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1 Introduction

A tropical linear inequality is an inequality of the form

min {ai + xi | i ∈ I} ≤ min {a� + x� | � ∈ [d] \ I} ,

where [d] = {1, 2, . . . , d} for a natural number d, I ⊆ [d] and a1, . . . , ad are elements of
the tropical numbers Tmin = R ∪ {∞}. We study systems of tropical linear inequalities
and in particular, the algorithmic question of finding a feasible point (x1, . . . , xd)

� ∈ Td
min

which fulfills all the inequalities in a given system. This is the tropical feasibility problem.
Methods to solve this are referred as tropical linear programming. It is a tropical analogue
of classical linear programming.

All advances for tropical linear programming also yield new insights in classical linear
programming, mean payoff games and scheduling problems through the results in [MSS04,
AGG12, ABGJ15, Sch09]. It provides a promising approach for the deep open questions
to decide if mean payoff games are polynomially solvable and if linear programming can
be solved in strongly-polynomial time.

The covector graph of a point x ∈ Td
min is a bipartite graph encoding the entry where

the minimum in an inequality is attained. By additionally marking on which side of the
inequality the minimum is attained, we can determine if a point is feasible just from
its covector graph. The set of covector graphs forms the covector decomposition. We
introduce signed tropical matroids as a generalization of the collection of covector graphs
with an additional sign information. This allows us to formulate a generalization of the
tropical feasibility problem in terms of signed tropical matroids.

By polyhedral means, we deduce properties of covector graphs and extend the covector
decomposition to points with infinite coordinates. Furthermore, they enable us to
characterize the matching structure of the covector graphs. Along the way, we resolve a
conjecture of Develin and Yu (2007).
We design an algorithm to solve a generalization of the feasibility problem for signed

tropical matroids. The algorithm resembles the classical simplex method, it only operates
on sets of indices called bases. Moreover, executed on tropical linear inequality systems,
which is the realizable case, it is even at least pseudo-polynomial. By its combinatorial
nature, it provides new insights into the structure of the tropical feasibility problem.

Chapter 2 is concerned with covector graphs in the realizable case which leads to several
new results concerning covector decompositions. This is complemented by the introduction
of the field of Puiseux fractions in Chapter 3 which is helpful for the connection between
classical linear programming and tropical linear programming. With this as helpful
intuition, we develop the theory for abstract tropical linear programming in Chapter 4.
The three chapters are essentially self-contained.
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The tropical feasibility problem originates from considerations of two-sided equations
in max-plus linear algebra. This field arising from optimization and economics goes back
several decades; for an overview see, e.g., Litvinov, Maslov and Shpiz [LMS01], Cohen,
Gaubert and Quadrat [CGQ04] or Butkovič [But10] and their references.

The interest in the feasibility problem was boosted as it was shown to be equivalent to
finding the winning states of mean payoff games [AGG12]. These are two player games
with perfect information on a directed graph with weights on the arcs. The problem of
deciding if a given position is winning is known to be in NP ∩ co-NP, and even more
in UP ∩ co-UP, see [Jur98, ZP96, EM79, MSS04]. This decision problem is conjectured
to be polynomial-time solvable [GKK88] but no such algorithm has been found. Parity
games [Jur98] form a subclass of mean payoff games. They are polynomial time equivalent
to the model-checking problem for the modal μ-calculus [EJ91]. Furthermore, they proved
useful to construct hard instances for several algorithms see, e.g., [Fri11]. Recently, it was
shown in [CJK+] that deciding if a position is winning in a parity game can be solved in
quasipolynomial time. However, it still remains open if this can be solved in polynomial
time.
Geometric combinatorics entered the scene under the name of “tropical convexity”

through the work by Develin and Sturmfels in their landmark paper [DS04]. In their
work on configurations of points v(1), . . . , v(n) ∈ Rd and their tropical span{

min(λ1 + v(1), . . . , λn + v(n))
∣∣∣ λ1, . . . , λn ∈ R

}
,

where the minimum is taken componentwise, they revealed the polyhedral structure and
the translation to subdivisions of the product of two simplices Δn−1 ×Δd−1. This line of
research has been continued in [Jos05], [AD09], [FR15], among other references.
Furthermore, tropical geometry occurs as a discrete limit or piecewise-linear image

of algebraic geometry. The dequantization process [Mas86, Vir01] and the logarithmic
limit [GKZ94, Mik00, IM12] preserve several properties and allow a combinatorial study
of algebraic varieties. Considering polyhedra as semi-algebraic sets we obtain tropical
polyhedra also through this dequantization process. In this spirit, tropical polyhedra were
examined as images of classical polyhedra under a valuation map in [DY07]. Moreover,
this leads to tropical spectrahedra whose study was originated in [AGS16].

Our approach is based on the connection with classical polyhedra but uses mainly the
perspective of geometric combinatorics enriched with tools from combinatorial optimiza-
tion.
Since infinite coordinates appear naturally in tropical linear programming we extend

the work [DS04] to point configurations in the tropical projective space which is a
compactification of the tropical torus. In particular, we give a new proof of the Structure
Theorem for Tropical Convexity [DS04, FR15] which relates the covector decomposition
of tropical point configurations and subdivisions of subpolytopes of products of simplices
Δn−1 × Δd−1. This connection is established through covector graphs which encode
the local structure of a tropical point configuration. Our characterization by minimal
matchings and non-negative cycles is an important tool in several proofs later on. A
similar result appears independently in [JK16] in connection with face monoids. Our
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unifying approach for finite and infinite coordinates is based on weighted digraph polyhedra
which are associated to weighted directed graphs. These appear as shortest path polyhedra
in combinatorial optimization and are related to flow polytopes. We show that their
recession cones are in bijection with the order polytope given by the reachability order in a
directed graph. This encodes the polyhedral combinatorics of the covector decomposition
in the boundary of the tropical projective space. By these means, we derive covector
decompositions for the tropical projective space. Moreover, we apply the results for
covector graphs to tropical halfspace arrangements. Thereby, we resolve a conjecture
by Develin and Yu [DY07, Conjecture 2.11]. This also gives rise to new tools to study
tropical linear programs because the feasible region is described by an intersection of
tropical halfspaces.

Over the years, several variants of tropical linear programs were considered, see,
e.g., [CG79, Zim74, BA09] and Butkovič [But10] for an introduction. Only recently in
[ABGJ15] and [ABGJ14a], Allamigeon, Benchimol, Gaubert and Joswig translated the
classical simplex algorithm by Dantzig [Dan63] to the tropical setting and showed that
combinatorial pivoting rules have the same complexity in the classical setting as in the
tropical analogue. The tropicalization of the classical simplex method is obtained by
applying a valuation map to all the intermediate values of a linear program over fields of
Puiseux or, more generally, Hahn series. It is well known and not difficult to see that
the standard concepts from linear programming (LP), e.g., the Farkas Lemma and LP
duality, carry over to an arbitrary ordered field; see, e.g., [CK70, Section II] or [Jer73,
§2.1]. Traces of this can already be found in Dantzig’s monograph [Dan63, Chapter 22].
In particular, the correctness of the simplex method and usual convex hull algorithms
is valid over any ordered field. A classical construction, due to Hilbert, turns a field of
rational functions, e.g., with real coefficients, into an ordered field; see [vdW93, §147]. In
[Jer73] Jeroslow discussed these fields in the context of linear programming in order to
provide a rigorous foundation of the so-called “big M method”.

In contrast to classical linear programming, there is no polynomial time algorithm known
for tropical linear programming. Even if no pivoting rule has yet been found, for which
the classical simplex method solves classical linear programming in polynomial time, there
are several algorithms [Chu15, Kar84, Kha79] which succeed in weakly polynomial time.
All these algorithms rely on complicated numerical operations on the input. Therefore,
the tempting approach to “tropicalize” one of these weakly polynomial algorithms turned
out to be a dead end.
Real Puiseux series R{{t}} are infinite series with arbitrary real coefficients and real

exponents. Therefore, exact computations are not possible. Hence, we restrict to a
subfield Q{t}, which is the field of rational functions with rational coefficients and
rational exponents, called Puiseux fractions as it consists of the fractions of polynomials
with rational exponents. This field allows for exact computations and is implemented in
polymake [GJ00]. We compute algorithmically challenging examples from [GS79] and
[ABGJ14b], thereby demonstrating that the parameters in these examples are indeed only
required to be “sufficiently small or big”. Our experiments show that the actual runtime is
quite bad due to the technical overhead. However, this is not a flaw of our implementation
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but just comes with the construction. As theoretical applications, we prove that tropical
convex hulls can be calculated through this approach, although, [AGG10] describes a
more appropriate algorithm for this. Furthermore, we give a proof that polyhedra over
Puiseux fractions have the same combinatorics as real polyhedra for which the parameter
t is evaluated by a sufficiently big real number. The latter connection gives an intuition
for the tropicalization of the simplex method through linear programming over Puiseux
series.

Taking this connection as a starting point we develop abstract tropical linear program-
ming as a generalization of tropical linear programming inspired by oriented matroid
programming, cf. [Bla77, Fuk82, Tod85, Ter85], which represents the abstract analogue
for classical linear programming. A generalization of the covector decomposition for finite
tropical point configurations was developed under the name tropical oriented matroid
in [AD09]. It was further studied in [OY11] and finally shown to be equivalent to not
necessarily regular subdivisions of Δn−1 ×Δd−1 as well as tropical pseudohyperplane
arrangements in [Hor16]. However, an additional sign information is needed to encode a
halfspace structure. Motivated by the equivalence of the covector decomposition with
regular subdivisions of Δn−1 × Δd−1, we define signed tropical matroids in terms of
not necessarily regular subdivisions of Δn−1 ×Δd−1. An abstract covector graph is the
bipartite graph G associated to the cell conv {(ej , ei) | (i, j) edge of G} in a subdivision
of Δn−1 ×Δd−1. By assigning a sign to each edge of a covector graph, we are able to
give an abstract description of the combinatorics of a tropical linear inequality system.
To introduce further algorithmic ideas, we recall the important problems related to

tropical linear programming and embed AND-OR-networks [MSS04] as well as mean
payoff games [EM79, ZP96, AGG12] into our setting. Additionally, the presented variant
of the simplex variant is adapted to the feasibility problem, and it is similar to our
feasibility algorithm for signed tropical matroids. [Ben14, Proposition 3.22 & Proposition
5.1] yield that a run of the tropicalization of the simplex method [ABGJ15], for appropriate
pivoting rules, only depends on tropical signs of minors of the coefficient matrix and
not on the actual size of the coefficients. This suggests to apply this method also to
determine the feasibility of a signed tropical matroid. However, for a non-realizable
signed tropical matroid, it is not clear if the tropicalized simplex method terminates and
produces a reasonable result. This motivates us to walk along a more combinatorial path
by employing the matching structure of the covector graphs.

Additionally, the connection of covector graphs with products of simplices enables us
to use polyhedral techniques [DLRS10] to examine tropical linear inequality systems.
Thus, we can resolve the technical obstacles with degenericity and infinite coordinates
by extension and refinement of subdivisions. We examine the structure of a signed
tropical matroid with combinatorial means based on matchings and alternating paths. In
particular, the generalization of Cramer determinants [AGG14, ACG+90, RGST05] plays
an important role. This leads to a simple algorithm which uses only modifications of
index sets, analogously to the simplex method. Unlike the simplex method, where either
the entering or the leaving index has to be determined by reduced costs, both can be
read off directly from the current covector graph in the iteration. In the abstract setting,
we assume a signed tropical matroid to be given by an oracle which yields a covector
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graph with a prescribed degree sequence. When we apply the algorithm to the feasibility
problem for tropical linear inequality systems the oracle is replaced by minimal matching
computations. It turns out that, even if the algorithm works in the more general setting,
it has an appealing complexity in the realizable case. It is pseudopolynomial but depends
only on the structure of a corresponding triangulation. Therefore, a further examination
of the minimal integer vectors in the cones of the secondary fan of Δn−1 ×Δd−1 will
provide new results for the complexity of this problem. As an additional upshot, the
algorithm results in certificates for feasibility and infeasibility of a signed tropical matroid
through geometric arguments, independently of the equivalence with mean payoff games.
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2 Weighted digraphs and tropical cones

This chapter is taken from the paper “Weighted digraphs and tropical cones” [JL16]
by Michael Joswig and Georg Loho which is published in “Linear Algebra and its
Applications”, volume 501, pages 304 – 343. The published version is available at
https://doi.org/10.1016/j.laa.2016.02.027.

2.1 Introduction

The tradition of max-plus linear algebra in optimization and related areas goes back
several decades; for an overview, e.g., see Litvinov, Maslov and Shpiz [LMS01], Cohen,
Gaubert and Quadrat [CGQ04] or Butkovič [But10] and their references. Develin and
Sturmfels connected max-plus linear algebra under the name of tropical convexity to
geometric combinatorics in their landmark paper [DS04]; see also [MS15, Chapter 5].
This line of research has been continued in [Jos05], [DY07], [AD09], [FR15] and other
references. The interest in a more geometric perspective comes from several directions.
One source is tropical geometry, which, e.g., relates tropical convexity to the combinatorics
of the Grassmannians [SS04], [HJS14], [FR15]. A second independent source is the study
of tropical analogues of linear programming [ABGJ15] which, e.g., is motivated by its
connections to deep open problems in computational complexity [AGG12].
Since the paper [DS04] by Develin and Sturmfels more than ten years ago some

of the strands of research still seem to diverge. The main purpose of this chapter
is to help bridging this gap. Our point of departure is [DS04, Theorem 1], which
establishes a fundamental correspondence between the configurations of n points in the
tropical projective torus Rd/R1 and the regular subdivisions of the product of simplices
Δd−1 ×Δn−1. We suggest to call this result the Structure Theorem of Tropical Convexity.
It was recently extended by Fink and Rincón [FR15, Corollary 4.2] to include regular
subdivisions of subpolytopes of products of simplices. For the tropical point configurations
this amounts to taking ∞ as a coordinate into account. Our first contribution is a new
proof of that result (Corollary 2.34). Moreover, in [DS04] and [FR15] only tropical
convex hulls of points (or dually, arrangements of tropical hyperplanes) are considered,
whereas here we also bring exterior descriptions in terms of tropical half-spaces [Jos05],
[GK11] into the picture. Arrangements of max-tropical halfspaces correspond to the
‘two-sided max-linear systems’ in the max-plus literature [But10, §7]. As an additional
benefit our methods allow us to resolve a previously open question raised by Develin
and Yu, who conjectured that a finitely generated tropical convex hull is pure and full-
dimensional if and only if it has a half-space description in which the apices of these
tropical half-spaces are in general position [DY07, Conjecture 2.11]. We show that, indeed,
general position implies pureness and full-dimensionality (Theorem 2.46), and we give a
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counter-example to the converse (Example 2.47). The approach through tropical convex
hulls on the one hand and the approach through systems of tropical inequalities on the
other hand gives rise to two interesting cell decompositions of the tropical projective
spaces (Theorem 2.51 and Corollary 2.54). This ties in with compactifications of tropical
varieties; see Mikhalkin [Mik06, §3.4].

As in [DS04] it turns out to be convenient to examine the regular subdivisions of products
of simplices and their subpolytopes in terms of a dual ordinary convex polyhedron, which
we call the envelope of the tropical point configuration. In fact, it is even fruitful to see
this envelope as a special case of a more general class of ordinary polyhedra which are
associated with directed graphs with weighted arcs. These weighted digraph polyhedra
are defined by linear inequalities of the form

xi − xj ≤ wij ,

where wij is the weight on the arc from the node i to the node j. Their feasible points are
well known as potentials in the optimization literature, and the weighted digraph polyhedra
are sometimes called ‘shortest path polyhedra’; e.g., see [Sch03, §8.2] for an overview.
Recently potentials and weighted digraph polyhedra starred prominently in the work of
Khachiyan and al. [KBB+08] on hardness results in the context of vertex enumeration.
Specializing all arc weights to zero yields the braid cones of Postnikov, Reiner and
Williams [PRW08], which are closely related to order polytopes of partially ordered sets.
By applying a celebrated result of Stanley [Sta86, Theorem 1.2] we obtain a combinatorial
characterization of the entire face lattice of any digraph cone (Theorem 2.11).

This chapter is organized as follows. Section 2.2 starts out with investigating a general
weighted digraph polyhedron Q(W ) associated with a k×k-matrix W , which we read
as a directed graph Γ = Γ(W ) equipped with a weight function. The braid cones, with
all finite entries equal to zero, naturally come in as their recession cones. We show
that the face lattice of a braid cone is isomorphic to a face figure of the order polytope
associated with the acyclic reduction of Γ and, via Stanley’s result [Sta86, Theorem 1.2],
to a partially ordered set of partitions of the node set of Γ ordered by refinement. It is
a key observation that the faces of a weighted digraph polyhedron are again weighted
digraph polyhedra. The envelope of an arbitrary d×n-matrix V is the weighted digraph
polyhedron for a specific (d+n)×(d+n)-matrix constructed from V .
In Section 2.3 we direct our attention to tropical convexity, which is essentially the

same as linear algebra over the tropical semi-ring Tmin = (R∪{∞},min,+). Clearly, it is
just a matter of taste if one prefers min or max as the tropical addition. More importantly
though, it turns out to be occasionally convenient to use both these operations together to
be able to phrase some of our results in a natural way. So we usually consider tropical linear
spans of vectors in the min-tropical setting and intersections of tropical half-spaces in the
max-setting. With any matrix V ∈ Rd×n Develin and Sturmfels associate a polyhedral
decomposition of the tropical projective torus Rd/R1 [DS04, §3]; here 1 denotes the all
ones vector. We follow Fink and Rincón [FR15] in calling this polyhedral complex the
covector decomposition. The cells of the covector decomposition are naturally indexed
by subgraphs of the digraph Γ(W ), where W is the (d+n)×(d+n)-matrix mentioned
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above. Moreover, these cells arise as orthogonal projections of the faces of the envelope
of V . If V is finite then (in the tropical projective torus) the union of the bounded
cells of the type decomposition is exactly the tropical convex hull of the columns of
V . Further, the covector decomposition is dual to a regular subdivision of the product
of simplices Δd−1 × Δn−1. If V has infinite coordinates, it still makes sense to talk
about the tropical cone generated by the columns, but Δd−1 ×Δn−1 gets replaced by the
subpolytope corresponding to the finite entries of V ; see [FR15]. This leads to studying
point configurations in the tropical projective space; see Mikhalkin [Mik06, §3.4] and
Section 2.3.5 below. Another way of interpreting the matrix V , with coefficients in Tmin,
is as an arrangement of max-tropical hyperplanes. The covector decomposition arises as
the common refinement of the affine fans corresponding to these tropical hyperplanes.
Equipping such a tropical hyperplane arrangement with a certain graph encoding the
feasibility of a cell gives rise to a max-tropical cone described as the intersection of finitely
many tropical half-spaces; see [Jos05] and [GK11]. This is how tropical cones naturally
arise in the context of tropical linear programming. In [ABGJ15] a tropical version of the
simplex method is described. The pivoting operation proposed there can be explained
in terms of operations on the graph Γ(W ), the crucial object being the tangent digraph
from [ABGJ15, §3.1], which carries the same information as the ‘tangent hypergraphs’ of
Allamigeon, Gaubert and Goubault [AGG13]. We show how the tangent digraph encodes
the local combinatorics of the covector decomposition induced by V in the neighborhood
of a given point. Finally, we recall the signed cell decompositions from [ABGJ15, §3.2]
which form the tropical analogues of the polyhedral complexes generated from a system
of ordinary affine hyperplanes.
The upshot is that all the remarkable combinatorial properties of tropical convexity

can be inferred from the weighted digraph polyhedra. It is worth noting that the facet
normals of their defining inequalities are precisely the roots of a type A root system.
Lam and Postnikov [LP07] introduced ‘alcoved polytopes’ which are exactly the weighted
digraph polyhedra which are bounded (modulo projecting out the subspace R1). These
are also the polytropes in [JK10]. Section 2.3.4 gives more details.

2.2 Weighted digraph polyhedra

2.2.1 The construction

Let W = (wij) be an arbitrary k×k-matrix with coefficients in Tmin = R ∪ {∞}. This
yields a digraph Γ(W ) with node set [k] and an arc from i to j whenever the coefficient
wij is finite. Notice that Γ(W ) may have loops, corresponding to finite entries on the
diagonal. Also (i, j) and (j, i) both may be arcs, but there are no other multiple edges.
The matrix W induces a map, γ, which assigns to each arc (i, j) of Γ(W ) its weight
wij . We call the pair (Γ(W ), γ(W )) the weighted digraph associated with W . Conversely,
each finite directed graph Γ endowed with a weight function γ on its arcs has a weighted
adjacency matrix W (Γ, γ). Often we will not distinguish between the matrix W and the
digraph Γ equipped with the weight function γ.

Our key player is the weighted digraph polyhedron Q(W ) in Rk which is defined by the

9



linear inequalities

xi − xj ≤ wij for each arc (i, j) in Γ(W ) . (2.1)

For a directed graph Γ with a weight function γ we also writeQ(Γ, γ) instead ofQ(W (Γ, γ)).
Observe that −Q(W ) = Q(W�). A feasible point in Q(W ) is sometimes called a potential
on the digraph Γ; e.g., see [Sch03, §8.2]. The following result of Gallai [Gal58] clarifies
the feasibility of the constraints; see also [Sch03, Theorem 8.2] and [But10, §2.1].
Lemma 2.1. The weighted digraph polyhedron Q(W ) is empty if and only if the weighted
digraph (Γ, γ) has a negative cycle.

If the weighted digraph (Γ, γ) does not have any negative cycle there is a directed
shortest path between any two nodes. Let W ∗ = (w∗ij) be the k×k-matrix which records
the weights of these shortest paths. Following Butkovič [But10, §1.6.2] we call the
shortest path matrix W ∗ the Kleene star of W . The tropical addition ⊕ = min extends
to vectors and matrices coefficientwise. Moreover, the tropical addition and the tropical
multiplication give rise to a tropical matrix multiplication, which we also write as 	.
Matrix powers of W with respect to 	 are written as W�� where W�0 = I is the
min-tropical unit matrix, which has zero coefficients on the diagonal and ∞ otherwise,
and W�(�+1) = W�� 	W . With this notation we have the formula

W ∗ = I ⊕W ⊕W�2 ⊕ · · · ⊕W�k ,

whose direct evaluation amounts to applying the Bellman-Ford method for computing
all shortest paths [Sch03, §8.3]. The next lemma points out a special property of the
inequality description given by W ∗; see [Sch03, Theorem 8.3].

Lemma 2.2. Each of the defining inequalities from (2.1) for the weighted digraph poly-
hedron of the matrix W ∗ is tight.

Proof. Let xi − xj ≤ w∗ij be an inequality defining Q(W ∗). The vector of weights w∗pj for
p ∈ [k], i.e., the jth column of W ∗, satisfies each inequality by the shortest path property
w∗pj ≤ w∗pq + w∗qj . Equivalently we have w∗pj − w∗qj ≤ w∗pq. Due to w∗jj = 0, this vector
satisfies the equality xi − xj = w∗ij .

Throughout the following we assume that (Γ, γ) does not have a negative cycle. In
view of Lemma 2.1 this is equivalent to the feasibility of Q(W ), and the Kleene star
W ∗ is defined. Further, let E(W ) be the equality graph of W , which is the undirected
graph on the node set [k] and which has an edge between i and j if Q(W ) satisfies
xi − xj = w∗ij < ∞ or xj − xi = w∗ji < ∞.

Lemma 2.3.

(a) We have Q(W ∗) = Q(W ) and E(W ∗) = E(W ).

(b) Two distinct nodes i and j are contained in a directed cycle of weight zero in
Γ(W ) if and only if {i, j} is contained in the equality graph E(W ) if and only if
w∗ij = −w∗ji < ∞.

10



Proof. The proof for both statements is essentially the same. Let π = (i0, i1, . . . , im)
be a directed path in Γ. This corresponds to the inequalities xi�−1

≤ xi� + wi�−1i� for
� ∈ {1, . . . ,m}. By transitivity we obtain

xi0 ≤ xim +

m∑
�=1

wi�−1i�

as a valid inequality for Q(W ). Restricting to shortest paths shows Q(W ∗) ⊇ Q(W ).
The other inclusion is obvious. Notice that this readily implies that the equality graphs
E(W ) and E(W ∗) are the same.
Now suppose that π is a directed cycle of weight zero. In particular, i0 = im is the

same node and because of the presumed feasibility, the cycle contains the shortest path
for any pair of its nodes. The above yields for each μ ∈ {0, . . . ,m} the inequalities

xi0 ≤ xiμ +

μ∑
�=1

wi�−1i� = xiμ +w∗i0,iμ and xiμ ≤ xim +

m∑
�=μ+1

wi�−1i� = xi0 +w∗iμ,i0 .

With w∗i0,iμ + w∗iμ,i0 = 0 we obtain

xi0 − xiμ ≤ w∗i0,iμ = −w∗iμ,i0 ≤ xi0 − xiμ

and hence the equality xi0 − xiμ = w∗i0,iμ . This shows that the edge {i0, iμ} is contained
in the equality graph E(W ∗) = E(W ).
Finally, let {i, j} be an edge in E(W ) = E(W ∗). Then xi − xj = w∗ij < ∞, and it

follows that also xj − xi = −w∗ij is finite. Since the inequality xj − xi ≤ w∗ji is tight by
Lemma 2.2 we obtain w∗ji = −w∗ij . Therefore, there is a directed path from j to i in
Γ(W ), and hence (i, j, i) is a directed cycle of weight zero in Γ(W ∗). From this we infer
our claim.

1 2

3

4

-23

-1

1

1

2

1 2

3

4

-23

-1

71

Figure 2.1: The directed graphs defined by the matrices W and W ∗ from Example 2.4

Example 2.4. The 3×3 matrix

W =

⎛⎝ 1 4 1
−1 0 −2
3 ∞ 2

⎞⎠ (2.2)
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defines a directed graph without any cycles of weight zero. Its Kleene star is the matrix

W ∗ =

⎛⎝ 0 4 1
−1 0 −2
3 7 0

⎞⎠ .

The graphs of W and W ∗ are displayed in Figure 2.1, while Figure 2.2 shows the
corresponding weighted digraph polyhedron. Our convention for drawing digraphs is
to omit loops of weight zero and arbitrary arcs of infinite weight. Since each weighted
digraph polyhedron contains the one-dimensional linear subspace R1 in its lineality space,
throughout we draw pictures in the quotient Rd/R1, which is called the tropical projective
(d−1)-torus in [MS15, §5.2]. More precisely, for a feasible point x+R1 in the quotient we
draw the unique representative with x1 = 0. This is the same as drawing the intersection
of Q(W ) with the hyperplane x1 = 0. As the polyhedron Q(W ) corresponding to the
matrix (2.2) is not contained in any hyperplane its equality graph E(W ) is the undirected
graph with three isolated nodes.

x2

x3

Figure 2.2: The weighted digraph polyhedron Q(W ) = Q(W ∗) for the matrices W and
W ∗ from Example 2.4, shown in the tropical projective 2-torus

We return to studying general matrices W .

Lemma 2.5. The connected components of the equality graph of E(W ) are complete
graphs, and their number is the dimension of the polyhedron Q(W ).

Proof. The equalities xi − xj = w∗ij and xj − x� = w∗j� imply xi − x� = w∗ij + w∗j� ≥ w∗i�
and therefore xi − x� = w∗i� for any three nodes i, j, � in the equality graph. So there
is an edge between any two nodes in a connected component of E(W ). The statement
about the dimension follows as the equality graph summarizes exactly those inequalities

12



which are attained with equality and the connected components form a partition of the
node set.

The lemma above says that the equality graph encodes an equivalence relation on
the node set [k]. The partition into the connected components is the equality partition.
Abusing our notation, again we denote this partition as E(W ).

2.2.2 Intersections and faces

Throughout the following we will frequently consider several graphs which share the same
set of nodes. In this case it makes sense to identify such a graph with its set of edges (or
arcs, in the directed case). This allows to talk about intersections and unions of such
graphs.

Lemma 2.6. Let U and W be k×k-matrices. The intersection of the weighted digraph
polyhedra Q(U) and Q(W ) is the weighted digraph polyhedron Q(U ⊕W ). The arc set of
the graph Γ(U ⊕W ) is the union of Γ(U) and Γ(W ).

Proof. The intersection of two polyhedra is given by the union of their defining inequalities.
The two inequalities of the form xi − xj ≤ uij and xi − xj ≤ wij are both satisfied if and
only if the inequality xi − xj ≤ min(uij , wij) holds.

Again we assume that the graph Γ(W ) does not contain any negative cycle, and thus
Q(W ) is feasible. Each face of the polyhedron Q(W ) is obtained by turning some of the
defining inequalities into equalities. More precisely, for any subgraph G of Γ let

FG = FG(W ) = FG(Γ, γ) = {x ∈ Q(W ) | xi − xj = wij for all (i, j) ∈ G} .

By construction FG is a face of Q(W ), and conversely each face of Q(W ) arises in this
way. We define a new k×k-matrix, denoted W#G; it is constructed from W by replacing
the entries wji with −wij for each (i, j) ∈ G. If G contains both (i, j) and (j, i) as arcs,
this operation is only defined provided that wij +wji = 0. The reason is that this equality
is implied by xi − xj = wij combined with xj − xi = wji. The following is immediate.

Lemma 2.7. Faces of weighted digraph polyhedra are weighted digraph polyhedra. More
precisely,

FG(W ) = Q(W ) ∩
{
x ∈ Rk

∣∣∣ xi − xj = wij for (i, j) ∈ G
}

= Q(W ) ∩
{
x ∈ Rk

∣∣∣ xj − xi ≤ −wij for (i, j) ∈ G
}

= Q(W#G) .

Furthermore, the equality partition E(W#G) of a face FG(W ) is obtained from the
equality partition E(W ) by uniting the two parts which contain i and j if (i, j) is an arc
in G.

By Lemma 2.5 the dimension of the face FG(W ) equals the size of the partition
E(W#G).
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Example 2.8. If W is the matrix from Example 2.4 and G consists of the single arc (2, 3)
then we have

W#G =

⎛⎝ 1 4 1
−1 0 −2
3 2 2

⎞⎠ .

The equality graph E(W#G) consists of the isolated node 1, and the nodes 2 and 3 are
joined by an edge. This reflects that Q(W#G) is contained in the supporting hyperplane
induced by the equality from G. Finally, the equality partition is {{1}, {2, 3}}.

2.2.3 Braid Cones

We will now apply our previous results to the situation where the weight function is
constantly zero on the arcs. Then for an arbitrary digraph Γ the weighted digraph
polyhedron

Q(Γ,0) =
{
x ∈ Rk

∣∣∣ xi ≤ xj for all (i, j) ∈ Γ
}

is a polyhedral cone, the braid cone of Γ studied by Postnikov, Reiner and Williams
[PRW08]. See, in particular, [PRW08, §3.4] for detailed information about their combi-
natorial structure. Here we wish to relate braid cones to order polytopes.

All points in the subspace R1 are feasible. Since every cycle has weight zero, applying
Lemma 2.3(b) to the cone Q(Γ,0) yields the following.

Proposition 2.9. The parts of the equality partition E(W (Γ,0)) are exactly the strong
components of Γ. In particular, the dimension of the braid cone Q(Γ,0) equals the number
of strong components of Γ.

Any hyperplane of the form xi = xj defines a split of the unit cube [0, 1]k, i.e., it defines
a (regular) subdivision of the unit cube into two subpolytopes; see [HJ08]. Notice that
such a split hyperplane does not separate any edge of the unit cube. Let us look at the
map κ which sends each face F of the braid cone Q(Γ,0) to the intersection F ∩ [0, 1]k.
Clearly, this intersection is never empty (unless F is).
Now suppose that Γ is acyclic. Then those inequalities which define facets of Q(Γ,0)

correspond to the covering relations of the partially ordered set P (Γ) on the node set
[k] of Γ induced by the arcs. It follows that κ(Q(Γ,0)) = Q(Γ,0) ∩ [0, 1]k is the order
polytope Ord(Γ) of the poset P (Γ). The poset P (Γ) describes the transitive closure of
the relation defined on the set [k] by the arcs of Γ. Conversely, each finite poset gives rise
to a directed graph whose nodes are the elements and the arcs are given by the covering
relations directed, say, upwards.
The order polytope Ord(Γ) contains the points 0 and 1 as vertices. Therefore there

exists a unique minimal face which contains both of them; denote this face by F01. Note
that the dimension of F01 can be any number between 1 (if F01 is the edge [0,1]) and
k (if the graph Γ does not contain any edges). The face figure of F01, written as F01,
is the principal filter of the element F01 in the face poset of the order polytope Ord(Γ).
The subposet F01 is the face poset of a polytope of dimension k − dimF01 − 1. The face
figure F01 consists of exactly those faces of Ord(Γ) which are not contained in any facet
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of the cube [0, 1]k. It is immediate that κ maps faces of the braid cone Q(Γ,0) to the
faces of the order polytope Ord(Γ) which lie in the face figure F01.

Lemma 2.10. If Γ is acyclic then the map κ is a poset isomorphism from F(Q(Γ,0))
to the face figure F01 of the face F01 of the order polytope Ord(Γ).

