+ε
times the optimum. The algorithm consists of O(ε−2m logL)

iterations, where m := |A| and L is the maximum number of arcs on any
path P ∈ P. Starting with primal solution f = 0 and an infeasible dual
solution z, it computes in each iteration a shortest path P with respect to
z and increases fP by the minimum capacity of an arc a ∈ P . Also the
numbers za, a ∈ P , will be increased by certain values. Since the new primal
solution f is likely to be infeasible, at the very end, it is scaled to feasibility.
Note that for this step, the capacities are required to be strictly positive.
However, this can be assumed w.l.o.g. as we can always delete zero capacity
arcs. The most time consuming step in each iteration consists of r shortest
paths computations. For the initial dual values, Korte and Vygen [55] suggest

za := (n(1 + ε))−⌈ 5
ε
⌉(1 + ε) for all a ∈ A, where 0 < ε1

2
. By an argument

of Garg and Könemann [40], n can be replaced by the maximum number of
arcs of any path P ∈ P.

Theorem 5.14 (Garg and Könemann [40], cf. Korte and Vygen [55]). Algo-
rithm 5 computes a feasible multicommodity flow whose total value is at least

1
1+ε

times the optimum. Its running time is O(ε−2mrTsp logL), where m is
the number of arcs, L is the maximum number of arcs of any path P ∈ P,
r is the number of commodities, and Tsp is the time required to compute a
shortest (s, t)-path in a digraph with nonnegative arc lengths. �

Using, for instance, Dijkstra’s algorithm as a subroutine, we see that the
multicommodity flow approximation algorithm is a fully polynomial time
approximation scheme.

Algorithm 5 can be used as prototype to derive fully polynomial time
approximation schemes for hop constrained and arc set capacitated maxi-
mum flow problems. For the k-hop constrained maximum (s, t)-flow problem,
which is just a single commodity flow problem with additional constraints,
one only has to replace P by P≤k

s,t (D). Thus, r shortest path computations
in each iteration will be replaced by one call of an algorithm that computes
a hop constrained shortest (s, t)-path. Moreover, in case of the single com-
modity maximum flow problem, L denotes the maximum number of arcs on
any simple (s, t)-path. Clearly, if L ≤ k, the hop constrained maximum flow
problem turns out to be an ordinary maximum flow problem, which can be
solved with any max-flow algorithm to optimality. Hence, w.l.o.g. we may
assume that k < L. This number L can be replaced by k in Algorithm 5.
Along the lines of the original proof of Theorem 5.14, one easily verifies the
following result.

Corollary 5.15. There is an algorithm that computes a feasible k-hop con-
strained (s, t)-flow whose total value is at least 1

1+ε
times the optimum in
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Algorithm 5: Multicommodity flow approximation scheme

Input: A digraph D = (N,A) with arc capacities u : A→ R+ \ {0},
r source-sink pairs (s1, t1), . . . , (sr, tr) ∈ N ×N ,
and a number ε with 0 < ε ≤ 1

2
.

Output: A feasible multicommodity flow f : P → R+.
Let fP := 0 for all P ∈ P.
Let L be the maximum number of arcs on any path P ∈ P.
Set δ := (L(1 + ε))−⌈ 5

ε
⌉(1 + ε) and za := δ for all a ∈ A.

while true do
Choose P ∈ P such that z(P ) is minimum.
if z(P ) < 1 then

Set γ := min
a∈P

u(a).

Set fP := fP + γ.

Set za := za

(

1 + εγ
u(a)

)

for all a ∈ P .

else

Set ξ := max
a∈A

1
u(a)

∑

P∈P:a∈P

fP .

Set fP := fP/ξ for all P ∈ P.
return f .

end

end

time O(ε−2mThcsp log k), where m is the number of arcs and Thcsp is the time
required to compute a k-hop constrained shortest (s, t)-path in a digraph
with nonnegative arc lengths. �

Using Algorithm 4 as subroutine, this results in a fully polynomial time
approximation scheme for the hop constrained maximum flow problem.

Another slight modification of the multicommodity flow approximation
scheme results in an approximation algorithm for the arc set capacitated
maximum flow problem, see Algorithm 6. Given a directed graphD = (N,A)
with two distinct nodes s, t ∈ N and capacities u(Ai) ≥ 0 on a family of arc
sets (Ai, i ∈ I), the arc set capacitated maximum flow problem can be
expressed as the packing LP

max
∑

P∈Ps,t(D)

fP

s.t.
∑

P∈Ps,t(D)

|P ∩Ai|fP ≤ u(Ai) for all i ∈ I,

fP ≥ 0 for all P ∈ Ps,t(D).

(5.42)
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Algorithm 6: Arc set capacitated flow approximation scheme

Input: A digraph D = (N,A) with capacities u(Ai) > 0 on a family of
arc sets (Ai, i ∈ I), two distinct nodes s, t ∈ N , and a number
ε with 0 < ε ≤ 1

2
.

Output: A feasible arc set capacitated flow f : Ps,t(D) → R+.
Let fP := 0 for all P ∈ Ps,t(D).1

Let A′ be the set of those arcs a ∈ A not covered by the arc sets2

Ai, i ∈ I.
if A′ contains an (s, t)-path P then3

Set fP := ∞.4

return f .5

end

Let L be the maximum number of arcs on any path P ∈ P.6

Set δ := (L(1 + ε))−⌈ 5
ε
⌉(1 + ε) and zi := δ for all i ∈ I.7

while true do

Set da :=
∑

i∈I:a∈Ai
zi for all a ∈ A.8

Let P ∈ Ps,t(D) such that d(P ) is minimum.9

if d(P ) < 1 then10

Set γ := min
i∈I

u(Ai)
|P∩Ai|

.
11

Set fP := fP + γ.12

Set zi := zi(1 + εγ|P ∩ Ai|
1

u(Ai)
) for all i ∈ I.13

else

Set ξ := max
i∈I

1
u(Ai)

∑

P∈Ps,t(D) |P ∩ Ai|fP .
14

Set fP := fP/ξ for all P ∈ Ps,t(D).15

return f .16

end

end

The dual is the linear program

min
∑

i∈I

u(Ai)zi

s.t.
∑

i∈I

|P ∩ Ai|zi ≥ 1 for all P ∈ Ps,t(D),

zi ≥ 0 for all i ∈ I.

(5.43)

Checking whether a dual solution z satisfies all path constraints can be settled
with a shortest path computation with respect to the lengths da :=

∑

i∈I:a∈Ai

zi

for a ∈ A. This justifies the choice of P in line 9 of Algorithm 6. All
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modifications can be incorporated in the original proof of Theorem 5.14 given
in [40]. Hence we skip the proof of the following result.

Corollary 5.16. Algorithm 6 computes an arc set capacitated flow whose
total value is at least 1

1+ε
times the optimum in time O(ε−2m(Tsp+qm) logL),

where m := |A|, q := |I|, and Tsp is the time required to compute a shortest
(s, t)-path in a digraph with nonnegative arc lengths. �

We now very briefly deal with approximation algorithms for the fractional
cut problems considered in this section. A covering LP with upper bounds on
variables is a linear program of the form

min{cTx : Ax ≥ b, x ≤ u, x ≥ 0},

where A ∈ Rn×m is a nonnegative integer matrix and b ∈ Rm, c, u ∈ Rn

are nonnegative integer vectors. Fleischer [33] describes an algorithm that
computes an ε-optimal solution of such an LP and its dual by at most
O(ε−2m log(cTu)) calls to an oracle. Given a value α and a variable vec-
tor x, this oracle either returns a row Ai of A such that Aix/bi < α or asserts
that there is no such row. Thus, her algorithm is based on the same ideas as
the approximation algorithm for packing LPs by Garg and Könemann [40],
but it differs in the details. In view of the linear programs (5.34) (with L = k
and d ≡ 1) and (5.43), it is not hard to see that the fractional hop constrained
and arc set capacitated minimum cut problems can be formulated as cover-
ing LPs with variable upper bounds equal to one provided that the objective
functions, that is, the capacity functions, are integer or rational. The oracle
calls consist of (hop constrained) shortest path computations.

5.6 Characterization of facets

With a view to the previous section, it is probably quite difficult to design
a polynomial combinatorial algorithm that solves the separation problem
of the polyhedron dmt(P≤k

s,t-path(D)) unless we find some for the multicom-
modity flow problem or other fractional flow problems. This indicates that
dmt(P≤k

s,t-path(D)) and probably also P≤k
s,t-walk(D) do not have facial structures

which are easy to describe. As a consequence, we only present a partial de-
scription of P≤k

s,t-walk(D) and dmt(P≤k
s,t-path(D)) by facet defining inequalities.

More precisely, the aim of Subsections 5.6.1 and 5.6.2 is to characterize all
0/1-facet defining inequalities for dmt(P≤k

s,t-path(D)) and all facet defining in-

equalities for P≤k
s,t-walk(D) with coefficients in the set {−1, 0, 1}. To the best

of our knowledge, this completeness result has not been given before. The
derived inequalities are not new: (s, t)-min-cut inequalities (5.13) as well as
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jump (3.29) and lifted jump inequalities (3.30). Nevertheless, the used pro-
jection mechanism is worth to be considered, since the coefficient structure
of the inequalities defined in the Euclidean space RA can be traced back to
simpler structures in the Euclidean space RN . This relation will be used
in Subsection 5.6.3 to derive facet defining inequalities for P≤k

s,t-walk(D) with
fractional coefficients. Maybe this approach opens the door to new classes of
facet defining inequalities in future.

Throughout this section, we assume that D is the digraph that can be
obtained from the complete digraph on n + 1 nodes by deleting the arcs
a ∈ δin(s)∪δout(t). Next, we denote by D = (N ,A) the DP-graph associated
with (D, s, t, k) and by Â the set of its artificial arcs. For any π ∈ RN , let
(τπ, τπ0 ) ∈ RA ×R be defined by

τπ0 := πtk − πs0, (5.44)

τπij := max{πjℓ − πih : a = ([i, h], [j, ℓ]) ∈ A \ Â}, (i, j) ∈ A. (5.45)

We say that (τπ, τπ0 ) or just τπ is induced by π. Moreover, for any v ∈ Rp,
we call v+ defined by v+

i := max{0, vi} for i = 1, . . . , p, the positive part of v.

