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Abstract

An analytical solution of a model �uid's time behavior, known as the Ste-

fan problem, is presented. A scenario is investigated in which a planar two-

component liquid �lm is continuously evaporating into a thermodynamically

non-ideal vapor phase. Evaporation is initiated and maintained by a spatial

chemical potential gradient, while its rate is limited by the components' di�u-

sion �uxes across the vapor-liquid interface. Local thermodynamic equilibrium

is found to be present throughout the process. In contrast to the classical ap-

proach relying on equations of state, all required non-idealities are formulated in

relation to the Gibbs energy and are determined by molecular simulations. Ini-

tially, the liquid is an equimolar mixture of two components of di�erent volatil-

ity, whereas the adjacent vapor phase is dominated by a dense inert gas. To

validate the analytical model and verify all exploited assumptions, the results

are contrasted to large scale molecular dynamics simulations.

Keywords: evaporative mass transfer, analytical modeling, large scale

molecular dynamics simulations

1. Introduction

Investigations of phase transitions for spherical and planar geometries are

methodically similar. Historically, research was focused on droplet evaporation

indicating a relationship between the current square diameter d2(t) and an initial
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value d20 to exist, which for pure liquids is linear in time t

d2(t) = d20 −Kt . (1)

For droplets immersed into a quiescent atmosphere, the evaporation rate K

is exclusively a function of the thermodynamic state. The literature refers to

this equation as "d-squared law" [1]. The problem's more thorough theoretical

treatments originated from around the early twentieth century [2, 3], whereas

a �rst estimation of K had already been conducted by Maxwell [4] in his 1877

work on "Di�usion" and was presented in its current form by Fuchs [5]

K =
8Dρv
ρl

(
ye,s − ye,∞

)
, (2)

where ye,i represent the mole fraction of evaporate at either surface or in suf-

�cient distance from the droplet. This mole fraction di�erence initiates and

maintains the evaporation process while a di�usion coe�cient D in combina-

tion with the vapor-liquid density ratio ρvρ
−1
l determines its rate. Maxwell's

approach was later re�ned, among others by Spalding [6], to account for sub-

stantial evaporation rates that are indicative of an evaporate's high vapor pres-

sure and results in its accumulation in the interface region between liquid and

vapor. Consequently, a more detailed description of the droplet's surface com-

position became indispensable and necessitated Spalding to take the quiescent

atmospheric gas' mole fraction ya,s into account

K =
8Dρv
ρl

ln
(

1 +
ye,s − ye,∞

ya,s

)
. (3)

In fact, Maxwell's description (2) represents the �rst-order approximation of

Spalding's formulation (3) for the case of a dominating atmospheric gas at

droplet surface, i.e. ya,s ≈ 1. Maxwell and Spalding assumed both bulk phases

to be constantly in vapor-liquid equilibrium that due to mass transport is only5

sustainable via continuous evaporation.

The d-squared law in its form (1) has been experimentally validated over

a substantial range of thermodynamic states as well as for a variety of non-

sooting monocomponent droplets through a wider spectrum of chemical com-

plexity [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Multicomponent droplets, however,10
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o�er a conspicuously di�erent behavior owed to the continuous variation in mo-

lar composition of both liquid x(t) and coexisting vapor y(t). Species with

genuinely dissimilar properties lead to evaporation rates that vary substantially

over time [17, 18, 19]. Complementing theoretical and experimental work, mul-

ticomponent evaporation has also been successfully addressed by atomistic sim-15

ulations [20, 21].

2. Object under study

Complementary to the literature's focus on spherical droplets, this work

solves the Stefan problem [22, 23] for a multicomponent liquid �lm analytically.

This analytical solution, representing the d-squared law's (1) analogue for planar20

surfaces, is then validated by large scale molecular dynamics (MD) simulations.

Consequently, a two-component liquid �lm's change in molar composition x(t)

and thickness ξ(t) is investigated during evaporation into an inert gas dominated

vapor phase. Each phase is composed of components with deliberately speci�ed

characteristics, cf. appendix A. Due to these characteristics, in combination25

with the selected thermodynamic state, outlined in table 1, both bulk phases

are thermodynamically non-ideal. An adequate description of the establish-

ing evaporation dynamics requires all component's di�usion coe�cients, liquid

phase activity coe�cients and vapor phase fugacities to be known as functions

of the present state.30

Molecular simulations are employed for two di�erent reasons. For one,

the sampling of all required thermodynamic observables by dedicated MD and

Monte Carlo (MC) simulations requires substantially less approximation than

modeling resting on equations of state. On the other hand, the present hy-

drodynamic formulation addresses the phases' molar composition x(t),y(t) di-35

rectly. Large scale MD simulations o�er an alternative access to determine a

phase's molar composition with a spatial and temporal resolution that is orders

of magnitude greater than what is currently achievable by experiment. To be

comparable to hydrodynamic length and time scales, both a su�ciently large
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Figure 1: Snapshot taken from one of the present large scale MD simulations depicting the

scenario in vapor-liquid equilibrium, i.e. prior to evaporation. The studied domain is de-

composed into four regions that are connected physically on microscopic length scales. The

central role is attributable to the interphase (II), characterized by a steep density decline rang-

ing from liquid (I) to vapor (III). A chemical potential gradient is established by substituting

evaporated particles that originated from the liquid phase by inert gas particles within the

control volume (IV). The scenario's symmetry ensures the net molar �ux to be zero at the

origin z = 0, while selective thermostatisation establishes a spatially and temporally constant

temperature T = 80 K which is accompanied by a pressure of p = 6.34 MPa for the present

mixture.

ensemble and a substantial simulated time is necessary. Figure 1 outlines an40

atomistic representation of the investigated scenario containing 2.5 · 105 parti-

cles with an initial liquid �lm and vapor phase thickness of zl(t0) = 15 nm and

δ = zδ(t)− zs(t) = 30 nm, respectively. Various separate simulation series were

carried out, to either sample thermodynamic observables or to pursue large scale

MD simulations, cf. Appendix A.45

The present hydrodynamic formulation rests on a �uid domain decompo-

sition into four separate regions, as outlined in �gure 1. The liquid phase (I)

initially consists of two equimolarly mixed components (1 and 2) with di�erent

volatility, that in this context should be understood as an attribute for the com-

ponent's endeavor to transition from the liquid and to remain in the coexisting50

vapor phase (III). The latter was chosen to be dominated by an inert gas (com-

ponent 3), which was speci�ed not to be condensable and be barely miscible in

the liquid �lm. Both bulk phases are physically coupled by an interface region

(II) that is addressed as interphase in the following. A control volume (IV)

representing the invariant atmospheric conditions completes the �uid domain.55
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2.1. Local thermodynamic equilibrium

Under vapor-liquid equilibrium the particles' entire motion is thermal and

consequently drift-free Maxwellian. The applied chemical potential gradient ini-

tiates evaporation dynamics by introducing a collective drift, i.e hydrodynamic

contribution ui, to the i-th component's particle velocity vi, that superimposes

to the random thermal motion wi

vi = ui + wi . (4)

Local thermal equilibrium exists in every spatial domain (I) - (IV) if all parti-

cles' thermal velocities are Maxwellian distributed. The corresponding velocity

distribution function fz,i for the relevant mass transport direction z is most

sensibly displayed in its contracted form [24, 25]

fz,i =

√
mi

2πkbT
exp
[
−
mi

(
vz − uz

)2
2kBT

]
. (5)

Particle interactions identify as mechanism that drive a system towards local

equilibrium [26]. A dense vapor phase is indicative of such dominating interac-

tions, realized in the present scenario by a high system pressure p = 6.34 MPa

ensuring the particles' thermal velocities to be Maxwellian distributed natu-60

rally in each domain, even the narrow interphase. To con�rm the anticipated

Maxwellian distribution (5), additional stationary large scale MD simulations

for the liquid �lm being prepared and maintained at x† = (0.48, 0.52) mol mol−1

were carried out. The results are presented in �gure (2) and fully con�rm local

equilibrium to exist. Similar results were reported in the literature on interfa-65

cial mass transfer, for both stationary [27, 28] and instationary [29, 30] cases.

Non-Maxwellian distributed particle velocities, in contrast, have conclusively

been demonstrated to establish during evaporation into rare�ed gas phases or

vacuum [31, 32, 33].

3. Hydrodynamic description70

The present formalism models the vapor phase as a classical boundary layer

and predicts the �lm's evaporation rate, i.e. its regression, as well as the change
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i yi/ ρv,i/ ϑi/ xi/ ρ0,i/ γi/ φi/

mol mol−1 mol dm−3 - mol mol−1 mol dm−3 - mol cm−2s−1

1 0.13 1.10 4.09 0.5 47.77 1.07 1.41

2 0.03 0.23 20.07 0.5 42.33 1.06 0.13

3 0.84 7.12 - 0 8.33 - -

Table 1: The system was initially prepared in a thermodynamic state with temperature T = 80

K and pressure p = 6.34 MPa, where both phases are under vapor-liquid equilibrium (VLE)

with the given liquid xi and vapor phase mole fractions yi as well as partial vapor ρv,i and

pure component molar densities ρ0,i. The thermodynamic non-idealities, i.e. the fugacity

coe�cient's excess contribution ϑi, the activity coe�cient γi and consequently the di�usion

�ux's entire thermodynamic contribution ϕi, albeit functions of composition, were considered

constant and evaluated under these VLE conditions.

of both phases' molar composition over time, while resting exclusively on particle

conservation formulated in integral form.

A domain's change in mass is determined by an imbalance of particle

�uxes jz,i through its boundary [34] and yields for the bulk liquid's domain (I)

z ∈ [0, zl(t)], while invoking the inert gas characteristics not to be condensable

and be barely miscible in this liquid

dt

(∫
Vt

dV

 ρl,1(z, t)

ρl,2(z, t)

)+

∮
∂Vt

dA

 jz,1(z, t)

jz,2(z, t)

 =

 0

0

 . (6)

A component's particle density decomposes into mole fraction xi and overall

molar density ρl of the respective phase ρl,i = xiρl, whereas the particle �ux

factorizes to jz,i = xiρluz,i, with the convective molar averaged velocity uz,i

towards the interphase. Assuming spatial homogeneity of the liquid �lm's molar

composition xi 6= xi(z) and density ρl 6= ρl(z) with the additional observation

that the particle �uxes are invariant across the domain's surface leads to a

straightforward integration, where V (t) = zl(t)A0

dt

 x1(t)ρl(t)zl(t)

x2(t)ρl(t)zl(t)

+ ρl(t)

 x1(t)uz,1(z, t)

x2(t)uz,2(z, t)

 =

 0

0

 . (7)
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Figure 2: Contrasting the results between drifting Maxwell distributed (solid line), as de�ned

in (5), and the sampled MD velocities for the relevant volatile (triangles) and less-volatile (cir-

cles) components does not disclose any disparities. These data were evaluated at temperature

T = 80 K and three di�erent positions ranging from bulk liquid to bulk vapor. The large

di�erence between both component's distribution functions is due to their di�erent molar

mass. a) Values sampled in the bulk liquid phase at position z ≤ zl(t) in close vicinity to

the interphase. b) Values sampled in the interphase at position z ∈]zl(t), zs(t)[. c) Values

sampled in the bulk vapor phase at position z ≥ zs(t) in vicinity to the interphase.
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The interphase z ∈]zl(t), zs(t)[ balances the molar particle �uxes between both

bulk phases, where jz,i = xi(t)uz,i(zl, t) indicates the i-th component's molar

�ux exiting the bulk liquid phase and jsz,i = yi(zs, t)uz,i(zs, t) indicating the �ux

entering the adjacent bulk vapor phase

−ρl(t)

 x1(t)uz,1(zl, t)

x2(t)uz,2(zl, t)

+ ρv

 y1(zs, t)uz,1(zs, t)

y2(zs, t)uz,2(zs, t)

 =

 0

0

 . (8)

It is by bringing together (7) and (8) that the connection between the liquid

phase's mass and the �uxes in the vapor phase (III) z ∈ [zs(t), zδ(t)] is achieved

dt

 x1(t)ρl(t)zl(t)

x2(t)ρl(t)zl(t)

+ ρl(t)

 y1(zs, t)uz,1(zs, t)

y2(zs, t)uz,2(zs, t)

 =

 0

0

 . (9)

Although the inert gas is assumed not to be soluble in the liquid, its presence in

the interphase and vapor has to be accounted for. Each component's collective

drifting motion yiui, as de�ned in (4), is decomposed further into an advective

yiu and a di�usive contribution [35] yiUi

yiui = yi

(
u + Ui

)
. (10)

The evaporate's total convective �ux is related to its total di�usive �ux, cf.

supplementary material, with all velocities being formulated in the mean molar

reference frame
2∑
i=1

yiuz,i =
y1
y3
Uz,1 +

y2
y3
Uz,2 , (11)

and it is this correlation that renders the evaporation process di�usion driven.

