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Abstract

One quarter of Europe’s energy demand is provided by natural gas distributed
through a vast pipeline network covering the whole of Europe. At a cost of 1 million
Euros per kilometer the extension of the European pipeline network is already a
multi billion Euro business. The challenging question is how to expand and operate
the network in order to facilitate the transportation of specified gas quantities at
minimum cost. This task can be formulated as a mathematical optimization problem
that reflects to real-world instances of enormous size and complexity. The aim of
this thesis is the development of novel theory and optimization algorithms which
make it possible to solve these problems.

Gas network topology optimization problems can be modeled as nonlinear
mixed-integer programs (MINLPs). Such an MINLP gives rise to a so-called active
transmission problem (ATP), a continuous nonlinear non-convex feasibility problem
which emerges from the MINLP model by fixing all integral variables. The key to
solving the ATP as well as the overall gas network topology optimization problem
and the main contribution of this thesis is a novel domain relaxation of the variable
bounds and constraints in combination with a penalization in the objective function.
In case the domain relaxation does not yield a primal feasible solution for the ATP
we offer novel sufficient conditions for proving the infeasibility of the ATP. These
conditions can be expressed in the form of an MILP, i.e., the infeasibility of a
non-convex NLP can be certified by solving an MILP. These results provide an
efficient bounding procedure in a branch-and-bound algorithm.

If the gas network consists only of pipes and valves, the ATP turns into a passive
transmission problem (PTP). Although its constraints are non-convex, its domain
relaxation can be proven to be convex. Consequently, the feasibility of the PTP can
be checked directly in an efficient way. Another advantage of the passive case is that
the solution of the domain relaxation gives rise to a cutting plane for the overall
topology optimization problem that expresses the infeasibility of the PTP. This
cut is obtained by a Benders argument from the Lagrange function of the domain
relaxation augmented by a specially tailored pc-regularization. These cuts provide
tight lower bounds for the passive gas network topology optimization problem.

The domain relaxation does not only provide certificates of infeasibility and
cutting planes, it can also be used to construct feasible primal solutions. We make
use of parametric sensitivity analysis in order to identify binary variables to be
switched based on dual information. This approach allows for the first time to
compute directly MINLP solutions for large-scale gas network topology optimization
problems.
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All the research in this thesis has been realized within the collaborative research
project “Forschungskooperation Netzoptimierung (ForNe)”. The developed software
is in use by the cooperation partner Open Grid Europe GmbH.

Parts of this thesis have been published in book chapters, journal articles and
technical reports. An overview of the topics and solution approaches within the
research project is given by Martin et al. (2011) and Fügenschuh et al. (2013).
Gas network operation approaches and solution methods are described in detail by
Pfetsch et al. (2014) and with a special focus on topology optimization in Fügenschuh
et al. (2011). The primal heuristic presented in this thesis is published by Humpola
et al. (2014b). The method for pruning nodes of the branch-and-bound tree for an
approximation of the original problem is described in Fügenschuh and Humpola
(2013) and Humpola et al. (2014a). The Benders like inequality is introduced by
Humpola and Fügenschuh (2013).
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Zusammenfassung

Ein Viertel des europäischen Energiebedarfs wird durch Gas gedeckt, das durch
ein europaweites Pipelinesystem verteilt wird. Aufgrund von Ausbaukosten von
1 Mio. Euro pro Kilometer ist der Netzausbau ein Milliardenunterfangen. Die größte
Herausforderung besteht darin zu entscheiden, wie das Netzwerk kostengünstig
ausgebaut und genutzt werden kann, um notwendige Gasmengen zu transportieren.
Diese Aufgabe kann mit Hilfe eines mathematischen Optimierungsproblems formu-
liert werden, wobei anwendungsnahe Instanzen eine enorme Größe und Komplexität
aufweisen. Ziel der vorliegenden Arbeit ist die Entwicklung neuer mathematischer
Theorien und damit einhergehender Optimierungsalgorithmen, die es ermöglichen,
derartige Probleme zu lösen.

Die Optimierung der Topologie eines Gasnetzwerks kann mit Hilfe eines nicht-
linearen gemischt-ganzzahligen Programms (MINLP) modelliert werden. Durch
Fixierung aller ganzzahligen Variablen ergibt sich ein kontinuierliches Zulässigkeits-
problem, das als aktives Transmissionsproblem (ATP) bezeichnet wird. Die zentrale
Methode um dieses ATP zu lösen, ist eine neuartige Relaxierung, welche Variablen-
schranken und einige Nebenbedingungen relaxiert und in der Zielfunktion bestraft.
Diese Relaxierung bildet den Kern der in dieser Arbeit vorgestellten Theorie und
ermöglicht so die effiziente Lösung der Topologieoptimierung eines Gasnetzwerkes.
Für den Fall, dass die Relaxierung keine Primallösung für das ATP liefert, ist es uns
gelungen, hinreichende Bedingungen für die Unzulässigkeit des ATP zu formulieren,
die durch ein MILP dargestellt werden. Kurz gefasst kann die Unzulässigkeit eines
nicht-konvexen NLP durch Lösung eines MILP bewiesen werden. Beide Methoden
liefern effiziente Schranken in einem branch-and-bound Lösungsverfahren.

Besteht ein Gasnetzwerk nur aus Rohren und Schiebern, dann wird das ATP als
passives Transmissionsproblem (PTP) bezeichnet. Obwohl die Nebenbedingungen
des PTP nicht konvex sind, konnten wir zeigen, dass seine Relaxierung konvex ist.
Daher kann die Unzulässigkeit des PTP direkt auf effiziente Weise geprüft werden.
Außerdem können mit Hilfe der Relaxierung in diesem speziellen Fall Schnittebenen
für das Topologieoptimierungsproblem aufgestellt werden. Diese repräsentieren die
Unzulässigkeit des PTP und folgen aus der Lagrange Funktion der Relaxierung
zusammen mit einer speziellen Erweiterung, der sogenannten pc-Regularisierung.

Abgesehen von den genannten Klassifizierungen kann die Relaxierung auch
genutzt werden, um primale Lösungen zu konstruieren. Hier nutzen wir die parame-
trische Sensitivitätsanalyse, um mit Hilfe dualer Informationen Binärvariablen des
ATP zu identifizieren, deren Werte angepasst werden müssen. Dieser Ansatz erlaubt
es zum ersten Mal, direkt MINLP Lösungen für das Topologieoptimierungsproblem
realer Gasnetzwerke zu berechnen.
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Die Resultate dieser Arbeit wurden im Rahmen des Forschungsprojekts “For-
schungskooperation Netzoptimierung (ForNe)” erarbeitet. Die entwickelte Software
wird vom Kooperationspartner Open Grid Europe GmbH aktiv genutzt.

Teile dieser Arbeit sind in Buchkapiteln, Journalen und technischen Berichten
publiziert. Eine Übersicht über die Themen und Lösungsansätze im ForNe-Projekt
veröffentlichten Martin u. a. (2011) und Fügenschuh u. a. (2013). Für Lösungsme-
thoden für die operative Nutzung von Gasnetzwerken verweisen wir auf Pfetsch
u. a. (2014). Ansätze für eine Topologieoptimierung wurden von Fügenschuh u. a.
(2011) beschrieben. Die in dieser Arbeit präsentierte primale Heuristik ist publi-
ziert von Humpola u. a. (2014b). Die genannte Methode, um Knoten innerhalb
des branch-and-bound Baums abzuschneiden, wurde für eine Approximation des
Topologieproblems von Fügenschuh und Humpola (2013) und Humpola u. a. (2014a)
beschrieben. Ein Bericht über die Ungleichungen nach Benders ist in Humpola und
Fügenschuh (2013) nachzulesen.
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Chapter 1.

Introduction: Gas Network Optimization

Natural gas is a nontoxic, odorless, transparent, and flammable gas that origi-
nates from underground deposits. Today natural gas is mainly used for heating
private houses and office buildings, for the generation of electrical power, as fuel
for vehicles, and for several reactions in chemical process engineering. Natural gas
usage represents one quarter of the world’s energy demand (BGR 2013). It must
be transported from the deposits to the customers, sometimes over distances of
thousands of kilometers. For very long distances it is more economic to cool the
gas down to −160° so that it becomes liquid and can be transported by ships (see
Cerbe 2008). For shorter distances or for the delivery to the end customers large
pipeline systems are used. Existing gas networks have usually grown over time. In
Germany, the high-pressure pipeline system was built by gas supply companies. It
has a size of approximately 35 000 km (FNBGas 2013).

Historically these companies were both gas traders and gas network operators.
They purchased gas from other suppliers and operated the necessary infrastructure
to transport the gas from those suppliers to their own customers. During the
liberalization of the German gas market these business functions were separated
by regulatory authorities (GasNZV 2005). Nowadays, there are companies that
trade gas and others whose sole task is the operation of gas networks for the
transportation of gas. One of the requirements set by the regulatory authorities
is that every trader can use the network infrastructure to transport gas. Open
access to these gas networks has to be granted to all the trading companies free of
any discrimination. This means that the gas supplies and demands cannot be fully
controlled by the network operator. Therefore the network operator is required to
have a high degree of operational flexibility. The majority of network management
is carried out manually with the aid of simulation software. There is a need to
develop a more automated process in order to cope with anticipated challenges
associated with the addition of more traders accessing the network. Here we have
developed mathematical optimization methods to improve the network operation
and to enhance the cost effectiveness of investments in the infrastructure.

1.1. Optimization Tasks
The physics of a gas transport network, which is used for the transportation of gas,
can roughly be described as follows: Most of the network elements are pipelines. A
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Chapter 1. Introduction: Gas Network Optimization

v1

−1

v2

v3+2.1

v4

−2.1

v5

+1

a1

a3

a2

a4

(a) Test network.

∃ q, π
s. t. q1 = 1,

q2 − q1 = 0,
q2 + q3 = 2.1,
q3 + q4 = 2.1,

q4 = 1,
44 q1|q1| − (π2 − π1) = 0,
44 q2|q2| − (π3 − π2) = 0,
44 q3|q3| − (π3 − π4) = 0,
44 q4|q4| − (π5 − π4) = 0,

π1 = 0,
0 ≤ π2, π3, π4, π5 ≤ 92,

π1, π2, π3, π4, π5, q1, q2, q3, q4 ∈ R.

(b) Nomination validation problem for the network
shown in Figure 1.1a (left picture).

Figure 1.1.: An example of a test network and a model of the corresponding nomination validation problem as used
in this thesis. The instance has two entries at node v3 with flow amount +2.1 and v5 with flow amount +1. Two
exits are at node v1 with flow amount −1 and v4 with flow amount −2.1. Node v2 is a transmission node. These
node flows imply the arc flows 1 for a1 and a2 and a4 and 1.1 for a3. Every arc is a pipeline which means a unique
relation between the arc flow and the pressures at the end nodes. The pressure at node v1 is fixed to zero which
implies that any other node pressure is fixed. Hence the pressure at node v5 is also fixed. The pressure bounds of
the pipes imply that the pressure at node v5 violates its upper bound. So the nomination validation problem is
infeasible for this instance.

gas flow through a pipeline (pipe) is induced if the gas has different pressures at
the end nodes of the pipe. Usually gas pipelines can withstand nominal pressures
of 16 bar up to 100 bar. Typically at long transport distances of about 100 km to
150 km the gas pressure gets too low which is technically not feasible. In situations
where lack of pressure is an issue compressors are used to increase the pressure again.
High gas pressures can also be problematical in parts of the network. Therefore in
order to protect the network it can be necessary to reduce the pressure by using
control valves. This is particularly important when the network includes older
pipelines which have a lower pressure limit. If parts of the network need to be
deactivated, then valves allow to split the network into physically independent
subnetworks.

A gas network is mathematically modeled by a directed graph, refer to Korte
and Vygen (2007) for the notations in graph theory. This graph consists of nodes
together with connecting arcs. The end points of an arc are nodes. Each node
corresponds to a geographical position. Each arc models a network element. We
use a directed graph in order to distinguish between gas flow in the direction of an
arc and in the opposite direction. A network element can either be a pipeline, a
valve, a compressor or a control valve. All network elements determine a specific
relation between the flow through the element and the pressure at the end nodes.
Pipelines are called passive network elements, while valves, compressors and control
valves are called active network elements. Pipelines have a unique relation between
the flow through a pipeline and the pressures at its end nodes. This is different for
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1.1. Optimization Tasks

(a) Extended by a control valve. (b) Extended by a pipe in combination with a com-
pressor.

Figure 1.2.: Extended versions of the network shown in Figure 1.1a. The discussion in Figure 1.1 explains that
the nomination validation problem 1.1b is infeasible because the pressure at node v5 violates its upper pressure
bound. Decreasing the pressure in node v4 is a possible adaptation in order to reduce the pressure in node v5.
This adjustment is achieved by the proposed extensions in 1.2a and 1.2b.

active elements. Their physical behavior can be influenced by the network operator,
for instance, a valve can be open or closed. An open valve means that the pressures
at the end nodes are equal, while closed means that there is no gas flow through
the valve. Compressors and control valves can be open or closed. This means that
each active network element has different operation modes or rather configurations
available. An accurate description of every network element is given in Section 3.1.

We distinguish between two different optimization tasks. Given is a nomination
that specifies for each single node the amount of gas that enters or leaves the network
there. The network in combination with the nomination defines an instance. In
order to operate a gas transport network the task is to compute a configuration
of valves, control valves and compressors, a pressure for each node, and a flow for
each element. This computation requires that the flow specified by the nomination
is transported through the network and all technical and physical as well as legal
constraints are fulfilled. The arising problem is a feasibility problem which is
called nomination validation problem of the specified instance. Figure 1.1 shows
an example. A simple tree network together with a nomination is shown in 1.1a
and the associated nomination validation problem is infeasible. This means that
it is not possible to transport gas through the network according to the specified
nomination. A model of this problem as used in this thesis is shown in 1.1b and
will be explained in detail in Chapter 3. Due to the infeasibility of the nomination
the network needs to be extended. In principal all network elements, i.e., pipelines,
valves, control valves and compressors, can be added to the gas network. The
additional elements are called extensions. The task is to compute cost-optimal
extensions in order to transport the gas defined by the nomination through the
network. The arising problem is called topology expansion problem. Its objective
is to minimize the building costs of the additional network elements. Note that
operation costs of the network elements are assumed to be a constant term in this
objective which is not taken into account for the optimization. They are caused by
compressors which consume energy for the compression of the gas or pipelines which
have to be maintained regularly, for example. Figure 1.2 shows two different suitable

3



Chapter 1. Introduction: Gas Network Optimization

extensions for the network in Figure 1.1a. We refer to Figure 1.3 for a visualization
of the effect of extending a gas network. More precisely the node pressures are
shown before and after extending the network. The networks shown so far are only
small examples. A real-world gas network with approximately 4000 arcs for which
we want to solve the nomination validation problem is shown Figure 1.4.

The building costs of a new network element depend on its type. For building a
pipeline the costs are mainly made up of the material costs, the construction costs
and costs of getting permission rights for the use of land. Construction costs for
compressors are different as a compressor is typically built at a single place. We
assume that the construction costs also contain a term representing the operation
costs of the specific network element.

1.2. Previous Work
A general survey over the application of optimization methods in the natural gas
industry is given by Zheng et al. (2010). The surveys by Shaw (1994) and Ríos-
Mercado and Borraz-Sánchez (2012) are closer to the problems we are studying. A
monograph outlining the earlier state-of-the-art is described in the book of Osiadacz
(1987).

Several models and solution approaches exist for the nomination validation
problem. One class of approaches is based on solving a mixed-integer linear program
(MILP). The main difficulty then is to get an adequate model for the nonlinearities.
For the stationary case, Möller (2004) used piecewise-linear approximations; see
also Martin et al. (2006). A similar approach using different linearizations was used
by Tomasgard et al. (2007) and Nørstebø et al. (2010).

Among the many approaches based on solving a nonlinear program (NLP), we
mention Percell and Ryan (1987), who use a gradient-descent based method and De
Wolf and Smeers (2000), who consider sequential linear programming approaches.
Based on a fine simulation model, Jeníček (1993) and Vostrý (1993) use subgradient-
based methods. Also sequential quadratic programming (Furey 1993; Ehrhardt
and Steinbach 2005; Ehrhardt and Steinbach 2004) and interior point methods
(Steinbach 2007) have been considered. Bonnans et al. (2011) use interval analysis
techniques to analyze an approximated model of the Belgian network with 20 pipes.
Approaches that rely on network reduction techniques are discussed in Hamam and
Brameller (1971), Mallinson et al. (1993), Wu et al. (2000), and Ríos-Mercado et al.
(2002).

Another widely used approach is dynamic programming. A survey for the
work up until 1998 is written by Carter (1998). The first application were so-
called gun-barrel networks, i.e., straight line networks with compressors (Wong
and Larson 1968b; Wong and Larson 1968a). The method was later extended to
more complex network topologies; see e.g., Lall and Percell (1990), Gilmour et al.
(1989), and Zimmer (1975). Further extensions of this approach were proposed by
Borráz-Sánchez and Ríos-Mercado (2004).
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1.2. Previous Work

max min
Figure 1.3.: Element flow and node pressure corresponding to a realization of a nomination in a test network
consisting of pipelines only. The line width represents the flow value (the thicker the more flow), while its color
depicts the mean value of the node pressures at both end nodes. The nodes are depicted by squares and the node
colors represent the node pressures. In our test case we added two pipelines to the network which results in a
different flow and pressure distribution (see the lower picture). In both pictures the maximum of the node pressures
corresponds to the color red and the minimum to the color blue.
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Chapter 1. Introduction: Gas Network Optimization

Figure 1.4.: The real-world network net7 provided by the cooperation partner Open Grid Europe GmbH. The task
is to solve the nomination validation problem for different instances of this network. Here state-of-the-art solvers
show a poor performance as discussed in Section 1.4.
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1.3. Solution Approach

Not surprisingly, many purely heuristic approaches have been developed. We
mention applications of simulated annealing by Wright et al. (1998) (specifically
for the optimization of compressor operations) and Mahlke et al. (2007), tabu
search by Borraz-Sánchez and Ríos-Mercado (2004), general expert systems by Sun
et al. (2000), genetic algorithms by Li et al. (2011), and ant colony optimization by
Chebouba et al. (2009). Kim et al. (2000) and Ríos-Mercado et al. (2006) present a
two stage iterative heuristic to minimize fuel cost of the compressors.

For the topology expansion problem there exist several approaches to improve
the topology of a gas network which mainly consist of various heuristic and local
optimization methods. Boyd et al. (1994) apply a genetic algorithm to solve a
pipe-sizing problem for a network with 25 nodes and 25 pipes, each of which could
have one of six possible diameters. André et al. (2006) consider a similar problem
and present a heuristic method based on relaxations and local optima. Castillo
and Gonzáleza (1998) also apply a genetic algorithm for finding a tree topology
solution for a network problem with up to 21 nodes and 20 arcs. In addition to
pipes compressors can also be placed in the network. Mariani et al. (1997) describe
the design problem of a natural gas pipeline. They present a set of parameters to
evaluate the quality of the transportation system. Based on these ones they evaluate
a number of potential configurations to identify the best among them. Osiadacz
and Górecki (1995) formulate a network design problem for a given topology as a
nonlinear optimization problem, for which they iteratively compute a local optimum.
For a given topology the diameter of the pipes is a free design variable. Their
method is applied to a network with up to 108 pipes and 83 nodes. De Wolf and
Smeers (1996) also use a nonlinear formulation, which is then solved heuristically.
For a given topology with up to 30 arcs and nodes they can determine optimized
diameters of pipes. Further approaches are available from Hansen et al. (1991),
Bonnans et al. (2011), Babonneau et al. (2012), and Zhang and Zhu (1996). A
method for a complete redesign of a gas transport network is presented by Hübner
(2009).

1.3. Solution Approach
Within the joint research project “Forschungskooperation Netzoptimierung (ForNe)”
in cooperation with our industry partner Open Grid Europe GmbH (OGE) we have
developed a method for the nomination validation as well as the topology expansion
problem. OGE is a company which actually operates and maintains the largest gas
transport network in Germany. Such a company operating a gas network is also
called transmission system operator (TSO).

The previous approach of OGE for solving the nomination validation problem
was as follows: Given a nomination experts used simulation software like Simone
(LIWACOM 2005) and PSIGanesi (Scheibe and Weimann 1999) to compute flows
for each element and pressures for each node such that the flow specified by the
nomination is transported through the network. This computation needs to be
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as such that physical, technical and legal constraints are fulfilled. The software
simulates the gas physics and characteristics of the active and passive elements of
the network. Therefor a set of input parameters must be available which require
expert knowledge. For solving the topology expansion problem the gas network was
manually extended first, while the nomination validation problem on the extended
network was then solved in a second step. These two steps were iterated while the
number and size of extensions in the first step were consecutively reduced.

An aim of the research project ForNe was to develop mathematical optimization
techniques which aid these processes. The physics of gas networks are described by
nonlinear equations. Additionally discrete decisions are necessary because active
elements have different configurations as they can, for instance, be open or closed.
A possible approach is to state the nomination validation as well as the topology
expansion problem as a mixed-integer nonlinear program (MINLP). A formal
definition of an MINLP is given in Section 2.1.

The general approach in the research project for solving the nomination validation
problem was to split the solution process into two steps. In a first step different
approaches and MINLP models were developed for computing reasonable discrete
decisions, i.e., configurations of compressors, valves and control valves, for a given
nomination. Here physical constraints are simplified. Once these decisions are
computed, an NLP is solved in a second step. This NLP models the physical and
technical constraints of all network elements in detail. A solution for this NLP
yields a result which is in precision comparable to the manual approach using the
simulation software. For more details and a precise description of this two stage
solution approach we refer to Koch et al. (2014). All these models focus on the
stationary case meaning transient gas flows are not considered. In addition it should
be noted that the gas flow through a pipeline is modeled independently of time.
This is due to uncertain gas consumption in the long run. Here especially the
nominations for the topology optimization problem can only be specified roughly
and independent of time.

Let us briefly summarize the first stage MINLP models and solution approaches
described in Koch et al. (2014). Geißler (2011) presents a solution method which
bases on MIP relaxations. All nonlinearities are modeled by discretization techniques
while the user can give a predefined maximal approximation error. Based on this
model, Morsi (2013) presents a network decomposition approach. Furthermore there
are presented two heuristic strategies. The first one is based on network reductions
(see Stangl 2014) and the second one on an MPEC solution approach. For the
second stage NLP model we refer to Schmidt et al. (2014).

The strategy that we follow in this thesis is to provide an MINLP model for the
first stage. We do not differ between the nomination validation and the topology
expansion problem. Instead we consider both problems as a topology optimization
problem and model this by an MINLP. Therefor we assume that the network
operator OGE provides a predefined set of additional network elements together
with installation positions. Then the topology optimization problem is to compute
a cost-optimal selection in order to transport the flow defined by the nomination
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Baron Antigone SCIP SCIP + heuristic

feas infeas no sol feas infeas no sol feas infeas no sol feas infeas no sol
- 3 27 - 28 2 1 - 29 18 - 12

Table 1.1.: Computational study of the nomination validation problem for 30 nominations on the network net7
shown in Figure 1.4. For all instances we set a time limit of 14 400 s. The computational results of the last column
“SCIP + heuristic” are obtained by a specially tailored heuristic presented in Chapter 7. The last column is used
only to demonstrate that at least 18 instances are feasible.

through the network. This means that the nomination validation problem is equal
to the topology optimization problem without objective function for a fixed selection.
Note that a cost-optimal solution for the topology optimization problem is a global
optimal solution which means that any other feasible solution does not improve the
objective function value.

1.4. Computational Study
We focused on the nomination validation problem for the network shown in Figure 1.4.
It was provided by our cooperation partner OGE. We applied state-of-the-art
MINLP solvers to the mixed-integer nonlinear program that we introduce in
Chapter 3 as a model of the nomination validation problem. Our aim was to get an
impression of the solving performance of the solvers. For a computational study
we consider 30 different feasible nominations. The arising MINLPs consist of 1478
binary and 21 957 continuous variables. There are 3757 nonlinear and 31 931 linear
constraints. All nonlinear constraints are of the same type. They consist of two
different continuous variables z1 and z2 and write as z1|z1| = z2. Among the linear
constraints there are 3406 “bigM”-constraints meaning that they are either active
or inactive dependent on the value of a binary variable.

For solving these instances we applied the state-of-the-art MINLP solvers
SCIP (Achterberg 2009; Vigerske 2012), Baron (Tawarmalani and Sahinidis 2005)
and Antigone (Misener and Floudas 2014). SCIP was used in combination with
Cplex 12.1 (CPLEX) as linear programming solver and IPOpt 3.10 (Wächter and
Biegler 2006) as nonlinear solver. The version of Baron that we used is 12.7.3, the
version of Antigone is 1.1.

A summary of our computational results is shown in Table 1.1. Detailed results
are shown in the right column of Table A.1 – A.3. It turns out that neither Baron
nor Antigone were able to compute any feasible solution within a time limit of
4 hours. Antigone detects 28 instances to be infeasible while at least 18 out of 30
instances are feasible. SCIP cannot compute any feasible solution for 29 instances.
The results of the last column of Table 1.1 are obtained by a specially tailored
heuristic which is described in Chapter 7.

Overall the performance of state-of-the-art MINLP solvers is not appropriate
for solving the topology optimization problem (3.2.1). Therefore the aim of this
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thesis is to present different methods for improving the performance of SCIP for
solving (3.2.1) on real-world gas networks.

1.5. Outline of the Thesis
The outline of the following chapters is as follows: In Chapter 2 we give a brief sum-
mary of solving MINLP by branch-and-bound, separation, and spatial branching in
general. We refer to the MINLP solver SCIP which enables this approach. In Chap-
ter 3 we provide a detailed description of the topology optimization problem (3.2.1).
We also identify the passive transmission problem (3.4.1) and the active transmission
problem (3.4.2) as subproblems of the topology optimization problem (3.2.1). The
networks and corresponding nominations which we consider for our computational
studies are presented. We consider different networks which are either obtained
from literature, or were generated manually representing realistic networks, or are
based on real-world data. These networks differ according to size and types of
network elements that are included. We split the networks into different groups
where we distinguish between the elements that are contained. For extensions that
are pipes we differentiate whether the pipe would follow an existing pipe or not. In
the first case the extension is called a loop. Now we distinguish between three types
of network:

1. networks that only consist of pipelines and valves,

2. networks that only consist of pipelines, loops and valves,

3. networks that contain active elements.

Note that this is a hierarchical classification. The latter group always contains
the former groups. The subsequent Chapters 4 – 6 focus on a specialized solution
approach for each of these network types. When using a gas network for our
computational studies we apply the solution methods presented for the smallest set
in which it is contained following the aforementioned classification.

In Chapter 4 we focus solely on the first type of network, namely those that
only contain pipes and valves. We describe and compare novel solution methods
for solving the passive transmission problem as part of the topology optimization
problem (3.2.1) to global optimality. The solution methods consist of solving
convex relaxations of the passive transmission problem. These methods are further
integrated into the solver SCIP that we use for solving (3.2.1). This integration
allows the number of globally solved instances within our given time frame to
increase by 29%. On average the run time is reduced by 72% for those instances
already solvable by SCIP.

In Chapter 5 we focus on the second and more complicated type of network
namely those that additionally contain loops. We derive an improved Benders cut
(Geoffrion 1972) for the topology optimization problem from the dual solution of the
relaxations of the passive transmission problem. This cut represents the infeasibility
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of the current passive transmission problem and allows us to speed up the overall
solution process when added to the problem formulation (3.2.1). Using this strategy
we are able to increase the number of globally solved instances by approximately
13%. For those instances which are already solvable by SCIP the run time is
reduced by approximately 33%.

In Chapter 6 we focus on the third type of network which consists of all types of
network elements. We introduce a special tailored algorithm for solving the active
transmission problem (3.4.2) which is part of the topology optimization problem
(3.2.1). This algorithm consists of a primal heuristic and sufficient conditions of
infeasibility for (3.4.2). We integrate this algorithm into the solver SCIP for solving
problem (3.2.1). Thereby the number of globally solved topology expansion instances
is increased by 20%.

With the above described methods we are still not able to solve the real-world
instances used for the computational study in the previous Section 1.4. These
instances are feasibility instances. Therefor in Chapter 7 we introduce a primal
heuristic for the topology optimization problem which is integrated into the solver
SCIP. Here we make use of the dual solution of a relaxation of the active transmission
problem (3.4.2). It allows to solve approximately 60% (18 out of 30) of the initially
discussed nomination validation instances on net7 in Section 1.1. Recall that only
approximately 3% of these instances (1 out of 30) were solvable using state-of-the-art
MINLP solvers.

Chapter 8 contains concluding remarks and ideas for future research. Moreover
we present additional benefits resulting from our methods which are especially useful
for a TSO.
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Chapter 2.

Solving Mixed-Integer Nonlinear
Optimization Problems
In this chapter we roughly describe a solution method for an MINLP such as the
topology optimization problem (3.2.1). We start with a mathematical definition of
MINLP in Section 2.1. Then, in Section 2.2, we briefly explain the solution methods
of SCIP for solving an MINLP, see Achterberg (2009) and Vigerske (2012). For a
survey of different solution methods we refer to Belotti et al. (2012) and for different
MINLP solvers to Bussieck and Vigerske (2010), D’Ambrosio and Lodi (2011),
and D’Ambrosio and Lodi (2013). In Section 2.3 we explain the difference between
convex and non-convex MINLP and the impact on the aforementioned solution
methods. Afterwards we present the necessary conditions for optimality of a primal
solution in Section 2.4.

From the computational study in Section 1.4 we concluded that we have to
improve the solution approach for solving the topology optimization (3.2.1) problem
in several directions. As discussed in the previous chapter we will present different
results that allow us to prune nodes of the branch-and-bound tree and further a
primal heuristic. For an implementation of these methods SCIP provides a flexible
framework. In Section 2.5 we explain our adaptations of SCIP for solving the
topology optimization problem.

2.1. Definition of MINLP
Nonlinear optimization problems containing discrete and continuous variables are
called mixed-integer nonlinear programs (MINLPs). A general MINLP can be
formulated as

min{f(x) | x ∈ X} (2.1.1a)
with

X := {x ∈ [x, x] | g(x) ≤ 0, h(x) = 0, xi ∈ Z, i ∈ I}. (2.1.1b)

Here x, x ∈ Rn determine the lower and upper bounds on the variables, I ⊆ {1, . . . , n}
denotes the set of variables with integrality requirement, f : [x, x]→ R is the objective
function, and g : [x, x]→ Rm and h : [x, x]→ R` are the constraint functions. The
set X is called feasible set of (2.1.1). We assume f(x), g(x) and h(x) to be at least
continuous. Further we assume that f(x) is linear. This is obtained by shifting
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a nonlinear objective function to the constraints while setting f(x) = z for a new
continuous variable z. This goes along with replacing the objective “min f(x)” by
“min z”.

A point x ∈ X is called local optimum, if there exists an ε > 0 such that for all
y ∈ X with ‖x − y‖ < ε we have f(x) ≤ f(y). A local optimum whose objective
function value equals the optimal value is called a global optimum. Note that, due
to continuity of f(x) and g(x), there always exists a global optimum of (2.1.1), if
its optimal value is finite.

MINLP problems arise in many fields such as energy production and distribution,
logistics, engineering design, manufacturing, and chemical and biological sciences,
see Floudas (1995), Grossmann and Kravanja (1997), Tawarmalani and Sahinidis
(2002), Pintér (2006), and Ahadi-Oskui et al. (2010).

2.2. Details on SCIP for Solving MINLP
Below we describe the solution technique for solving MINLP (2.1.1) as implemented
in SCIP, see Achterberg (2004) and Vigerske (2012). By “solving” we mean to
compute a feasible solution for an approximation of a given instance of the problem
together with a computational proof of its global optimality. The solution is globally
optimal for an approximation of the problem and not for the original version due to
numerical reasons.

The solution process in SCIP is as follows: The MINLP (2.1.1) is first relaxed
to a mixed-integer linear program (MILP) and further to a linear program (LP).
For a detailed introduction into linear and integer programming and combinatorial
optimization see for example Nemhauser and Wolsey (1989). Recall that X ⊆ Rn

is the feasible set of (2.1.1). A linear outer approximation of the feasible set X is
computed such that

X ⊆
{
x ∈ [x, x]

∣∣∣Dx ≤ d
}

for a suitable matrix D ∈ Rm×n and vector d ∈ Rm. As an example for a linear
outer approximation consider the nonlinear constraint

za|za| = zb, (2.2.1)

for two continuous variables za, zb, see Fügenschuh et al. (2010). An outer approxi-
mation of (2.2.1) with four different linear inequalities is shown in Figure 2.1a, for
instance. The LP relaxation of MINLP (2.1.1) then writes as

min{f(x) | Dx ≤ d, x ∈ [x, x]}. (2.2.2)

Recall that f is a linear function. LP (2.2.2) is solved in practice by the dual simplex
algorithm (see Dantzig 1951). The obtained solution value defines a lower bound on
the optimal value of the original MINLP (2.1.1). In case this solution fulfills all
constraints of (2.1.1), it is a proven global optimal MINLP solution. However, this
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za

zb = za|za|

(a) Outer approximation.

za

zb = za|za|

(b) Separation.

za

zb = za|za|

(c) Spatial branching together with
separation.

Figure 2.1.: Example of outer approximation, separation, and spatial branching when handling the nonlinear
relation zb = za|za| between two continuous variables za and zb.

rarely happens in practice. Hence either cutting planes are added to strengthen the
relaxation or a branching on a variable is performed as described below.

By adding cutting planes the linear relaxation is improved. For a suitable matrix
D′ ∈ Rm′×n having more rows than D, i.e., m′ > m, and d′ ∈ Rm′ , the linear
relaxation of the feasible set X is improved by

X ⊆ {x ∈ [x, x] | D′x ≤ d′} ⊂ {x ∈ [x, x] | Dx ≤ d}.

The feasible space which remains after adding all available cutting planes is visualized
in Figure 2.1b for the nonlinear function (2.2.1). Adding cutting planes always
yields a tighter LP relaxation of the original problem while the relaxation is still a
linear program. For more details on separation we refer to Nemhauser and Wolsey
(1989).

A branching is either performed on an integer or on a continuous variable. In
both cases the domain of a variable is restricted and a new subproblem is created.
Branching on an integral variable xi means to subdivide the previous linear relaxation
into two parts

X ⊆
{
x ∈ [x, x]

∣∣∣Dx ≤ d, xi ≤ y
}
∪
{
x ∈ [x, x]

∣∣∣Dx ≤ d, xi ≥ y + 1
}
.

for an integral value y. When branching on a continuous variable we speak of spatial
branching. Spatial branching on the continuous variable xi of the solution x∗ to the
linear relaxation refers to subdividing the previous linear relaxation into two parts

X ⊆
{
x ∈ [x, x]

∣∣∣Dx ≤ d, xi ≤ x∗i
}
∪
{
x ∈ [x, x]

∣∣∣Dx ≤ d, xi ≥ x∗i
}
.

For each part of the relaxation a subproblem is created and a tighter outer
approximation can be computed due to tighter variable bounds, see Figure 2.1c for
example. Spatial branching thus improves the relaxation, in particular, in places
where the functions cannot be properly approximated by cutting planes. A branching
tree is used for managing the different subproblems. The initial LP relaxation (2.2.2)
is associated with the root of the branching tree. Whenever a problem corresponding
to a node of this tree is split in subproblems, each of these is associated with a child
node.
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Branching is pursued until all integral variables take integral values and the
outer approximation is “close enough” to the feasible region. If a subproblem is
infeasible or its optimal value is larger than the best available solution so far, then
the subproblem needs not to be investigated furthermore.

The methods above are summarized as branch-and-bound, separation and spatial
branching. This way, global bounds on the objective function can be computed and
the problem can be solved to global optimality up to a certain accuracy. For more
details on branch-and-bound for MILP refer to Nemhauser and Wolsey (1989).

SCIP provides different constraint handlers. They allow to deal with different
types of constraints of an MINLP. For instance, the nonlinear constraint (2.2.1) is
handled by the so called “cons_abspower” constraint handler as described above. A
constraint of the form x = 1 ⇒ g(z) ≤ 0, where g(z) is a linear function and x a
binary variable, is called indicator constraint and handled by the “cons_indicator”
constraint handler. Roughly spoken, the constraint is modeled by the constraint
handler as

g(z) ≤M (1− x),

where M ∈ R≥0 is a suitable constant which is called “bigM”. Additionally there
are some auxiliaries implemented to handle numerical intractability. We refer to
these indicator constraints because they are used for modeling the different modes
of active elements in our model (3.2.1) for the topology optimization problem. The
“cons_nonlinear” constraint handler is the most general MINLP constraint handler
of SCIP for nonlinear constraints, see Vigerske (2012).

Apart from constraint handlers SCIP has several other functionalities for solving
MINLPs. There are for example primal heuristics, for computing primal feasible
solutions. Five heuristics are specifically tailored towards mixed-integer nonlin-
ear programming problems: Undercover, RENS, nonlinear versions of RINS and
Crossover, see Danna et al. (2004) and Berthold (2014). Further an NLP local
search heuristic (Vigerske 2012), and a nonlinear diving heuristic (Bonami and
Gonçalves 2012). Other heuristics are MILP heuristics that are applied to the
linear outer approximation plus the integrality constraints. Propagators are used to
strengthen variable bounds, different branching strategies allow one to decide which
variable branching is performed, and node selection strategies are available, which
select nodes of the branching tree to be considered next. Again we refer to Vigerske
(2012) and Achterberg (2009) for details.

2.3. Convex and Non-Convex MINLP
In general, when solving an MINLP of the form (2.1.1) we differ between convex and
non-convex MINLP. The optimization problem (2.1.1) is convex if the constraint
functions as well as the objective function are convex. A constraint function
gj : [x, x]→ R is convex if

gj(λx1) + gj((1− λ)x2) ≤ λgj(x1) + (1− λ)gj(x2) ∀λ ∈ [0, 1] (2.3.1)
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x

y

(a) Non-convex feasible set.

min y

s. t. (x− 5)x|x| − (x− 4.5)2 − y ≤ 0,
x, y ∈ R

(b) Non-convex optimization problem.

Figure 2.2.: Example of a non-convex continuous optimization problem. The feasible set as shown in the left figure
is non-convex. The objective function of the optimization problem shown in the right part is linear.

holds for any two points x1, x2 ∈ [x, x]. Consequently (2.1.1) is non-convex if any
constraint function gj or hj does not fulfill the condition (2.3.1). A convex MINLP
has the important property that for fixed integral variables xi, i ∈ I, every local
minimum of (2.1.1) is global (see Boyd and Vandenberghe 2004, Section 4.2.2).
For the special case of convex MINLP there exist several solvers, see Bonami et al.
(2008), Abhishek et al. (2010), IBM (CPLEX), and FICO (2009).

An example for a non-convex MINLP is given in Figure 2.2. The optimization
problem as shown in 2.2b is a continuous non-convex optimization problem because
the feasible set as shown in Figure 2.2a is not convex. We conclude from Figure 2.2a
that the non-convex feasible set can be divided into two parts, one convex part with
x ≤ 0 and another part with x ≥ 0. This additional information allows splitting
problem 2.2b into two problems, while the convex one yields a global optimal
solution. Note that the information about a smart split of the feasible set is typically
not available. Hence the solution methods for convex MINLP cannot be applied
directly for solving non-convex MINLP. For more details on solution methods for
MINLP we refer to Vigerske (2012). We briefly sketch two methods.

A method for solving a non-convex MINLP is to apply the branch-and-bound,
separation, and spatial branching technique described in Section 2.2 as implemented
in SCIP. Here branching on integer as well as spatial branching on continuous
variables needs to be performed, see Figure 2.1 for instance. This is different for
a convex MINLP. Because of the convexity of the constraints, there is no need
to apply spatial branching. Any tangential hyperplane of a convex function yields
a globally valid inequality for MINLP (2.1.1). Hence all nodes of the branching
tree only arise from branching on integral variables. Therefore non-convex MINLP
are difficult to solve in comparison to convex MINLP. This in turn means, the
more information is known about the solution space of an MINLP, the more the
solving performance can be improved. Concerning the example shown in Figure 2.2
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this means that by splitting the problem 2.2b into two MINLP, a convex and a
non-convex one, possibly time consuming spatial branching can be avoided.

A different solution approach for convex MINLP is to apply an NLP based
branch-and-bound method. Here a convex NLP is solved instead of an LP at each
node of the branching tree. This way even separation is not necessary. This solution
method can be extended to non-convex MINLP by using convex underestimators
for non-convex functions. A convex underestimator for g(x) is a convex function
g̃(x) with g̃(x) ≤ g(x) on the domain of g. Note that g̃ is not required to be linear.
Using convex underestimators for non-convex MINLP, i.e., for g and h, goes along
with spatial branching, i.e., branching on continuous variables, see Vigerske (2012).

2.4. Necessary Conditions for Local Optimality
After fixing all integral variables of MINLP (2.1.1), a continuous nonlinear opti-
mization problem (NLP) remains. We write this abbreviated as

min{f(z) : gi(z) ≤ 0, hj(z) = 0, z ∈ Rn} (2.4.1)

where f , gi (i = 1, . . . ,m), and hj (j = 1, . . . , `) are continuous functions and z
represents the remaining unfixed variables. If these functions are continuously
differentiable, then the Karush-Kuhn-Tucker conditions of this optimization problem
yield a necessary condition for a feasible solution of (2.4.1) to be locally optimal,
see Conn et al. (2000). These conditions are defined as follows:

Definition 2.4.1:
Let the functions f, g, h of the optimization problem (2.4.1) be continuously differen-
tiable. The conditions

∇zL(z, µ, λ) = 0, (2.4.2a)
gi(z) ≤ 0, ∀ i = 1, . . . ,m, (2.4.2b)
hj(z) = 0, ∀ j = 1, . . . , `, (2.4.2c)

λi ≥ 0, ∀ i = 1, . . . ,m, (2.4.2d)
λi gi(z) = 0, ∀ i = 1, . . . ,m, (2.4.2e)

with the Lagrange function L : Rn × R` × Rm → R defined as

L(z, µ, λ) = f(z) +
m∑
i=1

λi gi(z) +
∑̀
j=1

µj hj(z) = 0

are called Karush-Kuhn-Tucker conditions (KKT conditions as abbreviation)
of the continuous nonlinear optimization problem (2.4.1). Every vector (z∗, µ∗, λ∗)
which fulfills the KKT conditions is called KKT point. The components of µ∗ and
λ∗ are called Lagrange multipliers.
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Theorem 2.4.2 (Karush (2014) and Kuhn and Tucker (1951)):
Let the functions f, g, h of the nonlinear optimization problem (2.4.1) be continuously
differentiable functions. Let z∗ be a local optimum of (2.4.1). If

• either the functions g and h are linear

• or the gradients of those constraints, which are fulfilled with equality, are
linearly independent

then there exist Lagrange multipliers µ∗, λ∗ such that the vector (z∗, µ∗, λ∗) is a KKT
point of (2.4.1).

For a feasible solution z∗ of (2.4.1) and Lagrange multipliers µ∗, λ∗ such that
(z∗, µ∗, λ∗) is a KKT point we call the multipliers the dual part of the KKT point,
and also dual solution. When solving (2.4.1) by IPOpt (Wächter and Biegler 2006)
for instance, the solver does not only return a primal feasible solution but also a
dual solution, and both together form a KKT point.

2.5. A Specially Tailored Adaptation of SCIP
We are going to solve the topology optimization problem (3.2.1) as stated in
Chapter 3 by SCIP. As described in Section 2.2, SCIP solves this problem by branch-
and-bound, separation and spatial branching. However, its solving performance for
real-world instances is insufficient as demonstrated in Section 1.4.

The implementation framework of SCIP allows to influence the solution process
in different directions. In the following we describe important functionalities of this
MINLP solver that we are going to exploit in this thesis. We also shortly refer
to each chapter where this functionality is used in order to improve the solving
performance of (3.2.1).

SCIP allows tracking the branching tree. For every node of this tree the user has
the possibility to influence the solving behavior. So it is for instance possible to prune
a node manually. We only prune a node if we can guarantee that the corresponding
problem of this node is infeasible. Therefor we call different routines (as described
in Chapter 4 and Chapter 6) in order to detect infeasibility of the current node. One
of these routines for example consists of solving a convex relaxation of the current
node. As described in Section 2.3 every local optimum of a convex optimization
problem is a global optimum. Using the solver IPOpt which only computes a local
optimum we are able to solve globally the problem associated with the current node
of the branching tree. If we detect infeasibility, then we prune the node. If these
routines yield a primal feasible solution, then we add it to the solution pool of
SCIP. If possible, then SCIP itself prunes the current node.

As mentioned and described in Section 2.4 the nonlinear solver IPOpt computes a
local optimal primal solution together with a corresponding dual solution. Primal and
dual solution together form a KKT point, i.e., they fulfill the KKT conditions (2.4.2).
These conditions have a practical interpretation for our application, as discussed
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in Chapter 4. This interpretation allows to derive inequalities as described in
Chapter 5, which are valid for the topology optimization problem (3.2.1). We add
these inequalities to the cut pool of SCIP, while SCIP itself manages the handling
of these inequalities.

SCIP also allows to include primal heuristics. These are handled similarly to
the already contained heuristics in terms of frequency and order. We complement
the heuristics of SCIP by another one which is specially tailored to the topology
optimization problem (3.2.1), see Chapter 7.
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Chapter 3.

An MINLP Model for Gas Network
Topology Optimization

In this section we present an MINLP model for the topology optimization problem.
Therefor we first describe the technical background of gas networks in Section 3.1.
Then the MINLP model is explained in Section 3.2 followed by a complexity
analysis in Section 3.3. Two different subproblems of the MINLP are defined in
Section 3.4. They form the origin of the discussions in the ongoing parts in this
thesis. Finally the computational setup is described in Section 3.5 and different
(real-world) instances are presented which we consider for our computations in the
next chapters.

3.1. Technical Background
Let us give a mathematical description of the physical and technical properties of a
gas transport network. In terms of the notation in the context of graph theory we
refer to Korte and Vygen (2007).

We use a directed graph G = (V,A) to model the network, where V denotes the
set of nodes and A ⊆ V × V the set of arcs. Apart from the arc models which are
described later we introduce the following generic variables and constraints. We
have variables for the flow through each arc a that are bounded by q

a
and qa:

qa ∈ [q
a
, qa] ∀ a ∈ A.

A positive value corresponds to a flow in the direction of the arc, and a negative
value is a flow in the opposite direction. A gas flow through a pipe is induced if the
gas has different pressures at the end nodes of the pipe. Hence each node of the gas
transport network is associated with a pressure value. We model these pressures,
but, instead of using variables which model the pressures directly, we model the
squared pressure at each node v by

πv ∈ [πv, πv] ∀ v ∈ V.

Here πv and πv are the specified bounds for the variable. We also say that this
variable πv models the node potential at node v, and πv, πv are the node potential
bounds. Furthermore we add the pressure variable pv when needed.
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The arcs of the gas transport network (V,A) represent the various elements.
Recall that we distinguish between passive network elements, namely pipes, whose
behavior cannot be influenced by the network operator, and active network elements,
namely valves, control valves, and compressors. In the following we describe each
element individually. For a more detailed description we also refer to Fügenschuh
et al. (2014).

Pipes

The majority of the arcs in a gas transport network are pipes. A precise description
of the model of a pipe is given in Pfetsch et al. (2014), Koch et al. (2014), and Geißler
(2011). We give a brief summary. A pipe is specified by its length L, diameter D and
roughness k of the pipe wall. We assume all pipes to be straight and of cylindrical
shape and restrict to the modeling of one-dimensional flow in the pipe direction x.
Under these assumptions the mass flow q is related to gas density ρ and velocity v
via

q = Aρ v, (3.1.1)

where A = D2π/4 denotes the constant cross-sectional area of the pipe. As pipes
in Germany are usually at least one meter below the ground it is reasonable to
assume the temperature T to be constant. In such a situation isothermal flow is an
appropriate model. Now the gas flow in such a pipe is described by the following
set of nonlinear, hyperbolic partial differential equations (see Feistauer 1993; Lurie
2008), often referred to as Euler Equations:

∂ρ

∂t
+ 1
A

∂q

∂x
= 0, (3.1.2a)

1
A

∂q

∂t
+ ∂p

∂x
+ 1
A

∂(q v)
∂x

+ g ρ s+ λ
|v| v
2D ρ = 0. (3.1.2b)

The continuity equation (3.1.2a) and the momentum equation (3.1.2b) describe
the conservation of mass and the conservation of momentum, respectively. Here,
p = p(x, t), q = q(x, t), v = v(x, t) are pressure, mass flow and velocity in the
direction of the pipe depending on time t. The constant g denotes the gravitational
acceleration (with standard value 9.806 65m s−2), and s ∈ [−1, 1] denotes the
constant slope of the pipe. Furthermore ρ denotes the gas density and λ the friction
factor.

Since our model is intended to solve the topology expansion problem we have
to construct it from a planner’s perspective. Expansion problems are typically
considered for the long-term network planning. In contrast to, e.g., real-time
optimal control problems for gas networks, transient effects are neglected. Here a
stationary model for the gas flow is reasonable where all time derivatives are zero.
In this case the continuity equation (3.1.2a) simplifies to

∂q

∂x
= 0, (3.1.3)
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which means that the gas flow is constant within a pipe.
The momentum equation (3.1.2b) relates all forces acting on gas particles to each

other. Investigating the addends on the left-hand side of the momentum equation
from left to right, the first term represents the flow rate change over time. The
second term is the pressure gradient, followed by the so-called impact pressure. The
fourth term represents the impact of gravitational forces which are influenced by
the slope of the pipe. Finally, the last term is the most important one. It represents
the friction forces acting on the gas particles due to pipe walls. These forces are
responsible for the major part of pressure drop within pipes. As the time derivatives
are zero, the first addend can be neglected. The third term ∂x(qv)/A contributes less
than 1% to the sum of all terms under normal operating conditions, see Wilkinson
et al. (1964). So we assume that the term can be neglected, too. In conclusion,
(3.1.2b) can be written as

∂p

∂x
+ g ρ s+ λ

|v| v
2D ρ = 0. (3.1.4)

To calculate the friction factor λ we use the formula of Nikuradse (see Nikuradse
1933; Nikuradse 1950; Mischner 2012)

λ =
2 log10

(
D

k

)
+ 1.138

−2

,

which is suitable on large transport networks where we typically have to deal with
highly turbulent flows. Moreover, for the derivation of an algebraic pressure loss
equation, we have to introduce the equation of state linking gas pressure and density

ρ = ρ0z0T0

p0

p

z(p, T )T . (3.1.5)

Here T0 and p0 are the norm temperature and norm pressure. The compressibility
factor z(p, T ) characterizes the deviation of a real gas from ideal gas. We assume
that this factor can be approximated by a suitable constant along the entire pipe
which we denote zm. The compressibility factor under norm conditions is denoted
by z0 and ρ0 is the gas density under norm conditions.

Lemma 3.1.1:
The solution p(x) to (3.1.4) with initial value p(0) = pin is given by

p(x)2 =
p2

in − Λ̃ |q| q e
S̃x − 1
S̃

 e−S̃x (3.1.6)

with
S̃ := 2 g s ρ0z0T0

zm T p0
, Λ̃ := λ

p0 zm T

ρ0z0T0A2D
.
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Proof. In (3.1.4), we replace the gas velocity v by the mass flow q using (3.1.1)
and the gas density ρ by the pressure p using the equation of state (3.1.5). This
yields

∂p

∂x
+ g

ρ0z0T0 p

p0 zm T
s+ λ

|q| q
2A2D

p0 zm T

ρ0z0T0 p
= 0,

where we use the assumption that the gas temperature and compressibility factor
are constants T and zm, respectively. Multiplication by 2 p leads to

∂

∂x
p2 + S̃ p2 = −Λ̃ |q| q.

By substituting y = p2 we obtain the first-order linear ordinary differential equation
(ODE)

∂

∂x
y + S̃ y = −Λ̃ |q| q, y(0) = p2

in.

This ODE can be solved analytically by “variation of constants” and we arrive at

y(x) = p(x)2 =
(
−Λ̃ |q| q 1

S̃
eS̃x + p2

in + Λ̃ |q| q 1
S̃

)
e−S̃x,

where the last two terms in parentheses represent the integration constant obtained
from the initial value y(0) = p2

in. This concludes the proof for s 6= 0. For the other
case s = 0 we proceed by taking the limit for s→ 0 (equivalently S̃ → 0) in (3.1.6)
using l’Hôpital’s rule.

By evaluating the solution of (3.1.6) at x = L (with p(L) = pout) and fixing the
notation Λ := Λ̃L and S := S̃ L, we finally obtain a well-known relationship of inlet
and outlet pressures and the mass flow through the pipe, see, e.g., Lurie (2008):

p2
out =

p2
in − Λ |q| q e

S − 1
S

 e−S (3.1.7)

with
Λ = λ

p0 zm T L

ρ0z0T0A2D
, S = 2 g sρ0z0T0 L

p0 zm T
. (3.1.8)

Recall that the variable qa ∈ R represents the arc flow for a pipe a = (v, w) ∈ A,
where a positive value is a flow from v to w, and a negative value is a flow in the
opposite direction from w to v. Furthermore the variables πv, πw model the node
potential values. The fundamental equation we use for a pipe a = (v, w) is

αa qa|qa|ka = πv − γaπw. (3.1.9)

Here αa ∈ R≥0, ka ∈ R≥0 and γa ∈ R≥0 \{0} are constants that subsume all physical
properties of the pipe, the flow, and the interactions of the flow with the pipe.
According to (3.1.7) and (3.1.8) we set

ka := 1, αa := Λe
S − 1
S

, γa := eS.
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πv − πw πv − γaπw

qa

πv − γaπwπv − γaπw

Figure 3.1.: Nonlinear relation αa qa|qa|ka = πv−γaπw of arc flow and node potential differences of a pipe a = (v, w)
for αa = 1, ka = 1, and γa = 1. Increasing the arc flow goes along with increasing the difference of the node
potentials πv and πw at the end nodes v and w.

