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Abstract 

We examine the centroaffine geometry of Tchebychev surfaces. We 

introduce regular and singular surfaces. By understanding the local 

integrability conditions, we will classify the centroaffine Tchebychev 

surfaces of constant curvature metric. 
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1 Introduction 

1.1 Centroaffine Geometry 

Let M be a connected oriented manifold of dimension n. A hypersurface im- 

mersion x: M" —> R"t? is called centroaffine, if the position vector is nowhere 

tangent to the surface. For centroaffine hypersurfaces, the second directional 

derivative V? of the position vector « can be decomposed as follows: 

Vydax(V) = dz(VyV) + h(U,V)(—2), U,V €T(TM). 

This is the Gauss structure equation. V is called the induced connection, h 

the centroaffine metric. We assume h to be semi-Riemannian, so it defines 

raising and lowering (°) of indices as well as || - || on tensors. Its Levi-Civita 
connection and curvature tensor will be denoted by V, R, respectively. Let



_V* denote the conormal connection. We define the (1,2)-difference tensor C’ 

by 
1 wi 

C= g\V-W)=V-VaV-V 

The (0, 3)-tensor C” is called the cubic form of the hypersurface. The Tche- 
bychev form T” is obtained by contracting C: 

nT” (&) = S> Cy;7. 

j=l 

T is called centroaffine Tchebychev vector field and is linked to the equiaffine 

support function p at 0 by 

pant? 
  grad log |p]. 

n 

Finally, we define the totally symmetric traceless cubic form C’ introduced by 

U. Simon by 

CU, V,W) =0U,V,W) - —S(P WW), V) + 
T’ (V)h(W,U) + T*(U)A(V, W)). 

  

In centroaffine geometry we have the following integrability conditions ([5], 
6.3.3.3): 

C” is totally symmetric, (1) 

R(U,V)W = C(C(U, W),V) — C(C(V, W), U) + 
AV, W)U — h(U, W)V, (2) 

VC’ is totally symmetric. (3) 

1.2 Centroaffine Tchebychev surfaces 

A centroaffine hypersurface is called Tchebychev, if the Tchebychev vector 

field T of x is conformal. As T is always closed [5, 4.4.8], this is equivalent to 

VxT = AX 

for any X €T(TM). dis called the (normalised) centroaffine divergence of T. 
For motivation of these definitions cf. [3]. Here are the known examples: 

(a) Proper affine spheres (J' = 0) with centroaffine origin in their center. 
~ 

(b) Quadrics (characterised by C' = 0) with origin chosen arbitrarily. 
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(c) Centroaffine canonical hypersurfaces (VC’ = 0 and his flat). For 
indh < 1, there is a classification in [2]. 

(d) The family of centroaffine noncanonical (Vor # 0) flat Tchebychev sur- 
faces: | 

e(t,s) = (a(s) e() b(s) eo, efl)), 

where a, 6 are linearily independent and c’,d' 4 0. 

For n = 2, Tchebychev surfaces with A = 0 as well as those with vanishing 

centroaffine Gauss curvature K = K are classified. In the first case, the 

complete list is given by (a), (c), (d) above ({3, Theorem 4.1]), whereas in the 
second the list is (c), (d) ([3, Theorem 4.2]). 

2 Regular and Singular Tchebychev Surfaces 

Let x: M? — R® be a Tchebychev surface with ||T||? 4 0 on M. In semi- 
Riemannian geometry, a conformal vector field which is either space- or ti- 

melike is called inessential. 

2.1 Local Integrability Conditions 

We apply [1, Lemma 2.7] which states that locally the existence of a closed 

conformal vector field is equivalent to a warped product structure of the 

manifold. In dimension n = 2 the fiber manifold is a curve. We assume — 

centroaffine arc length parametrisation by s. The induced Gauss basis {0;, 0, } 
is unique up to sign. From now on we will abbreviate 0; by ’. With the 

notation f := log |p| we get 

h = ndt@dt + ef'(t)?ds@ds 

for € = +1. The Tchebychev vector field of x is T = grad f = 7 f’0;. For the 

Tchebychev-Operator and 1 <2<n-—1 we get 

Vil = nf"; = f' Vik ae ViT. 

The general formula reduces to \ = nf”. Calculating V and K we get 

i 

V +01 = 0, V 10s = V sOt = “fr Oo 

K=-nX. - (4) 

V30s = —nef! fOr, 

For complete determination of the centroaffine geometry we introduce the 

cubic form C” and collect integrability conditions. 
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2.1.1 Integrability condition (1) 

This means C’ has four essential components C111, Cy12, C122, Cove. . For 

tensor indices we use 1, t and 2, s synonymously. By definition of T’ we have 

a “partial apolarity”: 

Cy + Ci” = 2f", or nC +€(f')77Cix2 = 2f", (5) 

Coy? > Goo" = 0, or 7) C12 + € (f')~?Co20 == i, (6) 

2.1.2 Integrability condition (2) 

Writing (2) in coordinate form we observe that all symmetries of Rare built 
into the formula. For n = 2, curvature tensors posess only one essential 

component Rios = Kdeth. Therefore, (2) is equivalent to the following 

equation: 

K deth = Riots = C12 Ch21 + C1n" C91 _ Co9'C111 ~ CoC 211 + hiihep. 