It is not necessarily trivial to assume the vapor phase mole fraction quotients

to be time invariant

bi3(z) =
yi(z, t)

y3(z, t)
, (12)

yet this simpli�cation still allows to reasonably predict the vapor phase's molar

composition. To ease the notation Lz,i = bi3Uz,i is set for each component's

di�usive �ux.
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3.1. Di�usive motion

A general description of di�usive motion in an inhomogeneous medium is

given by the Fokker-Planck di�usivity law [36]. In the present case, this �ux

has to be computed adjacent to the interphase, i.e at z = zs(t) Lz,1(zs)

Lz,2(zs)

 = −∂z

( D11(y) D12(y)

D21(y) D22(y)

 ·
 b13(z)

b23(z)

)∣∣∣∣∣∣
zs

, (13)

wherein the Fick di�usion coe�cients Dij express the phenomenologically pos-

tulated proportionality between �ux and respective mole fraction gradient [37].

For multicomponent systems, however, each di�usive �ux is the result of all

driving gradients. The di�usion matrix, containing Fick's coe�cients Dij , is

separable into a kinetic and a thermodynamic contribution [38] D11 D12

D21 D22

 =

 B11 B12

B21 B22

−1 ·
 Γ11 Γ12

Γ21 Γ22

 , (14)

the former being the Maxwell-Stefan and the latter the thermodynamic factor75

matrix, describing a mixture's departure from ideality and being composition

derivatives of the excess Gibbs energy [39] ge. In this work, both matrices

were considered constant throughout the entire evaporation process. Assuming

the kinetic part to be invariant is justi�able, as for the thermodynamic part,

depending strongly on composition, this simpli�cation was con�rmed by the80

performed MD simulations, cf. supplementary material. Bringing together (9),

(11), (13) and (14) leads to

dt

 x1(t)ρl(t)zl(t)

x2(t)ρl(t)zl(t)

− ρv
 B11 B12

B21 B22

−1 ·
 Γ11 Γ12

Γ21 Γ22


× dz

 b13(z)

b23(z)

∣∣∣∣∣∣
zs

=

 0

0

 . (15)

The di�usion matrix couples both �uxes, its coupling strength is measured by

how much the eigenvector matrix T di�ers from the identity matrix I, and can
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spectrally be decomposed B11 B12

B21 B22

−1 ·
 Γ11 Γ12

Γ21 Γ22

 = T ·

 D1 0

0 D2

 ·T−1 . (16)

The eigenvalues Di have to be understood as e�ective di�usion coe�cients that

map the weighted action of both driving forces onto each �ux

T−1· dt

 x1(t)ρl(t)zl(t)

x2(t)ρl(t)zl(t)

− ρv
 D1 0

0 D2

 ·T−1
× dz

 b13(z)

b23(z)

∣∣∣∣∣∣
zs

=

 0

0

 . (17)

In the attempt to pursue �rst order e�ects, the appearing spatial gradient dz(bi3)85

is linearized. The vapor domain δ = zδ(t)−zs(t) constitutes a classical boundary

layer problem with exemplary boundary conditions out of which the following

curvature-gradient correlation (18) is a statement of particle conservation, cf.

supplementary material

z = zs(t) : bi3(zs) = bi3,s , dzz(bi3)|zs =
(
dz(bi3)|zs

)2
,

z = zδ(t) : bi3(zδ) = bi3,∞ , dz(bi3)|z∞ = 0 . (18)

It has already been established that Fick di�usion originates from a spatial mole

fraction gradient comprising the stagnant gas presence, which historically arisen

has been termed mass transfer number [6]

Bi3 = bi3,∞ − bi3,s =
yi,∞ − yi,s

y3,s
. (19)

The nonlinearity in the proposed boundary conditions (18) necessitates a dif-90

ferent ansatz to approximate the di�erential operator by a di�erence quotient.

The simplest function that complies with this set of boundary conditions is a

third order polynomial, �rst introduced by Pohlhausen [40] and later applied to

mass transfer problems by Spalding [41]

bi3(z)− bi3,s
Bi3

= αi3

(z − zs(t)
δ

)
+ βi3

(z − zs(t)
δ

)2
+ γi3

(z − zs(t)
δ

)3
. (20)
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A set of nonlinear algebraic equations emerges that interrelates those coe�cients95

1 = αi3 + βi3 + γi3 , (21a)

0 = α2
i3 −

2

Bi3
βi3 , (21b)

0 = αi3 + 2βi3 + 3γi3 , (21c)

with two sets of solutions out of which only the �rst yields physically sensible

boundary layer pro�les

αi3 =
2

Bi3

(
±
√

1 +
3

2
Bi3 − 1

)
, (22a)

βi3 = 3 +
4

Bi3

(
∓
√

1 +
3

2
Bi3 + 1

)
, (22b)

γi3 =
2

Bi3

(
±
√

1 +
3

2
Bi3 − 1

)
− 2 . (22c)

The binomial theorem allows to approximate square roots to a convenient degree

of accuracy, given the fact the transfer number is small Bi3 � 1, and the

anticipated linearization is attained by truncating the series approximation to

�rst order √
1 +

3

2
Bi3 ≈ 1 +

3

4
Bi3 . (23)

It is by considering this approximation in the coe�cients αi3, βi3, γi3 that (20)

exposes the proper derivative's substitution by a di�erence quotient

dz(bi3)|zs ≈ αi3
bi3,∞ − bi3,s

δ
≈ 2

3δ

yi,∞ − yi,s
y3,s

. (24)

The proportionality coe�cient αi3 in front of the otherwise simple di�erence

quotient is being mandated by the physically required boundary conditions.

The present scenario was set up such that an inert gas component dominates

the vapor phase, permitting to set y3,s ≈ 1 even at the surface. Moreover, the

composition of the surrounding atmosphere, represented by the control volume,

was speci�ed to be yi,∞ = 0. Inserting the attained linearization into (17), while

assuming weak �ux coupling T ≈ I, leads to

dt

 x1(t)ρl(t)zl(t)

x2(t)ρl(t)zl(t)

+
3ρv
2δ

 D1 0

0 D2

 ·
 y1(zs, t)

y2(zs, t)

 ≈
 0

0

 . (25)
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During local equilibrium, liquid and vapor phase mole fractions xi, yi are entan-

gled and as such cannot be determined independently.100

3.2. Thermodynamic non-ideality

The central element when formulating phase equilibria is the extensive Gibbs

energy G that is constructed by the weighted arithmetic mean out of every

component's chemical potential µi in the mixture and is reduced g = G/(nRT )

with the universal gas constantR and the respective phase's overall mole number

n

g =
∑
i

xi µi(T, p,x) . (26)

The classical framework of irreversible thermodynamics o�ers to use its concepts

locally and to further understand the Gibbs energy as a function of both position

and time [42]. It has already been demonstrated that local di�usive equilibrium

exists across the interphase, which is represented by the equality of the phase's

chemical potentials

µliq
i =

∂gliq

∂xi(t)
=

∂gvap

∂yi(z, t)
= µvap

i , i ∈ [1, 2] . (27)

A formulation that is true, due to the extensive Gibbs energy's scaling behavior

as a homogeneous function of �rst-order in the respective mole numbers. The

ideal gas acts as the lower physical boundary of every vapor phase given a

su�ciently low pressure p0. At elevated system pressure p, the transition to a

real gas mixing behavior leads to

gvap =

3∑
i=1

yi

(
µ0
0,i(T, p0) + ln

( p
p0

)
+ ln(yi) + ln

(
ϕi(T, p,y)

))
, (28)

in which all non-ideal contributions to the chemical potential are summarized

into the fugacity coe�cient

ϕi(T, p,y) = ψi(T, p) ϑi(T, p,y) , (29)

that factorizes into a residual ψi and an excess part ϑi, fully covering the compo-

nent's non-ideal behavior and the deviation from ideal mixing at system pressure

12



p, respectively. This form allows segregating the ideal from the non-ideal mixing

contribution to the vapor phase's Gibbs energy

gvap =

3∑
i=1

yi

(
µ0,i(T, p) + ln(yi) + ln

(
ϑi(T, p,y)

))
. (30)

Liquid phases should be described di�erently. The components in their pure

liquid state at system pressure are chosen to be the reference, while the activity

coe�cient γi accounts for all non-ideal mixing behavior

gliq =

2∑
i=1

xi

(
µ0,i(T, p) + ln(xi) + ln

(
γi(T, p,x)

))
. (31)

The combination of (27), (30) and (31) exposes the correlation between liquid

and vapor phase composition, given both are in local equilibrium

yi(zs, t) = xi(t)
γi(T, p,x)

ϑi(T, p,y)
. (32)

It is evident from the excess parts' functional dependence on their respective

phase composition that a proper substitution of the mole fractions yi to xi

requires γi and ϑi to be constant, which has already been utilized in (15). In-

troducing (32) into (25), together with the di�usion �ux's entire thermodynamic

contribution

φi =
3ρvγi
2δϑi

Di , (33)

leads to the substitution of the vapor phase mole fractions in favor of the liquid

phase's.

3.3. Analytical solution

A set of non-linear di�erential equations arises that can be solved by quadra-

ture

dt

 x1(t)ρl(t)zl(t)

x2(t)ρl(t)zl(t)

+

 φ1 0

0 φ2

 ·
 x1(t)

x2(t)

 ≈
 0

0

 . (34)

Multicomponent behavior is not inevitably the mere consequence of pure com-

ponent properties. The simultaneous presence of all species generates excess
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contributions, which can in�uence the thermal and caloric observables di�er-

ently. A multicomponent liquid may behave with respect to its thermal prop-

erties often times nearly ideal, the density is then a sum of pure component

molar densities ρ0,i proportional to the current molar composition xi(t), cf.

supplementary material

ρl(t)
−1 ≈

2∑
i=1

xi(t)ρ0,i(T, p)
−1 . (35)

Vanishing volumetric excess does thereby in no way entail ideal caloric behavior.105

Applying the derivative and utilizing the assumed ideal behavior (35) reveals a

seemingly proper decoupled system

ρ2l zl

 ρ−10,2 0

0 ρ−10,1

 ·
 ẋ1

ẋ2


+

 ρlżl + φ1 0

0 ρlżl + φ2

 ·
 x1

x2

 ≈
 0

0

 , (36)

where the liquid's total molar composition enforces a constraint on the mole

fractions

x1(t) + x2(t) = 1 . (37)

Two thermodynamic parameters can be identi�ed that determine the evapo-

ration rate with the thermodynamic non-ideality quotient λ being the more

decisive

ε =
ρ0,2
ρ0,1

, λ =
φ2
φ1

. (38)

Multiplying the �rst line of (36) with ρ−10,1 and the second line with ρ−10,2 allows

to fully utilize the constraint (37) and yields upon summation of the resulting

equations

żl(t) + ρ−10,2φ2

(
x1(t)

( ε
λ
− 1
)

+ 1
)

= 0 . (39)

Similarly, the multiplication of the �rst line of (36) with x2(t) and the second

one with x1(t) yields upon subtraction

ẋ1(t)− φ2
ρ0,2zl(t)

(
x31(t)

(
1− ε

)
+ x21(t)

(
ε− 2

)
+ x1(t)

)
×
(

1− 1

λ

)
= 0 . (40)
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The �lm thickness zl(t) has consistently been formulated as a function of time

and so has the liquid mole fraction x1(t). The division of (39) by (40) dis-

closes the alternative formulation of �lm thickness as a function of composition

zl(x1(t))

dzl(t)

dx1(t)
= zl(t)

x1(t)
(
1− ε

λ

)
− 1(

1− 1
λ

)(
x31(t)

(
1− ε

)
+ x21(t)

(
ε− 2

)
+ x1(t)

) . (41)

This functional relationship will be resolved successively, where the description

of �lm thickness as a function of composition zl(x1) is established �rst and the

correlation between mole fraction x1 and time t subsequently. It is expedient

to factorize the denominator polynomial

dzl(t)

dx1(t)
= zl(t)

1
1−ε

λ
λ−1

(
x1(t)

(
1− ε

λ

)
− 1
)

x1(t)
(
x1(t)− 1

)(
x1(t)− 1

1−ε
) , ε, λ 6= 1 , (42)

with the exclusion of pure component behavior, being represented by a mixture110

of identical particles
(
ε, λ = 1

)
. While all denominator roots are evidently real

valued, the use of a partial fraction decomposition conveniently partitions the

occurring rational function into a primitive sum

1
1−ε

λ
λ−1

(
x1(t)