5.6.1 All {0, 1}-facets of dmt(P≤k
s,t-path(D))

In this subsection we show that each nontrivial facet defining inequality with
coefficients in the set {0, 1} is either an (s, t)-min-cut inequality among (5.13)
or a jump inequality (3.29).

By Theorem 5.7, dmt(P≤k
s,t-path(D)) is the projection of the polyhedron P ⋆

defined by the inequality system (5.25)-(5.27), that is,

Zy ≥ 1,
y ≥ 0,

x− Ty ≥ 0,

onto the space of x-variables. Here, Z is the constraint matrix associated
with all ([s, 0], [t, k])-min-cut inequalities, and T is the matrix representing
the set function

ϕ : A → A ∪ ∅, ϕ(([i, h], [j, ℓ])) =

{
(i, j) if i 6= j,

∅ else.

Thus, the projection cone C is given by the set of all (ρ, σ, τ) satisfying

ρTZ + σT − τTT = 0,
ρ ≥ 0, σ ≥ 0, τ ≥ 0.

(5.46)



5.6 Characterization of facets 181

In view of Theorem 5.9, saying that the separation problem for the poly-
hedron dmt(P≤k

s,t-path(D)) and any point x⋆ ∈ RA
+ can be expressed by the

linear program (5.32)

min
∑

(i,j)∈A

x⋆ijτij

s.t. πs0 = 0,
πtk = 1,

πiℓ − πjm + τij ≥ 0 for all a = ([i, ℓ], [j,m]) ∈ A \ Â,
πi,ℓ−1 − πiℓ ≥ 0 for all i ∈ N \ {s, t}, ℓ ∈ {2, 3, . . . , k − 1},

τij ≥ 0 for all (i, j) ∈ A,

the essential part of the projection can be described in compact form by the
polytope Π defined as the set of all π ∈ RN satisfying

πs0 = 0,
πtk = 1,

πi,ℓ−1 − πiℓ ≥ 0 for all i ∈ N \ {s, t}, ℓ ∈ {2, 3, . . . , k − 1}
(5.47)

together with the projection rule

τij = max{0,max{πjm − πiℓ : a = ([i, ℓ], [j,m]) ∈ A \ Â}}. (5.48)

This means, τ is the positive part of τπ. In what follows, let τπ,+ := (τπ)+.
Furthermore, denote by C+(Π) the set of all vectors that are positive parts
of vectors induced by some π ∈ Π.

Theorem 5.17.

dmt(P≤k
s,t-path(D)) = {x ∈ RA : x ≥ 0, τTx ≥ 1 for all τ ∈ C+(Π)}. (5.49)

Before proving the theorem, let us remark that the projection mechanism
can be nicely described via potentials. Recall that given a directed graph
G = (V,E) and a weight function w : E → R, a function p : V → R is
called a potential if w((i, j)) ≥ p(j) − p(i) for each arc (i, j) ∈ E. Now each
(s, t)-cut δout(S) of G induces via its incidence function

χδ
out(S) : E → R, χδout(S)((i, j)) =

{
1 if (i, j) ∈ δout(S),
0 otherwise

a potential

pS : V → R, pS(i) =

{
0 if i ∈ S,
1 otherwise.
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Clearly, each function p : V → R with p(s) = 0, p(t) = 1, and 0 ≤ p(i) ≤ 1 for
all i ∈ V \{s, t} is a convex combination of potentials pS associated with (s, t)-

cuts δout(S): p =
∑

S λSp
S. Moreover, p is a potential for

∑

S λSχ
δout(S). In

our context, this means that each π ∈ Π can be interpreted as a potential
with respect to certain convex combinations of the rows of Z. Given π, denote
by P π the set of all ρ with ρT1 = 1 such that π is a potential for ω := ρTZ.
Each triple (ρ, σ, τ) ∈ C such that ρ ∈ P π provides a valid inequality τTx ≥ 1.
The task to find the strongest under all these inequalities, can be expressed
by the projection rule

τij := max{ωa : ϕ(a) = (i, j)} for all (i, j) ∈ A.

Thus, τ = τπ,+.

Proof of Theorem 5.17. Denote the polyhedron on the right hand side of
equation (5.49) by P . Let x′ ∈ dmt(P≤k

s,t-path(D)) and τ ∈ C+(Π). Since τ =
τπ,+ for some π ∈ Π, (π, τ) is a feasible solution of the linear program (5.32).
This implies τTx′ ≥ 1, by Theorem 5.9. Thus, x′ ∈ P .

Now let x′ ∈ P . Suppose that x′ /∈ dmt(P≤k
s,t-path(D)). Then, there exists a

feasible solution (π, τ) of the linear program (5.32) such that τTx′ < 1. Run
the Moore-Bellman-Ford algorithm 4 with lengths τa, a ∈ A. The algorithm
returns in particular for each [i, ℓ] ∈ N the length u

(ℓ)
i of a shortest (s, i)-

path using at most ℓ arcs. Define π̃ ∈ RN by π̃iℓ = u
(ℓ)
i for [i, ℓ] ∈ N . Then,

τ = τ π̃,+. Moreover, π̃s0 = 0 and π̃iℓ ≥ 0 for [i, ℓ] ∈ N\{[s, 0]}, since τπ,+ ≥ 0.
Next, π̃tk ≥ 1, since τTx ≥ 1 is a valid inequality for dmt(P≤k

s,t-path(D)), by
Theorem 5.9. W.l.o.g., we may assume that π̃tk = 1. (Otherwise replace π̃
by 1

π̃tk
π̃.)

Finally, suppose that the set N ′ := {[i, ℓ] ∈ N : π̃iℓ > 1} is nonempty.
Then, we will show that σ ≤ τ , where σ := τ π̂,+ and π̂ is defined by π̂iℓ :=
min{1, π̃iℓ} for all [i, ℓ] ∈ N . This implies σTx′ < 1. Moreover, by definition,
π̂ ∈ Π.

Let [i, ℓ] ∈ N ′ such that ℓ is maximal. Define the vector π̂iℓ by π̂iℓjh := π̃jh
for all [j, h] ∈ N \ {[i, ℓ]}, π̂iℓiℓ := 1. Then one can see that σiℓ ≤ τ , where σiℓ

denotes the positive part of the vector induced by π̂iℓ. N ′′ := N ′ \{[i, ℓ]} has
one element less than N ′. Thus, after |N ′| iterations of this step, we end up
with the pair of vectors (π̂, σ). �

Next, we would like to characterize those 0/1-vectors π ∈ Π whose as-
sociated vectors τπ,+ imply facet defining inequalities. For this, consider

the analogy between vectors of Π and length-vectors u =
(

u
(ℓ)
i

)

, where u
(ℓ)
i



5.6 Characterization of facets 183

denotes the length of a shortest (s, i)-path with at most ℓ arcs. Here, we as-
sume that D has no negative cycles with respect to the given length function
d : A → R. For fixed i, the numbers u

(1)
i , u

(2)
i , . . . are nonincreasing. This

property has been incorporated into the DP-model via the artificial arcs of
D and has resulted into the inequalities πi,ℓ−1 − πi,ℓ ≥ 0. Another important

property of the numbers u
(ℓ)
i is expressed by the Bellman equations (5.19):

u
(ℓ)
j = min{u(ℓ−1)

j ,min{u(ℓ−1)
i + d((i, j)) : (i, j) ∈ δin(j)}}

for all j ∈ N , ℓ = 1, . . . , |N | − 1.

Applied to Π this means to require that among the inequalities

πj,ℓ−1 − πjℓ ≥ 0, πih − πjℓ + τπij ≥ 0

of (5.32) at least one is tight for every node [j, ℓ] ∈ N \ {[0, 0]}. This leads
to Definition 5.18 (a) and subsequent definitions.

Definition 5.18. Let π ∈ RN , τ ∈ RA.

(a) π is said to be τ -in-monotone if for every node [j, ℓ] ∈ N \ {[s, 0]},
πjℓ = πih + τij for some arc ([i, h], [j, ℓ]) ∈ δin([j, ℓ]), where τjj := 0.

(b) π is said to be τ -out-monotone if for every node [i, h] ∈ N \ {[t, k]},
πjℓ = πih + τij for some arc ([i, h], [j, ℓ]) ∈ δin([i, h]), where τii := 0.

(c) π is said to be τ -in-and-out-monotone if π is τ -in- and τ -out-monotone.

If it is clear from context, we omit the prefix τ in the above definitions.
We now present the main result of this subsection.

Theorem 5.19. τπ,+-in-and-out-monotone 0/1-vectors π ∈ Π and nontrivial
facet defining 0/1-inequalities for dmt(P≤k

s,t-path(D)) are in 1-1-correspondence.
This means,

(a) each in-and-out-monotone 0/1-vector π ∈ Π induces a facet defining
0/1-inequality for dmt(P≤k

s,t-path(D));

(b) each nontrivial facet defining 0/1-inequality for dmt(P≤k
s,t-path(D)) is in-

duced by an in-and-out-monotone 0/1-vector π ∈ Π;

(c) if two in-and-out-monotone 0/1-vectors π, π̃ ∈ Π induce the same facet
defining inequality for dmt(P≤k

s,t-path(D)), then π = π̃.

The remainder of this subsection is dedicated to prove Theorem 5.19.
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Lemma 5.20. Let π ∈ Π, i ∈ N \ {s, t}, and 0 ≤ α ≤ 1 such that

N π
i,α := {ℓ ∈ {1, . . . , k − 1} : πiℓ = α} 6= ∅.