Proof. For any face G ∈ F01 let λ(G) be the cone pos(G)+R1. Since G is a face which is
not contained in any facet of [0, 1]k it is the intersection of facets of type xi ≤ xj . These
inequalities are homogeneous, and so they also hold for λ(G). Those inequalities are tight
for Q(Γ,0), and so λ defines a map from F01 to F(Q(Γ,0)). This also shows that, for any
face F of Q(Γ,0) we have λ(κ(F )) = F which means that κ is one-to-one. Conversely,
let G be a face of Ord(Γ) which is contained in F01. Then G is defined in terms of split
equations of the form xi = xj . These equations are valid for λ(G) = pos(G) +R1, which
yields κ(λ(G)) = G. Hence κ is surjective, and λ is the inverse map.

Stanley gave a concise description of the face lattices of order polytopes in terms of
partitions [Sta86, Theorem 1.2], and this can be used to derive the following result. This
should be compared with [PRW08, Proposition 3.5] which also characterizes the faces of
the braid cones, but in a different language.

Theorem 2.11. Let Γ be an arbitrary directed graph on the node set [k]. Then a partition
E of [k] is the equality partition of a face of the braid cone Q(Γ,0) if and only if

(i) for each part K of E the induced subgraph of Γ on K is weakly connected, and

(ii) the minor of Γ which results from simultaneously contracting each part of E does
not contain any directed cycle.

Proof. Let us first assume that Γ is acyclic. By Lemma 2.7, together with the fact
that every cycle has weight zero, the faces of Q(Γ,0) are given in terms of the equality
partitions of [k]. In the acyclic case Lemma 2.10 translates faces of Q(Γ,0) into faces
of the order polytope Ord(Γ) which contain the special face F01. The property (i) is
the connectedness, and property (ii) is the ‘compatibility’ condition in Stanley’s result
[Sta86, Theorem 1.2].
We now turn to the general case. If Γ has directed cycles we consider its acyclic

reduction. The latter graph, occasionally also called ‘condensation’ in the literature, is
obtained by identifying the nodes in each strong component. Since strong components are
weakly connected and gather all the directed cycles the same reasoning applies as before.
It is easy to see that this digraph is indeed acyclic [Sha81, Corollary 5]. Each partition
of [k] which describes a face of Q(Γ,0) refines the partition by strong components.

Notice that there are always two partitions which trivially satisfy the conditions above:
The partition of [k] by weak components corresponds to the unique minimal face (which
is the lineality space); the partition by strong components corresponds to the entire cone.

Example 2.12. The smallest non-trivial case is k = 2, and Γ is the directed graph with
two nodes, labeled 1 and 2, with one arc from 1 to 2. The order polytope is the triangle
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x1

x2

00

11

01

Figure 2.3: Braid cone of a single arc and the corresponding order polytope; see Exam-
ple 2.12

00 01 11

00 01 00 11 01 11

00 01 11

Figure 2.4: Hasse diagram of the triangle conv{00, 01, 11} with face figure of conv{00, 11}
marked

conv{00, 01, 11}, and the face F01 is the edge from 00 to 11. The braid cone Q(Γ,0)
is the linear half-space x1 ≤ x2, and its lineality space is R1. The braid cone and the
order polytope are shown in Figure 2.3. The node set of Γ only admits the two trivial
partitions. The Hasse diagram of the face lattice of Ord(Γ) and the face figure F01 are
displayed in Figure 2.4.

Example 2.13. Figure 2.5 shows a digraph on eight nodes and its acyclic reduction, which
has six nodes. Figure 2.6 shows the Hasse diagram of the braid cone. That cone is
6-dimensional with a 1-dimensional lineality space. Modulo its lineality space every cone
is projectively equivalent to a pyramid over its face at infinity. In this case the braid
cone inherits the combinatorics of a 4-simplex.

Remark 2.14. Two distinct digraphs on the node set [k] may induce the same braid cone.
This is the case if and only if they induce the same poset. For instance, in Figure 2.5
the arc (1, 3) in the graph on the left and the arc (1, 378) in the graph on the right are
redundant. In the acyclic reduction (on the right) we obtain a tree with directed edges.
Every tree on � nodes has �− 1 edges, the braid cone is a simplex cone of dimension �− 1.
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5 8

4 3 7

6 1 2

5

4 378

6 1 2

Figure 2.5: Digraph (left) and its acyclic reduction (right)

2.2.4 Weyl–Minkowski decomposition

Now we want to use the Theorem 2.11 on braid cones to describe digraph polyhedra for
arbitrary weights. Again we pick a k×k-matrix W , and we assume that Q(W ) is feasible.
The classical theorem of Weyl and Minkowski (cf. [Zie95, §1]) states that any ordinary
polyhedron Q decomposes as the Minkowski sum

Q = P + L+ C , (2.3)

where P is a polytope, L is a linear subspace and C is a pointed polyhedral cone. An
ordinary polyhedral cone is pointed if it does not contain any affine line (and thus no
affine subspace of positive dimension). In the decomposition (2.3) the maximal linear
subspace L is unique, while, in general, there may be many choices for C and P . The
recession cone (which is again unique) is the Minkowski sum of the two unbounded parts,
L and C. The pointed part is the Minkowski sum P +C (which is unique up to an affine
transformation). Next we will decompose a weighted digraph polyhedron in this fashion.
We decompose W into the graph Γ and the weight function γ such that W = W (Γ, γ).

Lemma 2.15. The recession cone of the weighted digraph polyhedron Q(Γ, γ) is the braid
cone Q(Γ,0), and Q(W (Γ,0)#Γ) forms the maximal linear subspace.

Proof. Let x be some point in the recession cone of Q. Then there exists a vector t such
that x+ λt ∈ Q for all λ ≥ 0. This means that

xi − xj + λ(ti − tj) ≤ wij for all (i, j) ∈ Γ and λ ≥ 0 .

This forces ti − tj ≤ 0 for all (i, j) ∈ Γ, and so t lies in Q(Γ,0). The reverse inclusion is
similar, and we conclude that the braid cone Q(Γ,0) is the recession cone of Q.

Again let t ∈ Q(Γ,0). Then its negative −t is also contained in Q(Γ,0) if and only if

ti − tj = 0 for all (i, j) ∈ Γ

if and only if t ∈ Q(W (Γ,0)#Γ). We infer that the braid cone Q(W (Γ,0)#Γ) forms the
maximal linear subspace of Q.
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12345|6 1235|4612346|5 12|34561|23456

1235|4|61234|5|6 12|345|61|2345|6 123|46|5 12|35|461|235|46 12|346|51|2346|5 1|2|3456

123|4|5|6 12|35|4|61|235|4|6 12|34|5|61|234|5|6 1|2|345|6 12|3|46|51|23|46|5 1|2|35|461|2|346|5

12|3|4|5|61|23|4|5|61|2|34|5|6 1|2|35|4|61|2|3|46|5

Figure 2.6: Hasse diagram of the braid cone corresponding to the graph in Figure 2.5.
For improved readability the node 378 of the acyclic reduction is represented
as 3

As a corollary we obtain a slight generalization of [DS04, Corollary 12].

Corollary 2.16. The weighted digraph polyhedron Q(Γ, γ) is bounded in Rd/R1 if and
only if Γ consists of one strong component.

Proof. If Γ has only one strong component, then the recession cone (Γ,0) is exactly the
one-dimensional lineality space R1 by Proposition 2.9. Hence, Q(Γ, γ) is bounded in
Rd/R1. Otherwise, the recession cone is higher-dimensional and the weighted digraph
polyhedron is unbounded.

Our next goal is to describe a minimal system of generators for a braid cone. Recall
that a pointed cone is projectively equivalent to a pyramid over its far face. The minimal
generators of a pointed cone correspond to the vertices of the far face. For any subset
K ⊆ [k], let χ(K) ∈ Rk be the characteristic vector. That is, the ith coordinate of χ(K)
is one if i ∈ K, and it is zero otherwise. With this notation, e.g., we have χ([k]) = 1 and
χ(∅) = 0.

Proposition 2.17. A minimal system of generators of the pointed part of the braid cone
Q(Γ,0) is given by the vectors χ(K) with K ⊆ [k] so that the induced subgraph on K is
connected, its complement in its weak component in Γ is also connected and every arc in
the cut-set of this partition is directed from [k] \K to K.

Proof. Let K1, . . . ,K� be the weak components of Γ. In particular, by applying Proposi-
tion 2.9 to Q(W (Γ,0)#Γ), the dimension of the lineality space of Q(Γ,0) equals �. Let
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F be a minimal non-trivial face of the cone Q(Γ,0). This is a Minkowski sum of the
lineality space with a single ray. By Theorem 2.11 the latter corresponds to a partition
with �+ 1 parts. Among these exactly �− 1 parts are weak components of Γ, while the
remaining weak component is split into two. Let us assume that the remaining component
decomposes as Ku = K ∪ (Ku \K), where every arc in the cut-set is directed from Ku \K
to K. The characteristic vectors χ(Ki) for i ∈ [�] linearly span the lineality space of
Q(Γ,0), while χ(K) generates the pointed part of F .

2.2.5 Envelopes and duality

We now turn to the construction of a special class of digraph polyhedra which were
introduced by Develin and Sturmfels for studying tropical convexity from the viewpoint of
geometric combinatorics [DS04]. For a d×n-matrix V with coefficients in Tmin = R∪{∞}
we look at the ordinary polyhedron

E(V ) =
{
(y, z) ∈ Rd × Rn

∣∣∣ yi − zj ≤ vij for all i ∈ [d] and j ∈ [n]
}

=
{
(y, z) ∈ Rd × Rn

∣∣∣ yi − zj ≤ vij for all (i, j) ∈ B
}

,

where
B(V ) = {(i, j) ∈ [d]× [n] | vij 
= ∞} (2.4)

is a (bipartite) directed graph recording the finite entries of V . We call E(V ) the envelope
of the matrix V . We may see the envelope as a weighted digraph polyhedron via the
matrix (d+ n)× (d+ n)-matrix W which is defined as

W =

(
∞d×d V
∞n×d ∞n×n

)
. (2.5)

Up to an obvious relabeling of the nodes B(V ) is the same as Γ(W ) for the matrix W
defined above, and thus we can identify E(V ) with Q(W ). Applying Lemma 2.15 and
Proposition 2.17 to the envelope we obtain the following.

Corollary 2.18. The minimal generators of the pointed part of the recession cone of the
envelope are given by the partitions D′ �D′′ = [d] and N ′ �N ′′ = [n] so that

(i) the induced subgraph on D′�N ′ has the same number of weak components as B,

(ii) the induced subgraph on D′′�N ′′ is connected, and

(iii) there are no arcs from D′′ to N ′.

The characteristic vector of D′′�N ′′ now yields one such generator.

Similarly we obtain from Proposition 2.17 the following corollary which will be helpful
in section 2.3.5. A ray can be scaled modulo 1 so that it has only non-negative entries
and at least one zero entry. Then the support of the ray is the set of indices of the
non-zero entries. We keep the notation of the former corollary and consider a face of the
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envelope E(V ) defined by the graph G that contains a minimal generator with support
D′′�N ′′. Notice that the arcs of Γ(W#G) which are not arcs of B are arcs from N ′ to
D′ or from N ′′ to D′ or from N ′′ to D′′. That is, there are no arcs from N ′ to D′′.

Corollary 2.19. Let M be the set of column indices j of the matrix V such that vij = ∞
for all i ∈ D′′. Then M equals N ′, and none of the shortest paths in Γ(W#G) between
any two nodes in D′ contains a node in D′′ � ([n] \M).

Proof. Observe that M is exactly the subset of the nodes in [n] without an arc between
D′′ and M in Γ(W#G). Hence, we obtain N ′ ⊆ M and with Corollary 2.18(ii) even
N ′ = M . This yields [n] \M = N ′′. Hence, by Proposition 2.17, there is no arc from
[n] \M to D′ in Γ(W#G). This implies that every shortest path between two nodes in
D′ avoids the set D′′ � ([n] \M).

The graph B(V ) has two kinds of nodes, those which correspond to the rows and those
which represent columns of V . In our drawings, like Figure 2.7, we show row nodes as
rectangles and column nodes as circles. Moreover, we always draw the row nodes above
the column nodes. Therefore, if we want to distinguish them we sometimes talk about
the top and the bottom shore of the bipartite graph.

1 2 3

1 2 3

Figure 2.7: Bipartite digraph B(V ) for the matrix in Example 2.20

Example 2.20. For d = n = 3 consider the 3×3-matrix

V =

⎛⎝0 0 0
1 1 ∞
0 2 ∞

⎞⎠ .

The lineality space of the envelope E(V ) is spanned by 1. The quotient E(V )/1 is
5-dimensional, and it has exactly two vertices: (0, 1, 0; 0, 0, 0) and (0, 1, 2; 2, 0, 0). Its
recession cone has six minimal generators, which arise from partitioning the bipartite
graph B(V ), which is a subgraph of K3,3, into two induced subgraphs which meet the
criteria of Corollary 2.18, see Figure 2.7. The sets of the form D′′ �N ′′ read

∅�1 , ∅�2 , ∅�3 , 12�123 , 13�123 , 23�12 .

The complementary parts are given by D′ = {1, 2, 3}\D′′ and N ′ = {1, 2, 3}\N ′′. Notice
that, e.g., 23�123 does not occur in the list above since v23 = ∞ = v33; this implies
that the induced subgraph is not connected. For instance, 23�12 yields the generator
(0, 1, 1; 1, 1, 0).
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A subpolytope of a polytope P is the convex hull of some subset of the vertices of P .
Each face is a subpolytope, but the converse does not hold. We write ei for the ith
standard basis vector of Rk, for any k, and we write vectors in the product space Rd×Rn

as (x, y) where x ∈ Rd and y ∈ Rn. With this notation

Δd−1 ×Δn−1 = conv {(ei, ej) | (i, j) ∈ [d]× [n]}

is a product of simplices. Develin and Sturmfels established that a tropical configuration
of n points induces a polyhedral subdivision of Rd which is dual to a regular subdivision
of Δd−1 ×Δn−1 [DS04, Theorem 1]. A polytopal subdivision is regular if it is induced by
a height function; for details see [DLRS10]. The following statement will be instrumental
in Section 2.3.2 below for obtaining a natural generalization to subpolytopes of products
of simplices. Notice that those subpolytopes naturally correspond to subgraphs of the
complete bipartite graph [d]× [n].

Theorem 2.21. The boundary complex of the envelope E(V ) is dual to the regular
subdivision of the polytope

conv
{
(ei, ej) ∈ Rd × Rn

∣∣∣ (i, j) ∈ B(V )
}

with height function V .

Proof. We abbreviate B = B(V ). Homogenizing the envelope E(V ) (with leading homog-
enizing coordinate) yields the cone{

(α, y, z) ∈ R≥0 × Rd × Rn
∣∣∣ 〈(vij ,−ei, ej), (α, y, z)〉 ≥ 0 for all (i, j) ∈ B

}
.

Hence the polar cone with the dual face lattice can be written as

pos {(1,0,0)}+ pos {(vij ,−ei, ej) | (i, j) ∈ B} .

Intersecting with the affine hyperplane H = {(α, y, z) | 〈(0,−1,1), (α, y, z)〉 = 2} gives
the polytope

P = conv {(vij ,−ei, ej) | (i, j) ∈ B} ,

because all these vectors lie in H and the origin does not.
The orthogonal projection of the lower convex hull of P with respect to (1,0,0) defines

a regular subdivision of the subpolytope of Δd−1 ×Δn−1 corresponding to B. If B is the
complete bipartite graph or equivalently no entry of V is ∞, that subpolytope is the
entire product of simplices.

Any regular subdivision of a subpolytope extends to a regular subdivision of the
superpolytope, e.g., by successive placing of the remaining vertices [DLRS10, §4.3.1]. In
our situation a regular subdivision of the superpolytope Δd−1 × Δn−1 is obtained by
replacing the infinite coefficients in the matrix V with sufficiently large real numbers.
Note that this extension is not unique.
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2.2.6 Projections

In this section we investigate orthogonal projections of weighted digraph polyhedra and
envelopes into the coordinate directions. To this end we let πI be the projection onto the
coordinates in [k] \ I for I ⊆ [k]. For a k×k-matrix W we define W/I by removing the
rows and columns whose indices lie in I. We write πi and W/i if I = {i} is a singleton.

Lemma 2.22. The image of Q(W ) = Q(W ∗) under the linear projection πI is the
weighted digraph polyhedron Q(W ∗/I).

Proof. By induction it suffices to consider the case where I = {k}. That πk(Q(W ∗)) is con-
tained in Q(W ∗/k) is clear. We want to show the reverse inclusion. For (x1, . . . , xk−1) ∈
Q(W ∗/k) we need to find a real number y so that (x1, . . . , xk−1, y) ∈ Q(W ) = Q(W ∗).
The latter condition is equivalent to

xi − w∗ik ≤ y and y ≤ xi + w∗ki for all i ∈ [k − 1] .

So, the claim follows if we can show that

max
i∈[k−1]

(xi − w∗ik) ≤ min
i∈[k−1]

(xi + w∗ki) . (2.6)

Let p and q be indices for which the maximum and the minimum in (2.6), respectively,
are attained. Now w∗pq is the length of the shortest path from p to q in the weighted
digraph Γ(W ). This yields

xp − xq ≤ w∗pq ≤ w∗pk + w∗kq and hence xp − w∗pk ≤ xq + w∗kq .

Now we turn to studying projections of faces of the envelope E(V ) of a not necessarily
square d×n-matrix. With W defined as in (2.5) we have E(V ) = Q(W ). By Lemma 2.7
for any face F of the envelope there is a subgraph G of Γ = Γ(W ) such that F = Q(W#G).
Since, up to a relabeling of the nodes, we can identify the directed graph Γ with the
bipartite graph B = B(V ) and we may read G as a subgraph of B. We define the
n×d-matrix V [G] with coefficients

v′ji =

{
−vij if (i, j) ∈ G

∞ otherwise .

The following lemma is similar to [DS04, Lemma 10]. Notice that the tropical matrix
product V 	 V [G] yields a d×d-matrix.

Lemma 2.23. The image of the face F of E(V ) ⊂ Rd×Rn under the orthogonal projection
π[n] onto the first component is the weighted digraph polyhedron Q(V 	 V [G]).
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Proof. For i, � ∈ [d] let ui� be a coefficient of V 	 V [G]. We have

ui� = min
j∈[n]

(vij + v′j�) = min
j∈[n], vij �=∞, v�j �=∞

(vij − v�j) ,

which is exactly the length of a shortest path from i to � with two arcs in the digraph
Γ(W#G). Since the directed graph Γ(W#G) is bipartite the shortest path from i to
� (over arbitrarily many arcs) is a concatenation of the two-arc-paths above. Now the
claim follows from the previous lemma.

1 2 3

1 23

0 0

0

1

1

0

2

0

-1

0

1 2

3

-1

0
1

1

Figure 2.8: Weighted digraphs corresponding to a face of E(V ) from Example 2.24. The

first graph corresponds to a face in Rd×Rn whereas the second corresponds
to its projection onto Rd. The nodes on the bottom shore are not in their
natural ordering to reduce the number of arcs crossing

Example 2.24. We consider the same matrix V as in Example 2.20. For the bipartite
graph G on the six nodes {1, 2, 3} � {1, 2, 3} with arcs (1, 3), (2, 2), (3, 1) we obtain

V [G] =

⎛⎝∞ ∞ 0
∞ −1 ∞
0 ∞ ∞

⎞⎠ .

This yields the product

V 	 V [G] =

⎛⎝0 0 0
1 1 ∞
0 2 ∞

⎞⎠	

⎛⎝∞ ∞ 0
∞ −1 ∞
0 ∞ ∞

⎞⎠ =

⎛⎝ 0 −1 0
∞ 0 1
∞ 1 0

⎞⎠ .

The corresponding graph is depicted in Figure 2.8 on the right whereas the left one shows
the graph Γ(W#G).

2.3 Tropical cones and polyhedral cells

2.3.1 Polyhedral sectors

As before let V be a d×n-matrix with coefficients in Tmin. We write v(j) for the jth
column of V , and therefore we can identify V with (v(1), v(2), . . . , v(n)), the sequence of
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x2

x3

Figure 2.9: Weighted digraph polyhedron given by the matrix V 	 V [G] in Example 2.24
which is unbounded in the tropical projective 2-torus

column vectors. The (min,+)-linear span of the columns of V is the min-tropical cone

tcone(V ) =
{
(λ1 	 v(1))⊕ · · · ⊕ (λn 	 v(n))

∣∣∣ λj ∈ Tmin

}
.

Put in a more algebraic language, a tropical cone is the same as a finitely generated
subsemimodule of the semimodule (Td

min,⊕,	). A subset M of Rd is min-tropically
convex if for any two points u, v ∈ M we have tcone(u, v) ⊆ M . Any tropically convex
set contains R1, and so we can study its image under the canonical projection to the
tropical projective torus. Up to this projection tropical cones generated by vectors with
finite entries are precisely the ‘tropical polytopes’ of Develin and Sturmfels [DS04]. In
this section we will generalize key results from that paper to the case where ∞ may occur
as a coordinate. By homogenization our results also apply to the formally more general
‘tropical polyhedra’ studied, e.g., in [AGG12] and [ABGJ15].

Remark 2.25. For an arbitrary k×k-matrix with coefficients in Tmin the weighted digraph
polyhedron Q(W ) = Q(W ∗) coincides with the min-tropical span tcone(W ∗). See also
[But10, Theorem 2.1.1] and the Section 2.3.4 on polytropes below.

For u ∈ Td
min and i ∈ [d] with ui 
= ∞ we define the ith sector Si(u) with respect to

max as{
z ∈ Rd

∣∣∣∣ max
�∈[d]

(z� − u�) = zi − ui

}
=

{
z ∈ Rd

∣∣∣∣ min
�∈[d]

(u� − z�) = ui − zi

}
.

Notice that the above equality of sets is a consequence of the elementary fact

−max(u, v) = min(−u,−v) .

Moreover, the equation min�∈[d](u� − z�) = ui − zi is equivalent to z� − zi ≤ u� − ui for
each � ∈ [d]. As ui < ∞ that minimum cannot be attained for any � ∈ [d] with u� = ∞.

24



We have
Si(u) =

⋂
�∈[d], u� �=∞

{
z ∈ Rd

∣∣∣ z� − zi ≤ u� − ui

}
, (2.7)

which means that this sector is the weighted digraph polyhedron for the graph with node
set [d] and arc set {(�, i) | � ∈ [d], u� 
= ∞}, where the arc (�, i) has weight u� − ui.

x2

x3

S2(0, 2, 1)

S3(0, 2, 1)

S1(0, 2, 1) x2

x3

S2(∞, 0, 0)

S3(∞, 0, 0)

Figure 2.10: Polyhedral decomposition of R3 as in Lemma 2.26 induced by (0, 2, 1) and
(∞, 0, 0), respectively. Compare the image on the right with Figure 2.3

Lemma 2.26. The sectors {Si(u) |ui 
= ∞} are the maximal cells of a polyhedral decom-
position of Rd.

Proof. Considering the column vector u as a d×1-matrix, we obtain the envelope E(u)
as a subset of Rd+1. The sector Si(u) is the orthogonal projection of the face defined by
the single arc (i, 1) in the bipartite graph B(u).

We denote the polyhedral complex arising from the previous lemma by Δ(u); see also
[DS04, Proposition 16]. The negative −u of the vector u ∈ Td

min defines a max-tropical
linear form and thus a max-tropical hyperplane. The sectors Si(u) for ui 
= ∞ are
precisely the topological closures of the connected components of the complement of that
tropical hyperplane.

Example 2.27. The white sector S1(0, 2, 1) in Figure 2.10 is the orthogonal projection
on {1, 2, 3} of the weighted digraph polyhedron given by the bipartite graph with node
set {1, 2, 3} � {1′} where the arc (1, 1′) has weight zero, (2, 1′) has weight 2, (3, 1′) has
weight 1 and (1′, 1) has weight zero.

The following result characterizes the solvability of a system of tropical linear equations
in Rd. For matrices with finite coordinates this is the Tropical Farkas Lemma [DS04,
Proposition 9], a version of which already occurs in [Vor67]. We indicate a short proof
for the sake of completeness.

Lemma 2.28. A point z ∈ Rd is contained in tcone(V ) if and only if for every i ∈ [d]
there is an index s ∈ [n] with z ∈ Si(v

(s)).
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Proof. Let z ∈ Rd be a point in tcone(V ). Then there is a vector λ ∈ Tn
min so that⊕n

j=1 λj 	 v(j) = z or, equivalently,

min {λj + vij | j ∈ [n]} = zi for each i ∈ [d] . (2.8)

Now fix i ∈ [d] and let s be an index j for which the minimum in (2.8) is attained; that
is, zi = λs + vis. If � ∈ [d] with v�s 
= ∞ this gives

z� − zi = z� − λs − vis ≤ λj + v�j − λs − vis for each j ∈ [n] .

Specializing to j = s entails z�− zi ≤ v�s− vis and thus z ∈ Si(v
(s)). The entire argument

can be reversed to prove the converse.

2.3.2 The covector decomposition

Again let V ∈ Td×n
min , and let W ∈ T(d+n)×(d+n)

min be the matrix which is associated via (2.5).

We assume in the following that V has no column equal to the all ∞ vector (∞, . . . ,∞)�;
hence, none of the complexes Δ(v(j)) is empty. We do admit rows which solely contain ∞
entries. They add to the lineality of the occurring polyhedra. However, there may also be
other contributions to the lineality space; see Lemma 2.15. The weighted bipartite graph
B = B(V ) and the weighted digraph Γ = Γ(W ) are defined as before. For an arbitrary
subgraph G of B we define the polyhedron

XG(V ) =
⋂

(i,j)∈G
Si(v

(j)) (2.9)

in Rd.

Remark 2.29. Right from the definition, we obtain XG∪H(V ) = XG(V ) ∩ XH(V ) for
any two graphs G,H ⊆ B(V ) . If, furthermore, G ⊆ H then XH(V ) ⊆ XG(V ). This
occurs also in [DS04, Corollary 11 and 13]. It should be stressed that the cells XG(V )
and XH(V ) may coincide even if the graphs G and H are distinct.

Proposition 2.30. Let G be an arbitrary subgraph of B (which we may also read as a
subgraph of Γ). Then the orthogonal projection of the face FG(W ) onto Rd equals XG(V ).
If no node in [n] is isolated in G that projection is an affine isomorphism.

Proof. Our goal is to exploit what we know about weighted digraph polyhedra. To this
end we define several digraphs with the same node set [d] �G. Recall that we identify
the subgraph G of Γ with its set of edges. However, in the class of digraphs to be defined
now, those edges (along with the nodes in [d]) play the role of nodes.

Pick (i, j) ∈ G. We let Φij be the weighted digraph which results from B(v(j)), which
has [d] � {1} as its node set, by renaming the node 1 on the bottom shore by (i, j) and
adding an isolated node for each other arc in G. The graph Φij has one extra arc in the
reverse direction, namely from (i, j) to i. The weights on the arcs from top to bottom
are the same as in B(v(j)), while the weight on the single reverse arc is −vij . Compare
this with Lemma 2.26 and Example 2.27. By construction the weighted digraph Φij is
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bipartite and thus can be identified with a square matrix of size d + |G|. By Lemma
2.23 the weighted digraph polyhedron Q(Φij) ⊂ Rd × RG projects orthogonally onto the
sector Si(v

(j)) ⊂ Rd.
Let Φ be the digraph with node set [d] � G which is obtained as the union of the

digraphs Φij for (i, j) ∈ G. Notice that by our construction the choice of the weights for
the individual graphs Φij is consistent. This way we obtain a natural weight function on
Φ. Due to Lemma 2.6 we have

πG
(
Q(Φ)

)
= πG

( ⋂
(i,j)∈G

Q(Φij)
)

=
⋂

(i,j)∈G
Si(v

(j)) .

If Γ(W#G) has a negative cycle, so has Φ and by Lemma 2.1 then FG(W ) as well as
XG(V ) are empty. If there are no negative cycles, there exists a shortest path between
two nodes i and � in [d], and it does not matter if we consider Γ(W#G) or Φ. So, the
claim follows with Lemma 2.22.

For the rest, assume that Γ(W#G) has no negative cycle. Since Γ(W#G) is bipartite,
any two nodes i, � ∈ [d] are contained in a directed cycle of weight zero of G if this also
holds for the graph Γ(π[n](Q(W#G)) of the projection of FG(W ) by Lemma 2.22. If no
node in [n] is isolated in G, every node in [n] is contained in a directed cycle of weight
zero, as every arc from [n] to [d] in Γ(W#G) induces a cycle of length zero. Hence,
the equality partition of FG(W ) and of its projection Γ(π[n](Q(W#G)) have the same
number of parts by Lemma 2.3(b). Therefore, if no node in [n] is isolated in G, we get
that FG(W ) has the same dimension as XG(V ).

The covector decomposition T (V ) of Rd is the common refinement of the polyhedral
complexes Δ(v(j)) for j ∈ [n]. For every cell C in the covector decomposition there is
a unique maximal subgraph T(C) of the complete bipartite graph [d]× [n], called the
covector graph of C, such that C = XT(C)(V ). This graph is equivalent to the covector

(t1, t2, . . . , td) ∈ [n]d where ti ⊆ [n] consists of the nodes adjacent to i. While the covector
notation is concise in most proofs it is convenient to keep the interpretation as a directed
bipartite graph. Notice that our cells are closed by definition. By Proposition 2.30, each
covector (graph) also uniquely determines a face of E(V ) and every face, for which no
node in [n] is isolated, occurs in this way. By Lemma 2.28 the covector decomposition
T (V ) of Rd induces a covector decomposition of the tropical cone tcone(V ). The covector
graphs correspond to the ‘types’ of [DS04].

Example 2.31. Figure 2.11 shows an example for the matrix

V =

⎛⎝0 0 0
1 0 ∞
2 −1 ∞

⎞⎠ .

The points corresponding to the columns of V are marked 1, 2 and 3. Notice that the
third column has ∞ as a coordinate, which is why this point lies outside the tropical
projective torus. In fact, it is a boundary point of the tropical projective plane; see
Section 2.3.5 and Figure 2.16 below.
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Only the covectors of the full-dimensional cells are indicated since the covectors of the
other cells can directly be deduced from them by Remark 2.29.

The covector decomposition of tcone(V ) has precisely two cells which are maximal with
respect to inclusion: the 2-dimensional cell with covector (3, 2, 1) and the 1-dimensional
cell with covector (13, 2, 2) = (13,−, 2) ∪ (13, 2,−).

x2

x3

1

2

3

(3, 2, 1)

(3, 12,−)

(3,−, 12)

(13,−, 2)

(123,−,−) (13, 2,−)

Figure 2.11: Tropical cone in the tropical projective 2-torus, from Example 2.31. The dot-
ted line represents the boundary, which is not part of the tropical projective
torus

Remark 2.32. From the viewpoint of tropical geometry the decomposition T (V ) can be
deduced from the max-tropical linear forms corresponding to the columns of V . For
this, we pick variables x1j , x2j , . . . , xdj for each column v(j) of V . The product of the
tropical linear forms max(x1j − v1j , x2j − v2j , . . . , xdj − vdj) yields a homogeneous tropical
polynomial p in d · n variables xij . This defines a tropical hypersurface in Rd·n/R1
where the covectors come into play as the exponent vectors of (tropical) monomials in p.
Substituting xij by yi gives rise to the tropical hypersurface in Rd/R1 which induces the
cell decomposition of this space.

Theorem 2.33. The orthogonal projection from the boundary complex of E(V ) onto Rd

induces a bijection between the envelope faces whose covector graph have no isolated node
in [n] and the cells in the covector decomposition T (V ) of Rd. This map is a piecewise
linear isomorphism of polyhedral complexes.

Each face whose covector graph neither has an isolated node in [d] (nor an isolated
node in [n]) maps to a cell in the covector decomposition of tcone(V ).

Proof. Ranging over all the faces whose covector graph has no isolated node in [n] we
obtain the bijection with Proposition 2.30. The definition of the covector of a cell
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combined with Lemma 2.28 characterizes when a cell in T (V ) is contained in the tropical
cone generated by the columns of V .

With Theorem 2.21 the former implies the following.

Corollary 2.34 (Structure Theorem of Tropical Convexity). The covector decomposition
T (V ) of Rd is dual to the regular subdivision of the polytope

conv
{
(ei, ej) ∈ Rd × Rn

∣∣∣ (i, j) ∈ B(V )
}

with weights given by V . Moreover, the covector decomposition of tcone(V ) is dual to the
poset of interior cells.

The result above is the same as [FR15, Corollary 4.2]; their proof is based on mixed
subdivisions and the Cayley Trick [DLRS10, §9.2].
Note that the envelope of a matrix whose coefficients are 0 or ∞ is a braid cone,

and so Theorem 2.11 applies to describe the combinatorics. The min-tropical cones
corresponding to these matrices are tropical analogues of ordinary 0/1-polytopes.

Corollary 2.35. Let V be a d× n-matrix whose coefficients are ∞ or 0. A partition E
of [d] � [n] defines a face of the polyhedral fan T (V ) ⊆ Rd with apex 0 if and only if

(i) for each part K of E the induced subgraph of B(V ) on K is weakly connected,

(ii) the minor of B(V ) which results from simultaneously contracting each part of E
does not contain any directed cycle, and

(iii) no part of E is a single element of [n].

As projections of the faces of the envelope E(V ) the cones in such a fan can encode an
arbitrary digraph on d nodes.

