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Introduction

The objective of the present thesis is to study the small-time asymptotic behavior of diffusion processes

on general state spaces. In particular we want to determine the convergence speed of the weak law

of large numbers, so we study the asymptotics on an exponential scale, as developed starting with

the pioneering work of Cramér [C] (but already Khinchin [Kh] used in the early 1920s the notion of

’large deviations’ for the asymptotics of very improbable events). Moreover, we are interested in the

behavior of the whole path of the diffusion. So we consider a diffusion process (Xt) on the state space

X , and define the family of diffusions (Xε
t ), ε > 0, Xε

t = Xεt. For this family of sample paths we want

to prove large deviation principle

− inf
ω∈A◦

I(ω) ≤ lim inf
ε→0

ε logPµ[Xε
· ∈ A] ≤ lim sup

ε→0
ε logPµ[Xε

· ∈ A] ≤ − inf
ω∈A

I(ω)

for any measurable set A in the space of sample paths Ω := ([0, 1];X ), with some rate function I

which will be determined.

First results in this direction were achieved by Varadhan [Va67b], who proved the small-time asymp-

totics on an exponential scale for elliptic, finite-dimensional diffusion processes. Generalizations to

the hypoelliptic case can by found in Azencott [Az81]. Schilder’s Theorem for Brownian motion can

be understood as predecessor. It states that for a Brownian motion (Wt) it holds that

− inf
ω∈A◦

I(ω) ≤ lim inf
ε→0

ε logP [W ε
· ∈ A] ≤ lim sup

ε→0
ε logP [W ε

· ∈ A] ≤ − inf
ω∈A

I(ω)

with rate function

I(ω) =

{
1
2

∫ 1
0 |ω

′(t)|2 dt ω ∈ H;

∞ otherwise,

where H is the Cameron Martin space of absolutely continuous functions with square integrable deriva-

tives. By the scaling
√
εW· ∼Wε· it is equivalent to a statement of large deviations for an

√
ε-spatial

scaling of Brownian motion (cf. [DZ], Chapter 5.2).

Our aim is now to extend this kind of results, assuming merely that X is a Polish space. In particular

we do not assume that it is finite-dimensional or locally compact. Some results for specific processes

in this setting were already proved, e.g for the Ornstein-Uhlenbeck process on abstract Wiener spaces

(Fang and Zhang, [FZ99]), the Brownian motion on loop groups (Fang and Zhang, [FZ01]), super-

Brownian motion (Schied, [Sch96]), diffusions on configuration spaces (Zhang, [Z01]; Röckner and

Zhang, [RZ]; compare also Röckner and Schied, [RSchi]), diffusions on Hilbert spaces (Zhang, [Z00])

iii
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and Fleming-Viot processes (Xiang and Zhang, [XZ]). All these papers have in common that their

techniques of proof, in particular for the central property of exponential tightness, are very specific

and adjusted to these concrete settings. Our goal is to develop a general approach which does not

depend on the specific setting.

The only restriction we pose from the beginning is that we restrict ourselves to diffusion processes

generated by symmetric Dirichlet forms. Dirichlet forms, introduced by Beurling and Deny [BD] in a

pure analytical/potential theoretic context, are for us of interest due to their connections to stochastic

processes. The relation between strong Markov processes and Dirichlet forms was first pointed out

by Fukushima [Fu], a detailed analysis on this association was given by Albeverio, Ma and Röckner

([AM91], [AM92] and [MR]).

A cornerstone in our treatment are the available results on Varadhan’s principle on Dirichlet spaces.

This principle, the logarithmic (integrated) heat-kernel asymptotics in small time, goes back to Varad-

han [Va67a], who proved it for finite-dimensional elliptic operators. Important generalizations are, e.g.,

due to Léandre (for the hypoelliptic case, [L87a] and [L87b]) and Norris (on Lipschitz Riemannian

Manifolds, [No]); sharp bounds are due to Carlen, Kusuoka and Stroock [CKS] and Davies [D]. The

result for Dirichlet spaces over a probability space was proved by Hino and Ramı́rez [HR], based on

earlier, independent work of both authors ([H] and [Ra]) and preceeding results for abstract Wiener

spaces (Aida and Kawabi, [AK]) and path groups (Aida and Zhang, [AZ]). A generalization to general

σ-additive measure spaces was given by Ariyoshi and Hino [AH].

The generality of our approach clarifies also the geometry implied by Dirichlet forms and their asso-

ciated diffusions. Stroock [St] claimed in his review of the books of Fukushima, Oshima and Takeda

[FOT] and Ma and Röckner [MR] for the Bulletin of the American Mathematical Society that

Sometimes the value of a theory is that it allows progress even in the absence of un-

derstanding, and, in many of its applications, that is precisely what the theory of Dirichlet

forms does allow.