(a) Let h := minN π
i,α. If π is τπ,+-in-monotone, then there exists an

([s, 0], [i, h])-path P ⊆ A such that τπ,+(ϕ(P )) = α.

(b) Let h := maxN π
i,α. If π is τπ,+-out-monotone, then there exists an

([i, h], [t, k])-path P ⊆ A such that τπ,+(ϕ(P )) = 1 − α.

Proof. (a) We prove the result by induction on h = 1, . . . , k − 1. For any
internal node i ∈ N and h = 1 set P := {([s, 0], [i, 1])}. Then, τπ,+(ϕ(P )) =
πi1 − πs0 = α− 0 = α.

Let h ∈ {1, . . . , k−2}, and assume the statement to be true for all internal
nodes [i, ℓ] ∈ N with ℓ ≤ h. Consider any internal node [i, h + 1] ∈ N such
that h + 1 = minN π

i,α. Since h + 1 is the minimum number, this implies

πih > πi,h+1. Next, since π is in-monotone, it follows that πi,h+1 − πjh = τπ,+ji

for some internal node j ∈ N, j 6= i. Consider the set N π
j,β for β := πjh, and

assume that h > minN π
j,β. Then, we have at the same time πj,h−1 = πjh and

πih > πi,h+1, which implies πih−πj,h−1 > τπ,+ji , a contradiction. Consequently,
h = minN π

j,β, and hence, there exists an ([s, 0], [j, h])-path P ′ ⊆ A such that
τπ,+(ϕ(P ′)) = πjh, by hypothesis. Thus, the path P := P ′∪{([j, h], [i, h+1])}
satisfies τπ,+(ϕ(P )) = πi,h+1 = α.

(b) can be proved analogously.

Let
N̄ := N

⋃

{[i, ℓ] : i ∈ N \ {s, t}, ℓ ∈ {0, k}}.

For any π ∈ Π define its extension π̄ ∈ RN̄ by π̄iℓ := πiℓ for all [i, ℓ] ∈ N and
π̄i0 := 1 and π̄ik := 0 for i ∈ N \ {s, t}. Next, for any π ∈ Π with extension
π̄, any i ∈ N \ {s, t}, and any α ∈ [0, 1], we define

N̄ π̄
i,α := {ℓ ∈ {0, . . . , k} : π̄iℓ = α}.

In addition, for each ℓ ∈ {0, . . . , k} associate subsets of internal nodes of N
defined by

N π̄,min
ℓ,α := {i ∈ N \ {s, t} : min N̄ π̄

i,α = ℓ}

and N π̄,max
ℓ,α := {i ∈ N \ {s, t} : max N̄ π̄

i,α = ℓ}.

In the following, consider α = 0. Clearly, N π̄,min
0,0 = ∅, and the remaining

sets N π̄,min
ℓ,0 , ℓ ∈ {1, . . . , k}, define a partition of the internal nodes:

N \ {s, t} =

k⋃

ℓ=1

N π̄,min
ℓ,0 .
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The following lemma is immediate. For an illustration of the lemma see
Figure 5.3.

Lemma 5.21. Let π ∈ Π be a 0/1-vector and π̄ ∈ RN̄ its extension. Then,

(a) π is τπ,+-in-monotone if and only if N π̄,min
ℓ,0 6= ∅ for ℓ ∈ {2, . . . , k − 1}

implies N π̄,min
h,0 6= ∅ for all h ∈ {1, . . . , ℓ− 1}.

(b) π is τπ,+-out-monotone if and only if N π̄,min
ℓ,0 6= ∅ for ℓ ∈ {2, . . . , k− 1}

implies N π̄,min
h,0 6= ∅ for all h ∈ {ℓ+ 1, . . . , k}.

(c) π is τπ,+-in-and-out-monotone if and only if

N \ {s, t} = N π̄,min
1,0 ∪̇N π̄,min

k,0

(that is, N π̄,min
ℓ,0 = ∅ for ℓ = 2, . . . , k−1) or N π̄,min

ℓ,0 6= ∅ for ℓ = 1, . . . , k.

�

For any π ∈ RN and any internal node i ∈ N , we define the component
vector πi := [πi1, πi2,...,πi,k−1

].

Proof of Theorem 5.19. For any µ ∈ {0, 1}A, let Aµ0 := {(i, j) ∈ A : µij = 0}
and Aµ1 := {(i, j) ∈ A : µij = 1}.

(a) Let π ∈ Π ∩ {0, 1}N be an in-and-out-monotone vector and set τ :=
τπ,+ ∈ RA. Clearly, the inequality τTx ≥ 1 is valid, and π ∈ {0, 1}N implies
τ ∈ {0, 1}A. The polyhedron dmt(P≤k

s,t-path(D)) is fulldimensional. In order

to show that τTx ≥ 1 induces a facet of dmt(P≤k
s,t-path(D)), we construct

|A| affinely independent points of dmt(P≤k
s,t-path(D)) satisfying τTx ≥ 1 at

equality.
Partition the arc set A into the two subsets A0 := Aτ0 and A1 := Aτ1. For

each arc (i, j) ∈ A1 we will construct a path P ∈ P≤k
s,t (D) such that P ∩A1 =

{(i, j)}. Denoting the incidence vector of P by xij , we see that τTxij = 1.
Moreover, the points xij , (i, j) ∈ A1, are linearly independent. Next, for any
arc (p, q) ∈ A1 and each (i, j) ∈ A0 define the vector xij := xpq + eij , where
eij is the ij-th unit vector. These points are obviously affinely independent,
and they are also affinely independent of the former points xij , (i, j) ∈ A1.
This completes the construction of |A| affinely independent points.

It remains to show that such a path really exists for (i, j) ∈ A1. We
construct an (s, i)-path P ′ ⊆ A0 and an (j, t)-path P ′′ ⊆ A0 such that P :=
P ′ ∪ {(i, j)} ∪ P ′′ is an (s, t)-path with at most k arcs. Then, τ(P ) = 1
by construction. If i = s, we set P ′ := ∅. So, let i be an internal node.
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0 1

1 1 1 1 1 0

1 1 0 0 0

0 0 0 0 0

1 1 1 1 0

1 1 0 0 0

1 1 1 1 1 0

0 0 0 0 0

1 0 0 0 0

(a) π ∈ Π

0 1

1 1 1 1 1 0

1 1 0 0 0

0 0 0 0 0

1 1 0 0 0

1 1 0 0 0

1 1 1 1 1 0

0 0 0 0 0

1 0 0 0 0

(b) in-monotone vector π ∈ Π

0 1

1 1 1 1 1 0

1 1 0 0 0

0 0 0 0 0

1 1 1 1 0

1 1 0 0 0

1 1 1 1 1 0

1 1 0 0 0

1 1 1 0 0

(c) out-monotone vector π ∈ Π

0 1

1 1 1 1 1 0

1 0 0 0 0

0 0 0 0 0

1 1 1 1 0

1 1 0 0 0

1 1 1 1 1 0

1 1 0 0 0

1 1 1 0 0

(d) in-and-out-monotone vector π ∈ Π

Figure 5.3: Illustration of {in}-{out}-monotone 0/1-vectors π ∈ Π.

Apply Lemma 5.20 (a) with α = 0. Since τij = 1, the set N π
i,0 is nonempty.

Let g = minN π
i,0. Then there exists an ([s, 0], [i, g])-path P̃ ′ ⊆ A such that

τ(ϕ(P̃ ′)) = α = 0. Thus, P ′ := ϕ(P̃ ′) ⊆ A0. Note that P ′ consists of
exactly g arcs. Next, consider node j. If j = t, set P ′′ := ∅. Otherwise
apply Lemma 5.20 (b) with α = 1. Since τij = 1, the set N π

j,1 is nonempty.

Moreover, it exists an ([i, h], [t, k])-path P̃ ′′ ⊆ A such that τ(ϕ(P̃ ′′)) = 1−α =
0 for h = maxN π

j,1. Thus, P ′′ := ϕ(P̃ ′′) ⊆ A0. Moreover, by construction of
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P̃ ′′, |P ′′| ≤ k − h. Thus, |P | = |P ′| + 1 + |P ′′| = g + 1 + k − h ≤ k, where it
is assumed that g = 0 if P ′ = ∅ and h = k if P ′′ = ∅.

(b) Let τTx ≥ τ0 be an inequality with coefficients τij ∈ {0, 1} for all
(i, j) ∈ A that induces a nontrivial facet of dmt(P≤k

s,t-path(D)). Since τ ≥ 0

and τTx ≥ τ0 is not equivalent to a nonnegativity constraint, it follows that
τ0 > 0. Moreover, since τst = 1 and τTx ≥ τ0 is facet defining, we have
τ0 = 1.

Run the Moore-Bellman-Ford algorithm 4 with length function d : A →R, (i, j) 7→ τij . The algorithm especially returns for each [i, ℓ] ∈ N the

length of a shortest (s, i)-path using at most ℓ arcs, u
(ℓ)
i . Define the vector

π ∈ RN by πiℓ := u
(ℓ)
i , [i, ℓ] ∈ N . Since τ ∈ {0, 1}A, it follows that πiℓ ∈Z+ for all [i, ℓ] ∈ N and, in particular, πs0 = 0. Next, since τst = 1, we

have πtk ≤ 1. Assume that πtk = 0. Since πtk denotes the length of a
shortest path P ∈ P≤k

s,t (D), it follows immediately τTχP = 0 < 1 = τ0, a

contradiction. Consequently, πtk = 1. Moreover, since u
(1)
i ∈ {0, 1} and the

sequence u
(1)
i , u

(2)
i , . . . , u

(k−1)
i is nonincreasing for every internal node i ∈ N ,

it follows immediately that π ∈ Π ∩ {0, 1}N .

Next, τπ,+ ≤ τ , by definition of τπ,+. Thus, Aτ
π,+

1 ⊆ Aτ1 . Since the
inequality τTx ≥ 1 induces a facet, it follows equality. Thus, τπ,+ = τ .