The constant γa in particular represents the height difference between nodes v and
w. If some pipelines a1, . . . , an form a circle, it is assumed that γa1 · . . . · γan = 1.
This reflects that there is no height difference when traversing a circuit completely.
If a = (v, w) is an arc and a′ = (w, v) is its anti-parallel counterpart, then we
assume that the constants γa are such that γa = γ−1

a′ . Although each arc in principle
might have a different value for ka it is natural to assume that all pipes have the
same constant in a gas network. However, this equality is no assumption for our
proceeding work. A visualization of equation (3.1.9) is given in Figure 3.1.

Valves

A valve is installed in the network to separate or to join two independent nodes.
The spatial dimension of a valve is small in comparison to the pipes. For a discrete
decision valves allow either being open or closed. In our model the node potential
values are identified when the valve is open (πv = πw). If the valve is closed then
they are decoupled and the flow is forced to zero (qa = 0). A binary variable
xa ∈ {0, 1} distinguishes between these states. With this variable we use the
following constraints for a valve a = (v, w):

xa = 0⇒ qa = 0,
xa = 1⇒ πv = πw,

qa, πv, πw ∈ R,
xa ∈ {0, 1}.

Compressors

At certain locations in gas transport networks it is necessary to increase the gas
pressure. For example, if the pressure is too low after a transport distance of
100 km to 150 km, then compressors might be used to increase it again. For the
mathematical description of such an active network element, various models exist
in the literature, see Carter et al. (1993), Carter (1996), and Wu et al. (2000) for
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Figure 3.2.: Technical arc symbols of a valve, a compressor and a control valve.

instance. We follow the approach of De Wolf and Smeers (2000), and make use of
the following formulation for a compressor a = (v, w):

αa qa|qa|ka ≥ πv − πw. (3.1.10)

Here αa ∈ R≥0 and ka ∈ R≥0 are constants. We introduce a slack variable
ya ∈ [y

a
, ya] where y

a
and ya are lower and upper bounds. Then we rewrite

inequality (3.1.10) as equality

αa qa|qa|ka − βaya = πv − πw (3.1.11)

where βa ∈ R is the weight of the slack variable ya.
In practice we need further restrictions such as a minimal and a maximal

pressure difference or a restriction of the pressure difference that depends on the
flow. Therefor we allow a linear inequality system coupling the flow qa and the
pressures pv, pw such that

Aa (qa, pv, pw)T ≤ ba. (3.1.12)

Here it holds Aa ∈ Rνa×3 and ba ∈ Rνa for some value νa ∈ N. When the slack
variable ya is unbounded, then the only restrictions for the compressor are given
by constraint (3.1.12). Hence (3.1.12) specifies the operating range of the com-
pressor. The flow can only go in positive direction through a compressor, hence
a corresponding lower bound needs to be set by this linear inequality system, i.e.,
qa ≥ 0.

The previous description belongs to the active mode of a compressor. Additionally,
a compressor has other operation modes and can be in bypass and closed mode.
These modes are identical with the modes of a valve. We introduce three binary
variables xa,0, xa,1, xa,2 ∈ {0, 1} which model the closed, bypass and active mode
respectively. With these decision variables we use the following constraints and
variable bounds for a compressor a = (v, w):

xa,0 + xa,1 + xa,2 = 1,
p2
v = πv,

p2
w = πw,

y
a
≤ ya ≤ ya,

qa, ya, πv, πw, pv, pw ∈ R,
xa ∈ {0, 1},
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xa,0 = 1⇒ qa = 0,
xa,1 = 1⇒ πv = πw
xa,2 = 1⇒ αa qa|qa|ka − βaya = πv − πw, Aa (qa, pv, pw)T ≤ ba.

(3.1.13)

Control Valves

It can be necessary to reduce the pressure along an arc a = (v, w) in the network in
order to protect parts of the network from high pressures due to pressure limits of
older pipelines. Technically this reduction is realized by a control valve that reduces
the gas pressure. A control valve a = (v, w) is inverse to a compressor. Hence we
model it similarly to a compressor by

αa qa|qa|ka − βaya = πv − πw. (3.1.14)

Here αa ∈ R≥0, ka ∈ R≥0, and βa ∈ R are constants. The difference between a
compressor and a control valve is either the sign of βa or the bounds on ya. Note
that the flow direction through a control valve is also fixed by setting the lower
bound to zero, i.e., qa ≥ 0.

Similar to a compressor, the feasible region of a control valve is restricted by
additional constraints like (3.1.12). For instance we set a minimal and maximal
pressure difference between the end nodes v and w. Furthermore bypass and closed
mode are available. Concluding, we model a control valve a = (v, w) by (3.1.13)
which is exactly the same as the model of a compressor. For a more detailed
description of a control valve we refer to Cerbe (2008).

3.2. An MINLP Model
In the previous section we presented models for the different network elements
pipelines, valves, control valves and compressors. Let us integrate these results
into a mixed-integer nonlinear programming model for the topology optimization
problem. Recall that the problem is to compute a cost-efficient selection of network
elements that have to be added to the network in order to make the nomination
feasible which is specified by the vector d.

Multigraph

We model the topology optimization problem on a multigraph. This multigraph
is obtained as follows: Given the directed graph G = (V,A) which represents the
original gas transport network, we define an extended set of arcs AX ⊆ V ×V ×N≥0
where each arc (v, w, i) ∈ AX represents the arc a = (v, w) ∈ V × V together with
index i. This set AX contains all “original” arcs from A with the additional index 1,
that is, (a, 1) ∈ AX for all a ∈ A. Each valve a ∈ A is additionally represented by
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the arc (a, 0) ∈ AX to indicate the status that the valve is closed. Hence the arc
(a, 1) is associated with an open valve. Each arc a ∈ A that represents a control
valve or a compressor is additionally represented by the arcs (a, 0), (a, 2) ∈ AX to
indicate the state that the active element is closed or active, respectively. The arc
(a, 1) is associated with the state bypass.

Furthermore the extended arc set AX contains possible new network elements
(pipes, valves, compressors, or control valves), where in principle a new element
can be built between any pair of existing nodes v, w ∈ V, v 6= w. A possible new
extension between nodes v and w is represented by two arcs: (v, w, 0) to indicate
in the model below that the element is not built and (v, w, 2) to model that the
new element is built. Here we assume that a new active element is only in active
mode. This is a reasonable assumption because the bypass mode of a compressor or
a control valve equals the open mode of a valve which we refer to as its active mode.
Furthermore the closed mode of these elements means that they are not added to
the network.

Several loops for an existing arc a ∈ A are represented by (a, i) for index
i ∈ {2, 3, . . .} to model a given set of design parameters. We always assume that arc
(a, i) contains the capacity of (a, 1) for i ≥ 2. In the model below we select exactly
one of the arcs (a, 1), (a, 2), . . . to be allowed to transport flow.

By (V,AX) we denote the gas transport network together with its possible
extensions. Note that (V,AX) is a graph with multiple parallel arcs and hence a
multigraph. The ongoing model is defined on this multigraph.

Variables

Let us introduce the following variables. The flow on arc (a, i) ∈ AX , i 6= 0 is
denoted by qa,i ∈ R, where a positive value means that the flow is heading in the
same direction as the arc, and a negative value indicates the opposite direction.
Note that we do not add a flow variable for an arc (a, 0) ∈ AX because this arc
corresponds to the closed state of an active element or indicates that an extension
is not added to the network. The potential value of a node v ∈ V is modeled by
πv ∈ R. The pressure itself is modeled by pv ∈ R. The variable ya,i ∈ R specifies
the slack component in (3.1.11) and (3.1.14). For pipelines and valves this variable
is fixed to zero. We introduce a binary decision variable xa,i ∈ {0, 1} for each arc
(a, i) ∈ AX , where xa,i = 1 represents the decision that arc (a, i) is used (i.e., a
necessary condition for a nonzero flow).

The bounds of these variables are given as parameters. For each node v ∈ V we
have lower and upper bounds on the node potential, πv, πv ∈ R with πv ≤ πv. For
each arc (a, i) ∈ AX we have lower and upper bounds on the flow, q

a,i
, qa,i ∈ R with

q
a,i
≤ qa,i. Furthermore bounds on the weighted slack variable y

a,i
, ya,i ∈ R with

y
a,i
≤ ya,i are given.
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Constraints

We use the following constraints for modeling the topology optimization problem.
The node flow is specified by the nomination d. To ensure a consistent flow model,
flow conservation constraints∑

(a,i)∈δ+
AX

(v),

i 6=0

qa,i −
∑

(a,i)∈δ−
AX

(v),

i 6=0

qa,i = dv ∀ v ∈ V

state that the balance of entering and leaving flows has to match exactly the
nominated amount dv at each node v ∈ V . Furthermore each arc flow variable is
coupled with the node potential values at its end nodes. More precisely, each arc
(a, i) = (v, w, i) ∈ AX , i 6= 0, which represents either a pipeline, a valve, a control
valve or a compressor, is modeled by this basic equation:

xa,i = 1⇒ αa,i qa,i|qa,i|ka − βa,iya,i − (πv − γaπw) = 0.

It is then specified by appropriate parameters αa,i, βa,i, γa and ka as described in
the previous Section 3.1. We have an arc coefficient αa,i ∈ R≥0, a weighting factor
βa,i ∈ R≥0 for the slack variable, a coefficient γa ∈ R≥0\{0}, and the power ka ∈ R≥0.
If αa,i = 0 for an arc (a, i) = (v, w, i) then we assume βa,i = 0 and γa = 1 such that
the arc is modeled by πv = πw. For γa we have the following conditions: Let (V,E)
be the undirected version of (V,A) obtained by removing the orientation of the arcs
a ∈ A′. This way each arc a ∈ A uniquely corresponds to an edge in e ∈ E and vice
versa. Consider a circuit in (V,E). Let v1, . . . , vn be the nodes of this circuit with
vn = v1, e1, . . . , en−1 the edges and a1, . . . , an−1 the corresponding arcs. Then we
assume 

n−1∏
i=1

ai=(vi,vi+1)

γa




n−1∏
i=1

ai=(vi+1,vi)

γ−1
a

 = 0.

This condition ensures a zero height difference in total when traversing the edges of
the circuit in clockwise direction. Note that those corresponding arcs ai which are
not oriented in clockwise direction, i.e., ai = (vi+1, vi), are traversed in backward
direction. Here the value γ−1

ai
is regarded.

For those arcs (a, i) ∈ AX which are representing active compressors or control
valves we assume additional data being given as a νa × 3-dimensional matrix Aa
and νa-dimensional vector ba (here νa is the number of linear constraints necessary
to describe the operating range). We add the constraint

xa,i = 1⇒ Aa (qa,i, pv, pw)T ≤ ba.

For all the other arcs we set Aa = 0 and ba = 0.
To complete the model for arcs, we ensure that the flow is fixed to zero in the

case that arc (a, i) is not used, i.e.,

xa,i = 0⇒ qa,i = 0.
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Furthermore we add the constraint∑
i:(a,i)∈AX

xa,i = 1 ∀ a ∈ A

to ensure that only one state of the arc is selected.
For technical reasons only a subset of all possible discrete settings is allowed.

This subset is given by X ⊆ {0, 1}AX . The set X is described by linear inequalities
in general, i.e.,

X =
{
x ∈ {0, 1}AX | Lx ≤ t

}
,

where L is a matrix of integers with |AX | columns and t is vector of integers such
that the length of t is equal to the number of rows of L.

Objective

A cost coefficient ca,i ∈ R≥0 for each arc (a, i) ∈ AX reflects the costs of using
arc (a, i). We set ca,1 := 0 for all existing arcs a ∈ A and ca,0 := 0 for every active
element a ∈ A. Furthermore we set ca,2 := 0 for all compressors and control valves
a ∈ A. The objective function then is

min
∑

(a,i)∈AX
ca,i xa,i.

MINLP Model

We summarize the previous variables and constraints. The following nonlinear
non-convex mixed-integer program with indicator constraints is used for modeling
the topology optimization problem:

min
∑

(a,i)∈AX

ca,i xa,i (3.2.1a)

s. t.

xa,i = 1⇒ αa,i qa,i|qa,i|ka − βa,iya,i − (πv − γaπw) = 0 ∀ (a, i) ∈ AX ,
a = (v, w), i 6= 0, (3.2.1b)

xa,i = 1⇒ Aa (qa,i, pv, pw)T ≤ ba
∀ (a, i) ∈ AX ,
a = (v, w), i ≥ 2, (3.2.1c)

xa,i = 0⇒ qa,i = 0 ∀ (a, i) ∈ AX , i 6= 0, (3.2.1d)∑
i:(a,i)∈AX

xa,i = 1 ∀ a ∈ A, (3.2.1e)

∑
(a,i)∈δ+

AX
(v),

i 6=0

qa,i −
∑

(a,i)∈δ−
AX

(v),

i 6=0

qa,i = dv ∀ v ∈ V, (3.2.1f)

pv|pv| − πv = 0 ∀ v ∈ V, (3.2.1g)
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Lx ≤ t, (3.2.1h)

πv ≤ πv ∀ v ∈ V, (3.2.1i)

πv ≥ πv ∀ v ∈ V, (3.2.1j)

qa,i ≤ qa,i ∀ (a, i) ∈ AX , i 6= 0, (3.2.1k)

qa,i ≥ qa,i ∀ (a, i) ∈ AX , i 6= 0, (3.2.1l)

xa,i = 1 ⇒ ya,i ≤ ya,i ∀ (a, i) ∈ AX , i 6= 0, (3.2.1m)

xa,i = 1 ⇒ ya,i ≥ ya,i ∀ (a, i) ∈ AX , i 6= 0, (3.2.1n)

pv, πv ∈ R ∀ v ∈ V, (3.2.1o)

qa,i, ya,i ∈ R ∀ (a, i) ∈ AX , i 6= 0, (3.2.1p)

xa,i ∈ {0, 1} ∀ (a, i) ∈ AX . (3.2.1q)

Hereinafter we refer to this model as topology optimization problem (3.2.1). The
aforementioned model can also be used in the context of water network optimization,
see Bragalli et al. (2012), Burgschweiger et al. (2009), and Gleixner et al. (2012).
There the task is to operate the network and to compute a selection of pipe diameters
such that the specified nomination is feasible in the network.

Example

In Figure 3.3 we show an example of a small network to demonstrate our notation.
In the first part 3.3a, the original network (V,A) is shown. It contains five pipes
and one control valve. In 3.3b the arc flow and node potential variables are shown.
The last part 3.3c of the figure shows the decision variables x. Simple arcs, such as
(2, 1), (5, 1), (6, 1) which correspond to the original arcs 2, 5 and 6 represent pipelines
of the network. In particular, these pipelines are not extendible via loops, i.e., by
adding parallel pipes. A valve is shown in arc pair (4, 0), (4, 1). Note that there is no
flow variable q4,0. Multiple arcs such as (1, 1), (1, 2) and (3, 1), (3, 2), (3, 3) represent
each a pipeline (which is (1, 1) and (3, 1)), together with one or two possible loop
extensions, respectively.

3.3. Complexity Analysis
Let us characterize the complexity of the topology optimization problem (3.2.1).
We reduce the NP-hard problem 3Sat, see Korte and Vygen (2007) for details, to
the topology optimization problem (3.2.1).

3Sat is defined as follows: A collection of clauses Z = {Z1, Z2, . . . , Zr} in
boolean variables x1, x2, . . . , xs is given. Each clause Zi is a disjunction of three
literals li,1, li,2, li,3 where a literal li,j is either a variable xk or its negation xk for
some k ∈ {1, . . . , s}. The clause Zi is satisfied if at least one of its literals is “true”.
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(a) Original network with 1 valve and 5 pipes.
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(b) Arc flow and node potential variables q and π.
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(c) Discrete (switching) variables x. The variables x2,1
and x5,1 and x6,1 are fixed to 1.

Figure 3.3.: Example of a network with binary and continuous variables of the associated topology optimization
problem (3.2.1). The dashed arcs correspond to the valve in closed mode. The dotted arcs represent loops. Loops
are available for the original arcs a1 and a3.
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We denote by xi,j the boolean variable of literal li,j , i.e., if li,j = xk or li,j = xk, then
xi,j = xk. The problem is to determine whether Z is satisfiable, that is, whether
there is a truth assignment to the variables x1, x2, . . . , xs, which simultaneously
satisfies all the clauses in Z.

Consider an instance of 3Sat. We define a corresponding instance of the topology
optimization problem. It does not contain any extension arcs, i.e., the objective
function equals zero and every feasible solution is an optimal one. The transmission
network (V,A) of the instance is shown in Figure 3.4. It has 14r vertices, where
each clause Z1, . . . , Zr is associated with 14 vertices. Each arc a ∈ A of the network
is either a valve, or a pipe with constants αa = βa = 0 and γa = 1, i.e., the pipe
a = (v, w) is modeled by πv = πw. The lower flow bound on each arc is zero, i.e., we
allow nonnegative arc flow only. Let us denote the set of pipes by Ap ⊆ A and the
set of valves by Ava ⊆ A. Then the MINLP model (3.2.1) for this instance writes
as

∃ q, π (3.3.1)

s. t. xa,1 = 1⇒ πv − πw = 0 ∀ a = (v, w) ∈ A,

xa,0 = 1⇒ qa = 0 ∀ a ∈ A,∑
a∈δ+

A(v)
qa −

∑
a∈δ−A (v)

qa = dv ∀ v ∈ V,

xa,0 + xa,1 = 1 ∀ a ∈ Ava,

xa,1 = 1 ∀ a ∈ Ap,

πv ≤ πv ≤ πv ∀ v ∈ V,

0 ≤ qa ≤ qa ∀ a ∈ A,

πv ∈ R ∀ v ∈ V,

qa ∈ R ∀ a ∈ A,

xa,0, xa,1 ∈ {0, 1} ∀ a ∈ A.

Each clause Zi is associated with a subnetwork of (V,A). The nodes and arcs
of this subnetwork are indicated with index i. It consists of nodes vi,1, . . . , vi,14, 12
valves and 3 pipes. The inflow at node vi,1 equals one (dvi,1 = 1) which is led out at
node vi,14 (dvi,14 = −1). All other nodes of the subnetwork are transshipment nodes
(dvi,2 = dvi,3 = . . . = 0). The potential value at the nodes vi,5, . . . , vi,10 is fixed by
πvi,5 = πvi,7 = πvi,9 = 1 and πvi,6 = πvi,8 = πvi,10 = 0. For the other nodes of the
subnetwork there are no restrictions on the node potential values. The topology
of two subnetworks differs only in the arcs between node sets {vi,2, vi,5, vi,6} and
{vi,3, vi,7, vi,8} and {vi,4, vi,9, vi,10}. Here connecting arcs exist as follows:

(vi,2, vi,5) ∈ A :⇔ li,1 = xi,1,
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(vi,2, vi,6) ∈ A :⇔ li,1 = xi,1,

(vi,3, vi,7) ∈ A :⇔ li,2 = xi,2,

(vi,3, vi,8) ∈ A :⇔ li,2 = xi,2,

(vi,4, vi,9) ∈ A :⇔ li,3 = xi,3,

(vi,4, vi,10) ∈ A :⇔ li,3 = xi,3.

For each pair of clauses Zi, Zj with index i < j there is an arc between the
subnetworks associated with Zi and Zj connecting vi,10+k and vj,10+k′ if and only
if xi,k = xj,k′ for each k, k′ ∈ {1, 2, 3}. The flow on these arcs is fixed to zero, i.e.,
upper and lower flow bounds equal zero.

Theorem 3.3.1:
The topology optimization problem (3.2.1) is NP-hard.

Proof. We prove that 3Sat polynomially transforms to the topology optimization
problem (3.3.1). We consider a feasible solution of 3Sat and define a feasible
solution for (3.3.1). Initially we set a node potential of value zero for all nodes and
flow value zero for all arcs. In the discussion below we will change some of these
variables to different values. For each clause Zi we open and close valves of the
corresponding subnetwork by the following instructions:

Case xi,1 = 1: We open valve ai,4 and close ai,5.

Case xi,1 = 0: We open valve ai,5 and close ai,4.

Case xi,2 = 1: We open valve ai,6 and close ai,7.

Case xi,2 = 0: We open valve ai,7 and close ai,6.

Case xi,3 = 1: We open valve ai,8 and close ai,9.

Case xi,3 = 0: We open valve ai,9 and close ai,8.

Then we set the π values as follows for each clause Zi. For those πvi,· which are
fixed by its bounds we set πvi,5 := πvi,7 := πvi,9 := 1 and πvi,6 := πvi,8 := πvi,10 := 0.
The other values πvi,· which are not fixed by its bounds are set as described below:

πvi,2 := πvi,11 := xi,1,

πvi,3 := πvi,12 := xi,2,

πvi,4 := πvi,13 := xi,3.

(3.3.2)

For the remaining valves we proceed by applying one of the following cases for open
and closed status:

Case 1, li,1 = 1: We open the valves ai,1 and ai,10 and close the remaining valves of
the subnetwork. We send one unit of flow from vi,1 to vi,14 along the unique
path containing ai,1 and ai,10. We set πvi,1 := πvi,2 and πvi,14 := πvi,11 .
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Figure 3.4.: Two different clauses Zi, Zj with i < j of an instance of 3Sat are associated with an instance of the
topology optimization problem. The nodes and arcs associated with clause Zi are indexed by i. Every arc is either
a pipe or a valve restricted to nonnegative arc flows. The flow on the dashed arcs is fixed to zero. The intervals
that are shown give lower and upper bounds for the node potential values. All other node potential values are
unbounded. This figure exactly matches the instance Z = {Zi, Zj} with Zi = {x1, x2, x3} and Zj = {x3, x4, x1},
where x1, . . . , x4 are the boolean variables.
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Case 2, li,1 = 0, li,2 = 1: We open the valves ai,2 and ai,11 and close the remaining
valves of the subnetwork. We send one unit of flow from vi,1 to vi,14 along the
unique path containing ai,2 and ai,11. We set πvi,1 := πvi,3 and πvi,14 := πvi,12 .

Case 3, li,1 = 0, li,2 = 0, li,3 = 1: We open the valves ai,3 and ai,12 and close the
remaining valves of the subnetwork. We send one unit of flow from vi,1 to
vi,14 along the unique path containing ai,3 and ai,12. We set πvi,1 := πvi,4 and
πvi,14 := πvi,13 .

We note that at least one literal is “true” which implies that exactly one of the
previous cases applies. This in turn implies that the nomination for each subnetwork
associated with Zi is transported through the subnetwork. The arcs between two
subnetworks associated with Zi and Zj for i, j ≤ r and i 6= j ensure πvi,10+k = πvj,10+k′

if xi,k = xj,k′ for k, k′ ∈ {1, 2, 3}. These conditions are fulfilled because of (3.3.2).
Thus we obtain a feasible solution for the topology optimization problem (3.3.1).

Now we consider a feasible solution of the topology optimization problem (3.3.1)
and derive a feasible solution for 3Sat. We proceed by assigning values to the x
variables as follows:

Case 1 (valve ai,4 or ai,5 open): If ai,4 is open, then we set xi,1 := 1. Otherwise
we set xi,1 := 0. We note that at most one of the valves ai,4 and ai,5 is open
because otherwise 1 = πv1,5 = πv1,11 = πv1,6 = 0 leads to a contradiction.

Case 2 (valve ai,6 or ai,7 open): If ai,6 is open, then we set xi,2 := 1. Otherwise
we set xi,2 := 0. We note that at most one of the valves ai,6 and ai,7 is open
because otherwise 1 = πv1,7 = πv1,12 = πv1,8 = 0 leads to a contradiction.

Case 3 (valve ai,8 or ai,9 open): If ai,8 is open, then we set xi,3 := 1. Otherwise
we set xi,3 := 0. We note that at most one of the valves ai,8 and ai,9 is open
because otherwise 1 = πv1,9 = πv1,13 = πv1,10 = 0 leads to a contradiction.

At least one of these cases applies because of the construction of the network and
the nomination. The definition above is well-defined because of the arcs connecting
two different subnetworks are associated with two different clauses. From these
settings we obtain:

qai,1 > 0 ⇒ qai,4 + qai,5 > 0 (case 1 applies)⇒ li,1 = 1,

qai,2 > 0 ⇒ qai,6 + qai,7 > 0 (case 2 applies)⇒ li,2 = 1,

qai,3 > 0 ⇒ qai,8 + qai,9 > 0 (case 3 applies)⇒ li,3 = 1.

(3.3.3)

We note that the cases apply because no positive flow is valid on a valve in closed
state. By construction of the nomination, we have qai,1 + qai,2 + qai,3 = 1 for each
i = 1, . . . , r. Thus we obtain from (3.3.3) that li,1 ∨ li,2 ∨ li,3 is “true”. Thus clause
Zi is fulfilled for every i = 1, . . . , r. We proceed by assigning 1 to all variables xk
which are not set by the previous definitions. This does not change the status of a
clause and thus, the instance of 3Sat is feasible.
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3.4. The Passive and Active Transmission Problem
The topology optimization problem (3.2.1) has two types of subproblems. We call
them passive and active transmission problems. Both problems state the problem of
transmitting gas between entries and exits through a network where the operation
modes of valves, control valves and compressors are fixed. In Chapter 4 and 6 we
present efficient solution methods for solving them. The passive transmission problem
is obtained by fixing the variables x and y in (3.2.1). We note that, if the network
contains only valves and pipes or in the more general case y = y, this problem is
obtained after fixing all binary decisions. We define the arc set A′ so that it contains
all the arcs that are allowed to carry flow, i.e., A′ := {(a, i) ∈ AX : xa,i = 1, i > 0}.
For the ease of notation we always write a ∈ A′ as abbreviation for (a, i) ∈ A′.
Accordingly we set γa := γã and Aa := Aã and ba := bã for a = (ã, i) ∈ A′. Further
we define β̃a := βaya for the current value ya for each arc a ∈ A′. Now the passive
transmission problem writes as

∃ q, π, p (3.4.1a)

s. t. αa qa|qa|ka − β̃a − (πv − γaπw) = 0 ∀ a = (v, w) ∈ A′, (3.4.1b)

Aa (qa, pv, pw)T ≤ ba ∀ a = (v, w) ∈ A′, (3.4.1c)∑
a∈δ+

A′ (v)
qa −

∑
a∈δ−

A′ (v)
qa = dv ∀ v ∈ V, (3.4.1d)

pv|pv| − πv = 0 ∀ v ∈ V, (3.4.1e)

πv ≤ πv ∀ v ∈ V, (3.4.1f)

πv ≥ πv ∀ v ∈ V, (3.4.1g)

qa ≤ qa ∀ a ∈ A′, (3.4.1h)

qa ≥ q
a
∀ a ∈ A′, (3.4.1i)

pv, πv ∈ R ∀ v ∈ V, (3.4.1j)

qa ∈ R ∀ a ∈ A′. (3.4.1k)

This problem is called passive transmission problem because the flow on every arc is
directly related to the node potential difference at the end nodes of the arc, except
those arcs a ∈ A′ where αa = 0. Hence each arc a ∈ A′ can be regarded as a
pipeline within the context of this passive transmission problem. In turn, pipelines
are passive network elements.

The active transmission problem is obtained by fixing all binary variables x in
(3.2.1). Again we denote by A′ := {(a, i) ∈ AX : xa,i = 1, i > 0} the set of arcs that
are allowed to carry flow. Now the active transmission problem writes as follows:
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∃ q, π, p, y (3.4.2a)

s. t. αa qa|qa|ka − βaya − (πv − γaπw) = 0 ∀ a = (v, w) ∈ A′, (3.4.2b)∑
a∈δ+

A′ (v)
qa −

∑
a∈δ−

A′ (v)
qa = dv ∀ v ∈ V, (3.4.2c)

Aa (qa, pv, pw)T ≤ ba ∀ a = (v, w) ∈ A′, (3.4.2d)

pv|pv| − πv = 0 ∀ v ∈ V, (3.4.2e)

πv ≤ πv ∀ v ∈ V, (3.4.2f)

πv ≥ πv ∀ v ∈ V, (3.4.2g)

qa ≤ qa ∀ a ∈ A′, (3.4.2h)

qa ≥ q
a
∀ a ∈ A′, (3.4.2i)

ya ≤ ya ∀ a ∈ A′, (3.4.2j)

ya ≥ y
a
∀ a ∈ A′, (3.4.2k)

pv, πv ∈ R ∀ v ∈ V, (3.4.2l)

qa, ya ∈ R ∀ a ∈ A′. (3.4.2m)

This problem is called active transmission problem because it might contain active
elements like compressors which are in active mode. In this case the flow is not
directly related to the node potential values at the end nodes of the arc associated
with this compressor. This is the crucial difference to the passive transmission
problem.

Taking the definition of the active transmission problem we give a different view
on the topology optimization problem: The task is to compute a cost-optimal choice
of the binary variables x such that the corresponding active transmission problem
is feasible.

3.5. Computational Setup
For our computational studies seven different networks net1 – net7 with different
nominations are considered, see Figure 3.5 to Figure 3.11. These networks contain
all types of active elements for pressure regulation, i.e., valves, control valves, and
compressors. The dimensions of the underlying graphs are summarized in Table 3.1.
The networks are obtained from literature and from our cooperation partner OGE.

Recall that we distinguish between three types of networks in this thesis as
described in Section 1.5. The networks net4 and net5 with contracted compressors
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instance nodes pipes valves other active elements
net1 20 29 0 0
net2 40 39 0 6
net3 85 80 44 5
net4 143 142 103 6
net5 396 402 261 29
net6 661 614 33 42
net7 4165 3983 308 133

Table 3.1.: Information about the dimension of the networks. We use seven networks with different topologies for
our computational studies. A visualization of these networks is shown in Figure 3.5 to Figure 3.11.

and control valves form the first type of network, namely those which contain only
pipes and valves. The networks net1 and net2 with contracted active elements are
considered with additional loop arcs in our computations and form the second type
of network. The networks net3 – net7 contain compressors and control valves and
form the third type of network.

For our computations in the following chapters we imposed a time limit of 11 h
for the topology expansion instances and a time limit of 4 h for the nomination
validation instances. In the experiments our main criteria for measuring performance
are the number of solved instances, the running time, the number of branch-and-
bound nodes needed to prove optimality and the gap. To average values over all
instances of the test set, we use a shifted geometric mean. The shifted geometric
mean of values t1, . . . , tn with shift s is defined as n

√∏(ti + s)− s. We use a shift of
s = 10 for time, s = 100 for nodes and s = 0 for gap in order to reduce the effect of
very easy instances in the mean values. Further, using a geometric mean prevents
hard instances at or close to the time limit from overly dominating the measures.
Thus the shifted geometric mean has the advantage that it reduces the influence of
outliers in both directions.

As hardware for our computations we use a cluster of 64bit Intel Xeon X5672
CPUs at 3.20 GHz with 12 MByte cache and 48 GB main memory, running an
OpenSuse 12.1 Linux with a gcc 4.6.2 compiler. As MINLP solver we use the mixed-
integer nonlinear branch-and-bound framework SCIP 3.0.1 as already suggested in
Chapter 2. Further we use the following software packages: Cplex 12.1 (CPLEX)
as linear programming solver, and IPOpt 3.10 (Wächter and Biegler 2006) as
nonlinear solver within SCIP. SCIP reports an optimality gap which is defined as
the ratio between the best upper bound u (i.e., the objective function value of best
feasible solution) and the best lower bound `. That is, gap = (u−`

`
) · 100 %. The

framework (Lamatto++) is used as framework integrating the different software
and handling the input data. Hyperthreading and Turboboost, special features of
the Intel CPUs, are disabled. In all computational experiments we run only one
job per node to reduce random noise in the measured running time that might be
caused by delays if multiple processes share common resources, in particular the
memory bus.
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Figure 3.5.: The test network net1. The data for this network can be found in (GAMS Model Library), and
computational results for this network are given by De Wolf and Smeers (2000) and De Wolf and Bakhouya (2008).
The network represents an approximation of the backbone network of the Belgium natural gas network. For our
computational experiments we will consider a single nomination which we upscale by increasing values 2.0, 2.1, . . .
in order to model an increase of the transported gas.

Figure 3.6.: The test network net2. It is an approximation of parts of the German gas network in the Rhine-
Main-Ruhr area. More precisely the length and the diameters of the pipelines are real-world data while other
parameters like roughness or compressor data are set to realistic mean values. Altered data of network net2 with
similar characteristic is publicly available at URL http://gaslib.zib.de under the name gaslib-40. For our
computational experiments we will consider a single nomination which we upscale by increasing values 2.0, 2.1, . . .
in order to model an increase of the transported gas.
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Figure 3.7.: The test network net3. For almost every arc on the outer square there exists an additional parallel
arc in series with a valve which is not visible in this picture. This test network was created by request of the
cooperation partner. The aim was to analyze the optimal solution of the topology optimization problem for several
different nominations. Especially the difference between a selection of loops and diagonal pipelines in an optimal
solution was of particular interest. We consider three different nominations which we upscale by increasing values
2.5, 3, 4, 5 in order to model an increase of the transported gas.

Figure 3.8.: The test network net4. It is an extension of the network net2. The additional arcs were obtained man-
ually. They represent each a pipeline in series with a valve. The length of these pipelines is set to the geographical
distance between the end nodes. Cost associated with these pipelines reflect the building cost. For our computa-
tional experiments we will consider a single nomination which we upscale by increasing values 1.0, 1.1, 1.2, . . . in
order to model an increase of the transported gas.
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Figure 3.9.: The test network net5. This network is an approximation of the German gas network for the high
calorific gas operated by the cooperation partner. More precisely the length and the diameters of the pipelines are
real-world data while other parameters like roughness or compressor data are set to realistic mean values. The
additional arcs were obtained manually. They represent each a pipeline in series with a valve. The length of these
additional pipelines is set to the geographical distance between the end nodes. Cost associated with these pipelines
reflect the building cost. Altered data of the underlying network, which contains no extensions, is publicly available
at URL http://gaslib.zib.de under the name gaslib-135. For our computational experiments we will consider
a single nomination which we upscale by increasing values 1.0, 1.1, 1.2, . . . in order to model an increase of the
transported gas.
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Figure 3.10.: The real-world network net6. Data and nominations are provided by the cooperation partner OGE.
The network is located in the northern part of Germany.
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Figure 3.11.: The real-world network net7. Data and nominations are provided by the cooperation partner OGE.
The network is located in the Rhine-Main-Ruhr area of Germany.
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Chapter 4.

Efficiently Solving the Passive Transmission
Problem

In this chapter we focus on the topology optimization problem (3.2.1) in the case
y = y. This case includes the first type of network we consider in this thesis. Recall
that these networks consist of pipes and valves only. We present a method for
solving the passive transmission problem (3.4.1) to global optimality efficiently.
As previously discussed this problem results from fixing the variables x and y in
(3.2.1) while the fixation of y already follows from its bounds. Therefore (3.4.1) is a
continuous nonlinear feasibility problem.

We use the solution method to speed up the solution process of the topology
optimization problem (3.2.1) as follows: Recall that (3.2.1) is solved within the
branch-and-bound framework implemented by SCIP while the nonlinearity is
handled by spatial branching. We adapt this framework and solve all nodes of
the branch-and-bound tree which correspond to passive transmission problems by
the efficient solution method which we present in this chapter. Thus there is no
need to continue with spatial branching in these nodes. A similar approach is
followed by Raghunathan (2013). He considers an MINLP arising in the context of
designing water networks and globally solves subproblems of this MINLP separately.
Gentilini et al. (2013) consider the traveling salesman problem with neighborhoods
as a non-convex MINLP. Certain subproblems turn out to be convex. These are
solved to global optimality in a separate step within a branch-and-bound approach
for the overall problem.

As the passive transmission problem (3.4.1) is continuous and nonlinear we
want to apply a nonlinear solver for computing an optimal solution. A problem
that can occur is that the passive transmission problem might be infeasible, which
cannot be detected efficiently by nonlinear solvers. Our solution approach is to
consider different relaxations of the passive transmission problem, which are either
feasible or their infeasibility can be detected in a preprocessing step. All relaxations
neglect the constraints (3.4.1c) and (3.4.1e). Further they successively relax all
other constraints: The first relaxation is obtained by relaxing the variable bounds
(3.4.1f)–(3.4.1i), the second one by relaxing the flow conservation constraints (3.4.1d)
and the third one by relaxing the potential-flow-coupling constraints (3.4.1b). It
turns out that under some assumptions two of these relaxations are convex and
hence can be solved efficiently by a nonlinear solver.
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As highlighted earlier we solve the topology optimization problem by a special
tailored version of SCIP. It turns out that this approach enables around 29% more
instances of the first type of network to be solved to global optimality within our
given time frame compared to solving the overall topology optimization problem by
branch-and-bound, separation, and spatial branching. On average the run time is
reduced by 72% on those instances which are globally solvable by SCIP. In the case
that a passive transmission problem is infeasible, the dual solutions of the convex
relaxations provide an explanation for the infeasibility.

The outline of this chapter is as follows: In Section 4.1 we state the passive
transmission problem again to improve readability. In Sections 4.2 - 4.4 we present
three different relaxations of the passive transmission problem where we assume
αa > 0 for all arcs a ∈ A′. In addition all relaxations neglect constraints (3.4.1c)
and (3.4.1e). In Section 4.5 we show how to handle the general case without these
assumptions. Finally computational results are given in Section 4.6.

4.1. Notation
Let us recall the passive transmission problem (3.4.1). It is a subproblem of the
topology optimization problem (3.2.1) obtained by fixing all binary variables x
and all slack variables y of compressors and control valves. We write the passive
transmission problem as

∃ q, π, p (4.1.1a)

s. t. αa qa|qa|ka − β̃a − (πv − γaπw) = 0 ∀ a = (v, w) ∈ A′, (4.1.1b)

Aa (qa, pv, pw)T ≤ ba ∀ a = (v, w) ∈ A′, (4.1.1c)∑
a∈δ+

A′ (v)
qa −

∑
a∈δ−

A′ (v)
qa = dv ∀ v ∈ V, (4.1.1d)

pv|pv| − πv = 0 ∀ v ∈ V, (4.1.1e)

πv ≤ πv ∀ v ∈ V, (4.1.1f)

πv ≥ πv ∀ v ∈ V, (4.1.1g)

qa ≤ qa ∀ a ∈ A′, (4.1.1h)

qa ≥ q
a
∀ a ∈ A′, (4.1.1i)

pv, πv ∈ R ∀ v ∈ V, (4.1.1j)

qa ∈ R ∀ a ∈ A′. (4.1.1k)

Here β̃a := βaya for the current value ya. Recall that the arc set A′ := {(a, i) ∈ AX :
xa,i = 1, i > 0} contains all arcs such that the flow is not fixed to zero. Throughout
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this chapter we assume w.l.o.g. that (V,A′) is a connected graph. If this is not the
case, we split the problem such that we obtain a passive transmission problem for
each connected component.

4.2. Relaxation of Domains

Let us consider the following domain relaxation of the passive transmission prob-
lem (4.1.1) with αa > 0 for each arc a ∈ A′. We introduce a slack variable ∆v ∈ R≥0
in order to relax the potential value of node v ∈ V and another slack variable
∆a ∈ R≥0 for relaxing the flow of arc a ∈ A′. Then the domain relaxation writes as

min
∑
v∈V

∆v +
∑
a∈A′

∆a (4.2.1a)

s. t. αa qa|qa|ka − β̃a − (πv − γaπw) = 0 ∀ a = (v, w) ∈ A′, (4.2.1b)∑
a∈δ+

A′ (v)
qa −

∑
a∈δ−

A′ (v)
qa = dv ∀ v ∈ V, (4.2.1c)

πv −∆v ≤ πv ∀ v ∈ V, (4.2.1d)

πv + ∆v ≥ πv ∀ v ∈ V, (4.2.1e)

qa −∆a ≤ qa ∀ a ∈ A′, (4.2.1f)

qa + ∆a ≥ q
a

∀ a ∈ A′, (4.2.1g)

πv ∈ R ∀ v ∈ V, (4.2.1h)

qa ∈ R ∀ a ∈ A′, (4.2.1i)

∆v ∈ R≥0 ∀ v ∈ V, (4.2.1j)

∆a ∈ R≥0 ∀ a ∈ A′. (4.2.1k)

In the following we show that this nonlinear optimization problem is feasible and
convex, see Section 4.2.1 and Section 4.2.2. Hence it can be solved very efficiently
to global optimality. Note that the convexity here is not given by the constraints
but by the feasible solution space of the relaxation. Finally in Section 4.2.3 we will
give an interpretation of the dual solution of a KKT point of (4.2.1). This dual
solution forms a network flow that is induced by dual node potentials. It fulfills
constraints that are similar to (4.2.1b) and (4.2.1c). In the case that the passive
transmission problem (4.1.1) is infeasible, this dual solution allows to filter those
parts of the network (V,A′) which imply the infeasibility.
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4.2.1. Existence of a Solution
The existence of a primal solution for (4.2.1) was shown by Collins et al. (1978) and
Maugis (1977). In the following we review their method which basically consists
of solving the nonlinear optimization problems (4.2.2) and (4.2.3). Note that their
approach only works for constant heights, i.e., γa = 1 for all a ∈ A′. In the
subsequent part of this section we extend their method and show how the case of
inhomogeneous heights, i.e., γa 6= 1 for some a ∈ A′, can be treated.

Collins et al. considered the convex nonlinear optimization problem

min
∑
a∈A′

∫ qa

q0
a

Φa(t) dt

s. t.
∑

a∈δ−
A′ (v)

qa −
∑

a∈δ+
A′ (v)

qa = −dv ∀ v ∈ V,

qa ∈ R ∀ a ∈ A′,

(4.2.2)

where Φa(·) is a continuous strictly monotone function. Further q0
a is a root of

Φa(·) which implies that the objective is convex. In the context of our study we
set Φa(qa) := αa qa|qa|ka − β̃a. Then Φa(qa) is strictly monotone increasing because
αa > 0 by our assumption.

Lemma 4.2.1 (Collins et al. (1978) and Maugis (1977)):
The nonlinear optimization problem (4.2.2) is convex. Its optimal solution yields a
feasible solution for (4.2.1) in the case γa = 1 for each arc a ∈ A′.

Proof. The constraints of (4.2.2) are linear and the objective is a sum of convex
functions. Hence (4.2.2) is a convex optimization problem.

Furthermore the objective and all constraints of (4.2.2) are continuously differ-
entiable. From Theorem 2.4.2 and (2.4.2a) of the KKT conditions (2.4.2) for (4.2.2)
we obtain for optimal primal values q∗ that there exist dual values µ∗ such that

µ∗v − µ∗w = Φa(q∗a)
for each arc a = (v, w) ∈ A′. By setting the node potential π∗ := µ∗, and
∆∗v := max{0, π∗v−πv, πv−π∗v} for each node v ∈ V , and ∆∗a := max{0, q∗a−qa, qa−q

∗
a}

for each arc a ∈ A′ we obtain a primal feasible solution (q∗, π∗,∆∗) of (4.2.1) with
γa = 1 (for all a ∈ A′).

We note that the convex optimization problem (4.2.2) is not only useful for
theoretical purpose. Raghunathan (2013) uses (4.2.2) for computing a solution of
the passive transmission problem (4.1.1) on a real-world application.

We further remark that Collins et al. (1978) provide a different proof for the
existence of a solution for (4.2.1) (with γa = 1) by considering the following nonlinear
program:

min
∑

a=(v,w)∈A′

∫ πv−πw

∆0
a

Φ−1
a (t) dt−

∑
v∈V

∫ πv

0
dv dt

s. t. πv ∈ R ∀ v ∈ V.
(4.2.3)
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Here Φ−1
a is the inverse of Φa and ∆0

a is a root of Φ−1
a .

Lemma 4.2.2 (Collins et al. (1978) and Maugis (1977)):
The nonlinear optimization problem (4.2.3) is convex. Its optimal solution yields a
feasible solution for (4.2.1) in the case γa = 1 for each arc a ∈ A′.

Note that problem (4.2.3) might be unbounded. In this case there exists no
optimal solution and hence we cannot ensure the feasibility of (4.2.1) by making
use of Lemma 4.2.2.

Proof. The objective is a sum of convex functions. Hence (4.2.3) is convex. For an
optimal solution π∗ of (4.2.3) we define q∗ by

q∗a := Φ−1
a (π∗v − π∗w) ⇔ Φa(q∗a) = π∗v − π∗w

for each arc a = (v, w) ∈ A′ while Φ−1
a is the inverse function of Φa. Furthermore

the objective of (4.2.3) is continuously differentiable. From Theorem 2.4.2 and
(2.4.2a) of the KKT conditions (2.4.2) for (4.2.3) we obtain that the following flow
conservation constraints are fulfilled:∑

a∈δ+
A′ (v)

q∗a −
∑

a∈δ−
A′ (v)

q∗a − dv = 0 ∀ v ∈ V.

By setting ∆∗v := max{0, π∗v − πv, πv − π∗v} for each node v ∈ V and ∆∗a :=
max{0, q∗a − qa, qa − q

∗
a} for each arc a ∈ A′ we obtain a primal feasible solution

(q∗, π∗,∆∗) of (4.2.1) with γa = 1 (for all a ∈ A′).

After this brief literary review we now turn to the general case γa 6= 1 for some
arc a ∈ A′. We show how to obtain a feasible solution for domain relaxation (4.2.1)
by using the convex optimization problem (4.2.2).

Definition 4.2.3:
Let (V,E) be the undirected version of (V,A′) obtained by removing the orientation
of the arcs a ∈ A′. This way each arc a ∈ A′ uniquely corresponds to an edge in
e ∈ E and vice versa. Let r be any node in V . For a node v ∈ V denote by Pr(v)
an undirected path from r to v. Let v1, . . . , vn be the nodes of this path, e1, . . . , en−1
the edges and a1, . . . , an−1 the corresponding arcs. Recall our assumption for this
chapter that (V,A′) is connected. We define

γr,v :=

 ∏
i:ai=(vi,vi+1)

γai


 ∏
i:ai=(vi+1,vi)

γ−1
ai

 .
We have γr,v > 0 as γa > 0 for every arc a ∈ A′. The definition is actually
independent of the path Pr(v). To see this, let P ′ be a different r-v-path in (V,E).
Consider the cycle C from r to v on path P , and back from v to r on path P ′ in
reverse order. Denote the reverse path of P ′ by Q′. Denote the nodes of this path
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by ṽ1, . . . , ṽm with ṽ1 = v and ṽm = r, the edges by ẽ1, . . . , ẽm−1 and the arcs by
ã1, . . . , ãm−1. According to our assumption in Section 3.1 we have

1 =

 ∏
i:ai=(vi,vi+1)

γa


 ∏
i:ai=(vi+1,vi)

γ−1
a


 ∏
i:ãi=(ṽi+1,ṽi)

γa


 ∏
i:ãi=(ṽi,ṽi+1)

γ−1
a

 .
Hence γr,v is uniquely defined.

Using this value γr,v we define the function π′v by

π′v(π) := γr,v πv (4.2.4)

for every node v ∈ V . As a consequence of (4.2.4) we obtain lower and upper bounds
of π′v(π) from π′v := π′v(π) and π′v := π′v(π), respectively, for each node v ∈ V .

It follows from elementary calculations that

π′v(π)− π′w(π) = γr,vπv − γr,w︸︷︷︸
=γr,vγa

πw = γr,v (πv − γaπw) (4.2.5)

holds for each arc a = (v, w) ∈ A′.
We use the previous definitions and show how to obtain a feasible solution for

the domain relaxation (4.2.1) in the general case γa 6= 1 for some arc a ∈ A′.

Lemma 4.2.4:
The optimization problem (4.2.1) is feasible.

Proof. We use γr,v from Definition 4.2.3 and equation (4.2.5). Now we compute a
local optimum q∗ of the problem

min
∑
a∈A′

∫ qa

q0
a

Φa(t) dt

s. t.
∑

a∈δ−
A′ (v)

qa −
∑

a∈δ+
A′ (v)

qa = −dv ∀ v ∈ V,

qa ∈ R ∀ a ∈ A′,

where Φa(qa) := γr,vαa qa|qa|ka − γr,vβ̃a and q0
a is a root of this function for each arc

a = (v, w) ∈ A′.
By Lemma 4.2.1 this optimization problem yields a feasible solution (q∗, π∗) for

a modified version of the domain relaxation (4.2.1) which is obtained by replacing
the constraints (4.2.1b), (4.2.1d), (4.2.1e) by

γr,vαa qa|qa|ka − γr,vβ̃a − (πv − πw) = 0 ∀ a = (v, w) ∈ A′,

πv −∆v ≤ π′v(π) ∀ v ∈ V,

πv + ∆v ≥ π′v(π) ∀ v ∈ V,
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where we used (4.2.4).
Using (q∗, π∗) we are going to show how to obtain a feasible solution for the

domain relaxation (4.2.1) where the previous modifications do not take place. We
define

π̂v := π′v
−1(π∗)

for each node v ∈ V . Recall that γr,v > 0 because γa > 0 for each arc a ∈ A. This
implies that π′−1 is well defined. In combination with (4.2.5) we obtain

αa q
∗
a|q∗a|ka − β̃a = γ−1

r,v (π∗v − π∗w) = π̂v − γaπ̂w ∀ a = (v, w) ∈ A′.

Thus (q∗, π̂) is a vector which is feasible for the constraints (4.2.1b) and (4.2.1c) of
the original domain relaxation (4.2.1). Setting ∆∗v := max{0, π̂v − πv, πv − π̂v} for
each node v ∈ V and ∆∗a := max{0, q∗a − qa, qa − q

∗
a} for each arc a ∈ A′ we obtain

a primal feasible solution (q∗, π̂,∆∗) of (4.2.1).

4.2.2. Characterization of the Feasible Region
In the previous section we proved that the domain relaxation (4.2.1) is feasible. In
the following we are going to prove that (4.2.1) is a convex optimization problem.
First we show that the solution flow q is unique and the feasible node potentials π
form a straight line. From this we conclude that (4.2.1) is convex.

By Maugis (1977) the uniqueness of the flow vector q follows from the strict
convexity of the objectives of (4.2.2) and (4.2.3) in the case γa = 1 for each arc
a ∈ A′. Nevertheless, we give a proof for the more general case that there exists an
arc a ∈ A′ with γa 6= 1. For this proof we make use of the following theorem and
the lemma below:

Theorem 4.2.5:
Let q ∈ RA′

≥0 be a network flow in the (V,A′). There exists a family P of paths and
a family C of circuits in (V,A′) along with values fP > 0, P ∈ P and fC > 0, C ∈ C
such that

qa =
∑
P∈P:

a∈A′(P )

f ′P +
∑
C∈C:

a∈A′(C)

f ′C ∀ a ∈ A′.

If q is a circulation then it holds P = ∅.

Proof. Let q be a network flow between two nodes s and t, i.e., an s-t-flow. In this
case the theorem follows from Korte and Vygen (2007), Theorem 8.8.

The more general case of multiple sources and sinks is obtained by adding a
super node s for the sources and another super node t for the sinks. We set

q̃(s,v) :=
∑

a∈δ+
A′ (v)

qa −
∑

a∈δ−
A′ (v)

qa q̃(w,t) :=
∑

a∈δ−
A′ (w)

qa −
∑

a∈δ+
A′ (w)

qa

51



Chapter 4. Efficiently Solving the Passive Transmission Problem

for the sources v and sinks w and q̃a := qa for all arcs a ∈ A′. For each source v ∈ V
we add the arc (s, v) and for each sink w ∈ V we add the arc (w, t) to the graph
(V,A′). Then we apply Theorem 8.8 to the extended graph (V,A′) and the network
flow q̃ therein.

Lemma 4.2.6:
Let (q′, π′,∆′) and (q′′, π′′,∆′′) be two feasible solutions of the domain relaxation
(4.2.1). W.l.o.g. it holds q′ ≥ q′′.

Proof. Let (q′, π′,∆′) and (q′′, π′′,∆′′) be two solutions of (4.2.1). Recall that the
network (V,A′) is connected. If there exists an arc a with q′a < q′′a then we reorient
this arc a = (v, w) as follows: We remove it from the graph and add the backward
(or antiparallel) arc �

a = (w, v) to A′. From the constraint

αa qa|qa|ka − βaya − (πv − γaπw) = 0

we obtain with

α�
a := αaγ

−1
a ∈ R≥0, β�

a := βaγ
−1
a ∈ R≥0, γ�

a := γ−1
a ∈ R≥0 \ {0},

y�
a := −y

a
∈ R, y�

a
:= −ya ∈ R, q�

a := −q
a
∈ R, q�

a
:= −qa ∈ R

the equivalent equation for the backward arc �
a

α�
a q�

a |q�
a |
ka − β�

ay�
a − (πw − γ�

aπv) = 0. (4.2.6)

Note that we used the relation γ�
aγa = 1. Hence constraint (4.2.1b) for arc a

is replaced by constraint (4.2.6) for arc �
a. Note that this constraint fulfills our

assumption for the constants α�
a , β�

a and γ�
a as described in Section 3.2 where the

constraints are explained. Note that replacing a by �
a goes along with the relation

q�
a = −qa for the arc flow variables. For a solution of (q∗, π∗,∆∗) of the original

domain relaxation we define q̃ by q̃a := q∗a and ∆̃±a := ∆±a
∗ if we did not change the

orientation of a and q̃a := −q∗a, ∆̃+
a := ∆−a

∗ and ∆̃−a := ∆+
a
∗ if we adapted the arc

orientation. Further we set ∆̃±v := ∆±v
∗ for every node v ∈ V . Then it holds that

(q∗, π∗,∆∗) is feasible for the domain relaxation on the original graph (V,A′) if and
only if (q̃, π∗, ∆̃) is feasible for the domain relaxation on the modified graph.

