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Figure S1: Data overview. (A) Missed cleavage distribution. Stacked bar charts show the number of peptides
with 0, 1 or 2 missed cleavages per fraction. (B) Number of peptide identifications per fraction. The horizontal
line was set as cut-off - all fractions with fewer than 300 identifications were disregarded from the analysis. A
total number of 59,723 non-redundant peptides were analysed before using the cut-off.

S1 Effect Size and Retention Time Influence Differences of the Charged
Amino Acids

As established in the main text the effect size of the charged amino acids is very similar. However, the distri-
butions of peptides with 0-5 D or E residues are clearly shifted as shown in Fig. 1 of the manuscript. Table
S1 shows the average mean increase of the fraction number per peptide population with 0-5 D/E counts. On
average, a single D/E residue in the peptide sequence will shift the peptide 3 fractions. Since the effect size of
D/E is very similar (Fig. S2 B) we assume that the estimate holds for either D or E residues. On the other
hand the difference between K and R residues is more pronounced (Fig. S2 A).

Table S1: Effect of D and E residues to the retention time shift.

DE count Mean Fraction Difference to last Fraction

0 2.61 0
1 5.89 3.28
2 10.73 4.84
3 14.89 4.16
4 17.89 3
5 20.31 2.42

Note: The mean fraction was computed by first filtering all peptide identifications to sequences with 0-5 D or
E residues. For each of the five classes the mean fraction was then computed.

S2 Non-charged Amino Acid Contributions to the Retention Time

In the main text we classified the remaining amino acids as ’retaining’, ’eluting’ and ’other’. This classification
is mainly based on investigating an isolated subset of peptides with D/E residue count of 2 and K/R residue
count of 1. This subset is then used to visually and statistically infer the influence of the remaining amino
acids. As shown in Fig. S3 the number of observations of DE2, KR1 peptides is still very high and distributed
over 12 fractions. Based on these peptides we computed the average amino acid composition in each fraction
and performed linear regression analysis with the composition as dependent variable and the fraction as target
variable. Effectively, modeling the increase or decrease in the sequence composition for all 16 remaining amino
acids. The magnitude of the slope can be considered as correlation between the occurrences of amino acids and
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Figure S2: Observed fractions based on a peptide sequence filters. (A) Effect size of Lys and Arg residues. To
compare the elution strength of Arg and Lys first all peptide identifications were filtered to only include peptides
with and summed D/E residue count of 4. Then the fractions of peptides with 1, 2 and 3 K/R residues were
extracted and compared. (B) Effect size of Glu and Asp residues. To compare the retaining strength of Glu and
Asp first all peptide identifications were filtered to only include peptides with exactly two D or two E residues.
For these two sub-populations then the peptides with 1, 2 and 3 K residues were compared. Significance tests
were performed using the Mann-Whitney-U-Test.
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Figure S3: Sub-population of peptides with an D/E 2 and K/R 1 count. (A) The distribution of peptide
occurrences is shown depending on the observed fraction. Fractions below 8 and higher than 21 all contained
less than 1% (92) of the total number of observations (9,199) and were removed for further analysis. (B) Based
on the average composition of the peptides from (A) 20 linear regression models (for each amino acid one)
were fitted on the target variable (fraction number) and the dependent variable (average amino acid sequence
composition). The slopes of the regression model are shown as bars. Amino acids that have an retaining effect
are expected to have a positive slope, amino acids that have an eluting effect are expected to have a negative
slope.

a shifted retention time. For large positive slopes, we expected the amino acids to have an retaining effect on
the retention time. For large negative slopes, we expected the amino acids to have an eluting effect, see Fig.
S3B. The linear regression model was also used to perform a significant test on the slope of the fitted model:
with H0 assuming that the slope is equal to zero and H1 assuming that the slope is not equal to zero. The
test results and fitted lines are visualized in Fig. S4. Based on this we broadly classified the remaining amino
acids into retaining contributions (F, W, Y), eluting contributions (P, A, S, V, Q, T) and non-clear or other
contributions (L, I, G, N, M, C, H).
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Figure S4: Classification of non-charged amino acid effects on the retention time based on linear regression. As
described in Supplementary Fig. S3 linear regression models were fit to the sequence composition data from
peptides with an D/E 2 and K/R 1 count. In addition, a simple test with H0: the slope of the regression model
is equal to zero was performed using SciPy. The aromatics F, W, and Y yield significant results and have a
potentially large retaining effect. The amino acids P, A, S, V, Q and T also show a significant test results after
Benjamini-Hochberg correction [1], but for having an eluting effect. For the amino acids L, I, G,M, N and H
the slope of the regression model was not significantly different from zero and were thus classified as ambiguous
(’other’).
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Figure S5: Peptide length influence on the retention time. In each panel a subset of peptides is first extracted
(e.g. DE:1 KR:1 first filters all peptides with exactly one D or E residue and exactly one K or R residue). A
minimum number of observations of 300 peptides was required per category. The Avg Length represents the
mean peptide length of all peptides in a selected fraction.