Example 2.36. The maximal cell in Figure 2.9 is the intersection of the sectors S3((0, 1, 0)
�),

S2((0, 1, 2)
�) and S1((0,∞,∞)�). On the other hand, it is the projection of the face of the

envelope E(V ) corresponding to the graph on three nodes with the arcs (1, 3), (2, 2), (3, 1)
for the matrix V from Example 2.20.

The recession cone of this face is given by the graph in Figure 2.12. It has the strong
components 1× 3 and 23× 12. Hence, a minimal generator of the pointed part of the
cone is (0, 1, 1; 1, 1, 0)� by Proposition 2.17. This projects to the ray generated as the
positive span of (0, 1, 1)� which is indeed contained in the tropical cone tcone(V ).

Remark 2.37. Clearly, we can also project the envelope E(V ) onto the [n] coordinates
of the lower shore. This yields a covector decomposition of Rn induced by the d rows
of the matrix V . Applying Theorem 2.33 to the transpose V � gives an isomorphism
between the envelope faces without any isolated node in [d] and the cells in the covector
decomposition of Rn induced by the rows of V .
Therefore, the cells whose covector graphs do not have any isolated node in their

covector graphs project affinely isomorphic to Rd as well as to Rn. This entails an
isomorphism between the covector decompositions of tcone(V ) and tcone(V �).
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1 2 3

1 2 3

Figure 2.12: Bipartite graph for the face projecting to the maximal cell in Figure 2.9

Proposition 2.38. Let G be a subgraph of [d]× [n]. Then the following statements are
equivalent.

(i) There is a point (y, z) ∈ E(V ) = Q(W ) for which the inequality corresponding to
(i, j) ∈ Γ(W ) is attained with equality if and only if (i, j) ∈ G.

(ii) (a) For every pair of subsets D ⊆ [d] and N ⊆ [n] with |D| = |N |, every perfect
matching of G restricted to D � N is a minimal matching of the complete
bipartite graph D ×N with the weights given by the corresponding submatrix
of V ;

(b) if there are more minimal perfect matchings in D ×N then each of them is
contained in G.

(iii) (a) The graph Γ(W#G) does not have any negative cycle, and

(b) every arc of Γ(W ) in Γ(W#G) that is contained in a cycle of weight zero is
contained in G.

Proof. To conclude (ii) from (i) let D ⊆ [d] and N ⊆ [n] with |D| = |N | so that there is
a perfect matching M0 in D ×N ∩G. Let M1 be any other perfect matching in D ×N .
Then considering the corresponding inequalities and equations implies after summing up
and reordering ∑

(i,j)∈M0

vij =
∑
i∈D

yi −
∑
j∈N

zj ≤
∑

(i,j)∈M1

vij .

Therefore, M0 is a minimal perfect matching. Furthermore, ifM1 is also a minimal perfect
matching, then equality follows in the former inequality. That implies the equations
yi − zj = vij for every (i, j) ∈ M1. Hence, every arc in M1 has to be contained in G.

We now want to show that this implies (iii). For this, we consider a non-positive cycle
in Γ(W#G) with vertex set D �N . Let AW be the set of arcs directed from [d] to [n]
and AG the set of arcs directed from [n] to [d]. Since Γ(W#G) is bipartite, this implies
|D| = |N | = |AW | = |AG| and the arc sets AW and AG define perfect matchings in
D ×N .

By definition of Γ(W#G) we obtain for the weight of the cycle∑
(i,j)∈AW

vij +
∑

(j,i)∈AG

(−vij) ≤ 0 or, equivalently,
∑

(i,j)∈AW

vij ≤
∑

(j,i)∈AG

vij .
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If the inequality is strict, this contradicts the minimality of the matching via (ii). If the
cycle has weight zero and the inequality becomes an equality, this implies that AW also
represents a minimal perfect matching. With (ii) every arc in AW is also in G then.

The final goal is to lead (iii) back to (i). If Γ(W#G) does not contain a negative cycle,
the weighted digraph polyhedron Q(W#G) is not empty. Therefore, there is (y, z) in the
interior of the face Q(W#G) ⊆ Rd × Rn. Let (i, j) be some arc of Γ(W ). If the equality
yi − zj = vij holds, Lemma 2.3(b) yields that there is a cycle of weight zero containing
the arc (i, j). With (iii) we obtain (i, j) ∈ G. On the other hand, for (i, j) ∈ G, the graph
Γ(W#G) contains the cycle (i, j, i) of weight zero, and the claim follows.

Together with Proposition 2.30 this also gives a characterization for the covector graphs
which are contained in the tropical cone tcone(V ). Furthermore, we obtain a corollary
concerning the dimension of a cell.

Corollary 2.39. If G ⊆ B(V ) is a covector graph for V , the dimension of FG(W ) and
thus of XG(V ) equals the number of weak components of G.

Proof. By property (iii) of Proposition 2.38 two nodes in [d] � [n] are connected by a
path in G if and only if they are in a cycle of weight zero in Γ(W#G). By Lemma 2.3(b)
these cycles exactly define the equality partition of FG(W ). Finally, Lemma 2.5 connects
this to the dimension. Furthermore, Proposition 2.30 shows the equality for FG(W ) and
XG(V ).

Remark 2.40. The envelope of V is the set of points (y, z) satisfying

yi − zj ≤ vij for (i, j) ∈ B .

Substituting zj by −zj yields

yi + zj ≤ vij for (i, j) ∈ B , (2.10)

which is the form of the envelope in [DS04]. Maximizing the coordinate sum over the
polyhedron defined in (2.10) is dual to finding a minimum weight matching by Egerváry’s
Theorem [Sch03, Theorem 17.1]. This gives rise to a primal-dual algorithm for computing
matchings and vertex covers; the method is explained in detail in [PS82, Theorem 11.1].
A partial matching of minimal weight in a subgraph can be expanded by growing so-
called ‘Hungarian trees’, which are shortest path trees in a modified graph. The partial
matchings, which encode tight inequalities in the dual description, are collected in the
equality subgraphs. By Proposition 2.38 one can deduce that these equality subgraphs
are exactly the covector graphs of the dual points (y, z).

2.3.3 Tropical half-spaces

The sectors Si(u) with ui 
= ∞ from Lemma 2.26, which are responsible for the com-
binatorial properties of min-tropical point configurations, are precisely the (closures of
the) complements of the max-tropical hyperplane with apex u. The same combinatorial
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objects also control systems of tropical linear inequalities. To see this it is convenient to
switch to max as the tropical addition now.
Let c ∈ Td

min and let I be a non-empty proper subset of [d], i.e., I 
= ∅ and I 
= [d].
Then the set

⋃
�∈I S�(c) is a max-tropical half-space with apex c. This is exactly the set

of points in Rd which satisfies the homogeneous max-tropical linear inequality

max
�∈[d]\I

(−c� + x�) ≤ max
�∈I

(−c� + x�) .

Since here we allow for ∞ as a coordinate in c this definition is more general than the one
in [Jos05]. Notice that −c is an element of Td

max and that the halfspaces are defined over
the max-tropical semiring. Each tropical cone is the intersection of finitely many tropical
half-spaces and conversely. This is proved in [GK11, Theorem 1], based on [Gau92]; note
that the proof of [Jos05, Theorem 3.6] (which claims the same) is not valid as it rests on
[Jos05, Proposition 3.3], which is false. In [But10, §7.6], referring to [BH84], it is shown
that the solution set of any system of max-tropical linear equalities is finitely generated.
Since u ≤ v holds if and only if max(u, v) = v, i.e., since in the tropical setting studying
systems of linear equalities amounts to the same as studying systems of linear inequalities,
that result shows one direction of [GK11, Theorem 1].

Remark 2.41. Let W be a k×k-matrix. Each defining inequality (2.1) of the weighted
digraph polyhedron Q(W ) can be rewritten as

xi − wij ≤ xj for each arc (i, j) in Γ(W ) .

Fixing j and varying i then yields

max
i∈[k]

(xi − wij) ≤ xj for each j ∈ [k] .

Looking at all j simultaneously we obtain the inequality

(−W�)	max x ≤ x

of column vectors. This means that each weighted digraph polyhedron is a max-tropical
cone. In [But10, §1.6.2 and §2] a vector x satisfying the inequality above is called a
‘subeigenvector’ of the matrix −W�.

We now want to introduce notation for inequality descriptions of tropical cones which
is suitable for our combinatorial approach. Let V = (vij) ∈ Td×n

min and let Ψ be a subgraph
of the complete bipartite graph [d]× [n] with arcs directed from [d] to [n]. We define

thalf(V,Ψ) =
⋂
j∈[n]

⋃
(i,j)∈Ψ

Si(v
(j)) . (2.11)

That is, thalf(V,Ψ) comprises those points x ∈ Rd which satisfy the homogeneous
max-tropical linear inequalities

max
i∈[d], (i,j) �∈Ψ

(−vij + xi) ≤ max
i∈[d], (i,j)∈Ψ

(−vij + xi)
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for each j ∈ [n]. In our notation the columns of the matrix V collect the apices of the
tropical half-spaces, and the graph Ψ lists the sectors per half-space. In [But10, §7]
exterior descriptions of tropical cones like (2.11) are discussed under the name ‘two-sided
max-linear systems’. To phrase our results below it is convenient to introduce two sets of
subgraphs of [d]× [n], both of which depend on Ψ. We let

GΨ = {G ⊆ Ψ | every node in [n] has degree 1 in G} and

HΨ = {H ⊆ [d]× [n] | every node in [n] has degree ≥ 1 in Ψ ∩H} ,

which gives the following.

Proposition 2.42. For each graph H ∈ HΨ the cell XH , which may be empty, is
contained in thalf(V,Ψ). Moreover, GΨ ⊆ HΨ, and we have

thalf(V,Ψ) =
⋃

G∈GΨ

⋂
(i,j)∈G

Si(v
(j)) =

⋃
H∈HΨ

⋂
(i,j)∈H

Si(v
(j)) .

Proof. Here the first equality is obtained by reordering the intersections and unions in
the Definition (2.11). For the second equality notice that GΨ ⊆ HΨ. Since for every
graph H ∈ HΨ there is a graph G ∈ GΨ so that XH(V ) ⊆ XG(V ) the claim follows.

The preceding proposition says that a cell XG(V ) =
⋂

(i,j)∈G Si(v
(j)) in the covector

decomposition T (V ) of Rd with covector graph G ⊆ [d] × [n] is contained in the max-
tropical cone thalf(V,Ψ) if and only if no node in [n] is isolated in the intersection of G
and Ψ. Moreover, thalf(V,Ψ) is a union of cells. In this way the Proposition 2.42 can
be seen as some kind of a dual version of [DS04, Theorem 15], which is a key structural
result in tropical convexity.

Corollary 2.43. The covector decomposition of thalf(V,Ψ) induced by the columns of
V is dual to a subcomplex of the regular subdivision of Δd−1 ×Δn−1 with weights given
by V .

Example 2.44. The apices (0, 1, 1)� and (0, 2, 1)� induce the cell decomposition depicted
in Figure 2.13. Every node in the bottom shore in the graph G to the right has degree 1.
Hence, it is the kind of graph contained in GΨ for some appropriate Ψ (for example G
itself). However, the corresponding cell is not full-dimensional since the apices are not in
general position. Indeed, the covector graph of this cell is obtained from G by adding
the arcs (3, 1) and (1, 2).

Remark 2.45. The tangent digraph, defined in [ABGJ15, §3.1], describes the local com-
binatorics at a cell C of thalf(V,Ψ). This is related to the above as follows. Deleting
all nodes in [n] (and incident arcs) for which all incident arcs are contained in Ψ in
the covector graph T(C) and forgetting about the orientation yields the tangent graph
TG(C) of [ABGJ15, §3.1]. By taking the orientation into account and reversing every
arc in TG(C) which is not in TG(C) ∩Ψ from the bottom shore [n] (corresponding to
the hyperplane apices) to the top shore [d] (corresponding to the coordinate directions)
we obtain the tangent digraph.
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Figure 2.13: The left figure shows the cell decomposition induced by two apices which are
not in general position. The right figure depicts a graph G corresponding
to the black marked cell XG on the left

Proposition 2.42 implies that the max-tropical cone thalf(V,Ψ) is compatible with
the covector decomposition of Rd induced by V . Thus it makes sense to talk about the
covector decomposition of a max-tropical cone with respect to a fixed system of defining
tropical half-spaces. This is the polyhedral decomposition formed by the cells which
happen to lie in the tropical cone. A tropical cone is pure if each cell in its covector
decomposition which is maximal with respect to inclusion shares the same dimension.
While the covector decomposition does depend on the choice of the defining inequalities,
pureness does not.

The tropical determinant of a square matrix W = (wij) ∈ Tk×k
min is

tdetW =
⊕

σ∈Sym(k)

⊙
i∈[k]

wi,σ(i)

= min
σ∈Sym(k)

(w1,σ(1) + w2,σ(2) + · · ·+ wk,σ(k)) ,
(2.12)

which is the same as the solution to a minimum weight bipartite matching problem in the
complete bipartite graph [k]× [k]. The tropical determinant vanishes if the minimum in
(2.12) equals ∞ or if it is attained at least twice. In [But10, §6.2.1] a square matrix whose
tropical determinant does not vanish is called ‘strongly regular’. A not necessarily square
matrix is tropically generic if the tropical determinant of no square submatrix vanishes.
A finite set of points is in tropically general position if any matrix whose columns (or
rows) represent those points is tropically generic. Develin and Yu conjectured that a
tropical cone is pure and full-dimensional if and only if it has a half-space description
in which the apices of these half-spaces are in general position [DY07, Conjecture 2.11].
The next result confirms one of the two implications.

Theorem 2.46. Let V and Ψ be as before. If V is tropically generic with respect to the
tropical semiring Tmin then the max-tropical cone thalf(V,Ψ) is pure and full-dimensional.

Proof. As in Proposition 2.42 we consider the graph class GΨ. If we can show that each
ordinary polyhedron XG(V ) =

⋂
(i,j)∈G Si(v

(j)) for G ∈ GΨ is either full-dimensional or
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empty then the claim follows. Proposition 2.30 implies that XG(V ) is the projection of
the weighted digraph polyhedron Q(W#G), which is a face of E(V ) = Q(W ). Assume
that Q(W#G) is feasible. We have to show that XG(V ) is full-dimensional, i.e., it suffices
to show that dimQ(W#G) = d.

In view of Proposition 2.38 together with Corollary 2.39 this will follow if we can show
that no two nodes in [n] are contained in a cycle of weight zero in Γ(W#G). Aiming at an
indirect argument we suppose that such a cycle exists. Let D�N be the vertex set of the
zero cycle (d1, n1, d2, n2, . . . , d1). We have |D| = |N |. Then the arcs (d1, n1), (d2, n2), . . .
form a perfect matching M in D ×N whose weight

∑
i vdi,ni

is minimal by Proposition
2.38. The complementary arcs (n1, d2), (n2, d3), . . . of the cycle yield a second matching
whose weight is the same as the weight of M since the total weight of the cycle is zero.
This entails that the minimum

min
σ

∑
i∈D

viσ(i) ,

where σ ranges over all bijections from D to N , is attained at least twice for the submatrix
of V indexed by D ×N . Hence, the apices are not in general position, and this is the
desired contradiction.

Since the matrix V is tropically generic it is immediate that tcone(V ) has at least one
full-dimensional cell; e.g., see [But10, Theorem 6.2.18] or [DS04, Proposition 24]. Yet, in
general tcone(V ) is not pure; see Example 2.31. The following shows that the reverse
direction of Theorem 2.46 does not hold.

Example 2.47. For

V =

⎛⎝0 0 0 0 0
3 2 1 ∞ ∞
2 2 ∞ 1 3

⎞⎠
and Ψ as in Figure 2.14 we are interested in the max-tropical cone C = thalf(V,Ψ).
Now C is pure, but the first two columns, (0, 3, 2)� and (0, 2, 2)�, of the matrix V are
not in general position with respect to min. Notice that each one of the apices of the
three remaining tropical half-spaces can be moved without changing the feasible set C.
However, the first two tropical half-spaces are essential in the sense that they occur in
any exterior description of C.

A related conjecture from the same paper [DY07, Conjecture 2.10] was recently resolved
by Allamigeon and Katz [AK17].

1 2 3

1 2 3 4 5

Figure 2.14: The graph Ψ for the max-tropical cone C = thalf(V,Ψ) from Example 2.47
and Figure 2.15
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Figure 2.15: The pure max-tropical cone C from Example 2.47. The apices of any max-
tropical half-space description are not in general position with respect to
min

2.3.4 Polytropes

A polytrope is a tropical cone P = tcone(V ) for V ∈ Rd×n, i.e., with a generating matrix
with finite coefficients, which is also convex in the ordinary sense. In that case d generators
suffice [DS04, Proposition 18] and [JK10, Theorem 7]. Therefore we may assume that
n = d. From this we obtain tcone(V ) = Q(V ) = Q(V ∗) in view of Remark 2.25, and
thus any polytrope is a weighted digraph polyhedron; see also [JK10, Proposition 10].
Yet another argument for the same goes through Theorem 2.33 and Lemma 2.7. This
is slightly more general as it takes ∞ coefficients into account. Moreover, the covector
decomposition of P induced by the square matrix V has a single cell. Its projection to
the tropical projective torus Rd/R1 is bounded, namely the polytrope P itself. The latter
also gives a max-tropical exterior description. The polytropes are exactly the ‘alcoved
polytopes of type A’ of Lam and Postnikov [LP07]. The weighted digraph polyhedra
form the natural generalization to polyhedra which are not necessarily bounded. We sum
up our discussion in the following statement.

Proposition 2.48. Let V ∈ Td×n
min such that the min-tropical cone tcone(V ) is also convex

in the ordinary sense. Then there is a d×d-matrix U such that tcone(V ) = Q(U) is a
weighted digraph polyhedron.

In the context of proving a hardness result on the vertex-enumeration of polyhedra
given in terms of inequalities Khachiyan and al. [KBB+08] study the circulation polytope
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of the digraph Γ, which is the set of all points u ∈ RΓ satisfying∑
j:(i,j)∈Γ

uij −
∑

�:(�,i)∈Γ
u�i = 0 for all i ∈ [k]

∑
(i,j)∈Γ

uij = 1

0 ≤ uij for all (i, j) ∈ Γ .

The support set {(i, j) ∈ Γ |uij 
= 0} of a vertex of the circulation polytope defines a cycle
in Γ. Hence, by Lemma 2.1, minimizing the weight function γ(W ) over the circulation
polytope yields a certificate for the feasibility of Q(W ). Tran uses this approach to
characterize the feasibility of polytropes in terms of ordinary inequalities [Tra17, §2.3].

2.3.5 Covector decompositions of tropical projective spaces

The tropical projective space TPd−1
min is defined as the quotient of Td

min \{(∞,∞, . . . ,∞)�}
modulo R1. That is, its points are equivalence classes of vectors with coefficients in
Tmin = R ∪ {∞} with at least one finite entry, up to differences by a real constant; see
[Mik06, Example 3.10]. The tropical projective space TPd−1

min is a natural compactification
of the tropical projective torus Rd/R1. It is easy to see that the pair (TPd−1

min ,R
d/R1) is

homeomorphic to the pair of a (d−1)-simplex and its interior.
We assume that V ∈ Td×n

min has no column identically ∞. Then V gives rise to a
configuration of n labeled points in TPd−1

min . The covector decomposition T (V ) of Rd does
not change if we add a real constant to the entries in any column. So it is an invariant
of that point configuration, and, moreover, T (V ) induces a covector decomposition of
the tropical projective torus Rd/R1. Yet it makes sense to study tropical convexity
and tropical cones also within the compactification TPd−1

min . Our goal is to describe a
decomposition of the tropical projective space into cells. Let Z be a proper subset of [d].
We consider the matrix obtained by removing from V all columns j for which there is an
i ∈ Z with vij 
= ∞. Each row of the resulting matrix with a label in Z has only ∞ as
coefficients. Removing these rows yields yet another matrix, which we denote as V (Z).
Now this matrix induces a covector decomposition of the boundary stratum

TPd−1
min (Z) =

{
(p1, p2, . . . , pd) ∈ TPd−1

min

∣∣∣ pi = ∞ if and only if i ∈ Z
}

,

which is a copy of the tropical projective torus of dimension d− 1− |Z|. In particular,
we have TPd−1

min (∅) = Rd/R1. Notice that for the induced covector decomposition we keep
the original labels of the columns and the rows.

For K ⊆ [d] let b(K) be the vector in Td
min with

b
(K)
i =

{
0 for i ∈ [d] \K
∞ for i ∈ K

.

Consider u ∈ Td
min and let supp(u) = {i ∈ [d] |ui 
= ∞} be the support of u. Then

the recession cone of the weighted digraph polyhedron Si(u) is given by the graph on
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[d] where the nodes in [d] \ supp(u) are isolated and there are arcs from the nodes in
supp(u) \ {i} to i, see Equation (2.7). The supports of the rays of Si(u) are given by the
sets in

K = {A ∪B | A ∈ A, B ∈ B}
where

A = ∅ ∪ {M ∪ {i} | M ⊆ supp(u)} and B =
{
M ⊆ [d] \ supp(u)

}
.

Here, the sets in A correspond to the faces of the pointed part of the recession cone of
Si(u) described by Theorem 2.11. The set B encodes rays arising from the lineality space
of Si(u) which was characterized in Lemma 2.15.

So, it is natural to define

Si(u) = Si(u) ∪
⋃
K∈K

(
b(K) + Si(u)

)
where the ‘+’-operator denotes elementwise ordinary addition of b(K) and the set Si(u).

In the following we will frequently identify subsets of (R ∪ {∞})d with their images
modulo R/1. In particular, we will typically view Si(u) with ui 
= ∞ as a subset of
TPd−1

min .

Lemma 2.49. The set Si(u) for ui 
= ∞ is the compactification of the sector Si(u) in
TPd−1

min .

Consider a cell XG in T (V ) which contains a ray with support Z. Let M be the index
set of the columns of V with vij = ∞ for all i ∈ Z and j ∈ M . Construct the submatrix
Y of V indexed by ([d] \Z)×M and the graph H as the restriction of G to the node set
([d] \ Z) �M .

Lemma 2.50. The cell decomposition of TPmin(Z)
d−1 induced by Y contains the cell

XG(V ) + b(Z) which is given by the covector graph H in the decomposition of R([d]\Z) by
Y . Furthermore, we obtain the alternative description

b(Z) +XG(V ) = b(Z) +
⋂

(i,j)∈G
Si(v(j)) .

Proof. The second claim is merely a reformulation with the definition of Si(u).
The first claim follows if we show that

πZ(XG(V )) = XH(Y ) (2.13)

where πZ is the projection onto the coordinates in [d] \ Z. Since any ray is generated
by the minimal generators of the pointed part of the recession cone and the generators
of the lineality space, at first we assume that Z is the support of a minimal generator
of the pointed part of the recession cone. Setting D′′ = Z in Corollary 2.19 yields that
every shortest path is already defined on ([d] \ Z) � M . Furthermore, the support of
a generator of the lineality space is given by a weak component by Lemma 2.15 what
implies the same statement about the shortest paths for those generators.

Summarizing, equation (2.13) follows with Lemma 2.22.

38



Theorem 2.51. The union of the covector decompositions induced by the matrices V (Z)
where Z ranges over all proper subsets of [d] yields a piecewise linear decomposition of
TPd−1

min .

If the graph B(V ) is weakly connected, then by Lemma 2.15 the intersection poset
generated by the sets {Si(u) |ui 
= ∞} contains a 0-dimensional cell, whence that piecewise
linear decomposition of TPd−1

min is a cell complex.

Proof. By definition as the common refinement of polyhedral complexes the covector
decomposition of Rd/R1 induced by V is a polyhedral complex. The bounded cells
are polytopes and therefore homeomorphic to closed balls. We need to check that the
topology works out right for those cells which are unbounded in Rd/R1. This is gotten
from an induction on d as follows. In the base case d = 1 there is nothing to show since
the tropical projective torus R1/R1 is a single point. For d ≥ 2, by induction, we may
assume that the covector decomposition induced on the closure{

(p1, p2, . . . , pd) ∈ TPd−1
min

∣∣∣ pi = ∞ if i ∈ Z
}

,

of TPd−1
min (Z) yields a cell decomposition if Z is not empty. Now consider Z = ∅ and let

XG(V ) be an unbounded cell with covector G = (G1, G2, . . . , Gd). By Lemma 2.50, the
closure of XG(V ) in TPd−1

min is the union of XG(V ) with all the cells XH(V (Z ′)) where Z ′

ranges over the supports of the rays contained in XG(V ). Here H is the covector which G
induces on TPd−1

min (Z
′) by omitting those Gi with i ∈ Z ′; this union is homeomorphic with

a ball. The same argument also shows that intersections of cells are unions of cells.

By construction one can apply Lemma 2.28 also to the cells in the boundary of the
tropical projective space to check for containment in tcone(V ). Consider z ∈ Td and let
supp(z) = {i ∈ [d] | zi 
= ∞} be its support.

Corollary 2.52. The point z is contained in tcone(V ) if and only if for every i ∈ supp(z)

there is an index s ∈ [n] with z ∈ Si(v(s)) and supp(v(s)) ⊆ supp(z). A point z ∈ Td

is contained in tcone(V ) if and only if for every i ∈ [d] there is an index s ∈ [n] with

z ∈ Si(v(s)).

Example 2.53. Let

V ′ =

⎛⎝0 0 0 0 ∞ ∞
1 0 ∞ ∞ 0 ∞
2 −1 ∞ ∞ ∞ 0

⎞⎠ ,

where d = 3 and n = 6. The third and fourth columns of V ′ are the same. Notice that
the first three columns correspond to the matrix V from Example 2.31. With Z = {1}
we obtain the matrix

V ′(Z) =

( )
0 ∞ 2

∞ 0 3

5 6

,
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where we keep the original row and column labels. The one-dimensional tropical projective
torus B = TP2

min({1}) is trivially subdivided; its covector reads (•, 5, 6). To denote cells
in the boundary we use the symbol • at the component corresponding to an apex to
mark if the cell is in a common boundary stratum with this apex. The union of the
1-dimensional ball B and the unbounded cell in R3/R1 with covector (1234,−,−) yields
the 2-dimensional cell with covector (1234, 5, 6) in the covector decomposition of TP2

min

induced by V ′; see Figure 2.16 and compare with Figure 2.11.

Notice that, while the tropical projective torus works for min and max alike, the
definition of the tropical projective space does depend on the choice of the tropical
addition.

2.3.6 Arrangements of tropical halfspaces

So far we associated with a matrix V ∈ Td×n
min the covector decompositions of Rd and

TPd−1
min , respectively, and Theorem 2.33 describes the min-tropical cone tcone(V ) as a

union of their cells. Choose a subgraph Ψ of the complete bipartite graph [d] × [n]
(with arcs directed from [d] to [n]) as in (2.11). This gives rise to the max-tropical
cone thalf(V,Ψ) =

⋂
j∈[n]

⋃
(i,j)∈Ψ Si(v

(j)), which again is a union of cells from the same

covector decomposition. Here we want to describe yet another cell decomposition of Rd

(or TPd−1
min ), which was introduced in [ABGJ15, §3.2].

For this, we introduce the max-tropical cone with boundary

thalf(V,Ψ) =
⋂
j∈[n]

⋃
(i,j)∈Ψ

Si(v(j)) .

For a vector ε ∈ {±}n of n signs we consider the directed bipartite graph

Ψε =
{
(i, j) ∈ [d]× [n]

∣∣ ((i, j) ∈ Ψ and εj = +
)
or
(
(i, j) 
∈ Ψ and εj = −

)}
.

The construction of Ψε from Ψ amounts to taking the complementary arcs incident to
each node j ∈ [n] with εj = −. We call the max-tropical cone thalf(V,Ψε) the inversion
of thalf(V,Ψ) with respect to ε. As a subset of TPd−1

min the inversion may be empty or not.
In the latter case thalf(V,Ψε) is the signed cell with respect to V , Ψ and ε. Each generic
point, i.e., a point which does not lie on any of the max-tropical hyperplanes whose apices
are columns of V , is contained in a unique signed cell. The trivial inversion with respect
to ε = ++ · · ·+ is the tropical cone thalf(V,Ψ) itself. Each signed cell is a union of cells
of the covector decomposition. So Theorem 2.51 together with Proposition 2.42 entails
the following.

Corollary 2.54. The signed cells thalf(V,Ψε)/R1, where ε ranges over all choices of
sign vectors, generate a piecewise linear decomposition of TPd−1

min .
Furthermore, a cell with graph G in the covector decomposition of TPd−1

min by V is
contained in a cell thalf(V,Ψε) if and only if Ψε ∩G has no isolated node.

The decomposition into signed cells is a tropical analogue of the decomposition into
polyhedral cells defined by an ordinary affine hyperplane arrangement. As in Theorem 2.51
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Figure 2.16: Covector decomposition (top) and signed cell decomposition (bottom) in
the tropical projective plane
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that piecewise linear decomposition is a cell complex, provided that B(V ) is weakly
connected.

Example 2.55. Figure 2.16 shows the signed cell decomposition of TP2
min induced by

the matrix V from Example 2.31 with the extra columns (∞, 0,∞)� and (∞,∞, 0)�

and the directed bipartite graph Ψ ⊂ {1, 2, 3} × {1, 2, 3, 4, 5} with the six directed edges
(1, 1), (2, 1), (3, 2), (1, 3), (2, 4), (3, 5). The six signed cells correspond to the sign vectors
++++++, −+++++ and +−++++. The remaining 29 inversions are empty. Finally,
the three inversions −+•••+, +−••+• and +−++•• form a decomposition of the
boundary of the tropical projective plane.
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3 Linear programming over Puiseux
fractions

This chapter is taken from the paper “Linear Programs and Convex Hulls Over Fields
of Puiseux Fractions” [JLLS16] by Michael Joswig, Georg Loho, Benjamin Lorenz and
Benjamin Schröter. It is published in “Mathematical Aspects of Computer and Informa-
tion Sciences: 6th International Conference, MACIS 2015”, pages 429–445. The final
publication is available at Springer via
https://doi.org/10.1007/978-3-319-32859-1_37

3.1 Introduction

It is well known and not difficult to see that the standard concepts from linear programming
(LP), e.g., the Farkas Lemma and LP duality, carry over to an arbitrary ordered field; e.g.,
see [CK70, Section II] or [Jer73, §2.1]. Traces of this can already be found in Dantzig’s
monograph [Dan63, Chapter 22]. This entails that any algorithm whose correctness rests
on these LP corner stones is valid over any ordered field. In particular, this holds for
the simplex method and usual convex hull algorithms. A classical construction, due to
Hilbert, turns a field of rational functions, e.g., with real coefficients, into an ordered
field; see [vdW93, §147]. In [Jer73] Jeroslow discussed these fields in the context of linear
programming in order to provide a rigorous foundation of the so-called “big M method”.
The purpose of this chapter is to describe the implementation of the simplex method
and of a convex hull algorithm over fields of this kind in the open source software system
polymake [GJ00] as well as the related mathematical concepts in relation with tropical
linear programming.

Hilbert’s ordered field of rational functions is a subfield of the field of formal Puiseux
series R{{t}} with real coefficients. The latter field is real-closed by the Artin–Schreier
Theorem [SGHL07, Theorem 12.10]; by Tarski’s Principle (cf. [Tar48]) this implies that
R{{t}} has the same first order properties as the reals. The study of polyhedra over R{{t}} is
motivated by tropical geometry [DY07], especially tropical linear programming [ABGJ15].
The connection of the latter with classical linear programming has recently lead to a
counter-example [ABGJ14b] to a “continuous analogue of the Hirsch conjecture” by
Deza, Terlaky and Zinchenko [DTZ09]. In terms of parameterized linear optimization
(and similarly for the convex hull computations) our approach amounts to computing
with sufficiently large (or, dually, sufficiently small) positive real numbers. Here we do
not consider the more general algorithmic problem of stratifying the parameter space to
describe all optimal solutions of a linear program for all choices of parameters; see, e.g.,
[JKM08] for work into that direction.
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This chapter is organized as follows. We start out with summarizing known facts
on ordered fields. Then we describe a specific field, Q{t}, which is the field of rational
functions with rational coefficients and rational exponents. This is a subfield of Q{{t}},
which we call the field of Puiseux fractions. It is our opinion that this is a subfield of
the formal Puiseux series which is particularly well suited for exact computations with
(some) Puiseux series; see [MC13] for an entirely different approach. In the context of
tropical geometry Markwig [Mar10] constructed a much larger field, which contains the
classical Puiseux series as a proper subfield. For our applications it is relevant to study
the evaluation of Puiseux fractions at sufficiently large rational numbers. In Section 3.3
we develop what this yields for comparing convex polyhedra over R{{t}} with ordinary
convex polyhedra over the reals. The tropical geometry point of view enters the picture in
Section 2.3. We give an algorithm for solving the dual tropical convex hull problem, i.e.,
the computation of generators of a tropical cone from an exterior description. Allamigeon,
Gaubert and Goubault gave a combinatorial algorithm for this in [AGG13], while we use
a classical (dual) convex hull algorithm and apply the valuation map. The benefit of our
approach is more geometric than in terms of computational complexity: in this way we
will be able to study the fibers of the tropicalization map for classical versus tropical
cones for specific examples. Section 3.5 sketches the polymake implementation of the
Puiseux fraction arithmetic and the LP and convex hull algorithms. The LP solver is a
dual simplex algorithm with steepest edge pivoting, and the convex hull algorithm is the
classical beneath-and-beyond method [Ede87] [Jos03]. An overview with computational
results is given in Section 3.6.