We adapt the direction of all arcs a ∈ A′ with q′a < q′′a and end up with a
modified version of the passive transmission problem of the same type as the original
passive transmission problem. Further we have two feasible solutions (q̃′, π′, ∆̃′) and
(q̃′′, π′′, ∆̃′′).

Lemma 4.2.7:
There exist vectors q̃ ∈ RA′, π̃ ∈ RV and θ ∈ RV

≥0, such that the following holds:
(q∗, π∗,∆∗) is feasible for problem (4.2.1) if and only if there exists t ∈ R with
π∗ = π̃ + tθ and q∗ = q̃.

52



4.2. Relaxation of Domains

Proof. It follows from Lemma 4.2.4 that (4.2.1) is feasible. Let us assume the
existence of two different solutions (q′, π′,∆′) and (q′′, π′′,∆′′) of (4.2.1) with q′ 6= q′′

and π′ 6= π′′. First we prove by contradiction that the primal solution flow of (4.2.1)
is unique. In a second step we analyze the difference π′ − π′′.

The difference q′ − q′′ is a network flow in (V,A′) consisting of circulations only.
First we focus on the case q′ ≥ q′′. By Theorem 4.2.5 the difference q′ − q′′ can be
split into flow along circuits C1, . . . , Cn. Thus we obtain from q′ ≥ q′′, that there
exist flow values qCi > 0, i = 1, . . . , n such that

q′a − q′′a =
∑

i=1,...,n:
a∈A′(Ci)

q′Ci ∀ a ∈ A′.

Note that the sum can be empty for an arc a ∈ A′. We consider a single circuit C
out of C1, . . . , Cn. For each arc a ∈ A′(C) we have q′a > q′′a . As abbreviation we set
Φa(q) := αa q|q|ka − β̃a. Then Φa is a continuous strictly monotone function. We
use equation (4.2.1b) to obtain for all arcs a = (v, w) ∈ A′(C):

q′a > q′′a ⇔ Φa(q′a) > Φa(q′′a) ⇔ π′v − γaπ′w > π′′v − γaπ′′w.

Let the nodes of the circuit C be ordered such that V (C) = {v1, . . . , v`} and (as
abbreviation) v`+1 := v1, and the arcs be ordered such that ai = (vi, vi+1) holds. We
consider all arcs of the circuit C and rewrite the following telescopic sums as

∑̀
i=1

i−1∏
j=1

γaj

(π′vi − γaiπ′vi+1

)
>
∑̀
i=1

i−1∏
j=1

γaj

(π′′vi − γaiπ′′vi+1

)

⇔ π′v1

1−
∏

a∈A′(C)
γa

 > π′′v1

1−
∏

a∈A′(C)
γa

 .
Note that ∏a∈A′(C) γa = 1 (see Section 3.2). Hence we have

q′a > q′′a , a ∈ A′(C) ⇔ π′v1 · 0 > π′′v1 · 0,

which implies that q′ 6= q′′ is infeasible. This contradicts our assumption q′ 6= q′′. So
the solution flow q′ = q′′ of (4.2.1) is unique.

So far we considered the case q′ ≥ q′′. If there exists an arc a ∈ A′ with q′a < q′′a
then we apply Lemma 4.2.6 and change the orientation of this arc. When reorienting
we obtain two flow vectors q̃′ and q̃′′ which differ from q′ and q′′ only in the signs of
the reoriented arcs. For these new flow vectors we apply the result from above and
obtain q̃′ = q̃′′. Coming back to the original orientation we change back the signs
and obtain q′ = q′′.

Now we prove that the feasible node potentials π of (4.2.1) form a straight line.
Therefor let (q′, π′,∆′) and (q′, π′′,∆′′) be two different feasible solutions of (4.2.1).
Let r be some node r ∈ V . Let w ∈ V be any other node in V . Consider the graph
(V,E) which is obtained from (V,A′) by removing the orientation. This way each
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arc a ∈ A′ uniquely corresponds to an edge e ∈ E. Consider an undirected r-w-path
P in (V,E) with nodes r = v1, . . . , vk = w, edges e1, . . . , ek−1 and corresponding
arcs a1, . . . , ak−1. For an arc aj = (vj+1, vj) we rewrite equation (4.2.1b) as

−γ−1
aj

Φaj(qaj) = πvj − γ−1
aj
πvj+1 .

For all other corresponding arcs we do not apply this reformulation. As abbreviation
we set

τ` :=
∏̀
j=1

aj=(vj,vj+1)

γaj
∏̀
j=1

aj=(vj+1,vj)

γ−1
aj
.

Then we obtain the equality

π′r − π′wτk−1 =
k−1∑
j=1:

aj=(vj,vj+1)

j−1∏
i=1

τi

Φaj(qaj)−
k−1∑
j=1:

aj=(vj+1,vj)

j−1∏
i=1

τi

 γ−1
aj

Φaj(qaj)

= π′′r − π′′wτk−1.

This is equivalent to
π′r − π′′r = (π′w − π′′w) τk−1.

We define θw := τ−1
k−1 6= 0. This setting is well-defined, i.e., independent of the actual

path P from r to w as discussed in Definition 4.2.3. We set t := π′′r − π′r. Then
the solution π′′ can be expressed as π′′w = π′w + tθw for all w ∈ V . This proves the
lemma.

Corollary 4.2.8:
The feasible solution vectors (q, π) of the domain relaxation (4.2.1) form a convex
space: The feasible flow q is unique, while the feasible node potential values π form
a straight line.

Proof. This follows from Lemma 4.2.7.

Let us briefly discuss the result of this corollary. Figure 4.1 shows the node
potential values for a test network having 34 nodes. The node potential bounds are
shown as straight lines (lower bound of 500 and upper bound of 6000). Solutions
for four different passive transmission problems are shown in different colors: Each
dot represents the node potential value at the respective node. By Lemma 4.2.7
the feasible node potentials for the passive transmission problem are on a straight
line. This corresponds to shifting all dots in Figure 4.1, which correspond to the
same passive transmission problem, up or down at the same time. For three of the
four problems it is not possible to move all node potential values inside the bounds,
hence these solutions are infeasible. Only for the solution corresponding to the
circles, all values are inside the bounds and this solution is feasible.

Now, the combination of Lemma 4.2.4 and Corollary 4.2.8 allows us to charac-
terize the domain relaxation (4.2.1).
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Figure 4.1.: Feasible node potential values π for the domain relaxation (4.2.1) of four different passive transmission
problems (4.1.1) on a gas network with 32 nodes. The node potential values are feasible for the passive transmission
problems within the marked bounds, other values are infeasible. By Corollary 4.2.8 the node potentials π form a
straight line. This corresponds to shifting all dots, which correspond to the same passive transmission problem, up
or down at the same time.

Theorem 4.2.9:
The domain relaxation (4.2.1) is a feasible and convex relaxation of the passive
transmission problem (4.1.1) in the case αa > 0 for all arcs a ∈ A′.

Proof. A solution (q∗, π∗, p∗) of the passive transmission problem (4.1.1) is feasible
only if (q∗, π∗, 0) is a feasible solution of (4.2.1). Hence (4.2.1) is a relaxation of the
passive transmission problem (4.1.1).

It follows from Lemma 4.2.4 that the domain relaxation (4.2.1) is feasible. The
convexity of the feasible solution space for (q, π) follows from Corollary 4.2.8, which
states that the solution space is an affine subspace. The flow is unique, while the
feasible vectors π form a straight line. The additional constraints (4.2.1d)-(4.2.1g)
are linear and do not affect the feasibility (i.e., rendering the problem infeasible)
and the affine subspace. In total, problem (4.2.1) is a convex optimization problem
over a non-empty set of feasible solutions.

In the following Lemma we turn to the more general case where we do not
assume αa > 0 for the arcs a ∈ A′. This implies that constraint (4.2.1b) can be
written as πv = πw for an arc (v, w) ∈ A′.

Lemma 4.2.10:
The domain relaxation (4.2.1) is a feasible and convex optimization problem in the
general case that there exist arcs (v, w) ∈ A′ where constraint (4.2.1b) writes as
πv = πw.
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Proof. The feasibility in the more general case follows from Lemma 4.2.2 because
the proof does not depend on the assumption αa > 0.

The convexity is seen as follows: Let A′′ denote the set of arcs a = (v, w) ∈ A′
which are not modeled by πv = πw, i.e., A′′ = {a ∈ A′ | αa > 0}. For a solution
(q∗, π∗,∆∗) of the domain relaxation (4.2.1) it holds that q∗a is unique for all arcs
a ∈ A′′. Otherwise, if there exist two solution flows q′, q′′ of the domain relaxation
with q′a′ 6= q′′a′ for an arc a′ ∈ A′′, then (q′a′)a′∈A′′ and (q′′a′)a′∈A′′ would be two
different feasible solution vectors for the domain relaxation of the preprocessed
passive transmission problem where all arcs a ∈ A′ \ A′′ are contracted. This is
a contradiction to Lemma 4.2.7. It follows that the domain relaxation is a linear
program, when fixing the unique arc flow qa on all arcs a = (v, w) ∈ A′′. This proves
the convexity.

4.2.3. Interpretation of Lagrange Multipliers
Assume that the passive transmission problem (4.1.1) is infeasible and the do-
main relaxation (4.2.1) has a positive optimal objective value. It turns out (see
Lemma 4.2.11) that there exist Lagrange multipliers for the optimal solution such
that the optimal solution and the multipliers form a KKT point of (4.2.1). These
multipliers have a practical interpretation. They form a generalized network flow in
(V,A′) which is coupled with node potentials, similar to a primal solution (q∗, π∗)
of the passive transmission problem. This network flow may characterize the in-
feasibility as discussed in Example 4.2.13, and hence allows a visualization of the
conflicting parts of the network yielding the infeasibility.

Lemma 4.2.11:
Let (q∗, π∗,∆∗) be an optimal solution of the domain relaxation (4.2.1). There exist
Lagrange multipliers (µ∗, λ∗) which consecutively correspond to the equality and
inequality constraints of (4.2.1), respectively, such that (q∗, π∗,∆∗, µ∗, λ∗) is a KKT
point of (4.2.1). These multipliers are characterized as follows: (µ∗a)a∈A′ is a general
network flow in (V,A′) which is induced by dual node potentials (µ∗v)v∈V . More
precisely the multipliers (µ∗, λ∗) are a feasible solution for

µa
dΦa

dqa
(q∗a) + λ+

a − λ−a = µv − µw ∀ a = (v, w) ∈ A′,
∑

a∈δ+
A′ (v)

µa −
∑

a∈δ−
A′ (v)

γaµa = λ+
v − λ−v ∀ v ∈ V.

Hereby the dual node flow λ+
v − λ−v is restricted by

exit innode entry
λ+
v ∈ {0} [0, 1] {1}
λ−v ∈ {1} [0, 1] {0}

node potential π∗v < πv π∗v = πv πv < π∗v π∗v < πv π∗v = πv π∗v > πv
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for each node v ∈ V , and the dual compression λ+
a − λ−a is constrained by

compression neutral regulation
λ+
a ∈ {0} [0, 1] {1}
λ−a ∈ {1} [0, 1] {0}
flow q∗a < q

a
q∗a = q

a
q∗a > q

a
q∗a < qa q∗a = qa q∗a > qa

for each arc a ∈ A′.

Proof. Let (q∗, π∗,∆∗) be an optimal solution of (4.2.1). Recall that every lo-
cally optimal solution is globally optimal because of the convexity of (4.2.1) by
Theorem 4.2.9. The objective and the constraints of (4.2.1) are continuously differ-
entiable. Assume there exist dual values (µ∗, λ∗) such that (q∗, π∗,∆∗, µ∗, λ∗) is a
KKT point of domain relaxation (4.2.1). A proof of existence follows from the next
Lemma 4.2.12. Let us write the conditions (2.4.2a) of the KKT conditions (2.4.2).
We denote the Lagrange multipliers by (µ, λ) = (µv, µa, λ+

v , λ
−
v , λ

+
a , λ

−
a )v∈V,a∈A′ , such

that µv, µa ∈ R and λ+
v , λ

−
v , λ

+
a , λ

−
a ∈ R≥0. We set Φa(qa) := αa qa|qa|ka − β̃a. Then

the Lagrange function of problem (4.2.1) has the form

L(q, π,∆, µ, λ) =
∑
v∈V

∆v +
∑
a∈A′

∆a

+
∑
a∈A′

a=(v,w)

µa
(
Φa(qa)− (πv − γaπw)

)

+
∑
v∈V

µv

dv − ∑
a∈δ+

A′ (v)
qa +

∑
a∈δ−

A′ (v)
qa


+
∑
v∈V

(
λ+
v (πv −∆v − πv) + λ−v (πv − πv −∆v)

)
+
∑
a∈A′

(
λ+
a (qa −∆a − qa) + λ−a (q

a
− qa −∆a)

)
−
∑
v∈V

λv∆v −
∑
a∈A′

λa∆a.

From (2.4.2a) we obtain that the KKT point (q∗, π∗,∆∗, µ∗, λ∗) is feasible for

∂L

∂qa
= 0⇒ µa

dΦa

dqa
(q∗a) + λ+

a − λ−a = µv − µw ∀ a = (v, w) ∈ A′, (4.2.7a)

∂L

∂πv
= 0⇒

∑
a∈δ+

A′ (v)
µa −

∑
a∈δ−

A′ (v)
µaγa = λ+

v − λ−v ∀ v ∈ V, (4.2.7b)

∂L

∂∆v

= 0⇒ λ+
v + λ−v + λv = 1 ∀ v ∈ V, (4.2.7c)

∂L

∂∆a

= 0⇒ λ+
a + λ−a + λa = 1 ∀ a ∈ A′. (4.2.7d)
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We conclude from (4.2.7c), (4.2.7d), and the complementarity condition (2.4.2e)
that (q∗, π∗,∆∗, µ∗, λ∗) fulfills:

πv > πv ⇒ λ−v = 0, πv < πv ⇒ λ+
v = 0,

πv = πv ⇒ λ−v ∈ [0, 1], πv = πv ⇒ λ+
v ∈ [0, 1], ∀ v ∈ V (4.2.8a)

πv < πv ⇒ λ−v = 1, πv > πv ⇒ λ+
v = 1,

qa > q
a
⇒ λ−a = 0, qa < qa ⇒ λ+

a = 0,
qa = q

a
⇒ λ−a ∈ [0, 1], qa = qa ⇒ λ+

a ∈ [0, 1], ∀ a ∈ A′ (4.2.8b)
qa < q

a
⇒ λ−a = 1, qa > qa ⇒ λ+

a = 1.

The tables of the Lemma follow from (4.2.8a) and (4.2.8b), respectively, and the
constraints follow from (4.2.7a) and (4.2.7b).

The interpretation of these conditions is as follows: Equality (4.2.7b) indicates,
that (µa)a∈A′ represents a network flow in (V,A′) where each arc a ∈ A′ has µa as
its flow variable. The in- and out-flows at sources and sinks are given by λ+

v − λ−v ,
and the relation of these values with the arc flows is given by the weighted flow
conservation (4.2.7b) (also called generalized flow conservation, see Oldham (1999)
and the references therein). As this flow conservation is weighted, the node flow
must not necessarily be balanced, i.e., ∑v∈V (λ+

v − λ−v ) 6= 0 might hold. The
implications (4.2.8a) ensure that a nonzero entry flow is only allowed, if πv ≥ πv.
Furthermore, a nonzero exit flow can only occur at a node fulfilling πv ≤ πv. Looking
at equation (4.2.7a), the dual value µv can be interpreted as a dual node potential
at node v. The values λ+

a , λ
−
a enforce a dual decrease or increase of the potential

values and so react like a dual active element (compressor or control valve) restricted
by (4.2.8b).

Lemma 4.2.12:
Let (q∗, π∗,∆∗) be an optimal solution of the domain relaxation (4.2.1). There exist
Lagrange multipliers (µ∗, λ∗) which consecutively correspond to the equality and
inequality constraints of (4.2.1), respectively, such that (q∗, π∗,∆∗, µ∗, λ∗) is a KKT
point of (4.2.1).

Proof. We prove that (µ∗, λ∗) exist such that the conditions (4.2.7) are fulfilled. It
follows from the optimality of (q∗, π∗,∆∗) (especially of the ∆ variables) that there
exist λ∗v, λ∗v±, λ∗a, λ∗a± ∈ R≥0 such that (4.2.7c), (4.2.7d) and the complementarity
conditions (2.4.2e) are fulfilled. As the dual flow conservation (4.2.7b) must be ful-
filled by (µ∗, λ∗) we observe an additional constraint for λ∗±. It is obtained as follows:
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Summing up the dual flow conservation (4.2.7b) using γr,v from Definition 4.2.3
yields

∑
v∈V

γ−1
r,v (λ+

v
∗ − λ−v

∗) =
∑
v∈V

γ−1
r,v

 ∑
a∈δ+

A′ (v)
µ∗a −

∑
a∈δ−

A′ (v)
γaµ

∗
a


=
∑
a∈A′

µ∗a(γ−1
r,v − γaγ−1

r,w) =
∑
a∈A′

µ∗a(γ−1
r,v − γ−1

r,v ) = 0.

We conclude from the connectivity of the graph (V,A′) that λ∗v±, v ∈ V has to be
chosen such that the balancing constraint∑

v∈V
γ−1
r,v (λ∗v

+ − λ∗v
−) = 0 (4.2.9)

is fulfilled in addition to the previously mentioned restrictions. Otherwise there does
not exist a dual arc flow µ fulfilling (4.2.7b). In order to show that (4.2.9) is an
additional feasible restriction for the definition of λ∗v±, v ∈ V we apply Lemma 4.2.7.
Thereby the solution space of π of the domain relaxation (4.2.1) is a straight line,
i.e., π∗ + θt is feasible for every t ∈ R. We rewrite the objective function of (4.2.1)
by

f(t) :=
∑
v

(
max{0, (π∗v + θvt)− πv}+ max{0, πv − (π∗v + θvt)}

)
.

This function f(t) is convex and optimal for t = 0 because of the local optimality of
(q∗, π∗,∆∗). This implies the following conditions:

∀t′ > 0 : f(t′) ≥ f(0)⇒
∑

v∈V :π∗v≥πv
θv ≥

∑
v∈V :π∗v<πv

θv, (4.2.10a)

∀t′ < 0 : f(t′) ≥ f(0)⇒
∑

v∈V :π∗v>πv
θv ≤

∑
v∈V :π∗v≤πv

θv. (4.2.10b)

Recall that λ∗v± is fixed for those nodes v ∈ V with πv > πv or πv < πv by
(4.2.7c) and the complementarity conditions (2.4.2e). For those nodes with πv > πv
we have λ∗v+−λ∗v− = 1 and for the other ones with πv < πv we have λ∗v+−λ∗v− = −1.
Now we distinguish between three cases:
Case 1: ∑

v∈V :π∗v>πv
θv =

∑
v∈V :π∗v<πv

θv

Setting λ∗v+ = λ∗v
− = 0 for every node v ∈ V with πv ≤ πv ≤ πv yields (4.2.9).

Recall the relation θv := γ−1
r,v , v ∈ V from the proof of Lemma 4.2.7.

Case 2: ∑
v∈V :π∗v>πv

θv <
∑

v∈V :π∗v<πv

θv

We set λ∗v+ = λ∗v
− = 0 for every node v ∈ V with πv ≤ πv < πv and

λ∗v
+ ∈ [0, 1], λ∗v− = 0 for every node v ∈ V with πv = πv such that (4.2.9) is

fulfilled. This setting is possible due to (4.2.10b).
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Case 3: ∑
v∈V :π∗v>πv

θv >
∑

v∈V :π∗v<πv

θv

We set λ∗v+ = λ∗v
− = 0 for every node v ∈ V with πv < πv ≤ πv and

λ∗v
+ = 0, λ∗v− ∈ [0, 1] for every node v ∈ V with πv = πv such that (4.2.9) is

fulfilled. This setting is possible due to (4.2.10b).

We note that exactly one of the above cases applies which means that the previous
discussion yields a feasible definition for λ∗v±, v ∈ V . Recall that the values of
λ∗v, v ∈ V have to be set according to (4.2.7c).

Now we compute a local optimum (µ∗a)a∈A′ of the problem

min
∑
a∈A′

∫ µa

µ0
a

γ−1
r,v Φ̃a(t) dt

s. t.
∑

a∈δ−
A′ (v)

γaµa −
∑

a∈δ+
A′ (v)

µa = −λ∗v
+ + λ∗v

− ∀ v ∈ V,

µa ∈ R ∀ a ∈ A′,

where Φ̃a(µ) := µa
dΦa
dqa

(q∗a) + λ∗a
+− λ∗a− and µ0

a is a root of this function for each arc
a = (v, w) ∈ A′. The nonlinear optimization problem is feasible due to the previous
discussion. Similar as in the proof of Lemma 4.2.1 we conclude that there exists
(µ′v)v∈V such that

µ′v − γaµ′w = γ−1
r,v Φ̃a(µ∗a)

holds for every arc a = (v, w) ∈ A′. We define µ∗v := γr,vµ
′
v and make use of (4.2.5)

to obtain
µ∗v − µ∗w = Φ̃a(µ∗a)

for every arc a = (v, w) ∈ A′. This way we obtain a solution (µ∗, λ∗) which is feasible
for (4.2.7a) and (4.2.7b). Hence (q∗, π∗,∆∗, µ∗, λ∗) is a KKT point of (4.2.1).

Example 4.2.13:
Figure 4.2 shows a visualization of primal and dual flow of a KKT point of the
domain relaxation (4.2.1) in a network of practical dimension (net6). The color of
a node corresponds to the primal / dual node potential. The arc width represents the
primal / dual flow value (the thicker the more flow), while its color depicts the mean
value of the node potentials at both end nodes. The figures show an infeasible primal
flow, where the node potentials at some entries are above their respective upper limit
and some exit node potentials are below their respective lower limit. (Note that there
are other primal entries and exits, too.) Those nodes exceeding their respective upper
limit are dual entries, those which exceed their respective lower limit are dual exits.

For this example the arc set A′′ which contains all arcs having a nonzero dual
flow, i.e., A′′ = {a ∈ A′ | µa 6= 0}, characterizes the infeasibility of the nomination
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max min
Figure 4.2.: Flow and node potential corresponding to the primal (upper picture) and dual (lower picture) parts of
a KKT point of domain relaxation (4.2.1) for network net6. The line width represents the flow value (the thicker
the more flow), while its color depicts the mean value of the node pressures at both end nodes. The nodes are
depicted by squares and the node colors represent the node pressures. All active elements which are not closed are
in bypass mode and the corresponding arcs are contracted. It follows from Corollary 4.2.8 that the primal solution
flow is unique.
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d in the following sense: Let (q̃, π̃, ∆̃) be a solution of the domain relaxation (4.2.1).
We observe from Figure 4.2 that there exists a subset A′′′ ⊆ A′′ such that from

αa q̃a|q̃a|ka − β̃a − (π̃v − γaπ̃w) = 0

for all arcs a = (v, w) ∈ A′′′ the existence of nodes s, t ∈ V such that π̃s−π̃t > πs−πt
follows.

4.3. Relaxation of Flow Conservation Constraints
In this section we consider the flow conservation relaxation of the passive transmission
problem with αa > 0 for each arc a ∈ A′. This relaxation is obtained by relaxing
the flow conservation constraints (4.1.1d). It is as follows:

min
∑
v∈V

(
∆+
v + ∆−v

)
+
∑
a∈A′

(
∆+
a + ∆−a

)
(4.3.1a)

s. t. αa qa|qa|ka − β̃a − (πv − γaπw) = 0 ∀ a ∈ A′,
a = (v, w), (4.3.1b)

∑
a∈δ+

A′ (v)
(qa − (∆+

a −∆−a ))−
∑

a∈δ−
A′ (v)

(qa − (∆+
a −∆−a ))

−(∆+
v −∆−v ) = dv ∀ v ∈ V, (4.3.1c)

πv ≤ πv ∀ v ∈ V, (4.3.1d)

πv ≥ πv ∀ v ∈ V, (4.3.1e)

qa ≤ qa ∀ a ∈ A′, (4.3.1f)

qa ≥ q
a
∀ a ∈ A′, (4.3.1g)

∆−v (πv − πv) = 0 ∀ v ∈ V, (4.3.1h)

∆+
v (πv − πv) = 0 ∀ v ∈ V, (4.3.1i)

∆−a (qa − qa) = 0 ∀ a ∈ A′, (4.3.1j)

∆+
a (qa − qa) = 0 ∀ a ∈ A′, (4.3.1k)

πv ∈ R ∀ v ∈ V, (4.3.1l)

qa ∈ R ∀ a ∈ A′, (4.3.1m)

∆+
v ,∆−v ∈ R≥0 ∀ v ∈ V, (4.3.1n)

∆+
a ,∆−a ∈ R≥0 ∀ a ∈ A′. (4.3.1o)

On an arc a ∈ A′ a positive slack value ∆+
a > 0 or ∆−a > 0 is feasible only if the

flow variable qa reaches its bounds q
a
or qa, respectively. Accordingly, a positive
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slack value ∆+
v > 0 or ∆−v > 0 at a node v ∈ V is feasible only if the potential value

πv attains a boundary value πv or πv, respectively.
We will show how to solve this nonlinear optimization problem (4.3.1) efficiently.

It can be infeasible, but this infeasibility can be detected in a preprocessing step
as described in Section 4.3.1. Otherwise, if this preprocessing does not detect
infeasibility, then the problem is feasible and convex, see Section 4.3.2 and Sec-
tion 4.3.3. Hence it can be solved very efficiently to global optimality. Note that
the convexity here is not given by the constraints but by the feasible solution space
of the relaxation. Finally in Section 4.3.4 we will give an interpretation of the dual
solution of a KKT point of (4.3.1). Similar to the discussion in Section 4.2.3 this
dual solution forms a general network flow that is induced by a dual node potential.

4.3.1. Preprocessing
Problem (4.3.1) can be infeasible. This happens, if the flow bounds (4.3.1f) and
(4.3.1g) enforce such a high amount of flow on an arc, that the potential loss (as
deduced by equation (4.3.1b)) is in conflict with the bounds on the node potentials
on both end nodes of the arc which are given by (4.3.1d) and (4.3.1e). The conflicting
constraints in this case are

αa qa|qa|ka − β̃a = πv − γaπw,
q
a
≤ qa ≤ qa,

πv ≤ πv ≤ πv,

πw ≤ πw ≤ πw,

for arc a = (v, w) ∈ A′. This conflict situation can easily be detected by solving the
linear program

∃ π
s. t. Φa(qa) ≤ πv − γaπw ≤ Φa(qa) ∀ a = (v, w) ∈ A′,

πv ≤ πv ≤ πv ∀ v ∈ V,

πv ∈ R ∀ v ∈ V,

(4.3.2)

with Φa(q) := αa q|q|ka − β̃a. If this LP turns out to be infeasible, then the
passive transmission problem is infeasible, because the constraints that induce the
infeasibility are part of the passive transmission problem. Otherwise it follows from
Lemma 4.3.3 (stated and proven in the following section) that the flow conservation
relaxation (4.3.1) is feasible. In the following discussion we assume that we applied
this preprocessing technique which means to solve LP (4.3.2) and did not detect
infeasibility.
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4.3.2. Existence of a Solution
We consider the preprocessed problem (4.3.1) where the preprocessing is applied as
described in Section 4.3.1. Recall that (4.2.2) and (4.2.3), which were first presented
by Collins et al. (1978) and Maugis (1977), allowed to compute a feasible solution
for the domain relaxation (4.2.1). We extend these convex optimization problems in
order to compute a feasible solution for the flow conservation relaxation (4.3.1). This
approach only works for constant heights, i.e., γa = 1 for all a ∈ A′. In the subsequent
part of this section we show how to treat the general case of inhomogeneous heights,
i.e., γa 6= 1 for some a ∈ A′.

First we describe the extension of (4.2.2). We introduce slack variables and add
further terms to the objective function. Again we set Φa(qa) := αa qa|qa|ka − β̃a.
Then this extension is of the following form:

min
∑
a∈A′

∫ qa

q0
a

Φa(t) dt

+
∑
v∈V

(
πv ∆−v − πv ∆+

v

)
+
∑
a∈A′

(
Φa(qa) ∆−a − Φa(qa) ∆+

a

)
s. t.

(4.3.3a)

∑
a∈δ−

A′ (v)

(
qa − (∆+

a −∆−a )
)
−

∑
a∈δ+

A′ (v)

(
qa − (∆+

a −∆−a )
)

+(∆+
v −∆−v ) = −dv ∀ v ∈ V, (4.3.3b)

∆±v ≥ 0 ∀ v ∈ V, (4.3.3c)

∆±a ≥ 0 ∀ a ∈ A′, (4.3.3d)

∆±v ∈ R ∀ v ∈ V, (4.3.3e)

qa,∆±a ∈ R ∀ a ∈ A′. (4.3.3f)

Here q0
a is the root of Φa(·). In the next lemma we characterize this nonlinear

optimization problem by analyzing the KKT conditions for this constraint system.

Lemma 4.3.1:
The nonlinear optimization problem (4.3.3) is convex. Every optimal solution for
(4.3.3) can be transformed into a feasible solution for (4.3.1), if γa = 1 for all arcs
a ∈ A′.

Proof. The optimization problem (4.3.3) is convex, as Φa is a monotone increasing
function which implies that the objective consists of a sum of convex functions.
Furthermore the constraints are of linear type.

Let (q∗,∆∗) be a local minimum of (4.3.3). Because of the convexity every local
minimum is global. The objective and the constraints of (4.3.3) are continuously
differentiable. Hence, by Theorem 2.4.2, there exist dual values (π∗, λ∗), which
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consecutively correspond to the equality and inequality constraints of (4.3.3), such
that (q∗,∆∗, π∗, λ∗) is a KKT point of (4.3.3). The Lagrange function with the
Lagrange multipliers (π, λ) = (πv, λ+

v , λ
−
v , λ

+
a , λ

−
a )v∈V,a∈A′ with πv ∈ R, v ∈ V and

λ+
v , λ

−
v ∈ R≥0, v ∈ V and λ+

a , λ
−
a ∈ R≥0, a ∈ A′ is as follows:

L(q,∆, π, λ)

=
∑
a∈A′

∫ qa

q0
a

Φa(t) dt+
∑
v∈V

(
πv ∆−v − πv ∆+

v

)
+
∑
a∈A′

(
Φa(qa) ∆−a − Φa(qa) ∆+

a

)

+
∑
v∈V

πv

dv − ∑
a∈δ+

A′ (v)

(qa − (∆+
a −∆−a )) +

∑
a∈δ−

A′ (v)

(qa − (∆+
a −∆−a ))− (∆−v −∆+

v )


−
∑
v∈V

(
λ+
v ∆+

v + λ−v ∆−v
)
−
∑
a∈A′

(
λ+
a ∆+

a + λ−a ∆−a
)
.

We obtain from (2.4.2a) of the KKT conditions (2.4.2) that (q∗,∆∗, π∗, λ∗) is feasible
for

∂L

∂qa
= 0⇒ Φa(qa) = πv − πw ∀ a = (v, w) ∈ A′, (4.3.4a)

∂L

∂∆−v
= 0⇒ πv − λ−v = πv ∀ v ∈ V, (4.3.4b)

∂L

∂∆+
v

= 0⇒ πv + λ+
v = πv ∀ v ∈ V, (4.3.4c)

∂L

∂∆−a
= 0⇒ Φa(qa)− λ−a = πv − πw ∀ a = (v, w) ∈ A′, (4.3.4d)

∂L

∂∆+
a

= 0⇒ Φa(qa) + λ+
a = πv − πw ∀ a = (v, w) ∈ A′. (4.3.4e)

It follows from (4.3.4a) that the vector (q∗, π∗) satisfies constraint (4.3.1b). Using
(4.3.4b)–(4.3.4c) in combination with the complementarity conditions (2.4.2e) which
write here as

λ+
v ∆+

v = 0 and λ−v ∆−v = 0, (4.3.5a)
and

λ+
a ∆+

a = 0 and λ−a ∆−a = 0, (4.3.5b)
we observe that the following constraints are fulfilled by (∆∗, π∗):

∆−v (πv − πv) = 0,
∆+
v (πv − πv) = 0.

Using the strict monotonicity of Φa and (4.3.4a), (4.3.4d), (4.3.4e), (4.3.5b), we
obtain that (q∗,∆∗) fulfills

∆−a (Φa(qa)− Φa(qa)) = 0 ⇒ ∆−a (qa − qa) = 0,
∆+
a (Φa(qa)− Φa(qa)) = 0 ⇒ ∆+

a (qa − qa) = 0.
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So constraints (4.3.1h)–(4.3.1k) are fulfilled by (q∗,∆∗, π∗). Note that λ ≥ 0. There-
fore (4.3.1d)–(4.3.1g) are also fulfilled because of (4.3.4a)–(4.3.4e). Furthermore
the flow conservation constraints (4.3.1c) are fulfilled due to constraints (4.3.3b).
Altogether, (q∗, π∗,∆∗) is a feasible solution for (4.3.1), if γa = 1, a ∈ A′.

Note that problem (4.3.3) might be unbounded. In this case there exists no
optimal solution and that is why we cannot ensure the feasibility of (4.3.1) by
Lemma 4.3.1. Thus we consider another optimization problem which extends (4.2.3)
as follows:

min
∑

a=(v,w)∈A′

∫ πv−πw

∆0
a

Φ−1
a (t) dt−

∑
v∈V

∫ πv

0
dv dt (4.3.6a)

s. t. πv ≤ πv ∀ v ∈ V, (4.3.6b)

πv ≥ πv ∀ v ∈ V, (4.3.6c)

πv − πw ≤ Φa(qa) ∀ a = (v, w) ∈ A′, (4.3.6d)

πv − πw ≥ Φa(qa) ∀ a = (v, w) ∈ A′, (4.3.6e)

πv ∈ R ∀ v ∈ V. (4.3.6f)

Here ∆0
a is the root of the function Φ−1

a (·), the inverse of Φa(·).

Lemma 4.3.2:
The nonlinear optimization problem (4.3.6) is convex and bounded. Its optimal
solution yields a feasible solution for (4.3.1), if γa = 1 for all arcs a ∈ A′.

Note that problem (4.3.6) is bounded and hence allows to compute a feasible
solution for the flow conservation relaxation (4.3.1) which is not guaranteed for the
previous problem (4.3.3). However, we consider (4.3.3) and (4.3.6) for theoretical
purpose only.

Proof. We note that the constraints of (4.3.6) are of linear type. The objective
function is convex, because of the definition of ∆0

a. Hence (4.3.6) is convex.
The problem (4.3.6) might be infeasible because of the linear constraints, but

this situation is excluded because of the preprocessing described in Section 4.3.1.
The linear constraints ensure that the optimization problem is bounded. Hence
there exists a local optimum which we denote by π∗. This is a global minimum
because of the convexity.

The objective and the constraints of (4.3.6) are continuously differentiable.
Hence, by Theorem 2.4.2, there exist dual values ∆∗ consecutively corresponding to
the inequality constraints of (4.3.6) such that (π∗,∆∗) is a KKT point of (4.3.6).
We denote the Lagrange function with Lagrange multipliers ∆+

v ,∆−v ∈ R≥0 for each
node v ∈ V and ∆+

a ,∆−a ∈ R≥0 for each arc a ∈ A′ as follows:

L(π,∆) =
∑

a=(v,w)∈A′

∫ πv−πw

∆0
a

Φ−1
a (t) dt−

∑
v∈V

∫ πv

0
dv dt
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+
∑
v∈V

(∆−v (πv − πv) + ∆+
v (πv − πv))

+
∑

a=(v,w)∈A′
∆−a (πv − πw − Φa(qa))

+
∑

a=(v,w)∈A′
∆+
a (Φa(qa)− (πv − πw)).

We obtain from (2.4.2a) of the KKT conditions (2.4.2) that (π∗,∆∗) is feasible for

∂L

∂πv
= 0⇒

∑
a=(v,w)∈δ+

A′ (v)
(Φ−1

a (πv − πw)− (∆+
a −∆−a ))

−
∑

a=(v,w)∈δ−
A′ (v)

(Φ−1
a (πv − πw)− (∆+

a −∆−a ))

−(∆+
v −∆−v ) = dv ∀ v ∈ V.

Setting q∗ by

q∗a := Φ−1
a (π∗v − π∗w) ⇔ Φa(q∗a) = π∗v − π∗w ∀ a = (v, w) ∈ A′ (4.3.7)

we derive that (q∗, π∗,∆∗) fulfills (4.3.1b) and the flow conservation constraints
(4.3.1c).

Constraints (4.3.1d) and (4.3.1e) are fulfilled by (q∗, π∗,∆∗) because of constraints
(4.3.6b) and (4.3.6c). Constraints (4.3.1f) and (4.3.1g) are fulfilled by (q∗, π∗,∆∗)
because of constraints (4.3.7), (4.3.6d) and (4.3.6e) and the strictly monotonicity
(hence bijectivity) of Φa and Φ−1

a . From the complementary slackness conditions we
observe that the following constraints are fulfilled by (q∗, π∗,∆∗):

∆−v (πv − πv) = 0, ∆+
v (πv − πv) = 0 ∀ v ∈ V,

∆−a (qa − qa) = 0, ∆+
a (qa − qa) = 0 ∀ a ∈ A′.

This gives (4.3.1h)–(4.3.1k). Therefore, if γa = 1, a ∈ A′, then (q∗, π∗,∆∗) is a
solution for (4.3.1).

Making use of (4.3.6) we are able to prove the following characterization of the
feasibility of the flow conservation relaxation (4.3.1) in the general case that there
exists an arc a ∈ A′ such that γa 6= 1.

Lemma 4.3.3:
If the preprocessing described in Section 4.3.1 does not detect infeasibility, then the
flow conservation relaxation (4.3.1) is feasible.

Proof. If the preprocessing described in Section 4.3.1 detects infeasibility, then the
passive transmission problem is infeasible as discussed in that section. Otherwise,
we proceed as follows. We use γr,v from Definition 4.2.3, the function π′v(π) from
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(4.2.4) and equation (4.2.5). Now we compute a local optimum π∗ for the following
problem

min
∑

a=(v,w)∈A′

∫ πv−πw

∆0
a

Φ′−1
a (t) dt−

∑
v∈V

∫ πv

0
dv dt

s. t. πv ≤ π′v(π) ∀ v ∈ V,

πv ≥ π′v(π) ∀ v ∈ V,

πv − πw ≤ Φ′a(qa) ∀ a = (v, w) ∈ A′,

πv − πw ≥ Φ′a(qa) ∀ a = (v, w) ∈ A′,

πv ∈ R ∀ v ∈ V,

where Φ′−1
a (·) is the inverse of Φ′a(qa) := γr,vαa qa|qa|ka − γr,vβ̃a and ∆0

a is a root of
this inverse function for each arc a = (v, w) ∈ A′.

This problem is feasible because of the assumption that we applied the pre-
processing described in Section 4.3.1. By Lemma 4.3.2 this optimization problem
yields a feasible solution (q∗, π∗,∆∗) for a modified version of the flow conservation
relaxation (4.3.1) which is obtained by replacing the constraints (4.3.1b), (4.3.1d),
(4.3.1e), (4.3.1h), (4.3.1i) by

γr,vαa qa|qa|ka − γr,vβ̃a − (πv − πw) = 0 ∀ a = (v, w) ∈ A′,

πv ≤ π′v(π) ∀ v ∈ V,

πv ≥ π′v(π) ∀ v ∈ V,

∆−v (π′v(π)− πv) = 0 ∀ v ∈ V,

∆+
v (πv − π′v(π)) = 0 ∀ v ∈ V.

Using (q∗, π∗,∆∗) we are going to show how to obtain a feasible solution for the
flow conservation relaxation (4.3.1) which is not modified. We define

π̂v := π′v
−1 (π∗).

for each node v ∈ V . We obtain π ≤ π̂ ≤ π. Furthermore we obtain ∆−v (πv−π̂v) = 0
and ∆+

v (π̂v − πv) = 0. In combination with (4.2.5) we obtain

αa q
∗
a|q∗a|ka − β̃a = γ−1

r,v (π∗v − π∗w) = π̂v − γaπ̂w ∀ a = (v, w) ∈ A′.

Thus (q∗, π̂,∆∗) is a feasible solution for the flow conservation relaxation (4.3.1).

4.3.3. Characterization of the Feasible Region
The next lemmata characterize the feasible region of the flow conservation relax-
ation (4.3.1). They state that all local optimal solutions differ only in the π values,
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which lie together on a straight line segment. This then allows to prove that
the flow conservation relaxation is either infeasible, which can be detected by the
preprocessing described in Section 4.3.1, or a feasible convex optimization problem.

We start with proving a simple result which is needed in the following part of
this section.

Lemma 4.3.4:
Let (q′, π′), (q′′, π′′) ∈ RA′ × RV with q′ ≤ q′′ be two vectors fulfilling

αa qa|qa|ka − β̃a = πv − πw ∀ a = (v, w) ∈ A′

with αa > 0 for all arcs a ∈ A′. Let P be a v-w-path in (V,A′). The following
implications hold for the node potential values in v and w:

π′v ≥ π′′v ⇒ π′w ≥ π′′w,

π′w ≤ π′′w ⇒ π′v ≤ π′′v ,

and

π′v > π′′v ⇒ π′w > π′′w,

π′w < π′′w ⇒ π′v < π′′v .

If there exists an arc a in this path with q′a < q′′a then it holds:

π′v ≥ π′′v ⇒ π′w > π′′w,

π′w ≤ π′′w ⇒ π′v < π′′v .

Proof. Let P be a v-w-path in (V,A′). Let the nodes of P be given by v1, . . . , vn+1
where v1 = v and vn+1 = w and connecting arcs by a1, . . . , an. We obtain from
q′ai ≤ q′′ai :

π′vi − γaiπ
′
vi+1 = αai q

′
ai
|q′ai |

kai − β̃ai
≤ αai q

′′
ai
|q′′ai |

kai − β̃ai = π′′vi − γaiπ
′′
vi+1

(4.3.8)

From this we obtain, again using q′ai ≤ q′′ai for every i = 1, . . . , n:

π′v1 ≥ π′′v1 ⇒ π′v2 ≥ π′′v2 ⇒ . . . ⇒π′vn+1 ≥ π′′vn+1 ,

π′vn+1 ≤ π′′vn+1 ⇒π′vn ≤ π′′vn ⇒ . . . ⇒ π′v1 ≤ π′′v1 .

If there exists an arc ai0 with q′ai0 < q′′ai0 , then inequality (4.3.8) is strict. We obtain:

π′v1 ≥ π′′v1 ⇒ π′v2 ≥ π′′v2 ⇒ . . . ⇒π′vi0+1 > π′′vi0+1 ⇒ . . . ⇒π′vn+1 > π′′vn+1 ,

π′vn+1 ≤ π′′vn+1 ⇒ π′vn ≤ π′′vn ⇒ . . . ⇒ π′vi0 < π′′vi0 ⇒ . . . ⇒ π′v1 < π′′v1 .
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Lemma 4.3.5:
There exists a vector q̃ ∈ RA′ such that the following holds: (q∗, π∗,∆∗) is a feasible
solution of (4.3.1) if and only if q∗ = q̃.

Proof. Assume that there exist two solutions (q′, π′,∆′) and (q′′, π′′,∆′′) of problem
(4.3.1). Note that there exists at least one by Lemma 4.3.3. We are going to prove
that q′ = q′′. We proceed as follows:

1. At first we show that there exist ∆′′′+,∆′′′− ∈ RA′ such that the vector
(q′′, π′′, (∆′v

±,∆′′′a
±)v∈V,a∈A′) is feasible for (4.3.1).

2. Afterwards we conclude q′ = q′′.
In order to prove the first item we have to show the following because of (4.3.1h)

and (4.3.1i): If there exists a node v ∈ V with one of the values ∆′+v ,∆′
−
v ,∆′′v

+,∆′′v
−

not equal to zero, then the node potentials π′v and π′′v are equal, i.e., π′v = π′′v .
Let v∗ ∈ V be a node such that one of the values ∆′+v∗ ,∆′

−
v∗ ,∆′′v∗

+,∆′′v∗
− is not

equal to zero. In the case that ∆′+v∗ −∆′−v∗ = ∆′′v∗
+ −∆′′v∗

− 6= 0 we conclude from
(4.3.1h) and (4.3.1i) that π′v∗ = π′′v∗ . In the case ∆′+v∗ − ∆′−v∗ = ∆′′v∗

+ − ∆′′v∗
− = 0

and some value ∆′+v∗ ,∆′
−
v∗ ,∆′′v∗

+,∆′′v∗
− 6= 0 we conclude that πv∗ = πv∗ and hence

π′v∗ = π′′v∗ . Next we consider the remaining case ∆′+v∗ −∆′−v∗ 6= ∆′′v∗
+ −∆′′v∗

−.
We define q̂a for all arcs a ∈ A′ by

q̂a := (q′′a − (∆′′a
+ −∆′′a

−))− (q′a − (∆′+a −∆′−a )).

W.l.o.g. we assume that ∆′+v∗ −∆′−v∗ < ∆′′v∗
+ −∆′′v∗

− (otherwise, exchange the two
solutions). Hence v∗ acts as a source for q̂.

W.l.o.g. we assume q̂ ≥ 0. If this is not the case then we change the orientation
of every arc a ∈ A′ with q̂a < 0 in the same way as described in the proof of
Lemma 4.2.6. This implies q′′a − (∆′′a

+ − ∆′′a
−) ≥ q′a − (∆′+a − ∆′−a ) for every arc

a ∈ A′. This in combination with (4.3.1j) and (4.3.1k) implies

q′′a ≥ q′a ∀ a ∈ A′. (4.3.9)

Using Theorem 4.2.5 we split the flow q̂ into a flows along paths P1, . . . , Pm and
flows along cycles C1, . . . , Cn. We denote the path flow values by q̂Pi > 0, i = 1, . . . ,m
and the cycle flow values by q̂Ci > 0, i = 1, . . . , n. Then

q̂a =
∑

i=1,...,m:
a∈A′(Pi)

q̂Pi +
∑

i=1,...,n:
a∈A′(Ci)

q̂Ci ∀ a ∈ A′.

Let q̂P` be a path flow that starts at source node v∗ and ends at some other sink
node w∗. Then we have

∆′+v∗ −∆′−v∗ < ∆′′v∗
+ −∆′′v∗

− and ∆′+w∗ −∆′−w∗ > ∆′′w∗
+ −∆′′w∗

−
. (4.3.10)

We analyze the node potential differences in the two end nodes of the path P`,
that is, π′′v∗−π′′w∗ versus π′v∗−π′w∗ , and show that π′v∗ = π′′v∗ and π′w∗ = π′′w∗ . Therefor
we distinguish three cases. Note that the signs of ∆′+v∗ −∆′−v∗ and ∆′′+w∗ −∆′′−w∗ are
unknown.
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Case 1, ∆′+v∗ −∆′−v∗ > 0. From constraint (4.3.1i) for v∗ it follows that π′v∗ = πv∗
and (4.3.10) implies π′′v∗ = πv∗ . We distinguish three subcases.
Case 1.1, ∆′+w∗ −∆′−w∗ > 0. Then again it follows that π′w∗ = πw∗ . From

Lemma 4.3.4 we obtain using π′′v∗ = π′v∗ and (4.3.9) that π′′w∗ ≤ π′w∗ holds.
From πw∗ ≤ π′′w∗ ≤ π′w∗ = πw∗ we obtain π′′w∗ = πw∗ . Hence π′v∗ = π′′v∗
and π′w∗ = π′′w∗ . From (4.3.9) we conclude q′′a = q′a for every arc a of path
P` because otherwise q′′a > q′a for an arc of path P` in combination with
π′′v∗ = π′v∗ means π′′w∗ < π′w∗ by Lemma 4.3.4.

Case 1.2, ∆′+w∗ −∆′−w∗ = 0. By (4.3.10) we have ∆′′w∗
+ −∆′′w∗

− < 0. Accord-
ing to constraint (4.3.1h) we obtain that π′′w∗ = πw∗ . Now the node
potentials π′′ are at the lower boundary on the source and at the upper
boundary on the sink side (π′′v∗ = πv∗ , π

′′
w∗ = πw∗). From Lemma 4.3.4

we obtain using π′v∗ = π′′v∗ and (4.3.9) that π′w∗ ≥ π′′w∗ holds. From
πw∗ ≥ π′w∗ ≥ π′′w∗ = πw∗ we obtain π′′w∗ = π′w∗ . Hence π′v∗ = π′′v∗ and
π′w∗ = π′′w∗ . From (4.3.9) we conclude q′′a = q′a for every arc a of path
P` because otherwise q′′a > q′a for an arc of path P` in combination with
π′′v∗ = π′v∗ means π′′w∗ < π′w∗ by Lemma 4.3.4.

Case 1.3, ∆′+w∗ −∆′−w∗ < 0. Then from constraint (4.3.1h) we have π′′w∗ = πw∗ ,
and we are in the same situation as in Case 1.2.

Case 2, ∆′+v∗ −∆′−v∗ = 0. From (4.3.1i) in combination with 0 = ∆′+v∗ − ∆′−v∗ <
∆′′v∗

+ −∆′′v∗
− by (4.3.10) we get that π′′v∗ = πv∗ .

Case 2.1, ∆′+w∗ −∆′−w∗ > 0. Then again it follows that π′w∗ = πw∗ . From
Lemma 4.3.4 we obtain using πv∗ = π′′v∗ ≤ π′v∗ and (4.3.9) that π′′w∗ ≤ π′w∗
holds. From πw∗ ≤ π′′w∗ ≤ π′w∗ = πw∗ we obtain π′′w∗ = π′w∗ . Again we
obtain from Lemma 4.3.4 using π′w∗ ≤ π′′w∗ and (4.3.9) that π′v∗ ≤ π′′v∗
holds. Hence π′v∗ = π′′v∗ and π′w∗ = π′′w∗ . From (4.3.9) we conclude q′′a = q′a
for every arc a of path P` because otherwise q′′a > q′a for an arc of path
P` in combination with π′′v∗ = π′v∗ means π′′w∗ < π′w∗ by Lemma 4.3.4.

Case 2.2, ∆′+w∗ −∆′−w∗ = 0. By (4.3.10) we have ∆′′w∗
+ −∆′′w∗

− < 0. Accord-
ing to constraint (4.3.1h) we obtain that π′′w∗ = πw∗ . Now the node
potentials π′′ are at the lower boundary on the source and at the upper
boundary on the sink side (π′′v∗ = πv∗ , π

′′
w∗ = πw∗). From Lemma 4.3.4

we obtain using π′v∗ ≥ π′′v∗ = πv∗ and (4.3.9) that π′w∗ ≥ π′′w∗ holds. From
πw∗ ≥ π′w∗ ≥ π′′w∗ = πw∗ we conclude π′′w∗ = π′w∗ . Again we obtain from
Lemma 4.3.4 using π′w∗ ≤ π′′w∗ and (4.3.9) that π′v∗ ≤ π′′v∗ holds. Hence
π′v∗ = π′′v∗ and π′w∗ = π′′w∗ . From (4.3.9) we conclude q′′a = q′a for every
arc a of path P` because otherwise q′′a > q′a for an arc of path P` in
combination with π′′v∗ = π′v∗ means π′′w∗ < π′w∗ by Lemma 4.3.4.

Case 2.3, ∆′+w∗ −∆′−w∗ < 0. Then from constraint (4.3.1h) we have π′′w∗ = πw∗ ,
and we are in the same situation as in Case 2.2.

Case 3, ∆′+v∗ −∆′−v∗ < 0. Then it follows from (4.3.1h) that π′v∗ = πv∗ .
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Case 3.1, ∆′+w∗ −∆′−w∗ > 0. Then it follows from (4.3.1i) that π′w∗ = πw∗ .
Now π′v∗ = πv∗ and π′w∗ = πw∗ holds. From Lemma 4.3.4 we obtain using
π′′v∗ ≤ πv∗ = π′v∗ and (4.3.9) that π′w∗ ≥ π′′w∗ holds. From πw∗ = π′w∗ ≥
π′′w∗ ≥ πw∗ we conclude π′′w∗ = π′w∗ . Again we obtain from Lemma 4.3.4
using π′w∗ ≤ π′′w∗ and (4.3.9) that π′v∗ ≤ π′′v∗ holds. Hence π′v∗ = π′′v∗ and
π′w∗ = π′′w∗ . Again from (4.3.9) we conclude q′′a = q′a for every arc a of
path P` because otherwise q′′a > q′a for an arc of path P` in combination
with π′′v∗ = π′v∗ means π′′w∗ < π′w∗ by Lemma 4.3.4.

Case 3.2, ∆′+w∗ −∆′−w∗ = 0. We derive 0 = ∆′w∗
+ − ∆′w∗

− > ∆′′w∗
+ − ∆′′w∗

−

from (4.3.10). In combination with (4.3.1i) we obtain π′′w∗ = πw∗ . Fur-
thermore we have π′w∗ ≤ πw∗ = π′′w∗ . From Lemma 4.3.4 and (4.3.9) we
conclude π′′v∗ ≥ π′v∗ . From πv∗ ≥ π′′v∗ ≥ π′v∗ = πv∗ we obtain π′v∗ = π′′v∗ .
Again from Lemma 4.3.4 and (4.3.9) we conclude π′w∗ ≥ π′′w∗ which then in
combination with the previous observation π′w∗ ≤ π′′w∗ implies π′w∗ = π′′w∗ .
We derive q′′a = q′a for every arc a of path P` because otherwise q′′a > q′a
for an arc of path P` in combination with π′′v∗ = π′v∗ means π′′w∗ < π′w∗ by
Lemma 4.3.4.

Case 3.3, ∆′+w∗ −∆′−w∗ < 0. Then we get from (4.3.1h) that π′′w∗ = πw∗ . So
we are in the same situation as in Case 3.2, hence the same conclusions
remain valid.