(
1− ε

λ

)
− 1
)

x1(t)
(
x1(t)− 1

)(
x1(t)− 1

1−ε
) =

λ(
1− λ

)
x1(t)

+
1(

λ− 1
)(
x1(t)− 1

)
+

1

x1(t)− 1
1−ε

. (43)

A variable separation of (42) in combination with the given decomposition (43)

renders the emerging equation integrable115 ∫ ξ(t)

ξ(t0)

dξ
( 1

ξ(t)

)
=

∫ x1(t)

x1(t0)

dx1

(
λ(

1− λ
)
x1(t)

+
1(

λ− 1
)(
x1(t)− 1

)
+

1

x1(t)− 1
1−ε

)
, (44)

with a non-dimensional �lm thickness ξ(t) = zl(t)zl(t0)−1 that allows to formu-

late a simpler initial condition

ξ(t0) = 1 , x1(t0) = x1,0 . (45)
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An integration reveals the anticipated description of �lm thickness as a function

of composition and unfolds its physical interpretation as being the product of

an exponentially weighted composition and liquid density ratio

ξ(x1) =
( x1
x1,0

) λ
1−λ
(x2,0
x2

) 1
1−λ ρl(t0)

ρl(t)
. (46)

To lighten the notation and simplify further calculations, all invariant terms are

grouped into one constant ξ(x1,0) and the liquid density is formulated in terms

of molar composition

ξ(x1) = ξ(x1,0)
( xλ1

1− x1

) 1
1−λ
(
x1 −

1

1− ε

)
. (47)

The description of liquid composition over time x1(t) cannot easily be con-

structed from already formulated functions, however, the inverse solution of

time as a function of composition t(x1) is readily attainable

dξ(x1(t))

dt
=
dξ(x1(t))

dx1(t)

dx1(t)

dt
, (48)

where the derivative on the left hand side is given in (39) and the �rst derivative

on the right hand side can be computed from (47)

dξ

dx1
= ξ(x1,0)

(
x

2λ−1
1−λ
1

(
1− x1

)λ−2
1−λ
(
x1 +

λ

1− λ

)(
x1 −

1

1− ε

)
+
( xλ1

1− x1

) 1
1−λ
)
.

(49)

Equations (39) and (49) contain negligible terms. A reduction in complexity is

easily obtainable by exploiting the strongly di�erent volatilities λ � 1 of the

two components in the liquid, which physically determines the more volatile

component to undergo phase transition preferentially, a characteristic that was

built into the particle model used for all simulations120

dξ̄

dx1
≈ ξ(x1,0)

((x1 + λ
)(
x1 − 1

1−ε
)

x1
(
1− x1

)2 +
1

1− x1

)
, (50a)

dξ̄

dt
≈ −φ1

ρ0,2zl,0

(
εx1 + λ

)
. (50b)

The required relationship between composition and time is then determined

by an additional separation of variables ansatz in (48) resulting in a quotient

16



function ∫ t

t0

dt =

∫ x1

x1,0

dx1

( dξ
dx1

/
dξ

dt

)
, (51)

that in combination with the attained approximations (50a) and (50b) generates

an analytically solvable integral equation∫ t

t0

dt =

∫ x1

x1,0

dx1

(
−ρ0,2ξ0zl,0

φ1

( (x1 + λ
)(
x1 − 1

1−ε
)

x1
(
1− x1

)2(
εx1 + λ

)
+

1(
1− x1

)(
εx1 + λ

))) , (52)

where the emerging rational function similarly partitions into a primitive sum,

given all denominator roots being real valued(
x1 + λ

)(
x1 − 1

1−ε
)

x1
(
1− x1

)2(
εx1 + λ

) =
a1(ε, λ)

x1
+
a2(ε, λ)

1− x1

+
a3(ε, λ)(
1− x1

)2 +
εa4(ε, λ)

εx1 + λ
, (53a)

1(
1− x1

)(
εx1 + λ

) =
a5(ε, λ)

1− x1
+
εa6(ε, λ)

εx1 + λ
. (53b)

All occurring integration constants show the already proclaimed dependence on125

the thermodynamic parameters ε, λ and do thereby signi�cantly contribute to

the �lm's evaporation rate

a1(ε, λ) =
1

ε− 1
, a2(ε, λ) =

λε2 + ε+ λ+ λ2(
ε− 1

)(
ε+ λ

)2 ,

a3(ε, λ) =
λε+ ε(

ε− 1
)(
ε+ λ

) , a4(ε, λ) =
λε− ε− λ(
ε+ λ

)2 ,

a5(ε, λ) = a6(ε, λ) =
1

ε+ λ
. (54)

As a result, the functional relationship between composition and time is decom-

posed into four linear terms that are straightforwardly integrable to yield

t(x1) =
ρ0,2ξ0zl,0

φ1

(
a1 ln

(x1,0
x1

)
+ a7 ln

( x2
x2,0

)
+ a3

x2 − x2,0
x2x2,0

+ a8 ln
(εx1,0 + λ

εx1 + λ

))
, (55)
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with a7 = a2 + a5 and a8 = a4 + a6.

The solution of a liquid �lm's Stefan problem, i.e. the d-squared law's (1)

planar surface analogue for both cases, the two-component and pure liquid phase

is readily obtained. The former is given by the combination of (47) and (55)

relating �lm thickness ξ(x1) to time t(x1) via the liquid's mole fraction x1.

The latter is a special case for ε, λ = 1, that is not entailed in (47) and (55),

yet is alternatively obtained by integration of (39) with the addition of (32) to

substitute the vapor phase's non-ideality ϑi with the evaporate's mole fraction

ye,s near the surface

zl(t) = zl,0 −
3Dρv
2δρl

ye,st . (56)

Comparing pure component liquid �lms to droplets o�ers a salient di�erence

in the order to which both cases evaporate with respect to their characteristic

length zl(t) and d(t). In this �rst-order approximation (56) the liquid �lm evap-

orates linearly in time, where the spherical droplet's analogue for the same level

of approximation, as given by Maxwell's equation (2), regresses quadratically

d2(t) = d20 −
8Dρv
ρl

ye,st . (57)

A high evaporation rate, i.e. short liquid phase lifetime, is facilitated by a high130

di�usivity or low liquid density, respectively. For planar surfaces, the boundary

layer thickness δ remains in the description as a �nite size e�ect, which is in full

accordance with classical boundary layer theory. Small values of δ correspond

to steep chemical potential gradients that inevitably lead to faster evaporation

rates.135

4. Results

Under vapor-liquid equilibrium (VLE), the mass �uxes between both bulk

phases balance and consequently no net mass transfer occurs. During evapora-

tion, the liquid �lm is constantly forfeiting mass in the attempt to dispose of

the developed chemical potential gradient and restore a VLE. The establishing140

evaporation dynamics a�ects each bulk phase's molar composition di�erently.
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Due to the volatile component's characteristic to evaporate preferentially, the

less-volatile component successively enriches within the liquid, as depicted in �g-

ure 3 for the interphase's vicinity at z = zl(t). The process causes the �lm not

only to regress but also increases its overall density, since the less-volatile com-145

ponent has a higher saturated liquid density, cf. table 1 and �gure 4. The bulk

vapor phase's molar composition in vicinity to the interphase does marginally

change during evaporation. While the volatile component depletes quite rapidly,

the inert gas accumulates at the surface. The less-volatile's mole fraction, in

contrast, remains almost stagnant, cf. �gure 5 evaluated at z = zs(t).150

The combination of (47) and (55) allows to compute a two-component �lm's

dimensionless thickness ξ(t) as function of time, if the phases' non-idealities

ϑi, γi and the components' Fick di�usion coe�cients Dij are known. Similarly,

(56) determines a monocomponent �lm's regression rate, given the evaporate's

di�usion coe�cient D and molar composition adjacent to the interphase ye,s155

are known. All required thermodynamic data were sampled by molecular sim-

ulations, cf. Appendix A, and are listed in table 1, Appendix B and the

enclosed supplementary material. Three di�erently composed liquid �lms were

investigated. Ranging from pure volatile over an initially equimolarly composed

two-component mixture to pure less-volatile. The monocomponent �lms' evap-160

oration rates expectedly envelop those of all possible binary mixtures, cf. �gure

6. The equimolarly prepared �lm regresses initially quite rapidly and then,

due to a limitation embedded in (55) that predicts the volatile component's

full evaporation to be reached only asymptotically limx1→0 t(x1) = ∞, transi-

tions into an apparently stagnant and �nite thickness for small values of x1, i.e.165

x1 ≤ 0.01 mol mol−1. In contrast, the large scale MD simulations indicate a

transition into a constant rate that closely resembles, yet not equals, the pure

less-volatile component's evaporation rate K(T, p,x) ≈ K2(T, p), since residual

volatile particles still remain in the vapor phase for an extended period of time.
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Figure 3: Time evolution of the molar fractions of the volatile (red) and less-volatile (blue)

components in the liquid phase. The dashed lines represent the analytical solution and the

solid lines are large scale MD simulation data, evaluated on the liquid side of the interphase

at zl(t). The liquid is successively enriched with the less-volatile component.

5. Conclusion170

The Stefan problem for a multicomponent planar �lm was solved. An analyt-

ical model was presented, describing evaporation dynamics of a liquid �lm into

a dense non-ideal vapor phase. The outlined formalism requires speci�ed bulk

phase non-idealities γi, ϑi, ψi, as well as Fick di�usion coe�cients Dij at the

interphase's vicinity, i.e. at z = zs(t). Consequently, its solutions (47), (55) and175

(56) allow to determine the time evolution of both phases' molar compositions

x(t),y(t) as well as the �lm's thickness ξ(t) quantitatively. The components'

deliberately speci�ed characteristics, i.e. strongly di�erent volatilities λ � 1,

weak di�usion �ux coupling T ≈ I and the inert gas behavior, facilitate expe-

dient simpli�cations in the derivation of the model and its solutions.180

The limiting quantity of a two-component �lm's evaporation rate ξ̇(t) is

identi�ed as the volatile component's di�usion �ux Lz,1, wherein all driving

in�uences, i.e. the activity coe�cient γ1, the fugacity coe�cient's excess contri-

bution ϑ1, the vapor phase thickness δ and the e�ective di�usivity D1, appear
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Figure 4: Time evolution of the partial density pro�les of both components in the liquid mix-

ture as sampled by the present large scale MD simulations. Two opposing density gradients

emerge, resulting in two counter-oriented currents, where the volatile component (red,1) prop-

agates towards the interphase and preferentially evaporates, while the less-volatile component

(blue,2) evaporates at a lower rate and partly regresses towards the liquid �lm's center. A local

volatile component's enrichment within the interphase is observable. The respective overall

density is depicted in black. The liquid �lm's density increase over time is a mixture e�ect

due to the enrichment of component 2 that has a higher saturated liquid density (ρl,1 < ρl,2).

Figure 5: Time evolution of the vapor phase mole fraction on the vapor side of the interphase

at zs(t), where the dominating inert gas' behavior (cyan) is prominent.
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Figure 6: Time evolution of dimensionless �lm thickness ξ(t) = zl(t)/zl(t0), where the dotted

lines represent the analytical solution while the solid lines the large scale MD simulations.

The evaporation rate is given by the slope of these curves, where the equimolar liquid case

(yellow) is enveloped by the pure volatile's (red) and pure less-volatile's (blue) rate K1(T, p) >

K(T, p,x) > K2(T, p). The strong di�erence between the evaporation rates of the two pure

�uids K1,K2 is intentional and a consequence of the chosen intermolecular force �eld model.
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linearly and consequently a�ect the �lm's behavior equally.185

The analytical model was intentionally contrasted to large scale MD sim-

ulations serving three purposes. First, the phases' molar compositions were

assessed in an unconstrained manner. Second, the existence of local thermo-

dynamic equilibrium was veri�ed unambiguously in every domain and third it

was demonstrated that the hydrodynamic formalism can justi�ably be applied190

to such a nanoscale scenario. The MD simulations fully con�rm that neglect-

ing the �lm's internal dynamics, by assuming spatial homogeneity xi 6= xi(z),

as in (6) and (7), does not compromise the accurate prediction of its composi-

tion x(t) and thickness ξ(t) over time. Consequently, the hydrodynamic �eld

description is applicable to system sizes of the order of 50 nm, given the ther-195

mophysical properties are known a priori. Atomistic simulations prove to be an

adequate methodology determining all required properties without constraints.