It remains to be shown that π is in-and-out-monotone. The Bellman
equations (5.19) imply that π is in-monotone. We show, by contraposition,
that π is also out-monotone. Suppose not. Then, it exists an internal node
[i, ℓ] ∈ N with ℓ < k − 1 such that πj,ℓ+1 − πiℓ < τij for all internal nodes
j ∈ N , where τii := 0. In particular, since πi,ℓ+1 − πiℓ < 0, it follows
immediately that πiℓ = 1 and πi,ℓ+1 = 0.

First, suppose that ℓ = 1. Consider the vector ρ ∈ RN defined by ρi1 := 0
and ρjh := πjh for all [j, h] ∈ N \ {[i, 1]}, and let ψ ∈ RA be the positive

part of the vector induced by ρ. Clearly, ψ ∈ {0, 1}A and Aψ1 ( Aτ1. Hence
the inequality ψTx ≥ 1 strictly dominates the inequality τTx ≥ 1, and thus,
the latter one is not facet defining.

Next, assume that 1 < ℓ < k − 1. Clearly, one of the four following
configurations holds for every row j 6= i.

πi,ℓ−1 = 1 πiℓ = 1 πi,ℓ+1 = 0

πj,ℓ−1 = 1 πjℓ = 1 πj,ℓ+1 = 1
(a)
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πi,ℓ−1 = 1 πiℓ = 1 πi,ℓ+1 = 0

πj,ℓ−1 = 1 πjℓ = 1 πj,ℓ+1 = 0
(b)

πi,ℓ−1 = 1 πiℓ = 1 πi,ℓ+1 = 0

πj,ℓ−1 = 1 πjℓ = 0 πj,ℓ+1 = 0
(c)

πi,ℓ−1 = 1 πiℓ = 1 πi,ℓ+1 = 0

πj,ℓ−1 = 0 πjℓ = 0 πj,ℓ+1 = 0
(d)

Configuration (a) implies πj,ℓ+2 = 1, since otherwise it follows that τij = 0.
This in turn implies πj,ℓ+1 − πiℓ = τij , a contradiction. Thus, τij = 1 and
τji = 0. Next, configurations (b) and (c) imply τij = τji = 0, while (d)
implies τij = 0 and τji = 1.

Define a partition of the internal nodes of N by

N \ {s, t} = N0 ∪̇N1,

where
N0 := {j ∈ N \ {s, t} : πj,ℓ+1 = 0},
N1 := {j ∈ N \ {s, t} : πj,ℓ+1 = 1}.

Moreover, define σ ∈ RN by σjℓ := 0 for all j ∈ N0, ℓ ∈ {1, . . . , k − 1}
and σjℓ := πjℓ otherwise. Let ω ∈ RA be the positive part of the vector
induced by σ. Then, it follows immediately that ωvw = 0 for all (v, w) ∈
A ∩ (N × (N0 ∪ {s})) and ωvw = τvw for all (v, w) ∈ A ∩ (N1 ∪ {s, t}).
Since τvw = 1 for all (v, w) ∈ N0 × N1, we see that also ωvw = τvw for all
(v, w) ∈ N0 × N1. Now, one easily verifies that Aω1 ( Aτ1, and hence the
inequality τTx ≥ 1 were not facet defining, a contradiction.

(c) Let π, ρ ∈ Π be two in-and-out-monotone 0/1-vectors such that τπ,+ =
τρ,+ and

∑

(i,j)∈A τ
π,+
ij xij ≥ 1 is facet defining. We have to show that π = ρ.

Consider the sets N π̄,min
ℓ,0 , N ρ̄,min

ℓ,0 for ℓ = 1, . . . , k, where π̄ and ρ̄ are the
extensions of π and ρ, respectively. Since π and ρ are in-and-out-monotone,
N π̄,min
ℓ,0 6= ∅ 6= N ρ̄,min

ℓ,0 for ℓ = 1, k, see Lemma 5.21 (c). Furthermore, since

τπ,+si = τρ,+si and τπ,+it = τρ,+it for all i ∈ N\{s, t}, we derive N π̄,min
ℓ,0 = N ρ̄,min

ℓ,0 for

ℓ = 1, k. Thus, πi = ρi = 0T for i ∈ N π̄,min
1,0 and πi = ρi = 1T for i ∈ N π̄,min

k,0 .

Moreover, Lemma 5.21 (c) implies that either N π̄,min
ℓ,0 = N ρ̄,min

ℓ,0 = ∅ for
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ℓ = 2, . . . , k−1 or N π̄,min
ℓ,0 6= ∅ 6= N ρ̄,min

ℓ,0 for ℓ = 2, . . . , k−1. In the first case,
we are done. So, consider the second case. We show by induction on ℓ that
N π̄,min
ℓ,0 = N ρ̄,min

ℓ,0 for ℓ = 1, . . . , k − 1. The initial step is already made.

Letting ℓ ∈ {1, . . . , k − 2} and N π̄,min
i,0 = N ρ̄,min

i,0 for i = 1, . . . , ℓ, we have

to show that N π̄,min
ℓ+1,0 = N ρ̄,min

ℓ+1,0 . Let j ∈ N π̄,min
ℓ+1,0 . Since N π̄,min

i,0 = N ρ̄,min
i,0 for

i = 1, . . . , ℓ and N π̄,min
p,0 ∩ N π̄,min

q,0 = ∅ for p 6= q, it follows immediately that

j ∈ N ρ̄,min
r,0 for some r ∈ {ℓ + 1, . . . , k}. Assuming r ≥ ℓ + 2 yields τρ,+hj = 1

for all h ∈ N ρ̄,min
ℓ,0 , while τπ,+hj = 0, a contradiction. Thus r = ℓ+1 and hence,

j ∈ N ρ̄,min
ℓ+1,0 . Interchanging π and ρ in the above argumentation, we see that

j ∈ N
¯rho,min

ℓ+1,0 also implies j ∈ N π̄,min
ℓ+1,0 . Hence, j ∈ N π̄,min

ℓ+1,0 .
It follows that πi = ρi for all internal nodes i ∈ N , and hence, π = ρ. �

We close this subsection with the identification of in-and-out-monotone
0/1-vectors π ∈ Π with already well-known valid inequalities.

Observation 4. Let π ∈ Π be a τ -in-and-out-monotone 0/1-vector, where
τ := τπ,+.

(a) τTx ≥ 1 is an (s, t)-min-cut inequality among (5.13) if and only if
N \ {s, t} = N π̄,min

1,0 ∪̇N π̄,min
k,0 , that is, N π̄,min

ℓ,0 = ∅ for ℓ = 2, . . . , k − 1.

The shores of the associated (s, t)-cut are given by S := {s} ∪ N π̄,min
1,0

and T := {t} ∪N π̄,min
k,0 .

(b) τTx ≥ 1 is a jump inequality (3.29) if and only if N π̄,min
ℓ,0 6= ∅ for

ℓ = 1, . . . , k. The partition associated with this jump inequality is
given by S0 := {s}, Sℓ := N π̄,min

ℓ,0 , ℓ = 1, . . . , k, and Sk+1 := {t}.

5.6.2 All {−1, 0, 1}-facets of P≤k
s,t-walk(D)

In this subsection, we will identify all nontrivial facet defining {−1, 0, 1}-
inequalities for P≤k

s,t-walk(D) with inequalities that are essentially equivalent to
lifted jump inequalities (3.30). They are of the following form:

k−3∑

i=0

k−1∑

j=i+2

x((Si : Sj)) − x((Sk−1 : S1 ∪ S2)) ≥ 0,

where

N =

k⋃

p=0

Sp



190 DP, projection, and the hop constrained path polytope

is a partition of N into k + 1 node sets with S0 = {s} and Sk = {t}. Such
an inequality is equivalent to a lifted jump inequality (3.30) if |S1| ≥ 2,
which can be seen as follows. Let S1 = S̃1 ∪ S̃k be any partition of S1. Set
S̃k+1 := Sk and S̃i := Si for i = 0, 2, 3, . . . , k−1. Then, we derive a lifted jump
inequality from the above inequality by adding the equations x(δin(t)) = 1
and x(δin(v)) − x(δout(v)) = 0 for all v ∈ S̃k.

We begin with some preliminary observations about P≤k
s,t-walk(D). Recall

that D is obtained from the complete digraph on n+1 nodes by deleting the
arc set δin(s)∪ δout(t). Clearly, since P≤k

s,t-walk(D) contains P≤k
s,t-path(D) and all

x ∈ P≤k
s,t-walk(D) satisfy the flow conservation constraints (5.8), Corollary (3.5)

implies the following statement.

Corollary 5.22. Let 4 ≤ k < n. Then,

dimP≤k
s,t-walk(D) = dimP≤k

s,t-path(D) = n2 − 2n+ 1 = (n− 1)2. �

We remark that in difference to the digraph in Corollary (3.5), D contains
the arc (s, t).

Due to the flow conservation constraints (5.8), equivalent valid inequali-
ties for P≤k

s,t-walk(D) can be identified as in case of P≤k
s,t-path(D).

Corollary 5.23 (cf. Theorem 3.34). Let 4 ≤ k < n, let αTx ≥ α0 be a valid
inequality for P≤k

s,t-walk(D), and let T be a spanning tree of D. Then for any
specified set of coefficients βij for the arcs (i, j) ∈ T , there is an equivalent
inequality ᾱTx ≥ α0 for P≤k

s,t-walk(D) such that ᾱij = βij for (i, j) ∈ T . �

Next, we show that inequalities (5.50) are indeed facet defining. For this,
an inequality τTx ≥ τ0 (or equation τTx = τ0) with τ ∈ RA is said to be
t-rooted if τit = 0 for all i ∈ N \ {t}.

Theorem 5.24. Let 4 ≤ k < n and let

N =

k⋃

p=0

Sp

be a partition of N with S0 = {s} and Sk = {t}.