From these cases we conclude that π′v∗ = π′′v∗ for any node v∗ ∈ V such that at least
one value ∆′+v∗ ,∆′

−
v∗ ,∆′′v∗

+,∆′′v∗
− is not equal to zero. This implies that (π′′v ,∆′

±
v )v∈V

is feasible for constraints (4.3.1h) and (4.3.1i).
In order to complete the proof of the first item we turn to the definition of

(∆′′′a
±)a∈A′ . The flow q̂ is a network flow with node flow (∆′′v

+−∆′′v
−)− (∆′+v −∆′−v )

for every node v ∈ V . Hence we obtain from the previous 3× 3 cases that q′′a = q′a
for every arc a ∈ A′(Pi), i = 1, . . . ,m. This implies for every arc a ∈ A′(Pi), i =
1, . . . ,m:

(∆′′a
− −∆′′a

+)− (∆′−a −∆′+a ) = q̂a =
∑

i=1,...,m:
a∈A′(Pi)

q̂Pi +
∑

i=1,...,n:
a∈A′(Ci)

q̂Ci > 0. (4.3.11)

We define
(∆′′′a

− −∆′′′a
+) := (∆′′a

− −∆′′a
+)−

∑
i=1,...,m:
a∈A′(Pi)

q̂Pi (4.3.12)

for every arc a ∈ A′ where at least one value ∆′′′a
− or ∆′′′a

+ equals zero. Now we
consider an arc a ∈ A′(Pi), i = 1, . . . ,m. From ∆′′′a

− > 0 it follows by q̂Pi > 0, i =
1, . . . ,m and (4.3.12) that ∆′′a

− > 0. This implies q′′a = qa. From ∆′′′a
+ > 0 it

follows from (4.3.11) that ∆′a
+ > 0 holds. This implies q′′a = q′a = q

a
. For all other

arcs a ∈ A′ which are not considered before it holds that they are not part of any
path Pi, i = 1 . . . ,m. Hence ∆′′′a

− −∆′′′a
+ = ∆′′a

− −∆′′a
+ holds for them and (4.3.1j)

and (4.3.1k) are fulfilled. We conclude that (q′′a ,∆′′′a
±)a∈A′ is feasible for constraints

(4.3.1j) and (4.3.1k).
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It follows from (4.3.11) and (4.3.12) that the flow conservation constraint (4.3.1c)
is fulfilled by (q′′, (∆′v

±,∆′′′a
±)v∈V,a∈A′). Hence a feasible vector for (4.3.1) is given

by (q′′, π′′, (∆′v
±,∆′′′a

±)v∈V,a∈A′). This proves the first item.
Turning to the second item we define q̂′a := (q′′a−(∆′′′a

+−∆′′′a
−))−(q′a−(∆′+a −∆′−a ))

for each arc a ∈ A′. Then q̂′ consists of circulations only because of∑
a∈δ+

A′ (v)
q̂′a −

∑
a∈δ−

A′ (v)
q̂′a = dv + (∆′v

+ −∆′v
−)− (dv + (∆′v

+ −∆′v
−)) = 0 ∀ v ∈ V.

But a circulation can only take place in the (∆±a )a∈A′ variables because of the
following reason: By (4.3.9) it holds q′′ ≥ q′. If there exists an arc a ∈ A′ with
q′′a > q′a, then, using αa > 0, a ∈ A′ and (4.3.1b), we derive the contradiction 0 > 0
similar as done in the end of the proof of Lemma 4.2.7. Thus we conclude q′ = q′′,
which proves the Lemma.

Theorem 4.3.6:
The flow conservation relaxation (4.3.1) is a relaxation of the passive transmission
problem (4.1.1). The relaxation is either infeasible, which can be detected by the
preprocessing technique described in Section 4.3.1, or a feasible convex optimization
problem.

Proof. Every feasible solution (q∗, π∗, p∗) of the passive transmission problem (4.1.1)
yields a feasible solution (q∗, π∗, 0) for (4.3.1). Hence (4.3.1) is a relaxation of the
passive transmission problem (4.1.1).

If infeasibility is not detected during the preprocessing described in Section 4.3.1,
then (4.3.1) is feasible by Lemma 4.3.3. In this case we consider two feasible solutions
(q′, π′,∆′) and (q′′, π′′,∆′′) of (4.3.1). From Lemma 4.3.5 we know that q′ and q′′
are equal, i.e., q′ = q′′. By the same argumentation as in the last part of the proof
of Lemma 4.2.7 we obtain the existence of θ ∈ RV

≥0 such that there exists t ∈ R
such that π′′ = π′ + tθ. The definition of θ is independent of the two solutions. Now
we distinguish two cases:

1. If there exist two nodes v and w with π′v = πv and π′w = πw then θ ≥ 0 implies
either t = 0 or θ = 0 and hence π′ = π′′. This means that the two solutions
(q′, π′,∆′) and (q′′, π′′,∆′′) differ only in the variables ∆ = (∆±a ,∆±v )a∈A′,v∈V .
Fixing the node potential variables π = π′ and the flow variables q = q′ in
(4.3.1) results in a linear program. This means that (q′, π′, ε∆′ + (1− ε)∆′′) is
a feasible solution for (4.3.1) for every ε ∈ [0, 1]. We conclude that the feasible
solution space of (4.3.1) is convex in this case.

2. It holds either π′v > πv for every node v ∈ V or π′v < πv for every node
v ∈ V . This means either ∆′v

+ = 0 for all nodes v ∈ V or ∆′v
− = 0 for all

nodes v ∈ V . Summing (4.3.1c) over all nodes v ∈ V yields the condition∑
v∈V (∆′v

+ − ∆′v
−) = 0. We conclude ∆′v

± = 0 for all nodes v ∈ V . From
θ ≥ 0 we obtain that there does not exist a solution (q′, π′′′,∆′′′) of (4.3.1) with
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π′′′v = πv and π′′′w = πw for two nodes v, w ∈ V . Hence the previous discussion
also applies for π′′ and ∆′′v

±, v ∈ V and we obtain ∆′′v
± = 0, v ∈ V . Fixing the

node slack variables ∆v
± = 0 and the flow variables q = q′ in (4.3.1) results

in a linear program. This means that (q′, ε1π′ + (1− ε1)π′′, ε2∆′ + (1− ε2)∆′′)
is a feasible solution for (4.3.1) for every ε1, ε2 ∈ [0, 1]. We conclude that the
feasible solution space of (4.3.1) is convex in this case.

Exactly one of the previous cases applies. This proves that the feasible solution
space of (4.3.1) is convex and hence (4.3.1) is a convex optimization problem.

4.3.4. Interpretation of Lagrange Multipliers
Assume that the passive transmission problem (4.1.1) is infeasible and the flow
conservation relaxation (4.3.1) has a positive optimal objective value. It turns out
(see Lemma 4.3.7) that there exist Lagrange multipliers for the optimal solution
such that the optimal solution and the multipliers form a KKT point of (4.3.1).
These multipliers have a practical interpretation. They form a generalized network
flow which is coupled with node potentials, similar to a primal solution (q∗, π∗) of
the passive transmission problem. This result is comparable to the interpretation in
Section 4.2.3.

Lemma 4.3.7:
Let (q∗, π∗,∆∗) be an optimal solution of the flow conservation relaxation (4.3.1).
Let (µ∗, λ∗) be Lagrange multipliers which consecutively correspond to the equality
and inequality constraints of (4.3.1), respectively, such that (q∗, π∗,∆∗, µ∗, λ∗) is a
KKT point of (4.3.1). These multipliers are characterized as follows: (µ∗a)a∈A′ is
a general network flow in (V,A′) which is induced by dual node potentials (µ∗v)v∈V .
More precisely the multipliers (µ∗, λ∗) are a feasible solution for

µa
dΦa

dqa
(q∗a) + λ+

a − λ−a = µv − µw + µ+
a ∆−a

∗ − µ−a ∆+
a
∗ ∀ a = (v, w) ∈ A′,

∑
a∈δ+

A′ (v)
µa −

∑
a∈δ−

A′ (v)
γaµa = λ+

v − λ−v + µ+
v ∆−v

∗ − µ−v ∆+
v
∗ ∀ v ∈ V.

Hereby the dual node potential µv is restricted by

µv ∈ {1} [−1, 1] {−1}
node slack ∆−v

∗
> 0 ∆−v

∗ = 0 = ∆+
v
∗ ∆+

v
∗
> 0

for each node v ∈ V , and the dual node potential difference µv − µw is constrained
by

µv − µw ∈ {1} [−1, 1] {−1}
arc slack ∆−a

∗
> 0 ∆−a

∗ = 0 = ∆+
a
∗ ∆+

a
∗
> 0
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for each arc a = (v, w) ∈ A′.

Proof. Let (q∗, π∗,∆∗) be an optimal solution of (4.3.1). Recall that a local
optimal solution is globally optimal because of the convexity of (4.3.1) by The-
orem 4.3.6. Let (µ∗, λ∗) be dual values such that (q∗, π∗,∆∗, µ∗, λ∗) is a KKT
point of flow conservation relaxation (4.3.1). Let us write the conditions (2.4.2a)
of the KKT conditions (2.4.2). We denote the Lagrange multipliers by (µ, λ) =
(µv, µ+

v , µ
−
v , µa, µ

+
a , µ

−
a , λ

+
v , λ

−
v , λ̃

+
v , λ̃

−
v , λ

+
a , λ

−
a , λ̃

+
a , λ̃

−
a )v∈V,a∈A′ , such that for the do-

mains µv, µ+
v , µ

−
v , µa, µ

+
a , µ

−
a ∈ R and λ+

v , λ
−
v , λ̃

+
v , λ̃

−
v , λ

+
a , λ

−
a , λ̃

+
a , λ̃

−
a ∈ R≥0 holds.

Furthermore we define the function Φa(qa) := αa qa|qa|ka − β̃a. Then the Lagrange
function of problem (4.3.1) has the form

L(q, π,∆, µ, λ)

=
∑
v∈V

(
∆+
v + ∆−v

)
+
∑
a∈A′

(
∆+
a + ∆−a

)
+

∑
a=(v,w)∈A′

µa
(
Φa(qa)− (πv − γaπw)

)

+
∑
v∈V

µv

dv − ∑
a∈δ+

A′ (v)
(qa −∆+

a + ∆−a ) +
∑

a∈δ−
A′ (v)

(qa −∆+
a + ∆−a ) + (∆+

v −∆−v )


+
∑
v∈V

(
λ+
v (πv − πv) + λ−v (πv − πv)

)
+
∑
a∈A′

(
λ+
a (qa − qa) + λ−a (q

a
− qa)

)
+
∑
v∈V

(
µ+
v (πv − πv) ∆−v + µ−v (πv − πv) ∆+

v

)
+
∑
a∈A′

(
µ+
a (qa − qa) ∆−a + µ−a (qa − qa) ∆+

a

)
−
∑
v∈V

(
λ̃+
v ∆+

v + λ̃−v ∆−v
)

−
∑
a∈A′

(
λ̃+
a ∆+

a + λ̃−a ∆−a
)
.

From (2.4.2a) we obtain that the KKT point (q∗, π∗,∆∗, µ∗, λ∗) is feasible for

∂L

∂qa
= 0⇒ µa

dΦa

dqa
(qa) + λ+

a − λ−a = µv − µw

+ µ+
a ∆−a − µ−a ∆+

a

∀ a ∈ A′,
a = (v, w), (4.3.13a)

∂L

∂πv
= 0⇒

∑
a∈δ+

A′ (v)

µa −
∑

a∈δ−
A′ (v)

γaµa = λ+
v − λ−v

− µ+
v ∆−v + µ−v ∆+

v ∀ v ∈ V, (4.3.13b)
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∂L

∂∆+
v

= 0⇒ µv + µ−v (πv − πv)− λ̃+
v = −1 ∀ v ∈ V, (4.3.13c)

∂L

∂∆−v
= 0⇒ −µv + µ+

v (πv − πv)− λ̃−v = −1 ∀ v ∈ V, (4.3.13d)

∂L

∂∆+
a

= 0⇒ µv − µw + µ−a (qa − qa)− λ̃
+
a = −1 ∀ a ∈ A′,

a = (v, w), (4.3.13e)

∂L

∂∆−a
= 0⇒ µw − µv + µ+

a (qa − qa)− λ̃−a = −1 ∀ a ∈ A′,
a = (v, w). (4.3.13f)

We conclude from (4.3.13c)-(4.3.13f), and the complementarity condition (2.4.2e)
that (q∗, π∗,∆∗, µ∗, λ∗) fulfills:

∆−v > 0⇒ µv = 1, ∆+
v > 0⇒ µv = −1, ∀ v ∈ V, (4.3.14a)

∆−a > 0⇒ µv − µw = 1,∆+
a > 0⇒ µv − µw = −1, ∀ a ∈ A

′,

a = (v, w). (4.3.14b)

The equations (4.3.13a) and (4.3.13b) yield the constraints of the Lemma, while
the tables follow from (4.3.14a) and (4.3.14b). From the complementarity con-
straints (4.3.1h) and (4.3.1i) we obtain

πv < πv ⇒ λ+
v = 0, µ+

v ∆−v = 0,
πv > πv ⇒ λ−v = 0, µ−v ∆+

v = 0,
∀ v ∈ V, (4.3.15a)

qa < qa ⇒ λ+
a = 0, µ+

a ∆−a = 0,
qa > q

a
⇒ λ−a = 0, µ−a ∆+

a = 0, ∀ a ∈ A′. (4.3.15b)

We compare (4.3.13) with (4.2.7), the corresponding results for the domain
relaxation (4.2.1). Most of the interpretation of (4.2.7) remains also valid for (4.3.13).
In the following we will focus on the differences. Conditions (4.3.13a) correspond to
the potential flow coupling (4.2.7a), and conditions (4.3.13b) correspond to the flow
conservation (4.2.7b). The derived conditions (4.2.8a) state that in certain cases
for the node potential values we have to fix the dual node flows. Complementary,
the derived conditions (4.3.14a) state that in certain cases for the node flow slack
values we have to fix the dual node potentials. Similarly, conditions (4.2.8b) state
that in certain cases for the arc flow values we have to fix the dual variables λ+

a and
λ−a . Complementary, the derived conditions (4.3.14b) state that in certain cases for
the arc flow slack values we have to fix the dual node potential difference at the end
nodes of the arc.
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4.4. Relaxation of Potential-Flow-Coupling
Constraints

A relaxation of the passive transmission problem (4.1.1) which is obtained by relaxing
the potential-flow-coupling constraint (4.1.1b) writes as

min
∑
a∈A′

(∆+
a + ∆−a ) (4.4.1a)

s. t. αa qa|qa|ka − (πv − γaπw)− (∆+
a −∆−a ) = β̃a ∀ a = (v, w) ∈ A′, (4.4.1b)∑

a∈δ+
A′ (v)

qa −
∑

a∈δ−
A′ (v)

qa = dv ∀ v ∈ V, (4.4.1c)

πv − πv ≤ 0 ∀ v ∈ V, (4.4.1d)

πv − πv ≤ 0 ∀ v ∈ V, (4.4.1e)

qa − qa ≤ 0 ∀ a ∈ A′, (4.4.1f)

q
a
− qa ≤ 0 ∀ a ∈ A′, (4.4.1g)

πv ∈ R ∀ v ∈ V, (4.4.1h)

qa ∈ R ∀ a ∈ A′, (4.4.1i)

∆+
a ,∆−a ∈ R≥0 ∀ a ∈ A′. (4.4.1j)

Lemma 4.4.1:
The optimization problem (4.4.1) is a relaxation of the passive transmission prob-
lem (4.1.1).

Proof. A solution (q∗, π∗, p∗) is feasible for the passive transmission problem (4.1.1)
only if (q∗, π∗, 0) is feasible for the nonlinear optimization problem (4.4.1). Hence
(4.4.1) is a relaxation of (4.1.1).

In the following we will show that this relaxation (4.4.1) is a non-convex opti-
mization problem having different KKT points with different objective values.

4.4.1. Conditions of the KKT System
In order to show that there exist multiple KKT points of (4.4.1) with different objec-
tive values we proceed as follows: The objective and all constraints of (4.4.1) are con-
tinuously differentiable. Now let us consider a KKT point (q∗, π∗,∆∗, µ∗, λ∗). Further
let us write the conditions (2.4.2a) of the KKT system (2.4.2) for (4.4.1). We denote
the Lagrange multipliers by (µ, λ) = (µv, µa, λ+

v , λ
−
v , λ

+
a , λ

−
a , λ̃

+
a , λ̃

−
a )v∈V,a∈A′ , such
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that µv, µa ∈ R and λ+
v , λ

−
v , λ

+
a , λ

−
a , λ̃

+
a , λ̃

−
a ∈ R≥0. We set Φa(qa) := αa qa|qa|ka − β̃a.

Then the Lagrange function of problem (4.4.1) has the form

L(q, π,∆, µ, λ) =
∑
a∈A′

(
∆+
a + ∆−a

)
+

∑
a=(v,w)∈A′

µa
(
Φa(qa)− (πv − γaπw)− (∆+

a −∆−a )
)

+
∑
v∈V

µv

dv − ∑
a∈δ+

A′ (v)
qa +

∑
a∈δ−

A′ (v)
qa


+
∑
v∈V

(
λ+
v (πv − πv) + λ−v (πv − πv)

)
+
∑
a∈A′

(
λ+
a (qa − qa) + λ−a (q

a
− qa)

)
−
∑
a∈A′

λ̃+
a ∆+

a + λ̃−a ∆−a .

Now (2.4.2a) which are fulfilled by the KKT point (q∗, π∗,∆∗, µ∗, λ∗) write as
∂L

∂qa
= 0⇒ µa

dΦa

dqa
(q∗a) + λ+

a − λ−a = µv − µw
∀ a ∈ A′,
a = (v, w), (4.4.2a)

∂L

∂πv
= 0⇒

∑
a∈δ+

A′ (v)
µa −

∑
a∈δ−

A′ (v)
γaµa = λ+

v − λ−v ∀ v ∈ V, (4.4.2b)

∂L

∂∆+
a

= 0⇒ µa + λ̃+
a = 1 ∀ a ∈ A′, (4.4.2c)

∂L

∂∆−a
= 0⇒ µa − λ̃−a = −1 ∀ a ∈ A′. (4.4.2d)

In combination with the complementarity conditions (2.4.2e) the subsequent condi-
tions follow for (q∗, π∗,∆∗, µ∗, λ∗):

qa < qa ⇒ λ+
a = 0, qa > q

a
⇒ λ−a = 0 ∀ a ∈ A′, (4.4.3a)

πv < πv ⇒ λ+
v = 0, πv = πv ⇒ λ+

v ≥ 0 ∀ v ∈ V, (4.4.3b)

πv > πv ⇒ λ−v = 0, πv = πv ⇒ λ−v ≤ 0 ∀ v ∈ V, (4.4.3c)

∆+
a > 0⇒ µa = 1, ∆−a > 0⇒ µa = −1 ∀ a ∈ A′. (4.4.3d)

We compare (4.4.3) with (4.3.14) and (4.2.8). Recall that in the domain relaxation,
(4.2.7), we had an enforcement of the variables λ±v , λ±a . In the flow conservation
relaxation, (4.3.13), we derived an enforcement of the variables µv. Now in the
potential-flow-coupling relaxation, (4.4.2), only an enforcement of the variables µa
to nonzero values remains.
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dv = 1, πv ∈ [0, 10] dw = −1, πw ∈ [20, 30]

α1 = 1.0, γ1 = 1.0

α2 = 1.5, γ2 = 1.0

Figure 4.3.: Example of an instance (network and nomination) demonstrating the nonconvexity of the relax-
ation (4.4.1) of the passive transmission problem (4.1.1). Two different KKT points of (4.4.1) having different
objective values are presented in Example 4.4.2.

4.4.2. Different KKT Points
The following example shows that the feasible domain of (4.4.1) is non-convex in
general, as there exist two different KKT points with different optimal objective
values for a test instance being a planar graph. The convex combination of the
primal parts is not feasible. Hence the feasible solution space is non-convex and a
nonlinear solver, like IPOpt, which computes KKT points, cannot guarantee to
compute the global optimal solution of (4.4.1).

Example 4.4.2:
Consider the network shown in Figure 4.3. It consists of two nodes v, w and two
parallel arcs a1, a2 from v to w. We set Φa(qa) := αa qa|qa| and assume arc constants
α1 = 1.0, β1 = 0, γ1 = 1.0 and α2 = 1.5, β2 = 0, γ2 = 1.0, and node potential bounds
πv = 0, πv = 10, πw = 20, πw = 30. Node v is an entry with flow +1, node w is an
exit with flow −1. The following two solutions both fulfill the KKT system (4.4.2):

• Let q1 = 3, q2 = −2, πv = 10, πw = 20,∆+
1 = 19,∆+

2 = 4,∆−1 = 0,∆−2 = 0.
The objective function value is 23. The dual values are µ1 = 1, µ2 = 1, µv = 6,
µw = 0.

• Let q1 = 0.6, q2 = 0.4, πv = 10, πw = 20,∆+
1 = 10.36,∆+

2 = 10.24, ∆−1 = 0,
∆−2 = 0. The objective function value is 20.6. The dual values are µ1 = 1,
µ2 = 1, µv = 1.2, µw = 0.

Thus we found two different KKT points. It is easy to see that a convex combination
of both primal feasible solutions is not feasible for the relaxation (4.4.1) because of
constraint (4.4.1b). Hence the feasible solution space of (4.4.1) is not convex. As
both solutions have different objective values this shows that even a nonlinear solver,
like IPOpt, which computes KKT points, cannot guarantee to compute the global
optimal solution of (4.4.1).

4.5. Solving the Passive Transmission Problem
The convex relaxations (4.2.1) and (4.3.1) of the passive transmission problem (4.1.1)
described in the previous Sections 4.2 and 4.3 neglect constraints (4.1.1c) and (4.1.1e).
Hence they can be used to compute a solution for the passive transmission problem
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efficiently only if Aa = 0, ba = 0 for each arc a ∈ A′. Furthermore it is required
that there exists no arc a = (v, w) ∈ A′ that is modeled by the constraint πv = πw,
which implies αa > 0 for all arcs a ∈ A′, see Section 3.2.

In this section we turn to the general case and describe how the relaxations
can be used to compute a solution for the passive transmission problem without
these restrictions. First we consider the case that the passive transmission problem
contains an arc (v, w) which is modeled by πv = πw. Our strategy for solving this
problem splits up into three steps as follows:

Step 1: First we apply a preprocessing technique: For each arc a = (v, w) ∈ A′
where constraint (4.1.1b) writes as πv = πw, we contract arc a and identify the
end nodes v and w. This identification goes along with setting node potential
bounds [πv, πv]∩[πw, πw] for the node which represents the contraction of v and
w. If this intersection is empty, then the passive transmission problem (4.1.1)
is infeasible because constraint (4.1.1b) is in contradiction with the node
potential bounds at v and w. If we do not detect infeasibility here, then we
continue with the next step.

Step 2: From the contraction we obtain the node set V ′ and the arc set A′′. Now we
solve the corresponding preprocessed passive transmission problem by making
use of either the domain relaxation (4.2.1) presented in Section 4.2 or the
flow conservation relaxation (4.3.1) described in Section 4.3. A solution of
one of these relaxations with optimal objective zero yields a feasible solution
for the preprocessed passive transmission problem. Both problems are convex
by Theorem 4.2.9 and Theorem 4.3.6 and so can be solved efficiently. The
relaxation also means that an optimal solution with positive objective value
implies that the preprocessed passive transmission problem is infeasible.

If the preprocessed problem turns out to be infeasible, then again, the passive
transmission problem (4.1.1) is infeasible. This is proven as follows: For every
solution (q′, π′) of the passive transmission problem it holds that (q′a)a∈A′′
is a feasible flow for the preprocessed passive transmission problem. Hence
the preprocessed passive transmission problem cannot be infeasible if the
non-preprocessed passive transmission problem is feasible. If we do not detect
infeasibility here, then, similar to step 1, we continue with the next step.

Step 3: For an optimal solution (q∗, π∗) of the preprocessed passive transmission
problem, we solve the non-preprocessed passive transmission problem and fix
the flow on all arcs a ∈ A′′ to q∗a before. We define Φa(qa) := αa qa|qa|ka − β̃a.
The arising problem is a linear program and writes as follows:
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∃ q, π
s. t. πv − γaπw = Φa(q∗a) ∀ a = (v, w) ∈ A′′,

πv − πw = 0 ∀ a = (v, w) ∈ A′ \ A′′,
qa = q∗a ∀ a = (v, w) ∈ A′′,∑

a∈δ+
A′ (v)

qa −
∑

a∈δ−
A′ (v)

qa = dv ∀ v ∈ V,

πv ≤ πv ≤ πv ∀ v ∈ V,
q
a
≤ qa ≤ qa ∀ a ∈ A′,
πv ∈ R ∀ v ∈ V,
qa ∈ R ∀ a ∈ A′.

(4.5.1)

For every solution flow q′ of the passive transmission problem it holds that
q′a = q∗a for every arc a ∈ A′′. This can be seen as follows: A solution q′ of the
passive transmission problem yields a flow vector (q′a)a∈A′′ which is feasible
for the preprocessed passive transmission problem and hence feasible for its
domain relaxation. By Lemma 4.2.7 this flow vector is unique. As q∗ is also
a feasible flow vector for the domain relaxation we obtain q′a = q∗a for every
arc a ∈ A′′. We conclude that LP (4.5.1) is feasible if and only if the passive
transmission problem is feasible. Hence (4.5.1) is either feasible and the
optimal solution (q̃, π̃) yields a feasible solution (q̃, π̃, p̃) with p̃ := sgn(π)

√
|π|

for the passive transmission problem, or otherwise it is infeasible, which implies
that the passive transmission problem is infeasible, too.

The discussion above describes how to solve the passive transmission problem,
if it contains arcs a = (v, w) ∈ A′ that are modeled by πv = πw. Now we turn to
the more general case Aa, ba 6= 0 for an arc a ∈ A′. In order to solve the passive
transmission problem in this case, we proceed as described in the following two
steps:

Step 1: We ignore the constraints Aa (qa, pv, pw)T ≤ ba for each arc a ∈ A′ and
solve the arising passive transmission problem as described above. If we
detect infeasibility, then the passive transmission problem (4.1.1) is infeasible
because neglecting constraints (4.1.1c) means to consider a relaxation of
(4.1.1). Otherwise, if we obtain a feasible solution (q∗, π∗, p∗), then it is not
guaranteed that (q∗, π∗, p∗) is a feasible solution for the passive transmission
problem (4.1.1). In this case we proceed with the next step.

Step 2: From the previous discussion in Step 3 we know that the arc flow qa has a
unique solution for every arc a = (v, w) ∈ A′ which is not modeled by πv = πw.
Consequently, for a feasible solution (q∗, π∗, p∗) of the passive transmission
problem without constraints (4.1.1c) and a feasible solution (q′, π′, p′) of the
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passive transmission problem (including constraints (4.1.1c)) it holds q′a = q∗a
for every arc a = (v, w) ∈ A′ not modeled by πv = πw.
Let us now analyze the restrictions induced by constraints (4.1.1c) on the
solution space of the passive transmission problem without constraints (4.1.1c).
Recall that (4.1.1c) writes as 0 ≤ 0 for all arcs a = (v, w) ∈ A′ which are
modeled by πv = πw as Aa = 0 and ba = 0, see Section 3.2. For all other
arcs a ∈ A′ the previous argumentation implies that the feasible flow values
are given by q∗a. Let us now consider an arc a = (v, w) ∈ A′ and analyze the
constraints

Φ(q∗a) = πv−γaπw, Aa (q∗a, pv, pw)T ≤ 0, pv|pv| = πv, pw|pw| = πw. (4.5.2)

Below we are going to reformulate this as

Φ(q∗a) = πv − γaπw, (πv, πw) ∈
⋃
i

I(i)
a,v × I(i)

a,w. (4.5.3)

where I(i)
a,v, i = 1, . . . and I(i)

a,w, i = 1, . . . are disjoint intervals, respectively.
Then, after fixing the flows of all arcs a ∈ A′′ to q∗a and neglecting the
pressure variables pv, v ∈ V , we solve the equivalent formulation of the passive
transmission problem (4.1.1) which writes as

∃ q, π
s. t. πv − γaπw = Φa(q∗a) ∀ a = (v, w) ∈ A′′,

πv − πw = 0 ∀ a = (v, w) ∈ A′ \ A′′,
qa = q∗a ∀ a = (v, w) ∈ A′′,∑

a∈δ+
A′ (v)

qa −
∑

a∈δ−
A′ (v)

qa = dv ∀ v ∈ V,

∨
i

(πv, πw) ∈ I(i)
a,v × I(i)

a,w ∀ a = (v, w) ∈ A′,

πv ≤ πv ≤ πv ∀ v ∈ V,
q
a
≤ qa ≤ qa ∀ a ∈ A′,
πv ∈ R ∀ v ∈ V,
qa ∈ R ∀ a ∈ A′.

(4.5.4)

This problem is a disjunctive programming problem and its optimal solution
(q̃, π̃) yields a feasible solution (q̃, π̃, p̃) with p̃ := sgn(π)

√
|π| for the passive

transmission problem (4.1.1) if and only if the passive transmission problem
is feasible.
To complete this step, we show how (4.5.2) can be reformulated as (4.5.3).
First we rewrite (4.5.2) and reformulate the equalities to obtain equivalent
formulas

Aa (q∗a, pv, pw)T ≤ 0, pw = sgn(pv|pv| − Φa(q∗a))
√∣∣∣pv|pv| − Φa(q∗a)

∣∣∣, (4.5.5)

82



4.5. Solving the Passive Transmission Problem

pv

pw

g(pv)

P∗a

p′′w

p′w

p′′vp′v

Figure 4.4.: The figure is used to analyze the impact of the constraints (4.1.1c) on a feasible solution of the active
transmission problem without (4.1.1c). For this solution especially the flow value is available. Assume that we fix
this value and concentrate on the constraints (4.1.1b), (4.1.1c) and (4.1.1e). For a single arc they write as (4.5.2).
The figure shows the intersection of the polyhedron P∗a describing the feasible operation range for qa = q∗a with the
curve g(pv) determined by the equation Φ(q∗a) = πv − πw = pv |pv | − pw|pw|. In this case the intersection intervals
yield Aa(q∗a, pv , pw)T ≤ 0 : g(pv) = pw ⇔ (pv , pw) ∈ [p′v , p′′v ]× [p′w, p′′w] : g(pv) = pw.

describing the feasible pressures pv, pw of (4.5.2). We observe that the con-
straints Aa (q∗a, pv, pw)T ≤ 0 form a polyhedron P∗a . According to (4.5.5) the
feasible solution space of pv and pw is then given as an intersection of this
polyhedron P∗a with a curve defined by

g : pv 7→ sgn(pv|pv| − Φa(q∗a))
√∣∣∣pv|pv| − Φa(q∗a)

∣∣∣. (4.5.6)

This intersection, as illustrated in Figure 4.4, leads to intervals Ĩ(i)
a,v and Ĩ(i)

a,w

such that

(pv, pw) ∈ P∗a : g(pv) = pw ⇔ (pv, pw) ∈
⋃
i

Ĩ(i)
a,v × Ĩ(i)

a,w : g(pv) = pw

The computation of these intervals can be performed as follows: First we
compute all vertices u1, . . . , un of the polyhedron P∗a . We assume an order such
that ui and ui+1 are neighbored vertices for all i = 1, . . . , n−1. Considering two
neighbored vertices we check whether their connecting line segment intersects
the function (4.5.6). If this is the case, then we store the intersection point. As
a result we get a set of intersection points that we sort in non-decreasing order.
Two points consecutively limit feasible and infeasible regions alternately. From
a pair of these nodes limiting a feasible region we derive the intervals Ĩ(i)

a,v× Ĩ(i)
a,w.

From these intervals which limit the pressure variables p we derive intervals
I(i)
a,v × I(i)

a,w limiting the node potentials π by taking the relation p|p| = π into
account.
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Branch-and-bound, separation, and spatial branching

node of branching tree

feasible node with
MILP solution

infeasible NLP

feasible node
with fixed x, y

feasible NLP

feasible node
globally solved

infeasible NLP

infeasible node

infeasible node

NL
P

Figure 4.5.: Solution framework presented in Section 4.6. The topology optimization problem (3.2.1) is solved
with SCIP essentially by branch-and-bound, separation, and spatial branching, see Section 2.2. We adapt this
framework and solve globally the passive transmission problem (4.1.1) as discussed in Section 4.5, classify the
current node of the branching tree and prune it if possible.

4.6. Integration and Computational Results

In this chapter we focused on the topology optimization problem (3.2.1) arising from
the first type of network that we consider in this thesis. Recall that these networks
consist of pipes and valves only. In this case it holds y = y for our model (3.2.1).
The outline of the solution framework that we apply is shown in Figure 4.5. We solve
(3.2.1) by SCIP as described in Section 2.2. For each node of the branching tree we
check whether the solution of the LP relaxation yields integral values for the integral
variables. If this is the case, then we consider the corresponding passive transmission
problem (4.1.1). We solve this nonlinear optimization problem to global optimality
and further classify the current MILP feasible node. If the passive transmission
problem is feasible, then we obtain a global optimal solution for the current node
of the branching tree and SCIP itself prunes the node. Otherwise, if the passive
transmission problem is infeasible, and all integral variables are fixed by branching,
then we prune the current node of the branch-and-bound tree manually. If it is
not possible to solve the passive transmission problem globally due to numerical
troubles then we continue with branching.

We implemented the algorithms described in the previous section in C, i.e.,
domain relaxation (4.2.1), flow conservation relaxation (4.3.1), and the disjunctive
problem (4.5.4). The computational setup is described in Section 3.5. We compare
four strategies for solving the passive transmission problem (4.1.1).

1. The first strategy is to solve the topology optimization problem by SCIP
without any adaptations on the solver settings. All branching decisions are
up to the solver, and the topology optimization problem (3.2.1) is basically
solved by branch-and-bound, separation and spatial branching.
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2. The second strategy is to solve the topology optimization problem by SCIP
and enforce a certain branching priority rule, so that SCIP first branches on
binary variables x. Only after all these variables are fixed, it is allowed to
perform spatial branching on continuous variables.

3. The third strategy implements the domain relaxation from Section 4.2 for
solving the passive transmission problem (4.1.1). We consider the passive
transmission problem and apply presolve and then solve the LP relaxation.
If these solution methods detect infeasibility, then the passive transmission
problem is infeasible. Otherwise we proceed as described in Section 4.5 and use
the nonlinear solver IPOpt for solving the convex domain relaxation (4.2.1).
Additionally we set branching priorities according to the second strategy.

4. The fourth strategy uses the relaxation of the flow conservation constraints from
Section 4.3 for solving the passive transmission problem (4.1.1). Again, we first
presolve the passive transmission problem and then solve the LP relaxation.
If infeasibility is detected, then the passive transmission problem is infeasible.
Otherwise we proceed as described in Section 4.5 and use the nonlinear solver
IPOpt for solving the convex flow conservation relaxation (4.3.1). Additionally
we set branching priorities according to the second strategy.

We did not implement the flow-coupling-constraint relaxation (4.4.1) described in
Section 4.4, because the relaxation is non-convex, and thus a local solver cannot
guarantee to find a global optimal solution. This is necessary for pruning nodes of
the branch-and-bound tree. Further we note that presolving and solving the LP
relaxation is done efficiently by SCIP and hence included in strategy 3 and 4.

Computational Results
We consider those test instances described in Section 3.5 which belong to the first
type of network. These networks are net4 and net5 while we contract all arcs which
represent compressors and control valves. This means that we identify the end
nodes of these arcs. This way the networks consist of pipes and valves only. Note
that the instances become harder at first sight because the deleted active elements
do not enforce a fixed relation between the flow and the node potentials at their end
nodes compared to pipes. But on the other hand a possible flow bound enforcing a
positive arc flow through a compressor is removed by this contraction. In this sence
the instances are relaxed and easier to solve.

We have 52 nominations in total. For every pipe a of these networks it holds
αa > 0 and Aa = 0, ba = 0. Hence solving the passive transmission problem in
the third and fourth strategy means solving the convex domain relaxation (4.2.1)
and flow conservation relaxation (4.3.1), respectively. It is not necessary to solve
(4.5.4) in advance as described in Section 4.5. Furthermore these networks do not
contain any compressors and control valves (as they are contracted). So fixing all
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strategy 1 2 3 4 all
solved instances 24 30 45 46 46

Table 4.1.: Summary of the Tables A.4 and A.5 showing the globally solved instances out of 52 nominations in
total. The third strategy globally solves all instances which are solved to global optimality by the second and the
first strategy.

(A,B) = (2,3) (A,B) = (4,3)
solved(30) incomp.(1) solved(45) incomp.(4)

time [s] nodes gap [%] time [s] nodes gap [%]
strategy A 25.9 1,038 15 66.2 827 141
strategy B 7.2 147 15 33.1 746 122
shifted geom. mean −72% −86% 0% −50% −10% −13%

Table 4.2.: Run time, number of branch-and-bound nodes and gap comparison for the strategies 2 and 3 and
additionally 4 and 3 (aggregated results). The columns “solved” contain mean values for those instances globally
solved by both strategies A and B. The columns “incomplete” show mean values for those instances having a
primal feasible solution available but were not globally solved by both strategies A and B. The underlying data
are available in Tables A.4 and A.5.

binary variables of the topology optimization problem (3.2.1) yields the passive
transmission problem (4.1.1) as assumed in this chapter.

For the computations we imposed a time limit of 39 600 s and used the com-
putational setup described in Section 3.5. The results are available in Table A.4
and Table A.5. A summary is shown in Table 4.1 and Table 4.2. Here we use
the geometric mean of run time, number of branch-and-bound nodes and gap as
described in Section 3.5.

Table 4.1 shows a clear order of the four strategies: Strategy 1 solves less instances
than strategy 2. We conclude that branching priorities as set by the second strategy
are a first step to improve the solving performance of SCIP. Approximately 57%
of the instances (30 out of 52) are solved to global optimality by strategy 2. These
instances are also globally solved by strategy 3. Additionally around 29% more
instances of the test set (15 out of 52) are solved to global optimality compared to
the second strategy. The fourth strategy solves one more instance than the third
strategy.

Table 4.2 shows that the third strategy is two times faster than the fourth
one while the the number of nodes is only reduced by 10%. Figure 4.6 yields an
explanation. One can see that the run time for the domain relaxation is one order
of magnitude lower than for the flow conservation relaxation. We depict only those
instances that were solved by IPOpt, but not those that were detected as infeasible
during the presolve. In average the gap is reduced by 13% following strategy 3 in
comparison to strategy 4 on those instances which remain with a finite positive
gap value following both strategies. As both strategies solve globally nearly the
same number of instances we conclude that the domain relaxation (4.2.1) described
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Figure 4.6.: Run time comparison for the domain relaxation (4.2.1) and the flow conservation relaxation (4.3.1) on
instances of the networks net4 and net5. The two crosses above the straight line belong to passive transmission
problems where the domain relaxation had numerical troubles.

in Section 4.2 for solving the passive transmission problem (4.1.1) yields the most
efficient results comparing strategy 3 and 4. Hence we decided to use strategy 3 in
our practical application.

In order to demonstrate the benefit of strategy 3 we finally compare it with the
second strategy. Recall from the previous analysis that the third strategy solves
approximately 29% more instances to global optimality. Table 4.2 shows that
strategy 3 saves 72% of run time and 86% of nodes in comparison to strategy 2.
The savings in terms of number of nodes are higher than the run time reduction due
to the following reason: the relaxations are set up and the nonlinear solver IPOpt
has to be called. In summary we conclude that more instances are globally solved
and less run time is needed.

Figure 4.7 summarizes the run time results of the four strategies in a performance
plot. The four graphs show the share of instances (in per cent) that could be solved
within a time limit of 39 600 s. Evaluating Figure 4.7 shows a result coherent to
our previous observations: the graphs for SCIP (strategy 1 and 2) are below the
graph for the flow conservation relaxation, which is below the graph for the domain
relaxation. Figure 4.8 shows a consistent result. It shows a scatter plot comparing
the run times of the second and the third strategy (the best strategy following
spatial branching vs. the best strategy using the convex relaxations of this chapter).
The run time of many instances is reduced when using the third strategy.

We refer to Humpola et al. (2014a) where we carried out a computational study
for different nominations on the real-world network net6 by applying the results
of this chapter. This network contains compressors and control valves. Therefor
we discretized the feasible solution space of these active elements so that ya,i ∈ Z
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holds for every arc (a, i) ∈ AX . Recall that y are continuous variables in our
model. So fixing binary and discrete variables x and y in the topology optimization
problem (3.2.1) yields the passive transmission problem. Additionally a method
is presented which computes the coefficients αa for each compressor and control
valve a ∈ A according to this discretization. The computational results show large
running times that increase further with the number of discretizations. A large
number of discretizations is in turn necessary to reduce the approximation error for
compressors and control valves. We conclude that the algorithms of this chapter
are mainly useful for networks containing only pipelines and valves.

Summary

We presented different solution methods for the passive transmission problem. They
allow to speed up the solution process of the topology optimization problem in the
case y = y. This case includes the first type of network of our test instances, namely
those which contain only pipes and valves. From the computational results we
conclude that a strategy which is based on solving the domain relaxation yields the
most convincing results. This strategy shows faster computation times in comparison
to SCIP. On average the run time is reduced by 72% in comparison to SCIP with
branching priorities set. Approximately 29% more instances of the test set are also
solved to global optimality compared to the solver SCIP. Therefore in our practical
applications we use the domain relaxation method for networks that contain only
pipes and valves.

Let us now try to understand the reason for the performance of SCIP. Therefor
we considered a specific part of the solution process for a test instance. We analyzed
the computational effort for handling the nonlinear equations of our model that are
associated with pipes. As a result we collected all cutting planes that are generated
during the branch-and-bound process for each pipe individually. The result for one
single pipe is visualized in Figure 4.9.

Many inequalities are required for the approximation of the convex part of the
function qa 7→ αa qa|qa|ka . We conclude that the use of nonlinear solvers on specific
nodes of branch-and-bound reduces the computational effort in handling nonlinear
equations compared to spatial branching.
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Figure 4.7.: Performance plot for different nominations on the networks net4 and net5 (aggregated) and a time
limit of 39 600 s. The different strategies are described in Section 4.6. Strategy 1 and 2 mainly consist of SCIP.
Strategies 3 and 4 also correspond to SCIP together with our elaborated solution methods presented in this chapter.
The underlying data are available in Tables A.4 and A.5.
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Figure 4.8.: Run time comparison for different nominations on the networks net4 and net5. Each cross (×)
corresponds to a single instance of the test set. Note that multiple crosses are drawn in the upper right corner of
the plots that cannot be differed. They represent those instances that ran into the time limit of 39 600 s for both
strategies. The underlying data are available in Tables A.4 and A.5.
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Figure 4.9.: Handling the nonlinearity during the branch-and-bound process. For handling the nonlinear function
qa 7→ αa qa|qa| of a single pipe a with αa = 1/37 700, cutting planes were generated for all marked points.
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Chapter 5.

An Improved Benders Cut for the Topology
Optimization Problem

In Chapter 4 we presented two convex relaxations (4.2.1) and (4.3.1) of the passive
transmission problem (4.1.1). Both allowed us to solve the passive transmission
problem efficiently and thereby reduce the use of time consuming spatial branching
when solving the topology optimization problem (3.2.1). We focused on the case
y = y which includes networks containing only pipes and valves. These networks
are the first type of network which we consider in this thesis. We now focus on
the second type of gas network which additionally contains loops or rather parallel
pipes. Again we restrict to the case y = y.

In this chapter we show that a KKT point of the previously mentioned relaxations
can be used to generate a new linear inequality for (3.2.1). By fixing all integral
variables in (3.2.1) we obtain the passive transmission problem. Whenever one of the
relaxations (4.2.1) and (4.3.1) of the passive transmission problem is solved during
the branch-and-bound process and when we conclude that the passive transmission
problem is infeasible, then we dynamically add such an inequality to the problem
formulation. This act allows to solve approximately 13% more instances of the
second type of network to global optimality within our given time limit. For
those instances which are already solvable by SCIP the run time is reduced by
approximately 33%.

The linear inequality that we are going to present contains only binary variables.
When fixing the discrete variables to those values leading to the passive transmission
problem from which the inequality is derived, then it reflects the infeasibility of
the corresponding passive transmission problem, i.e., it is violated if and only if
the passive transmission problem is infeasible. As the inequality does not contain
any continuous variable we are reminded of generalized Benders decomposition (see
Geoffrion 1972). Here the master problem would consist of the integral variables
and the constraints containing only integral variables and we would write it as
min{cx | x ∈ X , x ∈ {0, 1}AX}. Each subproblem would be a feasibility problem
equal to the passive transmission problem (4.1.1). Nevertheless, we do not follow
this decomposition approach, but restart the overall branch-and-bound process after
a predefined number of inequalities is generated.

The inequality presented in this chapter is obtained by a Benders argument from
the Lagrange function of the domain relaxation (4.2.1) augmented by a specially
tailored pc-regularization. This regularization is necessary to derive a globally
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valid cut. A certain choice of the Lagrange multipliers finally yields the described
properties. Hence we consider our inequality as an improved Benders cut.

The outline of this chapter is as follows: In Section 5.1 we present a linear
inequality for the passive transmission problem (4.1.1) which represents its feasibility.
In Section 5.2 we derive an extended formulation of this inequality which is then
valid for the topology optimization problem (3.2.1). Computational results are given
in Section 5.3. They show the benefit of our inequalities when added to the topology
optimization problem (3.2.1).

5.1. Valid Inequalities for the Passive Transmission
Problem

Let us consider the passive transmission problem which is obtained from the topology
optimization problem (3.2.1) by fixing all integral and continuous variables x and y.
Recall that the variables y are fixed for the networks considered in this chapter. In
Section 5.1.1 we first formulate a valid nonlinear inequality for this problem. This
inequality bases on the definition of a dual transmission flow (see Definition 5.1.1).
In Section 5.1.2 we explain how to obtain a linear inequality, which is constant
on both sides and valid for the passive transmission problem. The choice of the
parameters of the linear inequality is discussed in Section 5.1.3. In Section 5.1.4 we
explain the relation between the linear inequality that we derive in this section and
the Lagrange function of the domain relaxation (4.2.1).

Throughout this section let A′ contain all arcs such that the flow is not fixed
to zero, i.e., A′ := {(a, i) ∈ AX | xa,i = 1, i > 0}. We review the domain
relaxation (4.2.1) to improve readability:

min
∑
v∈V

∆v +
∑
a∈A′

∆a (5.1.1a)

s. t. αa qa|qa|ka − β̃a − (πv − γaπw) = 0 ∀ a = (v, w) ∈ A′, (5.1.1b)∑
a∈δ+

A′ (v)
qa −

∑
a∈δ−

A′ (v)
qa = dv ∀ v ∈ V, (5.1.1c)

πv −∆v ≤ πv ∀ v ∈ V, (5.1.1d)

πv + ∆v ≥ πv ∀ v ∈ V, (5.1.1e)

qa −∆a ≤ qa ∀ a ∈ A′, (5.1.1f)

qa + ∆a ≥ q
a

∀ a ∈ A′, (5.1.1g)

πv ∈ R ∀ v ∈ V, (5.1.1h)

qa ∈ R ∀ a ∈ A′, (5.1.1i)

∆v ∈ R≥0 ∀ v ∈ V, (5.1.1j)

∆a ∈ R≥0 ∀ a ∈ A′. (5.1.1k)
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Let us turn to the definition of a dual transmission flow. Therefor we write
Φa(qa) := αa qa|qa|ka − β̃a and recall the Lagrange function of this problem as

L(q, π,∆, µ, λ) =
∑
v∈V

∆v +
∑
a∈A′

∆a (5.1.2)

+
∑

a=(v,w)∈A′
µa

(
Φa(qa)− (πv − γaπw)

)

+
∑
v∈V

µv

dv − ∑
a∈δ+

A′ (v)
qa +

∑
a∈δ−

A′ (v)
qa


+
∑
v∈V

(
λ+
v (πv −∆v − πv) + λ−v (πv − πv −∆v)

)
+
∑
a∈A′

(
λ+
a (qa −∆a − qa) + λ−a (q

a
− qa −∆a)

)
−
∑
v∈V

λv∆v −
∑
a∈A′

λa∆a.

In Section 4.2.3 we showed that the dual values of a KKT point (q∗, π∗,∆∗, µ∗, λ∗)
of domain relaxation (4.2.1), which is indexed in this chapter by (5.1.1), form a
network flow (µ∗a)a∈A′ , which is induced by dual node potentials (µ∗v)v∈V . We recall
the constraints (4.2.7) that are fulfilled by the dual variables (µ∗, λ∗):

µa
dΦa

dqa
(q∗a) + λ+

a − λ−a = µv − µw ∀ a = (v, w) ∈ A′, (5.1.3a)
∑

a∈δ+
A′ (v)

µa −
∑

a∈δ−
A′ (v)

µaγa = λ+
v − λ−v ∀ v ∈ V. (5.1.3b)

Relation (5.1.3b) is the basis for the inequalities that we consider in this chapter.
Therefor we give the following definition:

Definition 5.1.1:
Every vector (µ, λ) = (µv, µa, λ+

v , λ
−
v , λ

+
a , λ

−
a )v∈V,a∈A, such that µv, µa ∈ R and

λ+
v , λ

−
v , λ

+
a , λ

−
a ∈ R≥0, which fulfills the constraints

∑
a∈δ+

A(v)
µa −

∑
a∈δ−A (v)

γaµa = λ+
v − λ−v ∀ v ∈ V, (5.1.4)

is called dual transmission flow. We regard the vector (µa)a∈A of this dual
transmission flow as a generalized flow in the original network (V,A).

In the remainder of this section we do not differ between an arc a ∈ A and the
corresponding arc a′ = (a, i) ∈ A′. For a dual transmission flow (µ, λ) this implies
that we speak of µa′ which is defined as µa′ := µa for a ∈ A and a′ = (a, i) ∈ A′.
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5.1.1. A Nonlinear Inequality
In the next two lemmata we derive two different inequalities for the passive transmis-
sion problem (4.1.1). They both only contain the flow variables q. The right-hand
side of both inequalities is constant. The left-hand side of the first inequality is
a non-convex function in q while the left-hand side of the second inequality is
quasi-convex in q. We will consider a linear combination of both inequalities which
then allows to project out the flow variables q as described in Section 5.1.2.

The first inequality is derived from any dual transmission flow.

Lemma 5.1.2:
For any dual transmission flow (µ, λ) with µa = 0 for all arcs a /∈ A′, the inequality
in q ∑

a∈A′
µa Φa(qa) ≤

∑
v∈V

(
λ+
v πv − λ−v πv

)
is valid for the passive transmission problem (4.1.1).

Proof. We prove the following estimation which is valid for any solution (q∗, π∗) of
the passive transmission problem (4.1.1):∑

a∈A′
µaΦa(qa) =

∑
a=(v,w)∈A′

µa(πv − γaπw) (5.1.5a)

=
∑
v∈V

πv

 ∑
a∈δ+

A′ (v)
µa −

∑
a∈δ−

A′ (v)
γaµa

 (5.1.5b)

=
∑
v∈V

πv

 ∑
a∈δ+

A(v)
µa −

∑
a∈δ−A (v)

γaµa

 (5.1.5c)

=
∑
v∈V

πv (λ+
v − λ−v ) (5.1.5d)

≤
∑
v∈V

(λ+
v πv − λ−v πv). (5.1.5e)

To obtain (5.1.5a) we multiply equation (4.1.1b) by µa and sum over all arcs a ∈ A′.
Then we rewrite the right-hand side by changing the order of summation and
obtain (5.1.5b). Note that all arcs a ∈ A\A′ have µa = 0, hence they can be
added and we obtain (5.1.5c). We use equation (5.1.4) in Definition 5.1.1 of a dual
transmission flow and obtain (5.1.5d). Finally we estimate the right-hand side and
obtain (5.1.5e).

Remark 5.1.3:
We briefly explain the practical meaning of the inequality of Lemma 5.1.2. Therefor
let (µ, λ) be a dual transmission flow with µa = 0 for all arcs a /∈ A′. Furthermore
we assume µ ≥ 0 and γa = 1, a ∈ A for this explanation. We split the network
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flow µ into sets of flow along paths P1, . . . , Pm and flow along circuits C1, . . . , Cn,
see Theorem 4.2.5. This way we obtain flow values µPi > 0, i = 1, . . . ,m and
µCi > 0, i = 1, . . . , n such that

µa =
∑

i=1,...,m:
a∈A′(Pi)

µPi +
∑

i=1,...,n:
a∈A′(Ci)

µCi ∀ a ∈ A′

holds. We use this equation and denote the start and end node of Pi by s(Pi) and
t(Pi) to write the inequality of Lemma 5.1.2 in a different way. For any primal
solution (q∗, π∗) of the passive transmission problem it holds

m∑
i=1

µPi
(
πs(Pi) − πt(Pi)

)
=

m∑
i=1

µPi

=πs(Pi)−πt(Pi)︷ ︸︸ ︷∑
a∈A′(Pi)

Φa(qa) +
n∑
i=1

µCi

=0︷ ︸︸ ︷∑
a∈A′(Ci)

Φa(qa)

=
∑
a∈A′

Φa(qa)
∑

i:a∈A′(Pi)
µPi +

∑
a∈A′

Φa(qa)
∑

i:a∈A′(Ci)
µCi

=
∑
a∈A′

Φa(qa)µa

≤
∑
v∈V

(
λ+
v πv − λ−v πv

)
=

n∑
i=1

µPi
(
πs(Pi) − πt(Pi)

)
.

In this argumentation we used the pressure conservation along circuits, i.e., the sum
of potential differences along a circuit equals zero. We conclude that Lemma 5.1.2
presents a valid inequality for the passive transmission problem that requires the
weighted sum of the potential losses π∗s(Pi) − π

∗
t(Pi) along the paths Pi to be bounded

by the weighted sum of the available potential losses πs(Pi) − πt(Pi) along these paths.