(7) 
Elimininating Cyo2 and Co from (7) using (5), (6) we obtain 

; 3 2 1 1 
2 12 ! _ = £l2 aa fle 

e(Ci12) + nf (Cin — 57’) == af (K + ait 1), (8) 

We introduce 

1 1 12 4 1 12 r(t) := alk + of —-12?, v:= sen(K + Saf — 1). (9) 

In the following distinction, we do not have to discuss isolated zeros of r since 

they resemble a closed set without inner points. 

Definition. We call a Tchebychev surface x with ||T||? 4 0 regular if r > 0, 
and singular if r = 0. 

2.1.3 Integrability condition (3) 

Because of (1) the total symmetry of VC” is equivalent to 

(ViC*) (0. °,-) = (VsC*) (@, +5”). 
Inserting (O;, 0), (Q,0s) and (0,,0,) into the free slots yields 

i 

ACi2 + 25 Cu = 0,0, (10) 

C122 — enf' f" Ci = 0;C 112, (11) 
" 

OC 22 — oF Cory — 2enf' f" Cue = OsCi22. (12) 
f'



By eliminating Cio2 and Co. through (5), (6) we realize the equivalence of 

(10) and (12). Only two PDE remain: 

OC 12 + 25 Cm = 0,Ci1, (13) 

Bef f"(2f’ —n Cin) = OsCue + enf’? Cin. (14) 

Lemma 2.1. (i) The components of C read 

~ 4 ~ 
Cin = Cin - gis Cie = C12, 

os 1 ~ 
Cho = Choe —- ee C22 = C222, 

(ii) ||C||? = 4vr?. 

Proof. Straightforward calculations. | O 

Remark 2.2. x is an open part of a quadric if and only if Cy, = 3nf', 

Cy. = sé f'?, Cip = Coog = 0. Obviously, the integrability conditions are 

fulfilled in this case. On the other hand, from (8) it is clear that any quadric 
is a singular Tchebychev surface. 

2.2 Regular Tchebychev surfaces 

For regular surfaces (8) takes the form 

(G2) (a) =» as 
Exemplarily we consider definite surfaces (« = 7 = v). By the substitution 

  

3 
Ci = f'rcosy, Ci =rsing+ git (16) 

for a function y = y(t, s), (15) is fulfilled automatically. (13) and (14) modify 
as follows: 

weosp = f'sinydy + cosyd,y, (17) 

—wsiny = f'cospdy — sinyd,y (18) 

for the function w(t) := f’r’/r + 3f”. Consider (17), (18) as a linear system 
in the partials. This system always has a unique solution: 

9=0, Op = w(t). 
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We get y = y(s) = ws +c for some constant c € [0,27) and w = const. 
Considering c as a variable we obtain a 1-parameter family of Tchebychev 

surfaces ([3, Theorem 5.1]). For indefinite surfaces (e7) = —1) the considera- 
tions are analogous. Depending on the sign ev we substitute sinh y, cosh y 

and choose c € R. Using (4) the condition w = const leads to 

fO — Sn f"K —4f?f" + 6nf" + wf? +2nw(K -1)=0, (19) 
an explicit third order ODE for f’. For given initial values there is a unique 

solution. 

Theorem 2.3. Let x: M? —> R® be a regular Tchebychev surface. Up to 

centroaffine equivalences and the freedom in to, « ts uniquely determined by 

the set of data 

(n, €, to, f' (to), f" (to), f" (to), Cc). 

Remark 2.4. (i) The three initial conditions are not arbitrary in R’, since 

e.g. in the definite case v(t)) = 7 = € is a must. 

(ii) The data sets (-,-,-,b 4 0,0, 0, -) exactly resemble the (regular) flat Tche- 

bychev surfaces (c), (d) from subsection 1.2, since = 0 if and only if 
f" = 0 and since f’ = b = const is the unique solution of (19) for the 

given initial conditions. 

(iii) There are no Tchebychev surfaces which induce a nontrivial homotheti- 
cal Tchebychev vector field on M: On an open set U C M with ||T||* 40 
from 0 4 const = A = nf” we get f’(t) = nAt+¢. Because of K = 0 and 
(9) this surface would be regular. The linear /’ leads to a contradiction 
in (19). 