3.2 Ordered Fields and Rational Functions

A field F is ordered if there is a total ordering ≤ on the set F such that for all a, b, c ∈ F
the following conditions hold:
(i) if a ≤ b then a+ c ≤ b+ c,
(ii) if 0 ≤ a and 0 ≤ b then 0 ≤ a · b.

Any ordered field necessarily has characteristic zero. Examples include the rational
numbers Q, the reals R and any subfield in between.

Given an ordered field F we can look at the ring of univariate polynomials F[t] and its
quotient field F(t), the field of rational functions in the indeterminate t with coefficients
in F. On the ring F[t] we obtain a total ordering by declaring p < q whenever the leading
coefficient of q − p is a positive element in F. Extending this ordering to the quotient
field by letting

u

v
<

p

q
: ⇐⇒ uq < vp ,

where the denominators v and q are assumed positive, turns F(t) into an ordered field; see,
e.g., [vdW93, §147]. This ordered field is called the “Hilbert field” by Jeroslow [Jer73].

By definition, the exponents of the polynomials in F[t] are natural numbers. However,
conceptually, there is no harm in also taking negative integers or even arbitrary rational
numbers as exponents into account, as this can be reduced to the former by clearing
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denominators and subsequent substitution. For example,

2t3/2 − t−1

1 + 3t−1/3
=

2t5/2 − 1

t+ 3t2/3
=

2s15 − 1

s6 + 3s4
, (3.1)

where s = t1/6. In this way that fraction is written as an element in the field Q(t1/6) of
rational functions in the indeterminate s = t1/6 with rational coefficients. Further, if
p ∈ F(t1/α) and q ∈ F(t1/β), for natural numbers α and β, then the sum p+ q and the
product p · q are contained in F(t1/ gcd(α,β)). This shows that the union

F{t} =
⋃
ν≥1

F(t1/ν) (3.2)

is again an ordered field. We call its elements Puiseux fractions. The field F{t} is a
subfield of the field F{{t}} of formal Puiseux series, i.e., the formal power series with
rational exponents of common denominator. For an algorithmic approach to general
Puiseux series see [MC13].

The map val which sends the rational function p/q, where p, q ∈ F[t1/ν ], to the number
degt p− degt q defines a non-Archimedean valuation on F(t). Here we let val(0) = −∞.
As usual the degree is the largest occurring exponent. The valuation map extends to
Puiseux series. More precisely, for f, g ∈ F{t} we have the following:
(i) val(f · g) = val(f) + val(g),
(ii) val(f + g) ≤ max(val(f), val(g)).
If F = R is the field of real numbers we can evaluate a Puiseux fraction f ∈ R{t} at a

real number τ to obtain the real number f(τ). This map is defined for all τ > 0 except
for the finitely many poles, i.e., zeros of the denominator. Restricting the evaluation to
positive numbers is necessary since we are allowing rational exponents. The valuation
map satisfies the equation

lim
τ→∞ logτ |f(τ)| = val(f) . (3.3)

That is, seen on a logarithmic scale, taking the valuation of f corresponds to interpreting
t like an infinitesimally large number. Reading the valuation map in terms of the limit
(3.3) is known as Maslov dequantization, see [Mas86].

Occasionally, it is also useful to be able to interpret t as a small infinitesimal. To this
end, one can define the dual degree deg∗, which is the smallest occurring exponent. This
gives rise to the dual valuation map val∗(p/q) = deg∗t p− deg∗t q which yields

val∗(f + g) ≥ min(val∗(f), val∗(g)) and lim
τ→0

logτ |f(τ)| = val∗(f) .

Changing from the primal to the dual valuation is tantamount to substituting t by t−1.

Remark 3.1. The valuation theory literature often employs the dual definition of a
valuation. The equation (3.3) is the reason why we usually prefer to work with the
primal.
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Up to isomorphism of valuated fields the valuation on the field F(t) of rational functions
is unique, e.g., see [vdW93, §147]. As a consequence the valuation on the slightly larger
field of Puiseux fractions is unique, too.

To close this section let us look at the algorithmically most relevant case F = Q. Then,
in general, the evaluation map sends positive rationals to not necessarily rational numbers,
again due to fractional exponents. By clearing denominators in the exponents one can
see that evaluating at σ > 0 ends up in the totally real number field Q( ν

√
σ) for some

positive integer ν. For instance, evaluating the Puiseux fraction from Example (3.1)
would give an element of Q( 6

√
σ).

3.3 Parameterized Polyhedra

Consider a matrix A ∈ F{t}m×(d+1). Then the set

C :=
{
x ∈ F{t}d+1

∣∣∣ A · x ≥ 0
}

is a polyhedral cone in the vector space F{t}d+1. Equivalently, C is the set of feasible
solutions of a linear program with d + 1 variables over the ordered field F{t} with
m homogeneous constraints, the rows of A. The Farkas–Minkowski–Weyl Theorem
establishes that each polyhedral cone is finitely generated. A proof for this result on
polyhedral cones over the reals can be found in [Zie95, §1.3 and §1.4] under the name
“Main theorem for cones”. It is immediate to verify that the arguments given hold over
any ordered field. Therefore, there is a matrix B ∈ F{t}(d+1)×n, for some n ∈ N, such
that

C = {B · a | a ∈ F{t}n, a ≥ 0} . (3.4)

The columns of B are points and the cone C is the non-negative linear span of those.
Let L be the lineality space of C, i.e., L is the unique maximal linear subspace of

F{t}d+1 which is contained in C. If dimL = 0 the cone C is pointed. Otherwise, the
set C/L is a pointed polyhedral cone in the quotient space F{t}d+1/L. A face of C is
the intersection of C with a supporting hyperplane. The faces are partially ordered
by inclusion. Each face contains the lineality space. Adding the entire cone C as an
additional top element we obtain a lattice, the face lattice of C. The maximal proper
faces are the facets which form the co-atoms in the face lattice. The combinatorial type of
C is the isomorphism class of the face lattice (e.g., as a partially ordered set). Notice that
our definition says that each cone is combinatorially equivalent to its quotient modulo its
lineality space.
Picking a positive element τ yields matrices A(τ) ∈ Fm×(d+1) and B(τ) ∈ F(d+1)×n

as well as a polyhedral cone C(τ) = {x ∈ Fd+1 |A(τ) · x ≥ 0} by evaluating the Puiseux
fractions at the parameter τ . Here and below we will assume that τ avoids the at most
finitely many poles of the (m+ n) · (d+ 1) coefficients of A and B.

Theorem 3.2. There is a positive element τ0 ∈ F so that for every τ > τ0 we have

C(τ) = {B(τ) · α | α ∈ Fn, α ≥ 0} ,
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and evaluating at τ maps the lineality space of C to the lineality space of C(τ). More-
over, the polyhedral cones C and C(τ) over F{t} and F, respectively, share the same
combinatorial type.

Proof. First we show that an orthogonal basis of the lineality space L evaluates to an
orthogonal basis of the lineality space of C(τ). For this, consider two vectors x, y ∈ F{t}d+1

and pick τ large enough to avoid their poles and zeros. Then, the scalar product of x
and y vanishes if and only if the scalar product of x(τ) and y(τ) does. Hence, the claim
follows.

Now we can assume that the polyhedral cone C is pointed, i.e., it does not contain any
linear subspace of positive dimension. If this is not the case the subsequent argument
applies to the quotient C/L.

Employing orthogonal bases, as for the lineality spaces above, shows that the evaluation
maps the linear hull of C to the linear hull of C(τ), preserving the dimension. So we may
assume that C is full-dimensional, as otherwise the arguments below hold in the linear
hull of C.

Let � ≤
(
m
d

)
be the number of d-element sets of linearly independent rows of the matrix

A. For each such set of rows the set of solutions to the corresponding homogeneous
system of linear equations is a one-dimensional subspace of F{t}(d+1). For each such
system of homogeneous linear equations pick two non-zero solutions, which are negatives
of each other. We arrive at 2� vectors in F{t}(d+1) which we use to form the columns of
the matrix Z ∈ F{t}(d+1)×2�.

By the Farkas–Minkowski–Weyl theorem, we may assume that the columns of B from
(3.4) only consist of the rays of C and that the rays of C form a subset of the columns of
Z. In particular, the columns of B occur in Z. Since the cone C is pointed, the matrix
B contains at most one vector from each opposite pair of the columns of Z. This entails
that B has at most � columns.

Further, the real matrix Z(τ) contains all rays of C(τ) for each τ that avoids the poles
of A and Z. In the following, we want to show that those columns of Z(τ) which form
the rays of C(τ) are exactly the columns of B(τ).
We define s(j, k) ∈ F{t} to be the scalar product of the jth row of A and the kth

column of Z. The m · 2� signs of the scalar products s(j, k), for j ∈ [m] and k ∈ [2�],
form the chirotope of the linear hyperplane arrangement defined by the rows of A (in
fact, due to taking two solutions for each homogenous system of linear equations, we
duplicate the information of the chirotope). For almost all τ ∈ F evaluating the Puiseux
fractions s(j, k) at τ yields an element of F. For sufficiently large τ the sign of s(j, k)
agrees with its evaluation. This follows from the definition of the ordering on F{t}, cf.
[Jer73, Proposition, §1.3].

Let τ0 ∈ F be larger than all the at most finitely many poles of A and Z. Further, let
τ0 be large enough such that the chirotope of A(τ) agrees with the chirotope of A for all
τ > τ0.

By construction the rays of C correspond to the non-negative columns of the chirotope
whose support, given by the 0 entries, is maximal with respect to inclusion; these are
exactly the columns of B. The corresponding columns of the chirotope of A(τ), for

47



x1

x2

x1

x2

x1

x2

Figure 3.1: Polygon depending on a real parameter as defined in Example 3.3

τ > τ0, yield the rays of C(τ), which, hence, are the columns of B(τ).
The same holds for the facets of C and C(τ). The facets of C correspond to the

non-negative rows of the chirotope whose support, given by the 0 entries, is maximal
with respect to inclusion.

Now the claim follows since the face lattice of a polyhedral cone is determined by the
incidences between the facets and the rays.

A statement related to Theorem 3.2 occurs in Benchimol’s PhD thesis [Ben14]. The
Proposition 5.12 in [Ben14] discusses the combinatorial structure of tropical polyhedra
(arising as the feasible regions of tropical linear programs). Yet here we consider the
relationship between the combinatorial structure of Puiseux polyhedra and their evalu-
ations over the reals. As in the proof of [Ben14, Proposition 5.12] we could derive an
explicit upper bound on the optimal τ0. To this end one can estimate the coefficients of
the Puiseux fractions in Z, which are given by determinantal expressions arising from
submatrices of A. Their poles and zeros are bounded by Cauchy bounds (e.g., see [RS02,
Thm. 8.1.3]) depending on those coefficients. We leave the details to the reader.

A convex polyhedron is the intersection of finitely many linear inequalities. It is a
called a polytope if it is bounded. Restricting to cones allows a simple description in
terms of homogeneous linear inequalities. Yet this encompasses arbitrary polytopes and
polyhedra, as they can equivalently be studied through their homogenizations. In fact,
all implementations in polymake are based on this principle. For further reading we
refer to [Zie95, §1.5]. We visualize Theorem 3.2 with a very simple example.

Example 3.3. Consider the polytope P in R{t}2 for large t defined by the four inequalities

x1, x2 ≥ 0, x1 + x2 ≤ 3, x1 − x2 ≤ t .

The evaluations at τ ∈ {0, 1, 3} are depicted in Figure 3.1. For τ = 0 we obtain a triangle,
for τ = 1 a quadrangle and for τ ≥ 3 a triangle again. The latter is the combinatorial
type of the polytope P over the field of Puiseux fractions with real coefficients.
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Corollary 3.4. The set of combinatorial types of polyhedral cones which can be realized
over F{t} is the same as over F.

Proof. One inclusion is trivial since F is a subfield of F{t}. The other inclusion follows
from the preceding result.

For A ∈ F{t}m×d, b ∈ F{t}m and c ∈ F{t}d we consider the linear program LP(A, b, c)
over F{t} which reads as

maximize c� · x
subject to A · x = b , x ≥ 0 .

(3.5)

For each positive τ ∈ F (which avoids the poles of the Puiseux fractions which arise as
coefficients) we obtain a linear program LP(A(τ), b(τ), c(τ)) over F. Theorem 3.2 now
has the following consequence for parametric linear programming.

Corollary 3.5. Let x∗ ∈ F{t}d be an optimal solution to the LP (3.5) with optimal value
v ∈ F{t}. Then there is a positive element τ0 ∈ F so that for every τ > τ0 the vector
x∗(τ) is an optimal solution for LP(A(τ), b(τ), c(τ)) with optimal value v(τ).

The above corollary was proved by Jeroslow [Jer73, §2.3]. His argument, based on
controlling signs of determinants, is essentially a local version of our Theorem 3.2.
Moreover, determining all the rays of a polyhedral cone can be reduced to solving
sufficiently many LPs. This could also be exploited to derive another proof of Theorem 3.2
from Corollary 3.5.

Remark 3.6. It is worth to mention the special case of a linear program over the field
F{t}, where the coordinates of the linear constraints, in fact, are elements of the field F of
coefficients, but the coordinates of the linear objective function are arbitrary elements in
F{t}. That is, the feasible domain is a polyhedron, P , over F. Evaluating the objective
function at some τ ∈ F makes one of the vertices of P optimal. Solving for all values
of τ , in general, amounts to computing the entire normal fan of the polyhedron P . This
is equivalent to solving the dual convex hull problem over F for the given inequality
description of P ; see also [JKM08]. Here we restrict our attention to solving parametric
linear programs via Corollary 3.5.

The next example is a slight variation of a construction of Goldfarb and Sit [GS79].
This is a class of linear optimization problems on which certain versions of the simplex
method perform poorly.

Example 3.7. We fix d > 1 and pick a positive δ ≤ 1
2 as well as a positive ε < δ

2 . Consider
the linear program

maximize
∑d

i=1 δ
d−ixi

subject to 0 ≤ x1 ≤ εd−1

xj−1 ≤ δxj ≤ εd−jδ − xj−1 for 2 ≤ j ≤ d .

The feasible region is combinatorially equivalent to the d-dimensional cube. Applying the
simplex method with the “steepest edge” pivoting strategy to this linear program with
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Figure 3.2: The 3-dimensional Goldfarb–Sit cube.

the origin as the start vertex visits all the 2d vertices. Moreover, the vertex-edge graph
with the orientation induced by the objective function is isomorphic to (the oriented
vertex-edge graph of) the Klee–Minty cube [KM72]. See Figure 3.2 for a visualization of
the 3-dimensional case.
We may interpret this linear program over the reals or over (R{δ}){ε}, the field of

Puiseux fractions in the indeterminate ε with coefficients in the field R{δ}. This depends
on whether we want to view δ and ε as indeterminates or as real numbers. Here we consider
the ordering induced by the dual valuation val∗, i.e., δ and ε are small infinitesimals,
where ε � δ. Two more choices arise from considering ε a constant in R{δ} or, conversely,
δ a constant in R{ε}. Note that our constraints on δ and ε are feasible in all four cases.

Our third and last example is a class of linear programs occurring in [ABGJ14b]. For
these the central path of the interior point method with a logarithmic barrier function
has a total curvature which is exponential as a function of the dimension.

Example 3.8. Given a positive integer r, we define a linear program over the field Q{t}
(with the primal valuation) in the 2r + 2 variables u0, v0, u1, v1, . . . , ur, vr as follows:

minimize v0

subject to u0 ≤ t , v0 ≤ t2

ui ≤ tui−1 , ui ≤ tvi−1

vi ≤ t1−
1

2i (ui−1 + vi−1)

}
for 1 ≤ i ≤ r

ur ≥ 0 , vr ≥ 0 .

Here it would be interesting to know the exact value for the optimal τ0 in Theorem 3.2,
as a function of r. Experimentally, based on the method described below, we found τ0 = 1
for r = 1 and τ0 = 22

r−1
for r at most 5. We conjecture the latter to be the true bound

in general.

To find the optimal bound for a given constraint matrix A we can use the following
method. One can solve the dual convex hull problem for the cone C, which is the feasible
region in homogenized form, to obtain a matrix B whose columns are the rays of C. This
also yields a submatrix of A corresponding to the rows which define facets of C. Without
loss of generality we may assume that that submatrix is A itself. Let τ0 be the largest

50



zero or pole of any (Puiseux fraction) entry of the matrix A ·B. Then for every value
τ > τ0 the sign patterns of (A ·B)(τ) and A ·B coincide, and so do the combinatorial
types of C and C(τ). Determining the zeros and poles of a Puiseux fraction amounts to
factorizing univariate polynomials.

3.4 Tropical Dual Convex Hulls

Tropical geometry is the study of the piecewise linear images of algebraic varieties, defined
over a field with a non-Archimedean valuation, under the valuation map; see [MS15] for
an overview. The motivation for research in this area comes from at least two different
directions. First, tropical varieties still retain a lot of interesting information about
their classical counterparts. Therefore, passing to the tropical limit opens up a path
for combinatorial algorithms to be applied to topics in algebraic geometry. Second, the
algebraic geometry perspective offers opportunities for optimization and computational
geometry. Here we will discuss how classical convex hull algorithms over fields of Puiseux
fractions can be applied to compute tropical convex hulls; see [Jos09] for a survey on the
subject; a standard algorithm is the tropical double description method of [AGG10].

The tropical semiring T consists of the set R ∪ {−∞} together with u⊕ v = max(u, v)
as the addition and u	 v = u+ v as the multiplication. Extending these operations to
vectors turns Td+1 into a semimodule. A tropical cone is the sub-semimodule

tcone(G) = {λ1 	 g1 ⊕ · · · ⊕ λn 	 gn | λ1, . . . , λn ∈ T}

generated from the columns g1, . . . , gn of the matrix G ∈ T(d+1)×n. Similar to classical
cones, tropical cones admit an exterior description [GK11]. It is known that every tropical
cone is the image of a classical cone under the valuation map val : R{{t}} → T; see [DY07].
Based on this idea, we present an algorithm for computing generators of a tropical cone
from a description in terms of tropical linear inequalities; see Algorithm 1 below.
Before we can start to describe that algorithm we first need to discuss matters of

general position in the tropical setting. The tropical determinant of a square matrix
U ∈ T�×� is given by

tdet(U) =
⊕
σ∈S�

u1π(1) 	 · · · 	 u�π(�) . (3.6)

Here S� is the symmetric group of degree �; computing the tropical determinant is the
same as solving a linear assignment optimization problem. Consider a pair of matrices
H+, H− ∈ Tm×(d+1) which serve as an exterior description of the tropical cone

Q =
{
z ∈ T(d+1)

∣∣∣ H+ 	 z ≥ H− 	 z
}

. (3.7)

In contrast to the classical situation we have to take two matrices into account. This
is due to the lack of an additive inverse operation. We will assume that μ(i, j) :=
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min(H+
ij , H

−
ij ) = −∞ for any pair (i, j) ∈ [m]× [d+ 1], i.e., for each coordinate position

at most one of the corresponding entries in the two matrices is finite. Then we can define

χ(i, j) :=

⎧⎪⎨⎪⎩
1 if μ(i, j) = H+

ij 
= −∞
−1 if μ(i, j) = H−

ij 
= −∞
0 otherwise .

For each term u1π(1) 	 · · · 	 u�π(�) in (3.6) we define its sign as

sgn(π) · χ(1, π(1)) · · ·χ(�, π(�)) ,

where sgn(π) is the sign of the permutation π. Now the exterior description (3.7) of the
tropical cone Q is tropically sign-generic if for each square submatrix U of H+ ⊕H−

we have tdet(U) 
= −∞ and, moreover, the signs of all terms u1π(1) 	 · · · 	 u�π(�) which
attain the maximum in (3.6) agree. By looking at 1×1-submatrices U we see that in this
case all coefficients of the matrix H+ ⊕H− are finite and thus χ(i, j) is never 0.

Algorithm 1 A dual tropical convex hull algorithm

Input: pair of matrices H+, H− ∈ Tm×(d+1) which provide a tropically sign-generic
exterior description of the tropical cone Q from (3.7)

Output: generators for Q
1: pick two matrices A+, A− ∈ R{{t}}m×(d+1) with strictly positive entries such that

val(A+) = H+ and val(A−) = H−

2: apply a classical dual convex hull algorithm to determine a matrix B ∈ R{{t}}(d+1)×n

such that
{B · a | a ∈ R{{t}}n, a ≥ 0} =

{
x ∈ R{{t}}(d+1)

∣∣ (A+ −A−) · x ≥ 0, x ≥ 0
}

3: return val(B)

Correctness of Algorithm 1. The main lemma of tropical linear programming [ABGJ15,
Theorem 16] says the following. In the tropically sign-generic case, an exterior description
of a tropical cone can be obtained from an exterior description of a classical cone over
Puiseux series by applying the valuation map to the constraint matrix coefficient-wise.
This statement assumes that the classical cone is contained in the non-negative orthant.
We infer that

Q =
{
z ∈ Tm×(d+1)

∣∣∣ H+ 	 z ≥ H− 	 z
}

= val
({

x ∈ R{{t}}m×(d+1)
∣∣∣ A+ · x ≥ A− · x, x ≥ 0

})
= val

({
B · a

∣∣ a ∈ R{{t}}n, x ≥ 0
})

.

Now [DY07, Proposition 2.1] yieldsQ = val({B · a | a ∈ R{{t}}n, x ≥ 0}) = tcone(val(B)).
This ends the proof.
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The correctness of our algorithm is not guaranteed if the genericity condition is not
satisfied. The crucial properties of the lifted matrices A+, A− are not necessarily fulfilled.
It is an open question of how an exterior description over T is related to an exterior
description over R{{t}} in the general setting. We are even lacking a convincing concept
for the “facets” of a general tropical cone.

3.5 Implementation

As a key feature the polymake system is designed as a Perl/C++ hybrid, that is, both
programming languages are used in the implementation and also both programming
languages can be employed by the user to write further code. One main advantage of Perl
is the fact that it is interpreted; this makes it suitable as the main front end for the user.
Further, Perl has its strengths in the manipulation of strings and file processing. C++ on
the other hand is a compiled language with a powerful template mechanism which allows
to write very abstract code which, nonetheless, is executed very fast. Our implementation,
in C++, makes extensive use of these features. The implementation of the dual steepest
edge simplex method, contributed by Thomas Opfer, and the beneath-beyond method for
computing convex hulls (see [Ede87] and [Jos03]) are templated. Therefore polymake
can handle both computations for arbitrary number field types which encode elements in
an ordered field.
Based on this mechanism we implemented the type RationalFunction which de-

pends on two generic template types for coefficients and exponents. Note that the field
of coefficients here does not have to be ordered. Our proof-of-concept implementation
employs the classical Euclidean GCD algorithm for normalization. Currently the numer-
ator and the denominator are chosen coprime such that the denominator is normalized
with leading coefficient one. For the most interesting case F = Q it is known that the
coefficients of the intermediate polynomials can grow quite badly, e.g., see [vzGG03,
Example 1]. Therefore, as expected, this is the bottleneck of our implementation. In a
number field or in a field with a non-Archimedean valuation the most natural choice for
a normalization is to pick the elements of the ring of integers as coefficients. The reason
for our choice is that this more generic design does not make any assumption on the field
of coefficients. This makes it very versatile, and it fits the overall programming style
in polymake. A fast specialization to the rational coefficient case could be based on
[vzGG03, Algorithm 11.4]. This is left for a future version.

The polymake implementation of Puiseux fractions F{t} closely follows the construc-
tion described in Section 3.2. The new number type is derived from RationalFunction
with overloaded comparison operators and new features such as evaluating and converting
into TropicalNumber. An extra template parameter MinMax allows to choose whether
the indeterminate t is a small or a large infinitesimal.

There are other implementations of Puiseux series arithmetic, e.g., in Magma [BCP97]
or MATLAB [MAT14]. However, they seem to work with finite truncations of Puiseux
series and floating-point coefficients. This does not allow for exact computations of the
kind we are interested in.
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3.6 Computations

We briefly show how our polymake implementation can be used. Further, we report on
timings for our LP solver, tested on the Goldfarb–Sit cubes from Example 3.7, and for
our (dual) convex hull code, tested on the polytopes with a “long and winding” central
path from Example 3.8.

3.6.1 Using polymake

The following code defines a 3-dimensional Goldfarb–Sit cube over the field Q{t}, see
Example 3.7. We use the parameters ε = t and δ = 1

2 . The template parameter
Min indicates that the ordering is induced by the dual valuation val∗, and hence the
indeterminate t plays the role of a small infinitesimal.

polytope > $monomial=new UniMonomial<Rational,Rational>(1);
polytope > $t=new PuiseuxFraction<Min>($monomial);
polytope > $p=goldfarb_sit(3,2*$t,1/2);

The polytope object, stored in the variable $p, is generated with a facet description
from which further properties will be derived below. It is already equipped with a
LinearProgram subobject encoding the objective function from Example 3.7. The
following lines show the maximal value and corresponding vertex of this linear program
as well as the vertices derived from the outer description. Below, we present timings for
such calculations.

polytope > print $p->LP->MAXIMAL_VALUE;
(1)
polytope > print $p->LP->MAXIMAL_VERTEX;
(1) (0) (0) (1)
polytope > print $p->VERTICES;
(1) (0) (0) (0)
(1) (tˆ2) (2*tˆ2) (4*tˆ2)
(1) (0) (t) (2*t)
(1) (tˆ2) (t -2*tˆ2) (2*t -4*tˆ2)
(1) (0) (0) (1)
(1) (tˆ2) (2*tˆ2) (1 -4*tˆ2)
(1) (0) (t) (1 -2*t)
(1) (tˆ2) (t -2*tˆ2) (1 -2*t + 4*tˆ2)

As an additional benefit of our implementation we get numerous other properties for free.
For instance, we can compute the parameterized volume, which is a polynomial in t.

polytope > print $p->VOLUME;
(tˆ3 -4*tˆ4 + 4*tˆ5)

That polynomial, as an element of the field of Puiseux fractions, has a valuation, and we
can evaluate it at the rational number 1

12 .

polytope > print $p->VOLUME->val;
3
polytope > print $p->VOLUME->evaluate(1/12);
25/62208
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3.6.2 Linear Programs

We have tested our implementation by computing the linear program of Example 3.7
with polyhedra defined over Puiseux fractions.

The simplex method in polymake is an implementation of a (dual) simplex with a
(dual) steepest edge pricing. We set up the experiment to make sure our Goldfarb–Sit
cube LPs behave as badly as possible. That is, we force our implementation to visit all
n = 2d vertices, when d is the dimension of the input. Table 3.1 illustrates the expected
exponential growth of the execution time of the linear program. In three of our four
experiments we choose δ as 1

2 . The computation over Q{ε} costs a factor of about 80 in
time, compared with the rational cubes for a modest ε = 1

6 . However, taking a small ε
whose binary encoding takes more than 18,000 bits is substantially more expensive than
the computations over the field Q{ε} of Puiseux fractions. Taking δ as a second small
infinitesimal is possible but prohibitively expensive for dimensions larger than twelve.

3.6.3 Convex Hulls

We have also tested our implementation by computing the vertices of the polytope
from Example 3.8. For this we used the client long and winding which creates the
d = (2r + 2)-dimensional polytope given by m = 3r + 4 facet-defining inequalities.
Over the rationals we evaluated the inequalities at 22

r
which probably gives the correct

combinatorics; see the discussion at the end of Example 3.8. This very choice forces the
coordinates of the defining inequalities to be integral, such that the polytope is rational.
The number of vertices n is derived from that rational polytope. The running times grow
quite dramatically for the parametric input. This overhead could be reduced via a better
implementation of the Puiseux fraction arithmetic.

3.6.4 Experimental Setup

Everything was calculated on the same Linux machine with polymake perpetual beta
version 2.15-beta3 which includes the new number type, the templated simplex algorithm
and the templated beneath-and-beyond convex hull algorithm. All timings were measured
in CPU seconds and averaged over ten iterations. The simplex algorithm was set to use
only one thread.

All tests were done on openSUSE 13.1 (x86 64), with Linux kernel 3.11.10-25, clang 3.3
and perl 5.18.1. The rational numbers use a C++-wrapper around the GMP library ver-
sion 5.1.2. As memory allocator polymake uses the pool allocator from libstdc++,
which was version 4.8.1 for the experiments. The hardware for all tests was:

Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz
bogomips: 6400.21
MemTotal: 32928276 kB
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Table 3.1: Timings (in seconds) for the Goldfarb–Sit cubes of dimension d with δ = 1
2 .

For ε we tried a small infinitesimal as well as two rational numbers, one with
a short binary encoding and another one whose encoding is fairly large. For
comparison we also tried both parameters as indeterminates.

d m n Q{ε} Q Q (Q{δ}){ε}
ε ε = 1

6 ε = 2
174500

ε � δ

3 6 8 0.010 0.003 0.005 0.101
4 8 16 0.026 0.001 0.017 0.353
5 10 32 0.064 0.002 0.065 1.034
6 12 64 0.157 0.007 0.253 2.877
7 14 128 0.368 0.006 0.829 7.588
8 16 256 0.843 0.016 2.643 19.226
9 18 512 1.906 0.039 7.703 47.806
10 20 1024 4.258 0.090 21.908 118.106
11 22 2048 9.383 0.191 59.981 287.249
12 24 4096 20.583 0.418 160.894 687.052

Table 3.2: Timings (in seconds) for convex hull computation of the feasibility set from
Example 3.8. All timings represent an average over ten iterations. If any test
exceeded a one hour time limit this and all larger instances of the experiment
were skipped and marked −.

r d m n Q{t} Q

1 4 7 11 0.018 0.000
2 6 10 28 0.111 0.000
3 8 13 71 0.754 0.010
4 10 16 182 15.445 0.036
5 12 19 471 1603.051 0.150
6 14 22 1226 − 0.737
7 16 25 3201 − 4.001
8 18 28 8370 − 25.093
9 20 31 21901 − 223.240

10 22 34 57324 − 1891.133
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4 Abstract tropical linear programming

4.1 Introduction

Tropical linear programming seeks for a point which fulfills all the inequalities in a tropical
linear inequality system. These inequalities are of the form

min {ai + xi | i ∈ I} ≤ min {a� + x� | � ∈ [d] \ I} ,

where I ⊆ [d] and a1, . . . , ad are elements of the tropical numbers Tmin = R ∪ {∞}. This
is the tropical feasibility problem and it is analogous to the feasibility problem in classical
linear programming. One can encode scheduling problems with inequality systems
of this form [MSS04, But10], and finding feasible points for a tropical linear inequality
system is equivalent to determining the winning positions of a mean payoff game [AGG12].
Furthermore, the interplay between classical, tropical linear programming and mean payoff
games has proven to be a fruitful approach for obtaining several new complexity results
in [ABGJ14a, ABGJ14b, Ben14, Fri11, Han12]. We generalize the tropical feasibility
problem to a combinatorial structure, which we call signed tropical matroids, and develop
an analogue of oriented matroid programming [Bla77, Fuk82, Tod85, Ter85]. In this
abstract setting, we derive an algorithm which solves the feasibility problem and also has
an interesting complexity for the original problem for tropical linear inequality systems. It
is similar to the tropicalization of the simplex method [ABGJ15] but is also guaranteed to
terminate and to provide the correct result for signed tropical matroids. This is achieved
by a new pivoting concept between bipartite graphs which we call basic covector and
which correspond to a special subset of bases in the simplex method. A computation of
reduced costs to determine the next iteration is not necessary, it can be directly read
off the basic covector. Furthermore, we demonstrate that several properties of tropical
inequality systems follow from more general results from graph theory and polyhedral
geometry. This exhibits the deeper structure of the algorithmic question and brings new
combinatorial methods for this problem into play. In particular, it shows the connection
between the computational complexity of tropical linear programming as well as deciding
the winning position in a mean payoff game and the geometric complexity of polyhedral
subdivisions.

Our algorithm relies only on the combinatorial structure of the signed tropical matroid.
We derive them from “tropical oriented matroids” by adding a sign information which en-
codes the halfspaces. The latter were originated in the work by Ardila and Develin [AD09]
to describe and generalize the combinatorics of tropical point configurations. It was
further developed by Oh & Yoo [OY11] and Horn in [Hor16] where a realizability result
with “tropical pseudohyperplanes” is shown. Horn also shows that tropical oriented
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matroids are in bijection with not necessarily regular subdivisions of the product of two
simplices Δn−1 ×Δd−1. We use this as the starting point for our definition of signed
tropical matroids. The required polyhedral notions are elaborated in the core literature
[DLRS10] by De Loera, Rambau and Santos. This provides us with the structure to study
this abstraction of tropical linear programming. It is an analogue to classical oriented
matroid programming which was introduced by Bland [Bla77] and Fukuda [Fuk82] and
further extended by Todd [Tod85] and Terlaky [Ter85]. Oriented matroid programming
originated from the formulation of the simplex method only in terms of sign vectors.
A signed tropical matroid (STM) is a set of bipartite subgraphs, the covector graphs,

of the complete bipartite graph Kd,n with signs on the edges. Many properties follow
from purely graph theoretical arguments. An STM is realizable if it is derived from a
tropical linear inequality system. Non-genericity and the occurrence of ∞ as a coefficient
often causes technical obstacles in the study of tropical linear inequality systems. In the
generalized setting, it occurs naturally to use polyhedral methods to resolve these issues.
We use extension and refinement of subdivisions [DLRS10] to be able to reduce our
arguments to triangulations of Δn−1 ×Δd−1. Equivalently, then each bipartite graph is a
forest and each edge of Kd,n occurs at least once as an edge of a covector graph. Cramer
covectors, which form a generalization of tropical Cramer solutions [ACG+90, RGST05],
play an important role. They describe the bases which are analogous to the classical basic
points. Like the simplex method, our algorithm iterates over bases which correspond
to subsets of the inequalities. In each step, one index is exchanged until a certificate
for feasibility or infeasibility is found. In the general setting, we give only a rough
upper bound on the number of iterations of the algorithm. For the realizable case, we
deduce a pseudopolynomial upper bound. Together, this implies that the running time
is determined by the minimal coefficient matrix, which realizes a given signed tropical
matroid. Thereby, we connect the study of the complexity with a further investigation
of the secondary fan of Δn−1 ×Δd−1. We finish by interpreting the results in terms of
mean payoff games.