While ironically exaggerated, Stroock’s claim is not completely false. One essential point in under-

standing Dirichlet forms, is to understand the geometry which they generate. In the case of local

Dirichlet forms over locally compact spaces, this understanding was achieved by Sturm ([S94], [S95a],

[S95b] and [S96]). We hope that by introducing a concept of pointwise distance also in the case of

non-locally compact state spaces, we can lay the ground for a better understanding of the geometry

of Dirichlet forms also in this broader setting.

The first part of the thesis is devoted to the proof of the small-time large deviation principle for the

sample paths of a diffusion on a Polish space with invariant probability measure. After a description

of the setting the setting (Section 1), we explore in Section 2 the geometry associated to the Dirichlet

form. We introduce a convenient notion of pointwise distance and give convenient sufficient conditions

under which it is compatible with the notion of a setwise distance introduced by Hino and Ramı́rez

[HR]. This enables us to define the notions of length and energy of a path on the state space and

give also an alternative description of energy. Section 3 discusses the associated Markov process. We

derive with Lemma 6 a crucial result for further work, based on techniques using the forward-backward

martingale decomposition by Lyons and Zheng [LZhe]. The main result is achieved in Section 4: First
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we discuss the important property of exponential tightness and give with Assumption (D) a useful

criterion under which exponential tightness is satisfied: the distances from sets of a compact exhaus-

tion of the state space have to increase towards infinity outside of increasing sets of the exhaustion.

A central argument in the proof is the exponentially fast Jakubowski criterion and the exponential

Hölder estimate by Schied [Sch95]. Based on this fact we derive then the upper bound of a large

deviation principle for the whole sample paths. The last part of this section provides an integral

representation of the rate function in terms of metric derivatives of absolutely continuous curves in

the sense of Ambrosio, Gigli and Savaré [AGS05]. Section 5 treats the degenerate case where the

set-distance is not even square integrable and discusses under which conditions the large deviation

principle can be achieved nevertheless.

The second part of this work is devoted to concrete examples. First we take up the case of the

Ornstein-Uhlenbeck process on abstract Wiener spaces, already treated by Fang and Zhang [FZ99].

Using earlier results by Hirsch [Hir] and a Rademacher theorem by Enchev and Stroock [ES] (compare

also the preceding results by Kusuoka, [Kus82a] and [Kus82b]), the proof of our assumptions reduces

to topological arguments. This applies also to the case of linear unbounded drifts, generated by a

strongly elliptic operator. The second example is the Wasserstein diffusion on the space of probability

measures on the unit interval, as introduced by von Renesse and Sturm [vRS]. We discuss first the

construction of this process - relying on the isometry of the space of probability measures to the space

of quantile functions - motivated by questions of optimal transportation. Then we prove the pathwise

small time asymptotics for both processes, the diffusion on the space of quantile functions as well as for

the Wasserstein process on the space of probability measures itself. Unifying this separate results, we

show the relation between Fréchet derivatives on the space of quantile functions and tangent velocity

fields along paths on the space of probability measures. Besides some concrete examples, we discuss

also the question of the existence of a flow of probability measures along sample paths.

Four appendices conclude the present work. The first one gives some results on backward martingales

and recalls the forward-backward martingale decomposition by Lyons and Zheng. The second one dis-

cusses contraction principles for large deviations and the Dawson-Gärtner theorem for large deviations

of projective limits, the third one a lemma for the forthcoming proof of the lower bound. And the

last one gives some results on the geometry in the case of Dirichlet forms over σ-finite measure spaces.

Following Ariyoshi and Hino [AH], the notion of intrinsic metric has to be generalized in this case.

Interestingly, in the case of locally compact state spaces this generalization of the intrinsic metric does

not change the notion of energy of a sample path. To make the reading of the present work more

convenient, we also provide a list of symbols.
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Chapter 1

Setting

First we give the setting in which we will work in the first part of the present text. Only in Section

D we will relax these assumptions to explore the chance of generalizations.

We consider a probability space (X ,B, µ) where X is a Polish space and B is the induced Borel-σ-

algebra. Let L be an unbounded, self-adjoint and negative defined operator on L2(X , µ) with domain

D(L) (i.e. 〈Lf, g〉L2(µ) = 〈f, Lg〉L2(µ) and 〈Lf, f〉L2(µ) ≤ 0 for all f , g ∈ D(L)) associated with a

strongly continuous semigroup of operators (Tt), Tt = etL for t > 0, which is sub-Markovian, i.e.