Now we turn to the second inequality. For the next lemma we make use of γr,v
and the function π′ from Definition 4.2.3, and recall the reformulation (4.2.5):

π′v(π)− π′w(π) = γr,v (πv − γaπw).

For abbreviations we defined π′v := π′v(π) and π′v := π′v(π) for each node v ∈ V .
Furthermore we set

Φ′a(qa) := γr,vΦa(qa) (5.1.6)

for every arc a = (v, w) ∈ A′.

Lemma 5.1.4:
Let q∗ ∈ RA′, ∆±v ∈ R≥0, v ∈ V , and ∆±a ∈ R≥0, a ∈ A′ be vectors such that the flow
conservation

∑
a∈δ+

A′ (v)
(q∗a − (∆+

a −∆−a ))−
∑

a∈δ−
A′ (v)

(q∗a − (∆+
a −∆−a ))− (∆+

v −∆−v ) = dv
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is fulfilled. Then the inequality in q∑
a=(v,w)∈A′

γr,v(qa − q∗a) Φa(qa)

≤
∑
v∈V

(∆−v π′v −∆+
v π
′
v) +

∑
a∈A′

(∆−a Φ′a(qa)−∆+
a Φ′a(qa))

is valid for the passive transmission problem (4.1.1)

Proof. Let (q′, π′) be a feasible solution of the passive transmission problem (4.1.1).
By (4.1.1d) the flow vector q′ fulfills the flow conservation∑

a∈δ+
A′ (v)

qa −
∑

a∈δ−
A′ (v)

qa = dv

for all nodes v ∈ V . From this we derive that q′ is feasible for∑
a∈δ+

A′ (v)
(qa − q∗a)−

∑
a∈δ−

A′ (v)
(qa − q∗a) =

(∆−v −∆+
v ) +

∑
a∈δ+

A′ (v)
(∆−a −∆+

a )−
∑

a∈δ−
A′ (v)

(∆−a −∆+
a )

for all nodes v ∈ V . We multiply each side by π′v(π), take the sum over all nodes
v ∈ V and obtain: ∑

a=(v,w)∈A′
(qa − q∗a)(π′v(π)− π′w(π))

=
∑
v∈V

π′v(π)(∆−v −∆+
v ) +

∑
a=(v,w)∈A′

(∆−a −∆+
a )(π′v(π)− π′w(π))

≤
∑
v∈V

(π′v(π)∆−v − π′v(π)∆+
v ) +

∑
a∈A′

(∆−a −∆+
a ) Φ′a(qa)

≤
∑
v∈V

(π′v∆−v − π′v∆+
v ) +

∑
a∈A′

(∆−a Φ′a(qa)−∆+
a Φ′a(qa)).

The estimations are obtained by taking the lower and upper bounds on π′v(π) and
qa into account. We use this estimation to obtain from (4.1.1b) and (4.2.5)∑

a=(v,w)∈A′
γr,v(qa − q∗a) Φa(qa)

=
∑

a=(v,w)∈A′
(qa − q∗a)γr,v(πv − γaπw)

=
∑

a=(v,w)∈A′
(qa − q∗a)(π′v(π)− π′w(π))

≤
∑
v∈V

(π′v∆−v − π′v∆+
v ) +

∑
a∈A′

(∆−a Φ′a(qa)−∆+
a Φ′a(qa)).

Hence every primal solution of the passive transmission problem fulfills the inequality
of the Lemma.
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Remark 5.1.5:
We briefly explain the practical meaning of the inequality of Lemma 5.1.4. Therefor
let q∗ fulfill the flow conservation constraint. Furthermore we assume γa = 1, a ∈ A
for this explanation. For any feasible solution (q̃, π̃) for the passive transmission
problem we obtain that q̃ − q∗ forms a circulation. In this case the inequality of
Lemma 5.1.4 writes as ∑

a=(v,w)∈A′
(q̃a − q∗a) Φa(qa) ≤ 0

Let us assume that q̃ ≥ q∗. We split this network flow into sets of flow along circuits
C1, . . . , Cn, see Theorem 4.2.5. We obtain flow values µCi > 0, i = 1, . . . , n such
that

q̃a − q∗a =
∑

i=1,...,n:
a∈A′(Ci)

µCi ∀ a ∈ A′

holds. We use this equation to obtain

∑
a=(v,w)∈A′

(q̃a − q∗a) Φa(q̃a) =
∑
a∈A′

Φa(q̃a)
∑

i:a∈A′(Ci)
µCi =

n∑
i=1

µCi
∑

a∈A′(Ci)
Φa(q̃a).

We conclude that Lemma 5.1.4 presents a valid inequality for the passive transmission
problem which requires the weighted sum of the potential losses along the circuits Ci
to be bounded by zero. Obviously a true statement because the loss of potential along
a circuit equals zero.

Now we consider a linear combination of both inequalities from the previous two
Lemmata 5.1.2 and 5.1.4:

Corollary 5.1.6:
Let (µ, λ) be a dual transmission flow with µa = 0 for all arcs a /∈ A′. Furthermore
let q∗ ∈ RA′, ∆±v ∈ R≥0, v ∈ V , and ∆±a ∈ R≥0, a ∈ A′ be vectors such that the flow
conservation∑

a∈δ+
A′ (v)

(q∗a − (∆+
a −∆−a ))−

∑
a∈δ−

A′ (v)
(q∗a − (∆+

a −∆−a ))− (∆+
v −∆−v ) = dv

is fulfilled. Then for any ζ ∈ [0, 1] the inequality in q∑
a∈A′

(ζ γr,v (qa − q∗a) + (1− ζ)µa) Φa(qa)

≤ ζ
∑
v∈V

(∆−v π′v −∆+
v π
′
v) + ζ

∑
a∈A′

(∆−a Φ′a(qa)−∆+
a Φ′a(qa))

+(1− ζ)
∑
v∈V

(λ+
v πv − λ−v πv)

(5.1.7)

is valid for the passive transmission problem (4.1.1).
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Proof. The inequality is a linear combination of the inequalities from Lemma 5.1.2
and Lemma 5.1.4.

It is easy to see that the inequality from Lemma 5.1.4 is used to circumvent un-
boundedness of the left-hand-side of (5.1.7). Hence we regard this second inequality
as a regularization. It allows us to use a linear underestimator for the left-hand-side
of inequality (5.1.7) in the ongoing part of this chapter. As this regularization
expresses the conservation of potential along circuits by Remark 5.1.5 we call it the
pc-regularization.

5.1.2. A Linear Inequality
So far we derived a nonlinear inequality stated in Corollary 5.1.6 which is valid
for the passive transmission problem (4.1.1). In principle, it would be possible
to add this inequality to the topology optimization problem (3.2.1) at different
nodes of the branch-and-bound tree. But this act would increase the number of
nonlinearities of the model. Hence, in the following, we describe how to derive
a linear inequality. Therefor we will use a certain linear underestimator for the
left-hand side of inequality (5.1.7). This left-hand side is a sum of functions in qa
over the arcs a ∈ A′. We consider each of these functions

fζ,q∗,µ(qa) := (ζ γr,v(qa − q∗a) + (1− ζ)µa) Φa(qa)
separately and give a linear underestimator. For the underestimation we use the
function

`ζ,π,µ,λ(qa) := ζ (π′v(π)− π′w(π)) qa + (1− ζ)(µv − µw − λ+
a + λ−a ) qa

for an arc a = (v, w) ∈ A′. This function is used to linearize inequality (5.1.7) as
follows:

Lemma 5.1.7:
Let (µ, λ) be dual transmission flow with µa = 0 for all arcs a /∈ A′. Let q∗ ∈ RA′,
π∗ ∈ RV , ∆±v ∈ R≥0, v ∈ V , and ∆±a ∈ R≥0, a ∈ A′ be vectors such that the flow
conservation∑

a∈δ+
A′ (v)

(q∗a − (∆+
a −∆−a ))−

∑
a∈δ−

A′ (v)
(q∗a − (∆+

a −∆−a ))− (∆+
v −∆−v ) = dv

is fulfilled for each node v ∈ V . Furthermore let ζ ∈ [0, 1]. Then for constants
τa := inf{fζ,q∗,µ(qa)− `ζ,π∗,µ,λ(qa) | qa ≤ qa ≤ qa} for each arc a ∈ A′ the inequality∑

a∈A′
τa ≤

ζ

∑
v∈V

(∆−v π′v −∆+
v π
′
v) +

∑
a∈A′

(∆−a Φ′a(qa)−∆+
a Φ′a(qa))−

∑
v∈V

dvπ
′
v(π∗)


+(1− ζ)

∑
v∈V

(
λ+
v πv − λ−v πv

)
+
∑
a∈A′

(
λ+
a qa − λ−a qa

)
−
∑
v∈V

dvµv


(5.1.8)
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is valid for the passive transmission problem (4.1.1).

Remark 5.1.8:
We note that the unfixed variables in the passive transmission problem are flow
variables q and node potentials π. These variables are not contained in inequal-
ity (5.1.8). Thus inequality (5.1.8) is constant on both sides, left- and right-hand
side, and hence linear. If the inequality is violated, then the passive transmission
problem is infeasible.

Using the underestimator `(qa) to reformulate (5.1.7) we obtain inequality (5.1.8)
which depends on the dual transmission flow (µ, λ) and other parameters q∗, π∗, ∆,
and ζ. The choice of these parameters such that (5.1.8) represents the infeasibility
of the passive transmission problem (4.1.1) will be discussed in Section 5.1.3.

Proof. [Lemma 5.1.7 ] Let τa := inf{fζ,q∗,µ(qa) − `ζ,π∗,µ,λ(qa) | qa ≤ qa ≤ qa} for
each arc a ∈ A′. We consider inequality (5.1.7) of Corollary 5.1.6. By the definition
of τa we obtain the underestimator for each summand on the left-hand side as

fζ,q∗,µ(qa) ≥ τa + `ζ,π∗,µ,λ(qa)
≥ τa + ζ (π′v(π∗)− π′w(π∗)) qa + (1− ζ)(µv − µw − λ+

a + λ−a ) qa.

We rewrite the underestimator. Each flow vector q′ which is feasible for (4.1.1)
fulfills the flow conservation constraint∑

a∈δ+
A′ (v)

qa −
∑

a∈δ−
A′ (v)

qa = dv.

Multiplying this equation with π′v(π∗) and summing over the nodes v ∈ V we obtain
that q′ is feasible for

ζ
∑

a=(v,w)∈A′
(π′v(π∗)− π′w(π∗)) qa = ζ

∑
v∈V

dvπ
′
v(π∗) (5.1.9)

and multiplying the flow conservation constraint with µv and summing over the
nodes v ∈ V we derive

(1− ζ)
∑

a=(v,w)∈A′
(µv − µw) qa = (1− ζ)

∑
v∈V

dvµv. (5.1.10)

Using the reformulations (5.1.9), (5.1.10) we obtain that q′ is feasible for∑
a∈A′

fζ,q∗,µ(qa)

≥
∑
a∈A′

τa + ζ
∑
v∈V

dvπ
′
v(π∗) + (1− ζ)

∑
v∈V

dvµv − (1− ζ)
∑
a∈A′

(λ+
a − λ−a )qa.

(5.1.11)

We use the lower and upper bounds on qa to obtain

(1− ζ)
∑
a∈A′

(λ+
a − λ−a )qa ≤ (1− ζ)

∑
a∈A′

(λ+
a qa − λ−a qa).
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Now (5.1.11) writes as ∑
a∈A′

τa ≤∑
a∈A′

fζ,q∗,µ(qa) + (1− ζ)
∑
a∈A′

(λ+
a qa − λ−a qa)− ζ

∑
v∈V

dvπ
′
v(π∗)− (1− ζ)

∑
v∈V

dvµv.

Inequality (5.1.7) of Corollary 5.1.6 yields an over estimator for ∑a∈A′ fζ,q∗,µ(qa).
Applying this over estimator proves the lemma.

5.1.3. Feasibility Characterization by a Linear Inequality
So far we proved that inequality (5.1.8) is valid for the passive transmission prob-
lem (4.1.1). The upcoming question is how to choose the dual transmission flow
(µ, λ) and the parameters q∗, π∗,∆, ζ in order to obtain an inequality that represents
the infeasibility of the passive transmission problem. We want to obtain an inequal-
ity that is violated if the passive transmission problem is infeasible. Therefor, as
stated in Definition 5.1.11, we derive a dual transmission flow from a KKT point of
the domain relaxation (4.2.1) or the flow conservation relaxation (4.3.1) and discuss
a suitable choice of the parameters q∗, π∗,∆, ζ.

The first lemma describes the choice of the parameter ζ for inequality (5.1.8)
for the case that the dual transmission flow (µ, λ) and the parameters q∗ and π∗ are
given. The results are important for the subsequent lemmata of this section.

Lemma 5.1.9:
Let (q∗, π∗,∆∗, µ∗, λ∗) be a KKT point of the domain relaxation (5.1.1) or the flow
conservation relaxation (4.3.1). Let ζ ∈]0, 1] such that the following conditions hold
for every arc a = (v, w) ∈ A′:

1. if µa q∗a > 0, then (1− ζ)|µ∗a| < ζ γr,v|q∗a|,

2. if µa q∗a < 0, then (1− ζ) |µ∗v − µ∗w − λ∗a+ + λ∗a
−| < ζ γr,v|π∗v − γaπ∗w − β̃a|,

3. if µa q∗a = 0, then (1− ζ)µ∗a = 0.

Then the minimum of the function

fζ,q∗,µ∗(qa)− `ζ,π∗,µ∗,λ∗(qa) (5.1.12)

is attained at q∗a for every arc a ∈ A′.

Remark 5.1.10:
It is not guaranteed that a value ζ ∈]0, 1] exists which fulfills the conditions of
Lemma 5.1.9.

Proof. [Lemma 5.1.9 ] Let (q∗, π∗,∆∗, µ∗, λ∗) be a KKT point of the domain
relaxation (5.1.1) or the flow conservation relaxation (4.3.1). Let ζ ∈]0, 1] such

100



5.1. Valid Inequalities for the Passive Transmission Problem

that conditions 1, 2 and 3 are fulfilled for every arc a ∈ A′. We consider an arc
a = (v, w) ∈ A′ and write the derivative of function (5.1.12) as

f ′ζ,q∗,µ∗(qa)− `′ζ,π∗,µ∗,λ∗(qa)

= ζ γr,v

(
(qa − q∗a)

dΦa

dqa
(qa) + Φa(qa)

)
+ (1− ζ)µ∗a

dΦa

dqa
(qa)

− ζ (π′v(π∗)− π′w(π∗))− (1− ζ)(µ∗v − µ∗w − λ∗a
+ + λ∗a

−).

We set qa = q∗a and obtain from (5.1.1b), (4.3.1b), Lemma 4.2.11 and Lemma 4.3.7
and the relation (4.2.5)

f ′ζ,q∗,µ∗(q∗a)− `′ζ,π∗,µ∗,λ∗(q∗a) = ζ (γr,vΦa(q∗a)− (π′v(π∗)− π′w(π∗)))

+ (1− ζ)
(
µ∗a

dΦa

dqa
(q∗a)− (µ∗v − µ∗w − λ∗a

+ + λ∗a
−)
)

= ζ γr,v(Φa(q∗a)− π∗v + γaπ
∗
w)

+ (1− ζ)
(
µ∗a

dΦa

dqa
(q∗a)− (µ∗v − µ∗w − λ∗a

+ + λ∗a
−)
)

= 0 + 0.

This implies that function (5.1.12) has an extreme point for qa = q∗a.
We still have to prove that the point qa = q∗a is a global minimum of (5.1.12)

for the choice of ζ. We write function (5.1.12) as g(qa)− h(qa) where g and h are
defined as

g(qa) : = (
=:b>0︷ ︸︸ ︷
ζ γr,v qa +

=:c︷ ︸︸ ︷
(1− ζ)µ∗a − ζ γr,vq∗a)αa qa|qa|ka −

=:d︷ ︸︸ ︷
((1− ζ)µ∗a − ζγr,vq∗a)β̃a

= (bqa + c)αa qa|qa|ka − d

and

h(qa) := ζγr,v(π∗v − γaπ∗w + β̃a) qa + (1− ζ)(µ∗v − µ∗w − λ+
a
∗ + λ−a

∗) qa.

In the case αa = 0 it follows that g(qa) is constant and (5.1.1b) and (5.1.3a) imply
h(qa) ≡ 0. This implies that q∗a is a global minimum of (5.1.12). To prove this for
the case αa > 0 we briefly show that the choice of ζ means that g(qa) and h(qa)
have the form as indicated in Figure 5.1 depending on the value of q∗a. This implies
that g(qa)− h(qa) is a convex function. In combination with our previous analysis
we obtain that g(qa)− h(qa) has a global optimum at qa = q∗a.

In the following we characterize g(qa) and show c < 0 if q∗a > 0, c > 0 if q∗a < 0
and c = 0 if q∗a = 0. This then proves that g(qa) has the form as shown in Figure 5.1.
We distinguish three cases:

Case q∗a > 0: It holds c = (1− ζ)µ∗a − ζ γr,vq∗a < 0:
• If µ∗a ≤ 0 then it holds (1− ζ)µ∗a ≤ 0,−ζ γr,vq∗a < 0. Note that ζ 6= 0.
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qa

g(qa)

h(qa)
(a) Case q∗a > 0.

qa
g(qa)

h(qa)
(b) Case q∗a = 0.

qa

g(qa)
h(qa)

(c) Case q∗a < 0.

Figure 5.1.: Visualization of the functions g(qa) and h(qa) defined in the proof of Lemma 5.1.9 for different values
of q∗a and αa > 0.

• If µ∗a > 0 then it follows from assumption 1 that (1−ζ)µ∗a = (1−ζ)|µ∗a| <
|ζ γr,vq∗a| = ζ γr,vq

∗
a.

Case q∗a = 0: It holds c = (1− ζ)µ∗a − ζ γr,vq∗a = 0 because (1− ζ)µ∗a = 0 holds by
assumption 3.

Case q∗a < 0: It holds c = (1− ζ)µ∗a − ζ γr,vq∗a > 0:
• If µ∗a ≥ 0 then it holds (1− ζ)µ∗a ≥ 0,−ζ γr,vq∗a > 0. Note that ζ 6= 0.
• If µ∗a < 0 then it follows from assumption 1 that−(1−ζ)µ∗a = (1−ζ)|µ∗a| <
|ζ γr,vq∗a| = −ζ γr,vq∗a and hence (1− ζ)µ∗a > ζ γr,vq

∗
a.

We now turn to the analysis of h(qa).

Case q∗a > 0: It holds ζγr,v(π∗v − γaπ∗w − β̃a) + (1 − ζ)(µ∗v − µ∗w − λ+
a
∗ + λ−a

∗) > 0:
From (5.1.1b) it follows π∗v − γaπ∗w − β̃a > 0.

• If µ∗a ≥ 0 then it holds µ∗v − µ∗w − λ+
a
∗ + λ−a

∗ ≥ 0 by (5.1.3a).
• If µ∗a < 0 then it follows from (5.1.3a) and assumption 2 that (1− ζ)|µ∗v−
µ∗w − λ+

a
∗ + λ−a

∗| < ζγr,v|π∗v − γaπ∗w − β̃a| = ζγr,v(π∗v − γaπ∗w − β̃a).

Case q∗a = 0: It holds ζγr,v(π∗v − γaπ
∗
w − β̃a) + (1 − ζ)(µ∗v − µ∗w − λ+

a
∗ + λ−a

∗) =
0: From (5.1.1b) it follows π∗v − γaπ

∗
w − β̃a = 0. From (5.1.3a) we obtain

µ∗v − µ∗w − λ+
a
∗ + λ−a

∗ = 0. Hence g(qa) ≡ 0.

Case q∗a < 0: It holds ζγr,v(π∗v − γaπ∗w − β̃a) + (1 − ζ)(µ∗v − µ∗w − λ+
a
∗ + λ−a

∗) < 0:
From (5.1.1b) it follows π∗v − γaπ∗w − β̃a < 0.

• If µ∗a ≤ 0 then it holds µ∗v − µ∗w − λ+
a
∗ + λ−a

∗ ≤ 0 by (5.1.3a).
• If µ∗a > 0 then it follows from (5.1.3a) and assumption 2 that−(1−ζ)(µ∗v−
µ∗w−λ+

a
∗+λ−a

∗) = −(1− ζ)|µ∗v−µ∗w−λ+
a
∗+λ−a

∗| > ζγr,v(π∗v−γaπ∗w− β̃a).

These cases show that h(qa) is a linear function with positive slope if q∗a > 0, negative
slope if q∗a < 0 and slope zero if q∗a = 0. Hence h(qa) has the form as shown in
Figure 5.1.

The dual transmission flow which is necessary to write inequality (5.1.8) is
obtained from a KKT point of the domain relaxation (5.1.1) or the flow conservation
relaxation (4.3.1) as follows:
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Definition 5.1.11:
A dual transmission flow (µ, λ) is derived from a KKT point (q∗, π∗,∆∗, µ∗, λ∗) of
domain relaxation (5.1.1) as follows: The dual values fulfill the dual flow conservation

∑
a∈δ+

A′ (v)
µ∗a −

∑
a∈δ−

A′ (v)
γaµ

∗
a = λ+

v
∗ − λ−v

∗

for all nodes v ∈ V by Lemma 4.2.11. We extend this network flow to all arcs
a ∈ A by setting zero flow values to those arcs that are contained in A but not in
A′. Hence we obtain a dual transmission flow (µ, λ) in (V,A) by setting µv := µ∗v
and λ±v := λ±v

∗ for each node v ∈ V and µa := µ∗a, λ
±
a := λ±a

∗ if a ∈ A′ and
µa := 0, λ±a := 0 otherwise for each arc a ∈ A \ A′.

A dual transmission flow (µ, λ) is derived from a KKT point (q∗, π∗,∆∗, µ∗, λ∗)
of the flow conservation relaxation (4.3.1) as follows: The dual values fulfill the dual
flow conservation

∑
a∈δ+

A′ (v)
µ∗a −

∑
a∈δ−

A′ (v)
γaµ

∗
a = (λ+

v
∗ − λ−v

∗) + (µ+
v
∗∆−v

∗ − µ−v
∗∆+

v
∗)

for each node v ∈ V . Setting µv := µ∗v and λ+
v := λ+

v
∗ + µ+

v
∗∆−v

∗ and further
λ−v := λ−v

∗ + µ−v
∗∆+

v
∗ for each node v ∈ V and µa := µ∗a, λ

±
a := λ±a

∗ if a ∈ A′ and
µa := 0, λ±a := 0 otherwise for each arc a ∈ A \ A′ yields a dual transmission flow
(µ, λ) in (V,A).

In the next lemma we derive a dual transmission flow from a KKT point of
the domain relaxation (5.1.1). We use the primal solution of this KKT point and
describe a suitable choice of ζ such that inequality (5.1.8) is violated if and only if
the passive transmission problem (4.1.1) is infeasible. For the choice of ζ we refer
to the previous Lemma 5.1.9.

Lemma 5.1.12:
Let (q∗, π∗,∆∗, µ∗, λ∗) be a KKT point of the domain relaxation (5.1.1) and let (µ, λ)
be a dual transmission flow derived from this KKT point. Let ζ ∈]0, 1[ such that
the conditions of Lemma 5.1.9 are fulfilled. Then we obtain inequality (5.1.8) from
Lemma 5.1.7 with dual transmission flow (µ, λ), and parameters q∗, π∗, ζ and ∆ = 0
which is violated if and only if the passive transmission problem (4.1.1) is infeasible.
The violation (i.e., the absolute difference of the left-hand and the right-hand side of
inequality (5.1.8)) is greater than or equal to (1− ζ) times the objective value of the
KKT point.

Proof. First we write inequality (5.1.8) of Lemma 5.1.7. It is valid for the passive
transmission problem and we only need to concentrate on the violation of this
inequality. Therefor we simply rewrite the inequality in the remainder of this proof.
Note that we do not need to refer to Theorem 4.2.9 stating the convexity of the
domain relaxation under some assumptions.
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Since q∗a realizes the nomination, we derive from∑
a∈δ+

A′ (v)
(q∗a − (∆+

a −∆−a ))−
∑

a∈δ−
A′ (v)

(q∗a − (∆+
a −∆−a ))− (∆+

v −∆−v ) = dv

for each node v ∈ V , that the slack variables are zero, i.e., ∆+
v = ∆−v = 0 and

∆+
a = ∆−a = 0. Then inequality (5.1.8) reduces to∑

a∈A′
τa ≤ −ζ

∑
v∈V

dvπ
′
v(π∗)

+(1− ζ)
∑
v∈V

(
λ+
v πv − λ−v πv

)
+
∑
a∈A′

(
λ+
a qa − λ−a qa

)
−
∑
v∈V

dvµv

 . (5.1.13)

We recall the definition of τa = inf{fζ,q∗,µ(qa) − `ζ,π∗,µ,λ(qa) | qa ≤ qa ≤ qa} from
Lemma 5.1.7. By Lemma 5.1.9 the minimum of the function

fζ,q∗,µ(qa)− `ζ,π∗,µ,λ(qa)

is attained at q∗a, which is not necessarily contained in [q
a
, qa]. Hence the left-hand-

side of (5.1.13) is estimated as follows:∑
a∈A′

τa ≥
∑

a=(v,w)∈A′

(
(1− ζ)µaΦa(q∗a)− ζ γr,v(π∗v − γaπ∗w) q∗a

)
−

∑
a=(v,w)∈A′

(1− ζ)(µv − µw − λ+
a + λ−a ) q∗a

= (1− ζ)
∑
a∈A′

µaΦa(q∗a)− ζ
∑
v∈V

dvπ
′
v(π∗)

− (1− ζ)
∑
v∈V

dvµv + (1− ζ)
∑
a∈A′

(λ+
a − λ−a )q∗a.

(5.1.14)

Combining (5.1.13) with (5.1.14) results in

(1− ζ)
∑
a∈A′

µaΦa(q∗a) + (1− ζ)
∑
a∈A′

(λ+
a − λ−a )q∗a

≤ (1− ζ)
∑
v∈V

(
λ+
v πv − λ−v πv

)
+ (1− ζ)

∑
a∈A′

(
λ+
a qa − λ−a qa

)
.

(5.1.15)

In the remainder of this proof we analyze this inequality (5.1.15) and its violation.
First we prove∑

a∈A′
µaΦa(q∗a)−

∑
v∈V

(
λ+
v πv − λ−v πv

)
=
∑
v∈V

(λ+
v + λ−v )∆∗v, (5.1.16)

∑
a∈A′

(λ+
a − λ−a )q∗a −

∑
a∈A′

(
λ+
a qa − λ−a qa

)
=
∑
a∈A′

(λ+
a + λ−a )∆∗a. (5.1.17)

Equality (5.1.17) follows from Lemma 4.2.11 because the vector (q∗, π∗,∆∗, µ∗, λ∗)
is a KKT point of the domain relaxation (5.1.1). By this lemma it holds λ+

a =
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λ+
a
∗
> 0 only if q∗a ≥ qa and λ−a = λ−a

∗
> 0 only if q∗a ≤ q

a
. Furthermore

∆∗a = max{0, q∗a − qa, qa − q
∗
a}, a ∈ A′ because other values imply that ∆∗ is not

optimal and hence that (q∗, π∗,∆∗) is not the primal part of a KKT point.
To show equality (5.1.16) we proceed as follows. From the proof of Lemma 5.1.2

we obtain the equality ∑
a∈A′

µaΦa(q∗a) =
∑
v∈V

(λ+
v − λ−v )π∗v .

By Lemma 4.2.11 it holds that λ+
v = λ+

v
∗
> 0 only if π∗v ≥ πv and λ−v = λ−v

∗
> 0

only if π∗v ≤ πv. Furthermore ∆∗v = max{0, π∗v − πv, πv − π∗v}, v ∈ V because other
values imply that ∆∗ is not optimal and hence that (q∗, π∗,∆∗) is not a primal part
of a KKT point. This implies∑

v∈V
(λ+

v − λ−v )π∗v −
∑
v∈V

(
λ+
v πv − λ−v πv

)
=
∑
v∈V

(λ+
v + λ−v )∆∗v.

It follows from the reformulations (5.1.16) and (5.1.17) that (5.1.15) equivalently
rewrites to

(1− ζ)
(∑
v∈V

(λ+
v + λ−v )∆∗v +

∑
a∈A′

(λ+
a + λ−a )∆∗a

)
≤ 0. (5.1.18)

Now it follows from (4.2.8) that ∆∗v > 0 (which means π∗v < πv or π∗v > πv) implies
λ+
v + λ−v = 1 for each node v ∈ V and ∆∗a > 0 implies λ+

a + λ−a = 1 for each arc
a ∈ A′. Thus we rewrite (5.1.18) equivalently as

(1− ζ)
(∑
v∈V

∆∗v +
∑
a∈A′

∆∗a
)
≤ 0.

This inequality is violated if and only if the primal solution (q∗, π∗,∆∗) has positive
slack.

Next we turn to the flow conservation relaxation (4.3.1). Similar to the previous
lemma we derive a dual transmission flow from a KKT point of the relaxation (4.3.1).
We describe a suitable choice of the parameters q∗, π∗,∆, ζ such that we obtain an
inequality by Lemma 5.1.7 which is violated if and only if the passive transmission
problem (4.1.1) is infeasible. Again we refer to Lemma 5.1.9 for the choice of ζ.

Lemma 5.1.13:
Let (q∗, π∗,∆∗, µ∗, λ∗) be a KKT point of the flow conservation relaxation (4.3.1) and
let (µ, λ) be a dual transmission flow derived from this KKT point. Let ζ ∈]0, 1[ such
that the conditions of Lemma 5.1.9 are fulfilled. Then we obtain inequality (5.1.8)
from Lemma 5.1.7 with dual transmission flow (µ, λ), and parameters q∗, π∗,∆∗, ζ
which is violated if and only if the passive transmission problem (4.1.1) is infeasible.
The violation is greater than or equal to (1− ζ) times the optimal objective value of
the relaxation (4.3.1).
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Proof. We rewrite inequality (5.1.8) of Lemma 5.1.7. It is valid for the passive
transmission problem and we only need to concentrate on the violation of this
inequality. Therefor we simply rewrite the inequality in the remainder of this proof.
Note that we do not need to refer to Theorem 4.3.6 stating the convexity of the
flow conservation relaxation under some assumptions.

We recall the definition of

τa = inf{fζ,q∗,µ(qa)− `ζ,π∗,µ,λ(qa) | qa ≤ qa ≤ qa}

from Lemma 5.1.7. By Lemma 5.1.9 the minimum of the function

fζ,q∗,µ(qa)− `ζ,π∗,µ,λ(qa)

is attained at q∗a, which is not necessarily contained in [q
a
, qa]. Hence, similar as in

the previous proof of Lemma 5.1.12, ∑a∈A′ τa rewrites as∑
a∈A′

τa ≥
∑

a=(v,w)∈A′

(
(1− ζ)µaΦa(q∗a)

− ζ (π′v(π∗)− π′w(π∗))q∗a − (1− ζ)(µv − µw − λ+
a + λ−a )q∗a

)
.

After rearranging we obtain∑
a∈A′

τa ≥(1− ζ)
∑
a∈A′

µaΦa(q∗a) + (1− ζ)
∑
a∈A′

(λ+
a − λ−a )q∗a

+ ζ
∑
v∈V

π′v(π∗)
(
dv −

∑
a∈δ+

A′ (v)
q∗a +

∑
a∈δ−

A′ (v)
q∗a

)

+ (1− ζ)
∑
v∈V

µv

(
dv −

∑
a∈δ+

A′ (v)
q∗a +

∑
a∈δ−

A′ (v)
q∗a

)

− ζ
∑
v∈V

dvπ
′
v(π∗)− (1− ζ)

∑
v∈V

dvµv.

(5.1.19)

We rewrite the first three lines of this equality separately as follows:

1. From (4.3.15a) and (4.3.15b) we obtain∑
a∈A′

µaΦa(q∗a) =
∑
v∈V

(λ+
v πv − λ−v πv),∑

a∈A′
(λ+

a − λ−a )q∗a =
∑
a∈A′

(λ+
a qa − λ−a qa).

2. Setting ∆±v := ∆±v
∗ for all nodes v ∈ V and ∆±a := ∆±a

∗ for all arcs a ∈ A′ the
vector q∗ fulfills the flow conservation∑

a∈δ+
A′ (v)

(q∗a − (∆+
a −∆−a ))−

∑
a∈δ−

A′ (v)
(q∗a − (∆+

a −∆−a ))− (∆+
v −∆−v ) = dv
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for all nodes v ∈ V . We multiply each side by π′v(π∗), take the sum over all
nodes v ∈ V and obtain

∑
v∈V

π′v(π∗)
(
dv −

∑
a∈δ+

A′ (v)
q∗a +

∑
a∈δ−

A′ (v)
q∗a

)
=

∑
v∈V

(∆−v −∆+
v )π′v(π∗) +

∑
a=(v,w)∈A′

(∆−a −∆+
a )(π′v(π∗)− π′w(π∗))

From the value of ∆ from (4.3.1h), (4.3.1i), (4.3.1j) and (4.3.1k) we derive the
equalities ∑

v∈V
(∆−v −∆+

v )π′v(π∗) =
∑
v∈V

(∆−v π′v(π)−∆+
v π
′
v(π))∑

a=(v,w)∈A′
(∆−a −∆+

a )(π′v(π∗)− π′w(π∗)) =
∑
a∈A′

(∆−a Φ′a(qa)−∆+
a Φ′a(qa))

3. With the same definition of ∆ from the previous item and similar reasoning
we obtain (by multiplication by µv instead of π′v(π∗))∑

v∈V
µv

(
dv −

∑
a∈δ+

A′ (v)
q∗a +

∑
a∈δ−

A′ (v)
q∗a

)

=
∑
v∈V

(∆−v −∆+
v )µv +

∑
a=(v,w)∈A′

(∆−a −∆+
a )(µv − µw).

Using all these reformulations together we obtain from (5.1.19)∑
a∈A′

τa ≥

(1− ζ)
∑
v∈V

(
λ+
v πv − λ−v πv

)
+ (1− ζ)

∑
a∈A′

(
λ+
a qa − λ−a qa

)
+ζ

(∑
v∈V

(∆−v π′v(π)−∆+
v π
′
v(π)) +

∑
a∈A′

(∆−a Φ′a(qa)−∆+
a Φ′a(qa))−

∑
v∈V

dvπ
′
v(π∗)

)

+(1− ζ)
(∑
v∈V

(∆−v −∆+
v )µv +

∑
a=(v,w)∈A′

(∆−a −∆+
a )(µv − µw)−

∑
v∈V

dvµv

)
.

We take this inequality and substitute the left-hand side of inequality (5.1.8) which
then reduces to

(1− ζ)
(∑
v∈V

(∆−v −∆+
v )µv +

∑
a=(v,w)∈A′

(∆−a −∆+
a )(µv − µw)

)
≤ 0 (5.1.20)

Now it follows from Lemma 4.3.7 that ∆−v > 0 implies µv = µ∗v = 1 and ∆+
v > 0

implies µv = µ∗v = −1 for each node v ∈ V . Furthermore by Lemma 4.3.7
it holds that ∆−a > 0 implies µv − µw = µ∗v − µ∗w = 1 and ∆+

a > 0 implies
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µv − µw = µ∗v − µ∗w = −1 for each arc a ∈ A′. Thus we rewrite (5.1.20) equivalently
as

(1− ζ)
(∑
v∈V

(∆−v + ∆+
v ) +

∑
a∈A′

(∆−a + ∆+
a )
)
≤ 0

This inequality is violated if and only if the primal solution (q∗, π∗,∆∗) has positive
slack.

The next corollary summarizes Lemma 5.1.12 and Lemma 5.1.13. It presents a
choice of the parameters for inequality (5.1.8) such that it is violated if and only if
the passive transmission problem (4.1.1) is infeasible. Thus the corollary enhances
Lemma 5.1.7.

Corollary 5.1.14:
Let (q∗, π∗,∆∗, µ∗, λ∗) be a KKT point of relaxation (5.1.1) or (4.3.1), and let (µ, λ)
be a dual transmission flow derived from this KKT point. Furthermore let ∆ = 0
if the KKT point belongs to the domain relaxation and ∆ = ∆∗ otherwise. Let
ζ ∈]0, 1[ such that the conditions of Lemma 5.1.9 are fulfilled. Then for constants
τa := inf{fζ,q∗,µ(qa)− `ζ,π∗,µ,λ(qa) | qa ≤ qa ≤ qa} for each arc a ∈ A′ the inequality

∑
a∈A′

τa ≤ (5.1.21)

ζ

∑
v∈V

(∆−v π′v −∆+
v π
′
v) +

∑
a∈A′

(∆−a Φ′a(qa)−∆+
a Φ′a(qa))−

∑
v∈V

dvπ
′
v(π∗)


+(1− ζ)

∑
v∈V

(
λ+
v πv − λ−v πv

)
+
∑
a∈A′

(
λ+
a qa − λ−a qa

)
−
∑
v∈V

dvµv


is violated if and only if the passive transmission problem (4.1.1) is infeasible. The
violation is greater than or equal to (1− ζ) times the optimal objective value of the
relaxations (4.2.1) or (4.3.1) respectively.

Proof. This follows from Lemma 5.1.7, Lemma 5.1.12 and Lemma 5.1.13.

We note that it is not guaranteed that ζ as assumed in Corollary 5.1.14 exists.
If it does not exist, then inequality (5.1.21) cannot be set up.

5.1.4. A Linear Inequality derived from the Lagrange Function
of the Domain Relaxation

We show that inequality (5.1.21) of the previous Corollary 5.1.14 with ζ = 0
is motivated by the Lagrange function (5.1.2) of the domain relaxation (5.1.1).
However, a restriction of the flow directions of the passive transmission problem is
necessary for the validity of the inequality.
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Lemma 5.1.15:
Let L(q, π,∆, µ, λ) be the Lagrange function (5.1.2) of the nonlinear domain relax-
ation (5.1.1). Let (q∗, π∗,∆∗, µ∗, λ∗) be a KKT point of this relaxation. Assume
that the flow directions of the passive transmission problem (4.1.1) are restricted by
qaµ

∗
a ≥ 0 for each arc a ∈ A′, i.e., q

a
≥ 0 if µ∗a ≥ 0 and qa ≤ 0 if µ∗a ≤ 0.

If primal and dual arc flows have the same direction, i.e., q∗aµ∗a ≥ 0 holds for
each arc a ∈ A′, and q

a
≤ qa ≤ qa, a ∈ A′ then the inequality

inf
q,π,∆

L(q, π,∆, µ∗, λ∗) ≤ 0

is equal to inequality (5.1.21) of Corollary 5.1.14 with ζ = 0 and the KKT point
(q∗, π∗,∆∗, µ∗, λ∗).

Proof. Let (q∗, π∗,∆∗, µ∗, λ∗) be a KKT point of the domain relaxation (5.1.1).
We write the Lagrange function (5.1.2):

L(q, π,∆, µ∗, λ∗) =
∑
v∈V

∆v +
∑
a∈A′

∆a

+
∑
a∈A′

a=(v,w)

µ∗a
(
Φa(qa)− (πv − γaπw)

)

+
∑
v∈V

µ∗v

dv − ∑
a∈δ+

A′ (v)
qa +

∑
a∈δ−

A′ (v)
qa


+
∑
v∈V

(
λ+
v
∗ (πv −∆v − πv) + λ−v

∗ (πv − πv −∆v)
)

+
∑
a∈A′

(
λ+
a
∗ (qa −∆a − qa) + λ−a

∗ (q
a
− qa −∆a)

)
−
∑
v∈V

λ∗v∆v −
∑
a∈A′

λ∗a∆a.

By Lemma 4.2.11 the dual solution of the KKT point forms a general network flow
in (V,A′), i.e., ∑

a∈δ+
A′ (v)

µ∗a −
∑

a∈δ−
A′ (v)

µ∗aγa = λ+
v
∗ − λ−v

∗ ∀ v ∈ V.

This implies ∑
a∈A′

a=(v,w)

µ∗a (πv − γaπw) =
∑
v∈V

(λ+
v
∗
πv − λ−v

∗
πv).

This means that the Lagrange function L(q, π,∆, µ∗, λ∗) is independent of the values
of π. Recall the conditions (4.2.7c) and (4.2.7d) from the proof of Lemma 4.2.11
which state that the dual solution (µ∗, λ∗) also fulfills

λ+
v
∗ + λ−v

∗ + λv
∗ = 1 ∀ v ∈ V,

λ+
a
∗ + λ−a

∗ + λa
∗ = 1 ∀ a ∈ A′.
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This implies

λ+
v
∗∆v + λ−v

∗∆v + λv
∗∆v = ∆v ∀ v ∈ V,

λ+
a
∗∆a + λ−a

∗∆a + λa
∗∆a = ∆a ∀ a ∈ A′.

Again we conclude that the Lagrange function L(q, π,∆, µ∗, λ∗) is independent of
the values of ∆. From these observations we conclude that L(q, π,∆, µ∗, λ∗) writes
as follows:

L(q, π,∆, µ∗, λ∗) =
∑
a∈A′

µ∗a Φa(qa)

+
∑
v∈V

µ∗v

dv − ∑
a∈δ+

A′ (v)
qa +

∑
a∈δ−

A′ (v)
qa


−
∑
v∈V

(
λ+
v
∗
πv − λ−v

∗
πv
)

+
∑
a∈A′

(
λ+
a
∗ (qa − qa) + λ−a

∗ (q
a
− qa)

)
.

We rearrange this as

L(q, π,∆, µ∗, λ∗) =
∑
a∈A′

(
µ∗a Φa(qa)− (µ∗v − µ∗w − λ+

a
∗ + λ−a

∗) qa
)

+
∑
v∈V

µ∗vdv −
∑
v∈V

(
λ+
v
∗
πv + λ−v

∗
πv
)
−
∑
a∈A′

(
λ+
a
∗
qa − λ−a

∗
q
a

)
.

We derive a dual transmission flow (µ, λ) from the KKT point (q∗, π∗,∆∗, µ∗, λ∗)
and define τa for each arc a ∈ A′ by

τa := inf
{
µa Φa(qa)− (µv − µw − λ+

a + λ−a ) qa | qa ≤ qa ≤ qa, µaqa ≥ 0
}
.

Then it follows from (5.1.3a) of the KKT conditions and µ∗aq∗a ≥ 0 and q
a
≤ qa ≤ qa

that
τa = µ∗a Φa(q∗a)− (µ∗v − µ∗w − λ+

a
∗ + λ−a

∗) q∗a
holds. Then we have:

inf
q≤q≤q,π≤π≤π,∆≥0

L(q, π,∆, µ∗, λ∗) ≤ 0

⇔∑
a∈A′

τa ≤
∑
v∈V

(
λ+
v πv + λ−v πv

)
+
∑
a∈A′

(
λ+
a qa − λ−a qa

)
−
∑
v∈V

µvdv.

(5.1.22)

This inequality equals inequality (5.1.21) of Corollary 5.1.14 for ζ = 0.
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5.2. A Valid Inequality for the Topology
Optimization Problem

Corollary 5.1.14 states the main result of the previous Section 5.1. The corollary
states that inequality (5.1.21) is violated if and only if the passive transmission
problem is infeasible. This inequality contains no variables and is valid for the
passive transmission problem (4.1.1). In this section we extend this inequality such
that it is valid for the topology optimization problem (3.2.1), and not only for
the passive transmission problem. Recall that the passive transmission problem is
obtained by fixing all binary variables x as we focus on y = y in this chapter. Hence
x and y are the variables of our extended inequality.

We recall the definition of the functions fζ,q∗,µ and `ζ,π∗,µ,λ and extend them
to the more general case of a flow value qa,i for an arc (a, i) ∈ AX , i > 0 of the
extended graph:

f̃ζ,q∗,µ(qa,i, ya,i) := (ζ γr,v(qa,i − q∗a) + (1− ζ)µa) (αa,i qa,i|qa,i|ka − βa,iya,i)
˜̀
ζ,π∗,µ,λ(qa,i) := ζ (π′v(π∗)− π′w(π∗)) qa,i + (1− ζ)(µv − µw − λ+

a + λ−a ) qa,i

For abbreviations we set, similarly as in (5.1.6),

Φa,i(q, y) := αa,i q|q|ka − βa,i y and Φ′a,i(q, y) := γr,vΦa,i(q, y)

In the following we extend Lemma 5.1.7.

Theorem 5.2.1:
Let (µ, λ) be a dual transmission flow. Let π∗ ∈ RV , q∗ ∈ RA, ∆±v ≥ 0, v ∈ V and
∆±a ≥ 0, a ∈ A be vectors such that the flow conservation∑

a∈δ+
A(v)

(q∗a − (∆+
a −∆−a ))−

∑
a∈δ−A (v)

(q∗a − (∆+
a −∆−a ))− (∆+

v −∆−v ) = dv

is fulfilled for each node v ∈ V . Furthermore let ζ ∈ [0, 1]. Then for constants
τa,i(ya,i) := inf{f̃ζ,q∗,µ(qa,i, ya,i) − ˜̀

ζ,π∗,µ,λ(qa,i) | qa,i ≤ qa,i ≤ qa,i} for each arc
(a, i) ∈ AX , i 6= 0 and each value ya,i the inequality in binary and continuous but
fixed variables x and y ∑

(a,i)∈AX
i6=0

xa,i τa,i(ya,i) ≤ −ζ
∑
v∈V

dvπ
′
v(π∗) (5.2.1)

+ζ

∑
v∈V

(∆−v π′v −∆+
v π
′
v) +

∑
(a,i)∈AX

i6=0

xa,i(∆−a Φ′a,i(qa,i, ya,i)−∆+
a Φ′a,i(qa,i, ya,i))



+(1− ζ)

∑
v∈V

(
λ+
v πv − λ−v πv

)
+

∑
(a,i)∈AX

i6=0

xa,i
(
λ+
a qa,i − λ−a qa,i

)
−
∑
v∈V

dvµv
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+ζ
∑

a=(v,w)∈A
xa,0 max

{
(q∗a − (∆+

a −∆−a ))(π′v − π′w), (q∗a − (∆+
a −∆−a ))(π′v − π′w)

}
+(1− ζ)

∑
a=(v,w)∈A

xa,0 max
{
µa(πv − πw), µa(πv − πw)

}

is valid for the topology optimization problem (3.2.1).

Remark 5.2.2:
Note that the basic difference of this inequality (5.2.1), which is valid for the topology
optimization problem (3.2.1), and inequality (5.1.8), which is valid for the passive
transmission problem (4.1.1), are the last two lines of (5.2.1). The other parts of
these inequalities almost coincide except the addition of the binary variables x and
the continuous but fixed variables y.

Proof. We are going to apply Lemma 5.1.7 that yields a valid inequality for the
passive transmission problem corresponding to the arc set A′. We write A′ = A′(x)
depending on the binary vector x by A′(x) := {(a, i) ∈ AX | xa,i = 1, i > 0}.
In order to apply Lemma 5.1.7 we define ∆ variables in dependence on A′(x) by
considering the following equality which is valid for each active configuration x:∑

a∈δ+
A(v)

xa,0(q∗a − (∆+
a −∆−a ))−

∑
a∈δ−A (v)

xa,0(q∗a − (∆+
a −∆−a ))

+
∑

(a,i)∈δ+
A′(x)(v)

(q∗a − (∆+
a −∆−a ))−

∑
(a,i)∈δ−

A′(x)(v)

(q∗a − (∆+
a −∆−a ))− (∆+

v −∆−v ) = dv.

We define values ∆̃+
v (x) ≥ 0 and ∆̃−v (x) ≥ 0 for each node v ∈ V where at least

one of both values equals zero by

∆̃−v (x) := max

0,
∑

a∈δ+
A(v)

xa,0 (q∗a − (∆+
a −∆−a ))−

∑
a∈δ−A (v)

xa,0 (q∗a − (∆+
a −∆−a ))

 ,

∆̃+
v (x) := max

0,
∑

a∈δ−A (v)
xa,0 (q∗a − (∆+

a −∆−a ))−
∑

a∈δ+
A(v)

xa,0 (q∗a − (∆+
a −∆−a ))

 .
From this we obtain∑

(a,i)∈δ+
A′(x)(v)

(q∗a − (∆+
a −∆−a ))−

∑
(a,i)∈δ−

A′(x)(v)
(q∗a − (∆+

a −∆−a ))

−(∆̃+
v (x) + ∆+

v ) + (∆̃−v (x) + ∆−v ) = dv

(5.2.2)

for every node v ∈ V . We proceed analogously for µ in order to obtain a dual
transmission flow for A′(x). For each active configuration x it holds∑

a∈δ+
A(v)

xa,0 µa −
∑

a∈δ−A (v)
xa,0 µa +

∑
(a,i)∈δ+

A′(x)(v)
µa −

∑
(a,i)∈δ−

A′(x)(v)
µa = λ+

v − λ−v
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for every node v ∈ V . We define values λ̃+
v (x) ≥ 0 and λ̃−v (x) ≥ 0 for each node

v ∈ V with at least one of both values being equal to zero by

λ̃−v (x) := max

0,
∑

a∈δ+
A(v)

xa,0 µa −
∑

a∈δ−A (v)
xa,0 µa


λ̃+
v (x) := max

0,
∑

a∈δ−A (v)
xa,0 µa −

∑
a∈δ+

A(v)
xa,0 µa


and obtain∑

(a,i)∈δ+
A′(x)(v)

µa −
∑

(a,i)∈δ−
A′(x)(v)

µa =
(
λ̃+
v (x) + λ+

v

)
−
(
λ̃−v (x)− λ−v

)
. (5.2.3)

We take the definition of the constant τa,i for each arc (a, i) = (v, w, i) ∈ AX , i 6= 0
based on Lemma 5.1.7 as follows:

τa,i(ya,i) := inf{f̃ζ,q∗,µ(qa,i, ya,i)− ˜̀
ζ,π∗,µ,λ(qa,i) | qa,i ≤ qa,i ≤ qa,i}

Now assume a fixation of the binary vector x and recall that y is fixed. In-
equality (5.1.8) is valid for the corresponding passive transmission problem by
Lemma 5.1.8. Using equation (5.2.2) and (5.2.3) the following inequality is equal to
(5.1.8) and hence valid for the topology optimization problem (3.2.1):∑

(a,i)∈A′(x)
τa,i(ya,i) ≤

ζ

∑
v∈V

((∆−v + ∆̃−v (x))π′v − (∆+
v + ∆̃+

v (x))π′v)


+ζ

 ∑
(a,i)∈A′(x)

(∆−a Φ′a,i(qa,i, ya,i)−∆+
a Φ′a,i(qa,i, ya,i))−

∑
v∈V

dvπ
′
v(π∗)


+(1− ζ)

∑
v∈V

(
(λ+

v + λ̃+
v (x))πv − (λ−v + λ̃−v (x))πv

)
+(1− ζ)

 ∑
(a,i)∈A′(x)

(
λ+
a qa,i − λ−a qa,i

)
−
∑
v∈V

dvµv

 .
We use ∑

(a,i)∈A′(x)
τa,i(ya,i) =

∑
(a,i)∈AX

i 6=0

xa,iτa,i(ya,i).

We complete the proof by rewriting and estimating the right-hand side. We write∑
(a,i)∈A′(x)

(
λ+
a qa,i − λ−a qa,i

)
=

∑
(a,i)∈AX

i 6=0

xa,i
(
λ+
a qa,i − λ−a qa,i

)
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and

∑
(a,i)∈A′

(∆−a Φ′a,i(qa,i)−∆+
a Φ′a,i(qa,i)) =

∑
(a,i)∈AX

i 6=0

xa,i(∆−a Φ′a,i(qa,i)−∆+
a Φ′a,i(qa,i)).

Using the previous definitions of ∆̃+
v (x) and ∆̃−v (x) and setting

π̃v :=
π′v if ∆̃−v (x)− ∆̃+

v (x) ≥ 0,
π′v else,

we obtain

∑
v∈V

(
∆̃−v (x)π′v − ∆̃+

v (x)π′v
)

=
∑
v∈V

(
∆̃−v (x)− ∆̃+

v (x)
)
π̃v

=
∑

a=(v,w)∈A
xa,0(q∗a − (∆+

a −∆−a ))(π̃v − π̃w) ≤

∑
a=(v,w)∈A

xa,0 max
{

(q∗a − (∆+
a −∆−a ))(π′v − π′w), (q∗a − (∆+

a −∆−a ))(π′v − π′w)
}
.

Similarly, using the definition of λ+
v (x) and λ−v (x) we derive the estimation

∑
v∈V

(
λ̃+
v (x)πv − λ̃−v (x)πv

)
≤

∑
a=(v,w)∈A

xa,0 max
{
µa(πv − πw), µa(πv − πw)

}
.

Now we turn to the domain relaxation (5.1.1) and explain how the parameters
of inequality (5.2.1) have to be set such that (5.2.1) represents the feasibility of a
passive transmission problem. We derive the dual transmission flow (µ, λ) from a
KKT point of relaxation (5.1.1) and apply Lemma 5.1.12. The binary and continuous
values x∗ and y∗ which correspond to this relaxation are then infeasible for the linear
inequality (5.2.1) if and only if the corresponding passive transmission problem is
infeasible.