We give a brief overview of the sections. Section 4.2 is dedicated to the introduction of
the main concepts for describing the combinatorics of tropical linear inequality systems.
In Section 4.3, we show the conversion from AND-OR-networks and mean payoff games
to tropical linear inequality systems. Furthermore, we formulate the classical simplex
method in such a way that the structural similarity with our algorithm becomes apparent.
We move on to signed tropical matroids, the abstraction of tropical linear inequality
systems, in Section 4.4. We explain some technical tools for reducing the general case
to triangulations of Δn−1 ×Δd−1 in Section 4.5. This provides us with the necessary
background to derive the algorithms in Section 4.6. Note that the algorithms are rather
simple in the required terminology, however, we need the technical tools to prove the
correctness. In Section 4.7, we apply the algorithms to the special case of tropical
linear inequality systems. For this, we can drop some requirements on the input and
deduce upper bounds on the number of iterations. Furthermore, we state some structural
implications for tropical linear inequality systems.

The chapter is based on https://arxiv.org/abs/1612.01890v1.
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4.2 Basic Definitions for Tropical Linear Inequality Systems

Before deriving properties of tropical linear inequality systems, we recall the basic
definitions from Chapter 2. Beside the definition of the tropical semiring, we introduce
covector graphs in different flavors as they will be our main tool. They were first defined
by Develin and Sturmfels under the name of types in [DS04] and further studied as
covectors in [FR15], as well as in Chapter 2.

4.2.1 Covector graphs for signed systems

The tropical numbers consist of the set Tmin = R∪{∞}. Equipped with the two operations
⊕ and 	, where x ⊕ y := min(x, y) and x 	 y := x + y for x, y ∈ Tmin, they form the
tropical semiring. Just as well, we could consider ⊕ = max as tropical addition. The
operations extend to vectors and matrices component-wise and we can define a matrix
product analogously to the classical case.
We use the notation [d] = {1, . . . , d} and define the sum over an empty set to be ∞.

Furthermore, the symbol � denotes the disjoint union of the two (color) classes of nodes
of a bipartite graph.
We define a (tropical) signed system as a pair (A,Σ) with (aji) = A ∈ Tn×d

min and
(σji) = Σ ∈ {+,−, •}n×d, where aji = ∞ ⇔ σji = •. It defines a homogeneous tropical
linear inequality system by⊕

i∈[d], σji=+

aji 	 xi ≤
⊕

i∈[d], σji=−
aji 	 xi for j ∈ [n] . (4.1)

A point x ∈ Td
min is feasible for (A,Σ) if it fulfills all the inequalities, otherwise we

call it infeasible. A signed system is feasible if there is a feasible point in TAd =
Td
min \ {(∞, . . . ,∞)}; otherwise it is infeasible. The set of feasible points in TAd is the

feasible region. Such a feasible region is a tropical cone, which means that it is closed
under tropical addition and scalar multiplication. A tropical halfspace is the feasible
region of a single tropical linear inequality.

Note that the sign information which we encode in the sign matrix Σ occurs in the
patchworking method of Viro [Vir01] and is, alternatively, added to the tropical semiring
to form the “symmetrized tropical semiring” [ACG+90].

Definition 4.1. The (tropical) covector (graph) GA(x) of a finite point x ∈ Rd is the
bipartite graph on the node set [d] � [n] containing an edge (i, j) ∈ [d]× [n] if and only
if aji + xi = min {ajk + xk | k ∈ [d], ajk 
= ∞}. This means that the covector graph
encodes those entries in each row of the product A	 x where the minimum is attained.

Note that we label the entries of A by pairs (j, i) ∈ [n] × [d] and choose the reverse
order to denote the edges (i, j) ∈ [d]× [n] of a covector graph. We will write pairs for the
edges even if we consider it as an undirected graph. Often, we will call tropical covector
graphs just covectors.

The nodes in [d] are coordinate nodes and in [n] are the apex nodes. Coordinate nodes
correspond to the variables and are visualized by square nodes. Apex nodes correspond to
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the rows and the inequalities, respectively. They are depicted by circle nodes. Depending
on the sign given by Σ, we call an edge in a covector graph negative or positive.

Example 4.2. Consider the signed system (A,Σ) = ((0, 0, 0), (+,−,+)). For each point
x ∈ R3 with pairwise distinct coordinates, the decomposition in Figure 4.1 shows where
the minimum is attained in the product (0, 0, 0)	 x = min(x1, x2, x3).
On the left of Figure 4.1, we put the plain covector graphs whereas, on the right, we

add the sign information given by Σ.
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Figure 4.1: We dehomogenize by setting x1 = 0. We depict the covector graphs of
the points, where the minimum is attained only once, for A = (0, 0, 0) and
Σ = (+,−,+), see Example 4.2. Negative edges are red, positive edges are
blue.

Directly from the definition, we obtain a characterization of finite feasible points.

Proposition 4.3. A point x ∈ Rd is feasible for the signed system (A,Σ) if and only if
no apex node is only incident with negative edges in GA(x).

Proof. By definition, a point is infeasible if and only if there is a j ∈ [n] with⊕
σji=+,i∈[d]

aji 	 xi >
⊕

σji=−,i∈[d]
aji 	 xi .

This means that the minimum is attained only for entries with a minus sign. From this
follows the claim with Definition 4.1.

The cells
{
x ∈ Rd

∣∣ GA(x) const
}
define a covector decomposition of Rd. This is the

same polyhedral subdivision of Rd as in Chapter 2 if we replace max by min.
Notice that the covector graphs are homogeneous in the sense that adding an element

of R · 1 = R · (1, . . . , 1) to a cell yields the same covector graph and the cells in the
covector decomposition all contain R · 1 as lineality.
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We fix a matrix A ∈ Tn×d
min , for which every row contains a finite entry, and denote by

Γ the complete bipartite graph Kd,n on the node set [d] � [n] with the entries of A as
weights on its edges. A matching on D � N with D ⊆ [d] and N ⊆ [n] is a subgraph
of Kd,n in which each node has degree 1. The value of a matching μ with respect to a
matrix A is the sum

∑
(i,j)∈μ aji. A matching is minimal if all the other matchings in

the induced subgraph of Kd,n on D �N have a bigger value.
Combining Proposition 2.30 and Proposition 2.38 yields the following characterization

which is similar to [JK16, Theorem 6.1].

Proposition 4.4. A bipartite graph G on [d] � [n] is a covector graph of a point x ∈ Rd

with respect to A if and only if the following three conditions hold:

1. No apex node j ∈ [n] is isolated in G.

2. Let μ be a matching in G on a subset D �N of the nodes with D ⊆ [d], N ⊆ [n]
and |D| = |N |. Then μ is a minimal matching in Γ.

3. Let μ and η be minimal matchings in Γ. If μ is contained in G, so is η.

4.2.2 Generalized covector graphs

To make use of covector graphs also for points in Td
min with ∞ coordinates, we introduce

a generalized notion that is slightly different from the approach chosen in Section 2.3.5.

Definition 4.5. The support supp(x) of a point x ∈ Td
min is the set { i ∈ [d] | xi 
= ∞}.

Furthermore, the generalized covector graph of x is the bipartite graph on the node set
[d] � [n] containing an edge (i, j) ∈ [d]× [n] if and only if

aji + xi = min {ajk + xk | k ∈ supp(x), ajk 
= ∞} 
= ∞ .

We denote it by GA(x), like the covector graphs from Definition 4.1. In contrast to
covector graphs of points in Rd the generalized covector graphs possibly have isolated
apex nodes. A (generalized) covector graph without an isolated apex node is called
proper.

Note that a generalized covector graph can also be the empty graph and the corre-
sponding point is feasible. The empty graph is the covector graph of (∞, . . . ,∞) but also
for (0,∞,∞) with respect to (∞, 0, 0). This happens, if the support of all the rows is
contained in a common proper subset of [d].

Definition 4.6. A (generalized) covector graph G is infeasible if there is an apex node
which is only incident with negative edges. If G is not infeasible we call it feasible.

We obtain the following more general version of Proposition 4.3. It assures that the
two notions of feasibility agree for points with finite components and it is the suitable
formulation for defining the feasibility in signed tropical matroids, see Section 4.4.

Proposition 4.7. A point x ∈ Td
min is feasible for the signed system (A,Σ) if and only if

no apex node is only incident with negative edges in the generalized covector graph GA(x).
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Proof. Fix j ∈ [n] and consider the corresponding inequality Equation 4.1. If j is only
incident to negative edges the right hand side is surely smaller and the inequality is not
fulfilled. If j has no neighbors in GA(x) then both sides of the inequality are ∞ and the
inequality is fulfilled. Otherwise, it is also a valid inequality.

This allows as to examine the feasibility of general tropical inequality systems via
generalized covector graphs.
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Figure 4.2: As always, we set x1 = 0 to cancel out the lineality R · 1. The shaded area is
the feasible region of a signed system formed by the four inequalities from
Example 4.8. The crooked lines are the boundaries of the tropical halfspaces.
The bipartite graph is the covector graph of (0, 2, 4.5), where the negative
edge is red.

Example 4.8. The left part of Figure 4.2 depicts the feasible region of the signed system
(A,Σ) with

A =

⎛⎜⎜⎝
0 0 0
0 −1 −2
0 −2 −4
0 ∞ −6

⎞⎟⎟⎠ and Σ =

⎛⎜⎜⎝
+ − −
+ − +
+ − +
− • +

⎞⎟⎟⎠ .

This gives rise to the inequality system

0 + x1 ≤ min(0 + x2, 0 + x3)

min(0 + x1, x3−2) ≤ x2−1

min(0 + x1, x3−4) ≤ x2−2

x3−6 ≤ 0 + x1 .
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The covector graph of the point (0, 2, 4.5) is shown in the right part of Figure 4.2. It is
feasible since each apex node is incident with a positive edge.
The covector graph of the point (∞, 0,∞) has the edges (2, 1), (2, 2) and (2, 3). It is

not proper and infeasible.

4.3 Related Algorithmic Problems

The feasibility problem for tropical linear inequality systems is the problem of finding
a feasible point of the system. We highlight the relation of this problem to scheduling,
mean payoff games and classical linear programming.
The complexity of the decision problems for scheduling AND-OR-networks with ar-

bitrary coefficients and mean payoff games is known to be in NP ∩ co-NP and even
more in UP ∩ co-UP, see [Jur98, ZP96, EM79, MSS04], but there is no polynomial
time algorithm known. This was also unclear for classical linear programming while the
containment in the complexity class NP ∩ co-NP follows easily from linear programming
duality. Finally, Khachiyan [Kha79] and, not long after, also Karmarkar [Kar84] provided
polynomial-time algorithms. However, it is still unclear if there is a pivoting rule for the
simplex method for which it runs in weakly or even strongly polynomial time, see, e. g.,
[Dan63, Bla77, KM72]. The close relations between tropical linear programming, mean
payoff games and classical linear programming, in particular the simplex method, are
demonstrated in [Sch09, AGG12, ABGJ15, ABGJ14a].

4.3.1 Scheduling with AND-OR-Networks

Scheduling is concerned with the task of putting several jobs into an order in which
they are worked through such that certain constraints are fulfilled. We give a short
introduction to a special class of scheduling problems, namely AND-OR-networks. They
occur in project management with particular temporal dependencies and can be used to
model resource constraints. They were extensively studied in, e.g., [MSS04]. In particular,
that work contains a formulation of the precedence relations for the starting times with
min- and max-inequalities. It also shows the polynomial time equivalence with a decision
problem associated to a mean payoff game. We display a tropical geometric relation
between the formulation of the set of vectors of starting times and the feasible region of
a suitable tropical signed system. For other instances of scheduling problems which can
be expressed in terms of tropical inequalities or equations see, e. g., [BA09, §1].

To explain an AND-OR-network we consider the planning of a project. The single jobs
depend on each other and are in some precedence relation. We assume that a started job
may not be interrupted. If a job can only start if all its predecessor jobs are finished,
we call this an AND-constraint. If a job can start if at least one of its predecessors is
finished, we call this an OR-constraint.
In Figure 4.3, one can see the Gantt chart of an AND-constraint and of an OR-

constraint visualizing the dependence of the start and finish dates of jobs in these
predecessor relations. Here, the dashed line denotes the starting time of the next job
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which is represented by the bottom bar, its predecessors forming the top three. The
lengths of the bars illustrate the processing times.

Figure 4.3: Two types of constraints, OR left, AND right.

Notice that usually one requires the special starting condition that every job has to
begin after some given point in time. In our model, this is covered by the fact that the
expressions are additively homogeneous and hence, one can just mark one node and
dehomogenize with respect to this coordinate.
For a broader introduction of scheduling with AND-OR-constraints see [MSS04]. We

give a formal definition to work with.

Definition 4.9. An AND-OR-network is given by a set of states V and a set of waiting
conditions U . The waiting conditions are pairs (X, J) with J ⊆ V and X ⊆ V \ {J}.

The pair (V,U) can be construed to be a directed bipartite graph B with node set
V � U . Each waiting condition (X, J) is expressed by the arcs (x, (X, J)) for x ∈ X and
((X, J), j) for j ∈ J . Because of X ⊆ V \ {J}, for each pair v ∈ V and u ∈ U there exists
at most one of the arcs (u, v) or (v, u). We denote the arc set by A.
Furthermore, we have a weight function ω : A → Q on the arcs to encode processing

times, or time lags if the weight is negative.
Then we can describe the precedence constraints for the vector of starting times

t ∈ TV �U
min by the inequalities

tv ≥ max
(u,v)∈A

(tu + ω(u, v)) for all v ∈ V (AND)

tu ≥ min
(v,u)∈A

(tv + ω(v, u)) for all u ∈ U (OR) .
(4.2)

The max-inequalities correspond to AND-constraints andmin-inequalities to OR-constraints.
We can reformulate the first inequality in (4.2) by splitting the maximization into

several inequalities to obtain

tv ≥ (tu + ω(u, v)) for all (u, v) ∈ A with u ∈ U, v ∈ V (4.3a)

tu ≥ min
(v,u)∈A

(tv + ω(v, u)) for all u ∈ U . (4.3b)

Observe that this already yields a signed system.
We can transform the first kind of inequalities (4.3a) further into

tv − ω(u, v) ≥ tu for all (u, v) ∈ A with u ∈ U, v ∈ V ⇔ (4.3a’)

min
(u,v)∈A

(tv − ω(u, v)) ≥ tu for all u ∈ U . (4.3a”)
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Combining the two kinds of inequalities (4.3b) and (4.3a”) yields

min
(u,v)∈A

(tv − ω(u, v)) ≥ tu ≥ min
(v,u)∈A

(tv + ω(v, u)) ∀u ∈ U .

Let |V | = d and |U | = n. Then we define matrices (aji) = A ∈ Tn×d
min and (σji) = Σ ∈

{+,−, •}n×d by identifying each node in V resp. U with indices in [d] resp. [n] and
setting

( a(u, v) , σ(u, v) ) =

⎧⎪⎨⎪⎩
(ω(v, u),+) (v, u) ∈ A
(−ω(u, v),−) (u, v) ∈ A
(∞, •) else

for v ∈ V and u ∈ U . This defines a signed system (A,Σ) whose associated inequality
system is

min
σ(u,v)=−

(tv + a(u, v)) ≥ min
σ(u,v)=+

(tv + a(u, v)) for all u ∈ U . (4.4)

Conversely, if we are given a feasible solution (tv)v∈V of (4.4) we can define starting
times tu for u ∈ U by

tu = min
σ(u,v)=−

(tv + a(u, v)) (4.5)

such that (tk)k∈U�V fulfills (4.2). We summarize our considerations in the following
theorem.

Theorem 4.10. The set of feasible points for (4.4) is the projection of the set of feasible
starting times for (4.2) on the coordinates labeled by V . Furthermore, for every feasible
point of (4.4) we find a feasible point of (4.2).

Example 4.11. Figure 4.4 depicts the AND-OR-network for the signed system from
Example 4.8. For this signed system, we know that (0, 2, 4.5) is a feasible point. This
translates to possible start times for the AND-nodes. With Equation 4.5, we calculate
(2, 1, 0, 0) as possible starting times for the OR-nodes.

With the dehomogenization x1 = 0, the coordinatewise minimal point of the feasible
region amounts to the point (0, 0, 0). This yields (0,−1,−2, 0) for the resulting start
times of the OR-nodes.

Remark 4.12. The pseudopolynomial algorithm in [MSS04, §7.2.2] uses the basic idea
to make a violated inequality an equality. If a starting time tj violates the inequality
tj ≥ mini∈X(ti + diw) for a waiting condition w = (X, j), one assigns the new value
mini∈X(ti + diw) to tj . This yields a pseudopolynomial algorithm as the iteratively
computed starting times only increase and can be bounded from above. Similar ideas
will come up later on in subsection 4.7.3.
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Figure 4.4: The scheduling network derived from the signed system of Example 4.8.

4.3.2 Mean Payoff Games

The connection between mean payoff games and tropical linear inequality systems, which
we describe below, was established in [AGG12]. A similar result implicitly occurs in
[MSS04, Lemma 7.5] and [Sch09, Lemma 2].

Introduction to Mean Payoff Games

We briefly introduce mean payoff games. Let G be a finite directed bipartite graph with
node set V0 � V1, arc set A and a weight function ω : A → Q on the arcs. Without loss
of generality, we can assume that V0 = [d] and V1 = [n].

We define a finite two-player game with full information on G, following [ZP96]. At a
node in Vp, it is the turn of player p, for p ∈ {0, 1}. Starting from a fixed node k ∈ V0�V1,
the players alternatingly choose an outgoing arc of the current node and move to the tip
of the arc. If a player cannot move because there is no outgoing are, she looses. As soon
as the directed path formed in this way produces a cycle, the game finishes. The outcome
of the game with starting point k is the mean weight of the arcs in that cycle. One player
tries to maximize, while the other player tries to minimize the outcome of the game.

A positional strategy for player p ∈ {0, 1} is a subset τp of the arcs A, such that each
vertex in Vp is either isolated or incident to exactly one outgoing arc in τp. By [EM79], a
mean payoff game has an optimal positional strategy.

Following [GP14, §7], we say that a position i ∈ V0 is non-losing for player 1 if there is
a strategy for player 1 such that the outcome of the game starting with i is non-negative.

We construct a signed system from the bipartite graph G with the weights ω similar to
Section 4.3.1, but with switched signs.

Let |V0| = d and |V1| = n. Then we define matrices (aji) = A ∈ Tn×d
min and (σji) = Σ ∈

{+,−, •}n×d by identifying each node in V0 resp. V1 with indices in [d] resp. [n] and
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Figure 4.5: A bipartite graph G depicting the mean payoff game from Example 4.14 and
a non-losing strategy τ for player 1 owning the circle nodes.

setting

(a(v1, v0), σ(v1, v0)) =

⎧⎪⎨⎪⎩
(ω(v0, v1),−) (v0, v1) ∈ A
(−ω(v1, v0),+) (v1, v0) ∈ A
(∞, •) else

(4.6)

for v0 ∈ V0 and v1 ∈ V1.
Note that the former construction is reversible.
We state the main theorem connecting tropical linear inequality systems and mean

payoff games, see [AGG12, Theorem 3.2].

Theorem 4.13. The set of non-losing states in V0 for player 1 equals the set of those
i ∈ [d] for which there is a feasible point x for (A,Σ) with xi 
= ∞.

We sketch one direction of an independent proof to demonstrate how this ties in with
the properties of covector graphs. Let x ∈ Td

min be a feasible point for (A,Σ) with support
D 
= ∅. Since its covector graph G is feasible, each node in [n] is either isolated or incident
with a positive edge in G. If an apex node j ∈ [n] is isolated in G, there is no arc between
D and j in G either. For an isolated node, we pick no edge and for a non-isolated apex
node, we pick one incident positive edge in G. This yields a strategy τ for player 1.

If a run of the game with starting node in D and fixed strategy τ for player 1 produces
a cycle, it can only be a non-negative cycle by Proposition 2.38. This implies the claim.

Example 4.14. The signed system for the graph G from Figure 4.5 is given by

( x1 x2

a1 −1 0

a2 4 3

) (x1 x2

a1 + −
a2 − +

)
.

The corresponding inequality system is x1 − 1 ≤ x2, x2 + 3 ≤ x1 + 4. The non-losing
strategy is obtained from the positive edges of the feasible point (0,−1).

We also relate the example for AND-OR-networks with the corresponding mean payoff
game.

Example 4.15. By reversing the arcs and negating the weights in Figure 4.4, we obtain
the game graph corresponding to the inequality system from Example 4.8. The blue
edges in the covector graph of the feasible point (0, 2, 4.5) yield the non-losing strategy
formed by (1, 1), (2, 1), (3, 1), (4, 3) (which are directed from circle to square nodes). This,

for example, yields the positive cycle 4 , 3 , 3 , 1 .
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Parity Games as Special Mean Payoff Games

Parity games [EJ91, Jur98] also are two player games with perfect information. However,
we have no weights on the edges but on the vertices of the game graph. The vertices are
assigned to the two players, even and odd. Even vertices are labeled by an even integer
weight, odd vertices by an odd integer weight. Player even wins if the maximal number
in the terminating cycle is even, otherwise odd wins.

Let M = d+ n be the number of vertices in the two classes. We can consider a parity
game as a special mean payoff game where the outgoing edges of a vertex with label
k ∈ Z get the weight (−M)k. Then the winning states of the so constructed mean payoff
game for player 0 resp. 1 are exactly the winning states of player even resp. odd in the
parity game. For more details see, e.g., [Jur98].

Recently, it was shown in [CJK+] that parity games can be solved in quasipolynomial
time. Parity games have served as suitable instances to demonstrate the worst-case
complexity of many algorithms, see, e.g., [Fri11, Han12].

4.3.3 The Simplex Method

In [ABGJ15], it was shown how a run of the classical simplex method translates to a
run of a tropical simplex method under some technical assumptions on the input and
the requirement that the pivoting rule is combinatorial. This led to a new algorithm for
solving mean payoff games presented in [ABGJ14a] which is polynomial time equivalent
to the simplex method with the given pivoting rule. A reduction from mean payoff games
to linear programming was already given in [Sch09]. However, this approach requires
exponentially large coefficients which results in a pseudopolynomial running time due
to cost of the arithmetic operations. This is resolved in the approach in [ABGJ15] by
considering only the signs determining the pivoting which can be computed directly from
the input data.

We give a short introduction to the classical simplex method [Dan63]. We present it
as an algorithm to determine the feasibility of a classical linear inequality system. Our
exposition is inspired by [Mur76, §4.5].
It is important to observe the similarity between this variant of the simplex method

and the algorithms in Section 4.6, in particular Algorithm 3. To obtain that algorithm
as a tropicalization of the following variant of the simplex method, one would have to
ensure that x ≥ 0.
The feasibility problem is the task to find an x ∈ Rd which fulfills the system

A · x ≤ b for A ∈ Rn×d, b ∈ Rn .

The following is meant to highlight that we can consider it as a method which traverses
the vertex-edge graph of the affine hyperplane arrangement given by the equations
aj · x = bj for j ∈ [n]. Here, aj is the jth row of A. At each vertex, one is given a rule
for choosing the consecutive vertex in a way that guarantees termination.

We assume that the system (A|b) is generic by which we mean that the d-sets J ⊆ [n]
are in bijection with the points z which fulfill the subsystem AJz = bJ with row indices
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in J . Start with an arbitrary d-set J0 from [n] and define x0 := A−1J0
bJ0 . Then [n]

is partitioned into three sets, namely J0, K+
0 :=

{
j ∈ [n]

∣∣ ajx0 < bj
}

and K−
0 :={

j ∈ [n]
∣∣ ajx0 > bj

}
. The set J0 denotes the basic variables and [n] \ J0 = K+

0 ∪K−
0

the non-basic variables.

Fix an arbitrary vector y0 ∈ Rn with y0 ≥ 0 whose support is J0, e.g. the characteristic
vector of J0 and define

c = A�y0 ∈ Rd .

In this way, we obtain a primal linear program (P) and its dual linear program (D)

(P )
max c�x
Ax ≤ b

(D)
min b�y
A�y = c, y ≥ 0

.

By construction, y0 is a feasible point of the dual linear program. Therefore, we can
apply “Phase II” of the simplex method as we are already equipped with a feasible point.
We want to consider it as a feasibility algorithm for (P). In particular, we want to reach
a point x� where K−

� = ∅.
First, pick an index r0 ∈ K−

0 . We want to change x0 such that the index r0 of the
violated inequality enters the basis. This means that r0 becomes a basic variable.

Define

i0 = argmin

{
((AJ0

�)−1c)i
((AJ0

�)−1ar0�)i
≥ 0

∣∣∣∣ i ∈ [d]

}
,

and λ0 as the value of this minimum. In the generic case, this minimum is attained at
most once. If this minimum does not exist, the inequality system of (P) is infeasible.
Note that the existence of this minimum is independent of the choice of c since the
occurring numerators are the positive components of y0. Let j0 be the i0-th element of J0
considered as an ordered index tuple for the rows of AJ0 . Then j0 is the leaving variable
and J1 = J0 \ {j0} ∪ {r0} becomes the new basis. Now, we can restart the iteration.
However, we keep c fixed and for � ≥ 1 choose y� iteratively in the following way:

y�j =

{
((AJ�

�)−1c)j for j ∈ J�

0 for j ∈ [n] \ J� .
(4.7)

Theorem 4.16. The vector y1 ∈ Rn fulfills y1 ≥ 0, c = A�y1 and b�y1 < b�y0.

Proof. Consider the linear equality system

c = AJ0∪r0
�z .

For zd+1 = 0 we get the solution y0J0 = (AJ0
�)−1c and for zi0 = 0 we obtain the solution

y1J1 = (AJ1
�)−1c (up to relabeling of the coordinates).
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Furthermore, by multiplying both sides with A−1J0
from the left, we obtain⎛⎜⎜⎜⎜⎝

1 0 · · · 0

(AJ0
�)−1ar0�

0
. . . 0 0

... 0
. . . 0

0 · · · 0 1

⎞⎟⎟⎟⎟⎠ · z = (AJ0
�)−1c .

This is equivalent to

z[d] =
(
(AJ0

�)−1c
)
− zd+1

(
(AJ0

�)−1ar0
�
)

. (4.8)

Choosing zd+1 as λ0, we obtain zi0 = 0 and hence, y1J1 = z[d]\i0 . Moreover, Equation 4.8

implies y1 ≥ 0 and c = A�y1. Finally, we obtain the difference

b� · y1 − b� · y0 = bJ0∪r0
�
((

y0J0 − λ0

(
(AJ0

�)−1 · ar0�
)

λ0

)
−
(
y0J0
0

))
.

This simplifies to

λ0

(
br0 − bJ0

�(AJ0
�)−1 · ar0�

)
.

With x0 = A−1J0
bJ0 , ar0 · x0 > br0 and λ0 ≥ 0, the claim follows.

If we continue the iteration with y1 we obtain a sequence of d-subsets J0, J1, . . . , Jm
of [n]. The sets in this sequence are pairwise disjoint since the sequence of the values
b� · y�, which is defined by J� via Equation 4.7, is strictly decreasing. This implies the
termination of the iteration as there are only finitely many subsets of [n].

Remark 4.17. We could change y� after each iteration in a way that preserves the objective
function value b� · y� and the support. This would require a new computation of c. All
the statements, in particular the ones concerning the termination of the algorithm, would
remain valid.

4.4 Signed Tropical Matroids

As discussed in the previous section, the feasibility problem for tropical linear inequality
systems is related to several other important algorithmic problems.

The generalization of the simplex method to oriented matroids in [Bla77, Fuk82, Tod85,
Ter85], was a powerful step in the understanding of linear programming. In Section 4.6,
we will present an algorithm which finds a feasible cell in a tropical analogue of an
oriented matroid and does not cycle. For this, we will introduce an abstract version of
covector graphs.

A purely axiomatic approach to grasp the crucial properties of the collection of covector
graphs was started by Ardila and Develin in [AD09]. They introduced the name tropical
oriented matroid. This approach was further developed in [OY11] and [Hor16]. Finally,
Horn proved in [Hor16] that tropical oriented matroids encode exactly all subdivisions of
Δn−1 ×Δd−1, not only regular ones, and also the so called tropical pseudo-hyperplane
arrangements.

70



1

+−

2

+
−3

+
−

4

+−

(−,−, 0, 0)

(0,−,+, 0)

(+, 0,+, 0)

Figure 4.6: An affine halfspace arrangement in R2. The sign vectors denote in which
halfspace of 1, 2, 3, 4 the vertex of the arrangement lies. These signs form the
sets J , K+ and K− in the explanation before Theorem 4.16.

4.4.1 A Description via Polytopes and Graphs

We briefly recall the basic polyhedral notions and point to [Zie95, DLRS10] for further
reading. A polytope is the convex hull of finitely many points and a polyhedron is the
intersection of finitely many halfspaces. By the Minkowski-Weyl theorem, polytopes are
exactly the bounded polyhedra. The face of a polyhedron P is the intersection of P with
a halfspace that does not contain an interior point of P . A subpolytope of a polytope P is
the convex hull of a subset of the vertices of P . The convex hull of k affinely independent
points, for k ∈ N, is a (k − 1)-simplex and is denoted by Δk−1. In the following, Δk−1
stands for the convex hull of the k standard basis vectors e1, e2, . . . , ek in Rk, which is an
instance of a (k − 1)-simplex. The product of two polytopes P ⊆ Rd and Q ⊆ Rn is the
convex hull of the pairs (p, q) ∈ Rd+n where p resp. q ranges over all the vertices of P
resp. Q. Finally, a polyhedral complex is a finite set of polyhedra for which each face of a
polyhedron is also contained in the set and the intersection of two polytopes is empty or
a face of both. A polyhedral complex is a (polyhedral) subdivision of a polyhedron P if
the union of all the occurring polyhedra is P . A polyhedral subdivision is a triangulation
if every polytope is a simplex. A subdivision of a polytope P ⊂ Rd is regular if it is the
orthogonal projection, omitting the last coordinate, of the bounded cells of the polyhedron
conv {(x, h(x) | x vertex of P}+ R≥0 · ed+1 for some height function h : Rd → R.

We already saw in Proposition 4.3 and Proposition 4.7 that the feasibility of a point
can be characterized by its covector graph with the signs on its edges. We aim to study
a generalization of the collection of these covector graphs.
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For a matrix A ∈ Rn×d, it was shown in [DS04, Theorem 1] that the collection of
covectors is in bijection with the cells in the regular subdivision of Δn−1 ×Δd−1 with
height function A. This was generalized in [FR15] and Chapter 2 to matrices with ∞
entries. For those, the collection of covectors defines a regular subdivision of a subpolytope
of Δn−1 ×Δd−1, see Corollary 2.34.

On the other hand, we start with a not necessarily regular subdivision of a subpolytope
of Δn−1×Δd−1 and will derive a signed tropical matroid from this. Note that non-regular
triangulations of Δn−1 × Δd−1 exist if and only if (n − 2)(d − 2) ≥ 4, see [DLRS10,
Theorem 6.2.19].

4.4.2 Axiom systems

Let R be a subdivision of a subpolytope F of Δn−1 ×Δd−1. We identify subpolytopes
of Δn−1 ×Δd−1 and therefore the cells in R with subgraphs of the complete bipartite
graph Kd,n via the identification of the vertex (ej , ei) with the edge (i, j) ∈ [d]× [n]. In
this spirit, we define conv(G) = conv {(ej , ei) | (i, j) ∈ G} for each subgraph G of Kd,n.
Since all these graphs share the same node set [d] � [n], we will often even identify them
with their set of edges.

Let Σ be a sign matrix (σji) ∈ {+,−, •}n×d for which σji = • if and only if (i, j) 
∈ F .
Moreover, let S be the set of bipartite graphs without isolated nodes in [n], which
correspond to cells in R.

We summarize the required properties which mostly are just adaptions of the definition
of a polyhedral subdivision, see [DLRS10, Definition 2.3.1].