Figure S6: Peptide counts across all fractions with 0,1,2 or 3 WYF residues. In addition to the applied FYW
filter all peptides have 2 D/E residues and 1 K/R residue.

S3 Machine Learning - Training, Prediction and Evaluation

Overview

We are interested in learning and predicting the interaction of peptides with the hSAX column - based on the
peptide sequence we want to be able to predict when the peptide will elute. Initially, we used a set of classifica-
tion algorithms in our pre-experiments. The selection of regression methods includes: simple linear regression
including the length correction parameter (lcp) with only the 20 amino acids as features (’Pyteomics’) [3], a
linear regression model with all designed features (Supplementary Table S2), ridge regression, lasso regression,
support vector machine regression (SVR) and random forest regression. The selection of classification algo-
rithms includes: feedforward neural network (FNN, Keras implementation with the Theano backend), logistic
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regression, random forest, gradient boosting (python package XGBoost1 [2]) , a support vector machine (SVM)
and ordinal logistic regression (python package MORD2 [7]). Except for Pyteomics, the FNN, MORD and
XGBoost the scikit-learn3 [6] implementations were used.

Input Features

An essential part of classical machine learning algorithms is the engineering of features. Based on initial
observations and by investigating the literature we came up with 218 features to summarize the properties
of a peptide that might govern retention. These features are summarized in Table S2. Similar to ELUDE
and SSRCalc we used hydrophobicity features, consecutive occurrences of amino acids [5] and position specific
features for the 20 amino acids [4].

Hyper-parameter Optimization

The above mentioned machine learning algorithms all require a fine tuning of their parameters to achieve the
best possible performance (hyper-parameter optimization). Our workflow for optimization, testing and valida-
tion the best parameters was as follows: (1) grid search for optimal hyper-parameters with 5-fold cross-validation
(CV), (2) selection of the best set of parameters for each classifier based on the achieved accuracy on the test
data and (3) validating the best performing classifier on a hold-out validation set that was never used for train-
ing. Table S3 gives and overview of the grid search for hyper-parameter optimization. Table S4 summarizes the
results for each classifier with the best set of parameters. The best performing classifier was a a feedforward
neural network implementation with an CV accuracy of 70± 0.81% (mean ± standard error of the mean). The
linear regression models achieved the lowest accuracy on the test sets with 19% ± 0.002. Pyteomics and the
corresponding linear model (lcp) with a minimal set of features were not included in the grid search.
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Figure S7: Mean weights from the input layer to the first hidden layer in the FNN. The X-axes indicates
the position of an residue in the peptide sequence. The weights are derived from training the FNN on the
complete training data (Accuracy: 0.74, Correlation: 0.95). Abbreviations: N - peptide N-terminal, C - peptide
C-terminal, I - internal. The numbers indicate the distance to the respective termini.

1https://github.com/dmlc/xgboost
2https://pythonhosted.org/mord/
3http://scikit-learn.org/stable/
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Table S2: Extracted Features and their description.

Feature Description Total Features

AAcount Amino acid counts of all 20 amino acids 20
N[AA]1-5 Amino acid counts encoding the n-terminal positions from 1-5. 100
C[AA]2-5 Amino acid counts encoding the c-terminal positions from 2-5. N-

term was excluded as mostly R/K was observed.
80

CtermK/R Indicator if Lysine is the C-Terminal Residue 2
Patterns Counts the number of coherent amino acid patterns in the pep-

tide sequence of different classes: acidic, basic, aromatics, mixed
(acidic+basic) patterns. For example DD, KR, WW, DK.

4

Structural Features Percentage of amino acids from the sequence that are preferably in
the following secondary structure elements: Helix: V, I, Y, F, W, L.
Turn: N, P, G, S. Sheet: E, M, A, L.

3

Gravy Gravy according to Kyte and Doolittle. 1
pI Isoelectric point of the peptide sequence. 1
loglength Natural logarithm of the peptide length. 1
Netcharge Defined as sum of the acidic residues (-1 each), basic residues (+1)

and the aromatics F (0.3), W (0.8) and Y (0.6) in a peptide sequence.
1

N-/C-Term distance Shortest distance of E/D to the C-term and shortest distance of K/R
to the N-term.

2

TurnIndicator Average distance between Proline residues in the sequence. 1
Sandwich Aromatic patterns that are separated in sequence by one amino acid,

e.g. WXY.
1

Aromaticity Percentage of amino acids belonging to WFY. 1

Total number of features 218

Note: The count features were scaled with a length correction parameter (lcp).