The symbiosis of both approaches o�ers a promising route for further studies

on evaporation.

Supplementary material200

All calculated and sampled data are disclosed in this manuscript's supple-

mentary material.
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Figure A.7: Snapshot taken from the present large scale MD simulations depicting two

successive instants of time t2 > t1 during evaporation. While the liquid �lm (I) regresses, the

control volume (IV) was simultaneously expanded to keep the vapor phase's (III) thickness

constant δ 6= δ(t).

Appendix A. Molecular dynamics simulations

The model �uid's thermodynamic behavior is determined by deliberately

speci�ed Lennard-Jones parameters as outlined in table A.2. The component's

distinct volatilities were realized here by di�erent energy parameters εi. The in-

ert gas characteristic to be barely miscible in the liquid was modeled primarily215

by the Berthelot parameter ζi3 6= 1.

All particles in the investigated scenario interact via the full Lennard-Jones

potential with 3.5σ cut-o� radius and analytic long range corrections [43]. The

chosen Lennard-Jones parameters approximately describe a liquid �lm com-

posed of either nitrogen + oxygen or argon + krypton. The large scale MD220

simulations were carried out in a cuboid volume with dimensions Lx = Ly = 15

nm and Lz = 90 nm, an integrator time step of ∆t = 5 fs and periodic boundary

conditions in x and y directions.

The present large scale MD simulations are, technically speaking, nonequi-

librium molecular dynamics (NEMD) simulations, which does not inevitably225

lead to non-Maxwellian distributed particle velocities, but allows possible local
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component i σi/nm εi/kB/K mi/u ζ1i/- ζ2i/-

volatile 1 0.3 75 2 - 1

less-volatile 2 0.3 100 20 1 -

inert gas 3 0.3 10 30 0.3 0.3

Table A.2: The thermodynamic behavior of the �uid sampled by simulation was determined

by this set of Lennard-Jones parameters that were chosen to produce a strongly non-ideal

vapor, yet retain a fairly ideal liquid phase. The length parameter σ determines a particle's

e�ective diameter while the energy parameter ε is a measure for a particle's dispersive inter-

action strength. Additionally, a modi�cation of the Berthelot combining rule via ζki allows

to alter the interaction energy between unlike particle species. The inert gas was in a highly

supercritical state and consists of mainly repulsive interacting heavy particles. While all simu-

lations sampling thermodynamic observables were carried out with the open source molecular

simulation tool ms2 [44], the large scale MD calculations were performed with the massively

parallel open source code ls1 mardyn [45].

equilibria to arise naturally, as demonstrated in section 2.1. In order to inves-

tigate evaporation dynamics that are driven exclusively by a spatial chemical

potential gradient the system was selectively thermostated. Consequently, the

less-volatile particles in the liquid z ≤ zl(t) and the inert gas particles in the230

vapor z ∈ [zs(t), zδ(t)] were thermostated in x and y directions only, avoiding

arti�cial interference with the investigated mass transport in the relevant z di-

rection.

The necessary concentration gradient to initiate and maintain evaporation

dynamics was realized by substituting all particles of components 1 and 2 by235

inert gas particles (component 3) within the control volume, i.e. maintaining

a molar composition of y3 = 1 at z > zδ(t). During evaporation, the control

volume was expanded to the same extent as the liquid �lm regressed, keeping

the vapor phase thickness δ 6= δ(t) constant, cf. �gure A.7.

The symmetry of the �uid system was exploited to generate considerably240

smoother sampling pro�les by calculating the arithmetic mean between both

sides' density and molar composition pro�les.
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Appendix B. Di�usion properties

A thermodynamically non-ideal system can display a conspicuous disparity

between multicomponent and collective pure component behavior, as measured

by the Gibbs energy's excess contribution

ge(T, p,y) =

3∑
i=1

yi ln(ϑi) . (B.1)

The fugacity coe�cient's excess contribution ϑi can alternatively be calculated

from the species' chemical potentials µi (Appendix C) and in contrast to the

conventional approach, utilizing equations of state, were computed here via

dedicated MC simulations

ln(ϑi) = µi − ln(yi)− µ0,i . (B.2)

Non-ideal behavior, however, is not merely described by the excess Gibbs en-

ergy's numerical value but also by its derivatives [46], where the thermodynamic245

factor is determined by the curvature

Γij = δij + yi

(
∂ge

∂yj∂yi
− ∂ge

∂yi∂y3

−
3∑
k=1

yk

( ∂ge

∂yk∂yj
− ∂ge

∂yk∂y3

))
. (B.3)

A discrete data set of ge values for a varying molar composition y = (y1, y2, y3)

was produced by comprehensive MC simulations (see supplementary material)

and the computation of the necessary derivatives in B.3 was made possible

by selecting an appropriate ge model. An appropriate ansatz is a Margules250

type polynomial that is the result of an empirically motivated Wohl's expansion

[47] truncated to desired order. As data generated by simulations were made

su�ciently precise and plentifully available, an advanced fourth-order ansatz
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[48] became feasible

ge = y1y2y3

(
A12 +A21 +A32 − C1y1 − C2y2 − C3y3

)
+ y1y2

(
A21y1 +A12y2 − E12y1y2

)
+ y1y3

(
A31y1 +A13y3 − E13y1y3

)
+ y2y3

(
A32y2 +A23y3 − E23y2y3

)
, (B.4)

where the �rst term models the genuine ternary contribution with parameters

Ci and the following three terms describe the respective binary subsystems' in-

�uence with parameters Aij , Eij . All parameters (Aij , Eij , Ci) were determined

with a standard nonlinear least squares �t to the respective excess Gibbs energy

data obtained from MC simulations.

The Fick di�usion matrix D can be decomposed into a kinetic B−1 and a

thermodynamic Γ contribution, which are functions of the vapor phase's molar

composition. It has been argued above that both matrices were considered con-

stant and will only be evaluated at equilibrium condition y∗ = (0.13, 0.03, 0.84)

mol mol−1

Γ(y∗) =

 0.82 −0.18

−0.03 1.0

 . (B.5)

Determining the kinetic contribution B−1 , however, is a two-step procedure.255

The Maxwell-Stefan di�usivities Ðij have to be computed �rst, which for this

ternary mixture are readily accessible via MD simulations

Ð13 = 171.0 · 10−9 m2 s−1 ,

Ð23 = 58.0 · 10−9 m2 s−1 ,

Ð12 = 34.5 · 10−9 m2 s−1 , (B.6)

and subsequently the matrix B with its diagonal Bii and o�-diagonal elements

Bij has to be calculated [39]

Bii =
yi
Ði3

+

3∑
k=16=i

yi
Ðik

, (B.7a)

Bij = −yi
( 1

Ðij
− 1

Ði3

)
, i, j ∈ [1, 2] . (B.7b)
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The Maxwell-Stefan di�usivities Ðij quantify the relative motion between the i-

th and j-th component in the ternary mixture and are incorporated reciprocally

in the description. Consequently, it is this matrix's inverse that is part of the

thermodynamic contribution to relate the driving thermodynamic force, i.e. the

concentration gradient to its corresponding di�usion �ux, and is given as

B−1(y∗) =

 155.78 2.62

25.02 53.69

 · 10−9m2 s−1 . (B.8)

The Fick di�usion matrix D = B−1 · Γ couples the simultaneous in�uence

of both gradients to each molar di�usion �ux Lz,i, as speci�ed in (13). A

spectral decomposition facilitates the decoupling by mapping both gradients'

in�uence onto an e�ective di�usion coe�cient Di that is given as the system's

i-th eigenvalue

D(y∗) =

 120.97 0

0 55.88

 · 10−9m2 s−1 , (B.9)

where the deviation of the eigenvector matrix T from the identity matrix I

is a measure of coupling strength and the arguably present mild coupling is

neglected by setting

T =

 1 0.35

0.26 1

 ≈ I . (B.10)

The simpli�cation introduced in (50a) and (50b) was based on the components'

strongly di�erent volatilities λ� 1 and the exclusion of a pseudo mixture ε 6= 1

λ =
φ2
φ1

= 0.093 , ε =
ρ0,2
ρ0,1

= 1.18 . (B.11)

Appendix C. Thermodynamic non-ideality260

The vapor phase's Gibbs energy could be decomposed into the sum of a

variety of physically interpretable contributions

gvap(T, p,y) =

3∑
i=1

g00,i(T, p) + gres0,i (T, p) + yi ln(yi) + gei (T, p,y), (C.1)
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with the �rst term being the ideal gas contribution of the pure component, given

at system temperature and pressure, and the second its residual contribution.

The third term describes the ideal mixing term and the fourth its non-ideal

mixing correction. The Gibbs energy can also be decomposed into the weighted

sum of its components' chemical potentials, as stated in (26)

gvap(T, p,y) =

3∑
i=1

yi µi(T, p,y) . (C.2)

The ideal gas contribution is readily understood as the ideal gas chemical po-

tential g00,i = yiµ
0
0,i. The residual and excess contribution's mathematical form

has, historically arisen, been de�ned to be a weighted logarithmic function akin

to the ideal gas mixing entropy

gvap(T, p,y) =

3∑
i=1

yi

(
µ0
0,i(T, p) + ln

(
ψi(T, p)

)
+ ln(yi)

+ ln
(
ϑi(T, p,y)

))
. (C.3)

Generally, all pure component contributions were grouped together to ease no-

tation

µ0,i(T, p) = µ0
0,i(T, p) + ln(ψi(T, p)) , (C.4)

which consequently leads to the vapor phase's Gibbs energy

gvap(T, p,y) =

3∑
i=1

yi

(
µ0,i(T, p) + ln(yi) + ln(ϑi(T, p,y))

)
. (C.5)

Bringing (C.2) and (C.5) together leads to description (B.2) for the case of

known chemical potentials µi, which were sampled by here by dedicated MC

simulations

ln(ϑi) = µi − ln(yi)− µ0,i . (C.6)

Alternatively, if the mixture's Gibbs excess energy is known, e.g. from a ge

model, the component's excess contribution to the fugacity coe�cient can be

computed [46]

ln(ϑi) = ge +
∂ge

∂yi
−

3∑
k=1

yk
∂ge

∂yk
. (C.7)
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Diffusion limited evaporation of a multicomponent liquid film
René Spencer Chatwell, Matthias Heinen, and Jadran Vrabec1, a)

Thermodynamics and Energy Technology, University of Paderborn, 33098 Paderborn,
Germany

This supplementary material discloses all calculated
thermodynamic data for the present analytical solution
together with the ge model relying on data sampled
by MD or MC simulations. Values from the analytical
solution are indicated by the subscript ana, values from
the ge model are denoted by mod and simulated data are
specified by sim. In the following tables, all quantities
are understood as functions of either liquid [xi] = mol
mol−1 or vapor phase [yi] = mol mol−1 mole fractions, if
not otherwise specified. The Gibbs excess energy ge and
all chemical potentials µi are given in non-dimensional
form, i.e. ge = Ge/nRT and µi = µ̄i/RT

All time-independent thermodynamic properties were
determined by MC simulations in the isothermal-isobaric
ensemble containing N = 2000 particles. Transport
properties were determined by MD simulations in the
canonical ensemble containing N = 4914 particles and
an integrator time step of ∆t = 0.88 fs. Values were
obtained after about 9 · 108 time steps, which represents
a sampling time of 0.8 µs.
containing N = 4914 particles, with values being ob-
tained after about 9 · 108 time steps, which represents a
sampling time of 0.8 µs.

The selected ge model (fourth order Margules type
polynomial) was fitted with a standard nonlinear least
squares algorithm to minimize the root mean square error
between simulation data and the model around the equi-
librium vapor phase composition y∗ = (0.13, 0.03, 0.84)
and yielded for the parameters Aij , Eij and Ci

 – A12 A13

A21 – A23

A31 A32 –

 =

 – −39.9 1.7
4.2 – 3.3
3.8 0.7 –

 (1)

 – E12 E13

– – E23

– – –

 =

 – −0.01 1.63
– – −1.82
– – –

 , (2)

 C1

C2

C3

 =

 −50.6
−126.3
−40.9

 . (3)

To describe the liquid phase’s non-idealities with greater
precision, an additional fit around x∗ = (0.495, 0.505, 0)
was performed to yield different parameters for the same

a)jadran.vrabec@upb.de

FIG. 1. Gibbs ternary plot illustrating compositions where
thermodynamic data were generated by MC simulations. Un-
der equilibrium, the vapor phase’s composition is given as
y = (0.13, 0.027, 0.843) mol mol−1 (red bullet) while the liq-
uid phase’s is given as x = (0.495, 0.505, 0) mol mol−1 (green
bullet). The dashed lines show the vapor and liquid binodals.