Definition 4.18. A signed tropical matroid (STM) is a pair (S,Σ) where S is a set of
subgraphs of Kd,n and (σji) = Σ is a matrix in {+,−, •}n×d. It has an associated finity
graph F =

⋃
G∈S G, which represents the union over all the edges occurring in the graphs

in S. Additionally, Σ fulfills σji = • ⇔ (i, j) 
∈ F . We require:

1. No graph in S has an isolated node in [n].

2. If H is contained in S then so are all the subgraphs G of H that do not have an
isolated node in [n] and for which conv(G) is a face of conv(H).

3. For each point x ∈ conv(F) there is an H ∈ S such that x ∈ conv(H).

4. For all H and G in S with H 
= G, the intersection conv(H) ∩ conv(G) is a face of
conv(H) and conv(G) or empty.

To emphasize the dependence on n and d we also say that (S,Σ) is a signed tropical
(n, d)-matroid. We will often identify S with the subdivision corresponding to the set
of bipartite graphs. The bipartite graphs are the covector graphs or just covectors in
analogy with classical oriented matroids. An STM is realizable if it is induced by a matrix
A, which means that the covector graphs are generalized covector graphs in the sense
of Definition 4.5 or, equivalently, that the polyhedral subdivision corresponding to S is
regular. In this case, we will also use the notation S(A). Note that the collection of
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generalized covectors graphs in the realizable case fulfills all the properties which are
listed in the last definition.

As in the realizable case, we consider the entries of Σ as signs on the edges; we call an
edge with + a positive edge and with − a negative edge. Apex nodes are the nodes in [n]
and coordinate nodes are those in [d].

Remark 4.19. For each apex node j ∈ [n], the set of covector graphs, in which j is
only incident with negative edges, and the set of covector graphs, in which j is only
incident with positive edges, form complementary pseudohalfspaces in the sense of [Hor12,
Definition 5.5.8].

Example 4.20. The three full-dimensional simplices in the regular subdivision of Δ1 ×Δ2

in Figure 4.7 correspond to the three trees on [2] � [3] with edge sets

{(1, 1), (1, 2), (1, 3), (2, 3)}, {(1, 1), (1, 2), (2, 2), (2, 3)}, {(1, 1), (2, 1), (2, 2), (2, 3)} .

The vertex of Δ1 ×Δ2 with label (2, 1) is hidden in the figure.

On the other hand, Figure 4.8 depicts a non-regular mixed subdivision of 4 ·Δ3. By
the Cayley trick ([DLRS10, §9]), triangulations of Δn−1 ×Δd−1 are in bijection with fine
mixed subdivisions of nΔd−1. In particular, the full-dimensional cells in the subdivision
in Figure 4.8 are in bijection with the full-dimensional cells in a subdivision of Δ3 ×Δ3

and furthermore, the trees in an STM on [4] � [4].

Figure 4.7: A regular subdivision of Δ1×Δ2. The vertices are labeled by the corresponding
edges in K3,2. This picture was created with polymake [GJ00].

Definition 4.21. An STM (S,Σ) is full if the finity graph is Kd,n. In this case, Σ
contains only − and +. For the realizable case, the definition means that all the entries of
the coefficient matrix are finite. The STM is generic if the subdivision is a triangulation
or equivalently by [DLRS10, Lemma 6.2.8], all the graphs are forests.

In Section 4.5, we describe a way to modify a given signed tropical matroid (S,Σ) to
obtain a generic full signed tropical matroid (T ,Ξ) with sparsely distributed signs. In
the generic full case, we have a particularly nice characterization of the bipartite graphs
which are trees and correspond to the maximal cells in the subdivision.
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Figure 4.8: A non-regular subdivision of Δ3 ×Δ3. It is visualized as a non-regular mixed
subdivision of 4Δ3. This picture was created with the polymake extension
tropmat by Silke Horn [Hor].

Proposition 4.22 (Proposition 7.2, [AB07]). The trees in a full generic signed tropical
matroid satisfy:

1. Each tree G is a spanning tree.

2. For each tree G and each edge e of G either G− e has an isolated node or there is
another tree G containing G− e.

3. There do not exist two distinct trees G and H, and a cycle of Kd,n which alternates
between edges of G and H.

Condition (3) is essentially the same as the comparability in the axiom system for
tropical oriented matroids in [AD09] and we will use this terminology in the following.
Equivalently to (3) one could require, that for all D ⊆ [d] and N ⊆ [n] with |D| = |N |
there is at most one matching on D �N which is contained in a tree in T .

Proposition 4.7 justifies the following definition.

Definition 4.23. A covector graph G is infeasible if and only if there is an apex node
in G which is only incident with negative edges. If G is not infeasible we call it feasible.
G is totally infeasible, if it is infeasible and every coordinate node is incident with a

negative edge.

4.4.3 Matroid Operations and Feasibility

The following operations are useful for inductive arguments and yield the polyhedral
methods to examine the boundary strata of the tropical projective space.
Analogously to classical oriented matroids one can define a tropical variant of the

operations deletion and contraction, like in [AD09]. In the following, let (S,Σ) be a
signed tropical (n, d)-matroid
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For an apex node j ∈ [n], the deletion S\j is the set of graphs which arise from the
graphs of S by deleting the node j and the incident edges. These graphs describe the cells
on the face {e� | � ∈ [n] \ j} ×Δd−1 of Δn−1 ×Δd−1. We delete the jth row in the sign
matrix. If (S,Σ) is induced by a signed system (A,Σ) then the operation corresponds to
deleting the jth row of A.

For a coordinate node i ∈ [d], the contraction S/i is the set of graphs which arise from
those graphs of S for which i is isolated by deleting the node i. These graphs describe
the cells on the face Δn−1 × {e� | � ∈ [d] \ i} of Δn−1 ×Δd−1. We delete the ith column
in the sign matrix. If (S,Σ) is induced by a signed system (A,Σ) then the operation
corresponds to deleting the i column of A.

By construction, a deletion and a contraction of an STM is again an STM.

Remark 4.24. Note that the formerly described operations are also related to classical
matroid operations since products of simplices are matroid polytopes in the classical
sense; see [GGMS87]. However, there is no direct translation and one should be careful
not to confuse the tropical with the classical operation.

For the contraction S/([d]\D), where S is defined on [d] and D 
= ∅, we will also write
S|D. In the realizable case, these are the covectors of the points with support D. We
only consider points in TAd = Td

min \ {(∞, . . . ,∞} which corresponds to D 
= ∅.
Lemma 4.25. For the finite matrix A ∈ Rn×d, the covector graphs in the contraction
S(A)|D for any non-empty D ⊆ [d] are exactly the generalized covectors of the points
with support D.

Proof. Fix a point x ∈ TAd with support D ⊆ [d] and let

ω > 2 ·max (max {x� | � ∈ supp(x)} ,max {|aji| | (i, j) ∈ [d]× [n]}) .

Then the generalized covector graph of x is the same as the proper covector graph of the
point z ∈ Rd with

zi =

{
xi for i ∈ supp(x)

ω else
.

The other inclusion follows by setting the coordinates of isolated coordinate nodes
to ∞.

With the definition we can now formulate an important consequence of the existence
of a totally infeasible covector in a generic full STM. This is visualized in Figure 4.9.

Lemma 4.26. If a covector graph G in a generic full STM (T ,Ξ) is totally infeasible,
then in every covector graph H of any contraction of (T ,Ξ) there is a node in [n] which
is only incident with a negative edge.

Proof. By definition, G is infeasible and there is a matching of negative edges μ on [d]�N
for some subset N ⊆ [n].

Notice that each covector graph in a contraction is constructed from a covector graph
of (T ,Ξ). Since one only removes isolated coordinate nodes, feasibility or infeasibility
carries over to the contracted covector.
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Now, let H be any covector graph in (T ,Ξ). Assume H is feasible. This implies that
each apex node j ∈ N is incident with an edge which does not lie in μ and, hence, is
positive. Pick for each node in N one incident positive edge from H. This forms a cover
η of N . Moreover, let D be the subset of the coordinate nodes [d] which is covered
by η. Then the graph on D � N with edge set μ|D ∪ η, where μ|D are those edges
in μ incident with D, contains a cycle C. This follows as it has |D| + |N | nodes and
|μ|D|+ |η| ≥ |D|+ |N | edges. Since every node in D is only incident with one edge from
μ|D and every node in N is only incident with one edge from η and at most one edge
from μ|D, the cycle C has to be alternating between μ and η. However, this contradicts
the comparability in Proposition 4.22.
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Figure 4.9: A configuration which contains a totally infeasible covector. The shaded bars
indicate the infeasible regions. The dashed lines denote the boundary strata
of the tropical projective space. The covectors on the boundary stratum
corresponding to the contraction T |{2,3} are also depicted and infeasible.

4.4.4 Existence of Particular Covector Graphs

We start with a Menger-type lemma; see [Bol98, §3] for similar results. It is purely graph
theoretic but contains an important property for covector graphs.

Lemma 4.27. Let G be a bipartite tree on the node set D �N for arbitrary sets D and
N with |D| = k + 1 and |N | = k with a positive integer k. If the nodes in N all have
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degree 2 then, for each i ∈ D, the graph G with i deleted contains a perfect matching.
Furthermore, G is the union of these matchings.

Proof. Fix an arbitrary i0 ∈ D. Since G is a tree, it has at least two leafs. In particular,
there is an i ∈ D\{i0} which is a leaf in G. Let j ∈ N be the node adjacent to i. Deleting
i and j yields a graph H on (D \ {i}) � (N \ {j}) for which each node in N \ {j} has
degree 2.

Proceeding by induction implies the claim about the containment of the matchings.
Furthermore, each edge is contained in such a perfect matching. For this, pick an

arbitrary edge (i, j) ∈ G. Let � ∈ D be the node distinct from i which is adjacent to j.
Then (i, j) is contained in the perfect matching on (D \ {�}) �N .

The following result guarantees the existence of covector graphs with specific degree
conditions. It is crucial in the transition from realizable to non-realizable considerations.
For the rest of this subsection let T be a triangulation of Δn−1 ×Δd−1
Recall that, by the Cayley trick ([DLRS10, §9]), triangulations of Δn−1 ×Δd−1 are

in bijection with fine mixed subdivisions of nΔd−1. This implies the following for the
collection of bipartite graphs which correspond to the full-dimensional simplices in T .

Proposition 4.28 ([OY11, Proposition 2.5]). Let (d1, . . . , dn) ∈ [d]n with
∑n

j=1 dj =
n+ d− 1. There is exactly one tree in T for which each node j ∈ [n] has degree dj.

Note that a similar statement was proven in [DJS12, Proposition 4.2]. Because of the
importance to us, we give a proof independently of [OY11].

Proof. Let the right degree sequence (RDS) be the sequence of degrees of the apex nodes.
By [DLRS10, Theorem 6.2.13], which uses the unimodularity, respectively the equide-

composability, of Δn−1×Δd−1, the number of full-dimensional simplices in a triangulation
is
(
n+d−2
n−1

)
.

Furthermore, the number of compositions of n+ d− 1 in n parts is
(
n+d−2
n−1

)
.

Hence, it suffices to prove that each sequence (d1, . . . , dn) ∈ [d]n with
∑n

j=1 dj = n+d−1
occurs at most once as an RDS. We describe a construction to find a canonical form for
a covector graph with a given RDS which will imply the claim. This approach is depicted
in Figure 4.10.
Next, note that we can omit apex nodes of degree 1 as the graph remaining after

this removal is still a tree. So, consider two distinct trees t0 and t1 with the same RDS
(d1, . . . , dn) for which each degree is bigger than 1. From these trees, we construct trees
s0 and s1 for which each apex node has degree 2. For this, we replace each apex node
j ∈ [n] of degree dj > 2 with dj − 1 nodes kj1, . . . , k

j
dj−1. Furthermore, if ij1 ≤ . . . ≤ ijdk

are the neighbors of j, we add the edges

(ij1 , k
j
1), (ij2 , k

j
1), (ij2 , k

j
2), . . . , (ijdk−1

, kjdj−1), (ijdk , k
j
dj−1) .

Hence, s0 and s1 are trees on the vertices [d] � R, where R is the d-set formed by the
old apex nodes of degree 2 and the new apex nodes which arose from replacing apex
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nodes of degree > 2. By Lemma 4.27, these trees are the union of (d − 1) × (d − 1)-
matchings on [d] \ {i} �R for all i ∈ [d]. From the uniqueness of the construction of s0
resp. s1 from t0 resp. t1 we deduce that s0 and s1 are also distinct. Therefore, there
is an i ∈ [d] for which the perfect matching μ0 in s0 on [d] \ {i} � R and the perfect
matching μ1 in s1 on [d] \ {i} �R disagree. We conclude that their symmetric difference
contains a non-trivial simple cycle C. If we contract the nodes kj1, . . . , k

j
dj−1 back to

the single node j for each apex node j ∈ [n] of degree dj > 2, then C becomes a cycle
(where a node can appear multiple times). Since t0 and t1 are distinct, the cycle has to
contain more than 1 apex node. Such a cycle is an alternating cycle in the sense of the
comparability in Proposition 4.22. This implies that t0 and t1 cannot both occur in the
same triangulation.
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Figure 4.10: The construction to find an alternating cycle from the proof of Proposi-
tion 4.28.

We define Cramer covectors C(N,D ∪ {δ}), where δ ∈ [d], D ⊆ [d] \ {δ} and N ⊆ [n]
with |D| = |N |, as the covector graphs in the contraction T |{D∪δ} for which each node
in N has degree 2. The former lemma guarantees the existence of Cramer covectors in
a full generic STM which does not have to be realizable. Note that it is also valid for
D = N = ∅. The Cramer covectors are similar to linkage trees in the sense of [SZ93]; the
difference is that the colors of the edges of the linkage tree are replaced by a second class
of nodes which yields the bipartite Cramer covectors.

78



We saw already in Lemma 4.28 and Lemma 4.27 that Cramer covectors have a partic-
ularly useful structure. We exploit this to construct Cramer covectors in a fixed STM
inductively.

Proposition 4.29. Let D ⊆ [d], δ ∈ [d] \D and N ⊆ [n] with |N | = |D|. Furthermore,
let y be a covector graph in the contraction T |D containing a perfect matching μ on D�N .
Then C(N,D ∪ {δ}) contains μ.

Proof. Applying Proposition 4.28 to T |(D∪{δ}) yields the existence of the covector graph
C(N,D∪{δ}) which has degree 2 for every node in N and degree 1 for the nodes in [n]\N .
By Lemma 4.27, the induced subgraph of C(N,D ∪ {δ}) on (D ∪ {δ}) � N contains a
matching on D′ �N for every |D|-element subset D′ of (D ∪ {δ}). Especially, it contains
a perfect matching on D �N .
By the definition of the contraction T |D, there is a covector graph y in T |(D∪{δ})

extending y. The comparability condition from Proposition 4.22 yields that the two
graphs y and C(N,D ∪ {δ}) must contain the same matching μ on D �N .

4.4.5 Computations for Realizable Covector Graphs

Starting from a proper covector graph, the next lemma allows us to compute a point
with given covector graph.

Let G be a connected covector graph with respect to A ∈ Tn×d
min and δ ∈ [d] a coordinate

node. For any other coordinate i ∈ [d], let δ = i1, j1, i2, . . . , is, js, is+1 = i be any path
from δ to i in G. By the definition of a covector graph, we obtain the sequence of
equations ajtit + xit = ajtit+1 + xit+1 for all the tuples (it, jt, it+1) with t ∈ [s]. Summing
up these equations yields

∑s
t=1(ajtit + xit) =

∑s
t=1(ajtit+1 + xit+1). Equivalently, we

obtain
s∑

t=1

xit+1 −
s∑

t=1

xit =
s∑

t=1

ajtit −
s∑

t=1

ajtit+1

and hence, xi − xδ = xis+1 − xi1 =
∑s

t=1 ajtit −
∑s

t=1 ajtit+1 . These equations define
x uniquely up to adding multiples of the all ones vector. Since we assumed G to be
a covector graph, these necessary conditions are also sufficient. This construction is
visualized in Figure 4.11. It proves the following.

Lemma 4.30. The covector graph of x with respect to A is G.

For subsets I ⊆ [d] and J ⊆ [n] with |J | = |I| − 1 we define the tropical Cramer
solution A[J |I] ∈ Td by

A[J |I]i =
{
tdet(AJ,I\{i}) for each i ∈ I

∞ else .

To cover the case J = ∅, we set tdet(A∅,∅) = 0.
These vectors occur as solutions to homogeneous tropical equality systems, see, e.g.,

[GP97, Theorem 18], [RGST05, Corollary 5.4]. For an extensive study of this computa-
tional problem see [AGG14].
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Figure 4.11: The computation of the point (0, 1, 3) for a prescribed covector graph from
Example 4.8.

Remark 4.31. [AGG14, Theorem 4.18] implies that the covector graph of A[J |I] for a
generic, finite A is just the Cramer covector C(J, I) since there is a unique covector
graph with the prescribed degree sequence. We will determine the covector graph for the
non-generic case in Lemma 4.36.

Now, let A ∈ Tn×d be an arbitrary matrix. We denote the generalized covector graph
of A[J |I] by CA(J, I).
Example 4.32. Consider again the matrix A from Example 4.8. The point (0, 1, 3) has the
covector graph depicted on the left of Figure 4.11. On the right is the auxiliary weighted
directed graph for computing the point from the covector graph.

It is the Cramer solution CA({2, 3}, {1, 2, 3}).

Lemma 4.33. Let A ∈ T(d−1)×d with d ∈ N and x the Cramer solution for this matrix.
Then |xi − xh| ≤ 2 · d · max {|aij | | aij 
= ∞, (i, j) ∈ [d]× [n]} for any i, k ∈ [d] with
xi 
= ∞ 
= xk.

Proof. This follows from the definition of Cramer solution with the triangle inequality.

4.5 Polyhedral Constructions

4.5.1 Refinement

The graphs in an STM (S,Σ) have a particularly simple form if S is a triangulation.
Recall from Definition 4.21 that, in this case, we call the STM generic and [DLRS10,
Lemma 6.2.8] tells us that all the graphs are forests and, especially, that the maximal
polytopes in the subdivision are represented by trees. A method to construct a generic
STM is by refining our subdivision S. This means that we construct a triangulation T
such that each polytope in S is the union of simplices in T . Hence, every covector graph
of T is a forest and contained in a covector graph of S. This idea is implicitly used in
[ABGJ14a] in the perturbation of tropical linear inequality systems.
Since we want to preserve the feasibility of our system, we choose to refine our

subdivision with heights defining a lexicographic triangulation. By [DLRS10, Definition
4.3.8], the lexicographic triangulation for a point configuration with k ∈ N points is the
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regular triangulation with heights ψi · ci for i ∈ [k] where (ψ1, . . . , ψk) ∈ {−,+}k is a sign
vector and c is a sufficiently big positive number.

Now, let the matrix (mji) = M ∈ Rn×d contain the heights for a lexicographic
triangulation of Δn−1 ×Δd−1 for which we only require that the sign pattern of M is
the negative of the sign pattern of Σ and that mji = ∞ ⇔ σji = •.
By [DLRS10, Lemma 2.3.16 & Corollary 2.3.18], we obtain a refinement of S with

respect to M by taking the union of the subdivisions arising by restricting M to the
cells of S. Formally this means: Restricting M to the vertices of a cell C in S induces a
regular subdivision of C which we denote by C|M . The union

⋃
C∈S C|M of the simplices

in each triangulation C|M is a triangulation of F which refines S.
In the realizable case, [DLRS10, Lemma 2.3.16] implies that the height matrix cor-

responding to the refined subdivision is obtained by adding a small multiple of the
perturbation matrix M .

The refinement T of the subdivision S with the matrix M fulfills the following:

Lemma 4.34. Let G be a maximal covector graph of S and G1, . . . , Gk the maximal
covector graphs of T contained in G. Then G is infeasible if and only if G� is infeasible
for every � ∈ [k].

Proof. If G is infeasible, there is an apex node which is only incident with negative edges.
Since each G� is a connected subgraph of G without isolated nodes it also contains an
apex node which is only incident to negative edges. Hence, it is infeasible.

Now, let G be feasible. For the covector graph G we define the matrix M |G by replacing
every entry mji of M by ∞ for which (i, j) is not an edge of G. By construction, the
polytope in the subdivision S corresponding to the covector graph G is split up in those
polytopes whose corresponding graphs occur as maximal covector graphs in the covector
decomposition with respect to M |G. Since no apex node in G is only incident with
negative arcs, the signed system (M |G,Σ) has the feasible point 0 by the choice of M .
Then the maximal covector graphs which contain the covector of 0 are feasible. This
implies the existence of a feasible covector.

u v

w

v′
w′

Figure 4.12: The perturbation of the signed system for the left picture yields the middle
one which locally looks like the right one. See Example 4.35.

Example 4.35. Consider the signed system (A,Σ) with

A =

(
0 0 0
0 −2 0

)
and Σ =

(
+ + −
+ − +

)
.
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For a sufficiently big c � 1 we construct the matrix

M =

(
−c1 −c2 c3

−c4 c5 −c6

)
with the negative of the sign pattern of Σ. For the covector graph G of the point (0, 2, 0)
on the left of Figure 4.13 this yields (with M |G as in the proof of Lemma 4.34)

A+ ε ·M =

(
−εc1 −εc2 εc3

−εc4 −2 + εc5 −εc6

)
and M |G =

(
−c1 ∞ c3

−c4 c5 −c6

)
,

where ε > 0 is sufficiently small. Figure 4.12 shows the original configuration for A,
the perturbed configuration for A + ε · M and the local configuration for M |G. The
points are u = (0, 2, 0), v = (ε(c3+ c5), 2− ε(c1+ c6), ε(−c1+ c5)), w = (εc4, 2− εc5, εc6),
v′ = (c3+ c5,−c1− c6,−c1+ c5) and w′ = (c4,−c5, c6). Figure 4.13 depicts their covector
graphs. The left one is the covector graph of u, the middle one of v and v′, the right one
of w and w′.

1

2

3

1

2

1

2

3

1

2

1

2

3

1

2

1

2

3

1

2

1

2

3

1

2

1

2

3

1

2

Figure 4.13: The covector graph is replaced by two trees in the refinement.

We also apply the perturbation technique to get a description of a Cramer solution in
the non-generic case.

Lemma 4.36. For a finite matrix A ∈ Rn×d, which is not necessarily generic, the Cramer
covector CA(J, I) is the union of all minimal matchings on (I \ {i}) � J for all i ∈ I and
on I � (J ∪ {j}) for all j ∈ [n] \ J .
Proof. Let Â be any matrix which induces a triangulation that refines the subdivision
induced by A in the sense of [DLRS10, Lemma 2.3.16]. Then there is a covector graph
H with respect to A, which contains G = C

̂A
(J, I).

By Proposition 4.4, each matching in H is a minimal matching. Since H contains
matchings on (I \ {i})� J for all i ∈ I and I � (J ∪ {j}) for all j ∈ [n] \ J , it contains all
minimal matchings on these vertex sets by the same Proposition. Therefore, we have to
show that H = CA(J, I).
Since G is connected, so is H, and we can apply Lemma 4.30 to construct a point

x ∈ Rd which has H as covector graph with respect to A.
Fix a coordinate node δ ∈ I. For any i ∈ I \ {δ}, the path from δ to i is the

symmetric sum of the perfect matchings in G on (I \ {δ}) � J and (I \ {i}) � J . With
Lemma 4.30, we obtain that xi − xδ is the difference of the values of the two matchings.
As these are minimal matchings, the values equal the determinants. This implies
xi − xδ = tdet(AJ,(I\{i})) − tdet(AJ,(I\{δ})). As x is defined by its covector graph only
up to addition of multiples of 1, the claim follows.
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4.5.2 Extension from a Subpolytope to Δn−1 ×Δd−1

We introduce a construction which allows us to reduce the general case, where the
finity graph is a subgraph of Kd,n, to the complete bipartite graph. This is particularly
important as we define the algorithms in Section 4.6 only for a full STM. We give the
justification for why we do not lose generality, and provide technical details for later
reductions. We achieve this again by polyhedral means. The following technique was
also applied to tropical oriented matroids in [Hor16].

Let F be a subpolytope of Δn−1 ×Δd−1 and S a subdivision of F . An extension of S
is a subdivision T of Δn−1 ×Δd−1 which coincides with S on F .

Placing triangulations provide a tool to construct an extension of a subdivision,
see [DLRS10, Lemma 4.3.2]. In particular, for each subdivision of a subpolytope of
Δn−1 ×Δd−1 there is always an extension. To resolve the • entries of the sign matrix,
we just replace them by +. We denote the modified sign matrix by Ξ. Note that the
(in)feasibility of the covector graphs in S is preserved in T .

We summarize these considerations.

Proposition 4.37. The set of covectors in the STM defined by (S,Σ) is contained in
the set of covectors defined by (T ,Ξ).

We study in more detail how an extension can be produced in the realizable case.
[DLRS10, Lemma 4.3.4] shows that a placing triangulation can be obtained by taking

a rapidly increasing height function. Namely, if there are k < n · d entries with ∞ in
A ∈ Tn×d

min , let Ω = (Ω1, . . . ,Ωk) be a vector of “big” numbers. We require that

Ω1 >
∑

aji �=∞
|aji| and Ω�+1 >

∑
aji �=∞

|aji|+
�∑

h=1

Ωh for all � ∈ [k − 1] . (4.9)

We will calculate with the entries of Ω just formally and denote the resulting matrix
by A(Ω).

Remark 4.38. One can think of these Ω� as artificial infinities. One approach to formalize
this is by successively adjoining elements to R. Here, the order extends the natural order
on R such that Ω� is the biggest element in each extension step. In [ABGJ14a, §3.2], a
similar technique with ”infinitely small” values is used to reduce the case with −∞ to
the finite case.

To show that the matrix A(Ω) induces an extension of the subdivision of F by A, we
iteratively replace the ∞ entries by the entries of Ω. Let A1 be obtained from A by
replacing one ∞ entry, which belongs to the edge e, with a positive number Ω1 which
is bigger than the sum of the absolute values of the finite entries of A. Consider an
arbitrary maximal covector graph G with respect to A and let μ be a perfect matching
on D �N ⊆ [d] � [n] in G. By Proposition 4.4, the matching μ is minimal with respect
to the coefficients of A1. Hence, by definition of Ω1, the edge e cannot be contained in μ.
Since this is true for any matching in G, again by Proposition 4.4, the graph G is also a
covector with respect to A1. By iteratively inserting Ω1,Ω2, . . . ,Ωk for the ∞ entries,
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this implies that the subdivision induced by A(Ω) extends the subdivision induced by A,
since a polyhedral complex is given by its maximal cells. Furthermore, if A induces a
triangulation, so does A(Ω).

We say that the signed system (A(Ω),Ξ) extends the signed system (A,Σ).

Lemma 4.39. For the matrix A ∈ Tn×d
min , let (A(Ω),Ξ) be an extension of the signed

system (A,Σ). For any x ∈ TAd, the generalized covector graph GA(x) is infeasible, if
the generalized covector graph GA(Ω)(x) is infeasible.

Proof. Within the proof, we denote A(Ω) by (ãji) = Ã. Fix an arbitrary x ∈ TAd. If the
generalized covector graph G

˜A
(x) is infeasible, there is a j0 ∈ [n], which is only incident

with negative edges in G
˜A
(x). Let I be the set of coordinate nodes adjacent to j0. Since

the entries of Ã are finite, G
˜A
(x) is a proper covector graph on the support of x. Hence,

using the definition of the covector graph, we see that x fulfills the inequalities

ãj0i + xi < ãj0� + x� for all i ∈ I and � ∈ supp(x) \ I .

Each entry ãj0i with i ∈ I equals aj0i 
= ∞ because (j0, i) is negative. With ãj0� ≤ aj0�
for � ∈ supp(x) \ I, we obtain

aj0i + xi < aj0� + x� for all � ∈ supp(x) \ {i} .

This implies that GA(x) is infeasible.
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Figure 4.14: Three covector graphs for Example 4.40.

Example 4.40. Consider the signed systems (A,Σ) and (Ã,Ξ) with

A =

⎛⎜⎜⎝
0 0 ∞ ∞
1 1 ∞ ∞
∞ 1 0 0
0 0 0 1

⎞⎟⎟⎠ , Σ =

⎛⎜⎜⎝
− + • •
+ − • •
• + − −
+ − + +

⎞⎟⎟⎠

Ã =

⎛⎜⎜⎝
0 0 Ω1 Ω2

1 1 Ω3 Ω4

Ω5 1 0 0
0 0 0 1

⎞⎟⎟⎠ , Ξ =

⎛⎜⎜⎝
− + + +
+ − + +
+ + − −
+ − + +

⎞⎟⎟⎠ .
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They yield the Cramer solutions s = CA([3], [4]) = (∞,∞, 1, 1) and r = C
˜A
([3], [4]) =

(Ω1 + 1,Ω1 + 1, 1, 1). The corresponding covector graphs are left and right in Figure 4.14.
The relation between the left and middle covector illustrates Lemma 4.39.

4.5.3 Splitting Apex Nodes

To apply the algorithms that will be presented in Section 4.6 and 4.7 to an STM (A,Σ),
we require that each row of Σ contains at most one negative entry. We call this property
trimmed.

In the realizable case, this can be obtained very easily. Through the conversion

c0 ≤
⊕
�∈[m]

c� ⇔
(
c0 ≤ c� ∀� ∈ [m]

)
, (4.10)

for arbitrary c0, c1, . . . , cm ∈ Tmin each tropical inequality system is equivalent to a system
for which the minimum on the bigger side of the new inequalities contains only one term.
Here, the number of inequalities is increased by a factor which is at most the number of
coordinates, see Figure 4.15.
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Figure 4.15: An apex node whose corresponding row in the sign matrix has three negative
entries is replaced by three apex nodes.

This splitting of apex nodes was similarly used in [MSS04, §7.4].
For the non-realizable case, we use a more complicated polyhedral construction, which

uses local changes. In two steps, we obtain a bigger STM which mimics a splitting of the
inequalities in its covector graphs. A similar technique was used in [Hor16, §7.2]. We
know how to extend a non-full STM, by Subsection 4.5.2, and can assume that the STM
is full.

Let k > 1 entries of the nth row of Σ be −.
Define the projection π : Rn−1+k × Rd → Rn × Rd as

(y1, . . . , yn−1, yn, . . . , yn+k−1, z1, . . . , zd) �→ (y1, . . . , yn−1,
k−1∑
�=0

yn+�, z1, . . . , zd) .

This defines a surjective mapping from Δn−1+k−1 ×Δd−1 onto Δn−1 ×Δd−1 and further-
more, a surjective mapping from the subgraphs of Kd,n+k−1 to the subgraphs of Kd,n.
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Lemma 4.41. The preimage under π of a simplex in Δn−1×Δd−1, given by the bipartite
graph G, is G ∪ {(i, n+ �) | (i, n) ∈ G, � ∈ [k − 1]}.

Proof. Let H be any spanning subgraph of Kd,n+k−1. This defines a subpolytope of
Δn−1+k−1 ×Δd−1. A convex combination of its vertices is given by

∑
(i,j)∈H λi,j(ej , ei)

with
∑

(i,j)∈H λij = 1. With the linearity of π, the projection of this point is∑
(i,j)∈H,j≤n−1

λi,jπ((ej , ei)) +
∑

(i,j)∈H,j≥n
λi,jπ((ej , ei))

which evaluates to ∑
(i,j)∈H,j≤n−1

λi,j(ej , ei) +
∑

(i,j)∈H,j≥n
λi,j(en, ei) .

Such a point lies in conv {(ej , ei) | (i, j) ∈ G} if and only if, for λij 
= 0,

(i, j) ∈ H ⇔
{
(i, j) ∈ G for j ≤ n− 1

(i, n) ∈ G for j > n− 1 .

With the linearity of π, the claim follows.

Fix an arbitrary ε > 0 and let i1, . . . , ik be the indices where the nth row of Σ is ’−’.
We define the matrix (mji) = M ∈ R(n+k−1)×d by

mji =

{
ε for j ≥ n, i = ij

0 else .

We refine the subdivision of Δn−1+k−1 × Δd−1, which we just constructed, with this
matrix M to obtain a subdivision Ŝ.

Additionally, we replace the nth row of Σ with k copies of this row, where we replace
all the − entries in every row j for j > n− 1 by + except for (j, ij−(n−1)), where we keep
the −.
Finally, the following is similar to Lemma 4.34 and justifies the construction. Let

(S,Σ) be the original and (Ŝ, Σ̂) the modified STM.

Proposition 4.42. Let G be a maximal covector graph of S and G1, . . . , Gm the maximal
covector graphs of Ŝ which is mapped to G by π. Then G is infeasible if and only if G� is
infeasible for every � ∈ [k].

Proof. Let Ĝ be the covector graph from Lemma 4.41 which is obtained by adding k
copies of the apex node n. We define the matrix M |

̂G
by replacing every entry mji of M

by ∞ for which (i, j) is not an edge of Ĝ.
By construction, G1, . . . , Gm are exactly the maximal covector graphs with respect to

M |
̂G
.

Since feasibility is a property which can be checked independently for all apex nodes,
it suffices to consider the apex node n in G resp. n, . . . , n+ k − 1 in G1, . . . , Gm.

86



Hence, the rows n, . . . , n+ k − 1 of M |
̂G
are, up to reordering of columns, of the form⎛⎜⎜⎜⎜⎝

0 ε · · · ε 0 · · · 0

ε
. . . ε

... 0 · · · 0
... ε

. . . ε 0 · · · 0
ε · · · ε 0 0 · · · 0

⎞⎟⎟⎟⎟⎠
where each 0 entry in the left part of the matrix is assigned a − in Σ̂.