Theorem 5.2.3:
Let (q∗, π∗,∆∗, µ∗, λ∗) be a KKT point of the domain relaxation (5.1.1) for arc set A′
and let (µ, λ) be a dual transmission flow derived from this KKT point. Denote by x∗
and y∗ the binary and continuous values which yield the domain relaxation (5.1.1).
Let ζ ∈]0, 1[ as mentioned in Lemma 5.1.9. Then for constants τa,i = τa,i(ya,i)
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defined by τa,i(ya,i) := inf{fζ,q∗,µ(qa,i, ya,i)− `ζ,π∗,µ,λ(qa,i) | qa,i ≤ qa,i ≤ qa,i} for each
arc (a, i) ∈ AX , i 6= 0 and the value ya,i = y∗a,i the inequality in binary variables x

∑
(a,i)∈AX

i6=0

xa,i τa,i(ya,i) ≤ −ζ
∑
v∈V

dvπ
′
v(π∗) (5.2.4)

+(1− ζ)

∑
v∈V

(
λ+
v πv − λ−v πv

)
+

∑
(a,i)∈AX

i6=0

xa,i
(
λ+
a qa,i − λ−a qa,i

)
−
∑
v∈V

dvµv


+ζ

∑
a=(v,w)∈A′

xa,0 max
{
q∗a(π′v − π′w), q∗a(π′v − π′w)

}
+(1− ζ)

∑
a=(v,w)∈A

xa,0 max
{
µa(πv − πw), µa(πv − πw)

}

is valid for the topology optimization problem (3.2.1). This inequality cuts off the
passive transmission problem corresponding to the arc set A′ if and only if it is
infeasible. For the corresponding decision vector x = x∗ and y = y∗ = y = y the
violation of inequality (5.2.4) is greater than or equal to (1− ζ) times the optimal
objective value of the domain relaxation.

Proof. We define q∗a := 0 for all arcs a ∈ A \ A′ and obtain∑
a∈δ+

A(v)
q∗a −

∑
a∈δ−A (v)

q∗a = dv.

Furthermore we set ∆+
v := ∆−v := 0 for all v ∈ V and ∆+

a := ∆−a := 0 for all
a ∈ A. Now the validity of (5.2.4) as a globally valid inequality for the topology
optimization problem (3.2.1) follows from Theorem 5.2.1.

If x and y are the binary and continuous values, respectively, that correspond to
the passive transmission problem of the relaxation (5.1.1), for arc set A′, i.e., x = x∗

and y = y∗, then (5.2.4) can be rewritten as (5.1.21). So the theorem follows from
the special choice of ζ and Corollary 5.1.14.

Inequality (5.2.4) forms our improved Benders cut because of the properties
stated in Theorem 5.2.3. A similar result as in Theorem 5.2.3 can be obtained for
the flow conservation relaxation (4.3.1) but we do not give any further details here.
As discussed in Section 4.6 the flow conservation relaxation turned out to be less
efficient than the domain relaxation (4.2.1). That is why we decided to use the
domain relaxation in our computations.

Theorem 5.2.3 states an inequality which represents the infeasibility of a certain
passive transmission problem. More precisely, if it is infeasible, then the inequality
is violated for the specific values of the binary and continuous variables x and y
which lead to the passive transmission problem. Let us now concentrate on the
violation. Therefor we visualize τa,i for an arc a = (v, w) ∈ A. Note that different
binary values for x correspond to different values τa,i in inequality (5.2.4). The
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value of τa,i depends on αa,i and ya,i. Thus we consider τa,i(ya,i) as a function τ(α)
for fixed ya,i defined by

τ(α) := min
q∈R

{
(ζ γr,v(q − q∗a) + (1− ζ)µa) (α q|q|ka − β̃)

− ζ γr,v(π∗v − γaπ∗w) q − (1− ζ)(µv − µw − λ+
a + λ−a ) q

}
.

(5.2.5)

A visualization of this function is shown in Figure 5.2. From this image we conclude,
that either increasing or decreasing the diameter of a pipe reduces the violation
of inequality (5.2.1) of the previous Theorem 5.2.1. However, this is not coherent
with the technical properties of a pipeline: decreasing the diameter of a pipe means
to reduce the capacity of the network which, in general, means to increase the
infeasibility of the passive transmission problem.

α

τ(α)
1

Figure 5.2.: Visualization of τ(α) defined by (5.2.5) for q∗a = 5, µa = 1, γa = 1, π∗v − π∗w = 25, µv − µw = 10,
λ+
a − λ−a = 0, ka = 1, ζ = 0.7, γr,v = 1, β̃ = 0. The depicted point corresponds to the original value α = 1 of the

passive transmission problem (4.1.1). The function τ(α) corresponds to the term
∑

(a,i)∈AX ,i 6=0 xa,i τa,i(ya,i) for
a fixed arc a ∈ A in (5.2.4), a valid inequality for the topology optimization problem (3.2.1) by Theorem 5.2.3.

5.3. Integration and Computational Results
In this chapter we focused on the topology optimization problem (3.2.1) arising from
the second type of network that we consider in this thesis. Recall that these networks
consist only of pipes, loops and valves. In this case it holds y = y for our model (3.2.1).
Let us present our solution framework for the topology optimization problem. We
solve the model (3.2.1) by SCIP as described in Section 2.2. Additionally we
generate the cut (5.2.4) which is valid for the topology optimization problem by
Theorem 5.2.3 as follows: Consider a node of the branching tree where the optimal
solution of the LP relaxation yields integral values for the binary variables. If this is
the case, then we consider the corresponding passive transmission problem (4.1.1).
Since this problem might be infeasible, we use the domain relaxation (5.1.1) to
solve it. Recall that this relaxation has better solving performance than the flow
conservation relaxation (4.3.1) as discussed in the previous Chapter 4. Moreover it
follows from Lemma 4.2.10 that the domain relaxation is feasible and convex. After
solving this relaxation to global optimality by IPOpt, one of the following two
cases occurs:
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Branch-and-bound, separation, and spatial branching

node of branching tree

feasible node with
MILP solution

infeasible NLP

feasible node
with fixed x, y

feasible NLP

feasible node
globally solved

infeasible NLP

infeasible node

infeasible node

NL
P

Cut
Cut

Figure 5.3.: Solution framework presented in Section 5.3. The topology optimization problem (3.2.1) is solved with
SCIP essentially by branch-and-bound, separation, and spatial branching, see Section 2.2. We adapt this framework
and solve globally the passive transmission problem (4.1.1) as discussed in Section 4.5, classify the current node
of the branching tree and prune it if possible. If the current passive transmission problem is infeasible, then we
generate (as described in Section 5.3) a linear inequality in the binary and continuous but fixed variables x and y
which is dynamically added to the topology optimization problem. This inequality is violated for the binary values
which lead to the considered passive transmission problem.

1. In the first case, the optimal solution has a zero objective function value. We
derive a feasible solution for the passive transmission problem and add it to
the solution pool of the solver and continue with the branching process.

2. In the second case, the optimal solution has a positive objective function value.
This means that some slack variables are nonzero. In this case we use the
KKT point computed by IPOpt, i.e., primal and dual solution values, and
try to derive inequality (5.2.4) where the parameters are chosen as described
in Theorem 5.2.3. Note that a KKT point exists by Lemma 4.2.11. It might
be impossible to generate inequality (5.2.4) if there does not exist ζ ∈]0, 1[
fulfilling the conditions of Lemma 5.1.9. Otherwise, if there exists such a value
ζ, then we take a minimal ζ and generate inequality (5.2.4), which is valid for
the topology optimization problem (3.2.1) by Theorem 5.2.3. Furthermore it is
violated for the current choice of binary values. We integrate the inequality in a
cut pool of the solver SCIP. If all binary variables are fixed, then we prune the
current node of the branch-and-bound tree and continue with the branching
process. This is feasible due to the convexity of the domain relaxation by
Lemma 4.2.10. Otherwise we continue without pruning.

We conclude that the described method is an extension of the solution method
presented in Chapter 4 based on the domain relaxation.

The algorithmic scheme of this solution approach is shown in Figure 5.3. This
figure includes the computation of inequalities compared to Figure 4.5. Recall
that Figure 4.5 shows the use of the relaxations (4.2.1) and (4.3.1) within the
branch-and-bound tree for solving the topology optimization problem (3.2.1).
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We implemented the cut generation algorithm in C. In our initial implementation
we added all obtained cuts directly to the branch-and-bound process. It turned out
that this strategy was not very efficient. In the final implementation we do not add
them immediately. They are instead stored in a cut pool until a predefined number
of inequalities is reached (experimentally, a pool size of 40 inequalities turned out
to be a good value). Then we restart the branch-and-bound solution process and
multiply the cut pool size by 1.5. Additionally, we also restart if a new primal
feasible solution is found with a better objective function value compared to the
current best solution. For the restart, only the best feasible solution and the valid
inequalities are kept. When restarting the solver SCIP the cuts are provided from
the very beginning of the solution process. Hence they are available during presolve
and SCIP might further strengthen our cuts (in combination with all other model
inequalities).

We compare five different strategies for solving the topology optimization prob-
lem:

1. The first strategy is to use SCIP for solving our model (3.2.1) and to enforce a
certain branching priority rule, so that SCIP first branches on binary decision
variables x. Only after all discrete variables are fixed it is allowed to perform
spatial branching on continuous variables.

2. The second strategy is similar to the first strategy. Additionally, whenever a
node of the branching tree has fixed binary variables, and a global solution
for the corresponding domain relaxation (5.1.1) is computed by IPOpt, then
we prune the current node. Note that this strategy equals strategy 3 from
Section 4.6.

3. The third strategy implements the cut generation as described above, but
restarts are not enforced. Additionally we set branching priorities according
to the first strategy and prune nodes of the branching tree as in 2.

4. The fourth strategy implements the cut generation together with restarts as
described above. Additionally we set branching priorities according to the
first strategy. Further, we prune nodes of the branching tree as in 2.

5. The fifth strategy is equal to the fourth one, but the added cut simply forbids
the current binary vector. For the current integral solution values x∗ this
inequality is ∑

(a,i)∈AX
x∗
a,i

=0

xa,i +
∑

(a,i)∈AX
x∗
a,i

=1

(1− xa,i) ≥ 1.

Hence this fifth strategy basically represents the technique of the previous
Chapter 4 using the domain relaxation (5.1.1) implemented by strategy 3 from
Section 4.6 and storing the information about infeasible passive transmission
problems when restarting.
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strategy 1 2 3 4 5 all
solved instances 53 53 54 64 51 64

Table 5.1.: Summary of the Tables A.6 – A.9 showing the globally solved instances out of 82 nominations in total.
All instances solved by strategy 2 are also solved by strategy 3.

(A,B) = (1,2)
solved(52) incomp.(28)

time [s] nodes gap [%]
strategy A 161.6 44,146 113
strategy B 174.3 38,194 114
shifted geom. mean +8% −13% +1%

Table 5.2.: Run time, number of branch-and-bound nodes and gap comparison for the strategies 1 and 2 (aggregated
results). The columns “solved” contain mean values for those instances globally solved by both strategies A and
B. The columns “incomplete” show mean values for those instances having a primal feasible solution available but
were not globally solved by both strategies A and B. The underlying data are available in Tables A.6 – A.9.

(A,B) = (1,3) (A,B) = (1,4)
solved(52) incomp.(27) solved(53) incomp.(18)

time [s] nodes gap [%] time [s] nodes gap [%]
strategy A 161.6 44,146 116 180.0 49,219 159
strategy B 175.5 31,661 102 120.0 8,681 31
shifted geom. mean +9% −28% −12% −33% −82% −81%

Table 5.3.: Run time, number of branch-and-bound nodes and gap comparison for the strategies 1 and 3 and
additionally 1 and 4 (aggregated results). The columns “solved” contain mean values for those instances globally
solved by both strategies A and B. The columns “incomplete” show mean values for those instances having a
primal feasible solution available but were not globally solved by both strategies A and B. The underlying data
are available in Tables A.6 – A.9.
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Computational Results
For the computational study we consider the transport networks net1 and net2. For
net2 we contract all compressors and control valves. These networks have different
topologies and consist of pipelines only. All pipes (a, i) have constants αa,i > 0,
βa,i = 0 and ka,i = 1. A visualization of these networks is shown in Figure 3.5
and Figure 3.6. All extensions are parallel arcs (or loops) as described in the next
paragraph. Therefore they are not visible in the pictures. The dimensions of the
networks are given in Table 3.1. The considered networks belong to the second type
of network which we consider in this thesis. They only contain pipelines, loops and
valves.

For each network we are given a balanced flow demand at the entry and the exit
nodes. There exists a feasible flow in the network for this given demand. Now we
scale up this demand, that is, we multiply each entry and exit value by the same
scalar > 1. For a certain value 2.0 the instance is no longer feasible, i.e., there is no
valid flow which fulfills all model constraints. In order to obtain a feasible flow again,
the network capacity needs to be extended, for which we introduced a number of
parallel arcs (loops). For the network net1 we consider different instances where
we allow to build up to 7 loops, up to 8 loops, continuing up to 11 loops for each
arc of the network. For the instance net2 we similarly allow between 2 and 4 loops,
respectively. That is, each original pipeline can be extended at most by this number
of pipelines having the same characteristics as the original one.

We set a time limit of 39 600 s and used the computational setup described in
Section 3.5. The computational results are shown in Tables A.6 – A.9. Especially
the number of inequalities (5.2.4) that are generated and added to the topology opti-
mization problem is available in these tables. A summary is given in Tables 5.1 – 5.3.
We use the geometric mean of run time, number of branch-and-bound nodes and
gap as described in Section 3.5.

The first and second strategy almost show the same solving performance in terms
of number of solved instances. We remark that the number of nodes is reduced by
13%, while the solving time increases by 8%, see Table 5.2. We conclude that the
domain relaxation presented in Chapter 4 allows to reduce the necessary number of
branch-and-bound nodes, but the computation time increases. The first and the
third strategy also show almost the same solving performance in terms of number of
solved instances. The number of nodes is reduced by 28%, while the solving time
increases by 9%, see Table 5.3. Hence the inequalities presented in this chapter
allow to reduce the number of branch-and-bound nodes. But we conclude that the
computation time being saved due to the reduction of branch-and-bound nodes
is used to generate the inequalities. This is different when restarts are allowed
as implemented by strategy 4. A comparison of the fourth and the first strategy
shows that additionally 13% more instances of the test set (11 out of 82) are solved
to global optimality within the time limit of 39 600 s. Furthermore the run time
is reduced by 33%, the number of nodes by 82% and the gap by 81% for those
instances which remain with a positive gap value following both strategies. Again
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Figure 5.4.: Performance plot for different nominations on the networks net1 and net2 (aggregated) and a time limit
of 39 600 s. The different strategies are described in Section 5.3. Strategy 1 mainly consist of SCIP. Strategies 2
and 3 also correspond to SCIP in combination with our solution methods presented in this chapter, i.e., generating
the cuts (5.2.4) and adding them to the problem formulation. Both strategies only differ in the restarting policy.
The underlying data are available in Tables A.6 – A.9.

the number of nodes decreases more than the run time. This is due to the time
which is necessary for solving the domain relaxation and generating the inequalities.

Figure 5.4 shows an aggregated performance plot of the five strategies. The
fifth strategy clearly shows the worst results. It does not even improve the first
strategy. The graphs of the third and fourth strategy are coherent with the previous
discussion. The graph of the fourth strategy dominates the other strategies for those
instances that have a solution time of more than 200 s following strategy 4. This
order is different for the other instances. Here the first strategy dominates. This
solving behavior can be clearly attributed to the restarts that we apply whenever
a primal solution is found. Figure 5.5 shows a coherent result. It is a scatterplot
of the run time comparing the second and the fourth strategy. Finally Figure 5.6
shows a scatterplot of the gap comparing both strategies. The gap is reduced for
every instance.

We do not generate the cut for the first type of network which we consider in
this thesis. Recall that they consist of pipes and valves only. In this case the binary
variables are associated with valves only. If an inequality (5.2.4) was generated
for a closed valve a, then it would be easy to see that the inequality might get
inactive when a is opened. This is due to a possible large coefficient of xa,1. The
same observation holds for an opened valve getting closed. In this case it is due to
a possible large coefficient of xa,0. Both cases imply that the inequality typically
has a similar characteristic as the cut used in strategy 5.
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Chapter 5. An Improved Benders Cut for the Topology Optimization Problem

Summary

In this chapter we presented a valid inequality for the topology optimization prob-
lem (3.2.1) restricted to the case y = y. This case includes the second type of
network of our test instances which we consider in this thesis, namely those which
contain pipes, loops and valves only. A first step for the definition of the cut was the
inequality of Corollary 5.1.6 being a linear combination of two different nonlinear
inequalities. In Section 5.1.4 we explained that the first one can be obtained from
the Lagrange function of the domain relaxation (4.2.1). The second one is the
so-called pc-regularization which was necessary to derive a globally valid cut. In a
second step we gave a linear underestimator in Section 5.1.2 which then led to an in-
equality without any variables representing the infeasibility of a passive transmission
problem, see Section 5.1.3. In Section 5.2 we explained how to extend this inequality
to a valid cut for the topology optimization problem. Adding the inequality to
the problem is reminiscent of a Benders decomposition approach as the inequality
represents the infeasibility of a certain passive transmission problem. That is why
we call the inequality an improved Benders cut. From the computational results
we conclude that the separation of the new inequalities (5.2.4) leads to significant
smaller branch-and-bound trees and thus lower overall running times. On average
the run time is reduced by 33% in comparison to SCIP. In addition the test set is
solved to global optimality in 13% more instances.
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Figure 5.5.: Run time comparison for different nominations on the networks net1 and net2. Each cross (×)
corresponds to a single instance of the test set. Note that multiple crosses are drawn in the upper right corner of
the plots that cannot be differentiated. They represent those instances that ran into the time limit of 39 600 s for
SCIP without and with using cuts. The underlying data are available in Tables A.6 – A.9.
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Figure 5.6.: Gap comparison for different nominations on the networks net1 and net2. Each cross (×) corresponds
to a single instance of the test set. Those instances where at least one gap value is infinity are not depicted here.
The underlying data are available in Tables A.6 – A.9.
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Chapter 6.

Sufficient Conditions for Infeasibility of the
Active Transmission Problem

In the previous Chapters 4 and 5 we focused on networks without compressor
and control valves. We considered the topology optimization problem (3.2.1) in
the case y = y. Especially in Chapter 4 we presented different relaxations of
the passive transmission problem (4.1.1). They allow to solve (4.1.1) efficiently.
The passive transmission problem occurs at nodes of the branching tree of the
topology optimization problem being solved by SCIP after branching on discrete
variables. Time consuming spatial branching can be reduced when solving these
nodes by applying the relaxations. Hence, the relaxations allow to solve the topology
optimization problem efficiently. In this chapter we turn to the more general case of
networks containing compressors and control valves, i.e., y 6= y. They belong to the
third type of network which we consider in this thesis. We present an algorithm
which allows to proceed in a similar fashion as in the restricted case of y = y, i.e.,
we solve subproblems of the topology optimization problem (3.2.1) by a specialized
method.

The subproblem considered in this chapter is the active transmission prob-
lem (3.4.2). As previously mentioned this problem arises from the topology op-
timization problem after fixing all binary variables. Our strategy for solving the
active transmission problem is as follows: We relax it in a similar way as done
for the passive transmission problem (4.1.1) as described in Chapter 4. Then we
compute a locally optimal solution for the upcoming relaxation by IPOpt. Now
this may provide a solution that is also feasible for the active transmission problem.
In this case we solved it to global optimality. However, if it does not yield a
feasible solution, then we try to verify that there exists no solution for the active
transmission problem. Therefor we present conditions for the infeasibility of the
active transmission problem. In the end, our approach consists of a primal heuristic
together with infeasibility conditions of the active transmission problem.

We include this solution method into the branch-and-bound tree which is used for
solving the topology optimization problem (3.2.1). Whenever an active transmission
problem arises, we use the heuristic to solve it. If the primal heuristic yields a
feasible solution for the topology optimization problem, then we add this solution to
the solution pool of the solver. If we can prove that the active transmission problem
is infeasible, then we prune the corresponding node of the branch-and-bound tree.
This allows to cut off nodes from the branch-and-bound tree. This in turn leads to
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Chapter 6. Sufficient Conditions for Infeasibility of the Active Transmission Problem

an increase of 20% for globally solved topology expansion instances on the third
type of network considered in this thesis.

The outline of this chapter is as follows: In Section 6.1 we present two relaxations
of the active transmission problem which are obtained in a similar way as the domain
relaxation (4.2.1) and the flow conservation relaxation (4.3.1). We prove that both
relaxations are non-convex nonlinear optimization problems. In Section 6.2 we
present an MILP which represents the conditions of infeasibility of the active
transmission problem. Its definition depends on a local optimum of the relaxations.
In Section 6.3 we present our initial motivation for the definition of the MILP.
Computational results are given in Section 6.4.

6.1. Non-Convex Relaxations for the Active
Transmission Problem

The active transmission problem considered in this chapter is obtained from the
topology optimization problem (3.2.1) by fixing all binary variables x. Recall that y
is a vector of real variables, hence fixing x means to concentrate on the subproblem of
(3.2.1) where all discrete decisions are fixed. Let A′ := {(a, i) ∈ AX : xa,i = 1, i > 0}
denote the set of arcs so that the flow is not fixed to zero. The arising problem is as
follows:

∃ q, π, p, y (6.1.1a)

s. t. αa qa|qa|ka − βaya − (πv − γaπw) = 0 ∀ a = (v, w) ∈ A′, (6.1.1b)∑
a∈δ+

A′ (v)
qa −

∑
a∈δ−

A′ (v)
qa = dv ∀ v ∈ V, (6.1.1c)

Aa (qa, pv, pw)T ≤ ba ∀ a = (v, w) ∈ A′, (6.1.1d)

pv|pv| − πv = 0 ∀ v ∈ V, (6.1.1e)

πv ≤ πv ∀ v ∈ V, (6.1.1f)

πv ≥ πv ∀ v ∈ V, (6.1.1g)

qa ≤ qa ∀ a ∈ A′, (6.1.1h)

qa ≥ q
a
∀ a ∈ A′, (6.1.1i)

ya ≤ ya ∀ a ∈ A′, (6.1.1j)

ya ≥ y
a
∀ a ∈ A′, (6.1.1k)

pv, πv ∈ R ∀ v ∈ V, (6.1.1l)

qa, ya ∈ R ∀ a ∈ A′. (6.1.1m)

126



6.1. Non-Convex Relaxations for the Active Transmission Problem

In order to solve the active transmission problem (6.1.1) we proceed in a similar
way as for the passive transmission problem (4.1.1) described in Chapter 4. For
this we consider two different relaxations which are presented in Section 6.1.1 and
Section 6.1.2. Unfortunately it turns out that both relaxations are non-convex
optimization problems. So far we are not aware of a convex one. In the following
we assume that the graph (V,A′) is connected because otherwise we consider an
active transmission problem for every connected component separately.

6.1.1. Relaxation of Domains
The first relaxation we consider is similar to the domain relaxation (4.2.1) of the
passive transmission problem. It turns out to be a non-convex optimization problems
and writes as follows:

min
∑
v∈V

∆v +
∑
a∈A′

(∆a + ‖∆′a‖) (6.1.2a)

s. t. αa qa|qa|ka − βaya − (πv − γaπw) = 0 ∀ a = (v, w) ∈ A′, (6.1.2b)∑
a∈δ+

A′ (v)
qa −

∑
a∈δ−

A′ (v)
qa = dv ∀ v ∈ V, (6.1.2c)

Aa (qa, pv, pw)T −∆′a ≤ ba ∀ a = (v, w) ∈ A′, (6.1.2d)

pv|pv| − πv = 0 ∀ v ∈ V, (6.1.2e)

πv −∆v ≤ πv ∀ v ∈ V, (6.1.2f)

πv + ∆v ≥ πv ∀ v ∈ V, (6.1.2g)

qa −∆a ≤ qa ∀ a ∈ A′, (6.1.2h)

qa + ∆a ≥ q
a

∀ a ∈ A′, (6.1.2i)

ya ≤ ya ∀ a ∈ A′, (6.1.2j)

ya ≥ y
a

∀ a ∈ A′, (6.1.2k)

pv, πv ∈ R ∀ v ∈ V, (6.1.2l)

qa, ya ∈ R ∀ a ∈ A′, (6.1.2m)

∆v ∈ R≥0 ∀ v ∈ V, (6.1.2n)

∆a ∈ R≥0 ∀ a ∈ A′, (6.1.2o)

∆′a ∈ Rνa
≥0 ∀ a ∈ A′. (6.1.2p)

Lemma 6.1.1:
The optimization problem (6.1.2) is a feasible relaxation of the active transmission
problem (6.1.1).
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Figure 6.1.: An example of a planar network. It is used in the discussion in Example 6.1.2 for showing that the
domain relaxation (6.1.2) is a non-convex optimization problem. The dashed arc is a control valve with constraint
αa4 qa4 |qa4 | − ya4 = πv4 − πv5 and −50 ≤ ya4 ≤ 0. All the other arcs a = (v, w) ∈ A′ are passive pipes, i.e.,
αaqa|qa| = πv − πw. All primal node potential values are bounded by 0 and 100, except v3 and v7, where upper
and lower bound are πv7 = 29 and πv3

= 91, respectively. The absolute value of the arc flow is bounded by 100.

Proof. Every feasible solution of the active transmission problem (6.1.1) can be
extended to a feasible solution of (6.1.2) by considering ∆ := 0 as slack values.
Hence (6.1.2) is a relaxation of the active transmission problem (6.1.1).

When fixing y and neglecting constraints (6.1.2d) and (6.1.2e) the optimization
problem (6.1.2) is equal to the domain relaxation (4.2.1). Contracting those arcs
a = (v, w) ∈ A′ that are modeled by πv = πw yields a modified version of the
domain relaxation with α > 0. This problem is always feasible by Theorem 4.2.9.
Transforming a solution to the original problem and removing the fixation of y keeps
the feasibility. By adding the neglected constraints (6.1.2e) the feasibility is kept
again because there are no bounds on the pressure variables p. The same holds for
constraints (6.1.2d) because the values ∆′a can be chosen such that (6.1.2d) is valid
for any values qa, pv, pw for each arc a = (v, w) ∈ A′.

Let us consider a local optimal solution of this problem (6.1.2). In the case that
the objective value of this solution equals zero, we derive an optimal solution for
the active transmission problem by neglecting the slack variables ∆. Otherwise,
i.e., if the objective value is greater than zero, then it is not guaranteed that the
local optimal solution is a global one. Unfortunately it turns out, as discussed in
Example 6.1.2, that the relaxation (6.1.2) is a non-convex optimization problem.
So we cannot conclude that the active transmission problem (6.1.1) is infeasible in
this case.
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6.1. Non-Convex Relaxations for the Active Transmission Problem

Example 6.1.2:
The domain relaxation (6.1.2) for the network shown in Figure 6.1 has two different
KKT points. The network is planar and consists of 7 nodes and 10 arcs (9 pipes
and 1 active control valve). The parameters of the active transmission problem are
available from Figure 6.1. Those that are not shown are defined as follows:

βa :=
1 if a = a4,

0 else
∀ a ∈ A′,

γa := 1 ∀ a ∈ A′,
ka := 1 ∀ a ∈ A′,

πv :=
29 if v = v7,

100 else
∀ v ∈ V,

πv :=
91 if v = v3,

0 else
∀ v ∈ V,

qa := 100 ∀ a ∈ A′,
q
a

:= −100 ∀ a ∈ A′,
ya := 0 ∀ a ∈ A′,

y
a

:=
−50 if a = a4,

0 else
∀ a ∈ A′.

There are no additional constraints for the arcs, i.e., Aa = 0, ba = 0 for every arc
a ∈ A′. Hence we can neglect the coupling constraints (6.1.1e) and the pressure
variables p and constraints (6.1.2d).

In this context the domain relaxation (6.1.2) is as follows:

min
∑
v∈V

∆v +
∑
a∈A′

∆a (6.1.3)

s. t.
∑

a∈δ+
A′ (v)

qa −
∑

a∈δ−
A′ (v)

qa = dv ∀ v ∈ V,

αa qa|qa| − (πv − πw) = 0 ∀ a = (v, w) ∈ A′, a 6= a4,

αa4 qa4|qa4 | − ya4 − (πv4 − πv5) = 0,

qa −∆a ≤ 100 ∀ a ∈ A′,

qa + ∆a ≥ −100 ∀ a ∈ A′,

πv −∆v ≤ 100, ∀ v ∈ V, v 6= v7

πv + ∆v ≥ 0, ∀ v ∈ V, v 6= v3

πv7 −∆v7 ≤ 29,
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

qa 0.5 6 1 0 0.5 6 1 2 1 1
µa −1/3 −2/3 −1/3 0 −1/3 −2/3 1/3 −1/3 −1/3 1/3
λ̃a 1 1 1 1 1 1 1 1 1 1

v1 v2 v3 v4 v5 v6 v7

πv 50 60 90 70 70 60 30
∆v 0 0 1 0 0 0 1
µv 80/3 40/3 20/3 60/3 60/3 100/3 120/3
λ+
v 0 0 0 0 0 0 1
λ−v 0 0 1 0 0 0 0
λv 1 1 0 1 1 1 0

Table 6.1.: A KKT point of the domain relaxation (6.1.2) with positive objective value. Those variables not depicted
have zero values, i.e., ya,∆a, λ

±
a , λ̃

±
a = 0, a ∈ A. The KKT point is used for a discussion in Example 6.1.2.

πv3 + ∆v3 ≥ 91,

0 ≤ ya ≤ 0, ∀ a ∈ A′, a 6= a4

−50 ≤ ya4 ≤ 0,

πv ∈ R ∀ v ∈ V,

qa, ya ∈ R ∀ a ∈ A′,

∆v ∈ R≥0 ∀ v ∈ V,

∆a ∈ R≥0 ∀ a ∈ A′.

In order to show that there exist different KKT points of (6.1.3) we consider the
KKT conditions for this problem. The objective and all constraints of (6.1.3) are
continuously differentiable. We write the Lagrange function of problem (6.1.3) in
order to derive the KKT conditions for (6.1.3):

L(q, π, y,∆, µ, λ) =
∑
v∈V

∆v +
∑
a∈A′

∆a

+
∑

a=(v,w)∈A′
µa

(
αa qa|qa|ka − βaya − (πv − πw)

)

+
∑
v∈V

µv

dv − ∑
a∈δ+

A′ (v)
qa +

∑
a∈δ−

A′ (v)
qa


+
∑
v∈V

(
λ+
v (πv −∆v − πv) + λ−v (πv − πv −∆v)

)
+
∑
a∈A′

(
λ̃+
a (qa −∆a − qa) + λ̃−a (q

a
− qa −∆a)

)
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

qa 0.34 6.38 0.61 -0.87 0.16 5.91 0.45 2.49 1.08 0.75
ya 0 0 0 -25 0 0 0 0 0 0
λ̃a 1 1 1 1 1 1 1 1 1 1

v1 v2 v3 v4 v5 v6 v7

πv 52.46 57.13 91.08 83.47 59.23 58.11 28.95
λv 1 1 1 1 1 1 1

Table 6.2.: A KKT point of the domain relaxation (6.1.2) with zero objective value. All numbers are depicted
up to a precision of 2 digits. Those variables not depicted have zero values, i.e., µa,∆a, λ

±
a , λ̃

±
a = 0, a ∈ A and

∆v , µv , λ
±
v = 0, v ∈ V . The KKT point is used for a discussion in Example 6.1.2.

+
∑
a∈A′

(
λ+
a (ya − ya) + λ−a (y

a
− ya)

)
−
∑
v∈V

λv∆v −
∑
a∈A′

λ̃a∆a.

We obtain from the complementarity constraints (2.4.2a) of the KKT conditions
(2.4.2) of the domain relaxation (6.1.2) that a KKT point (q∗, π∗, y∗,∆∗, µ∗, λ∗) of
(6.1.3) is feasible for

∂L

∂qa
= 0⇒ µa 2αa|qa|+ λ̃+

a − λ̃−a = µv − µw ∀ a = (v, w) ∈ A′,

∂L

∂πv
= 0⇒

∑
a∈δ+

A′ (v)
µa −

∑
a∈δ−

A′ (v)
µa = λ+

v − λ−v ∀ v ∈ V,

∂L

∂∆v

= 0⇒ λ+
v + λ−v + λv = 1 ∀ v ∈ V,

∂L

∂∆a

= 0⇒ λ̃+
a + λ̃−a + λ̃a = 1 ∀ a ∈ A′,

∂L

∂ya
= 0⇒ λ+

a − λ−a − βaµa = 0 ∀ a ∈ A′.

(6.1.4)

Similar to Lemma 4.2.11 and the discussion in Section 4.2.3 we observe that the
Lagrange multipliers (µ∗a)a∈A′ of a KKT point (q∗, π∗, y∗,∆∗, µ∗, λ∗) of (6.1.3) form
a network flow in (V,A′).

Now it is easy to see that the solution values shown in Table 6.1 and Table 6.2
fulfill the KKT conditions (2.4.2) of (6.1.3), i.e., they are feasible for (6.1.3), (6.1.4)
and the complementarity constraints (2.4.2e), and hence are KKT points of the
domain relaxation (6.1.3). The primal part shown in Table 6.2 has zero objective
value while this is not the case for the primal part shown in Table 6.1. A convex
combination of both primal feasible solutions is not feasible for the relaxation (6.1.3)
because of constraint (6.1.2b). We conclude that (6.1.2) is a non-convex optimization
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problem. As both solutions have different objective values this shows that a nonlinear
solver like IPOpt, which computes KKT points, cannot guarantee to compute the
global optimal solution of (6.1.2).

6.1.2. Relaxation of Flow Conservation Constraints
Unfortunately the domain relaxation (6.1.3) presented in Section 6.1.1 is a non-
convex optimization problem. Now we try to find another relaxation of the active
transmission problem (6.1.1). Therefor we extend the flow conservation relax-
ation (4.3.1) presented in Chapter 4 to the more general case of this chapter. Again
it turns out that the obtained relaxation is non-convex. It is as follows:

min
∑
v∈V

(
∆+
v + ∆−v

)
+
∑
a∈A′

(
∆+
a + ∆−a + ‖∆′a‖

)
(6.1.5)

s. t. αa qa|qa|ka − βaya − (πv − γaπw) = 0 ∀ a = (v, w) ∈ A′,∑
a∈δ+

A′ (v)
(qa − (∆+

a −∆−a ))−
∑

a∈δ−
A′ (v)

(qa − (∆+
a −∆−a ))

−(∆+
v −∆−v ) = dv ∀ v ∈ V,

Aa (qa,i, pv, pw)T −∆′a ≤ ba ∀ a = (v, w) ∈ A′,

pv|pv| − πv = 0 ∀ v ∈ V,

πv ≤ πv ∀ v ∈ V,

πv ≥ πv ∀ v ∈ V,

qa ≤ qa ∀ a ∈ A′,

qa ≥ q
a

∀ a ∈ A′,

ya ≤ ya ∀ a ∈ A′,

ya ≥ y
a

∀ a ∈ A′,

∆−v (πv − πv) ≤ 0 ∀ v ∈ V,

∆+
v (πv − πv) ≤ 0 ∀ v ∈ V,

∆−a (qa − qa) ≤ 0 ∀ a ∈ A′,

∆+
a (qa − qa) ≤ 0 ∀ a ∈ A′,

pv, πv ∈ R ∀ v ∈ V,

qa ∈ R ∀ a ∈ A′,

∆±v ∈ R≥0 ∀ v ∈ V,
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Figure 6.2.: An example of a planar network. It is used in the discussion in Example 6.1.4 for showing that the
flow conservation relaxation (6.1.5) is a non-convex optimization problem. The dashed arc is a control valve with
constraint αa4 qa4 |qa4 | − ya4 = πv4 −πv5 and −50 ≤ ya4 ≤ 0. All the other arcs a = (v, w) ∈ A′ are passive pipes,
i.e., αaqa|qa| = πv − πw. All primal node potential values are bounded by 0 and 100, except v3 and v7, where
upper and lower bound are πv7 = 30 and πv3

= 90, respectively. The absolute value of the arc flow is bounded by
100. The network is equal to the one shown in Figure 6.1, but the nomination and node potential bounds differ.

∆±a ∈ R≥0 ∀ a ∈ A′,

∆′a ∈ Rνa
≥0 ∀ a ∈ A′.

Lemma 6.1.3:
The optimization problem (6.1.5) is a relaxation of the active transmission prob-
lem (6.1.1).

Proof. Every feasible solution of the active transmission problem (6.1.1) yields a
feasible solution of (6.1.5) in combination with ∆ := 0.

In the next example we show that this relaxation is a non-convex optimization
problem. Therefore, from a local optimal solution (6.1.5) with positive slack we
cannot conclude that the active transmission problem (6.1.1) is infeasible.

Example 6.1.4:
We consider the network shown in Figure 6.2. It is similar to the example network
in Example 6.1.2 but we consider a different nomination and different node potential
bounds here. More precisely the differences are obtained by changing the node
potential bounds in v3 and v7 to πv3 = 90 and πv7 = 30. Furthermore the considered
nomination is adapted by setting dv3 := 7.1 and dv7 := −7.1. We neglect the coupling
constraints pv|pv| = πv, v ∈ V and the pressure variables p. Recall that it holds
Aa = 0, ba = 0. Then relaxation (6.1.5) writes as follows:
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min
∑
v∈V

(∆+
v + ∆−v ) +

∑
a∈A′

(∆+
a + ∆−a ) (6.1.6)

s. t.∑
a∈δ+

A′ (v)
(qa − (∆+

a −∆−a ))−
∑

a∈δ−
A′ (v)

(qa − (∆+
a −∆−a ))

−(∆+
v −∆−v ) = dv ∀ v ∈ V,

αa qa|qa| − (πv − πw) = 0 ∀ a = (v, w) ∈ A′
a 6= a4,

αa4 qa4|qa4| − ya4 − (πv4 − πv5) = 0,

πv ≤ 100, ∀ v ∈ V, v 6= v7

πv ≥ 0, ∀ v ∈ V, v 6= v3

πv3 ≥ 90,

πv7 ≤ 30,

0 ≤ ya ≤ 0, ∀ a ∈ A′, a 6= a4

−50 ≤ ya4 ≤ 0,

∆−v7 (30− πv7) ≤ 0,

∆+
v3 (πv3 − 90) ≤ 0,

∆−v (100− πv) ≤ 0 ∀ v ∈ V, v 6= v7

∆+
v (πv − 0) ≤ 0 ∀ v ∈ V, v 6= v3

∆−a (100− qa) ≤ 0 ∀ a ∈ A′,

∆+
a (qa + 100) ≤ 0 ∀ a ∈ A′,

πv ∈ R ∀ v ∈ V,

qa, ya ∈ R ∀ a ∈ A′,

∆+
v ,∆−v ∈ R≥0 ∀ v ∈ V,

∆+
a ,∆−a ∈ R≥0 ∀ a ∈ A′.

In order to show that there exist different KKT points of (6.1.6) we consider the
KKT conditions for this problem. The objective and all constraints of (6.1.6) are
continuously differentiable. We write the Lagrange function of problem (6.1.6) in
order to derive the KKT conditions for (6.1.6):

L(q, π, y,∆, µ, λ) =
∑
v∈V

(
∆+
v + ∆−v

)
+
∑
a∈A′

(
∆+
a + ∆−a

)
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+
∑

a=(v,w)∈A′
µa
(
αa qa|qa| − βaya − (πv − πw)

)

+
∑
v∈V

µv

dv + (∆+
v −∆−v )

−
∑

a∈δ+
A′ (v)

(qa −∆+
a + ∆−a ) +

∑
a∈δ−

A′ (v)
(qa −∆+

a + ∆−a )


+
∑
v∈V

(
λ+
v (πv − πv) + λ−v (πv − πv)

)
+
∑
a∈A′

(
λ+
a (qa − qa) + λ−a (q

a
− qa)

)
+
∑
a∈A′

(
λ̂+
a (ya − ya) + λ̂−a (y

a
− ya)

)
+
∑
v∈V

(
µ+
v (πv − πv) ∆−v + µ−v (πv − πv) ∆+

v

)
+
∑
a∈A′

(
µ+
a (qa − qa) ∆−a + µ−a (qa − qa) ∆+

a

)
−
∑
v∈V

(
λ̃+
v ∆+

v + λ̃−v ∆−v
)
−
∑
a∈A′

(
λ̃+
a ∆+

a + λ̃−a ∆−a
)
.

We obtain from (2.4.2a) of the KKT conditions (2.4.2) of the flow conservation
relaxation (6.1.5) that a KKT point (q∗, π∗, y∗,∆∗, µ∗, λ∗) of (6.1.6) is feasible for

∂L

∂qa
= 0⇒ µa2αa|qa|+ λ+

a − λ−a = µv − µw ∀ a = (v, w) ∈ A′,

∂L

∂πv
= 0⇒

∑
a∈δ+

A′ (v)
µa −

∑
a∈δ−

A′ (v)
µa = λ+

v − λ−v

+ (µ+
v ∆−v − µ−v ∆+

v ) ∀ v ∈ V,

∂L

∂∆+
v

= 0⇒ µv + µ−v (πv − πv)− λ̃+
v = −1 ∀ v ∈ V,

∂L

∂∆−v
= 0⇒ −µv + µ+

v (πv − πv)− λ̃−v = −1 ∀ v ∈ V,

∂L

∂∆+
a

= 0⇒µv − µw + µ−a (qa − qa)− λ̃
+
a = −1 ∀ a = (v, w) ∈ A′,

∂L

∂∆−a
= 0⇒µw − µv + µ+

a (qa − qa)− λ̃−a = −1 ∀ a = (v, w) ∈ A′,

∂L

∂ya
= 0⇒ λ̂+

a − λ̂−a − βaµa = 0. ∀ a ∈ A′.
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.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

qa 0.5 6 1 0 0.5 6 1 2 1 1
µa −1/50 −2/50 −1/50 0 −1/50 −2/50 1/50 −1/50 −1/50 1/50
λ̃+

a 1/5 3/5 1/5 1 1/5 3/5 7/5 3/5 1/5 7/5
λ̃−

a 9/5 7/5 9/5 1 9/5 7/5 3/5 7/5 9/5 3/5
v1 v2 v3 v4 v5 v6 v7

πv 50 60 90 70 70 60 30
∆+

v 0 0 0.1 0 0 0 0
∆−

v 0 0 0 0 0 0 0.1
µv 1/5 −3/5 −1 −1/5 −1/5 3/5 1
λ+

v 0 0 0 0 0 0 3/50
λ−

v 0 0 3/50 0 0 0 0
λ̃+

v 6/5 2/5 0 4/5 4/5 8/5 2
λ̃−

v 4/5 8/5 2 6/5 6/5 2/5 0

Table 6.3.: A KKT point of the flow conservation relaxation (6.1.5) with positive objective value. Those variables
not depicted have zero values, i.e., ya,∆±a , λ±a , µ±a = 0, a ∈ A and µ±v = 0, v ∈ V . The KKT point is used for a
discussion in Example 6.1.4.

Now it is easy to see that the solution values shown in Table 6.3 and Table 6.4 ful-
fill the KKT conditions (2.4.2), i.e., they form a feasible solution for (6.1.6), (2.4.2a)
as stated above for the considered problem and the complementarity constraints
(2.4.2e), and hence are KKT points of the flow conservation relaxation (6.1.6). The
primal part shown in Table 6.4 has zero objective value while this is not the case for
the primal part shown in Table 6.3. A convex combination of both primal feasible
solutions is not feasible for the relaxation (6.1.6) because of the constraints

αa qa|qa|ka − βaya − (πv − γaπw) = 0 ∀ a = (v, w) ∈ A′.

We conclude that (6.1.5) is a non-convex optimization problem. As both solutions
have different objective values this shows that a nonlinear solver like IPOpt, which
computes KKT points, cannot guarantee to compute the global optimal solution of
(6.1.5).

6.2. Detecting Infeasibility of the Active
Transmission Problem by MILP

In the previous section we presented two relaxations (6.1.2) and (6.1.5) of the active
transmission problem (6.1.1), which are non-convex optimization problems. Let us
consider a feasible solution (q̃, π̃, p̃, ∆̃, ỹ) of these relaxations such that (q̃, π̃, p̃, ỹ)
is not feasible for the active transmission problem. In this section we are going to
present an MILP for evaluating the infeasibility of the active transmission problem.
This MILP is called infeasibility detection MILP. Its definition depends on the vector
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

qa 0.18 7.11 -0.21 -2.20 -0.26 5.76 -0.43 2.98 1.13 0.46
ya 0 0 0 -50 0 0 0 0 0 0
λ̃+
a 1 1 1 1 1 1 1 1 1 1
λ̃−a 1 1 1 1 1 1 1 1 1 1

v1 v2 v3 v4 v5 v6 v7

πv 49.71 51.02 93.26 94.23 49.09 51.88 24.15
λ̃+
v 1 1 1 1 1 1 1
λ̃−v 1 1 1 1 1 1 1

Table 6.4.: A KKT point of the flow conservation relaxation (6.1.5) with zero objective value. All numbers are
depicted up to a precision of 2 digits. Those variables not depicted have zero values, i.e., µa,∆±a , λ±a , µ±a = 0, a ∈ A
and ∆±v , µ±v , µv , λ±v = 0, v ∈ V . The KKT point is used for a discussion in Example 6.1.4.

(q̃, π̃, p̃, ỹ) and is stated in Definition 6.2.1. The main Theorem 6.2.2 of this section
states that if the infeasibility detection MILP is infeasible or has optimal objective
value zero, then the active transmission problem (6.1.1) is infeasible.

For a motivation of the definition of the infeasibility detection MILP we consider
a feasible solution (q∗, π∗, p∗, y∗) for the active transmission problem (6.1.1). From
constraint (6.1.1b) and (6.1.2b) and the corresponding constraint in (6.1.5) we
obtain

αaq
∗
a|q∗a|ka − βay∗a − (π∗v − γaπ∗w) = 0,

αaq̃a|q̃a|ka − βaỹa − (π̃v − γaπ̃w) = 0,
(6.2.1)

for every arc a = (v, w) ∈ A′. Throughout this section we use γr,v from Defi-
nition 4.2.3 and the function π′v(π) = γr,vπv defined in (4.2.4) which allows the
relation (4.2.5), i.e.,

π′v(π)− π′w(π) = γr,v (πv − γaπw).
Using π′ we derive from (6.2.1):

(π′v(π∗)− π′v(π̃))− (π′w(π∗)− π′w(π̃)) + γr,vβa(y∗a − ỹa)
= γr,v(π∗v − γaπ∗w + βay

∗
a − (π̃v − γaπ̃w + βaỹa))

= γr,v αa(q∗a|q∗a|ka − q̃a|q̃a|ka)
> 0 if αa(q∗a − q̃a) > 0,
= 0 if αa(q∗a − q̃a) = 0,
< 0 if αa(q∗a − q̃a) < 0,

for every arc a = (v, w) ∈ A′. We write this inequality for short as

sv − sw + sa


> 0 if αa(q∗a − q̃a) > 0,
= 0 if αa(q∗a − q̃a) = 0,
< 0 if αa(q∗a − q̃a) < 0.

(6.2.2)
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Here sa corresponds to γr,vβa(y∗a − ỹa) and sv to π′v(π∗)− π′v(π̃).
For the node potential π′ we observe after identifying xv with π′v(π∗) − π′v(π̃)

the conditions

xv ∈ R if πv < π̃v < πv,

xv ≤ 0 if π̃v = πv,

xv < 0 if π̃v > πv, (6.2.3)
xv ≥ 0 if πv = π̃v,

xv > 0 if πv > π̃v.

We write these conditions (6.2.3) as a single constraint

x+
v − x−v − xv − κv z = 0 with 0 ≤ x+

v ≤ x+
v , 0 ≤ x−v ≤ x−v , z > 0 (6.2.4)

where the variable bounds and κ are defined as

x+
v :=

0− if π̃v ≥ πv,

∞ else,
x−v :=

0 if π̃v ≤ πv,

∞ else,
κv :=


1 if π̃v > πv,

−1 if π̃v < πv,

0 else.

The flow conservation constraint (6.1.1c), constraint (6.2.4) and (in)equality
(6.2.2) form the main part of the infeasibility detection MILP. Keeping this idea in
mind, the MILP, which contains indicator constraints, is defined as follows:

Definition 6.2.1:
Let (q̃, π̃, p̃, ỹ) be a solution of the active transmission problem (6.1.1) fulfilling
at least constraint (6.1.2b) and (6.1.2e). The infeasibility detection MILP is
defined as follows:

max z (6.2.5a)
s. t.

∑
a∈δ+

A′ (v)
qa −

∑
a∈δ−

A′ (v)
qa = dv ∀ v ∈ V, (6.2.5b)

x+
v − x−v − xv − κv z = 0 ∀ v ∈ V, (6.2.5c)

κ̃a (qa − q̃a) > 0 ⇒ xv − xw + xa ≥ 0 ∀ a = (v, w) ∈ A′, (6.2.5d)
κ̃a (qa − q̃a) = 0 ⇒ xv − xw + xa = 0 ∀ a = (v, w) ∈ A′, (6.2.5e)
κ̃a (qa − q̃a) < 0 ⇒ xv − xw + xa ≤ 0 ∀ a = (v, w) ∈ A′, (6.2.5f)
αa (qa − q̃a) > 0 ⇒ sv − sw + sa ≥ κaz ∀ a = (v, w) ∈ A′, (6.2.5g)
αa (qa − q̃a) = 0 ⇒ sv − sw + sa = 0 ∀ a = (v, w) ∈ A′, (6.2.5h)
αa (qa − q̃a) < 0 ⇒ sv − sw + sa ≤ κaz ∀ a = (v, w) ∈ A′, (6.2.5i)

q
a
≤ qa ≤ qa ∀ a ∈ A′, (6.2.5j)

sa ≤ sa ≤ sa ∀ a ∈ A′, (6.2.5k)
xa ≤ xa ≤ xa ∀ a ∈ A′, (6.2.5l)
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x+
v ≤ x+

v ∀ v ∈ V, (6.2.5m)
x−v ≤ x−v ∀ v ∈ V, (6.2.5n)

xv, sv ∈ R ∀ v ∈ V, (6.2.5o)
x+
v , x

−
v ∈ R≥0 ∀ v ∈ V, (6.2.5p)

xa, sa, qa ∈ R ∀ a ∈ A′, (6.2.5q)
z ∈ R≥0. (6.2.5r)

For simplicity we do not state this problem at once as a mixed-integer nonlinear
optimization problem, but give an equivalent reformulation in Remark 6.2.3.

Constraint (6.2.5c) originates from (6.2.4) by expressing z > 0 as objective.
Similarly (6.2.5g)–(6.2.5i) originate from (6.2.2). Constraints (6.2.5d)–(6.2.5f) form
a weaker version of (6.2.2).

For the definition of this MILP we make use of different constants which are
defined below. Especially the bounds on sa for an arc a = (v, w) ∈ A′ originate from
the previously described relation that sa corresponds to γr,vβa(y∗a − ỹa):

sa :=
0− if βaỹa = max{βaya, βaya},
∞ else

∀ a ∈ A′,
a = (v, w), (6.2.6a)

sa :=
0 if βaỹa = min{βaya, βaya},
−∞ else

∀ a ∈ A′,
a = (v, w), (6.2.6b)

xa :=



0− if βaỹa = max{βaya, βaya},
0− if ∃k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with

(Aa)(k,1) ≥ 0, (Aa)(k,2) < 0, (Aa)(k,3) > 0,
∞− else

∀ a ∈ A′,
a = (v, w), (6.2.6c)

xa :=



0 if βaỹa = min{βaya, βaya},
0 if ∃k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with

(Aa)(k,1) ≤ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0,
−∞ else

∀ a ∈ A′,
a = (v, w), (6.2.6d)

x+
v :=

0− if π̃v ≥ πv,

∞− else
∀ v ∈ V, (6.2.6e)

x−v :=
0 if π̃v ≤ πv,

∞− else
∀ v ∈ V, (6.2.6f)

κv :=


1 if π̃v > πv,

−1 if π̃v < πv,

00− else
∀ v ∈ V, (6.2.6g)
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κa :=


−1 if αa > 0, q̃a > qa,

1 if αa > 0, q̃a < q
a
,

00− else
∀ a ∈ A′, (6.2.6h)

κ̃a :=



1− if αa > 0,
1 if ∃k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with

(Aa)(k,1) 6= 0,
00− else

∀ a ∈ A′. (6.2.6i)

Theorem 6.2.2:
Let (q̃, π̃, p̃, ỹ) be a solution for the active transmission problem (6.1.1) fulfilling at
least constraint (6.1.2b) and (6.1.2e). If the infeasibility detection MILP (6.2.5) is
infeasible or has optimal objective value zero, then the active transmission prob-
lem (6.1.1) is infeasible.

Proof. Let (q̃, π̃, p̃, ỹ) be a solution for the active transmission problem (6.1.1)
fulfilling at least constraint (6.1.2b) and (6.1.2e). If the infeasibility detection
MILP (6.2.5), which depends on (q̃, π̃, p̃, ỹ), is infeasible, then there does not exist a
flow vector q′ ∈ RA′ which fulfills∑

a∈δ+
A′ (v)

qa −
∑

a∈δ−
A′ (v)

qa = dv ∀ v ∈ V, q
a
≤ qa ≤ qa ∀ a ∈ A′. (6.2.7)

This can be seen as follows: Otherwise, if there exists a vector q′ fulfilling (6.2.7),
then (q′, 0) is a feasible solution for (6.2.5). We conclude that the active transmission
problem (6.1.1) is infeasible if MIP (6.2.5) is infeasible.

Now assume that the MIP (6.2.5) has an optimal solution with objective value
zero. We prove that this implies that the active transmission problem (6.1.1) is
infeasible. Therefor we assume that the active transmission problem has a feasible
solution (q∗, π∗, p∗, y∗) and show that there exists a feasible solution (q∗, x∗, s∗, z∗)
to MIP (6.2.5) with positive objective, i.e., z∗ > 0. In the following we describe how
this solution (q∗, x∗, s∗, z∗) is defined. First we give the definition of s∗ and z∗ and
show that (6.2.5g)–(6.2.5i) and (6.2.5k) are fulfilled. Then we turn to the definition
of x∗ and prove that (6.2.5c)–(6.2.5f) and (6.2.5l)–(6.2.5n) are fulfilled. As the flow
vector q∗ is feasible for the flow conservation (6.2.5b) and the bound constraints
(6.2.5j) we conclude that (q∗, x∗, s∗, z∗) is feasible for MIP (6.2.5).