FIG. 2. Segment of the Gibbs ternary plot depicting differ-
ent paths for the vapor phase composition during evaporation
from simulation (blue) and analytic solution (violet).

model applied to the binary subsystem only A21

A12

E12

 =

 0.26
0.25
−0.01

 . (4)
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Vapor phase convective motion

The linear momentum of a multicomponent mixture is
constructed out of the vector sum of its constituent’s
linear momenta

ρvuz =

3∑
i=1

ρu,ivz,i . (5)

The i-th component’s partial density is given by ρv,i =
yiρv. The third component is seen as a stagnant gas
uz,3 ≈ 0, i.e. no collective motion in a spatial direc-
tion is measurable, although random thermal motion is
present. The molar averaged velocity uz in the relevant
z direction is then given as a proportionate sum of every
component’s convective velocity vz,i

uz =

3∑
i=1

yiuz,i ≈
2∑

i=1

yiuz,i . (6)

The convective motion uz,i can be decomposed into an
advective and a diffusive contribution uz,i = uz + Uz,i

2∑
i=1

yiuz,i =

2∑
i=1

yi

(
uz + Uz,i

)
. (7)

Substituting the molar averaged motion uz with the re-
sult already obtained from (6) yields

2∑
i=1

yiuz,i =

2∑
i=1

yi

( 2∑
i=1

yiuz,i + Uz,i

)
, (8)

which after a simple algebraic manipulation connects
each component’s convective yivz,i to its diffusion flux
yiUz,i

2∑
i=1

yiuz,i

(
1−

2∑
i=1

yi

)
=

2∑
i=1

yiUz,i . (9)

In a last step, the mixture’s total molar composition con-
straint y1+y2+y3 = 1 is utilized to retain the description
used in equation (11) of the manuscript

2∑
i=1

yiuz,i =

2∑
i=1

( yi
y3

)
Uz,i =

2∑
i=1

bi3Uz,i . (10)

Boundary condition

In equation (18) of the manuscript, a boundary
condition was used that needs a more detailed clarifi-
cation concerning its limitations. Akin to the particle
density conservation equation

∂t
(
ρv,i(z, t)

)
+ ∂z

(
ρv,i(z, t)vz,i(z, t)

)
= 0 , (11)

a conservation equation for the weighted mole fractions
bi3 can be constructed

∂t

(
bi3(z)

)
+ ∂z

(
bi3(z)vz,i(z, t)

)
= 0 , (12)

where utilizing assumption (12) of the manuscript re-
duces the complexity significantly. It should be noted
that the parameters bi3 are indeed functions of time,
yet their variation in time was considered negligible. A
formulation for this derivative at the interphase z = zs
needs to be found

∂z

(
bi3(z)vz,i(z, t)

)∣∣∣
zs

= 0 . (13)

Decomposing the convective velocity vector vz,i = uz +
Uz,i into its advective and diffusive parts again yields

∂z

(
bi3(z)

(
uz + Uz,i

))∣∣∣
zs

= 0 . (14)

The diffusion flux has already been identified to be de-
scribed by Fick’s diffusion law that with the effective
diffusion coefficient Di reads

bi3Uzi = −Di dz

(
bi3(z)

)
, (15)

after neglecting bi3 dz
(
uz

)∣∣
zs

for being small compared
to the other terms

uz dz

(
bi3(z)

)∣∣∣
zs

−Di dzz

(
bi3(z)

)∣∣∣
zs

= 0 . (16)

In a last step, the connection between this vapor phase
argumentation and the liquid phase’s surface regression
velocity needs to be found. The latter is identified as the
negative convective motion of evaporate at the interphase
and is given

uz,liq(zs) = −uz(zs) =

2∑
i=1

Di dz

(
bi3(z)

)∣∣∣
zs

. (17)

After inserting (17) into (16) and expanding the sum, a
further assumption has to be made(

D1 dz
(
b13(z)

)∣∣
zs

+D2 dz
(
b23(z)

)∣∣
zs

)
dz
(
bi3(z)

)∣∣
zs

−Di dzz
(
bi3(z)

)∣∣
zs

= 0 . (18)

All crossover terms are assumed to be negligible over the
non-crossover terms

Dj dz
(
bj3(z)

)∣∣
zs

dz
(
bi3(z)

)∣∣
zs

≪ Di

(
dz
(
bi3(z)

)∣∣
zs

)2

, ∀ j ̸= i .

(19)
One can finally conclude the problem’s boundary condi-
tion at film’s surface to be(

dz
(
bi3(z)

)∣∣
zs

)2

= dzz
(
bi3(z)

)∣∣
zs

. (20)
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TABLE I. Pure component simulation results that give the behavior of each component’s chemical potential µ0,i and residual
contribution ψi as a function of pressure at constant temperature T = 80 K. The simulations yielded a uniform molar density
of ρ = 0.0151 mol dm−3 for each component prepared in the state T = 80 K, p = 0.01 MPa that is precisely the ideal gas
equation’s result and determines the ideal gas chemical potentials to be µ0

0 = −(7.86, 7.86, 7.85). Since the residual contribution
ψi, according to (27), measures a component’s departure from the ideal gas behavior, the components 1 and 2 are liquid while
component 3 is gaseous for the system being prepared in the state T = 80 K, p = 6.34 MPa.

p/MPa µ0,1 µ0,2 µ0,3 ψ1 ψ2 ψ3

0.01 -7.86 -7.86 -7.85 1 1 1
0.10 -5.56 -5.57 -5.55 0.990 0.983 1.002
1.00 -3.37 -4.80 -3.23 0.885 0.247 1.021
2.00 -3.05 -4.68 -2.51 0.764 0.120 1.044
3.00 -3.01 -4.65 -2.09 0.425 0.082 1.067
3.25 -3.00 -2.00 0.397 1.073
3.50 -2.99 -1.92 0.373 1.079
3.75 -2.98 -1.85 0.350 1.085
4.00 -2.97 4.62 -1.78 0.332 0.064 1.091
4.25 -2.96 -1.71 0.315 1.097
4.50 -2.95 -1.65 0.300 1.103
4.75 -2.94 -1.59 0.287 1.109
6.00 -2.93 -4.59 -1.53 0.275 0.053 1.115
5.25 -2.92 -1.48 0.265 1.122
5.50 -2.91 -1.42 0.255 1.128
5.75 -2.91 -1.37 0.246 1.134
6.00 -2.90 -1.33 0.238 1.141
6.25 -2.89 -1.28 0.230 1.147
6.34 -2.89 -4.56 -1.26 0.228 0.043 1.150

FIG. 3. Graphical representation of the individual pure component’s chemical potentials µ0,i as a function of pressure at
constant temperature. The three curves, as they should, approach identical values for the ideal gas case.
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TABLE II. The binary subsystem that is composed of volatile (component 1) and less-volatile (component 2) particles remains
liquid for all possible compositions. The fourth order Margules type polynomial covers also the respective infinite dilution
activity coefficients γ∞

i , as depicted in Fiq.(4).

x1 x2 y3 gesim gemod γ1,sim γ2,sim γ1,mod γ2,mod

0 1 0 0 0 - 1 1.285 1
0.025 0.975 0 0.01 0.01 1.269 1.004 1.270 1.000
0.050 0.950 0 0.02 0.01 1.258 1.007 1.256 1.001
0.075 0.925 0 0.02 0.02 1.238 1.001 1.242 1.001
0.100 0.900 0 0.02 0.02 1.222 1.001 1.228 1.002
0.125 0.875 0 0.02 0.03 1.204 0.998 1.215 1.004
0.150 0.850 0 0.03 0.03 1.194 1.003 1.202 1.005
0.175 0.825 0 0.04 0.04 1.194 1.014 1.190 1.007
0.200 0.800 0 0.03 0.04 1.168 1.003 1.178 1.010
0.225 0.775 0 0.05 0.04 1.116 1.014 1.166 1.012
0.250 0.750 0 0.05 0.05 1.158 1.021 1.155 1.016
0.275 0.725 0 0.05 0.05 1.144 1.020 1.145 1.019
0.300 0.700 0 0.06 0.05 1.137 1.027 1.135 1.023
0.325 0.675 0 0.05 0.06 1.120 1.023 1.125 1.027
0.350 0.650 0 0.06 0.06 1.118 1.034 1.115 1.031
0.375 0.625 0 0.06 0.06 1.104 1.032 1.106 1.036
0.400 0.600 0 0.06 0.06 1.099 1.043 1.098 1.041
0.425 0.575 0 0.06 0.06 1.089 1.045 1.090 1.046
0.450 0.550 0 0.06 0.06 1.081 1.050 1.082 1.052
0.475 0.525 0 0.06 0.06 1.075 1.058 1.074 1.059
0.495 0.505 0 0.06 0.06 1.070 1.061 1.069 1.064
0.525 0.475 0 0.06 0.06 1.061 1.071 1.061 1.072
0.550 0.450 0 0.06 0.06 1.056 1.079 1.054 1.080
0.575 0.425 0 0.07 0.06 1.052 1.090 1.048 1.088
0.600 0.400 0 0.06 0.06 1.041 1.091 1.043 1.096
0.625 0.375 0 0.06 0.06 1.041 1.105 1.037 1.105
0.650 0.350 0 0.06 0.06 1.034 1.113 1.033 1.114
0.675 0.325 0 0.06 0.06 1.029 1.123 1.028 1.124
0.700 0.300 0 0.05 0.05 1.022 1.128 1.024 1.134
0.725 0.275 0 0.05 0.05 1.020 1.142 1.020 1.144
0.750 0.250 0 0.05 0.05 1.017 1.153 1.016 1.155
0.775 0.225 0 0.04 0.05 1.013 1.163 1.013 1.167
0.800 0.200 0 0.04 0.04 1.012 1.179 1.011 1.179
0.825 0.175 0 0.04 0.04 1.009 1.192 1.008 1.192
0.850 0.150 0 0.03 0.03 1.005 1.203 1.006 1.205
0.875 0.125 0 0.03 0.03 1.004 1.218 1.004 1.218
0.900 0.100 0 0.02 0.02 1.003 1.233 1.003 1.233
0.925 0.075 0 0.02 0.02 1.002 1.250 1.001 1.247
0.950 0.050 0 0.01 0.01 1.001 1.266 1.001 1.263
0.975 0.025 0 0.01 0.01 1.000 1.282 1.000 1.279

1 0 0 0 0 1 - 1 1.295
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TABLE III. Data for the binary subsystem that is composed of volatile (component 1) and inert gas (component 3) particles.
Thermodynamic stability analysis relates the thermodynamic factor’s algebraic sign to either a stable (Γ > 0) or an unstable
(Γ < 0) state. This binary mixture must exhibit a vapor-liquid phase separation between 0.45 < y1 < 0.92. Both the Gibbs
excess energy and the fugacity coefficient ϑ1 are well described in the vapor phase by the selected ge model.

y1 y2 y3 gesim gemod ϑ1,sim ϑ1,mod Γ1

0 0 1 0 0 - 5 1
0.010 0 0.990 0.02 0.02 5.10 5.16 0.98
0.020 0 0.980 0.03 0.03 5.02 5.07 0.96
0.025 0 0.975 0.04 0.04 4.98 5.03 0.96
0.030 0 0.970 0.05 0.05 4.94 4.98 0.95
0.040 0 0.960 0.06 0.06 4.87 4.90 0.93
0.050 0 0.950 0.08 0.08 4.79 4.82 0.92
0.060 0 0.940 0.10 0.10 4.72 4.74 0.91
0.070 0 0.930 0.11 0.11 4.65 4.67 0.89
0.080 0 0.920 0.13 0.13 4.59 4.60 0.88
0.090 0 0.910 0.14 0.14 4.52 4.54 0.87
0.100 0 0.900 0.16 0.16 4.45 4.47 0.86
0.150 0 0.850 0.23 0.23 4.15 4.18 0.81
0.200 0 0.800 0.30 0.30 3.88 3.93 0.75
0.250 0 0.750 0.36 0.36 3.63 3.68 0.67
0.275 0 0.725 0.39 0.39 3.52 3.56 0.63
0.300 0 0.700 0.42 0.42 3.40 3.44 0.58
0.350 0 0.650 0.48 0.48 3.20 3.20 0.46
0.400 0 0.600 0.53 0.53 3.00 2.95 0.32
0.450 0 0.550 0.57 0.57 2.81 2.70 0.16
0.500 0 0.500 0.61 0.60 2.63 2.45 -0.01
0.550 0 0.450 0.63 0.63 2.31 2.21 -0.18
0.600 0 0.400 0.64 0.64 2.01 1.98 -0.35
0.639 0 0.362 0.64 0.64 1.86 1.81 -0.46
0.650 0 0.350 0.63 0.64 1.83 1.76 -0.49
0.700 0 0.300 0.62 0.62 1.64 1.57 -0.60
0.750 0 0.250 0.59 0.58 1.50 1.41 -0.64
0.800 0 0.200 0.54 0.52 1.33 1.27 -0.60
0.850 0 0.150 0.46 0.44 1.23 1.15 -0.44
0.900 0 0.100 0.37 0.32 1.12 1.07 -0.15
0.910 0 0.090 0.35 0.30 1.10 1.06 -0.07
0.920 0 0.080 0.32 0.27 1.08 1.05 0.02
0.930 0 0.070 0.29 0.24 1.06 1.04 0.11
0.940 0 0.060 0.26 0.21 1.04 1.03 0.21
0.950 0 0.050 0.23 0.18 1.02 1.02 0.32
0.960 0 0.040 0.18 0.15 1.01 1.01 0.44
0.970 0 0.030 0.14 0.11 1.01 1.01 0.57
0.980 0 0.020 0.09 0.08 1.00 1.00 0.70
0.990 0 0.010 0.05 0.04 1.00 1.00 0.85