(i) The inequality

k−3∑

i=0

k−1∑

j=i+2

x((Si : Sj)) − x((Sk−1 : S1 ∪ S2)) ≥ 0, (5.50)

induces a facet of P≤k
s,t-path(D) if and only if either k = 4 or k ≥ 5 and

|Sk−1| ≥ 2.
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(ii) Let Sk−1 = {z} for some node z ∈ N \ {s, t}. Then, the inequality

k−3∑

i=0

k−1∑

j=i+2

x((Si : Sj)) − x(δout(z) \ {(z, t)}) ≥ 0, (5.51)

induces a facet of P≤k
s,t-path(D).

(iii) The inequality (5.50) induces a facet of P≤k
s,t-walk(D).

Proof. We prove statement (i), indicating the necessary modifications for
statements (ii) and (iii). Note that in case of k = 4, inequalities (5.50)
and (5.51) are identical.

The validity of inequality (5.50) follows from Corollary 5.25 and Theo-
rem 5.27.

If k ≥ 5 and |Sk−1| = 1, that is, Sk−1 = {z} for some z ∈ N \ {s, t},
then inequality (5.50) is the sum of inequality (5.51) and the nonnegativity

constraints xuz ≥ 0 for all u ∈
k−2⋃

p=3

Sp.

To show the converse, let either k = 4 or k ≥ 5 and |Sk−1| ≥ 2. Denote
inequality (5.50) by bTx ≥ 0. Suppose that the equation cTx = c0 is satisfied
by every x ∈ P≤k

s,t-path(D) (P≤k
s,t-walk(D)) that satisfies the inequality bTx ≥ 0

with equality. By Theorem 3.34 (Corollary 5.23) we may assume that cTx =
c0 is t-rooted. In particular, cst = 0, which implies c0 = 0.

First, we show by induction on p that cij = 0 for (i, j) ∈ (Sp : Sp+1),
p = 0, 1, . . . , k − 1. For p = 0, this is true, since the 2-paths (s, v, t)
with v ∈ S1 are tight with respect to bTx ≥ 0. Thus, csv = 0 for all
v ∈ S1. Assume the statement to be true for some p ∈ {0, 1, . . . , k − 2},
and consider any coefficient cuv with (u, v) ∈ (Sp : Sp+1). Then, any path
P = (s, v1, v2, . . . , vp−1, u, v, t) with vj ∈ Sj for j = 1, . . . , p− 1 is tight with
respect to bTx ≥ 0, and hence, cuv = 0.

Next, we prove that cij = σ for all (i, j) ∈ (Sk−1 : S1∪S2), for some σ ∈ R.
In case of k ≥ 5, consider any two arcs (v, w), (ṽ, w̃) ∈ (Sk−1 : S1 ∪ S2). The
paths (s, u, v, w, t) and (s, u, ṽ, w̃, t) for some node u ∈ Sk−2 are tight, which
immediately implies cvw = cṽw̃. Thus, it exists σ ∈ R such that cij = σ for
all (i, j) ∈ (Sk−1 : S1 ∪ S2). (If Sk−1 = {z}, then one can choose a similar
construction to show that czv = σ for all v ∈ N \ {s, t, z}.) In case of k = 4
and |S3| = 1, consider the paths (s, v, w, t) and (s, ṽ, w̃, t). Since, v = ṽ, it
follows again that cij = σ for all (i, j) ∈ (Sk−1 : S1 ∪ S2), for some σ ∈ R. In
case of k = 4 and |S3| ≥ 2, let first (v, w), (ṽ, w̃) ∈ (Sk−1 : S1). Considering
the paths (s, u, v, w, t) and (s, u, ṽ, w̃, t) for some u ∈ S2, yields cvw = cṽw̃.
Next, the paths (s, v, w, t) and (s, v, ŵ, t), where ŵ ∈ S2 imply cvw = cvŵ.
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Thus, cṽw̃ = cvŵ, and hence, cij = σ for all (i, j) ∈ (Sk−1 : S1 ∪ S2), for some
σ ∈ R.

It is now easy to see that cij = −σ for all (i, j) ∈ (Sp : Sq) with 0 ≤ p <
p+ 2 ≤ q ≤ k − 1, cij = 0 for all (i, j) ∈ A(Sp), p = 1, . . . , k − 1, and cij = 0
for all (i, j) ∈ (Sq : Sp), 1 ≤ p < q ≤ k − 2.

Finally, we prove that cij = 0 for all arcs (i, j) ∈ (Sk−1 : Sp), 3 ≤ p ≤
k − 2. In case of k = 4, there is nothing to show. So let k ≥ 5. Consider
any arc (vk−1, vp) ∈ (Sk−1 : Sp) with 3 ≤ p ≤ k − 2. Since |Sk−1| ≥ 2,
there is ṽk−1 ∈ Sk−1, ṽk−1 6= vk−1. (For walks, the restriction |Sk−1| ≥ 2 is
not necessary, as walks may visit a node more than one time.) The path
(s, vk−1, vp, vp+1, . . . , vk−2, ṽk−1, v1, t) uses at most k arcs and is tight with
respect to the inequality bTx ≥ 0, where vi ∈ Si for i = 1, p, p+ 1, . . . , k − 2.
We conclude that cvk−1,vp

= 0. Therefore, cTx = c0 is simply −σbTx = 0.

We now turn to the characterization of {−1, 0, 1}-facets by using the
DP-approach. Let Π0 be the set of all 0 6= π ∈ [0, 1]N such that πs0 =
πtk = 0, πi,k−1 = 0 for all internal nodes i ∈ N , and πi,ℓ ≥ πi,ℓ+1 for all
ℓ ∈ {1, . . . , k − 2}, i ∈ N \ {s, t}. Denote by C(Π) (C(Π0)) the set of all
τ ∈ RA that are induced by some π ∈ Π (π ∈ Π0).

Corollary 5.25.

P≤k
s,t-walk(D) =

{

x ∈ RA :
x ≥ 0, x satisfies equations (5.8),
τTx ≥ 0 for all τ ∈ C(Π0)

}

. (5.52)

Proof. By Theorem 5.8,

P≤k
s,t-walk(D) =

{

x ∈ RA :
x ≥ 0, x satisfies equations (5.8),
τTx ≥ 1 for all τ ∈ C(Π)

}

.

Next, due to the flow conservation constraints (5.8), two vectors π, π̃ ∈RN project into equivalent inequalities if for every node i ∈ N \ {s, t}, πi −
π̃i ≡ λi for some λi ∈ R. This implies that the values πs0, πtk, and πi,k−1 for
all internal nodes i ∈ N can be fixed to 0. The right hand side of a projected
inequality is then 0. This implies Corollary 5.25.

Let π ∈ Π0∩{0, 1}N and π̄ ∈ RN̄ its extension. Then, N π̄,min
0,0 = N π̄,min

k,0 =
∅. The following lemma is immediate.

Lemma 5.26. Let π ∈ Π0 ∩ {0, 1}N and π̄ ∈ RN̄ its extension. Then, π is
τπ-in-and-out-monotone if and only if N π̄,min

ℓ,0 6= ∅ for ℓ = 1, . . . , k − 1. �

Theorem 5.27. Let k ≥ 4. τπ-in-and-out-monotone 0/1-vectors π ∈ Π0

and nontrivial facet defining t-rooted 0/ ± 1-inequalities for P≤k
s,t-walk(D) are

in 1-1-correspondence. This means,
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(a) each in-and-out-monotone 0/1-vector π ∈ Π0 induces a facet defining
t-rooted 0/± 1-inequality for P≤k

s,t-walk(D);

(b) each nontrivial facet defining t-rooted 0/± 1-inequality for P≤k
s,t-walk(D)

is induced by an in-and-out-monotone 0/1-vector π ∈ Π0;

(c) if two row-in-and-out-monotone 0/1-vectors π, π̃ ∈ Π0 induce the same
facet defining inequality for P≤k

s,t-walk(D), then π = π̃.

Proof. (a) Let π ∈ Π0 be an in-and-out-monotone 0/1-vector and π̄ ∈ RN̄

its extension. By Lemma 5.27, N π̄,min
ℓ,0 6= ∅ for ℓ = 1, . . . , k − 1. Thus, the

resulting inequality τTx ≥ 0, with τ := τπ, is an inequality of the form (5.50),
which is facet defining by Theorem 5.24 (iii).

(b) For any µ ∈ ZA and any z ∈ Z, let Aµz := {(i, j) ∈ A : µij = z}.
Let τTx ≥ τ0 be a nontrivial facet defining t-rooted 0/± 1-inequality for

P≤k
s,t-walk(D). In particular, τst = 0, τTx ≥ 0 is valid and not the sum of

nonnegativity constraints. Hence, τ0 = 0 and Aτ−1 6= ∅ 6= Aτ1.

Next, define π ∈ RN by πiℓ := u
(ℓ)
i , [i, ℓ] ∈ N , where the numbers u

(ℓ)
i are

the values returned by the Moore-Bellman-Ford algorithm 4 for the length
function d : A → R, (i, j) 7→ τij . Clearly, π 6= 0 and πs0 = 0. Moreover,
the validity of τTx ≥ τ0 means that τ(W ) ≥ 0 for all W ∈ W≤k

s,t (D). This
implies πtk ≥ 0; τst = 0 implies even πtk = 0. This in turn implies πiℓ ≥ 0
for all internal nodes [i, ℓ] ∈ N , since the inequality is t-rooted. With the
same or similar arguments as in the proof to Theorem 5.19 (b) one now can
close the gaps to show that π is in-and-out-monotone, π ∈ Π0 ∩ {0, 1}N , and
τ = τπ.