0 ≤ f ≤ 1 implies 0 ≤ Ttf ≤ 1 for each t > 0 and f ∈ L2(X , µ). Further let (E , D(E)) be the

corresponding symmetric Dirichlet form, defined as the closure of

E(f, g) := 〈−Lf, g〉L2(µ) , f, g ∈ D(L).

We use the shorthand E(f) to abbreviate E(f, f). The Dirichlet space D(E) is endowed with the inner

product

〈f, g〉E := 〈f, g〉L2(µ) + E(f, g),

and thus a Hilbert space. The associated norm ‖f‖E := 〈f, f〉
1
2
E is called the E-norm.

We suppose that the Dirichlet form (E , D(E)) is quasi-regular, admits an opérateur carré du champ

Γ, is conservative and satisfies the local property. To make these assumptions concrete:

• Carré du champ: We say that a Dirichlet form (E , D(E)) admits a carré du champ operator, if

there exists a subspace D(Γ) ⊆ D(E) ∩ L∞(X , µ), dense in D(E), such that for all f ∈ D(Γ)

there exists a function γ ∈ L1(X , µ), such that for all µ-a.e. bounded h ∈ D(E)

2E(fh, f)− E(h, f2) =

∫
X
hγ dµ.

In this case, there exists a unique continuous bilinear form Γ : D(E)×D(E) → L1(X , µ), such

that for all µ-a.e. bounded f , g, h ∈ D(E)

E(fh, g) + E(gh, f)− E(h, fg) =

∫
X
hΓ(f, g) dµ. (1.1)

3



4 CHAPTER 1. SETTING

For Γ(f, f) we use the shorthand Γ(f). In particular, if for all f ∈ D(Γ) it is the case that

f2 ∈ D(L), then our notion of the carré du champ operator boils down to the classical case

where

Γ(f, g) = L(fg)− fLg − gLf

for all f , g ∈ D(Γ) (compare [BH], Chapter I.4).

• Quasi-regularity: We define the capacity Cap1(·) for U ⊆ X , U open, as

Cap1(U) := inf{‖w‖E : w ∈ D(E), w ≥ 1 µ-a.e. on U},

and for general A ⊆ X

Cap1(A) := inf{Cap1(U) : A ⊆ U ⊆ X , U open}.

Note that Cap1 is a Choquet capacity and µ(A) ≤ Cap1(A) for all A ∈ X . We say that a

property holds E-quasi-everywhere, if it holds on X \N for some exceptional set N of capacity

zero. A function f ∈ D(E) is said to be E-quasi-continuous, if for all ε > 0 there exists a set

G ⊆ X with Cap1(X \G) < ε, such that the restriction of f to G is continuous. And a Dirichlet

form is called quasi-regular, if it satisfies the following three conditions.

i) There exists an increasing sequence (Ek)k∈N of compact sets (called compact E-nest), such

that Cap1(X \ Ek) tends to zero for k →∞.

ii) There exists an ‖ · ‖E -dense subset of D(E) whose elements have E-quasi-continuous µ-

versions.

iii) There exists a countable family U = (un), un ∈ D(E), and a set a set N of zero capacity,

such that the family (ũn) of E-quasi-continuous µ-versions of the elements of U separates

points on X \N .

In addition, we will impose a further assumption:

Assumption (BC). The family U can be chosen such that its elements have µ-a.e. bounded

carré du champ.

• Conservativeness: We say that a Dirichlet form (E , D(E)) is conservative, if 1 ∈ D(E) with

E(1) = 0.

• Local property: We say that a Dirichlet form (E , D(E)) satisfies the local property, if for f ,

g ∈ D(E) with (f + a)g = 0 for all a ∈ R, it follows that E(f, g) = 0. Note that this is the easi-

est way to define locality in our setting, for a more general discussion compare [BH], Chapter I.5.

We note that the class of quasi-regular Dirichlet forms encompasses in particular the regular Dirichlet

forms on a locally compact space X , i.e. Dirichlet forms (E , D(E)) on L2(X , µ) where C0(X ) ∩D(E)

is dense both in D(E) with respect to ‖ · ‖E and in C0(X ) with respect to the supremum norm ‖ · ‖∞



5

(cf. [MR], Section IV.4.a)).

To every local, quasi-regular Dirichlet form (E , D(E)) there exists a diffusion process (Xt) on X with

transition kernels (pt), ptf(x) = Ex[f(Xt)] for every positive measurable function f , which is properly

associated to (E , D(E)): For every bounded measurable function f ∈ L2(X , µ) and t > 0 it holds

that ptf is a µ-version of Ttf and ptf is E-quasi-continuous, moreover ptf is µ-almost surely unique.