1 0 0 0 0 1 1 1
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TABLE IV. Data for the binary subsystem that is composed of less-volatile and inert gas particles. This subsystem exhibits a
wider phase transition in terms of molar variation than the system in table (III). This subsystem must exhibit a vapor-liquid
phase separation in the range 0.175 < y2 < 0.8.

y1 y2 y3 gesim gemod ϑ2,sim ϑ2,mod Γ2

0 0 1 0 0 - 35.34 1
0 0.010 0.990 0.03 0.04 26.33 32.93 0.95
0 0.020 0.980 0.07 0.07 25.71 30.74 0.90
0 0.031 0.969 0.10 0.11 25.06 28.55 0.83
0 0.040 0.960 0.13 0.14 24.54 26.91 0.78
0 0.043 0.957 0.14 0.15 24.31 26.50 0.77
0 0.050 0.950 0.16 0.17 23.98 25.23 0.72
0 0.100 0.900 0.32 0.33 21.40 18.69 0.41
0 0.150 0.850 0.47 0.47 19.13 14.28 0.10
0 0.175 0.825 0.54 0.53 18.07 12.62 -0.06
0 0.200 0.800 0.61 0.59 16.61 11.23 -0.21
0 0.255 0.775 0.62 0.65 9.23 10.05 -0.36
0 0.250 0.750 0.66 0.70 7.65 9.04 -0.49
0 0.300 0.700 0.74 0.78 6.09 7.42 -0.73
0 0.350 0.650 0.81 0.85 5.27 6.20 -0.91
0 0.400 0.600 0.87 0.89 4.53 5.25 -1.02
0 0.450 0.550 0.90 0.91 3.88 4.50 -1.07
0 0.500 0.500 0.93 0.91 3.40 3.89 -1.05
0 0.550 0.450 0.94 0.89 2.95 3.38 -0.96
0 0.600 0.400 0.93 0.85 2.56 2.95 -0.81
0 0.650 0.350 0.91 0.79 2.19 2.58 -0.60
0 0.700 0.300 0.88 0.72 1.89 2.26 -0.35
0 0.750 0.250 0.82 0.63 1.63 1.98 -0.07
0 0.800 0.200 0.75 0.52 1.44 1.73 0.22
0 0.850 0.150 0.64 0.40 1.30 1.51 0.49
0 0.900 0.100 0.51 0.28 1.13 1.32 0.74
0 0.950 0.005 0.31 0.14 1.04 1.15 0.92
0 1 0 0 0 1 1 1

FIG. 4. Binary liquid mixture’s (components 1 and 2) activity coefficients as given in table (III). The lines represent the
Margules polynomial model while the bullets represent simulation data. The activity coefficients at infinite dilution γ∞

i

(squares) are well covered by the chosen Margules type polynomial.
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TABLE V. Data for the ternary system, where the first component’s mole fraction is varied and the second’s is kept constant
at y2 = 0.025 mol mol−1.

y1 y2 y3 gesim gemod ϑ1,sim ϑ2,sim ϑ1,mod ϑ2,mod Γ11 Γ12 Γ21 Γ22

0 0.025 0.975 0.08 0.08 - 25.41 4.96 25.48 1 0 -0.06 0.95
0.025 0.025 0.950 0.12 0.12 4.75 24.25 4.74 24.25 0.95 -0.05 -0.05 0.98
0.050 0.025 0.925 0.16 0.16 4.58 23.16 4.55 23.22 0.92 -0.09 -0.04 1.00
0.070 0.025 0.905 0.19 0.20 4.45 22.33 4.41 22.51 0.89 -0.11 -0.04 1.01
0.075 0.025 0.900 0.20 0.20 4.42 22.13 4.38 22.34 0.88 -0.11 -0.04 1.01
0.100 0.025 0.875 0.23 0.24 4.26 21.16 4.23 21.58 0.85 -0.15 -0.04 1.01
0.110 0.025 0.865 0.25 0.26 4.20 20.79 4.17 21.29 0.84 -0.16 -0.03 1.01
0.120 0.025 0.855 0.26 0.27 4.15 20.42 4.11 21.02 0.83 -0.17 -0.03 1.01
0.125 0.025 0.850 0.27 0.28 4.12 20.24 4.09 20.88 0.82 -0.18 -0.03 1.00
0.130 0.025 0.845 0.28 0.29 4.09 20.07 4.06 20.75 0.82 -0.18 -0.03 1.00
0.140 0.025 0.835 0.29 0.30 4.03 19.72 4.01 20.49 0.81 -0.19 -0.03 0.99
0.150 0.025 0.825 0.30 0.31 3.98 19.38 3.96 20.24 0.79 -0.20 -0.03 0.98
0.160 0.025 0.815 0.32 0.33 3.93 19.04 3.91 19.99 0.78 -0.21 -0.03 0.97
0.170 0.025 0.805 0.33 0.34 3.87 18.71 3.86 19.74 0.77 -0.23 -0.03 0.96
0.175 0.025 0.800 0.34 0.35 3.85 18.55 3.83 19.62 0.76 -0.23 -0.03 0.95
0.180 0.025 0.795 0.34 0.36 3.82 18.39 3.81 19.49 0.76 -0.24 -0.03 0.94
0.190 0.025 0.785 0.36 0.37 3.77 18.08 3.76 19.24 0.74 -0.25 -0.03 0.92
0.200 0.025 0.775 0.37 0.38 3.72 17.76 3.71 18.99 0.73 -0.26 -0.03 0.91
0.225 0.025 0.750 0.40 0.42 3.60 17.01 3.59 18.36 0.69 -0.30 -0.04 0.85
0.250 0.025 0.725 0.43 0.45 3.49 16.29 3.48 17.69 0.65 -0.35 -0.04 0.79
0.270 0.025 0.705 0.45 0.47 3.40 15.74 3.39 17.13 0.62 -0.38 -0.04 0.73
0.275 0.025 0.700 0.46 0.48 3.38 15.60 3.37 16.98 0.61 -0.39 -0.04 0.71
0.300 0.025 0.675 0.49 0.51 3.27 14.94 3.25 16.23 0.56 -0.45 -0.05 0.63
0.310 0.025 0.665 0.50 0.52 3.23 14.68 3.21 15.91 0.54 -0.47 -0.05 0.59
0.320 0.025 0.655 0.51 0.53 3.19 14.42 3.16 15.59 0.52 -0.49 -0.05 0.55
0.325 0.025 0.650 0.51 0.53 3.17 14.29 3.14 15.42 0.51 -0.51 -0.06 0.54
0.340 0.025 0.635 0.54 0.55 3.11 13.91 3.07 14.91 0.47 -0.54 -0.06 0.47
0.350 0.025 0.625 0.55 0.56 3.07 13.66 3.02 14.56 0.45 -0.57 -0.06 0.43
0.360 0.025 0.615 0.56 0.57 3.03 13.42 2.98 14.21 0.42 -0.60 -0.06 0.39
0.370 0.025 0.605 0.56 0.58 2.99 13.17 2.93 13.84 0.40 -0.60 -0.07 0.34
0.380 0.025 0.595 0.58 0.59 2.95 12.93 2.88 13.47 0.37 -0.65 -0.07 0.29
0.390 0.025 0.585 0.59 0.60 2.92 12.69 2.84 13.09 0.34 -0.68 -0.07 0.24
0.400 0.025 0.575 0.61 0.60 2.88 12.45 2.79 12.71 0.32 -0.71 -0.08 0.19
0.425 0.025 0.550 0.64 0.62 2.79 11.85 2.67 11.73 0.25 -0.77 -0.09 0.06
0.475 0.025 0.500 0.65 0.66 2.59 10.44 2.44 9.72 0.10 -0.90 -0.10 -0.24
0.525 0.025 0.450 0.66 0.68 2.16 6.10 2.22 7.74 -0.06 -1.00 -0.12 -0.58
0.575 0.025 0.400 0.65 0.69 1.96 4.94 2.00 5.91 -0.20 -1.03 -0.15 -0.95
0.675 0.025 0.300 0.63 0.67 1.63 3.50 1.62 2.99 -0.40 -0.77 -0.19 -1.81
0.725 0.025 0.250 0.60 0.63 1.48 2.93 1.47 1.98 -0.42 -0.40 -0.22 -2.29
0.825 0.025 0.150 0.48 0.49 1.22 2.09 1.23 0.75 -0.17 1.11 -0.27 -3.35
0.875 0.025 0.100 0.38 0.37 1.11 1.76 1.16 0.43 0.14 2.36 -0.29 -3.94
0.885 0.025 0.090 0.36 0.35 1.09 1.70 1.15 0.38 0.23 2.66 -0.29 -4.06
0.895 0.025 0.080 0.33 0.32 1.07 1.64 1.14 0.34 0.32 2.97 -0.30 -4.18
0.905 0.025 0.070 0.30 0.29 1.05 1.59 1.13 0.30 0.42 3.31 -0.30 -4.30
0.915 0.025 0.060 0.27 0.26 1.04 1.54 1.12 0.26 0.52 3.66 -0.31 -4.43
0.925 0.025 0.050 0.24 0.23 1.02 1.48 1.12 0.23 0.63 4.03 -0.31 -4.55
0.935 0.025 0.040 0.19 0.20 1.01 1.44 1.11 0.21 0.76 4.42 -0.32 -4.68
0.955 0.025 0.020 0.10 0.13 1.00 1.35 1.11 0.16 1.03 5.27 -0.33 -4.94
0.965 0.025 0.010 0.05 0.09 1.00 1.31 1.11 0.14 1.18 5.72 -0.33 -5.07
0.975 0.025 0 0.01 0.05 1.00 1.28 1.11 0.12 1.33 6.20 -0.33 -5.20
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TABLE VI. Continuation of table (V) for y2 = 0.050 mol mol−1.