(c) This statement can be shown along the lines of the proof to Theo-
rem 5.19 (c). So we only give a sketch of the proof. Let π, ρ ∈ Π be two
in-and-out-monotone 0/1-vectors such that τπ = τρ and

∑

(i,j)∈A τ
π
ijxij ≥ 0

is facet defining. We have to show that π = ρ. It immediately follows
that N π̄,min

1,0 = N ρ̄,min
1,0 , N π̄,min

ℓ,0 6= ∅ 6= N ρ̄,min
ℓ,0 for ℓ = 2, . . . , k − 1, and

N π̄,min
ℓ,0 = N ρ̄,min

ℓ,0 = ∅ for ℓ = 0, k (see Lemma 5.26). Now one shows again

by induction on ℓ that N π̄,min
ℓ,0 = N ρ̄,min

ℓ,0 for ℓ = 1, . . . , k − 1. It follows that
πi = ρi for all internal nodes i ∈ N , and hence, π = ρ.

5.6.3 Extensions

Dahl and Gouveia [23] describe a generalization of the jump inequalities
called r-jump inequalities. Let
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N =

k+r⋃

p=0

Sp

be a partition of node set N , where r ∈ N, 1 ≤ r ≤ n − k, S0 = {s}, and
Sk+r = {t}. The r-jump inequality associated with this partition is defined
as

k+r−1∑

p=0

k+r∑

q=p+1

αpqx((Sp : Sq)) ≥ r, (5.53)

where for p < q, αpq := min{q − p − 1, r}. Dahl, Foldnes, and Gouveia [23]
have shown that the r-jump inequalities induce facets of dmt(P≤k

s,t-walk(D))

and consequently of dmt(P≤k
s,t-path(D)). 1

Theorem 5.28 (Dahl, Foldnes, and Gouveia [22]). For k ≥ 4, the r-jump
inequality (5.53) is facet defining for dmt(P≤k

s,t-path(D)). �

Dahl and Gouveia [23] deal with the problem to strengthen r-jump in-
equalities for P≤k

s,t-path(D), since these inequalities are not facet defining for

P≤k
s,t-path(D) in general. The resulting inequalities are called lifted r-jump in-

equalities. For r = 1, that is, in case of the ordinary jump inequalities, they
obtain stronger inequalities by decreasing some coefficients on the backward
arcs, which results into the class of lifted jump inequalities (3.30)

k−1∑

p=0

k+1∑

q=p+2

x((Sp : Sq)) − x((Sk−1 ∪ Sk : S1 ∪ S2)) ≥ 1.

They also discuss the case r = 2 in connection with k = 4. Following roughly
the same idea of decreasing coefficients associated with backward arcs, they
derive a class of lifted 2-jump inequalities

5∑

p=0

6∑

q=p+1

αpqx((Sp : Sq)) − 2x((S4 ∪ S5 : S1 ∪ S2))

−x((S4 ∪ S5 : S3)) − x((S3 : S2 ∪ S1)) − x(A(S3)) ≥ 2

(5.54)

for all partitions

N =
6⋃

p=0

Sp

1In difference to our definition, Dahl, Foldnes, and Gouveia [23] introduce walks as
node-arc sequences, where nodes but not arcs may be repeated. However, the two k-hop
constrained walk polytopes resulting from the different definitons of walks have the same
dominant.
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with S0 = {s} and S6 = {t}. Experiments of Dahl and Gouveia with the
convex-hull code PORTA [17] indicate that these inequalities define facets of
P≤4
s,t-path(D). Moreover, they show that these inequalities are equivalent to

the inequalities (5.16):

∑

i∈I

xsi +
∑

j∈J

xjt −
∑

i∈I,j∈J

xij ≥ 0 for all I, J ⊆ N \ {s, t}.

With a view to the completeness result for the 4-hop constrained walk poly-
tope P≤4

s,t-walk(D) (see Fact 5), Dahl, Foldnes, and Gouveia [22] point to the

interesting fact that to describe dmt(P≤k
s,t-path(D)), one needs the whole class

of r-jump inequalities, while to describe P≤4
s,t-walk(D), one only needs a suitable

class of lifted 2-jump inequalities.

Using the DP-approach, its seems to be natural to consider the coefficient
vector of an r-jump inequality as τπ,+-vector. The corresponding τπ-vector
gives a valid inequality for P≤k

s,t-walk(D) that dominates the inequality asso-

ciated with τπ,+ (with respect P≤k
s,t-walk(D)). So, this is a systematic way

to strengthen r-jump inequalities. The π-vector associated with an r-jump
inequality (5.53) has the following configuration:

πs0 := 0,

πtk := r,

πiℓ :=







0 if p− ℓ ≤ 0,
r if p− ℓ ≥ r,

p− ℓ otherwise,

= min{r,max{p− ℓ, 0}} i ∈ Sp, p = 1, . . . , k + r − 1,

ℓ = 1, . . . , k − 1.

Note that π′ := 1
r
π ∈ Π.

For example, for k = 4 and r = 2, the π-vector is of the following form:

0 2

0 0 0

1 0 0

2 1 0

2 2 1

2 2 2
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Here, the (p + 1)-th row represents all row vectors πi, i ∈ Sp for p =
1, . . . 5. The inequality

∑

a∈A τ
π,+
a xa ≥ 2 is a 2-jump inequality; the in-

equality
∑

a∈A τ
π
a xa ≥ 2 is a lifted 2-jump inequality among (5.54).

We could check now whether the inequality τTx ≥ r, where τ := τπ,
induces a facet of P≤k

s,t-walk(D). However, we prefer to study the inequality

that results from the unique equivalent vector to π′ in Π0 given by π̃′ := 1
µ
π̃,

where π̃ is defined by

π̃s0 := 0,

π̃tk := 0,

π̃iℓ := πiℓ − πi,k−1, i ∈ Sp, p = 1, . . . , k + r − 1, ℓ = 1, . . . , k − 1,

and µ := max
[i.ℓ]∈N

π̃iℓ. This means that for ℓ ∈ {1, . . . , k − 1},

π̃iℓ = 0, i ∈ S1 ∪ Sk+r−1,

π̃iℓ = min{r,max{p− ℓ, 0}}, i ∈ Sp, p = 2, . . . , k − 1,

π̃iℓ = k − 1 − ℓ, i ∈
r+1⋃

p=k

Sp,

π̃iℓ = min{p− 1, k − 1 − ℓ}, i ∈ Sk+r−p, p = 2, . . . , z,

where z := min{k − 2, r}. Note that
r+1⋃

p=k

Sp = ∅ in case of r < k − 1. An

illustration of π and π̃ for k = 6 and r = 7 is given in Figure 5.4. Consider
the rows of size 5 = k − 1 in (a) and (b) in Figure 5.4. While π consists of
12 = k + r − 1 different rows, π̃ only has 8 = k + z − 2 different rows.

Theorem 5.29. Let k, r ∈ N, 4 ≤ k < n, 1 ≤ r ≤ n − k, and z :=
min{k − 2, r}. Moreover, let

N =

k+z−1⋃

p=0

Tp

be a partition of N such that T0 := {s} and Tk+z−1 := {t}. Define π̃ ∈ RN

by

π̃s0 := 0,

π̃tk := 0,

π̃iℓ = min{r,max{p− ℓ, 0}}, i ∈ Tp, p = 1, . . . , k − 1,

π̃iℓ = min{p, k − 1 − ℓ}, i ∈ Tk+z−1−p, p = 1, . . . , z − 1,

where ℓ ∈ {1, . . . , k − 1}, and set τ := τ π̃.
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0 7

0 0 0 0 0

1 0 0 0 0

2 1 0 0 0

3 2 1 0 0

4 3 2 1 0

5 4 3 2 1

6 5 4 3 2

7 6 5 4 3

7 7 6 5 4

7 7 7 6 5

7 7 7 7 6

7 7 7 7 7

(a) π-vector associated with 7-jump inequality

0 0

0 0 0 0 0

1 0 0 0 0

2 1 0 0 0

3 2 1 0 0

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

3 3 2 1 0

2 2 2 1 0

1 1 1 1 0

0 0 0 0 0

(b) associated vector π̃

Figure 5.4: Vectors π and π̃ associated with an r-jump inequality for r = 7, k = 6.

(i) The inequality τTx ≥ 0 induces a facet of P≤k
s,t-walk(D).

(ii) The inequality τTx ≥ 0 induces a facet of P≤k
s,t-path(D) if |Tp| ≥ 2 for

p = 1, 2, . . . , k + z − 2.

Proof. (i) In what follows, whenever a node i is indexed with p, that is, i = ip,
it means that i ∈ Tp. For any γ ∈ R, b(p, q) ≡ γ is defined to be bij = γ for
all (i, j) ∈ (Tp : Tq). Moreover, all walks that will be considered in this proof
are tight with respect to the inequality τTx ≥ 0.

When r = 1, τTx ≥ 0 is an ordinary jump inequality which has been
shown to be facet defining in Theorem 5.24. So, let r ≥ 2, which implies
z ≥ 2, and let bx = b0 be an equation that is satisfied by all x ∈ P≤k

s,t-walk(D)

that satisfy τTx ≥ 0 at equality. W.l.o.g. we may assume that the equation
bx = b0 is in t-rooted form, that is, bit = 0 for all i ∈ N \{t}. Clearly, bst = 0
implies b0 = 0.
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First, from walks of the form

(s, i1, i2, . . . , ip, t),

(s, i1, i2, . . . , ip, iq, t)

for p = 1, . . . , k − 2, q = p, p − 1, . . . , 1, we derive that b(p − 1, p) ≡ 0 and
b(p, q) ≡ 0 for those p and q. Then, walks of the form

(s, i1, i2, . . . , ik−2, ip, t)

imply b(k − 2, p) ≡ 0 for p = k − 1, . . . , k + z − 2.
Secondly, for any node i ∈ T2, set γ := bsi. Consider all walks of the form

(s = i0, i1, . . . , ih, ih+2, . . . , ik, t),

(s, i2, . . . , ik−2, ip, iq, t),

(s, i2, i3, . . . , ik−2, ik+z−2, i1, t),

with h ∈ {0, 1, . . . , k− 3}, p ∈ {k− 1, . . . , k+ z− 3}, and q ∈ {p+ 1, . . . , k+
z− 2}. It follows that b(h, h+2) ≡ γ and b(p, q) ≡ −γ for all those h, p, and
q, as well as b(k + z − 2, 1) ≡ −γ.