Recall that r was used for the definition of γr,v for every node v ∈ V . The vector
(s∗, z∗) is defined as follows:

s∗v := π′v(π∗)− π′v(π̃) ∀ v ∈ V,
s∗a := γr,vβa(y∗a − ỹa) ∀ a = (v, w) ∈ A′,
z∗ := min

{
1,min

{
|γr,vαa(q∗a|q∗a|ka − q̃a|q̃a|ka)|

∣∣∣a = (v, w) ∈ A′ : αaq∗a 6= αaq̃a
}}
.

Let us now prove that (s∗, z∗) is feasible for (6.2.5g)–(6.2.5i) and (6.2.5k). First we
prove that s∗a ≤ sa holds for every arc a ∈ A′. Let a ∈ A′. By definition (6.2.6a)
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we have to show s∗a ≤ 0 if βaỹa = max{βaya, βaya}. This means that one of the
following three cases applies:

1. ỹa = ya, βa > 0⇒ y∗a ≤ ỹa ⇒ s∗a ≤ 0,

2. ỹa = y
a
, βa < 0⇒ y∗a ≥ ỹa ⇒ s∗a ≤ 0,

3. βa = 0⇒ s∗a = 0.

Hence s∗a ≤ 0 if βaỹa = max{βaya, βaya}. Similarly we prove that s∗a ≥ sa holds for
every arc a ∈ A′. We conclude that s∗ is feasible for (6.2.5k). Now we turn to the
constraints (6.2.5g)–(6.2.5i). We consider an arc a = (v, w) ∈ A′ and obtain:

s∗v − s∗w + s∗a = π′v(π∗)− π′w(π∗) + γr,vβay
∗
a − (π′v(π̃)− π′w(π̃) + γr,vβaỹa)

= γr,vαa(q∗a|q∗a|ka − q̃a|q̃a|ka)
> 0 if αa(q∗a − q̃a) > 0,
= 0 if αa(q∗a − q̃a) = 0,
< 0 if αa(q∗a − q̃a) < 0.

We conclude that (s∗, z∗) is feasible for (6.2.5g)–(6.2.5i) and (6.2.5k).
By Lemma 6.2.5 there exists a vector x∗ for z∗ such that (x∗, z∗) is feasible for

(6.2.5c)–(6.2.5f) and (6.2.5l)–(6.2.5n). Furthermore the flow conservation constraint
(6.2.5b) and the bound constraints (6.2.5j) are fulfilled by q∗ as (q∗, π∗, p∗, y∗) is a
feasible solution for the active transmission problem (6.1.1). Hence (q∗, x∗, s∗, z∗) is
a feasible solution for MIP (6.2.5).

We finally show that z∗ > 0. Because of γr,v > 0 for all nodes v ∈ V we have
that αaq∗a 6= αaq̃a for an arc a = (v, w) ∈ A′ implies γr,vαa(q∗a|q∗a|ka − q̃a|q̃a|ka) 6= 0.
This proves z∗ > 0.

Remark 6.2.3:
As discussed below in Section 6.4 we will consider the infeasibility detection MILP
(6.2.5) only for a solution (q̃, π̃, p̃, ỹ) of (6.1.1) which does not violate the flow
conservation constraint (6.1.2c). We roughly describe how the MILP formulation
of (6.2.5) is obtained for this case. At first we replace (qa − q̃a) by ∆a for every arc
a ∈ A′. As q̃ fulfills the flow conservation we obtain that ∆ is a circulation, i.e., we
replace the flow conservation (6.2.5b) by∑

a∈δ+
A′ (v)

∆a −
∑

a∈δ−
A′ (v)

∆a = 0 ∀ v ∈ V.

We define bounds for ∆ by

∆a :=
∞ if q̃a < qa,

0 if q̃a = qa,
∆a :=

0 if q̃a = q
a
,

−∞ if q̃a > q
a
,
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and replace (6.2.5j) by ∆ ≤ ∆ ≤ ∆. Then it is easy to see, as ∆ is a circulation,
that ∆ can be chosen such that either ∆a = 0 or |∆a| ≥ 1 holds. We introduce binary
variables xFWa , xBWa , sFWa , sBWa ∈ {0, 1} in combination with indicator constraints as
follows:

xFWa = 1⇒ κ̃a ∆a ≥ 1 ∀ a ∈ A′,
xFWa = 0⇒ κ̃a ∆a ≤ 0 ∀ a ∈ A′,

xBWa = 1⇒ κ̃a ∆a ≤ −1 ∀ a ∈ A′,
xBWa = 0⇒ κ̃a ∆a ≥ 0 ∀ a ∈ A′,

sFWa = 1⇒ αa ∆a ≥ 1 ∀ a ∈ A′,
sFWa = 0⇒ αa ∆a ≤ 0 ∀ a ∈ A′,

sBWa = 1⇒ αa ∆a ≤ −1 ∀ a ∈ A′,
sBWa = 0⇒ αa ∆a ≥ 0 ∀ a ∈ A′.

Then (6.2.5d)–(6.2.5i) are replaced by

xFWa = 1 ⇒xv − xw + xa ≥ 0 ∀ a = (v, w) ∈ A′,
xFWa = 0, xBWa = 0 ⇒xv − xw + xa = 0 ∀ a = (v, w) ∈ A′,

xBWa = 1 ⇒xv − xw + xa ≤ 0 ∀ a = (v, w) ∈ A′,
sFWa = 1 ⇒ sv − sw + sa ≥ κaz ∀ a = (v, w) ∈ A′,

sFWa = 0, sBWa = 0 ⇒ sv − sw + sa = 0 ∀ a = (v, w) ∈ A′,
sBWa = 1 ⇒ sv − sw + sa ≤ κaz ∀ a = (v, w) ∈ A′.

All these reformulations yield an MILP with indicator constraints which is equivalent
to (6.2.5).

In the remaining part of this section we prove Lemma 6.2.5 which was used in
the previous proof of Theorem 6.2.2. Therefor we prove an auxiliary lemma.

Lemma 6.2.4:
Let (q̃, π̃, p̃, ỹ) be a solution for the active transmission problem (6.1.1) fulfilling at
least constraints (6.1.2b) and (6.1.2e). Furthermore let (q∗, π∗, p∗, y∗) be a feasible
solution for (6.1.1). There exists a partition of the node set V = M1 ∪̇M2 ∪̇M3
fulfilling the following conditions:

• ∀ a = (v, w) ∈ δ+
A′(M1) ∪ δ−A′(M3):

(π′v(π∗)− π′w(π∗)) < (π′v(π̃)− π′w(π̃)),
@k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, (Aa)(k,1)(q∗a − q̃a) ≥ 0, (Aa)(k,2) < 0, (Aa)(k,3) > 0,
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• ∀ a = (v, w) ∈ δ−A′(M1) ∪ δ+
A′(M3):

(π′v(π∗)− π′w(π∗)) > (π′v(π̃)− π′w(π̃)),
@k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, (Aa)(k,1)(q∗a − q̃a) ≥ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0.

Furthermore it holds

{v ∈ V | π̃v > πv} ⊆M1, {v ∈ V | π̃v ≤ πv} ∩M1 = ∅,
{v ∈ V | π̃v < πv} ⊆M3, {v ∈ V | π̃v ≥ πv} ∩M3 = ∅.

Proof. Let (q̃, π̃, p̃, ỹ) be a solution for the active transmission problem (6.1.1)
fulfilling at least constraint (6.1.2b) and (6.1.2e). Furthermore let (q∗, π∗, p∗, y∗) be
a feasible solution for (6.1.1). We iteratively construct the sets M1,M2,M3 with
V = M1 ∪̇M2 ∪̇M3 as follows:

1. Initially we set M1 := {v ∈ V | π̃v > πv}. Then we iteratively extend this set
by considering every arc a = (v, w) ∈ δ+

A′(M1) ∪ δ−A′(M1). If this arc does not
fulfill one of the following cases, then we either add v to M1 if v /∈M1 and set
the predecessor p(v) := w or we add w to M1 if w /∈M1 and set p(w) := v.
Case a = (v, w) ∈ δ+

A′(M1) :

(π′v(π∗)− π′w(π∗)) < (π′v(π̃)− π′w(π̃)), (6.2.8a)
@k ∈ {1, . . . νa} : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with

(Aa)(k,1)(q∗a−q̃a) ≥ 0, (Aa)(k,2) < 0, (Aa)(k,3) > 0.
(6.2.8b)

Case a = (v, w) ∈ δ−A′(M1) :

(π′v(π∗)− π′w(π∗)) > (π′v(π̃)− π′w(π̃)), (6.2.9a)
@k ∈ {1, . . . νa} : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with

(Aa)(k,1)(q∗a−q̃a) ≥ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0.
(6.2.9b)

This way we obtain the node set M1 such that every arc a = (v, w) ∈ δ+
A′(M1)

fulfills (6.2.8) and every arc a = (v, w) ∈ δ−A′(M1) fulfills (6.2.9). Furthermore
it holds

M1 ∩ {v ∈ V | π̃v ≤ πv} = ∅.

This can be seen as follows: If π̃v ≤ πv holds for every node v ∈ V , then
M1 = ∅ by construction. Assume that M1 contains a node t with π̃t ≤ πt.
Then we consider the nodes t, p(t), p(p(t)), . . ., s where s ∈ M1 has no
predecessor. These nodes define the nodes of an edge-disjoint s-t-path P
in the undirected graph (M1, E

′[M1]) which originates from (M1, A
′[M1]) by

removing the orientation of each arc a ∈ A′[M1]. Note that (M1, E
′[M1]) might

contain multiple parallel edges. This way each arc a ∈ A′[M1] corresponds
uniquely to an edge e ∈ E ′[M1] and vice versa. Let v1, . . . , vn+1 be the
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nodes and e1, . . . , en with ei = {vi, vi+1} be the ordered edges of P and
a1, . . . , an be the corresponding arcs in (V,A′[M1]). We have that for every arc
ai, i = 1, . . . , n neither (6.2.8) nor (6.2.9) applies because otherwise t would
not be contained in M1 by construction of M1. This means that one of the
following cases holds for every arc ai, i = 1, . . . , n:
Case (6.2.8a) and (6.2.9a) do not apply: Node potential loss estimation de-

rived as (6.2.8a) and (6.2.9a) do not apply, hence:

π′vi(π
∗)− π′vi+1(π∗) ≥ π′vi(π̃)− π′vi+1(π̃).

Case (6.2.8b) and (6.2.9b) do not apply: In this case we differ between the
orientation of arc ai.

• If arc ai = (vi, vi+1) then, as (6.2.8b) does not apply, there exists an
index k ∈ {1, . . . , νai} such that [Aai(q̃ai , p̃vi , p̃vi+1)]k ≥ [bai ]k holds
with (Aai)(k,1)(q∗ai − q̃ai) ≥ 0, (Aai)(k,2) < 0, (Aai)(k,3) > 0. We
rewrite this inequality as a1q̃ai − a3 ≥ p̃vi − a2p̃vi+1 with a2 ∈ R≥0
and a1, a3 ∈ R. Then we derive the estimation

p̃vi − a2p̃vi+1 ≤ a1q̃ai − a3 ≤ a1q
∗
ai
− a3 ≤ p∗vi − a2p

∗
vi+1 .

• If arc ai = (vi+1, vi) then, as (6.2.9b) does not apply, there exists an
index k ∈ {1, . . . , νai} such that [Aai(q̃ai , p̃vi+1 , p̃vi)]k ≥ [bai ]k holds
with (Aai)(k,1)(q∗ai − q̃ai) ≥ 0, (Aai)(k,2) > 0, (Aai)(k,3) < 0. We
rewrite this inequality as a1q̃ai − a3 ≥ p̃vi − a2p̃vi+1 with a2 ∈ R≥0
and a1, a3 ∈ R. Again we derive the estimation

p̃vi − a2p̃vi+1 ≤ a1q̃ai − a3 ≤ a1q
∗
ai
− a3 ≤ p∗vi − a2p

∗
vi+1 .

Because of the coupling constraint p̃v|p̃v| = π̃v relating the pressure and node
potential variables for each node v ∈ V , by using the previous estimations, we
obtain:

π̃v1 > π∗v1 ⇒ π̃v2 > π∗v2 , . . . , π̃vn+1 > π∗vn+1 ,

π̃vn+1 < π∗vn+1 ⇒ π̃vn < π∗vn , . . . , π̃v1 < π∗v1 .

The path P is chosen such that the start node v1 violates its upper node
potential bound, i.e., π̃v1 > πv1 and for the end node vn+1 it holds π̃vn+1 ≤ πvn+1 .
Hence the first of the above cases applies. We conclude that π∗ violates a
node potential bound in vn+1 which is a contradiction to the assumption that
(q∗, π∗, p∗, y∗) is feasible for the active transmission problem.

2. In a second step we initially setM3 := {v ∈ V | πv < πv}. We now concentrate
on the graph (V \M1, A

′[V \M1]). Again we iteratively consider each arc
a = (v, w) ∈ δ+

A′(M3) ∪ δ−A′(M3). If neither (6.2.8) applies for an ingoing arc
nor (6.2.9) applies for an outgoing arc, then we add v to M3 if v /∈M3 and w
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if w /∈M3. By definition it follows M1 ∩M3 = ∅. By a similar reasoning as
in the previous item we conclude

M3 ∩ {v ∈ V | π̃v ≥ πv} = ∅.

3. In a third step we define M2 := {v ∈ V | v /∈ M1 ∪M3}. The previously
defined sets then have the property V = M1 ∪̇M2 ∪̇M3.

Lemma 6.2.5:
Let (q̃, π̃, p̃, ỹ) be a solution for the active transmission problem (6.1.1) fulfilling at
least constraint (6.1.2b) and (6.1.2e). Furthermore let (q∗, π∗, p∗, y∗) be a feasible so-
lution for (6.1.1) and 0 ≤ z∗ ≤ 1. There exists a vector x∗ = (x+

v , x
−
v , xv, xa)∗v∈V,a∈A′

with x∗v+, x∗v
− ∈ R≥0, x

∗
v, x
∗
a ∈ R for v ∈ V and a ∈ A′ with x∗ 6= 0 which is feasible

for (6.2.5c)–(6.2.5f) and (6.2.5l)–(6.2.5n).

Proof. Let (q̃, π̃, p̃, ỹ) be a solution for the active transmission problem (6.1.1)
fulfilling at least constraint (6.1.2b) and (6.1.2e). Furthermore let (q∗, π∗, p∗, y∗) be
a feasible solution for the active transmission problem (6.1.1). For 0 ≤ z∗ ≤ 1 we
describe how to define x∗ = (xv, xa)∗v∈V,a∈A′ which is feasible for (6.2.5d)–(6.2.5f)
and (6.2.5l).

By Lemma 6.2.4 there exists a partition V = M1 ∪̇ M2 ∪̇ M3 such that the
following holds:

• ∀ a = (v, w) ∈ δ+
A′(M1) ∪ δ−A′(M3):

(π′v(π∗)− π′w(π∗)) < (π′v(π̃)− π′w(π̃)),
@k ∈ {1, . . . , νa} : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with

(Aa)(k,1)(q∗a−q̃a) ≥ 0, (Aa)(k,2) < 0, (Aa)(k,3) > 0.
(6.2.10)

• ∀ a = (v, w) ∈ δ−A′(M1) ∪ δ+
A′(M3):

(π′v(π∗)− π′w(π∗)) > (π′v(π̃)− π′w(π̃)),
@k ∈ {1, . . . , νa} : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with

(Aa)(k,1)(q∗a−q̃a) ≥ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0.
(6.2.11)

From this we obtain an estimation which is needed in the following:

a = (v, w) ∈ δ+(M1) ∪ δ−A′(M3)
⇒ αaq

∗
a|q∗a|ka − βay∗a = γ−1

r,v (π′v(π∗)− π′w(π∗))
< γ−1

r,v (π′v(π̃)− π′w(π̃)) = αaq̃a|q̃a|ka − βaỹa

(6.2.12a)

a = (v, w) ∈ δ−(M1) ∪ δ+
A′(M3)

⇒ αaq
∗
a|q∗a|ka − βay∗a = γ−1

r,v (π′v(π∗)− π′w(π∗))
> γ−1

r,v (π′v(π̃)− π′w(π̃)) = αaq̃a|q̃a|ka − βaỹa

(6.2.12b)
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We use the sets M1,M2,M3 to define the values x∗v, v ∈ V and x∗a, a = (v, w) ∈ A′
as follows:

x∗v :=


−1 if v ∈M1,

0 if v ∈M2,

1 if v ∈M3,

(6.2.13a)

x∗a :=


0 if a ∈ δ+

A′(M1) ∪ δ−A′(M3) : κ̃a(q∗a − q̃a) < 0,
0 if a ∈ δ−A′(M1) ∪ δ+

A′(M3) : κ̃a(q∗a − q̃a) > 0,
x∗w − x∗v else.

(6.2.13b)

We proceed by showing that this definition is feasible for constraints (6.2.5d)–
(6.2.5f) and (6.2.5l). We have x∗v = x∗w and x∗a = 0 for all arcs a = (v, w) ∈ A′(M1 :
M1) ∪ A′(M2 : M2) ∪ A′(M3 : M3). Thus (6.2.5d)–(6.2.5f) and (6.2.5l) are fulfilled
for these arcs. Let us now turn to the remaining arcs. At first we observe:

• For every arc a ∈ A′(M1 : M2) ∪ A′(M2 : M3) ∪ A′(M1 : M3) it holds
a ∈ δ+

A′(M1) ∪ δ−A′(M3).

• For every arc a ∈ A′(M2 : M1) ∪ A′(M3 : M1) ∪ A′(M3 : M2) it holds
a ∈ δ−A′(M1) ∪ δ+

A′(M3).

These are the two cases that we distinguish in the following:

Case q∗a < q̃a : We distinguish two cases.
Case a = (v, w) ∈ δ+

A′(M1) ∪ δ−A′(M3) : In this case we have x∗v − x∗w ≤ −1.
• By (6.2.5f) κ̃a 6= 0 means xv − xw + xa ≤ 0 must be fulfilled by x∗.

We have κ̃a 6= 0⇒ κ̃a > 0⇒ κ̃a(q∗a − q̃a) < 0⇒ x∗a = 0 by (6.2.13b).
Hence it holds x∗v − x∗w + x∗a ≤ 0 and xa ≤ x∗a ≤ xa.

• By (6.2.5e) κ̃a = 0 means xv−xw+xa = 0 must be fulfilled by x∗. We
have x∗a = −(x∗v−x∗w) > 0 by (6.2.13b). Hence it holds x∗v−x∗w+x∗a =
0. κ̃a = 0 means αa = 0 by (6.2.6i). This in combination with
(6.2.12a) implies βay∗a > βaỹa. By (6.2.10) there exists no index k so
that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1)(q∗a− q̃a) ≥ 0,(Aa)(k,2) < 0,
(Aa)(k,3) > 0. This and the conclusions that there exists no index
k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1) 6= 0 (because
of κ̃a = 0) especially implies that there exists no index k such
that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1) ≥ 0,(Aa)(k,2) < 0 and
(Aa)(k,3) > 0. From this we conclude xa =∞ by (6.2.6c). This yields
xa ≤ 0 < x∗a ≤ xa.

Case a = (v, w) ∈ δ−A′(M1) ∪ δ+
A′(M3) : In this case we have x∗v − x∗w ≥ 1.

• From κ̃a ≥ 0 it follows κ̃a(q∗a − q̃a) ≤ 0. Hence we obtain from
(6.2.13b) that x∗a = −(x∗v − x∗w) ≤ −1 < 0 holds. By (6.2.5e) and
(6.2.5f) xv − xw + xa ≤ 0 or xv − xw + xa = 0 must be fulfilled by

146



6.2. Detecting Infeasibility of the Active Transmission Problem by MILP

x∗, which is obviously true. By (6.2.12b) we have βay∗a < βaỹa. By
(6.2.11) there exists no index k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k,
with (Aa)(k,1)(q∗a−q̃a) ≥ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0. This especially
means that there exists no index k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k,
with (Aa)(k,1) ≤ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0. Hence we have
xa = −∞ by (6.2.6d). This yields xa < x∗a ≤ 0 ≤ xa.

Case q∗a = q̃a : We distinguish two cases.
Case a = (v, w) ∈ δ+

A′(M1) ∪ δ−A′(M3) : In this case we have x∗v − x∗w ≤ −1.
By (6.2.12a) we have βay∗a > βaỹa.

• By (6.2.5e) xv − xw + xa = 0 must be fulfilled by x∗. Because of
κ̃a(q∗a − q̃a) = 0 we have x∗a = −(x∗v − x∗w) ≥ 1 > 0 by (6.2.13b).
Hence x∗v−x∗w+x∗a = 0. By (6.2.10) there exists no index k such that
[Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1)(q∗a − q̃a) ≥ 0, (Aa)(k,2) < 0,
(Aa)(k,3) > 0. This especially implies that there exists no index k
such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1) ≥ 0, (Aa)(k,2) < 0,
(Aa)(k,3) > 0. Hence xa = ∞ by (6.2.6c). So we obtain xa ≤ 0 <
x∗a < xa.

Case a = (v, w) ∈ δ−A′(M1) ∪ δ+
A′(M3) : In this case we have x∗v − x∗w ≥ 1. By

(6.2.12b) we have βay∗a < βaỹa.
• By (6.2.5e) xv − xw + xa = 0 must be fulfilled by x∗. Because of
κ̃a(q∗a − q̃a) = 0 we have x∗a = −(x∗v − x∗w) ≤ −1 < 0 by (6.2.13b).
Hence x∗v−x∗w+x∗a = 0. By (6.2.11) there exists no index k such that
[Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1)(q∗a − q̃a) ≥ 0, (Aa)(k,2) > 0,
(Aa)(k,3) < 0. This especially implies that there exists no index k
such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1) ≤ 0, (Aa)(k,2) > 0,
(Aa)(k,3) < 0. Hence xa = −∞ by (6.2.6d). This yields xa < x∗a <
0 ≤ xa.

Case q∗a > q̃a : We distinguish two cases:
Case a = (v, w) ∈ δ+

A′(M1) ∪ δ−A′(M3) : In this case we have x∗v − x∗w ≤ −1.
By (6.2.12a) we have βay∗a > βaỹa.

• From κ̃a ≥ 0 it follows κ̃a(q∗a − q̃a) ≥ 0. Hence we obtain from
(6.2.13b) that x∗a = −(x∗v − x∗w) ≥ 1 > 0 holds. By (6.2.5d) and
(6.2.5e) xv − xw + xa ≥ 0 or xv − xw + xa = 0 must be fulfilled
by x∗, which is obviously true. By (6.2.10) there exists no index
k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1)(q∗a − q̃a) ≥ 0,
(Aa)(k,2) < 0, (Aa)(k,3) > 0. This especially implies that there exists
no index k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1) ≥ 0,
(Aa)(k,2) < 0, (Aa)(k,3) > 0. Hence xa = ∞ by (6.2.6c). This yields
xa ≤ 0 < x∗a <∞ = xa.

Case a = (v, w) ∈ δ−A′(M1) ∪ δ+
A′(M3) : In this case we have x∗v − x∗w ≥ 1.
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• By (6.2.5d) κ̃a 6= 0 means xv − xw + xa ≥ 0 must be fulfilled by x∗.
We have κ̃a 6= 0⇒ κ̃a > 0⇒ κ̃a(q∗a − q̃a) > 0⇒ x∗a = 0 by (6.2.13b).
Hence it holds x∗v − x∗w + x∗a = x∗v − x∗w ≥ 1 ≥ 0 and xa ≤ x∗a ≤ xa.

• By (6.2.5e) κ̃a = 0 means xv−xw+xa = 0 must be fulfilled by x∗. By
(6.2.13b) we have x∗a = −(x∗v−x∗w) < 0 which implies x∗v−x∗w+x∗a = 0.
κ̃a = 0 means αa = 0. This implies in combination with (6.2.12b)
that βay∗a < βaỹa holds. By (6.2.11) there exists no index k such that
[Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1)(q∗a − q̃a) ≥ 0, (Aa)(k,2) > 0,
(Aa)(k,3) < 0. Additionally κ̃a = 0 yields that @k : [Aa (q̃a, p̃v, p̃w)]k ≥
[ba]k with (Aa)(k,1) 6= 0 by (6.2.6i). This especially implies that
there exists no index k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with
(Aa)(k,1) ≤ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0. Hence xa = −∞ by
(6.2.6d). This yields xa < x∗a < 0 ≤ xa.

This case discussion proves that (x∗v, x∗a)v∈V,a∈A′ is feasible for (6.2.5d)–(6.2.5f) and
(6.2.5l). We set

x∗v
+ := max{0, x∗v + κvz

∗} ∀ v ∈ V,
x∗v
− := max{0,−x∗v − κvz∗} ∀ v ∈ V.

(6.2.14)

From this definition it follows that (6.2.5c) is fulfilled. We prove that this definition
is feasible for (6.2.5m) and (6.2.5n). Therefor we make use of

{v ∈ V | π̃v > πv} ⊆M1 {v ∈ V | π̃v ≤ πv} ∩M1 = ∅, (6.2.15a)
{v ∈ V | π̃v < πv} ⊆M3 {v ∈ V | π̃v ≥ πv} ∩M3 = ∅, (6.2.15b)

which holds by Lemma 6.2.4. We consider the bound constraints (6.2.5m) and
(6.2.5n) separately:

• It holds x∗v+ ≤ x+
v for every node v ∈ V : Let v ∈ V . According to (6.2.6e)

we have to show x∗v
+ = 0 if π̃v ≥ πv. In this case it holds v ∈ M1 ∪M2 by

(6.2.15b). We distinguish two cases:

π̃v = πv
(6.2.6g)⇒ κv = 0

⇒ x∗v + κvz
∗ = x∗v

(6.2.13a),(6.2.15b)
≤ 0⇒ x∗v

+ = max{0, x∗v + κvz
∗
v} = 0.

π̃v > πv
(6.2.6g),(6.2.15a),(6.2.13a)⇒ κv = 1, x∗v = −1

⇒ x∗v + κvz
∗ = −1 + z∗

z∗∈[0,1]
≤ 0⇒ x∗v

+ = max{0, x∗v + κvz
∗} = 0.

• It holds x∗v− ≤ x−v for every node v ∈ V : Let v ∈ V . According to (6.2.6f)
we have to show x∗v

− = 0 if π̃v ≤ πv. In this case it holds v ∈ M3 ∪M2 by
(6.2.15a). We distinguish two cases:

π̃v = πv
(6.2.6g)⇒ κv = 0

⇒ x∗v + κvz
∗ = x∗v

(6.2.13a),(6.2.15a)
≥ 0⇒ x∗v

− = min{0, x∗v + κvz
∗} = 0.
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π̃v < πv
(6.2.6g),(6.2.15b),(6.2.13a)⇒ κv = −1, x∗v = 1

⇒ x∗v + κvz
∗ = 1− z∗

z∗∈[0,1]
≥ 0⇒ x∗v

− = min{0, x∗v + κvz
∗} = 0.

We conclude that the definition (6.2.13a), (6.2.13b), and (6.2.14) yield a vector x∗
which is feasible for (6.2.5c)–(6.2.5f) and (6.2.5l)–(6.2.5n).

6.3. Interpretation of the Infeasibility Detection
MILP

In this section we present the initial idea which led to the formulation of the
infeasibility detection MILP (6.2.5). The concept becomes visible when looking at
the dual problem of (6.2.5) for a fixed flow vector q′ ∈ RA′ which fulfills the flow
conservation and bound constraints (6.2.7), i.e.,∑

a∈δ+
A′ (v)

q′a −
∑

a∈δ−
A′ (v)

q′a = dv ∀ v ∈ V, q
a
≤ q′a ≤ qa ∀ a ∈ A′.

Let (q̃, π̃, p̃, ỹ) be a solution of the active transmission problem (6.1.1) fulfilling at
least constraint (6.1.2b) and (6.1.2e). Assume that the MILP (6.2.5) has optimal
objective value zero. By Theorem 6.2.2 we conclude that there do not exist vec-
tors π′ ∈ RV , p′ ∈ RV , y′ ∈ RA′ such that (q′, π′, p′, y′) is feasible for the active
transmission problem (6.1.1). In the following we show an example demonstrating
that especially π′ ∈ RV with π ≤ π′ ≤ π cannot exist. Therefor we assume that
(q′, π′, p′, y′) is a feasible solution for (6.1.1) and derive a contradiction by comparing
(q′, π′, p′, y′) and (q̃, π̃, p̃, ỹ).

As the MILP (6.2.5) has optimal objective value zero it is easy to see that the
following linear optimization problem is bounded (recall that q′ and q̃ are fixed):

max z (6.3.1)
[
λv
]

s. t. x+
v − x−v − xv − κv z = 0 ∀ v ∈ V,[

µa
]

xv − xw + xa − x+
a κ̃a (q′a − q̃a) = 0 ∀ a = (v, w) ∈ A′,[

νa
]

sv − sw + sa − s+
a αa (q′a − q̃a)− κaz = 0 ∀ a = (v, w) ∈ A′,

sa ≤ sa ≤ sa ∀ a ∈ A′,
xa ≤ xa ≤ xa ∀ a ∈ A′,

x+
v ≤ x+

v ∀ v ∈ V,
x−v ≤ x−v ∀ v ∈ V,

xv, sv ∈ R ∀ v ∈ V,
x+
v , x

−
v ∈ R≥0 ∀ v ∈ V,

xa, sa ∈ R ∀ a ∈ A′,
x+
a , s

+
a ∈ R≥0 ∀ a ∈ A′,
z ∈ R≥0.
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We associated dual variables λv for each node v ∈ V and µa, νa for each arc a ∈ A′.
As (6.3.1) is bounded it follows that its dual is feasible. This dual is as follows:

∃λ, µ, ν (6.3.2a)

s. t.
∑

a∈δ+
A′ (v)

νa −
∑

a∈δ−
A′ (v)

νa = 0 ∀ v ∈ V, (6.3.2b)

∑
a∈δ+

A′ (v)
µa −

∑
a∈δ−

A′ (v)
µa − λv = 0 ∀ v ∈ V, (6.3.2c)

∑
v∈V :π̃v>πv

λv −
∑

v∈Vπ :π̃v<πv

λv +
∑
a∈A′

κa νa ≥ 1, (6.3.2d)

κ̃a(q′a − q̃a)µa ≥ 0 ∀ a ∈ A′, (6.3.2e)
αa(q′a − q̃a) νa ≥ 0 ∀ a ∈ A′, (6.3.2f)

λv ≤ λv ≤ λv ∀ v ∈ V, (6.3.2g)
µ
a
≤ µa ≤ µa ∀ a ∈ A′, (6.3.2h)

νa ≤ νa ≤ νa ∀ a ∈ A′, (6.3.2i)
µa, νa ∈ R ∀ a ∈ A′, (6.3.2j)

λv ∈ R ∀ v ∈ V. (6.3.2k)

Here the variable bounds are defined as

λv :=
∞− if π̃v ≥ πv,

0 else
∀ v ∈ V, (6.3.3a)

λv :=
−∞ if π̃v ≤ πv,

0 else
∀ v ∈ V, (6.3.3b)

µa :=



∞− if βaỹa = max{βaya, βaya}
∞− if ∃k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with

(Aa)(k,1) ≥ 0, (Aa)(k,2) < 0, (Aa)(k,3) > 0,
0 else

∀ a ∈ A′,
a = (v, w), (6.3.3c)

µ
a

:=



−∞ if βaỹa = min{βaya, βaya}
−∞ if ∃k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with

(Aa)(k,1) ≤ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0,
0 else

∀ a ∈ A′,
a = (v, w), (6.3.3d)

νa :=
∞− if βaỹa = max{βaya, βaya}

0 else
∀ a ∈ A′,
a = (v, w), (6.3.3e)

νa :=
−∞ if βaỹa = min{βaya, βaya}

0 else
∀ a ∈ A′,
a = (v, w). (6.3.3f)
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Now let (λ∗, µ∗, ν∗) be a feasible solution for (6.3.2). The vectors ν∗ and µ∗ form
a network flow by constraints (6.3.2b) and (6.3.2c). For the following discussion we
focus on the case that either µ∗ ≥ 0 if λ∗ 6= 0 or ν∗ ≥ 0 holds. The case where these
assumptions are not fulfilled can be led back to the case fulfilling the assumptions
by changing the orientation of some arcs. Our initial motivation for the definition of
MILP (6.2.5) was to look either for a path or a circuit as discussed in the following
two cases:

Case λ∗ 6= 0: We split the network flow µ∗ into sets of flow along paths P1, . . . , Pm
and flow along circuits C1, . . . , Cn, see Theorem 4.2.5. This way we obtain
from µ∗ ≥ 0 that there exist flow values µPi > 0, i = 1, . . . ,m and µCi > 0, i =
1, . . . , n such that

µ∗a =
∑

i=1,...,m:
a∈A′(Pi)

µPi +
∑

i=1,...,n:
a∈A′(Ci)

µCi ∀ a ∈ A′.

Consider a path P` that starts in node v and ends in node w. Because of
constraint (6.3.2d) the index ` can be chosen such that either π̃v > πv and
π̃w ≤ πw or π̃v ≥ πv and π̃w < πw holds. Let the nodes of P` be given by
v1, . . . , vn+1 where v1 = v and vn+1 = w and connecting arcs by a1, . . . , an.
In order to show that (q′, π′, p′, y′) is not feasible for the active transmission
problem (6.1.1) we distinguish two cases for each arc ai of the path P`:
1. In the case that βai ỹai = max{βaiyai , βaiyai} we obtain the following

estimation from q̃ai ≤ q′ai if αai 6= 0 (by (6.3.2e)) and βaiy′ai ≤ βai ỹai :

π̃vi − γai π̃vi+1 = αai q̃ai |q̃ai |kai − βai ỹai
≤ αai q

′
ai
|q′ai |

kai − βaiy′ai = π′vi − γaiπ
′
vi+1 .

2. In the case that [Aai(q̃ai , p̃vi , p̃vi+1)]k ≥ [bai ]k holds for an index k with
(Aai)(k,1) ≥ 0, (Aai)(k,2) < 0, (Aai)(k,3) > 0 we rewrite this inequality
as a1q̃ai − a3 ≥ p̃vi − a2p̃vi+1 with a1 ∈ R≥0, a2 ∈ R>0 and a3 ∈ R.
Then we derive the estimation (using (6.3.2e) and (6.2.6i), which yields
a1 > 0⇒ q̃ai ≤ q′ai):

p̃vi − a2p̃vi+1 ≤ a1q̃ai − a3 ≤ a1q
′
ai
− a3 ≤ p′vi − a2p

′
vi+1 .

We note that at least one of the previous cases applies because of 0 < µ∗ai ≤ µai
and (6.3.3c). Because of the coupling constraint p̃v|p̃v| = π̃v relating the
pressure and node potential variables for each node v ∈ V , we obtain:

π̃v1 > π′v1 ⇒ π̃v2 > π′v2 , . . . , π̃vn+1 > π′vn+1 , (6.3.4a)
π̃vn+1 < π′vn+1 ⇒ π̃vn < π′vn , . . . , π̃v1 < π′v1 . (6.3.4b)
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The path P` is chosen such that either the start node v1 or the end node vn+1
of path P` violates its node potential bound, i.e., one of the following cases
applies:

π̃v1 > πv1 and π̃vn+1 ≤ πvn+1 and πv1 ≥ π′v1

(6.3.4a)⇒ π′vn+1 < πvn+1 ,

π̃v1 ≥ πv1 and π̃vn+1 < πvn+1 and πvn+1 ≤ π′vn+1

(6.3.4b)⇒ π′v1 > πv1 .

Hence π′ violates the node potential bounds which implies that (q′, π′, p′, y′)
is not feasible for the active transmission problem (6.1.1).

Case ν∗ 6= 0, λ∗ = 0: Similar as in the previous case we split the network flow ν∗

into sets of flow along circuits C1, . . . , Cn, see Theorem 4.2.5. By constraint
(6.3.2d) there exists an arc a ∈ A′ with ν∗a 6= 0 and αa > 0 by (6.2.6h). From
our assumption we obtain ν∗a > 0 for this arc. Let ` be chosen such that C`
contains this arc. Let the nodes of C` be given by v1, . . . , vn+1 where v1 = vn+1
and connecting arcs by a1, . . . , an. We note that βai ỹai = max{βaiyai , βaiyai}
holds because of 0 < µ∗ai ≤ µai and (6.3.3e). From this observation we derive
the following contradiction from q̃ai ≤ q′ai if αai 6= 0 (by (6.3.2f)):

0 =
n∑
i=1

i−1∏
j=1

γaj

 (π̃vi − γai π̃vi+1)

=
n∑
i=1

i−1∏
j=1

γaj

 (αai q̃ai |q̃ai |kai − βai ỹai)

<
n∑
i=1

i−1∏
j=1

γaj

 (αai q′ai |q
′
ai
|kai − βaiy′ai)

=
n∑
i=1

i−1∏
j=1

γaj

 (π′vi − γaiπ
′
vi+1) = 0.

The inequality is strict because κaνa > 0 by (6.3.2d) and q̃a < qa ≤ q′a by
(6.2.6h) and the feasibility of q′. This contradiction implies that our assumption
was wrong and hence the solution (q′, π′, p′, y′) is not feasible for the active
transmission problem (6.1.1).

We note that at least one of the above cases applies because of constraint (6.3.2d).
This contradicts our assumption that (q′, π′, p′, y′) is feasible for the active transmis-
sion problem (6.1.1). This shows that this assumption was wrong.

6.4. Integration and Computational Results
In this chapter we focused on the topology optimization problem (3.2.1) for the
third type of network considered in this thesis. Recall that every gas network is
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Figure 6.3.: Run time comparison for the domain relaxation (6.1.2) and the flow conservation relaxation (6.1.5) on
instances of network net6.

associated with this type, i.e., especially compressors and control valves might be
contained.

The strategy for solving the topology optimization problem is as follows: We solve
the model (3.2.1) by SCIP as described in Section 2.2. Furthermore we combine the
methods of the previous sections for solving the active transmission problem (6.1.1)
as follows: First we compute a feasible solution of one of the relaxations (6.1.2) or
(6.1.5). We either obtain a feasible solution for (6.1.1) directly, if the slack value
equals zero. Or we solve the infeasibility detection MILP (6.2.5). If this problem
turns out to be infeasible or has optimal objective value zero, then we conclude that
the active transmission problem (6.1.1) is infeasible by Theorem 6.2.2.

In Chapter 4 we computationally showed that the domain relaxation (4.2.1),
which is based on bound relaxations, has lower computation times than the re-
laxation (4.3.1), which relaxes the flow conservation constraint. Let us proceed
similarly for a comparison of the two non-convex problems (6.1.2) and (6.1.5). We
implemented both relaxations in C and use the computational setup described in
Section 3.5. A scatter plot comparing the run times of both relaxations is shown in
Figure 6.3 for different scenarios and the network net6. It turns out that the domain
relaxation (6.1.2) has better solving performance. Thus we use this relaxation in
our solution approach and will not consider the flow conservation relaxation (6.1.5)
any longer.

The new solution approach that we follow for solving the topology optimization
problem (3.2.1) is as follows: At the time during the solving process when a node
of the branching tree is considered and where all binary decisions x are fixed,
we consider the corresponding active transmission problem and solve the domain
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Figure 6.4.: Performance plot for different nominations on the network net6 and a time limit of 3600 s. The different
strategies are described in Section 6.4. Strategy 1 and 2 mainly consist of SCIP. Strategy 3 also corresponds to
SCIP together with our elaborated solution method presented in this chapter. The underlying data are available
in Table A.10.

relaxation (6.1.2). If we obtain a solution with zero slack, then this yields a
feasible solution for the active transmission problem. In this sense, solving the
domain relaxation (6.1.2) is a primal heuristic for the active transmission problem.
Otherwise, if we obtain a solution with positive slack, then the solution is infeasible
for the active transmission problem and violates at most the constraints (6.1.1d) and
(6.1.1f)-(6.1.1i). Now we apply Theorem 6.2.2 and solve the infeasibility detection
MILP (6.2.5). If (6.2.5) is infeasible or has optimal objective value zero, then the
active transmission problem is infeasible by Theorem 6.2.2. In this case we prune
the corresponding node of the branch-and-bound tree. Otherwise, if we cannot
decide that the current active transmission problem is infeasible, then we continue
with branching.

We implemented the algorithm above in C, i.e., solving the domain relaxation
(6.1.2) and the infeasibility detection MILP (6.2.5). The MILP is expressed using
indicator constraints as described in Remark 6.2.3. For the computational studies
we use the setup described in Section 3.5. We compare three strategies for solving
the topology optimization problem (3.2.1).

1. The first strategy is to use SCIP without any adaptations on the solver settings.
All branching decisions are up to the solver, and the topology optimization
problem (3.2.1) is basically solved by branch-and-bound, separation and spatial
branching as described in Section 2.2.
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2. The second strategy is to enforce a certain branching priority rule, so that
SCIP first branches on binary and discrete decision variables. Only after
all discrete variables are fixed it is allowed to perform spatial branching on
continuous variables.

3. The third strategy implements the domain relaxation strategy presented in
this chapter for solving the active transmission problem (6.1.1). We use the
nonlinear solver IPOpt for solving the domain relaxation (6.1.2) and SCIP
for solving the infeasibility detection MILP (6.2.5) in advance. For solving
this MILP we set a time limit of 15 s. Additionally we set branching priorities
according to the second strategy.

Computational Results
We consider the real-world network net6 shown in Figure 3.10. This network
contains active elements, i.e., valves, compressors and control valves and is in
industrial use. We solve the nomination validation problem which is a feasibility
problem. The 43 instances are nominations from our industrial partner. Figure 6.4
shows a performance plot of the instances that could be solved within a given time
limit of 3600 s. From Figure 6.4 we conclude that the first strategy clearly performs
worse than the second and third one. The third strategy keeps up with the second
one but performs slightly worse.

Now we turn to the networks net3, net4, and net5. The instances are topology
expansion problems, i.e., we optimize over a set of extensions and the objective
function is nonzero. For all these instances we set a time limit of 39 600 s. We
consider an additional fourth strategy:

4. The fourth strategy implements the domain relaxation (6.1.2) for computing a
primal feasible solution. In comparison to the third strategy we do not check
infeasibility conditions of the active transmission problem by solving (6.2.5).
So we do not detect infeasibility of the active transmission problem and thus
do not manually prune any node of the branch-and-bound tree.

The computational results are shown in Tables A.11-A.13 and a summary is
available in Table 6.5 and 6.6. We use the geometric mean of run time, number of
branch-and-bound nodes and gap as described in Section 3.5. The third strategy
clearly outperforms the other strategies in terms of number of solved instances.
All instances globally solved by strategies 1 or 2 or 4 are also solved by the third
strategy. Approximately 20% more instances of the test set (15 out of 76) are solved
by the third strategy compared to the second one. The second strategy performs
better than the first one because it solves 5 more instances within the time limit.
We conclude that branching priorities as set by the second strategy are a first step to
improve the solving performance of SCIP. This is consistent with our observations
from Chapter 4.
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strategy 1 2 3 4 all
solved instances 43 48 63 50 63

Table 6.5.: Summary of the Tables A.11-A.13 showing the globally solved instances out of 76 nominations in total.
The third strategy globally solves all instances which are solved to global optimality by the second and the first
strategy.

(A,B) = (2,3) (A,B) = (2,4)
solved(48) incomp.(3) solved(46) incomp.(15)

time [s] nodes gap [%] time [s] nodes gap [%]
strategy A 50.4 2,565 28 42.4 2,215 31
strategy B 62.3 2,021 17 59.4 2,280 40
shifted geom. mean 23% −21% −40% 40% 3% 29%

Table 6.6.: Run time, number of branch-and-bound nodes and gap comparison for the strategies 2 and 3 and
additionally 2 and 4 (aggregated results). The columns “solved” contain mean values for those instances globally
solved by both strategies A and B. The columns “incomplete” show mean values for those instances having a
primal feasible solution available but were not globally solved by both strategies A and B. The underlying data
are available in Tables A.11-A.13.
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Figure 6.5.: Performance plot for different nominations on the networks net3, net4, and net5 and a time limit of
39 600 s. The different strategies are described in Section 6.4. Strategy 1 and 2 mainly consist of SCIP. Strategy 3
also corresponds to SCIP together with our elaborated solution method presented in this chapter. Strategy 4 is a
weaker version of strategy 3 and only necessary for evaluation of the computational results. The underlying data
are available in Tables A.11-A.13.

156



6.4. Integration and Computational Results

Approximately 63% of the instances of the test set (48 out of 76) are globally
solved by the second strategy. Here the run time increases by approximately 23% on
average following strategy 3 while the number of nodes is decreased by approximately
21%. Clearly the reduction does not pay off due to the increasement in run time. We
conclude that the domain relaxation (6.1.2) together with the infeasibility detection
MILP (6.2.5) consume more time than spatial branching on those instances globally
solved by SCIP in combination with branching priorities.

The fourth strategy allows to solve 65% of the instances of the test set (50
out of 76) and hence performs nearly similar as the second strategy in terms of
number of globally solved instances. But the run time increases by approximately
40% and the number of nodes by approximately 3%. We conclude that the primal
heuristic (solving the domain relaxation (6.1.2)) as well as the verification of the
infeasibility conditions (represented by the infeasibility detection MILP (6.2.5)) are
both important for the performance of the third strategy.

A performance plot of all instances is shown in Figure 6.5. We conclude that the
third strategy yields the best results and use it in our practical application. Here we
accept an increase in run time because more instances are solved by this strategy.

In a last step we focused on the network net7. Here the results do not differ
much in comparison to the initial computational study in Section 1.4. Thus we do
not report them. Instead we present a primal heuristic for these instances in the
next chapter. We also apply this heuristic to the network net5 because very few
feasible solutions are computed by the afore presented approach.

Summary

We presented a new method for proving infeasibility of the active transmission
problem (6.1.1) when given a feasible solution for the relaxations (6.1.2) or (6.1.5).
This allows the following solution approach for the topology optimization prob-
lem (3.2.1): We use SCIP and therein solve the active transmission problem (6.1.1)
by computing a local optimal solution of the domain relaxation (6.1.2), which is
a non-convex optimization problem. In advance we analyze this solution by the
infeasibility detection MILP (6.2.5) and possibly conclude that the active trans-
mission problem is infeasible. This clearly outperforms SCIP used without any
adaptations on the implementation. Approximately 20% more instances of the test
set are solved to global optimality compared to the solver SCIP. The test set is
formed by topology expansion instances on the third type of network considered in
this thesis, i.e., networks that contain control valves and compressors.
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Figure 6.6.: Run time comparison on different nominations on the networks net3, net4, and net5. Each cross (×)
corresponds to a single instance of the test set. Note that multiple crosses are drawn in the upper right corner of
the plots and cannot be differed. They represent those instances that ran into the time limit by both strategies.
The underlying data are available in Tables A.11-A.13.
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Chapter 7.

A Primal Heuristic based on Dual
Information

In this chapter we present a primal heuristic for the topology optimization prob-
lem (3.2.1). In contrast to the previous Chapters 4-6 we do not focus on a special
class of gas networks, i.e., we do not restrict to networks that contain only certain
elements.

Recall that the subproblem which results from fixing all binary variables x in
(3.2.1) yields the active transmission problem (6.1.1). It is a continuous nonlinear
optimization problem and the constraints are continuously differentiable functions.
The outline of the heuristic is as follows: We consider a feasible relaxation of the
active transmission problem and compute a KKT point. If we obtain a primal
solution with zero slack, then we derive a feasible solution for (3.2.1) by neglecting
the slack variables. Otherwise we make use of the dual solution of the KKT point
and apply parametric sensitivity analysis to identify constraints of the subproblem
which we adapt in a next step. For these constraints we consider the associated
binary variables of the MINLP and switch them to different values. The new binary
values lead to another subproblem of the original MINLP which contains continuous
variables only. As before, we consider a relaxation of the new active transmission
problem and compute a KKT point. On the basis of the choice of the switching
variables we have good chances to obtain a solution that has less slack than the
solution that we computed before. We repeat this process for a predefined number
of iterations. Furthermore we integrate this method in a branch-and-prune search
in order to avoid cycles. Our aim is to come up with a certain active transmission
problem together with a feasible solution, i.e., a feasible solution with zero slack for
the corresponding relaxation.

Recall that the topology optimization problem (3.2.1) is solved by branch-and-
bound, separation, and spatial branching. Within this approach the heuristic is
invoked at those nodes in the branch-and-bound tree where all binary decision
variables have binary values, either by branching or by the solution of the LP
relaxation. Fixing all binary variables of the topology optimization problem yields
the active transmission problem (6.1.1). By Lemma 6.1.1 a feasible relaxation is
given by the domain relaxation (6.1.2). By using the dual solution of a KKT point
of this relaxation we identify binary variables that we change in each iteration. This
selection will be improved further. We make use of the problem structure of the
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topology optimization problem by switching selectively between the different modes
of a valve, a control valve or a compressor.

We apply the heuristic to the real-world network net7. Note that net7 remains
with very few primal feasible solutions available compared to the computational
results of the previous chapters. The associated problem for net7 is the nomination
validation problem and so we solve it only for feasibility. Our initial computational
study showed that the MINLP solvers Antigone, Baron and SCIP were not
able to compute a feasible solution for more than one instance of the nomination
validation problems on the final version of network net7 that we were given from
our cooperation partner, see Section 1.4. Using the heuristic we are able to solve 18
out of 30 instances which corresponds to approximately 60% of all these instances.
When taking all the different versions of the network into account, the heuristic
allows to solve globally approximately 61% more instances of the test set compared
to SCIP without any adaptations. We also apply the heuristic to the network
net5. Similar to net7, this network remains with very few primal feasible solutions
available compared to the results of the previous chapters. Here we combine the
heuristic with the solution approach presented in the Chapter 6.

The outline of this chapter is as follows: In Section 7.1 we describe the MINLP
that we consider in this chapter. The heuristic is presented in Section 7.2. In
Section 7.3 we show an adaptation of the heuristic to the topology optimization
problem (3.2.1). Afterwards we give some information of the implementation details
in Section 7.4. Computational results are given in Section 7.5.

7.1. A Relaxation of the MINLP
In this chapter we consider a mixed-integer nonlinear optimization problem with
indicator constraints and variables x, z of the following form:

min f(x, z) (7.1.1a)
s. t. g(x, z) ≤ 0, (7.1.1b)

hi(z)−∆i ≤ 0 ∀ i ∈ I, (7.1.1c)
xi = 1⇒ ∆i = 0 ∀ i ∈ I, (7.1.1d)

z ≤ z ≤ z, (7.1.1e)
z ∈ Rn, (7.1.1f)

∆ ∈ RI
≥0, (7.1.1g)

x ∈ {0, 1}I . (7.1.1h)

Here n ∈ N are the dimensions of the real variables. Furthermore I := {1, 2, . . .}
with cardinality |I| is a nonempty index set. The functions f, g : {0, 1}I × Rn → R
and hi : Rn → R (for i ∈ I) are C2 (twice continuously differentiable). The binary
variable xi represents the decision whether the constraint hi(z) ≤ 0 is active (for
xi = 1) or inactive (for xi = 0). A constraint hi is inactive, if and only if a slack
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variable ∆i is positive, where ∆ = (∆1, . . . ,∆|I|) denotes the vector of continuous
slack variables. The constraints (7.1.1d) are the indicator constraints of the problem.
For the ease of notation we first focus on MINLP (7.1.1) in a general form before
turning to the problem of optimizing the topology of gas networks in Section 7.3.

Now we turn to a relaxation of a subproblem of (7.1.1) which forms the basis
for our heuristic and is obtained by fixing all binary variables. Assume we are given
binary values x∗ for the binary variables x. Then the subproblem is obtained by
fixing x = x∗. Note that it is a nonlinear optimization problem which might be
infeasible. To circumvent its infeasibility we consider a relaxation of this subproblem
of (7.1.1). This relaxation is obtained as follows: Let I ′ ⊆ I contain those indices
such that the binary variables x∗i are 1 for all i ∈ I ′. We define I ′′ ⊆ I ′ and relax all
constraints hi(z) ≤ 0 with i ∈ I ′′. Furthermore we introduce a subset J ⊆ {1, . . . , n}
and relax the variable bounds of xj for all j ∈ J . Therefor we introduce two vectors
of slack variables s+, s− ∈ RJ

≥0. Then the relaxation writes as follows for p = 0 ∈ RI′ :

min σf(x∗, z) + (1− σ)
∑
j∈J

(s+
j + s−j ) + (1− σ)

∑
i∈I′′

∆i (7.1.2a)

s. t. g(x∗, z) ≤ 0, (7.1.2b)
hi(z) ≤ pi ∀ i ∈ I ′ \ I ′′, (7.1.2c)

hi(z)−∆i ≤ pi ∀ i ∈ I ′′, (7.1.2d)
zj − s+

j ≤ zj ∀ j ∈ J, (7.1.2e)
zj + s−j ≥ zj ∀ j ∈ J, (7.1.2f)

z ∈ Rn, (7.1.2g)
∆ ∈ RI′′

+ , (7.1.2h)
s± ∈ RJ

+. (7.1.2i)
We assume a definition of the index sets I ′′ and J in such a way that the relaxation
(7.1.2) is feasible. The parameter σ ∈ [0, 1] in the objective function (7.1.2a) controls
the compromise between improving feasibility and optimality: For σ = 0 we aim to
compute a primal feasible solution for MINLP (7.1.1) while for σ = 1 our goal is
to compute a globally optimal solution for (7.1.1). Hence a lower value of σ puts a
higher emphasis on feasibility. The term

(1− σ)
∑
j∈J

(s+
j + s−j ) + (1− σ)

∑
i∈I′

∆i

is called the slack part of the objective function.