y1 y2 y3 gesim gemod ϑ1,sim ϑ2,sim ϑ1,mod ϑ2,mod Γ11 Γ12 Γ21 Γ22

0 0.050 0.950 0.16 0.16 - 23.98 4.78 23.87 1 0 -0.04 0.84
0.025 0.050 0.925 0.20 0.21 4.54 22.90 4.58 23.45 0.95 -0.02 -0.05 0.90
0.050 0.050 0.900 0.24 0.25 4.38 21.88 4.41 22.93 0.91 -0.06 -0.06 0.93
0.070 0.050 0.880 0.27 0.28 4.26 21.11 4.28 22.42 0.88 -0.07 -0.07 0.93
0.075 0.050 0.875 0.27 0.29 4.23 20.92 4.25 22.28 0.88 -0.07 -0.07 0.93
0.100 0.050 0.850 0.31 0.33 4.09 20.02 4.10 21.51 0.84 -0.17 -0.09 0.92
0.110 0.050 0.840 0.32 0.34 4.03 19.67 4.05 21.16 0.83 -0.20 -0.09 0.91
0.120 0.050 0.830 0.34 0.36 3.98 19.33 3.99 20.78 0.82 -0.24 -0.10 0.90
0.125 0.050 0.825 0.34 0.37 3.95 19.16 3.96 20.59 0.81 -0.25 -0.10 0.89
0.130 0.050 0.820 0.35 0.37 3.92 18.99 3.94 20.39 0.80 -0.27 -0.11 0.88
0.140 0.050 0.810 0.36 0.39 3.87 18.66 3.88 19.97 0.79 -0.31 -0.12 0.86
0.150 0.050 0.800 0.38 0.40 3.82 18.34 3.83 19.52 0.78 -0.34 -0.12 0.84
0.160 0.050 0.790 0.39 0.42 3.77 18.03 3.78 19.06 0.76 -0.38 -0.13 0.82
0.170 0.050 0.780 0.40 0.43 3.72 17.72 3.73 18.58 0.75 -0.42 -0.14 0.79
0.175 0.050 0.775 0.41 0.44 3.69 17.56 3.71 18.33 0.74 -0.45 -0.15 0.77
0.180 0.050 0.770 0.41 0.44 3.67 17.41 3.68 18.07 0.73 -0.47 -0.15 0.75
0.190 0.050 0.760 0.43 0.46 3.76 16.82 3.64 17.55 0.72 -0.51 -0.16 0.72
0.200 0.050 0.750 0.44 0.47 3.57 16.82 3.59 17.01 0.70 -0.56 -0.17 0.68
0.225 0.050 0.725 0.47 0.50 3.36 16.10 3.47 15.60 0.66 -0.69 -0.19 0.57
0.250 0.050 0.700 0.50 0.53 3.35 15.41 3.35 14.12 0.62 -0.82 -0.22 0.44
0.270 0.050 0.680 0.52 0.56 3.27 14.88 3.26 12.91 0.58 -0.93 -0.24 0.33
0.275 0.050 0.675 0.52 0.56 3.25 14.75 3.24 12.60 0.58 -0.96 -0.25 0.29
0.300 0.050 0.650 0.55 0.59 3.14 14.11 3.12 11.09 0.53 -1.10 -0.28 0.13
0.310 0.050 0.640 0.56 0.60 3.10 13.85 3.08 10.49 0.50 -1.16 -0.29 0.06
0.320 0.050 0.630 0.57 0.61 3.06 13.60 3.03 9.90 0.48 -1.21 -0.30 -0.02
0.325 0.050 0.625 0.58 0.62 3.04 13.48 3.01 9.61 0.47 -1.24 -0.31 -0.06
0.340 0.050 0.610 0.59 0.63 2.99 13.11 2.94 8.75 0.44 -1.33 -0.33 -0.18
0.350 0.050 0.600 0.60 0.64 2.95 12.86 2.89 8.19 0.42 -1.38 -0.34 -0.26
0.360 0.050 0.590 0.61 0.65 2.91 12.62 2.85 7.65 0.39 -1.43 -0.35 -0.35
0.370 0.050 0.580 0.62 0.66 2.87 12.38 2.80 7.12 0.37 -1.49 -0.37 -0.44
0.380 0.050 0.570 0.63 0.66 2.83 12.13 2.76 6.62 0.35 -1.54 -0.38 -0.53
0.390 0.050 0.560 0.63 0.67 2.80 11.88 2.71 6.13 0.32 -1.59 -0.39 -0.63
0.400 0.050 0.550 0.64 0.68 2.76 11.62 2.67 5.66 0.30 -1.63 -0.41 -0.72
0.450 0.050 0.500 0.66 0.71 2.35 7.13 2.45 3.64 0.18 -1.83 -0.48 -1.26
0.500 0.050 0.450 0.67 0.73 2.11 5.51 2.24 2.18 0.06 -1.92 -0.56 -1.86
0.550 0.050 0.400 0.68 0.73 1.92 4.59 2.04 1.20 -0.04 -1.86 -0.64 -2.54
0.600 0.050 0.350 0.67 0.72 1.77 3.93 1.86 0.61 -0.10 -1.61 -0.72 -3.28
0.650 0.050 0.300 0.65 0.69 1.62 3.35 1.70 0.29 -0.12 -1.11 -0.80 -4.08
0.700 0.050 0.250 0.61 0.64 1.46 2.81 1.57 0.12 -0.06 -0.28 -0.88 -4.95
0.750 0.050 0.200 0.56 0.56 1.33 2.39 1.46 0.05 0.10 0.93 -0.96 -5.89
0.800 0.050 0.150 0.49 0.46 1.21 2.03 1.39 0.02 0.38 2.60 -1.04 -6.88
0.850 0.050 0.100 0.39 0.32 1.11 1.72 1.35 0.01 0.81 4.82 -1.12 -7.94
0.870 0.050 0.080 0.34 0.26 1.07 1.61 1.35 0.00 1.03 5.87 -1.15 -8.38
0.880 0.050 0.070 0.31 0.23 1.05 1.56 1.35 0.00 1.16 6.44 -1.17 -8.60
0.890 0.050 0.060 0.28 0.19 1.03 1.51 1.35 0.00 1.29 7.04 -1.18 -8.82
0.900 0.050 0.050 0.25 0.16 1.02 1.46 1.35 0.00 1.43 7.66 -1.20 -9.05
0.910 0.050 0.040 0.20 0.12 1.01 1.41 1.36 0.00 1.58 8.31 -1.21 -9.28
0.920 0.050 0.030 0.16 0.08 1.00 1.37 1.37 0.00 1.74 8.99 -1.23 -9.51
0.930 0.050 0.020 0.11 0.04 1.00 1.33 1.38 0.00 1.90 9.70 -1.24 -9.75
0.940 0.050 0.010 0.06 0 1.00 1.29 1.39 0.00 2.08 10.45 -1.26 -9.98
0.950 0.050 0 0.01 -0.05 1.00 1.27 1.41 0.00 2.27 11.22 -1.27 -10.22
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TABLE VII. Continuation of table (VI) for y2 = 0.075 mol mol−1.

y1 y2 y3 gesim gemod ϑ1,sim ϑ2,sim ϑ1,mod ϑ2,mod Γ11 Γ12 Γ21 Γ22

0.025 0.075 0.900 0.28 0.29 4.35 21.64 4.53 21.98 0.94 0 -0.03 0.76
0.050 0.075 0.875 0.31 0.33 4.19 20.69 4.32 21.80 0.89 -0.04 -0.07 0.78
0.070 0.075 0.855 0.34 0.36 4.08 19.97 4.16 21.41 0.85 -0.10 -0.11 0.78
0.075 0.075 0.850 0.35 0.37 4.05 19.80 4.12 21.27 0.84 -0.11 -0.12 0.78
0.100 0.075 0.825 0.38 0.41 3.92 18.94 3.95 20.41 0.80 -0.22 -0.17 0.75
0.110 0.075 0.815 0.40 0.43 3.86 18.62 3.88 19.98 0.78 -0.26 -0.19 0.73
0.120 0.075 0.805 0.41 0.44 3.81 18.29 3.81 19.50 0.76 -0.32 -0.21 0.70
0.125 0.075 0.800 0.41 0.45 3.79 18.14 3.78 19.24 0.76 -0.34 -0.22 0.69
0.130 0.075 0.795 0.42 0.46 3.76 17.98 3.75 18.97 0.75 -0.37 -0.24 0.67
0.140 0.075 0.785 0.43 0.47 3.71 17.67 3.69 18.40 0.73 -0.43 -0.26 0.64
0.150 0.075 0.775 0.45 0.49 3.66 17.36 3.62 17.80 0.71 -0.50 -0.28 0.60
0.160 0.075 0.765 0.46 0.50 3.62 17.06 3.57 17.15 0.70 -0.57 -0.31 0.56
0.170 0.075 0.755 0.47 0.52 3.57 16.77 3.51 16.48 0.68 -0.64 -0.33 0.51
0.175 0.075 0.750 0.48 0.52 3.55 16.62 3.48 16.14 0.67 -0.68 -0.34 0.49
0.180 0.075 0.745 0.48 0.53 3.52 16.48 3.45 15.78 0.67 -0.71 -0.35 0.46
0.190 0.075 0.735 0.50 0.54 3.48 16.19 3.39 15.06 0.65 -0.79 -0.38 0.41
0.200 0.075 0.725 0.51 0.56 3.43 15.91 3.34 14.33 0.63 -0.87 -0.40 0.35
0.225 0.075 0.700 0.54 0.59 3.32 15.23 3.21 12.46 0.59 -1.08 -0.47 0.18
0.250 0.075 0.675 0.56 0.61 3.22 14.56 3.08 10.59 0.55 -1.30 -0.54 -0.01
0.270 0.075 0.655 0.58 0.64 3.14 14.05 2.98 9.15 0.51 -1.48 -0.59 -0.19
0.275 0.075 0.650 0.59 0.64 3.12 13.92 2.96 8.80 0.51 -1.52 -0.61 -0.23
0.300 0.075 0.625 0.61 0.66 3.02 13.29 2.84 7.14 0.46 -1.74 -0.68 -0.48
0.310 0.075 0.615 0.62 0.67 2.98 13.04 2.80 6.52 0.44 -1.83 -0.71 -0.58
0.320 0.075 0.605 0.63 0.68 2.94 12.78 2.75 5.93 0.43 -1.92 -0.73 -0.69
0.325 0.075 0.600 0.64 0.68 2.92 12.66 2.73 5.65 0.42 -1.96 -0.75 -0.75
0.330 0.075 0.595 0.64 0.69 2.90 12.53 2.71 5.38 0.41 -2.00 -0.76 -0.81
0.340 0.075 0.585 0.65 0.70 2.86 12.21 2.66 4.85 0.39 -2.09 -0.79 -0.92
0.350 0.075 0.575 0.66 0.70 2.81 11.62 2.62 4.36 0.38 -2.17 -0.82 -1.04
0.360 0.075 0.565 0.66 0.71 2.74 10.87 2.58 3.91 0.36 -2.24 -0.85 -1.17
0.370 0.075 0.555 0.67 0.72 2.65 9.67 2.54 3.48 0.34 -2.32 -0.89 -1.30
0.375 0.075 0.550 0.67 0.72 2.59 8.93 2.51 3.28 0.33 -2.35 -0.90 -1.36
0.380 0.075 0.545 0.67 0.72 2.55 8.54 2.49 3.09 0.33 -2.39 -0.92 -1.43
0.390 0.075 0.535 0.67 0.73 2.47 7.71 2.45 2.74 0.31 -2.46 -0.95 -1.57
0.400 0.075 0.525 0.67 0.73 2.38 6.95 2.41 2.41 0.29 -2.52 -0.98 -1.71
0.425 0.075 0.500 0.68 0.74 2.25 6.06 2.32 1.72 0.26 -2.65 -1.06 -2.08
0.475 0.075 0.450 0.69 0.74 2.06 5.05 2.14 0.81 0.20 -2.79 -1.22 -2.89
0.575 0.075 0.350 0.68 0.70 1.74 3.73 1.84 0.13 0.21 -2.36 -1.55 -4.79
0.625 0.075 0.300 0.66 0.65 1.60 3.23 1.73 0.04 0.30 -1.64 -1.72 -5.88
0.675 0.075 0.250 0.63 0.58 1.45 2.73 1.65 0.01 0.48 -0.47 -1.89 -7.05
0.725 0.075 0.200 0.58 0.48 1.32 2.33 1.60 0.00 0.78 1.22 -2.06 -8.31
0.775 0.075 0.150 0.50 0.34 1.21 1.99 1.60 0.00 1.21 3.52 -2.22 -9.66
0.795 0.075 0.130 0.47 0.28 1.17 1.86 1.61 0.00 1.43 4.62 -2.29 -10.21
0.825 0.075 0.100 0.40 0.18 1.10 1.68 1.64 0.00 1.82 6.55 -2.38 -11.08
0.835 0.075 0.090 0.37 0.14 1.08 1.62 1.66 0.00 1.97 7.25 -2.42 -11.38
0.845 0.075 0.080 0.35 0.10 1.07 1.58 1.68 0.00 2.12 7.98 -2.45 -11.67
0.855 0.075 0.070 0.32 0.06 1.05 1.52 1.70 0.00 2.28 8.75 -2.48 -11.97
0.865 0.075 0.060 0.29 0.01 1.03 1.48 1.73 0.00 2.46 9.55 -2.51 -12.28
0.875 0.075 0.050 0.25 -0.03 1.01 1.43 1.76 0.00 2.64 10.39 -2.54 -12.58
0.905 0.075 0.020 0.12 -0.17 1.00 1.31 1.87 0.00 3.24 13.14 -2.63 -13.52
0.915 0.075 0.100 0.07 -0.22 1.00 1.28 1.91 0.00 3.46 14.13 -2.66 -13.84
0.925 0.075 0 0.02 -0.28 1.00 1.25 1.97 0.00 3.69 15.16 -2.69 -14.16
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TABLE VIII. Spatially resolved vapor phase molar composition bi3 data. The normalized form (bi3−bi3,s)/Bi3 can be computed
with the following Spalding transfer numbers B13 = -0.154 and B23 = -0.003.