Thirdly, for p = 1, . . . , z, q = p, . . . , z, consider walks of the form

(s, ik+z−1−p, . . . , ik+z−2, i1, t)

as well as

(s, ik+z−1−p, ik+z−1−q, ik+z−q, . . . , ik+z−2, i1, t) if z < k − 2 or q ≤ z − 1,

(s, ik+z−1−p, ik+z−1−q, ik+z−q, . . . , ik+z−2, t) if q = z = k − 2.

We conclude that b(0, k + z − 1 − p) ≡ pγ and

b(k + z − 1− p, k + z − 1− q) ≡

{
(q − p)γ if z < k − 2 or q ≤ z − 1,
(q − p− 1)γ if q = z = k − 2.

Fourthly, for any p ∈ {3, . . . , k − 2}, consider walks of the form

{(s, ip)} ∪W,

with W = (ip, ip+1, . . . , ip+k−2, t) if p ≤ z, and W = (ip, ip+1, . . . , ik+z−2, i1, t)
otherwise. It follows that b(0, p) ≡ (p−1)γ for p = 3, . . . , z, and b(0, p) ≡ zγ
for p = z + 1, . . . , k − 2. Furthermore, let h ∈ {1, . . . , k − 3}, p ∈ {h +
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2, . . . , k−2}, and q ∈ {1, . . . , z}. Set W := (ip, . . . , ip+k−3, t) if p ≤ z+1 and
W := (ip, . . . , ik+z−2,i1,t) otherwise. Then, from walks of the form

{(s, ih), (ih, ip)} ∪W,

(s, i1, . . . , ih, ik+z−1−q, . . . , ik+z−2, i1, t)

we derive that b(h, p) ≡ min{zγ, (p−h−1)γ} as well as b(h, k+ z−1− q) ≡
min{qγ, (k − 2 − h)γ} for all those h, p, and q.

Fifthly, by considering further appropriate walks, we see that

b(k + z − 1 − p, q) ≡







−1γ, q = 1, . . . , p+ 1,
(q − 2 − p)γ, q = p+ 2, . . . , z + 1,
(z − p)γ, q = z + 2, . . . , k − 2,

for p = 1, . . . , z.
This implies that b = γτ , and thus, the inequality τTx ≥ 0 induces a

facet of P≤k
s,t-walk(D).

(ii) If |Tp| ≥ 2 for p = 1, 2, . . . , k + z − 2, then the construction in the
proof to statement (i) can be realized with paths.





Chapter 6

Conclusion

In this thesis we studied several cardinality constrained combinatorial op-
timization problems from a polyhedral point of view. Given a combinato-
rial optimization problem Π = (E, I, w) and a cardinality sequence c =
(c1, . . . , cm), that is, a finite sequence of increasing natural numbers, the gen-
eral idea of this thesis was to investigate the facial structure of the associated
polytope P c

I(E) = conv{χI : I ∈ I, |I| = cp for some p}. In particular, we
were interested in those inequalities that are valid for P c

I(E) but not for
PI(E) = conv{χI : I ∈ I}.

The polyhedral investigation of cardinality constrained combinatorial op-
timization problems in the presented sense has its seeds in Maurras’ PhD
Thesis [61] from 1976 in which a complete linear description of the cardinal-
ity constrained matroid polytope has been presented. Since that time only
Grötschel’s paper on Cardinality homogeneous set systems, cycles in ma-
troids, and associated polytopes [45] has contributed to this area of research,
essentially by presenting a separation routine for the forbidden cardinality
inequalities (1.2). This thesis calls the attention to cardinality constrained
versions of other combinatorial structures than only matroids: paths, cycles,
cuts, matchings, polymatroids.

Although it is daring to derive general statements from the polyhedral
analysis of special polytopes, we would like to summarize the results in three
key observations.

First, Chapter 2 and Chapter 3 indicate that facet defining inequalities
for the ordinary polytope PI(E) usually define facets of its cardinality con-
strained version P c

I(E).

Second, the forbidden cardinality inequalities (1.2) together with the car-
dinality bounds (1.1) always cut off feasible solutions I ∈ I of forbidden
cardinality, but inequalities (1.2) usually do not define facets of P c

I(E). The
incorporation of combinatorial structures of Π into inequalities (1.2), how-
ever, often yields strong valid inequalities with respect to the cardinality
constrained version of Π. For cardinality constrained matroids, this attempt
results in the class of rank induced forbidden cardinality inequalities (2.2),
which first has been introduced by Maurras [61]. For directed cardinality
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constrained cycles (or paths), this results, for instance, in node induced for-
bidden cardinality inequalities (3.2) ((3.56)).

Third, the polyhedral investigation of the hop constrained path polytope
in Chapter 5 confirms: even if we consider polynomial time solvable versions
of a combinatorial optimization problem (the shortest path problem) and
restrict ourselves to a simple cardinality constraint such as c = (1, 2, . . . , k),
we already may be confronted with widely not understood valid inequalities
for P c

I(E) that cut off feasible solutions of forbidden cardinality. Nevertheless,
Chapter 5 shows that sometimes algorithmic and polyhedral structures can
be brought to a fruitful interplay to derive new polyhedral insights: We
considered the class of r-jump inequalities (5.53). By a theorem of Dahl,
Foldnes, and Gouveia [22], they are facet defining for the dominant of the
hop constrained path polytope. They are, however, not facet defining for the
hop constrained path polytope itself. Using their characterization implied
by the dynamic programming approach, we presented a canonical way to lift
them into facet defining inequalities for the hop constrained path polytope.

The polyhedral analysis of cardinality constrained combinatorial opti-
mization problems offers many possibilities for future research. It suggest
itself to search complete linear descriptions of the cardinality constrained
versions of those polytopes for which such ones are known in the ordinary
case. We refer to the discussion on the cardinality constrained matching
polytope or the polytope associated with the intersection of two matroids in
Subsection 2.1.4 and Section 4.4.

Another question arises when analyzing the coefficients of inequalities
related to cardinality constraints. Forbidden cardinality inequalities (1.2),
cardinality-subgraph inequalities (3.59), and other inequalities have in com-
mon that their coefficients can be obtained by arithmetic operations such
that at most two (adjacent) members of the cardinality sequence c are in-
volved. It would be interesting to find inequalities, where more than two
members are required in order to explain the coefficients, or to characterize
under which conditions those inequalities are redundant.

Regarding to the hop constrained path polytope: The dynamic pro-
gramming approach offers a chance to find new facet defining inequalities
for this polytope. First computational experiments indicate that there are
facet defining inequalities for the dominant different from r-jump inequali-
ties (5.53), but with π-vectors closely related to those of the latter class of
inequalities. Using the dynamic programming approach, we hope to be able
to generalize the class of r-jump inequalities (5.53). Anyway, we believe that
there should be other interesting combinatorial optimization problems where
a combinatorial algorithm to its solution helps in some way to find strong
valid inequalities for the associated polytope.
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The way we derived important results of this thesis indicates that, at least
in the best case, polyhedral structures of the cardinality constrained version
of a combinatorial optimization problem can be traced back to polyhedral
and combinatorial structures of the ordinary problem. For example, by The-
orem 2.13, the separation problem of the rank induced forbidden cardinality
inequalities (2.2) can be transformed to that of the rank inequalities (2.5)
in linear time. Or, to give another example, the interpretation of the node
induced forbidden cardinality inequalities (3.2) (or (3.56)) as rank induced
forbidden cardinality inequalities is based on the observation that the collec-
tion of all directed cycles (paths) is contained in the independence system of
a partition matroid, see Chapter 4.

However, trying to detach oneself from special combinatorial structures,
one quickly reaches the limits of polyhedral (and complexity) theory associ-
ated with cardinality constrained combinatorial optimization problems. As
the Chapters 1 and 4 approve, one cannot automatically draw conclusions
about the cardinality constrained problem based on the ordinary combina-
torial optimization problem. In our opinion, the most important reason for
this obstruction lies in the very general definition of the notion of ‘combina-
torial optimization problem’ itself. As long as such different structures like
matchings, cycles, cuts, and so on, can be subsumed under one and the same
combinatorial optimization problem (“if |I| = 3, I is a matching; if |I| = 4, I
is a cycle; if |I| = 5, I is a cut, . . .”), it will be hard to derive any interesting
results. In other words, meaningful universal results require a reasonable
restriction of the notion of ‘combinatorial optimization problem’. Of course,
it would be desirable if future research focuses on this difficulty.
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Notation

0 number, vector, or matrix with all entries equal to 0

∅ empty set

2E power set of E1 vector with all entries equal to 1N set of natural numbersQ set of rational numbersQ+ set of nonnegative rational numbersR set of real numbersR+ set of nonnegative real numbersRn set of real n-vectorsRE set of real vectors indexed by E: x ∈ RE ⇔ (xe)e∈E with xe ∈ RZ set of integral numbersZ+ set of nonnegative integral numbersZE set of integral vectors indexed by E: x ∈ RE ⇔ (xe)e∈E with
xe ∈ R

⌊α⌋ lower integer part of α

⌈α⌉ upper integer part of α

δ(i) set of edges incident with node i

δ(S) cut induced by S

δin(i) set of arcs leaving node i

δout(i) set of arcs leaving node i

δout(S) directed cut induced by S

Π = (E, I, w) comb. opt. problem: E ground set, I set of feasible solutions, w
weight function

Πc = (E, I, w, c) card. constr. comb. opt. problem: E ground set, I set of feasible
solutions, w weight function, c cardinality sequence

Πk k-COP
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ΠN = (E, I, w, N) card. constr. comb. opt. problem: E ground set, I set of feasible
solutions, w weight function, N finite subset of nonnegative integral
numbers