7.2. A Primal Heuristic for MINLP with Indicator
Constraints

In the following we describe the primal heuristic for the MINLP with indicator
constraints (7.1.1). It is invoked for a given vector of binary values x∗. We regard
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(7.1.2) as an optimization problem with parameters (x∗, p). The heuristic aims to
compute a vector x∗ and a feasible solution for (7.1.2) with parameters (x∗, 0) so
that the objective value of this solution equals zero. When neglecting the slack
variables we obtain a feasible solution for (7.1.1).

The outline of this section is as follows: First we give a motivation of the
mathematical background in Section 7.2.1. Then we present the procedure of our
heuristic in Section 7.2.2. In Section 7.2.3 we describe how to embed the heuristic
in a branch-and-prune search.

7.2.1. Theoretical Motivation
Let us denote the objective function in (7.1.2a) by f̃(x∗, z, s,∆). We consider a KKT
point of (7.1.2) with primal solution (ẑ, ŝ, ∆̂) and dual solution (λ̂, η̂, µ̂, ξ̂, ζ̂). Here
the dual variables λ correspond to inequalities (7.1.2b), η to (7.1.2c) and (7.1.2d),
µ± to (7.1.2e) and (7.1.2f), ξ to (7.1.2h), and ζ± to (7.1.2i), respectively. Our aim is
to make use of equation (5.4) of Fiacco and Ishizuka (1990), which states a relation
between a modification of a constraint and its impact on the objective function
value via Lagrange multipliers from a corresponding KKT point. The main result
that we derive from their equation is

∂pi f̃(x∗, ẑ, ŝ, ∆̂, p∗) = −η̂i ∀ i ∈ I ′, (7.2.1)

where the dual value η̂i is the Lagrange multiplier of the constraints hi(z)−∆i−p∗i ≤ 0
or hi(z)− p∗i ≤ 0 of (7.1.2).

In the following, we briefly outline the main steps of the derivation of Fiacco and
Ishizuka (1990). Therefor we consider problem (7.1.2) as a parametric nonlinear
optimization problem of the general form

min
r

F (r, p), (7.2.2a)

Gi(r, p) ≥ 0, ∀ i ∈ I, (7.2.2b)

where r ∈ RNn are variables and p ∈ RI are parameters. We note that r =
(z, s,∆) for the relaxation (7.1.2). Furthermore we assume that F and G are twice
continuously differentiable, real valued functions.

A KKT point (r̂, η̂) of (7.2.2) with Lagrange multipliers η ∈ RI
≥0 depends on the

chosen parameter p, hence we denote it by (r̂(p), η̂(p)), in order to emphasize this
dependency. We select a parameter p0 and obtain a solution r̂ = r̂(p0) by solving
(7.2.2). In order to estimate the change in the objective function when altering the
parameter p in a small neighborhood of p0, we differentiate the objective function
F (r̂(p), p) with respect to p and obtain:

dF

dp
(r̂, p0) = ∇rF (r̂, p0)dr

dp
(p0) + ∂F

∂p
(r̂, p0). (7.2.3)
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Writing the Lagrange function of (7.1.2) as L(r, η, p) = F (r, p)− η G(r, p), it holds
∇rL(r̂, η̂, p0) = 0 by (2.4.2) for the KKT point (r̂, η̂, p0). Hence we can rewrite the
first summand on the right-hand side of (7.2.3) as

∇rF (r̂, p0) = η0∇rG(r̂, p0),

where Lagrange multipliers η0 are the values η̂ for the parameter choice p = p0. We
use this to rewrite (7.2.3) as

dF

dp
(r̂, p0) = η0∇rG(r̂, p0)dr

dp
(p0) + ∂F

∂p
(r̂, p0). (7.2.4)

We denote by I ′ ⊆ I the subset of active constraints from I for (r̂, p0), i.e., Gi(r̂, p0) =
0 for i ∈ I ′. Further define G̃ := (Gi(r̂, p0))i∈I′ . By Fiacco and Ishizuka (1990)
there exists a neighborhood of p0 such that G̃(r̂(p), p) = 0 for all p within this
p0-neighborhood. This means, the function G̃(r̂(·), ·) is locally constant, which
implies that dG̃

dp
(r̂(p), p) = 0 for all p in the neighborhood of p0. We compute this

derivation in p0 and obtain

0 = dG̃

dp
(r̂, p0) = ∇rG̃(r̂, p0)dr

dp
(p0) +∇pG̃(r̂, p0). (7.2.5)

We put (7.2.5) into (7.2.4), make use of η0i = 0, i ∈ I \ I ′ for the inactive constraints
and obtain

dF

dp
(r̂, p0) = −η0∇pG(r̂, p0) + ∂F

∂p
(r̂, p0). (7.2.6)

Now we consider the derivation of the Lagrange function L with respect to p:

dL

dp
(r̂, η0, p0) = ∇rL(r̂, η0, p0)︸ ︷︷ ︸

=0,by KKT

dr

dp
(p0) +∇ηL(r̂, η0, p0)︸ ︷︷ ︸

=G(r̂,η0,p0)=0

dη

dp
(p0) + ∂L

∂p
(r̂, η0, p0).

From
∂L

∂p
(r̂, η0, p0) = −η0∇pG(r̂, p0) + ∂F

∂p
(r̂, p0)

and (7.2.6) we conclude that

dF

dp
(r̂, p0) = dL

dp
(r̂, η0, p0). (7.2.7)
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In order to make use of this equation, we first write down the Lagrange function
L(x∗, z, s,∆, p∗, µ, η, λ, ξ, ζ) of (7.1.2), which is defined as follows:

L(x∗, z, s,∆, p∗, µ, η, λ, ξ, ζ) = σf(x∗, z) + (1− σ)
n∑
j=1

(s+
j + s−j ) + (1− σ)

∑
i∈I′′

∆i

+ λ g(x∗, z)
+
∑
i∈I′

ηi (hi(z)− p∗i )−
∑
i∈I′′

ηi ∆i

+
n∑
j=1

(
µ+
j (zj − s+

j − zj) + µ−j (zj − zj − s−j )
)

−
∑
i∈I′

ξi

−
n∑
j=1

(ζ+
j + ζ−j ).

Making use of equation (7.2.7) we obtain from this Lagrange function:

∂pi f̃(x∗, ẑ, ŝ, ∆̂, p∗) = −η̂i ∀ i ∈ I ′. (7.2.8)

This equation expresses the change of the objective function f̃ , when parameter pi
is changed.

7.2.2. The Basic Dual Value MINLP Heuristic
In the previous section we derived relation (7.2.8) between the dual value of a
constraint of (7.1.2) and the impact on its objective by changing this constraint.
Making use of this relation our heuristic works as follows: An iterative process
is started at problem (7.1.2) based on the binary decisions x∗. In each step the
heuristic selects one fixed binary variable and assigns a different binary value to it
(this corresponds to a flip, from upper to lower bound, or vice versa). This is done
as follows: First a KKT point of the relaxation (7.1.2) with parameters (x∗, 0) is
computed. Then all the constraints (7.1.2c) and (7.1.2d) are ranked according to
the current values of the dual solutions, i.e., the right-hand sides in (7.2.8). This
ranking yields a ranking of those binary variables x which are associated by (7.1.1c)
and (7.1.1d). The variable corresponding to the constraint with the highest rank is
then the most promising candidate for an assignment of a different value. That is, if
η̂i ≥ max{η̂j : j ∈ I ′} for some i ∈ I ′, then the corresponding variable xi (which is
currently fixed to x∗i = 1) will be fixed to 0 in the next iteration. By most promising
we mean that for the new parameter x̃∗ for (7.1.2), which is obtained from x∗ by
changing a specific value, the optimal objective value of (7.1.2) is decreased. Recall
that a feasible solution for (7.1.2) with optimal objective value zero also yields a
feasible solution for (7.1.1) when neglecting the slack variables. When changing x∗
to x̃∗ we also ensure that (7.1.2) is feasible for the new parameters (x̃∗, 0).
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We also keep track of the variable which is changed, so that we do not repeat
the same decision again in later steps, in order to prevent the heuristic from cycling.
Note that cycles occur if (7.1.1) contains the relation x1 = 1 − x2 for two binary
variables x1 and x2. In this case it might occur that both binary variables x1 and
x2 are iteratively changed.

In the next iteration, we solve the slack model (7.1.2) again. Note that the set
I ′ changes from one iteration to the next. The objective function values f̃ from
the previous iteration is compared with the objective function value of the current
iteration, denoted by f̃+. We allow a slight increase (worsening) of at most 20%
(or any other user-defined parameter) to accept this move. If the increase is more
than that, the heuristic terminates without any result. Otherwise the process is
iteratively continued.

Summing up, the heuristic selects one fixed binary variable in each step, and
assigns a different binary value to it. In the long run, the objective function value
of the slack model (7.1.2) typically decreases. Two cases can occur: First, at some
iteration, we reach a point where the slack part of the objective function value is 0.
In this case we obtain a feasible solution for (7.1.1) by neglecting the slack variables
and the heuristic terminates successfully. The second case that might occur is that
the slack part of the objective function does not converge to 0. If after a user-defined
number of rounds the slack part is still nonzero, then the heuristic terminates. Thus
it failed to construct a feasible solution.

7.2.3. Embedding the Heuristic in a Branch-and-Prune Search
The heuristic outlined above can be embedded in a tree search. It can run into a
dead end if the slack part of the objective does not converge to 0 after a certain
number of iterations. The idea of the tree search is to restart the heuristic at an
earlier stage and thus to cover a wider range of potential changes of binary variables.

To this end, we do not only consider the single best variable with respect to the
dual values as before. Instead, we use a small pool (of a user-defined size, typically
5 to 10 variables), and take the best dual variable until the pool is filled. Each
iteration of the heuristic is considered as a node in the tree (and the start as the
root node), and for each variable in the pool a child node is created and inserted in
the tree.

We then traverse the tree in a depth-first search. If the heuristic fails, the node
is pruned and a back-tracking to the previous unpruned nodes takes place. An
example of this tree search is discussed in Example 7.3.2.

7.3. A Specialization to the Topology Optimization
Problem

We are going to apply the heuristic method to the natural gas network topology
optimization problem (3.2.1). We do not insist on the assumptions because our aim
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is to develop a heuristic method. Recall that we assumed above that all constraints of
MINLP (7.1.1) are twice continuously differentiable. This is not the case for (3.2.1)
as the function q 7→ q|q|, for instance, is not C2. Nevertheless, we are going to apply
the heuristic to (3.2.1). In Section 7.3.1 we present the relaxation (7.1.2) in the
special case of solving (3.2.1). This relaxation is slightly different from the domain
relaxation (6.1.2). In Section 7.3.2 and Section 7.3.3 we present special adaptations
of the heuristic to the topology optimization problem. We note that the variables
(z, x) of (7.1.1) change their roles to (q, π, p, y, x) with z = (q, π, p, y) when turning
to (3.2.1).

7.3.1. The Relaxation
Let us write down the relaxation (7.1.2) for the topology optimization prob-
lem (3.2.1). We define the set of arcs that are selected at the current node by
A′ := {(a, i) ∈ AX | xa,i = 1, i > 0}, i.e., A′ contains all arcs where the flow is not
fixed to zero by (3.2.1d). Furthermore let the set A′0 := {(a, 0) ∈ AX | xa,0 = 1} con-
tain all active arcs that are in closed state. We define the index set J ′ appropriately
such that the flow and node potential variable bounds are relaxed. Furthermore we
choose I ′′ such that all constraints (3.2.1c), that are active for the choice of x, are
relaxed, too. We introduce ∆v ∈ R≥0 for all v ∈ V and ∆a ∈ R≥0 and ∆̃a ∈ Rνa

≥0
for all a ∈ A′ as slack variables. Then, for σ = 0, the relaxation (7.1.2) writes as
follows:

min
∑
v∈V

∆v +
∑
a∈A′

∆a +
∑
a∈A′

νa∑
k=1

(∆̃a)k (7.3.1)

s. t. αa qa|qa|ka − βaya − (πv − γaπw) = 0 ∀ a = (v, w) ∈ A′,

qa = 0 ∀ a = (v, w) ∈ A′0,

Aa (qa, pv, pw)T − ∆̃a ≤ ba ∀ a = (v, w) ∈ A′,∑
a∈δ+

A′∪A′0
(v)
qa −

∑
a∈δ−

A′∪A′0
(v)
qa = dv ∀ v ∈ V,

|pv|pv − πv = 0 ∀ v ∈ V,

πv −∆v ≤ πv ∀ v ∈ V,

πv + ∆v ≥ πv ∀ v ∈ V,

qa −∆a ≤ qa ∀ a ∈ A′,

qa + ∆a ≥ q
a

∀ a ∈ A′,

ya ≤ ya ∀ a ∈ A′,

ya ≥ y
a

∀ a ∈ A′,
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πv ∈ R ∀ v ∈ V,

qa ∈ R ∀ a ∈ A′ ∪ A′0,

ya ∈ R ∀ a ∈ A′,

∆v ∈ R≥0 ∀ v ∈ V,

∆a ∈ R≥0 ∀ a ∈ A′,

∆̃a ∈ Rνa
≥0 ∀ a ∈ A′.

We note that this relaxation equals the domain relaxation of the active transmission
problem (6.1.2) except the additional flow variables qa for a ∈ A′0 and the constraints
qa = 0 for these arcs. So this relaxation is always feasible by Lemma 6.1.1 which
allows to proceed as already described in Section 7.2.2.

Remark 7.3.1:
Note that the domain relaxation (6.1.2) of the active transmission problem (6.1.1)
turned out to be more efficient than the flow conservation relaxation (6.1.5). Hence
we do not investigate further whether a similar heuristic process based on the flow
conservation relaxation (6.1.5) could be derived.

7.3.2. Handling Different Modes of Active Devices

When applying the heuristic described in Section 7.2 we identify binary variables
that are switched to different values. For the topology optimization problem (3.2.1)
some of these binary variables correspond to different modes of the active elements
in the network. Recall that a valve for instance can be open or closed. A typical
situation in the network is a compressor (or a control valve) that can be active
(compressing or regulating), in bypass, or closed. Let us briefly recall each state.

• If the compressor is active, then the gas can flow through the compressor. In
this case, the amount of flow is restricted by lower and upper bounds. The
output pressure at the exit side of the compressor is higher than the input
pressure, and the compression ratio between output and input pressure has
to satisfy certain bounds. The operating range of a compressor a ∈ A is thus
described by νa linear inequalities in the system (Aa, ba), see (3.2.1c). They
define a set of feasible points illustrated by the shaded area in the upper-right
of Figure 7.1.

• If the compressor is in bypass, then again, flow through the compressor is
allowed. Furthermore the pressure at the input side is identical to the pressure
at the output side, and the flow can vary arbitrarily (see the horizontal line in
Figure 7.1).
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• Finally, if the compressor is in closed mode, then the flow is zero, and the
pressures at input and output side can take arbitrary values (see the vertical
line in Figure 7.1).

The situation for a control valve is similar, see Figure 7.2. The only difference is
that the output pressure is lower than the input pressure in ’active’ mode.

We consider a compressor or a control valve a = (v, w) ∈ A. Recall that xa,1, xa,2
are binary variables associated with the compressor (or control valve) denoting the
bypass and active state respectively. The binary variable xa,0 is used to represent the
case that the active element is closed. The crucial part of the topology optimization
model that we will exploit in the sequel are the following three families of indicator
constraints:

xa,0 = 1⇒
 qa,1 = 0 (7.3.2a)
qa,2 = 0 (7.3.2b)

xa,1 = 1⇒
 πv − πw = 0 (7.3.3a)
qa,2 = 0 (7.3.3b)

xa,2 = 1⇒
 Aa (qa,2, pv, pw)T ≤ ba (7.3.4a)
qa,1 = 0 (7.3.4b)

Recall that exactly one of these three cases applies because of (3.2.1e).
The heuristic creates its own branching tree T as described in Section 7.2.3. Its

root node consists of some fixation of the discrete decision variables to binary values.
We solve the slack variant (7.3.1) of model (3.2.1). We obtain a ranking among the
binary variables (according to the dual solution values) as described in Section 7.2.2.
This ranking indicates which binary variable should be flipped from one to zero.
Changing the state of a compressor or a control valve goes along with changing the
values of two binary variables. Hence another binary variable must then be flipped
from zero to one in order to preserve the feasibility of (7.3.1).

Denote by ρf a certain user-specified threshold value for the flow (default value
is 20), and by ρp a threshold value for the pressure difference (default value is 10).
Using these values new child nodes for tree T are created where we distinguish the
following cases.

Case 1: xa,0 from 1 to 0. The subnet is currently “closed”. The ranking indicates
that either the variable xa,1 or xa,2, having the present value 0, should be set
to 1.
Case 1.1: “From closed to bypass.” If the pressure difference at both end

nodes |pw − pv| is below ρp, then a new child node is created where xa,1
is set from 0 to 1 and xa,2 remains at 0.

Case 1.2: “From closed to active.” If the dual value of at least one of the
constraints (7.3.2a) or (7.3.2b) is positive, then in the new child we flip
xa,2 from 0 to 1 and xa,1 remains at 0.
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Figure 7.1.: Shown are the different operation modes of a compressor. The arrows indicate the changes to binary
variables for a compressor, indicated by the heuristic, labeled by cases, see Section 7.3.2. The gray shaded ellipse
marks those parts of the states bypass and closed in which changes between the modes bypass and closed are
possibly performed by the heuristic.
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Figure 7.2.: Shown are the different operation modes of a control valve. The arrows indicate the changes to binary
variables for a compressor, indicated by the heuristic, labeled by cases, see Section 7.3.2. The gray shaded ellipse
marks those parts of the states bypass and closed in which changes between the modes bypass and closed are
possibly performed by the heuristic.
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Case 2: xa,2 from 1 to 0. The subnet is currently “active”. We collect all constraints
of (7.3.4a) that are either fulfilled with equality or where the associated value
of ∆ is greater than zero. (Recall that we solve a slack model, which ensures
feasibility.) Denote by I ⊆ {1, . . . , νa} the corresponding index set. For each
i ∈ I we consider the i-th constraint in (7.3.4a) and denote by (a1, a2, a3) the
coefficients from the i-th row of Aa. We fix the input pressure pv = 1 and
check in which quadrant the remaining two-dimensional vector (a2, a3) lies.
Case 2.1: “From active to bypass.” If a2 < 0, then we create a child node in

which we set xa,2 to 0 and xa,1 to 1.
Case 2.2: “From active to closed.” If a1 < 0, then we create a child node in

which we set xa,2 to 0 and also xa,0 to 1.

Case 3: xa,1 from 1 to 0. The subnet is currently in “bypass”.
Case 3.1: “From bypass to closed.” If the absolute value of flow is below

ρf , then a new child node is created with the decision to set xa,1 to 0,
to leave xa,2 at 0, and thus set xa,0 to 1. Hence at this child node, the
subnetwork is ’closed’.

Case 3.2: “From bypass to active.” If the dual value of the constraint (7.3.3a)
is negative, then a new child node is created, in which we set xa,2 from 0
to 1 and xa,1 from 1 to 0.

Otherwise: Consider the next best variable according to the ranking. If no more
variable exists, no other child node is created.

Note that multiple cases can occur simultaneously, hence it is possible that multiple
child nodes are created.

The “otherwise” case can occur for example if the ranking favors an increase of
compression for an active compressor, while the compression ratio is already at its
upper limit.

Regarding control valves we create new child nodes in the very same way as we
do for compressors. For simple (non-control) valves, the state “active” does not
exist; they can only be in “bypass” or “closed” mode. So we apply the same child
node creation routine as for compressors but we skip those parts that are concerned
with “active” states.

After inserting the new child nodes to the tree T we perform the following
node selection strategy in order to decide where to continue the search. We always
proceed according to the rule: “active” first, “bypass” second, “closed” third. We
always pass along from a parent node to one of its child nodes according to this rule
(depth-first search). When entering the child node again the slack model (7.3.1) is
solved first. This yields a new ranking of the decision variables, which leads to a
new decision about which of the variables should be flipped in the next round.

The branching process terminates if at one node the slack model (7.3.1) has a
zero objective function value or a certain user-defined branching depth (i.e., number
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of nodes in the path to the root node) is reached. Then the corresponding child
node is pruned and the search procedure continues at another unfinished child node.
Here we apply a simple backtracking rule, going back to the previous parent node
where we came from before. An example for the branching tree T is given in the
next section.

7.3.3. Handling Loop Extensions
Our topology optimization model (3.2.1) allows a single original arc a = (v, w) ∈ A
together with additional parallel arcs (a, i) ∈ AX , i > 1. For these arcs the important
part of the model consists of the following constraints:

xa,i = 1⇒ αa,i qa,i|qa,i|ka − βa,iya,i − (πv − γaπw) = 0 ∀ (a, i) ∈ AX , i 6= 0,

xa,i = 0⇒ qa,i = 0 ∀ (a, i) ∈ AX , i 6= 0,∑
i:(a,i)∈AX

xa,i = 1.

Recall that the extended arc set AX does not contain (a, 0) as we consider a passive
network element here. Thus, if xa,i is chosen to be switched from 1 to 0 by our
heuristic, then the constraint αa,i qa,i|qa,i|ka − βa,iya,i − (πv − γaπw) = 0, which is
active in the current relaxation (7.3.1) becomes inactive in the next problem. When
writing the relaxation (7.3.1) this constraint is expressed as

αa,i qa,i|qa,i|ka − βa,iya,i − (πv − γaπw) ≤ 0, (7.3.5a)
−αa,i qa,i|qa,i|ka + βa,iya,i + (πv − γaπw) ≤ 0. (7.3.5b)

Now we distinguish two cases:

Case 1: The dual value of constraint (7.3.5a) is positive. This means that the
difference of node potential values is too large for the solution flow value. If
the constant αa,i is not at its minimum, i.e., xa,j = 0 for a maximal index
j < i with (a, j) ∈ AX , and the compression ya,i is maximal, i.e., ya,i = ya,i,
then we flip xa,i from 1 to 0 and xa,j from 0 to 1 in the new child.

Case 2: The dual value of constraint (7.3.5b) is positive. This reflects that the
difference of potential values is too small for the solution flow value. If the
constant αa,i is not at its maximum, i.e., xa,j = 0 for a minimal index j > i
with (a, j) ∈ AX , and the compression ya,i is minimal, i.e., ya,i = y

a,i
, we flip

xa,i from 1 to 0 and xa,j from 0 to 1 in the new child node.

Otherwise: The dual values of (7.3.5a) and (7.3.5b) are zero. Consider the next
best variable according to the ranking. If no more variables exist, a child node
is not created.

Now let us explain the branching tree T as an example.
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Example 7.3.2:
An example for the branching process and the corresponding branching tree T is
shown in Figure 7.3. Here we consider a network that consists of one control valve
(CV), one compressor station (CS), and a pipe, which can be extended by a parallel
pipe (loop). Assume that either from the LP relaxation or by branching at the
current node the CV is set to active mode and the CS is set to bypass mode and no
extension for the pipe is selected. Assume as well that this selection is not feasible.
Now the heuristic is invoked. It creates a ranking of the corresponding decision
variables, which means, a ranking of the network elements. We assume that the CV
is ranked higher than the CS while the pipe has the lowest rank. Hence the heuristic
creates a branch (left son), where it changes the stage of the CV from active to
bypass first (according to Case 2.1 in Section 7.3.2). Another branch (right son) is
created where it changes the stage of the CV from active to closed. Now we focus
on the left son and solve the NLP (7.1.2) again and obtain a new ranking. Among
all elements that have not been changed before, the CS has the highest ranking now.
Hence it is changed, once from bypass to active (left son) and once from bypass
to closed (right son). For the left son, we solve the NLP relaxation (7.1.2) and
assume that it has still a positive slack value. Now the loop is selected in a new
child of the tree (according to Case 1 in this section) and the NLP relaxation is
solved. We assume that it still has a positive slack value. Since we cannot alter
more elements in this small network, this part of the tree is finished, and we track
back to the parent node and once more to the next parent node. For the right son,
we solve the NLP relaxation and again get an infeasible subproblem, so we also
consider the child in the next step. Now we assume the corresponding NLP has a
positive slack value again. Then we prune this node and afterwards are back at the
root node of the search tree created by the heuristic. The sub tree where the CV was
changed from active to bypass is finished, hence we now change the CV from active
to closed (shown on the right). Then we solve the NLP (7.1.2) and assume, that we
obtain a solution with slack zero. At this point, when neglecting the slack variables,
a new primal feasible solution is found for (7.3.1).

7.4. Implementation Details
Our heuristic is implemented as a plug-in for the solver SCIP. The following settings
are offered to the user:

Maxcalls. Specifies the maximal number of nodes for the branching tree within the
heuristic. (Default value is 30.)

Maxequals. Abort the heuristic without a solution, if the highest-ranked “Max-
equals” fraction of binary variables all have equal ranks. (Default value is 1/3,
i.e., 33.33 % of all binary variables.)
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CV (active) | CS (bypass) | loop 1x

CV (bypass) | CS (bypass) | 1x

CV (bypass) | CS (active) | 1x

CV (bypass) | CS (active) | 2x

CV (bypass) | CS (closed) | 1x

CV (bypass) | CS (closed) | 2x

CV (closed) | CS (bypass) | 1x

Figure 7.3.: Example of the branching tree created by the heuristic for a network that contains 1 control valve
(CV), 1 compressor station (CS) and a pipe that can be extended by a parallel pipe (loop). The tree is discussed
in Example 7.3.2.

Mingap. Do not call the heuristic, if the gap is below the threshold value “Mingap”.
The gap is defined as: (best primal − best dual) / (best dual). (Default value
is 0.05, i.e., a SCIP gap of 5 %.)

Sigma. Sets the value for σ in objective (7.1.2a). (Default value is 0, i.e., emphasis
only on feasibility.)

Leaves only. Call the heuristic only at nodes of the branching tree where all binary
variables are fixed. (Default value is “No”.)

We apply the heuristic to the topology optimization problem (3.2.1). The
heuristic is invoked at those nodes in the branch-and-bound tree where all binary
decision variables have binary values (either by branching or by the solution of the
LP relaxation). In order to make this happen as early as possible, we introduce
a branching priority rule that first branches on integral variables, before spatial
branching on continuous variables is applied. Furthermore, when changing x∗ in our
heuristic to x′ in the next iteration, we ensure that x′ is feasible for the constraints
Lx ≤ 0, see (3.2.1h). This is done as follows: Recall that the left-hand side of
(3.2.1h) is a vector of linear functions. We assume that xa0,i has to be changed from
zero to one. Then we solve the following MIP problem to obtain the next vector x′:

min ||x′ − x∗||1
s. t. Lx′ ≤ t,

x′a0,i = 1,
x′ ∈ {0, 1}AX .

(7.4.1)

If this problem is infeasible, then we prune the current node of the branching tree
of our heuristic. Otherwise we obtain an optimal solution x′ which has minimal
deviations from x∗ together with the change xa0,i = 1.
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7.5. Computational Results
We implemented the heuristic described above in C and use the computational
setup described in Section 3.5. For our computational study we considered the
network net7. The initial network net7a consists of 4165 nodes and 4079 arcs,
among them 3638 passive pipelines, 12 compressor stations, 121 control valves,
and 308 valves. The industry partner defined a test set of 30 nominations for
net7a that differ among each other in the pressure and flow bounds on the entry
and exit nodes. The problem is a feasibility problem only (i.e., does there exist a
feasible flow in the network). Hence it is considered as “solved” as soon as a feasible
solution is constructed; no objective function values for opening valves (i.e., adding
further topology extensions) are set. We imposed a time limit of 4 hours for all
instances which is still more than the cooperation partner suggests. We compare
three strategies for solving the topology optimization problem (3.2.1).

1. “SCIP/default”: The first strategy is to use SCIP without any adaptations on
the solver settings. All branching decisions are up to the solver. We enforce a
certain branching priority rule, so that SCIP first branches on binary decision
variables x. Only after all discrete variables are fixed it is allowed to perform
spatial branching on continuous variables.

2. “SCIP/dualval(basic)”: The second strategy is to use the heuristic as described
in Section 7.2. We establish the branching tree T as described in Section 7.3.2
and Section 7.3.3, but neglect the special analysis which sorts out some changes
as described in the case discussion in Section 7.3.2.

3. “SCIP/dualval(adapted)”: The third strategy is to use the heuristic as
described in Section 7.2. Additionally we use the special adaptations described
in Section 7.3.2 and Section 7.3.3.

These strategies are used to demonstrate the impact of our heuristic on the solving
performance of SCIP. Additionally, we use Baron and Antigone to solve the
instances.

A brief summary of the computational results is shown in Table 7.1. A detailed
presentation of the results is available in Tables A.14-A.18. The third and fourth
column of Table 7.1 show that neither Baron nor Antigone solved any of the
test instances (see also Table A.1 and Table A.3). The fifth column of Table 7.1
shows the number of instances that were solved with SCIP/default, strategy 1. The
sixth column of Table 7.1 shows the number of instances that were solved by the
heuristic (SCIP/dualval (basic), strategy 2). The last column of Table 7.1 shows
the number of instances that were solved by the heuristic exploiting the problem
structure (SCIP/dualval (adapted), strategy 3). Thus, for example SCIP/dualval
(basic) was able to find a feasible solution within 4 hours in 23 of the net7a-type
instances.

The modified version of the heuristic is able to solve all problem instances for
net7a. In later phases of our collaboration (net7b–net7e), the industrial project
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network Baron Antigone SCIP
strategy 1 strategy 2 strategy 3

net7a - - 4 23 30
net7b - - 4 12 18
net7c - - 1 9 18
net7d - - - 5 17
net7e - - 1 8 18

Table 7.1.: Globally solved instances out of 30 nominations for each of the networks net7a-net7e. The underlying
data are available in Tables A.14–A.18.

partner made minor alterations to the networks’ topologies, and, more important,
also made the instances more and more difficult by imposing tighter bounds on the
minimum and maximum pressure levels at the nodes. Hence it became more difficult
for any heuristic to construct feasible solutions. However, the adapted heuristic
was still able to solve globally approximately 67% of the instances (101 out of 150),
whereas the standard MINLP heuristics of SCIP found less feasible solutions the
more difficult the instances became (6% of the instances of the test set are globally
solved, 10 out of 150). The basic heuristic (strategy 2) that is not adapted to the
problem’s special structure is also pretty good in finding feasible solutions (when
compared to SCIP/default, strategy 1). Here approximately 38% of the instances
of the test set are globally solved (57 out of 150).

Figure 7.4 shows a comparison of SCIP/default with default settings (in partic-
ular, with all standard heuristics) and SCIP/dualval(adapted) with the additional
adapted heuristic on all instances from Table 7.1. It turns out that for those
instances which SCIP/default is already able to solve, the additional time spent
in the dual value heuristic does not pay off, but slows down the overall solution
process instead. For many of those instances that SCIP/default could not solve,
SCIP/dualval(adapted) was able to compute a feasible solution within the time
limit.

We also applied the heuristic in its adapted version to network net5. Here we
combined it with the solution approach indicated by strategy 3 presented in the
previous chapter. The corresponding instances are topology expansion problems.
Our computational results show that a primal feasible solution is available for every
instance. The results are available in Table A.19. Without our heuristic a feasible
solution was available for approximately 45% of the instances only, see Table A.13.

Summary

We presented a new heuristic algorithm that exploits dual information coming
from KKT points in order to find feasible solutions for the mixed-integer nonlinear
optimization problem (7.1.1) with indicator constraints. We applied this heuristic
to the topology optimization problem (3.2.1). Using the heuristic in the standard
fashion, it is better than the existing heuristics that are already available in the
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Figure 7.4.: Run time comparison between SCIP/default (strategy 1) and SCIP/dualval(adapted) (strategy 3).
Each cross (×) marks the run time of these two solvers. A cross above the diagonal line indicates that the strategy
SCIP/default is faster, and a cross below the diagonal line indicates that SCIP/dualval(adapted) is faster. Note
that there are instances, where both strategies did not find any solution. Each of these instances correspond to
the same cross (×) mark in the upper right corner of Figure 7.4. The time limit was set to 4 hours.

solver SCIP. After exploiting the problem structure, the heuristic is able to identify
many more feasible solutions than any other heuristic included in SCIP that we
are aware of. In total approximately 61% more instances of the test set consisting
of instances of the network net7 are globally solved in total. We also applied the
heuristic to the network net5 and combined it with the solution approach presented
in the previous chapter. The computational results showed that the number of
instances with a primal feasible solution available was increased by 55%. Recall
that both networks out of those considered in this thesis remained with very few
feasible solutions after the solution approaches of the previous Chapters 4-6.
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Conclusions

This thesis deals with gas network optimization, that is nomination validation and
topology expansion problems arising from gas transport as introduced in Chapter 1.
We presented a mixed-integer nonlinear program (3.2.1) that models both problems
at the same time and considered it as the topology optimization problem in gas
networks. Our industrial cooperation partner provided us with data of different
networks in combination with corresponding nominations. Facing the fact that state-
of-the-art solvers like Baron, Antigone or SCIP are slow on real-world instances
or unable to compute any primal feasible solution, we set our aim to improve
the performance of SCIP for solving our model. Exploiting specific knowledge of
our model was the key to success. Our strategy shows that an MINLP solver in
combination with special-tailored adaptations offers the potential to solve globally
large-scale non-convex MINLP problems of real-world size. We believe that our
results presented in this thesis provide evidence for the suitability of the approach
and constitute a step in the right direction of solving the topology optimization
problem.

Future studies aim at solving the topology optimization problem for transient
gas flows. In the focus of the study there is the identification of more general
conditions for the passive transmission problem. Assuming that the convex domain
relaxation of the passive transmission problem is performed, an interpretation of
the dual solution of the relaxation would lead to a primal heuristic for identifying
feasible solutions. Discretization of the time component in the model for transient
flows allows the inclusion of the results obtained. Apart from this, an extension of
the pc-regularization towards time dependency should be investigated in order to
derive cuts by an augmented Benders argument. Finally, this approach used for
gas transmission networks could also be extended to water or electricity networks,
under some additional assumptions.

Benefits for a TSO

Let us briefly discuss different aspects which allow a TSO to improve the operation
of its network. Utilizing the algorithms developed in this thesis allows the company
to compute operation modes for the active network elements, arc flows, and node
pressures for a given nomination. This computation requires that the flow specified
by the nomination is transported through the network and all technical and physical
constraints are fulfilled. Here the software can be used to assist a manual approach of
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expert knowledge in combination with simulation software. Given a set of extensions
the model can also be used for the topology expansion problem.

Other aspects are also useful for a TSO. The company is able to get a visualiza-
tion of the pressure distribution, see Figure 1.3. Given the case that the simulation
software is not delivering a feasible solution the possibility of proving global infeasi-
bility of an active transmission problem as described in Section 6.2 improves this
situation. A failing simulation software does not generally imply that the current
transportation situation is indeed infeasible. Especially a visualization as shown in
Figure 4.2 provides assistance in comprehending the reasons of an infeasibility. The
picture emphasizes those parts of the network that cause the infeasibility of a passive
transmission problem as described in Section 4.2.3. Furthermore considering an
infeasible passive transmission problem and solving the flow conservation relaxation
yields a set of specific slack values. These values allow to circumvent infeasibilities.
More precisely, an adaptation of the considered nomination can be performed such
that the corresponding gas quantities are transported through the network, i.e., the
passive transmission problem is feasible for the adapted nomination.
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Appendix A.

Tables

nom net7a net7b net7c net7d net7e

4 limit limit limit 647 limit
6 limit limit limit 912 limit
8 limit limit 725 706 limit
19 limit limit limit limit 663
20 limit limit 564 limit limit
23 limit limit limit 3,029 limit
24 limit limit limit limit 724
25 limit limit 571 limit 996
26 limit limit limit 574 limit
27 limit limit limit 589 limit
29 limit limit limit 730 limit

Table A.1.: Run time results in seconds using Baron to solve the topology optimization problem on 30 nominations
on the network net7. The time limit was set to 4 hours and the results are discussed in Chapter 7. All nominations
not depicted here ran into the time limit without a feasible solution. Those instances with a finite time limit were
detected to be infeasible. No primal solution was available for all the other instances.

nom net7a net7b net7c net7d net7e

3 limit 103 limit limit limit
4 limit 110 limit limit limit
5 78 limit limit limit limit
11 limit limit limit limit 132
15 limit limit limit limit limit
16 966 limit limit limit limit
17 109 limit limit limit limit
22 limit 297 161 limit limit
27 779 4,171 limit limit limit

Table A.2.: Run time results in seconds using SCIP to solve the topology optimization problem on 30 nominations
on the network net7. The time limit was set to 4 hours and the results are discussed in Chapter 7. All nominations
not depicted here ran into the time limit without a feasible solution. Those instances with a finite time limit were
feasible. No primal solution was available for all the other instances.
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nom net7a net7b net7c net7d net7e

1 37 37 1,808 limit 375
2 27 27 6,665 13,825 9,221
3 62 93 711 limit 3,064
4 28 28 50 4,859 52
5 28 28 50 1,874 52
6 28 29 50 49 52
7 27 28 50 585 52
8 28 28 51 4,009 55
9 28 28 49 50 53
10 28 38 5,971 52 limit
11 37 27 131 351 304
12 27 28 49 50 51
13 28 27 51 457 52
14 28 28 50 49 51
15 28 27 50 50 52
16 28 28 49 49 52
17 28 27 50 52 52
18 7,985 38 limit limit 51
19 37 28 49 limit 1,542
20 28 28 50 60 52
21 28 28 49 53 52
22 27 27 49 49 52
23 27 27 49 55 51
24 27 28 49 49 51
25 28 28 51 limit 52
26 28 27 51 209 52
27 28 28 50 50 53
28 27 28 49 50 51
29 33 14,205 52 51 53
30 27 28 48 52 limit

Table A.3.: Run time results in seconds using Antigone to solve the topology optimization problem on 30 nomi-
nations on the network net7. The time limit was set to 4 hours and the results are discussed in Chapter 7. Those
instances with a finite time limit were detected to be infeasible. No primal solution was available for all the other
instances.
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Appendix A. Tables

strategy 1 strategy 2 strategy 3
nom time nodes time nodes time nodes

1 7 131 2 112 2 112
2 3 39 1 26 1 26
3 1 44 1 34 1 34
4 4 199 1 30 1 30
5 3 162 2 35 3 35
6 327 7,022 3 235 3 235
7 1 26 10 205 93 205
8 2 72 1 50 1 50
9 1 1 1 8 1 8
10 2 18 1 17 1 17
11 2 17 1 20 1 20
12 2 55 1 28 1 28
13 3 236 3 53 3 53
14 12 788 1 26 1 26
15 1 44 1 71 1 71
16 limit 31,562 35 4,033 35 4,033
17 limit 53,277 56 8,012 55 8,012
18 16 575 5 327 4 327
19 1 19 1 12 1 12
20 2 27 1 19 1 19
21 1 39 1 20 1 20
22 251 22,587 127 3,042 36 798
23 2 35 7 129 57 129
24 2 46 4 41 7 41
25 1 1 0 1 1 1
26 1 14 1 54 1 54
27 2 41 1 33 1 33
28 4 304 2 24 2 24
29 limit 24,619 5 192 6 192
30 1 52 10 153 77 153
31 1 16 2 119 3 119
32 1 1 1 82 1 82
33 1 35 9 971 9 971
34 5 80 9 131 59 131
35 2 61 1 22 2 22
36 limit 28,498 1 40 1 40
37 1 25 2 232 2 232
38 3 226 13 2,651 12 2,651
39 3 132 6 161 5 161
40 2 134 9 140 28 140
41 58 1,183 1 8 1 8
42 1 15 2 121 2 121
43 2 22 3 202 3 202

Table A.10.: Results on network net6 and 43 instances. A time limit of 1 h was imposed. The different strategies
for solving the topology optimization problem are presented in Chapter 6.
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Appendix A. Tables
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Appendix A. Tables

strategy 1 strategy 2 strategy 3
no priorities with priorities dualval (basic) dualval (adapted)

nom time nodes time nodes time nodes calls time nodes calls
1 limit 241,297 limit 144,404 159 79 1 172 79 1
2 limit 109,869 limit 611,865 limit 744 118 134 308 1
3 limit 122,915 limit 112,174 limit 731 118 177 295 1
4 limit 138,123 limit 27,594 2,784 249 18 315 88 1
5 78 58 101 701 limit 195 50 207 64 1
6 limit 119,661 limit 592,352 272 64 1 254 64 1
7 limit 87,125 limit 162,034 193 296 1 114 296 1
8 limit 134,228 limit 503,061 90 134 1 84 134 1
9 limit 481,537 limit 128,105 1,036 328 10 1,758 328 10
10 limit 231,002 limit 335,555 limit 1,205 79 145 62 1
11 limit 113,277 limit 110,301 647 206 6 117 180 1
12 limit 140,155 limit 711,685 214 51 1 385 51 1
13 limit 114,814 limit 129,237 limit 714 108 5,759 356 45
14 limit 103,021 limit 388,074 limit 648 99 222 189 1
15 limit 141,208 limit 134,031 207 63 2 110 61 1
16 966 7,999 limit 87,825 84 268 0 87 268 0
17 109 183 limit 618,599 515 95 4 198 76 1
18 limit 105,106 limit 82,548 6,173 234 36 99 65 1
19 limit 134,483 limit 193,098 4,186 634 27 117 90 1
20 limit 133,759 limit 116,794 limit 704 141 2,036 88 6
21 limit 248,095 limit 399,486 198 177 2 120 172 1
22 limit 651,493 limit 771,975 603 313 4 269 85 1
23 limit 277,121 101 437 202 37 1 183 37 1
24 limit 637,225 limit 1,108,129 487 117 3 161 62 1
25 limit 133,181 limit 111,325 3,572 202 40 89 68 1
26 limit 105,742 limit 121,007 1,385 82 12 1,638 85 14
27 779 7,314 limit 130,146 222 72 2 259 72 2
28 limit 119,299 109 459 70 39 0 71 39 0
29 limit 110,801 limit 112,277 130 70 1 99 70 1
30 limit 112,109 limit 178,885 1,406 282 15 154 201 1

Table A.14.: Results on network net7a and 30 nominations. A time limit of 4 h was imposed. The different strategies
for solving the topology optimization problem are presented in Chapter 7. Those instances with a finite time limit
were feasible. The column “calls” shows the number of calls of the primal heuristic based on dual information.
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strategy 1 strategy 2 strategy 3
no priorities with priorities dualval (basic) dualval (adapted)

nom time nodes time nodes time nodes calls time nodes calls
1 limit 140,940 limit 68,362 limit 2,812 130 limit 2,665 102
2 limit 90,836 limit 381,513 143 261 1 142 261 1
3 103 442 limit 96,709 limit 36,705 118 limit 36,249 112
4 110 903 limit 59,288 limit 464 83 173 188 1
5 limit 140,474 86 274 482 69 5 151 54 1
6 limit 412,625 limit 639,087 limit 12,284 115 573 11,786 1
7 limit 117,310 limit 98,116 limit 3,451 159 limit 3,233 131
8 limit 312,566 limit 129,571 limit 932 157 limit 752 121
9 limit 152,721 limit 113,130 563 606 4 158 593 1
10 limit 105,796 limit 126,752 limit 63,450 80 7,546 66,510 21
11 limit 156,664 limit 68,237 218 121 1 545 273 3
12 limit 234,332 limit 450,738 limit 1,649 145 limit 1,179 94
13 limit 771,320 limit 1,220,105 2,964 112 12 limit 481 64
14 limit 491,487 limit 128,450 1,865 326 24 116 56 1
15 limit 144,534 limit 144,477 limit 1,093 156 8,260 639 61
16 limit 613,588 limit 116,138 limit 1,876 208 limit 1,265 124
17 limit 412,334 limit 392,347 5,019 559 34 811 262 5
18 limit 148,791 limit 94,420 limit 9,055 138 125 138 1
19 limit 337,272 limit 131,345 limit 1,304 137 limit 1,145 99
20 limit 490,877 limit 125,256 4,186 429 44 97 115 1
21 limit 249,526 limit 236,225 1,854 194 10 232 56 1
22 297 10,988 limit 158,298 limit 610 102 300 169 1
23 limit 103,000 limit 611,098 279 1,236 1 254 1,236 1
24 limit 137,949 limit 123,919 limit 1,381 139 limit 881 74
25 limit 106,484 limit 124,315 limit 2,572 108 limit 2,473 98
26 limit 127,864 limit 126,024 limit 1,784 152 limit 1,384 110
27 4,171 175,096 limit 613,955 limit 919 123 149 68 1
28 limit 147,134 limit 125,502 limit 1,561 157 limit 883 94
29 limit 118,015 limit 179,521 2,653 160 24 2,305 129 18
30 limit 210,212 limit 124,893 1,561 562 12 406 471 3

Table A.15.: Results on network net7b and 30 nominations. A time limit of 4 h was imposed. The different strategies
for solving the topology optimization problem are presented in Chapter 7. Those instances with a finite time limit
were feasible. The column “calls” shows the number of calls of the primal heuristic based on dual information.
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Appendix A. Tables

strategy 1 strategy 2 strategy 3
no priorities with priorities dualval (basic) dualval (adapted)

nom time nodes time nodes time nodes calls time nodes calls
1 limit 209,792 limit 175,127 5,081 1,554 28 7,574 1,558 30
2 limit 235,184 limit 293,344 544 1,233 3 202 1,225 1
3 limit 95,608 limit 194,961 limit 1,674 59 1,359 673 4
4 limit 725,232 limit 455,667 limit 4,942 86 limit 5,047 101
5 limit 453,246 limit 409,942 limit 741 69 7,398 661 45
6 limit 730,765 limit 681,565 1,725 7,254 9 442 5,201 1
7 limit 410,226 limit 544,259 269 699 1 317 699 1
8 limit 115,252 limit 592,581 limit 594 88 7,498 399 49
9 limit 116,342 14,088 104,447 limit 104,776 33 5,513 361 33
10 limit 225,347 limit 490,606 limit 1,060 90 limit 911 64
11 limit 96,301 limit 113,693 limit 2,254 86 190 174 1
12 limit 549,066 limit 789,363 419 384 2 228 375 1
13 limit 126,058 limit 119,756 limit 610 101 limit 548 85
14 limit 569,523 limit 375,609 limit 2,178 118 limit 2,190 121
15 limit 252,135 limit 237,202 limit 5,624 104 limit 5,116 78
16 limit 553,331 limit 119,828 3,864 349 33 2,806 204 20
17 limit 236,160 limit 145,606 limit 786 78 limit 753 68
18 limit 333,974 limit 329,769 limit 1,241 68 limit 1,214 58
19 limit 373,279 limit 213,921 limit 773 69 5,136 299 17
20 limit 165,352 limit 146,906 limit 4,872 77 limit 2,972 64
21 limit 133,832 limit 174,777 6,991 6,962 47 142 263 1
22 161 1,193 limit 672,644 1,328 217 10 645 190 4
23 limit 479,245 limit 367,011 limit 2,031 65 761 512 3
24 limit 700,383 limit 535,530 limit 13,133 30 2,234 5,525 4
25 limit 137,073 limit 116,393 limit 3,925 73 limit 339 47
26 limit 425,587 limit 92,517 limit 870 90 200 58 1
27 limit 104,986 limit 315,932 limit 764 95 limit 697 77
28 limit 128,744 limit 909,649 321 4,709 1 337 4,709 1
29 limit 101,648 limit 110,769 limit 663 59 limit 680 64
30 limit 256,820 limit 83,425 limit 979 82 limit 933 70

Table A.16.: Results on network net7c and 30 nominations. A time limit of 4 h was imposed. The different strategies
for solving the topology optimization problem are presented in Chapter 7. Those instances with a finite time limit
were feasible. The column “calls” shows the number of calls of the primal heuristic based on dual information.
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strategy 1 strategy 2 strategy 3
no priorities with priorities dualval (basic) dualval (adapted)

nom time nodes time nodes time nodes calls time nodes calls
1 limit 92,986 limit 53,134 limit 1,911 75 limit 1,832 64
2 limit 107,559 limit 221,183 limit 1,525 81 limit 1,462 61
3 limit 294,798 limit 213,185 limit 16,201 97 2,305 10,172 3
4 limit 264,519 limit 407,828 limit 575 87 error 5
5 limit 481,910 limit 119,520 limit 6,422 95 1,716 3,110 10
6 limit 686,619 limit 695,384 limit 533 59 1,291 303 5
7 limit 495,048 limit 471,546 1,727 1,011 8 8,721 1,246 43
8 limit 125,606 limit 327,295 limit 92,402 0 limit 94,489 0
9 limit 52,482 limit 452,027 limit 1,789 99 limit 1,454 63
10 limit 194,612 limit 296,502 limit 681 91 2,981 436 19
11 limit 117,377 limit 98,475 limit 133,894 10 limit 18,324 52
12 limit 482,468 limit 465,670 6,544 975 25 1,470 852 6
13 limit 114,820 limit 140,953 limit 593 67 limit 439 37
14 limit 560,563 limit 378,138 limit 1,350 60 7,847 1,247 29
15 limit 258,260 limit 268,361 limit 358 89 237 81 1
16 limit 536,908 170 1,511 7,616 524 61 5,044 276 36
17 limit 341,725 limit 210,353 limit 1,502 117 397 372 1
18 limit 175,509 limit 102,087 limit 359,541 14 limit 374,860 14
19 limit 197,670 limit 288,764 9,091 1,114 41 11,581 1,112 43
20 limit 136,959 limit 129,193 limit 226 36 limit 669 60
21 limit 114,578 limit 466,233 8,580 12,477 56 3,476 11,595 16
22 limit 392,281 limit 402,646 limit 388 94 361 57 2
23 limit 545,123 limit 480,047 limit 7,061 50 limit 7,765 75
24 limit 764,936 limit 464,159 limit 577 78 2,949 350 20
25 limit 161,312 limit 629,419 limit 1,721 100 7,751 318 40
26 limit 119,817 limit 166,047 limit 5,484 76 limit 3,542 36
27 limit 91,989 limit 242,744 limit 2,525 91 limit 2,500 71
28 limit 423,135 limit 682,647 limit 5,590 81 785 98 4
29 limit 131,923 limit 230,005 limit 12,891 85 642 239 4
30 limit 257,926 limit 162,310 limit 3,119 54 limit 2,972 42

Table A.17.: Results on network net7d and 30 nominations. A time limit of 4 h was imposed. The different
strategies for solving the topology optimization problem are presented in Chapter 7. The error originates from
numerical troubles in the LP solver. Those instances with a finite time limit were feasible. The column “calls”
shows the number of calls of the primal heuristic based on dual information.
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Appendix A. Tables

strategy 1 strategy 2 strategy 3
no priorities with priorities dualval (basic) dualval (adapted)

nom time nodes time nodes time nodes calls time nodes calls
1 limit 47,244 limit 195,673 limit 1,623 49 limit 1,640 53
2 limit 265,266 limit 167,224 limit 27,063 46 1,869 17,775 3
3 limit 193,970 limit 154,650 limit 1,422 57 limit 1,513 77
4 limit 425,537 limit 388,587 6,013 691 38 2,438 296 7
5 limit 154,950 limit 362,629 limit 616 53 259 381 1
6 limit 311,869 limit 148,075 limit 48,493 62 7,196 48,133 28
7 limit 306,996 limit 335,788 limit 2,139 55 limit 2,160 59
8 limit 311,992 limit 162,684 limit 459 76 114 275 1
9 limit 55,740 limit 33,938 limit 824 67 limit 828 65
10 limit 397,544 limit 305,236 limit 776 49 limit 849 70
11 132 466 limit 291,708 limit 489 60 1,292 168 6
12 limit 52,270 limit 526,302 558 2,133 2 779 2,188 4
13 limit 59,516 limit 244,825 limit 513 73 10,266 449 53
14 limit 295,171 limit 197,110 limit 22,572 77 limit 4,895 64
15 limit 356,782 limit 254,441 954 258 6 220 239 1
16 limit 85,951 limit 119,517 895 428 6 1,161 428 6
17 limit 362,794 limit 382,453 limit 48,787 67 limit 45,209 31
18 limit 269,555 limit 79,645 limit 3,752 54 452 3,228 1
19 limit 335,511 limit 263,183 limit 3,981 47 2,905 3,625 11
20 limit 138,307 limit 46,787 limit 929 86 129 133 1
21 limit 100,438 limit 59,936 1,697 2,462 10 522 1,449 3
22 limit 256,607 limit 344,673 8,336 1,193 41 limit 1,386 59
23 limit 415,409 limit 512,692 limit 879 64 limit 760 47
24 limit 363,684 limit 536,135 451 6,806 1 1,698 10,269 6
25 limit 77,653 limit 127,088 limit 254 67 limit 169 42
26 limit 58,964 limit 26,786 limit 915 58 limit 998 82
27 limit 58,944 limit 235,868 limit 18,841 81 limit 17,303 63
28 limit 422,310 limit 462,954 998 19,059 1 1,138 19,081 2
29 limit 117,490 limit 51,026 limit 554 93 98 43 1
30 limit 62,883 limit 309,384 limit 18,383 56 598 469 3

Table A.18.: Results on network net7e and 30 nominations. A time limit of 4 h was imposed. The different strategies
for solving the topology optimization problem are presented in Chapter 7. Those instances with a finite time limit
were feasible. The column “calls” shows the number of calls of the primal heuristic based on dual information.
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heuristic dualval (adapted)
& domain relaxation and check

nom gap primal dual time nodes
1 1,007 0 limit 84,984
2 3,759 1,565 40 limit 90,292
3 2,954 2,813 92 limit 155,623
4 1,867 13,801 701 limit 164,731
5 174 1,997 728 limit 248,268
6 886 7,513 761 limit 109,671
7 630 6,673 913 limit 125,628
8 1,089 9,915 833 limit 469,076
9 883 10,994 1,117 limit 158,182
10 619 12,450 1,731 limit 190,015
11 674 13,199 1,703 limit 137,384

Table A.19.: Results on network net5 and 11 nominations. A time limit of 11 h was imposed. The strategy for
solving the topology optimization problem is presented in Chapter 7.
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