(z − zs)/δ b13(z) b23(z) (b13 − b13,s)/B13 (b23 − b23,s)/B23

0 0.155 0.032 0 0
0.01 0.152 0.031 0.016 0.025
0.03 0.147 0.030 0.048 0.076
0.05 0.142 0.028 0.079 0.125
0.07 0.138 0.027 0.111 0.174
0.09 0.133 0.025 0.142 0.222
0.11 0.128 0.024 0.173 0.269
0.13 0.123 0.022 0.204 0.314
0.15 0.118 0.021 0.234 0.358
0.17 0.114 0.020 0.264 0.401
0.19 0.109 0.018 0.294 0.443
0.21 0.105 0.017 0.323 0.483
0.23 0.110 0.016 0.352 0.521
0.25 0.096 0.015 0.381 0.558
0.27 0.091 0.013 0.409 0.594
0.29 0.087 0.012 0.437 0.628
0.31 0.083 0.011 0.465 0.660
0.33 0.079 0.010 0.492 0.691
0.35 0.071 0.009 0.518 0.720
0.37 0.067 0.008 0.544 0.747
0.39 0.063 0.008 0.570 0.772
0.41 0.061 0.007 0.595 0.796
0.43 0.059 0.006 0.619 0.819
0.45 0.056 0.005 0.643 0.840
0.47 0.052 0.005 0.666 0.859
0.49 0.048 0.004 0.689 0.876
0.51 0.045 0.004 0.711 0.892
0.55 0.038 0.003 0.753 0.920
0.57 0.035 0.002 0.773 0.932
0.59 0.032 0.002 0.792 0.943
0.61 0.029 0.002 0.811 0.952
0.63 0.027 0.001 0.828 0.961
0.65 0.024 0.001 0.846 0.968
0.67 0.021 0.001 0.862 0.974
0.69 0.019 0.001 0.877 0.980
0.71 0.017 0.005 0.892 0.984
0.75 0.013 0.000 0.919 0.991
0.77 0.011 0.000 0.931 0.993
0.79 0.009 0.000 0.942 0.995
0.81 0.007 0.000 0.952 0.997
0.83 0.006 0.000 0.961 0.998
0.85 0.005 0.000 0.970 0.999
0.87 0.004 0.000 0.977 0.999
0.89 0.003 0.000 0.984 1.000
0.91 0.002 0.000 0.989 1.000
0.93 0.001 0.000 0.993 1.000
0.95 0.005 0.000 0.997 1.000
0.97 0.002 0.000 0.999 1.000
0.99 0.000 0.000 1.000 1.000

1 0 0 1 1
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FIG. 5. The normalized vapor phase molar composition was assumed to be a classical boundary layer problem and hence can
be considered analogous to the velocity distribution in a compressible boundary layer.

FIG. 6. Course of the weighted i-th component mole fraction bi3(z) = yi(z, t)/y3(z, t) as a function of position. Both values
approach bi3 = 0 for z = zδ due to the enforced boundary condition.
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TABLE IX. Data for the liquid x and vapor y phase molar compositions, as well as the film thickness’ time evolution. Since
the disparity between the analytical solution and the NEMD simulations ζsim < ζana became substantial, disclosing further
data after t > 213.50 ns was considered obsolete.

t/ns x1,sim x2,sim x1,ana x2,ana y1s,sim y2s,sim y3s,sim y1s,ana y2s,ana y3s,ana ζsim ζana

0 0.495 0.505 0.495 0.505 0.130 0.027 0.843 0.130 0.027 0.843 1 1
1.25 0.495 0.508 0.495 0.505 0.098 0.023 0.878 0.129 0.027 0.844 0.99 1.00
3.25 0.495 0.517 0.485 0.515 0.078 0.021 0.901 0.127 0.027 0.846 0.97 0.97
5.50 0.47 0.53 0.47 0.53 0.072 0.020 0.908 0.123 0.028 0.849 0.94 0.94
7.50 0.46 0.54 0.46 0.54 0.070 0.020 0.910 0.120 0.029 0.851 0.92 0.92
9.50 0.45 0.55 0.45 0.55 0.068 0.019 0.912 0.118 0.029 0.853 0.90 0.89
11.50 0.44 0.56 0.44 0.56 0.067 0.020 0.913 0.115 0.030 0.855 0.88 0.87
13.50 0.43 0.57 0.43 0.57 0.065 0.020 0.915 0.112 0.030 0.857 0.85 0.85
15.50 0.42 0.58 0.42 0.58 0.063 0.021 0.916 0.110 0.031 0.860 0.83 0.83
17.25 0.41 0.59 0.41 0.59 0.062 0.022 0.917 0.107 0.031 0.862 0.81 0.81
19.25 0.49 0.60 0.40 0.60 0.059 0.022 0.919 0.105 0.032 0.864 0.79 0.80
21.25 0.39 0.61 0.39 0.61 0.057 0.021 0.922 0.102 0.032 0.866 0.78 0.78
23.00 0.38 0.62 0.38 0.62 0.056 0.021 0.923 0.099 0.033 0.868 0.76 0.76
25.00 0.37 0.63 0.37 0.63 0.054 0.021 0.925 0.097 0.033 0.870 0.74 0.74
26.75 0.36 0.64 0.36 0.64 0.052 0.021 0.927 0.094 0.034 0.872 0.73 0.73
28.50 0.35 0.65 0.35 0.65 0.050 0.021 0.928 0.092 0.034 0.874 0.71 0.71
30.50 0.34 0.66 0.34 0.66 0.049 0.022 0.929 0.089 0.035 0.876 0.69 0.70
32.25 0.33 0.67 0.33 0.67 0.049 0.021 0.930 0.086 0.035 0.878 0.68 0.68
34.00 0.32 0.68 0.32 0.68 0.047 0.021 0.931 0.084 0.036 0.880 0.66 0.67
36.00 0.31 0.69 0.31 0.69 0.046 0.022 0.932 0.081 0.036 0.882 0.65 0.65
37.75 0.30 0.70 0.30 0.70 0.044 0.023 0.933 0.078 0.037 0.885 0.63 0.64
39.50 0.29 0.71 0.29 0.71 0.042 0.023 0.935 0.076 0.038 0.887 0.62 0.63
41.50 0.28 0.72 0.28 0.72 0.041 0.023 0.936 0.073 0.038 0.889 0.61 0.61
43.25 0.27 0.73 0.27 0.73 0.039 0.023 0.938 0.071 0.039 0.891 0.59 0.60
45.25 0.26 0.74 0.26 0.74 0.037 0.024 0.939 0.068 0.039 0.893 0.58 0.59
47.00 0.25 0.75 0.25 0.75 0.036 0.024 0.939 0.065 0.040 0.895 0.57 0.58
49.00 0.23 0.77 0.24 0.76 0.035 0.024 0.941 0.063 0.040 0.897 0.56 0.57
51.00 0.22 0.78 0.23 0.77 0.033 0.024 0.944 0.060 0.041 0.899 0.55 0.55
53.00 0.21 0.79 0.22 0.78 0.031 0.023 0.946 0.058 0.041 0.901 0.53 0.54
55.00 0.20 0.80 0.21 0.79 0.029 0.023 0.948 0.055 0.042 0.903 0.52 0.53
57.00 0.19 0.81 0.20 0.80 0.028 0.024 0.948 0.052 0.042 0.905 0.51 0.52
59.00 0.18 0.82 0.19 0.81 0.027 0.024 0.949 0.050 0.043 0.908 0.50 0.51
61.25 0.17 0.83 0.18 0.82 0.025 0.024 0.951 0.047 0.043 0.910 0.49 0.50
63.50 0.16 0.84 0.17 0.83 0.023 0.024 0.952 0.044 0.044 0.912 0.48 0.49
65.75 0.15 0.85 0.16 0.84 0.022 0.025 0.953 0.042 0.044 0.914 0.47 0.48
68.25 0.14 0.86 0.15 0.85 0.020 0.025 0.955 0.039 0.045 0.916 0.46 0.47
70.75 0.13 0.87 0.14 0.86 0.019 0.025 0.956 0.037 0.045 0.918 0.45 0.46
73.25 0.12 0.88 0.13 0.87 0.017 0.024 0.958 0.034 0.046 0.920 0.44 0.45
76.00 0.11 0.89 0.12 0.88 0.016 0.025 0.959 0.031 0.047 0.922 0.43 0.44
79.00 0.10 0.90 0.11 0.89 0.014 0.026 0.960 0.029 0.047 0.924 0.42 0.43
82.00 0.09 0.91 0.10 0.90 0.013 0.025 0.962 0.026 0.048 0.926 0.41 0.42
85.50 0.08 0.92 0.09 0.91 0.011 0.025 0.964 0.024 0.048 0.928 0.40 0.41
89.25 0.07 0.93 0.08 0.92 0.010 0.026 0.964 0.021 0.049 0.930 0.39 0.40
93.25 0.06 0.94 0.07 0.93 0.008 0.025 0.966 0.018 0.049 0.933 0.38 0.39
98.00 0.05 0.95 0.06 0.94 0.007 0.026 0.967 0.016 0.050 0.935 0.37 0.38
103.25 0.04 0.96 0.05 0.95 0.005 0.027 0.968 0.013 0.050 0.937 0.35 0.36
109.75 0.03 0.97 0.04 0.96 0.004 0.025 0.972 0.010 0.051 0.939 0.34 0.35
117.75 0.02 0.98 0.03 0.97 0.003 0.027 0.970 0.008 0.051 0.941 0.33 0.34
128.75 0.01 0.99 0.02 0.98 0.002 0.028 0.971 0.005 0.052 0.943 0.31 0.32
147.25 0.01 0.99 0.01 0.99 0.001 0.027 0.972 0.003 0.052 0.945 0.28 0.29
150.25 0.006 0.994 0.009 0.991 0.001 0.027 0.972 0.002 0.052 0.945 0.27 0.29
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t/ns x1,sim x2,sim x1,ana x2,ana y1,sim y2,sim y3,sim y1,ana y2,ana y3,ana ζsim ζana

153.25 0.006 0.994 0.008 0.992 0.000 0.027 0.973 0.002 0.052 0.945 0.27 0.29
156.75 0.005 0.995 0.007 0.993 0.000 0.027 0.973 0.002 0.052 0.946 0.26 0.28
165.75 0.004 0.996 0.005 0.995 0.000 0.027 0.973 0.001 0.053 0.946 0.25 0.27
171.50 0.005 0.995 0.004 0.996 0.000 0.027 0.973 0.001 0.053 0.946 0.24 0.26
189.50 0.004 0.996 0.002 0.998 0.000 0.027 0.973 0.001 0.053 0.947 0.22 0.25
207.75 0.003 0.997 0.001 0.999 0.000 0.027 0.973 0.000 0.053 0.947 0.189 0.229
210.50 0.0038 0.996 0.0009 0.9991 0.000 0.028 0.972 0.000 0.053 0.947 0.185 0.226
213.50 0.0032 0.997 0.0008 0.9992 0.000 0.026 0.974 0.000 0.053 0.947 0.181 0.223

TABLE X. Comparing the deviation between the analytical solution liquid density time evolution to the NEMD simulation’s,
justifies the assumption that has been made in (33).

t/ns ρl,ana ρl,sim dev. in %

0.31 46.097 46.642 1.17
2.56 46.172 46.694 1.12
4.77 46.246 46.757 1.09
9.07 46.395 46.903 1.08
21.33 46.842 47.348 1.07
25.27 46.991 47.495 1.06
29.16 47.140 47.643 1.06
38.86 47.513 48.018 1.05
48.76 47.885 48.375 1.01
50.81 47.960 48.448 1.01
54.99 48.109 48.577 0.96
57.14 48.183 48.663 0.99
59.34 48.258 48.719 0.95
61.60 48.332 48.776 0.91
63.91 48.407 48.859 0.92
66.30 48.481 48.913 0.88
68.77 48.556 48.974 0.85
71.34 48.630 49.053 0.86
74.02 48.705 49.104 0.81
86.31 49.003 49.346 0.70
89.95 49.078 49.407 0.67
93.93 49.152 49.448 0.60
103.33 49.301 49.561 0.52
109.09 49.376 49.610 0.47
116.00 49.450 49.636 0.37
124.71 49.525 49.672 0.30
136.73 49.599 49.699 0.20
156.85 49.674 49.723 0.10
163.25 49.689 49.730 0.08
171.47 49.703 49.720 0.03
176.67 49.711 49.718 0.01
183.01 49.718 49.741 0.04
191.17 49.726 49.740 0.03
202.65 49.733 49.740 0.01
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