If G is infeasible, the right part of the matrix does not contain any columns and the
corresponding inequality system is infeasible.

Otherwise, 0 is a feasible point. Therefore, at least one of the covectors G1, . . . , Gm is
feasible.

In this way, we can construct a signed tropical matroid (Ŝ, Σ̂) such that the number of
apex nodes is bounded by n · d and every row of Σ̂ contains exactly one negative entry.

In the realizable case, this translates to the following.

Corollary 4.43. Let I ⊆ N be a finite index set, b0, bi ∈ Tmin for i ∈ I and ε > 0 an
arbitrary positive number.

Then b0 ≤
⊕

i∈I bi if and only if b0 ⊕
⊕

i∈I\{�}(bi + ε) ≤ b� for all � ∈ I.

Example 4.44. The left picture of Figure 4.16 visualizes the inequality x1 ≤ x2⊕x3 where
again the infeasible region is marked. The middle one depicts the replacement by the
two inequalities x1 ⊕ (ε	 x2) ≤ x3 and x1 ⊕ (ε	 x3) ≤ x2 as in Corollary 4.43. Finally,
the right one illustrates the conversion from Equation 4.10. The resulting inequalities
are x1 ≤ x2 and x1 ≤ x3.

(0, 0, 0)

Figure 4.16: Starting from the left depiction, the middle one illustrates the construction
of Corollary 4.43 and the right one illustrates Equation 4.10 applied to the
left configuration, see Example 4.44.

4.6 Abstract Tropical Linear Programming

4.6.1 A Generalized Feasibility Problem

The tropical linear feasibility problem has connections to several other problems as
we saw in Section 4.3. Therefore, algorithms for scheduling with AND-OR-networks
[MSS04], mean payoff games [EM79, ZP96, GKK88] and classical linear programming
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[ABGJ15, ABGJ14a, Ben14] are applicable to this problem. Furthermore, beside the
algorithms for tropical inequality systems [BA09, But10], one can also use algorithms
for tropical equality systems [Gri13, BZ06] which are equivalent via the reformulation
a ≤ b ⇔ a = min(a, b).
Our approach is motivated by the connection with the simplex method. Inspired by

classical oriented matroid programming, cf. [Bla77, Fuk82, Tod85, Ter85], we will now
describe an algorithm for solving the feasibility problem for an STM as an abstraction of
the feasibility problem for signed systems.

Recall that a signed system (A,Σ), with coefficient matrix A ∈ Tn×d
min , is feasible if and

only if there is a point x ∈ TAd which fulfills the corresponding homogeneous tropical
inequality system. Otherwise, we call it infeasible.

With Lemma 4.25, this translates to the following for systems with finite coefficients.

Corollary 4.45. A signed system (A,Σ), with finite coefficients A ∈ Rn×d, is infeasible
if and only if every covector graph in every contraction is infeasible.

This motivates the definition of the feasibility of a full STM as generalization of the
feasibility of a tropical linear inequality system. A full STM (T ,Σ) is feasible if there is
a contraction which contains a feasible covector graph, otherwise we call it infeasible.
We do not give the definition of feasibility for a general non-full STM, as a more

axiomatic approach for collections of generalized covectors would be necessary. Our
suggestion is the following: An STM is feasible if there is an extension that is feasible.
For this, it would be nice to show that this is indeed the case if and only if all extensions
are feasible.

4.6.2 Description of the Algorithm

We introduce an algorithm which either finds a feasible or a totally infeasible covector graph
in an STM, which is full, generic and trimmed (see Definition 4.21 and Subsection 4.5.3).
By Lemma 4.26, a totally infeasible covector is a certificate that such an STM does not
contain a feasible covector.
Like the variant of the simplex method presented in Subsection 4.3.3, the algorithm

constructs a sequence of subsets (a basis) of apex nodes (which correspond to inequalities).
In each step, we consider a covector which is defined by this sequence and check if it is
feasible. If it is not feasible yet, there is an apex node which is only incident with negative
edges (corresponding to a violated inequality). This determines which apex (variable)
will enter the basis. For classical oriented matroid programming, this is described in, e.g.,
[Bla77, Theorem 4.5] .

Now, our approach diverges. While in the simplex method, one has to compute which
variable leaves the basis, we deduce from Lemma 4.47 with the properties of a basic
covector which apex leaves the basis. This can already be seen in Figure 4.17. To arrive
at this insight, we will prove in Subsection 4.6.3 that moving along abstract tropical lines
yields a basic covector if we start from one.

Furthermore, the termination of the simplex method is guaranteed by the increase of
a linear functional. As we are working in a setting without weights such an argument
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is not at hand. However, again the special structure, in particular the preservation of
the distinguished direction, of the basic covectors yields a purely combinatorial tool to
measure the progress of the algorithm.

The powerful definition of a basic covector comes with the additional difficulty to find
one. We will solve this in Subsection 4.6.4 by an inductive construction via contractions
of an STM.

Throughout this section we assume that (T ,Σ) is a signed tropical (n, d)-matroid, which
is full, generic and trimmed. In particular, we are in the situation of Proposition 4.22.
With the operations from Section 4.5, we can modify a general STM to an STM with
this particular structure and the same feasibility status. This follows from Lemma 4.34,
Proposition 4.37 and Proposition 4.42.
To emphasize that covector graphs take the role of vectors in the classical simplex

method we denote them by y.

A basic covector (graph) y with distinguished direction δ and support (D ∪ {δ}) ⊆ [d]
with D ⊆ [d] \ {δ} is a covector graph on [d] � [n] such that

1. it is a spanning tree on (D ∪ {δ}) �N ,

2. each coordinate node in [d] \ (D ∪ {δ}) is isolated,

3. there is a |D|-set of apex nodes N ⊆ [n], called basis, so that each node in N has
degree 2 in y,

4. δ is not adjacent to an apex node in N via a negative edge,

5. each apex node in N is incident with a positive and a negative edge,

6. no two negative edges, each of which is incident with some node in N , are adjacent.

The apex nodes in the basis are called basic apices, the others non-basic apices. If Σ has
a ’−’ at position i ∈ [d] in row j ∈ [n], we say that the apex node j has shape i resp. it is
i-shaped.
Later on, we will construct a sequence of basic covectors. If there are apex nodes

p 
= q ∈ [n] so that N and N \ {p} ∪ {q} are bases, we say that p is the leaving apex and
q is the entering apex.

Example 4.46. The graphs at the bottom of Figure 4.17 are the covector graphs of the
points P1, P2 and P3 in the top part. They are all basic covectors. The distinguished
direction is δ = 1. The corresponding bases are {1, 2}, {2, 3} and {3, 4}. The apices 2
and 4 are 2-shaped, the apices 1 and 3 are 3-shaped.

We start with the nice structural property of basic covectors which connect the sign
structure with the matching structure.

Lemma 4.47. The negative edges which are incident with a basic apex form a perfect
matching on D �N in y. Furthermore, the edges in a path emerging from δ to another
coordinate node are alternatingly positive and negative.
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Figure 4.17: A path (dashed) along points with basic covectors (the four red points).
The infeasible region is marked. In each step, a negative edge is removed
from the covector graph. The bases are {1, 2}, {2, 3} and {3, 4}.

Proof. Consider the induced subgraph ỹ of y on (D ∪ {δ}) � N . Each apex node is
incident with a negative edge. By (5) and (6) in the definition, no two negative edges are
incident, and by (4), δ is not incident with a negative edge. Hence, the negative edges
define an injective function from N to D. Because of |N | = |D|, this function is also
bijective. This yields the required matching.
Since each node in N has degree 2 and the nodes in [d] \ (D ∪ {δ}) are isolated, ỹ is

a tree. Fix an arbitrary i ∈ D and let ρ = (e0, e1, . . . , ek) be the edge sequence from δ
to i in ỹ. Since e0 is positive and incident with the same apex node as e1 we conclude
that e1 is negative. Therefore, e2 has to be positive again as it is incident with the
same coordinate node as e1. Iterating this argument, we obtain that the edges in ρ are
alternatingly positive and negative.

The former lemma tells us that there is exactly one i-shaped apex node for each i ∈ D
in the basis N . From Proposition 4.28, we know that there is at most one basic covector
defined by (D ∪ {δ}) and N . If the Cramer covector C(N,D ∪ {δ}) fulfills the conditions
4, 5 and 6, it is the basic covector with these parameters and we denote it by B(N,D, δ).

Corollary 4.48. The Cramer covector C(N, (D ∪ {δ})) is the basic covector B(N,D, δ)
if and only if the negative edges, which are incident with the basic apices, form a perfect
matching on D �N .
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4.6.3 Pivoting between Basic Covectors

The crucial piece for our feasibility algorithm is a method to find a new basic covector
which is “in the right direction” and “similar to the old one”. In particular, the new basic
covector should have the same distinguished direction. We present two variants for this
in Algorithm 2 and Algorithm 3. The second one will evolve as an iteration over the first
one. We need the first one for technical reasons in the proofs. The idea is the following.

If we remove a negative edge e which is incident to a basic apex p in a basic covector
y with basis N then we obtain the covector graph y − e having two trees as connected
components and p leaves the basis. In this context, − denotes set difference of the edge
sets. We know by Proposition 4.22 that there is exactly one other tree w containing this
graph. Hence, there is an edge f such that w = y − e+ f where + denotes union.
Now, three cases can occur. If w is again a basic covector graph with distinguished

direction δ, we are done. Otherwise, either an apex node in N has degree 3 or another
apex node has degree 2. We continue the iteration by removing an edge. This edge is
chosen such that no node becomes isolated and all nodes in N \ {p} have degree ≥ 2
as well as one negative incident edge. This ensures that δ remains the distinguished
direction and yields the case distinction of Algorithm 2. A closer inspection reveals that
we do not need to iterate over all these covectors to find another basic covector but can
construct it directly which results in Algorithm 3. For the proof of this, we assigned the
variable completed in Line 11 of Algorithm 2. The latter algorithm is merely a technical
tool to show that the other algorithms building on it behave correctly.

Remark 4.49. The iteration in Algorithm 2 moves along an abstract version of a “tropical
line”. A tropical line is a sequence of ordinary lines as explained in [DS04, Proposition
3]. A more refined version for this is given in [ABGJ15, §4]. Note that their description
in terms of the “tangent digraph” is essentially the same as in terms of covector graphs
in the realizable case. However, our approach also works in the non-realizable case.

We build our arguments for the correctness of the algorithms on properties of the paths
in basic covectors. Let the length of a path in a graph be the number of nodes contained
in the path. Define the δ-distance of an edge e in the covector graph y as the minimum
of the two lengths of the paths from a fixed coordinate node δ to the nodes which are
incident with e. Note that the path between two nodes in a tree is unique. We call the
edge e even in y if the distance to the coordinate node δ is even, otherwise odd. We call
this property the δ-parity of an edge in y.

Finding the next basic covector

Let y0 be the input covector, r the input basic apex and p the leaving basic apex of shape
i. We consider the sequence y1, y2, . . . of covectors which arise in Algorithm 2 in Line 6.
Such a sequence is depicted in Figure 4.18. Then we can write y1 = y0 − e0 + f1, y2 =
y1 − e1 + f2, . . . for appropriate edges e� and f � with � ∈ N. Furthermore, let q� be the
apex node, which is incident with f � in y�.

Example 4.50. Figure 4.18 depicts a possible sequence of covectors arising in Algorithm 2
Line 6. The first and the last covector are basic with basis {2, 3, 4} resp. {2, 3, 5}. The
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Algorithm 2 Finding the next basic covector; see also Algorithm 3

Input: Basic covector graph y = B(N,D, δ) and a non-basic apex r that is adjacent to
D via a negative edge in y

Output: Basic covector graph with support D ∪ δ and distinguished direction δ
1: procedure NextBasicCovector(y,r)
2: i ←coordinate node adjacent to r
3: p ←basic apex adjacent to i via a negative edge � the i-shaped basic apex of the

basis N . It leaves the basis.
4: e ←edge connecting i and p
5: do
6: w ← unique covector 
= y in T |D∪{δ} containing y − e � see Prop. 4.22
7: f ← w − (y − e)
8: q ← the apex node incident with f
9: if q is adjacent to i via a negative edge then

10: � w is the basic covector B(N \ p ∪ q,D, δ).
11: completed← (q = r)
12: else if q has degree 3 in w then
13: e ← the positive edge incident with q in y − e = w − f .
14: else � In this case, q is incident with two edges.
15: e ← the edge incident with q in y − e = w − f .
16: end if
17: y ← w
18: while y is no basic covector
19: return y
20: end procedure
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Figure 4.18: A possible sequence of covector graphs starting with an infeasible and ending
with a feasible basic covector. Negative edges are light red, coordinate nodes
left, apex nodes right, δ = 4. The intermediate covectors are not basic.

distinguished direction is δ = 4.
In the realizable case, the two apices 2 and 3 would define a tropical line which

eventually has to hit the halfspace defined by the apex node 5.

Lemma 4.51. The covector graph y� − e� has two connected components for all � ≥ 0.
Each node in N \ {p} has degree 2 and is incident with a positive and a negative edge.
All other apex nodes have degree 1. The negative edges, which are incident with a node
in N \ {p}, are pairwise not adjacent.

Proof. By construction, y� is always a tree, hence y� − e� has two connected components.
Line 13 ensures the properties of the nodes in N \ {p}. Line 15 guarantees that the
other apex nodes have degree 1. The last claim follows as the negative edges, which are
incident with a node in N \ {p}, are the same as in y0.

Since we started the iteration with a basic covector, we obtain a nice invariant which
is fulfilled by the edges which are removed and added.

Lemma 4.52. Let y� and y�+1 = y� − e� + f �+1 be two consecutive covector graphs for
� ≥ 0. Then e� is even in y� and f �+1 is odd in y�+1.

Proof. We proceed by induction. The first covector graph y0 in the iteration is a basic
covector.
From Lemma 4.47, we know that the paths from δ to another coordinate node are

alternatingly positive and negative. We conclude that all the negative edges which are
incident with a basic apex are even. Hence, line 4 in Algorithm 2 yields that e0 is even
as it is negative.
Now fix an � ≥ 1 and consider the union Y � := y�−1 + f � = y� + e�−1 of y�−1 and y�.

There is a unique fundamental cycle in Y � which contains f � and e�−1. An example for
this is depicted in Figure 4.19. Consider the path ρ in Y � that contains e�−1 and goes
from δ to the first node incident with f �. By the induction hypothesis, e�−1 is even in
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y�−1. By the comparability condition in Proposition 4.22, the fundamental cycle must
not be alternating between edges of y�−1 and y�. Therefore, with the evenness of e�−1,
the number of nodes in ρ must be even as well. Since the number of edges forming a
cycle in a bipartite graph is even, this implies that the other path from δ to the first
node incident with f � in Y � contains an odd number of nodes. This is exactly the path
defining the δ-distance of f � in y�, hence, this δ-distance is odd.
To show that f � and e� have different parity in y� we consider the two cases in

Algorithm 2 lines 13 and 15. The first case occurs if q� is a basic apex. Consider the
path from δ to q�. By Lemma 4.51, the apex nodes along this path are only nodes in
N \ {p} and analogously to Lemma 4.47, we get that the path is alternatingly positive
and negative. In particular, the path to the positive edge incident with q� with the higher
δ-distance contains the other positive edge. Therefore, these two edges have different
parity.

The second case occurs if q� is an apex node in [n] \ (N \ {p}) which has degree 2 in y�

but is not of shape i. In this case, f � and e� are again incident with the same apex node
q�. There is a unique path from δ to q�. Since it has to contain one of the two edges the
claim follows.
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Figure 4.19: The fundamental cycle for y1 and y2 in Figure 4.18. The two graphs coincide
in the black edges and differ in the green edges. The dashed edge connects
the cycle with δ = 4.

Now, we have the tools to prove a first lemma which guarantees termination.

Lemma 4.53. For � ≥ 1, let C�−1 be the set of nodes in the connected component of the
distinguished direction δ in y�−1 − e�−1. Then q� 
∈ C�−1, q� ∈ C� and C1 � C2 � . . ..

Proof. Fix an arbitrary � ≥ 1 indexing an element of the sequence (q�).
Not both endpoints of f � can be contained in C�−1 as f � connects the two components

of y�−1−e�−1. The path from δ to the endpoint of f � in y� has to be odd, by Lemma 4.52.
Since such a path has to alternate between coordinate and apex nodes, this endpoint has
to be a coordinate node. Hence, q� is not contained in C�−1.

By the choice of e� in Line 13 or Line 15 of Algorithm 2, e� is incident with q�. Since
e� is contained in y�−1 − e�−1, the endpoint of e� different from q� must not lie in C�−1,
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otherwise q� would lie in C�−1. Subsuming, no endpoint of e� lies in C�−1. Therefore,
q� and the nodes in C�−1 cannot be disconnected from δ in y� − e�. Hence, q� ∈ C� and
C�−1 � C�.

Example 4.54. The connected components of δ in the covector graphs in Figure 4.18 are
{4, 4}, {1, 4, 1, 2, 4}, {1, 2, 4, 1, 2, 3, 4}, where the numbers with the line on top denote
apex nodes.

Theorem 4.55. Algorithm 2 does not cycle and yields a new basic covector with distin-
guished direction δ and support (D ∪ δ) after less than n iterations.

Proof. Note that the condition in Line 9 is fulfilled if q equals r. By Lemma 4.53, the set
C� is increased by at least one apex node. Since there are only n apex nodes and the set
fulfilling the condition in Line 9 is not empty, the algorithm terminates after less than n
iterations.
Furthermore, the condition that w ∈ T |D∪{δ} ensures that each coordinate node in

[d] \ (D ∪ {δ}) is isolated. The condition in Line 9 together with Lemma 4.51 yields that
the resulting covector graph is indeed a basic covector with distinguished direction δ.

If r does not enter the basis to form the new basic covector in Algorithm 2, it is still a
non-basic apex, which is incident with a negative edge. Therefore, the following block
yields the basic covector y = B(N \ p∪ r,D, δ) where p is the leaving basic variable which
has the same shape as r.

completed← FALSE
while not completed do

NextBasicCovector(y,r) � see Algorithm 2
end while � If r does not become a basic apex it can be used again.

This implies that C(N \ p ∪ r,D ∪ {δ}) is indeed a basic covector.

Algorithm 3 Simplified variant of Algorithm 2 for finding the next basic covector

Input: Basic covector graph y = B(N,D, δ) and a non-basic apex r that is adjacent to
D via a negative edge in y

Output: The basic covector graph B(N \ p ∪ r,D, δ) where p is of the same shape as r
1: procedure NextBasicCovector(y,r)
2: i ←coordinate node adjacent to r
3: p ←i-shaped basic apex of the basis N
4: return C(N \ p ∪ r,D ∪ {δ})
5: end procedure

The former observations imply the following.

Corollary 4.56. Algorithm 3 is correct and has the same result as an iterative application
of Algorithm 2.
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Example 4.57. Observe that y0 is the basic covector B({2, 3, 4}, {1, 2, 3}, 4) and y3 is the
basic covector B({2, 3, 5}, {1, 2, 3}, 4) in Figure 4.18. That illustrates Corollary 4.56 as
the apex nodes 4 and 5 are both 3-shaped and 5 is a non-basic apex node incident with a
negative edge in y0.

Finding an extreme basic covector

Eventually, we want to determine a feasible or totally infeasible basic covector. A feasible
covector cannot have an apex node of degree one which is incident with a negative
edge. Therefore, we want to construct a new basic covector if there is such an edge. We
know from the former section how this can be achieved. Iterating this approach yields
Algorithm 5. To check if we reached a feasible or totally infeasible basic covector we
need the subroutine CheckFeasible from Algorithm 4. It is just the algorithmic
manifestation of Definition 4.23.

Remark 4.58. We are left with some freedom of choice for the entering apex at each basic
covector. We do not specify a rule to choose the apex, the algorithms work for any choice.
For an implementation we suggest to use the smallest index, like in Bland’s rule for the
simplex method.

Algorithm 4 Checking feasibility of a basic covector

Input: Basic covector graph y = B(N,D, δ)
Output: A classification of y based on the signs of the edges
1: procedure CheckFeasible(y,δ)
2: if there is a non-basic apex node only incident with a negative edge then
3: if there is a negative edge incident with δ then
4: return TOTALLY–INFEASIBLE
5: else
6: return INFEASIBLE
7: end if
8: else
9: return FEASIBLE

10: end if
11: end procedure

Lemma 4.59. Algorithm 4 correctly determines if y = B(N,D, δ) is feasible, infeasible
or totally infeasible in the sense of Definition 4.23.

Proof. If the condition in Line 2 is fulfilled, the covector y is surely infeasible. Since, in
a basic covector graph, all the coordinate nodes in D are incident to a basic apex via
a negative edge, the condition in Line 3 implies that y is totally infeasible. The claim
follows as feasible is the opposite of infeasible.

Algorithm 5 successively constructs basic covector graphs with Algorithm 3 until the
result is feasible or totally infeasible.
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Algorithm 5 Iterating over basic covectors

Input: Basic covector graph y = B(N,D, δ)
Output: A basic covector with support (D ∪ δ) and distinguished direction δ which is

either totally infeasible or feasible
1: procedure FindExtremeCovector(y)
2: while (CheckFeasible(y, δ) = INFEASIBLE) do
3: r ←non-basic apex in y which is incident to D via a negative edge � such an

r exists if y is infeasible, see Algorithm 4 Line 2 and 3
4: p ←basic apex of y of the same shape as r
5: y ← C(N \ p ∪ r,D ∪ {δ})
6: end while
7: return y
8: end procedure

At first, it is not clear that this terminates. We consider a run of this algorithm starting
with the arbitrary basic covector y0. Let yk be a basic covector which is assigned in
Line 5 of Algorithm 5 during this run. By Corollary 4.56, there is a sequence of covectors
y0, y1, . . . , yk (most of them not basic) which would occur as intermediate results by using
Algorithm 2 instead of Algorithm 3.

Albeit the following lemma just applies to the realizable case, we state it here to
provide more intuition for the general argument in Proposition 4.61. When the covectors
are defined by a matrix A, the termination can be shown by bounding the increase of the
coordinates of the occuring points. This follows with Lemma 4.33 from the next lemma.
Later, this result is needed to deduce the complexity of our algorithm in the realizable
case in Section 4.7.

Lemma 4.60. Let x� ∈ Td
min such that y� is the covector graph of x�, which can be

constructed from A by Lemma 4.30. For each � ∈ [k], we get the inequalities

x�−1i − x�−1δ ≤ x�i − x�δ for all i ∈ (D ∪ {δ}) .

Proof. Lemma 4.30 allows us to express x�−1i − x�−1δ resp. x�i − x�δ as a sum along the
path from δ to i in y�−1 resp. y�, with the weights given by A.

For each i in the connected component C�−1 of δ in y�−1−e�−1, there is exactly one path
from δ to i and it is the same in y�−1 and y�. Therefore, we obtain x�−1i −x�−1δ ≤ x�i −x�δ.

Now, let i be a node in [d] \C�−1. Then the path from δ to i in y�−1 contains e�−1 and
the one in y� contains f �. Denote the paths by ρ�−1 and ρ�. Their symmetric sum is a
subgraph of y�−1 + f � and is a union of cycles. Since y�−1 is a tree, y�−1 + f � contains
only the elementary cycle formed by f �. It decomposes into two matchings μ0 and μ1

where one of them, without loss of generality μ0, contains both the edges e�−1 and f � by
the comparability condition in Proposition 4.22.

In the formula for Lemma 4.30, odd edges get a positive sign and even edges a negative
sign. Furthermore, we see that (x�i − x�δ)− (x�−1i − x�−1δ ) is given by the difference of the
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sums over the two matchings μ0 and μ1. By Lemma 4.52, f � is odd in y�. This implies

(x�i − x�δ)− (x�−1i − x�−1δ ) =
∑

(j,i)∈μ0

aji −
∑

(j,i)∈μ1

aji .

Finally, Proposition 4.4 yields that the difference
∑

(j,i)∈μ0
aji −

∑
(j,i)∈μ1

aji is positive,

since μ1 is contained in the covector graph y� and hence minimal.

Now, we tackle the less intuitive general case. Let E be the graph on (D ∪ {δ}) � [n]
whose set of edges are exactly those which are contained in all the graphs y0, . . . , yk.
Denote by E(δ) the connected component in E containing δ and by I(δ) the subset of the
coordinate nodes in E(δ).

Proposition 4.61. There is an apex node j ∈ [n] and an h ∈ [k] such that j has degree
2 in y0 and degree 1 in y� for � ≥ h. In particular, yk 
= y0.

Proof. Since y0 is connected there is an apex node j in y0 which is connected to I(δ) and
to (D ∪ {δ}) \ I(δ). The covector y0 is basic and j has degree 2. Therefore, j is a basic
apex.

If both edges incident with j are contained in E this would contradict the definition of
I(δ). Therefore, there is an h so that the edge eh, which is removed in step h, is incident
with j. Since the edges of E are contained in all the graphs y0, . . . , yk, the edge eh has
the same δ-distance in yh as in y0. With Lemma 4.47 and 4.52, the edge eh is even and
negative in yh. Furthermore, the positive edge incident with j is incident with I(δ).

For � ≥ h, no edge in E(δ) is removed. Assume there would be an �0 ≥ h so that f �0 is
incident with j. Then f �0 would be even in y�0 . However, this contradicts Lemma 4.52.
Subsuming, j has degree 1 in y� for � ≥ h.

Remark 4.62. Geometrically, for the realizable case the set E(δ) defines a lower dimen-
sional tropical hyperplane, which contains all the points y1, . . . , yk+1. It is given by the
intersection of the boundaries of the tropical halfspaces which correspond to the apex
nodes which are internal nodes of E(δ).

For the non-realizable case, we only give the following rough upper bound. It is just the
number of |D|-tuples analogously to the number of possible bases for the classical simplex
method. We will give a better upper bound for the realizable case in Theorem 4.79.

Theorem 4.63. Algorithm 5 terminates after less than
(

n
|D|
)
iterations.

Proof. By Proposition 4.61, any two basic covectors arising in Line 5 are distinct. Fur-
thermore, the assignment of y as Cramer covector in that line yields an injective function
from the |D|-subsets of [n] to the basic covectors. This implies the claim.

Remark 4.64. In Algorithm 5, we could continue the iteration until only δ is incident
with non-basic apices via negative edges. For other basic covectors, one still can apply
Algorithm 3 to construct a new basic covector.
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4.6.4 Finding a Basic Covector and Even More

Until now, we assumed a basic covector to be given. Indeed, one easily finds a basic
covector for each δ ∈ [d], namely the Cramer covector C(∅, {δ}). Algorithm 5 allows us
to determine a feasible or totally infeasible covector. This covector lives in T |(D∪{δ}.
If it is feasible then we are finished as we are only looking for a feasible covector in a
contraction. However, a totally infeasible covector in T |(D∪{δ} is not enough to guarantee
the infeasibility of T . On the other hand, we demonstrate how one can construct a
new basic covector in a contraction with a bigger support from a totally infeasible basic
covector y = B(N,D, δ).

By Definition 4.23 resp. Algorithm 4, there is a non-basic apex j in y which is incident to
δ via a negative edge. Therefore, y contains a perfect matching μ on (D∪{δ})� (N ∪{j})
which consists of negative edges. Consider an additional element δ′ ∈ [n] \ (D ∪ {δ}).
By Proposition 4.29, the covector y′ = C((N ∪ {j}), (D ∪ {δ} ∪ {δ′})) also contains μ.
With Corollary 4.48, we conclude that y′ is the basic covector B((N ∪ {j}), (D ∪ {δ}), δ′).
Note that this argument works for any covector y which contains a matching of negative
edges on (D ∪ {δ}) � (N ∪ {j}).

Algorithm 6 Finding a feasible or totally infeasible covector graph

Input: A full generic trimmed STM (T ,Σ)
Output: A totally infeasible basic covector or a feasible covector in a contraction of T
1: δ ← an element of [d]
2: D ← ∅, N ← ∅
3: y ← C(∅, {δ})
4: while TRUE do
5: check ← CheckFeasible(y, δ) � see Algorithm 4
6: if check = INFEASIBLE then
7: y ← FindExtremeCovector(y) � see Algorithm 5
8: check ← CheckFeasible(y, δ)
9: end if � at this point y is guaranteed to be feasible or totally infeasible

10: if check = FEASIBLE then
11: return “feasible”,y
12: end if � at this point y is guaranteed to be totally infeasible
13: if D ∪ {δ} = [d] then
14: return “infeasible”,y
15: else
16: j ←non-basic apex incident with δ via a negative edge � exists by

Algorithm 4 Line 3
17: D ← D ∪ {δ}
18: δ ← node in [d] \D.
19: N ← N ∪ {j}
20: y ← C(N,D ∪ {δ})
21: end if
22: end while
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Theorem 4.65. Algorithm 6 correctly determines a totally infeasible basic covector in
T or a feasible covector in a contraction of T in at most d− 1 iterations of Algorithm 5.

Proof. From the discussion above the theorem, we know that the covector in Line 20 is
indeed a basic covector. By Theorem 4.63, y is a feasible or totally infeasible basic covector
after Line 9, and Lemma 4.59 shows that CheckFeasible correctly determines the
feasibility status of a basic covector. In each iteration of the while-loop in Line 4, the
algorithm either terminates or D is increased by one element.

Since D is a subset of [d] with at most d− 1 elements, the claim follows.
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Figure 4.20: Constructing a basic covector with bigger support from a totally infeasible
basic covector

Remark 4.66. The only passages in the algorithm where the data of the STM is needed are
the assignments of the Cramer covectors. In the realizable case, the input for Algorithm 6
is supposed to be given as a signed system (A,Σ). By Remark 4.31, we obtain them as
covector graph for the Cramer solutions.
In the non-realizable case, we assume to have an oracle which returns the Cramer

covectors. Recall their guaranteed existence by Proposition 4.28. The requirements on
this oracle should be further investigated in the context of matching ensembles [OY13].

Corollary 4.67. Algorithm 6 needs at most
∑d

k=1

(
n
k

)
calls to the oracle that encodes

(T ,Σ) and returns Cramer covectors.

Furthermore, the algorithm yields a partial generalization of [GP15, Lemma 11]. It
is a theorem of alternatives for the feasibility of an STM. It covers a slightly different
aspect than the “Tropical Farkas Lemma” [DS04, Proposition 9].

Theorem 4.68 (Tropical Farkas Lemma for STM). A full generic STM contains

• either a feasible covector in a contraction,

• or a totally infeasible covector,

but not both.
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Proof. By Theorem 4.65, Algorithm 6 returns a feasible or a totally infeasible covector.
If the result is totally infeasible, Lemma 4.26 implies that the STM does not contain a
feasible covector. This implies the claim.

We demonstrate the course of the algorithms on two non-regular triangulations of
Δ5 ×Δ2 and Δ3 ×Δ3 from [Hor12, DLRS10] which are listed in Table 4.1. The rows
contain the covectors corresponding to the maximal simplices. The jth entry of a tuple
contains the coordinate nodes which are adjacent to the apex node j. This is the compact
form to write a covector, which was also used in, e.g., [DS04, AD09].
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Figure 4.21: A sequence of basic covector graphs produced by a run of Algorithm 5, see
Example 4.69. The first one is infeasible, the last one is feasible.

Example 4.69. Figure 4.21 shows a sequence of basic covector graphs from the STM given
by the non-regular triangulation on the left of Table 4.1 and the sign matrix

Σ =

⎛⎜⎜⎜⎜⎜⎜⎝

+ + −
+ − +
+ + −
+ − +
+ + −
+ − +

⎞⎟⎟⎟⎟⎟⎟⎠ .

If we start Algorithm 6 with δ = 2 then a possible sequence is given by the following
table.

δ Cramer covector label possible entering apex

2 C(∅, {2}) = (2, 2, 2, 2, 2, 2) y1 2, 4, 6

3 C({6}, {2, 3}) = (3, 3, 3, 3, 3, 123) y2 1, 3, 5

1 C({3, 6}, {1, 2, 3}) = (3, 3, 13, 2, 1, 12) y3 1, 4

C({1, 6}, {1, 2, 3}) = (23, 2, 1, 2, 1, 12) y4 2, 4

C({1, 2}, {1, 2, 3}) = (13, 23, 1, 2, 1, 1) y5 4

C({1, 4}, {1, 2, 3}) = (13, 3, 1, 12, 1, 1) y6

101



The last four covectors are depicted in Figure 4.21.
The non-regular subdivision is visualized in Figure 4.22 as a mixed subdivision via the

Cayley trick. The black lines form “tropical pseudohyperplanes” in the sense of [AD09,
§5] and [Hor16, Theorem 4.2] which are dual to the mixed subdivision. The red points
mark the cells which correspond to the basic covector graphs shown in Figure 4.21.

y1y2

y3

y4

y5
y6

6 5 3

4

2

1

1

3 2

Figure 4.22: The non-regular subdivision from Example 4.69 represented as mixed subdi-
vision of 6 ·Δ2 which is possible through the Cayley trick. The black lines
are tropical pseudohyperplanes in the sense of [Hor16, Theorem 4.2]. The
red intersection points correspond to basic covectors. This figure is basically
the same as [HJJS09, Figure 3].