Theorem 2.5. A regular Tchebychev surface has flat centroaffine metric af 

and only if ||C||? = const: 

Proof. Due to 2.1.ii ||C'||? = const is equivalent to r’ = 0 or w = 3f” = const, 
which in turn is equivalent to K = 0. O 

2.3 Singular Tchebychev surfaces 

For r = 0 we cannot avoid a consideration of the index of h. Singularity leads 

to the second order ODE 

1 fl os 5f” _ nf" (20) 

for f’. For definite surfaces (8) implies that Cij2 = 0 and Cy, = nf. With 

Remark 2.2 we get



Theorem 2.6. Any definite singular Tchebychev surface is an open set of a 

quadric. 

For indefinite surfaces things are more complicated. From (8) we see 

ECi2 = f'(Cin — =f") 

for some € € {—1,0,1}. As in the definite case we obtain quadrics for € = 0. 

If € #0, then the PDE (13), (14) are equivalent to 

— 6nf' f" + 3f"Cin = —f'OCiw1 + €0sCin, (21) 

a quasilinear PDE for C,;. Considering C1; as a graph surface over R? for 

uniqueness we have to desribe an “initial curve”. Thus, there are “many” 

different indefinite singular Tchebychev surfaces which — in contrast with 

Theorem 2.3 — cannot be described by a finite number of parameters. These 

non-quadric singular surfaces make that [3, Theorem 5.1] mentioned above 
cannot be generalised to indefinite metrics. 

2.4 Main Result 

The following lemma treats the class of surfaces we skipped in the preceding 

section. 

Lemma 2.7. An arbitrary centroaffine indefinite Tchebychev surface with 

null vector field T must have flat centroaffine metric. 

Proof. We use asymptotic coordinates for the metric, i.e. 

h = F(ds @ dt + dt @ ds). 

Then the Levi-Civita connection of h reads . 

FE. 
—d,. 
F 

Without loss of generality we can write T = WO; for some w € C*®(M). For 
VT we get 

~ F ~ ~ ~ 

Vide = Oh, Vi0;=V;0;=0, V0. = 

~ ~ F, 
Vit = W105, V;l'= (Ws + Wa )Os- 

The Tchebychev condition implies y, = 0, w+ WF,/F = 0, which means 

wy = ~(s) = c(t)/F(t, s) for some c € C™(R). The integrability condition of 
the system of PDE is the multiplicative separability of F’. Hence 

K = —-F~'0,0,logF =0. O



Theorem 2.8. Let x: M? — R® be a Tchebychev surface of constant curva- 

ture K. Then x 1s centroaffinely equivalent to either an affine sphere (see [4, 

Fig. 1]) or to one of the flat surfaces (c), (d) in subsection 1.2. 

Proof. (a) Suppose ||T||* = 0 on an open submanifold U of M. Then either 
T’ = 0, which chararcterises affine spheres, or T is a null vector field. In 

the latter case K = 0 follows from Lemma 2.7. 

(b) Otherwise, we apply the previous results to the Tchebychev surface 

z:U + R’. If @ is singular, then from r = 0 and K = const it fol- 

lows that f’ = const 4 0. Thus K = 0. 

(c) If zly is regular, then for K = const, « := |K|?, €:= —nsgnK € {+1} 
anda,GeER 

acoshxt+ Gsinha«t, if € =+1 and 
f(t) = (22) 

a coskt+ sinkt, if€ =—1 

solves the ODE f” = —nK f'. We assert that the system (19), (22) has 
nontrivial solutions for kK = 0 only. Therefore, we insert (22) into (19): 

6n(1— K)f" —4f'? f" + wf? + 2nw(K — 1) =0. (23) 

To treat € = +1 at one time we write co(t) := cosh xt, si(t) := sinh xt 
if € = +1 and co(t) := cosat, si(t) := sinat if € = —1. Then f’ = 
aco+fsi, f” = axési+@«co and from (23) we get using co? —£ si” = 1 

2aKé(3n(1 — K) — 2(a? + 2€87)) si + (24) 
26K(3n(1 — K) + 2(a? + €6")) co — 

dak(a? + 3&6") si® — 46%(EB? + 3a”) co® + 

w(€a* + 8?) si” + 2waBsico + 2nw(K — 1) + wa’ = 0. 

It is easy to verify that {1, si, co, sico, si’, si®, co*} is a linearily inde- 

pendent system of functions. Hence all coefficients in (24) vanish. Ele- 
mentary considerations of the coefficients of sico, si? und co® lead to 

a = 2 = 0, which contradicts the nondegeneracy of h. This proves the 

Theorem. 

~O 

Remark 2.9. In [3, Theorem 4.4] there is a global classification of the com- 
plete definite Tchebychev surfaces of constant curvature K # 0: Ellipsoids 

and hyperboloids with center 0 € R® (i.e. proper affine spheres) represent all 

possibilities. |
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