Table S3: Initial parameter grid for hyper-parameter optimization

Classifier Parameter Grid

ORL IT ’alpha’: [0.1, 0.3, 0.5, 0.7, 0.9]
Lasso ’fit intercept’: [True, False], ’alpha’: [0.1, 0.3, 0.5, 0.7, 1], ’normalize’: [True,

False]
LinearRegression ’fit intercept’: [True, False], ’normalize’: [True, False]
Ridge ’fit intercept’: [True, False], ’alpha’: [0.1, 0.3, 0.5, 0.7, 0.9], ’normalize’: [True,

False]
SVM [’C’: [0.1, 1, 10], ’kernel’: [’linear’], ’class weight’: [None, ’balanced’], ’C’: [0.1, 1,

10], ’gamma’: [0.001, 0.0001], ’kernel’: [’rbf’], ’class weight’: [None, ’balanced’]]
OLR AT ’alpha’: [0.1, 0.3, 0.5, 0.7, 0.9]
RandomForestClassifier ’n jobs’: [20], ’n estimators’: [100, 500], ’max features’: (’log2’, ’auto’),

’max depth’: (None, 4, 7), ’min samples split’: (2, 15)
XGB ’reg alpha’: [0.01, 0.5, 1], ’n estimators’: [300, 500], ’gamma’: [0, 0.1, 1],

’max depth’: [3, 5, 9], ’reg lambda’: [0.01, 0.5, 1], ’nthread’: [20], ’learning rate’:
[0.1, 0.05]

RandomForestRegressor ’n jobs’: [20], ’n estimators’: [100, 500], ’max features’: (’log2’, ’auto’),
’max depth’: (None, 5, 15), ’min samples split’: (2, 15)

LogisticRegression ’C’: [0.01, 0.1, 1, 10], ’multi class’: [’ovr’, ’multinomial’], ’n jobs’: [20], ’solver’:
[’newton-cg’], ’class weight’: [None, ’balanced’]

Note: The parameter grid was searched exhaustively with all combinations. The definition of each parameter
is available via the documentations of scikit-learn, MORD and XGBoost. The neural network architecture was
optimized manually.
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Table S4: Best Results after hyper-parameter optimization with 5-fold cross-validation.

Classifier Best Parameters Train Accuracy (%) Test Accuracy (%)

FNN ’layer’: 4, ’neurons’: [50, 40, 35, 29], ’ac-
tivation’:[’relu’, ’tanh’, ’relu’, ’softmax’],
’batch size’:512, ’epochs’: 100

79 ± 1.27 70 ± 0.81

SVC ’class weight’: None, ’C’: 10, ’kernel’: ’lin-
ear’

64 ± 0.17 53 ± 0.19

SVR ’C’: 10, ’kernel’: ’rbf’, ’gamma’: ’auto’, ’ep-
silon’: 0.1

52 ± 0.06 50 ± 0.26

XGBClassifier ’n estimators’: 300, ’learning rate’:
0.1, ’reg lambda’: 0.01, ’reg alpha’: 1,
’max depth’: 9, ’nthread’: 25, ’gamma’:
0.1

100 ± 0.0 47 ± 0.32

XGBRegressor ’n estimators’: 300, ’learning rate’: 0.1,
’reg lambda’: 0.01, ’reg alpha’: 0.01,
’max depth’: 9, ’nthread’: 25, ’gamma’:
0.1

67 ± 0.17 46 ± 0.31

RF-Classifier ’max features’: ’auto’, ’n jobs’: 20,
’n estimators’: 500, ’min samples split’: 2,
’max depth’: None

100 ± 0.0 43 ± 0.33

LogisticAT ’alpha’: 0.5 43 ± 0.14 43 ± 0.18
RF-Regressor ’max features’: ’auto’, ’n jobs’: 20,

’n estimators’: 500, ’min samples split’: 2,
’max depth’: None

77 ± 0.04 42 ± 0.19

LogisticRegression ’solver’: ’newton-cg’, ’multi class’: ’multi-
nomial’, ’C’: 10, ’class weight’: None,
’n jobs’: 20

48 ± 0.07 40 ± 0.2

LinearRegression ’fit intercept’: True, ’normalize’: False 19 ± 0.15 19 ± 0.36
Ridge ’alpha’: 0.1, ’normalize’: False,

’fit intercept’: True
19 ± 0.15 19 ± 0.34

Lasso ’alpha’: 0.1, ’normalize’: False,
’fit intercept’: True

14 ± 0.07 14 ± 0.06

Note: The grid search results are based on 5-fold cross-validation and sorted after the test accuracy in
descending order. Values in the accuracy column represent the mean and standard error of the mean from the
CV. A full explanation of the parameters is available through the scikit-learn documentation. Abbreviations:
SVC - Support Vector machine Classification, OLR - Ordinal Logistic Regression, AT - All-Threshold, IT -
Immediate-Threshold, RF - Random Forest, FNN - Feedforward Neural Network.
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