Example 4.70. Furthermore, we demonstrate a run of Algorithm 6 on the STM given by
the non-regular triangulation T on the right of Table 4.1 and the sign matrix

Σ =

⎛⎜⎜⎝
− + + +
+ − + +
+ + − +
+ + + −

⎞⎟⎟⎠ .

We start the algorithm with δ = 1. The maximal covectors in the contractions are found
by removing the nodes in [d] \ (D ∪ {δ}) and taking only those resulting graphs without
isolated apex nodes.
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The only covector in T |{1} is (1, 1, 1, 1). It is a totally infeasible basic covector and,
with the new δ = 2, we construct the basic covector C({1}, {1, 2}). The list of maximal
covectors in the contraction T |({1}∪{2}) is

(1, 12, 1, 1), (12, 2, 2, 2), (1, 2, 12, 1), (1, 2, 2, 12) .

So, the next basic covector is (12, 2, 2, 2). It is already totally infeasible and no call to
FindExtreme is necessary. With the new δ = 4, we get C({1, 2}, {1, 2, 4}), which
yields the covector (14, 24, 4, 4).

Finally, the algorithm results in the totally infeasible basic covector C({1, 2, 4}, [4]).
The just constructed sequence of basic covector graphs is depicted in Figure 4.23.
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Figure 4.23: A sequence of basic covector graphs produced by a run of Algorithm 6, see
Example 4.70.

(1, 123, 1, 1, 1, 1)
(1, 23, 1, 12, 1, 1)
(123, 2, 1, 2, 1, 1)
(23, 2, 1, 2, 1, 12)
(23, 2, 1, 2, 12, 2)
(13, 23, 1, 2, 1, 1)
(13, 3, 1, 12, 1, 1)
(23, 2, 13, 2, 2, 2)
(2, 2, 123, 2, 2, 2)
(3, 2, 13, 2, 12, 2)
(3, 2, 13, 2, 1, 12)
(3, 23, 13, 2, 1, 1)
(3, 3, 13, 12, 1, 1)
(3, 3, 3, 123, 1, 1)
(3, 3, 3, 23, 1, 12)
(3, 3, 3, 23, 13, 2)
(3, 23, 3, 2, 1, 12)
(3, 23, 3, 2, 13, 2)
(3, 2, 3, 2, 123, 2)
(3, 3, 3, 3, 3, 123)
(3, 3, 3, 3, 13, 12)

(1234, 2, 3, 4)
(1, 1234, 3, 4)
(1, 2, 1234, 4)
(1, 2, 3, 1234)
(1, 12, 13, 14)
(12, 2, 23, 24)
(13, 23, 3, 34)
(14, 24, 34, 4)
(123, 2, 3, 24)
(13, 2, 3, 234)
(134, 23, 3, 4)
(14, 234, 3, 4)
(1, 123, 3, 34)
(1, 12, 3, 134)
(1, 124, 13, 4)
(1, 24, 134, 4)
(1, 2, 123, 14)
(1, 2, 23, 124)
(12, 2, 234, 4)
(124, 2, 34, 4)

Table 4.1: Non-regular triangulations of Δ5 ×Δ2 and Δ3 ×Δ3 from [Hor12, DLRS10].
The rows contain the covectors of the maximal simplices. The jth entry of a
tuple contains the coordinate nodes which are adjacent to the apex node j.
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4.7 Feasibility of Signed Systems

We developed an algorithm to examine if a signed tropical matroid contains a feasible
covector. The version given in the last section requires some additional assumptions
which had to be fulfilled through the constructions from Section 4.5. We show that they
are not necessary under the assumption of realizability. In this case, we also derive a
stronger upper bound on the runtime.
Furthermore, we describe how one can find the maximal support of a feasible point.

We finish be demonstrating how this relates to mean payoff games again.

In this section we assume that (A,Σ) is a trimmed signed system. We can always
transform a general signed system to a trimmed one with Equation 4.10. Note that this
is not a restriction on the corresponding inequality system but merely a requirement on
the representation.

4.7.1 Solving General Signed Systems

We explain how the algorithms of the former section can be made applicable to general
signed systems.
The part in Algorithm 6, where the data of the STM is invoked, is the computation

of a Cramer covector. For a general non-full STM, the Cramer covectors can be quite
degenerated as one can see in Figure 4.14. However, Proposition 4.75 will ensure that it
carries all the necessary information.
Furthermore, the role of a “totally infeasible” covector is not so clear as Lemma 4.26

shows the infeasibility implication only under the condition, that the STM is generic and
full. However, we will see that this termination criterion can be replaced by a similar
condition.

Again, we start with an element δ ∈ [d], D = ∅ and N = ∅. As long as there is an apex
node in [n] \N of degree 1 in y incident to D via a negative edge this apex enters the
basis N and the apex of the same shape is removed from N . Note that in the non-generic
case there can be non-basic apex nodes of degree ≥ 2. However, since we assume that
the STM is trimmed they cannot be incident with more than one negative edge. After
this iteration two cases can occur. If the result is already feasible, we terminate and
return this feasible point. Otherwise, there is still an apex node of degree 1 incident with
a negative edge. By construction, it cannot be adjacent to D and hence it is adjacent to
δ. If the Cramer covector is already defined on the whole of [d] this yields a point which
certifies infeasibility. If this is not the case, we can add δ to D and obtain a covector
graph which is defined on a bigger set of coordinates. Due to infinite entries of A, its
coordinates in D ∪ {δ} can be infinite, though.

Remark 4.71. For the realizable case, it is interesting to know the complexity of the
computation of the Cramer covectors. The Cramer solution can be computed in O(d3)
by [AGG14, Remark 8.2]. One derives the covector by evaluating the minimum in each
row which needs O(dn) steps. Note that not all the edges of the covector graph are
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Algorithm 7 Determine the feasibility of a signed system

Input: A signed system (A,Σ) so that each row of Σ contains at most one − entry.
Output: A feasible point or a point which guarantees the infeasibility of the signed

system.
1: procedure FindWitness((A,Σ))
2: δ ← an element of [d]
3: D ← ∅, N ← ∅
4: y ← CA(N, (D ∪ {δ}))
5: while TRUE do
6: while there is a non-basic apex node of degree 1 in y incident to D via a

negative edge do
7: r ←the apex fulfilling the while-condition
8: p ←basic apex of y of the same shape as r � p is an element of N .
9: N ← N \ {p} ∪ {r}

10: y ← CA(N, (D ∪ {δ}))
11: end while � at this point, δ is the only coordinate node which can be

incident with an apex node of degree 1 via a negative edge
12: if δ is incident with an apex node of degree 1 via a negative edge then
13: if |D| = d− 1 then
14: return “infeasible”, A[N |(D ∪ {δ})]
15: else
16: j ←non-basic apex of degree 1 incident with δ via a negative edge
17: N ← N ∪ {j}
18: D ← D ∪ {δ}
19: δ ← node in [d] \D.
20: y ← CA(N, (D ∪ {δ}))
21: end if
22: else
23: return “feasible”, A[N |(D ∪ {δ})]
24: end if
25: end while
26: end procedure
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needed and therefore, this computation could be reduced. Subsuming, a Cramer covector
CA(N, (D ∪ {δ})) can be computed in O(d3 + dn).

To deduce the correctness of Algorithm 7, we relate the sequence of points in the
iteration in the non-generic non-full situation with a run of Algorithm 6. To simplify the
connection between the termination criterion for the general case and for a generic full
STM, we chose a more canonical extreme covector, see Remark 4.64. This leads to the
while-loop starting in Line 6.

4.7.2 Correctness and Implications of the Algorithm

To show the correctness of Algorithm 7, we reduce it to the correctness for full generic
signed systems by exploiting the techniques established in Section 4.5. For this, fix an
arbitrary trimmed signed system (A,Σ) and subsets J ⊆ [n] and I ⊆ [d] with |J | = |I|−1.
Let (A(Ω),Ξ) be an extension of (A,Σ) in the sense of Subsection 4.5.2.

Lemma 4.72. Each apex node of degree 1 in CA(J, I) also has degree 1 in CA(Ω)(J, I)
and is incident with the same coordinate node.

Proof. Let (i, j) be an edge in CA(N,D ∪ {δ}) so that j has degree 1. For all � ∈ I, the
choice of Ω in Equation 4.9 implies that tdet(A(Ω)J,(I\{�})) either equals tdet(AJ,(I\{�}))
or it contains an Ω summand and tdet(AJ,(I\{�})) = ∞. The definition of a generalized
covector graph yields aji < ∞ and tdet(AJ,(I\{i})) < ∞. Hence, aji + tdet(A(Ω)J,(I\{i}))
is the minimum in row j and (i, j) ∈ CA(Ω)(N,D ∪ {δ}).

Example 4.73. Lemma 4.72 is illustrated in Figure 4.14. The covectors on the left and on
the right both contain the edge (3, 4).

Let (Â(Ω),Ξ) by a refinement of the signed system (A(Ω),Ξ) in the sense of Subsec-
tion 4.5.1.

Lemma 4.74. The covector graph CA(Ω)(J, I) contains the covector graph C
Â(Ω)

(J, I).

Furthermore, each apex node of degree 1 in CA(Ω)(J, I) also has degree 1 in C
Â(Ω)

(J, I)

and is incident with the same coordinate node.

Proof. The containment follows from Lemma 4.36. The fact that C
Â(Ω)

(J, I) is a spanning

tree implies the second claim.

Combining these two lemmata yields the desired relation between the covector in the
original and the modified signed system.

Proposition 4.75. Each apex node of degree 1 in CA(J, I) also has degree 1 in C
Â(Ω)

(J, I)

and is incident with the same coordinate node.

Proof. By Lemma 4.72, the edge is also an edge of CA(Ω)(J, I). Furthermore, by
Lemma 4.74, it is an edge of C

Â(Ω)
(J, I).

Now, we gathered the necessary tools to prove termination and correctness.
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Theorem 4.76. Algorithm 7 computes a covector graph, which certifies the feasibility or
infeasibility of the signed system (A,Σ).

Proof. Fix a δ ∈ [d] and a subset D ⊆ [d] \ {δ}. Assume that N1 ⊆ [n] is a subset of
the apex nodes for which C

Â(Ω)
(N1, D ∪ {δ}) is a basic covector (which is the case for

D = N = ∅). Let k ∈ N so that N1, N2, . . . , Nk is the sequence of the set N in Line 9
for the first k iterations of the while-loop starting in Line 6, beginning with N1. Then
for all � ∈ [k − 1] there are r�, p� ∈ [n] so that N �+1 = N � \ {p�} ∪ {r�}.
By the iteration condition of the while-loop in Line 6, the apex node r� is not in N �,

it is of degree 1, and it is incident with a negative edge (i�, r�) in CA(N �, D ∪ {δ}).
Proposition 4.75 implies that r� also has degree 1 and is incident with (i�, r�) in
C
Â(Ω)

(N �+1, D ∪ {δ}). Now, Corollary 4.56 implies that C
Â(Ω)

(N �+1, D ∪ {δ}) is a

basic covector if so is C
Â(Ω)

(N �, D ∪ {δ}), since p� is chosen just to match the shape of

r�, independent of the covector graph.
Hence by induction, C

Â(Ω)
(N �, D ∪ {δ}) is a basic covector for all � ∈ [k]. By Theo-

rem 4.63 and Remark 4.64, there is an h ∈ N so that in C
Â(Ω)

(Nh, D ∪ {δ}) no non-basic

apex node is incident with D via a negative edge. Proposition 4.75 yields that no non-
basic apex node of degree 1 is of degree 1 in CA(Nh, D ∪ {δ}). Therefore, this covector
graph is either feasible, which means that we are finished, or δ is incident with an apex
node j of degree 1 via a negative edge. In the latter case, again with Proposition 4.75,
this also holds in C

Â(Ω)
(Nh, D ∪ {δ}).

If D ∪ {δ} = [d], then C
Â(Ω)

(Nh, D ∪ {δ}) is totally infeasible. By Lemma 4.26, all

covector graphs in all contractions for (Â(Ω),Ξ) are infeasible. Combining Lemma 4.34
and Lemma 4.39 implies the infeasibility of the signed system (A,Σ).

Otherwise, for any δ′ ∈ [d]\(D∪{δ}), the Cramer covector C
Â(Ω)

(Nh∪{j}, D∪{δ}∪{δ′})
is the basic covector B

Â(Ω)
(Nh ∪ {j}, D ∪ {δ}, δ′) and we can continue the iteration of

the while-loop in Line 5. The termination is guaranteed as D grows in each iteration of
this while-loop.

Corollary 4.77. The following statements are equivalent:

a) (A,Σ) is feasible.

b) (A(Ω),Ξ) is feasible.

c) (Â,Σ) is feasible.

d) (Â(Ω),Ξ) is feasible.

Proof. The equivalence of all statements follows from the equivalence of the feasibility

of (A,Σ) and (Â(Ω),Ξ). Now, if (A,Σ) is feasible, there is a point x ∈ TAd so that
GA(x) is feasible. By Lemma 4.39, GA(Ω)(x) is feasible as well. Lemma 4.34 implies

that (Â(Ω),Ξ) contains a feasible covector. If (A,Σ) is infeasible, Algorithm 7 implicitly
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computes a totally infeasible covector graph in (Â(Ω),Ξ). That ensures the infeasibility

of (Â(Ω),Ξ).

Example 4.78. Consider the signed system (A,Σ) with

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0
∞ 0 0 ∞
∞ 4 2 ∞
1 −5 ∞ 0
4 0 −7 3
0 ∞ −9 ∞
0 ∞ ∞ 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ − + +
• + − •
• − + •
− + • +
+ + + −
+ • − •
+ • • −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the last two rows are obtained by splitting the inequality x1 ≤ (−9)	x3⊕3	x4
into x1 ≤ (−9)	 x3 and x1 ≤ 3	 x4.
We want to execute Algorithm 7 for (A,Σ) and start with δ = 2. The iterations are

shown in the table. We choose j = 1 as first entering apex.

δ Cramer solution violated inequalities

2 A[∅|{2}] = (∞, 0,∞,∞) j = 1, 3

1 A[{1}|{1, 2}] = (1, 0,∞,∞) r = 3

A[{3}|{1, 2}] = (4,∞,∞,∞) j = 4

3 A[{3, 4}|{1, 2, 3}] = (−3, 3, 5,∞) j = 6

4 A[{3, 4, 6}|{1, 2, 3, 4}] = (−5, 2, 4,−4)

The final result (−5, 2, 4,−4) is a feasible point for the signed system.

4.7.3 Refined Analysis of the Runtime

For the abstract setting in Section 4.6, we gave only a rough upper bound on the number
of iterations. For the realizable case, we obtain a better bound with Lemma 4.60. We
show that Algorithm 7 is pseudopolynomial and only depends on the combinatorial
structure of a triangulation of Δn−1 ×Δd−1.
Let Ã be any matrix which induces the same triangulation as Â(Ω). Recall the

sequence N1, N2, . . . , Nh from the proof of Theorem 4.76. Then C
˜A
(N1, D ∪ {δ}), . . . ,

C
˜A
(Nh, D∪{δ}) is a sequence of basic covector graphs. With Corollary 4.56, we can apply

Lemma 4.60 to the associated points Ã[N1|D ∪ {δ}], . . . , Ã[Nh|D ∪ {δ}]. Let z1, . . . , zh
be the representatives of this sequence modulo R · 1 with z�δ = 0. In this way, for all
� ∈ [h− 1] this yields the inequalities

z�i ≤ z�+1
i for all i ∈ (D ∪ {δ}) ,

where at least one inequality is strict for each �.
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If Ã is an integer matrix, then the points z� have only integer entries. Hence, for all
� ∈ [h − 1], the difference z�+1 − z� is a non-negative integer vector with at least one
non-zero entry. We deduce

∑
i∈(D∪{δ})(z

h
i − z1i ) ≥ h.

Furthermore, defining ω = max {|ãij | | (i, j) ∈ [d]× [n]}, Lemma 4.33 yields the in-
equality∣∣∣∣∣∣

∑
i∈(D∪{δ})

(zhi − z1i )

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

i∈(D∪{δ})
(zhi − zhδ + zhδ − z1i )

∣∣∣∣∣∣ ≤∑
i∈(D∪{δ})

|zhi − zhδ |+
∑

i∈(D∪{δ})
|zhδ − z1i | ≤ 2 · d · 2 · ω = 4dω .

We conclude the following.

Theorem 4.79. The maximal number of iterations h of the while loop in Line 6 of
Algorithm 7 fulfills h ≤ 4dω.

Note that a similar idea is used to give bounds on the runtime in [Ben14, §5.2] by
using [FT87, Theorem 3.3].

To examine the parameter ω further, recall that each matrix in Rn×d defines a height
function for a regular subdivision of Δn−1 ×Δd−1.
The set of all matrices which induce the same regular subdivision defines an open

polyhedral cone. The collection of these cones is a complete fan, the secondary fan. For
an introduction to secondary fans see [DLRS10, §5].

Since the secondary fan is the normal fan of the secondary polytope, see [GKZ94, §7]
or [DLRS10, §5], which is a rational polytope for Δn−1 ×Δd−1, every cone contains a
rational and, hence, an integer vector.
Inspired by Theorem 4.79, we leave it as future work to give bounds on the minimal

integer vectors in the cones of the secondary fan of Δn−1×Δd−1. This might reveal either
a good upper bound on the runtime of Algorithm 7 or special classes of instances which
are particularly hard. Furthermore, it is interesting to consider the cones in the secondary
fan which contain the weight functions describing parity games, see Subsection 4.3.2. We
will take this up in the Conclusion 5.

4.7.4 Maximal support

Since the tropical sum of two feasible vectors is feasible again, the union of the supports
of the feasible points is the support of a feasible point, see also [AGG12, Theorem 3.2].
We call this the feasible support.

Algorithm 7 determines a feasible point of a signed system or certifies that there is
none. However, a resulting feasible point does not need to have the full feasible support.
We show how one can use Algorithm 7 to determine the feasible support. The interest
to determine this is motivated by the interpretation of the feasible points as vectors of
feasible starting times or winning positions in a mean payoff game presented in Section 4.3.

We need some technical observations to achieve this.
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Lemma 4.80. Let (A,Σ) be a signed system for which the ith column of Σ only contains
‘+’ entries. Then for any point (z1, . . . , zd) ∈ Td

min there is a number ξ ∈ R for which
(z1, . . . , zi−1, ξ, zi+1, . . . , zd) is feasible.

Proof. We can assume, without loss of generality, that i = 1. Now, let kj ∈ [d] be the
index in row j ∈ [n] for which σjkj = −. For ξ ≤ min

{
zkj + ajkj − aj1

∣∣ j ∈ [n]
}
we

obtain

(aj1 	 ξ)⊕
⊕

�∈[d],��=kj ,1

aj� 	 z� ≤ ξ + aj1 ≤ zkj + ajkj for all j ∈ [n] .

Hence, (ξ, z2, . . . , zd) is feasible.

Observation 4.81. If w and z are feasible solutions with supp(w) ∩ supp(z) = {k} for
some k ∈ [d], then the point v = (−wk)	w⊕ (−zk)	 z has the same pairwise coordinate
differences as w and z on its support. By this we mean that vi − v� = wi − w� for
i, � ∈ supp(w) and vi − v� = zi − z� for i, � ∈ supp(z).

Observation 4.82. The inequality x2⊕x1 ≤ (x1	a) is tautological for a ≥ 0 and equivalent
to x2 ≤ x1 	 a for a < 0. Furthermore, x1 ⊕ (x1 	 a) equals x1 for a ≥ 0 and x1 	 a for
a < 0.

To determine the feasible support, we run Algorithm 7 several times with a successively
reduced input. As long as the algorithm terminates with a feasible point z we modify
the system and restart with the reduced system.
If the support of z consists only of one element i, we omit all the inequalities which

contain the variable xi. By Lemma 4.80, these inequalities are fulfilled for every point
for which the ith component is sufficiently small.
Now, assume that the support of z consists of the indices i1, . . . , ik with k ≥ 2. We

replace xi� in each inequality of the signed system by means of the equation

xi� = xik + zi� − zik . (4.11)

With Observation 4.82, we can restore the property that each variable occurs on at most
one side of each inequality. Furthermore, the reduced system has a feasible solution if
and only if the original system has one since we can construct a solution, which fulfills
all the Equations 4.11, by Observation 4.81.

As soon as we reach a totally infeasible point in a reduced system we can deduce that
the complement of the current coordinate nodes forms the feasible support of the original
system.

Example 4.83. Algorithm 7 behaves pairwise differently on the examples depicted in
Figure 4.24 concerning the determination of the feasible support.

For the top left one, it finds a feasible point with support {3} but needs a second run
to find the certificate that this is already the feasible support.

For the top right one, it finds a feasible point whose support has 2 elements and needs
a second run to determine the feasible support {1, 2, 3}.
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For the bottom left one, it needs only one run to determine that the support is just
the empty set.

For the bottom right one, starting with δ = 1 and continuing with δ = 2 or δ = 3 yields
feasible points with different supports. In the former case, we arrive at a basic point with
support {1, 2, 3}. For the latter, the resulting basic point only has support {1, 3}.

x2

x3

x2

x3

x2

x3

x2

x3

Figure 4.24: The bars indicate the infeasible regions. The supports of the feasible sets
defined by the tropical halfspaces are different.

Moreover, we can use the former considerations to find a point, whose support is the
feasible support, and a point which certifies that the feasible support cannot be bigger.

Definition 4.84. A covector graph G in (S(A),Σ) is sufficiently infeasible and negatively
covers D ⊆ [d] if there is a subset N ⊆ [n] with |N | = |D|, for which D =

⋃
j∈N supp(aj.)

and the induced subgraph of G on D �N is a perfect matching consisting of negative
edges.

The sufficiently infeasible covector graphs correspond to the generalized cycles with
negative weight in [MSS04]. We show how one can construct a sufficiently infeasible
covector graph for a signed system.

Theorem 4.85. If F is the feasible support of the signed system (A,Σ) then there is a
sufficiently infeasible covector graph G which negatively covers ([d] \ F ).

Proof. We discussed how an iterative application of Algorithm 7 can be used to determine
the feasible support of a signed system. For F = [d] there is nothing to show. Otherwise,
let (R,Υ) be last reduced system in the sequence of successively reduced signed systems;
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by construction, it is infeasible. Furthermore, let (R̂(Ω),Ξ) be a refinement of an extension
of (R,Υ).

Since (R,Υ) is infeasible, there is a totally infeasible covector graph H for (R̂(Ω),Ξ).
By the genericity of this system, there is a point x whose covector graph is contained in
H and for which each basic apex of H is only incident with the negative edge.

We embed x into Td
min by setting the coordinates in F to ∞. Then by the construction

of the extension and the refinement, x has the same covector graph with respect to A.
Its covector graph G is sufficiently infeasible.

Example 4.86. Consider the following four matrices:

A =

⎛⎜⎜⎝
0 0 ∞ ∞
0 2 11 ∞
∞ ∞ 0 0
∞ ∞ 2 0

⎞⎟⎟⎠ and Σ1 =

⎛⎜⎜⎝
− + • •
+ − + •
• • − +
• • + −

⎞⎟⎟⎠ ,

A(Ω) =

⎛⎜⎜⎝
0 0 Ω1 Ω2

0 2 11 Ω3

Ω4 Ω5 0 0
Ω6 Ω7 2 0

⎞⎟⎟⎠ and Σ2 =

⎛⎜⎜⎝
+ − • •
− + • •
• • − +
• • + −

⎞⎟⎟⎠ .

At first, we examine the signed system (A,Σ1). Starting with δ = 1 we obtain:

δ Cramer solution violated inequalities

1 A[∅|{1}] = (0,∞,∞,∞) j = 1

2 A[{1}|{1, 2}] = (0, 0,∞,∞)

The point (0, 0,∞,∞) is feasible and the algorithm stops. We reduce the system by
replacing x1 with x2 and, by using Observation 4.82, arrive at the system

(A′,Σ′1) =
((

0 0
2 0

)
,

(
− +
+ −

))
.

The Cramer solution CA′({3}, {3, 4}) = (0, 0) certifies the infeasibility of this reduced
system. The point x = (∞,∞, 0, 1) has a sufficiently infeasible covector graph.

As a second example, we consider the signed system (A,Σ2). We construct Ξ by
replacing the • entries in Σ2 by +. Then (A(Ω),Ξ) is a generic extension of (A,Σ2). The
Cramer solution CA(Ω)({1, 3, 4}, [4]) = (0, 0,Ω4,Ω4 + 2) has a totally infeasible covector
graph. From this, we can obtain the point x = (1, 0,Ω4,Ω4 + 1) which has a sufficiently
infeasible covector graph. This point also yields a sufficiently infeasible covector graph
for the signed system (A,Σ2).

We conclude by interpreting a sufficiently infeasible covector graph in terms of mean
payoff games. Recall the connection from Theorem 4.13. Extending the notions from
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Figure 4.25: Graph for the mean payoff game corresponding to (A,Σ1) from Example 4.86.

Subsection 4.3.2, we say that a coordinate node or an apex node is winning for the player
on the coordinate nodes if there is a winning strategy meaning that the value of the game
is negative when we start from such a position and this strategy is used on the coordinate
nodes.
Let H be a sufficiently infeasible covector graph for the signed system (A,Σ) which

negatively covers D ⊆ [d].

Theorem 4.87. The coordinate nodes in D and the apex nodes, whose support is
contained in D, are winning positions for the strategy formed by the perfect matching μ
consisting of negative edges contained in H.

Proof. Let N be the set of the apex nodes, whose support is contained in D. Then the
player on the apex nodes is forced to go back to D on N . Furthermore, the arcs formed
from μ only go to N by the properties of H . Since H is a covector graph, Proposition 4.4
implies with the construction of the mean payoff graph in Equation 4.6 that all cycles
reachable from N and from D through μ are negative.

With Theorem 4.13, we deduce an extension of Lemma 4.26 for the realizable case.

Corollary 4.88. If (S(A),Σ) contains a sufficiently infeasible covector graph G which
negatively covers D, then supp(z) ⊆ [d] \D for every feasible point z of (A,Σ).

Proof. Theorem 4.87 implies that the player on the coordinate nodes has a winning
strategy which secures a negative value. Therefore, there cannot be a feasible point z
with supp(z) ∩D 
= ∅ since this would imply a non-losing strategy for the player on the
apex nodes with starting positions supp(z) by Theorem 4.13.

Example 4.89. Figure 4.25 shows winning strategies in the mean payoff game corresponding
to the signed system (A,Σ1) from Example 4.86. The blue arcs form a non-loosing strategy
for the player on the circle nodes. They are the positive edges in the covector graph of
the feasible point (0, 0,∞,∞). The purple arcs form a winning strategy for the player on
the square nodes. They are the edges in the sufficiently infeasible covector graph of the
point (∞,∞, 0, 1).
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5 Conclusion

We started by extending the theory of tropical convexity for infinite coordinates through
methods from polyhedral geometry. This lead to the study of a tropical analogue of
an oriented matroid, namely a signed tropical matroid. As a helpful tool to examine
the relation between classical and tropical configurations we introduced the field of
Puiseux fractions. Eventually, we could deduce a rather general algorithm for the tropical
feasibility problem which has several nice properties and is related to the classical simplex
method. The results of this thesis can be extended in several directions.
Our starting point was a thorough investigation of covector graphs and covector

decompositions with infinite coordinates. As an extension, we introduced the concept
of a signed tropical matroid as generalization of tropical linear inequality systems. We
achieved this by deriving them from not necessarily regular subdivisions of a subpolytope
of Δn−1 ×Δd−1. It would be nice to have a different description which relies on purely
combinatorial axioms similar to the axioms of a tropical oriented matroid [AD09]. A
possible description could go through matching ensembles [OY13]. This might enable us
to give a proper definition of feasibility for a not-necessarily full signed tropical matroid,
see Subsection 4.6.1. It should fulfill that an extension is feasible if and only if all
extensions are feasible.

We introduced Puiseux fractions as a suitable field for computations. It can be used to
compute dual tropical convex hull in the generic case. We think that a proper description
of the complexity of the arithmetic operations for Puiseux fractions is in place. With
that, one should answer the question if there is a way to solve tropical linear programs
through a linear program over Puiseux fractions in polynomial time.

Our feasibility Algorithm 6 for a signed tropical matroid differs in some aspects from
the simplex method. With the insights from our kind of pivoting, we propose to study
the pivoting in the tropicalized simplex method to determine if it can also be proven to
solve abstract tropical linear programming. On the other hand, we suggest to formulate
Algorithm 7 as a variant of the simplex method.

We came up with an upper bound for the number of iterations in terms of integer
vectors in the secondary fan of Δn−1×Δd−1. Computational experiments with polymake
[GJ00] have shown that the algorithm needs only linearly many steps in d and n for all
sample instances. We conjecture that the maximal entry of a minimal integer vector
in each full-dimensional cone of the secondary fan of Δn−1 × Δd−1 is bounded by a
polynomial in d and n.
Parity games can be considered as mean payoff games whose coefficient matrix has a

particular form, see Subsection 4.3.2. The cones of the secondary fan of Δn−1 ×Δd−1
which contain these coefficient matrices form a subfan. A closer examination of this
subfan should reveal if it is proper and if we can give upper bounds on the minimal
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integer vectors in each cone. This provides a better understanding of how special parity
games actually are compared with mean payoff games. Indeed, recall that they were used
to demonstrate the worst-case complexity of several algorithms for mean payoff games
and linear programming [Fri11, Han12]. However, they were also already shown to be
quasi-polynomial [CJK+].
Additionally, we want to point out the close relation between strongly polynomial,

weakly polynomial and pseudopolynomial behavior of algorithms which was demonstrated
in the tropical setting in [Ben14] and in Subsection 4.7.3. Therefore we believe that it is
a promising approach for settling the complexity of mean payoff games and tackling the
question of the strong polynomiality of classical linear programming.
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thesis, École des Mines de Paris, 1992.

[GGMS87] I. M. Gel′fand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova,
Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. in
Math. 63 (1987), no. 3, 301–316. MR 877789

[GJ00] Ewgenij Gawrilow and Michael Joswig, polymake: a framework for analyz-
ing convex polytopes, Polytopes—combinatorics and computation (Oberwol-
fach, 1997), DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 43–73. MR
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linear algebra, STACS 97 (Lübeck), Lecture Notes in Comput. Sci., vol.
1200, Springer, Berlin, 1997, pp. 261–282. MR 1473780 (98f:68205)

[GP14] Dima Grigoriev and Vladimir V. Podolskii, Tropical Effective Primary and
Dual Nullstellensätze, 2014, preprint arXiv:1409.6215.

[GP15] Dima Grigoriev and Vladimir V. Podolskii, Tropical effective primary and
dual Nullstellensätze, 32nd International Symposium on Theoretical Aspects
of Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 30, Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2015, pp. 379–391. MR 3356427

[Gri13] Dima Grigoriev, Complexity of solving tropical linear systems, Comput.
Complexity 22 (2013), no. 1, 71–88. MR 3034020

[GS79] Donald Goldfarb and William Y. Sit, Worst case behavior of the steepest
edge simplex method, Discrete Appl. Math. 1 (1979), no. 4, 277–285. MR
558429 (81d:90067)

[Han12] Thomas Dueholm Hansen, Worst-case analysis of strategy iteration and the
simplex method, Ph.D. thesis, Aarhus University, 2012.

120



[HJ08] Sven Herrmann and Michael Joswig, Splitting polytopes, Münster J. Math. 1
(2008), 109–141. MR 2502496 (2010h:52015)

[HJJS09] Sven Herrmann, Anders Jensen, Michael Joswig, and Bernd Sturmfels, How
to draw tropical planes, Electron. J. Combin. 16 (2009), no. 2, Special
volume in honor of Anders Björner, Research Paper 6, 26. MR 2515769

[HJS14] Sven Herrmann, Michael Joswig, and David E. Speyer, Dressians, tropical
Grassmannians, and their rays, Forum Math. 26 (2014), no. 6, 1853–1881.
MR 3334049

[Hor] Silke Horn, The polymake extension tropmat, http://solros.de/
polymake/tropmat/.

[Hor12] , Tropical oriented matroids and cubical complexes, Ph.D. thesis,
Technische Universität Darmstadt, 2012.

[Hor16] Silke Horn, A topological representation theorem for tropical oriented matroids,
J. Combin. Theory Ser. A 142 (2016), 77–112. MR 3499492

[IM12] I. Itenberg and G. Mikhalkin, Geometry in the tropical limit, Mathematische
Semesterberichte 59 (2012), no. 1, 57–73.

[Jer73] Robert G. Jeroslow, Asymptotic linear programming, Operations Research
21 (1973), no. 5, 1128–1141.

[JK10] Michael Joswig and Katja Kulas, Tropical and ordinary convexity combined,
Adv. Geom. 10 (2010), no. 2, 333–352. MR 2629819 (2011c:14162)

[JK16] M. Johnson and M. Kambites, Face monoid actions and tropical hyperplane
arrangements, 2016, preprint arXiv:1604.03016.

[JKM08] C. N. Jones, E. C. Kerrigan, and J. M. Maciejowski, On polyhedral projection
and parametric programming, J. Optim. Theory Appl. 138 (2008), no. 2,
207–220. MR 2414994 (2009g:90119)

[JL16] Michael Joswig and Georg Loho, Weighted digraphs and tropical cones, Linear
Algebra Appl. 501 (2016), 304–343. MR 3485070

[JLLS16] Michael Joswig, Georg Loho, Benjamin Lorenz, and Benjamin Schröter,
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