τπ vector induced by π

τπ,+ positive part of τπ

χF incidence vector of F

aff(S) affine hull of S

A(W ) set of arcs with both endnodes in W

bid(B) union of arc set B and its reversal arcs

c = (c1, c2, . . . , cm) cardinality sequence

cone(S) conical hull of S

conv(S), conv S convex hull of S

CS set of cardinality sequences c = (c1, . . . , cm) with m ≥ 2, 2 ≤ c1 <
· · · < cm ≤ n, and c 6= (2, 3)

D − B subdigraph of D obtained by deleting arc set B

D̃n special directed graph with node set Ñn := {0, 1, . . . , n}: D̃n :=
D′ − (δin(0) ∪ δout(n) ∪ {0, n}), where D′ is the complete directed
graph on Ñn

dimP dimension of polyhedron P

dmt(P ) dominant of polyhedron P ⊆ Rn: dmt(P ) := P +Rn
+

E(W ) set of edges with both endnodes in W

N(B) set of nodes covered by arcs (edges) in B
(

n
k

)

binomial coefficient: n over k

Ṗ internal nodes of path P

PC(D) directed cycle polytope defined on digraph D

P c
C(D) cardinality constrained directed cycle polytop defined on digraph D

P
(k)
C (D) directed k-cycle polytope defined on digraph D

PC(G) undirected cycle polytope defined on graph G

P c
C(G) cardinality constrained undirected cycle polytop defined on graph G

P
(k)
C (G) undirected k-cycle polytope defined on graph G

P≤k
C (G) undirected hop constrained cycle polytope defined on graph G
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P c
Cut(E) node cardinality constrained cut polytope

PDOC(A) directed odd cycle polytope

PEDOC(A) embedded directed odd cycle polytope

PIND(E) independent set polytope

P c
IND(E) cardinality constrained independent set polytope

PMATCH(E) matching polytope

P c
MATCH(E) cardinality constrained matching polytope

PM(E) matroid polytope

P c
M(E) cardinality constrained matroid polytope

Ps,t-path(D) directed (s, t)-path polytop defined on digraph D

P c
s,t-path(D) cardinality constrained directed (s, t)-path polytop defined on di-

graph D

P
(k)

s,t-path(D) directed (s, t)-k-path polytope defined on digraph D

P≤k

s,t-path(D) directed k-hop constrained (s, t)-path polytope defined on digraph

D

Ps,t-path(G) undirected [s, t]-path polytop defined on graph G

P c
s,t-path(G) cardinality constrained undirected [s, t]-path polytop defined on

graph G

P
(k)

s,t-path(G) undirected [s, t]-k-path polytope defined on graph G

P≤k

s,t-path(G) undirected k-hop constrained [s, t]-path polytope defined on graph

G

P≤k

s,t-walk(D) directed k-hop constrained (s, t)-walk polytope defined on digraph
D

Projx(P ) Projection of P onto the x-space

rank(A) rank of matrix A

r(F ), rI(F ) rank of F

rk(F ) k-rank of F ⊆ E: rk(F ) := k − r(E \ F )

(S : T ) set of arcs (i, j) with i ∈ S, j ∈ T

supp(v) support of vector v ∈ RE : {e ∈ E : ve 6= 0}

v+ positive part of vector v ∈ Rn: v+
i := max{vi, 0} for i = 1, . . . , n

v(F ) sum of all entries vj , j ∈ F
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vT transpose vector

C(D) set of all directed simple cycles of digraph D

CL
s,t(D, d) set of all L-length-bounded (s, t)-cuts of digraph D

Ps,t(D) set of all directed (s, t)-paths of digraph D

P≤k
s,t (D) set of all k-hop constrained directed (s, t)-paths of digraph D

PL
s,t(D, d) set of all L-length-bounded (s, t)-paths of digraph D

Ws,t(D) set of all directed (s, t)-walks of digraph D

W≤k
s,t (D) set of all k-hop constrained directed (s, t)-walks of digraph D

WL
s,t(D, d) set of all L-length-bounded (s, t)-walks of digraph D



Abbreviations

k-COP k-combinatorial optimization problem .

ATSP asymmetric traveling salesman polytope .

CCCOP cardinality constrained combinatorial optimization
problem .

COP combinatorial optimization problem .
CYCLE shortest cycle problem .

DOCP directed odd cycle problem .
DP dynamic program, dynamic programming .

EDOCP embedded directed odd cycle problem .

FC forbidden cardinality .

HCSPP hop constrained shortest path problem .

IND maximum weight independent set problem .
IP integer program, integer programming .

LP linear program, linear programming .

STSP symmetric traveling salesman polytope .

TSP traveling salesman problem .
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L-length-bounded, 168

(s, t)-path, 45
L-length-bounded, 168

(s, t)-path polytope, 45
k-, 55–74
k-hop constrained, 46, 152–158, 162

dominant of, 154, 160, 163, 165–
167, 180–189

cardinality constrained, 45, 83–101,
132–134

dominant of, 46
(s, t)-walk, 45

L-length-bounded, 168
(s, t)-walk polytope

k-hop constrained, 46, 154, 162–165,
189–193

dominant of, 154
[s, t]-path polytope, 45

k-, 75–83
k-hop constrained

dominant of, 46
cardinality constrained, 45, 114–119

k-bowtie, 60
2-graph, 157

Arc set capacitated flow approximation
scheme, 178

artificial arcs, 160

backward arc, 59, 71, 194
balanced cycle, 59
basis of a set in an independence system,

17
basis system, 17
Bellman Equations, 159

capacity of a cut, 168
cardinality, 1
cardinality bounds, 4, 7, 11, 13
cardinality forcing inequality, 11, see for-

bidden cardinality inequality

cardinality homogeneous set system, 11
cardinality sequence, 2
cloning, 60
closed set in a matroid, 18
combinatorial optimization problem, 1

k-COP, 2, 8–10
cardinality constrained, 2
maximum cardinality, 9, 10
minimum cardinality, 10

combinatorial relaxation, 130
compact linear program, 150
covering LP with upper bounds on vari-

ables, 179
cropped inequality, 11, see forbidden car-

dinality inequality
cut, 135

directed, 47
cut polytope

node cardinality constrained, 135–141
cycle, 45

simple, 45
cycle polytope

directed, 45–47
k-, 46, 75
cardinality constrained, 14, 15,

45–48, 101–111
undirected, 45, 46

k-, 46
cardinality constrained, 45, 112–

114

degree of violation, 3
dependent set, 17
directed odd cycle polytope, 131

embedded, 131
directed odd cycle problem, 131

embedded, 131
directed path polytope, see (s, t)-path

polytope
directed walk polytope, see (s, t)-walk

polytope
disjunctive programming, 142
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divide and conquer, see dynamic program-
ming

dominated inequality, 3
strictly, 3

DP-graph, 148
DP-graph associated with (D, s, t, k), 159
DP-hypergraph, 149
dynamic programming, 148–152
dynamic programming graph, 148
dynamic programming graph associated

with (D, s, t, k), 159
dynamic programming hypergraph, 149

equivalence of a separation problem and
a linear program, 147

equivalent inequalities, 3
extended formulation, 147
extension of a length function, 159

feasible solution of a combinatorial opti-
mization problem, 1

forbidden cardinality inequality, 7, 11, 13
f -induced, 39

separation problem, 42
node induced, 47, 85, 103, 113, 118

modified, 98, 103
separation problem, 120–121

rank induced, 20, 126, 127
separation problem, 31–35

separation problem, 12, 13
forward arc, 59, 71

implicit equation, 3
incidence vector of a walk, 153
independence system, 17
independent set polytope, 18

cardinality constrained, 18
inseparable set in a matroid, 18

k-, 25
internal arc, 56
internal node, 56

jump inequality, 70–72
separation problem, 123

knapsack polytope, 156
knapsack problem, 155

length-bounded cut, 168
length-bounded flow, 168

length-bounded path, 168
length-bounded walk, 168
loop in an independence system, 17

matching, 127
cardinality constrained, 127
perfect, 127

matching polytope, 127
cardinality constrained, 128

matching problem, 127
cardinality constrained, 127
perfect, 127

matroid, 17
matroid intersection, 36

cardinality constrained, 36
matroid polytope, 13, 14

cardinality constrained, 13, 14, 17–
36

matroidal relaxation, 130
maximum (s, t)-flow problem

L-length-bounded, 168
k-hop constrained, 169, 170
arc set capacitated, 172

maximum cut problem, 135
maximum weight independent set prob-

lem, 18
cardinality constrained, 18
over a matroid, 9

membership problem, 3
minimum (s, t)-cut problem

L-length-bounded, 168
fractional, 168

k-hop constrained
fractional, 169, 170

arc set capacitated
fractional, 172

Moore-Bellman-Ford algorithm, 159–160
multicommodity flow, 172, 173
Multicommodity flow approximation

scheme, 177
multicommodity flow problem, 173

maximum, 173

packing LP, 175
path, 45

simple, 45
path polytope

directed, see (s, t)-path polytope
undirected, see [s, t]-path polytope
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polymatroid, 37
cardinality constrained, 36–43

polynomial algorithm, 1
projection, 146–148
projection cone, 147

rank inequality, 18, 125, 126
rank of a set in an independence system,

14, 17
k-, 25

reference set, 149

separable set in a matroid, 18
k-, 25

separation problem, 3
set function, 36

integer, 36
nondecreasing, 37
submodular, 36

shore of a cut, 135
shortest cycle problem, 8
shortest path problem, 145

k-hop constrained, 145, 153
shortest walk problem

k-hop constrained, 153
submodular set function, see set function
symmetric, 81–82, 119–120
symmetric inequality, 48, 49

tight, 2
traveling salesman problem, 8

embedded, 9
trivial inequalities, 11
truncation of a matroid, 22

unbalanced 1-tree, 59
undirected path polytope, see [s, t]-path

polytope

walk, 45
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