Conversely, we can find to every diffusion process on X a properly associated Dirichlet form which is

local and quasi-regular ([MR], Theorems IV.3.5, IV.5.1, IV.6.4 and V.1.11). The conservativeness of

the Dirichlet form (E , D(E)) is equivalent to the conservativeness of the associated diffusion process

in the sense that it has infinite lifetime.

Defining the first hitting time of the measurable set B ⊆ X by

τB := inf{t > 0 : Xt ∈ B},

it holds for any open set U that

Cap1(U) = Eµ[e−τU ] =

∫
X
Ex[e−τU ]µ(dx).

In particular every E-exceptional set N (i.e. a set of zero capacity) is an (Xt)-exceptional set in the

sense that Pµ[τN <∞] = 0 and vice versa ([MR], Theorem IV.5.29).
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Chapter 2

Geometry

Our first goal is to develop a concept of intrinsic geometry associated to a given Dirichlet form. For

this the notion of a pointwise distance will be crucial. It will enable us to define length and energy of

a path in the state space X .

2.1 Metric

Hino and Ramı́rez prove in [HR] (see also [Ra], [H]) a general Varadhan large deviation principle for

local, conservative Dirichlet forms,

lim
t→0

t logPt(A,B) = −d(A,B)2

2
, A,B ∈ B.

Here the integrated heat kernel Pt is given by

Pt(A,B) :=

∫
A
Tt1lB dµ

and the metric functional d as

d(A,B) := sup
u∈G

(
ess inf
x∈B

u(x)− ess sup
y∈A

u(y)
)

(2.1)

with

G :=
{
u ∈ D(E) ∩ L∞(X , µ) : 2E(uh, u)− E(h, u2) ≤ ‖h‖L1(µ), for all h ∈ D(E) ∩ L∞(X , µ)

}
.

Note that there is a set distance dA(·) associated to the metric functional d, that is given in the

following way (cf. [HR], Theorem 1.2. and Section 2.3.): Define for a measurable set A

VM
A := {u ∈ G : u|A = 0, 0 ≤ u ≤M µ-a.e.}, (2.2)

7



8 CHAPTER 2. GEOMETRY

and further

dA(x) := lim
M→∞

ess sup
u∈VMA

u(x). (2.3)

Then dA ∧M ∈ D(E) and

d(A,B) = ess inf
x∈B

dA(x).

This definition of the metric functional is elegant and applies to a quite general setting, since it requires

only, that the Dirichlet form is local and conservative. But in our situation we have a carré du champ

operator, so it is convenient to show that the metric functional d coincides with a more intuitive one.

We will show that we get the metric functional also if we maximize over the functions u ∈ D(E) with

carré du champ bounded by 1 instead of the functions u ∈ G. Moreover, we need a pointwise concept

of distance since we want to introduce the notions of length and energy of a path ω : [a, b]→ X .

Lemma 1. For u, v ∈ D(E) it holds for the carré du champ operator Γ that

|Γ(u, |v|)| ≤ |Γ(u, v)| µ-a.e.

Proof: Following [BH], Corollary I.6.1.3., the locality of the Dirichlet form implies for every continu-

ously differentiable and Lipschitz continuous function ϕ : R→ R with ϕ(0) = 0

Γ(u, ϕ(v)) = ϕ′(v)Γ(u, v) µ-a.e., u, v ∈ D(E).

In particular we have for ϕ with |ϕ′| ≤ 1

|Γ(u, ϕ(v))| ≤ |ϕ′(v)Γ(u, v)| ≤ |Γ(u, v)| µ-a.e.

Hence we can find a sequence ϕn of continuously differentiable and Lipschitz continuous even functions,

such that ϕn(0) = 0, |ϕ′n(x)| ≤ 1 and ϕn(x) → |x| for n → ∞. Thus |ϕn(u) − ϕn(v)| ≤
∣∣|u| − |v|∣∣

which implies by [MR], Theorem I.4.12,

E(ϕn(u), ϕn(v)) = E(ϕn(|u|), ϕn(|v|)) ≤ E(|u|, |v|).

Moreover,

〈ϕn(u), ϕn(v)〉E ≤ 〈|u|, |v|〉E ,

and we have

‖|u| − ϕn(u)‖2E ≤ 2
(
‖|u|‖2E − 〈|u|, ϕn(u)〉E

)
. (2.4)

But since [MR], Lemma I.2.12 implies

〈w,ϕn(u)〉E → 〈w, |u|〉E

for every w ∈ D(E) and n→∞, we have ϕn(u)→ |u| with respect to ‖ · ‖E by (2.4) and hence

|Γ(u, |v|)| ≤ |Γ(u, v)| µ-a.e.

(compare [RSchm92], Lemma 3.2). �



2.1. METRIC 9

Lemma 2. The set

G′ := {u ∈ D(E) : Γ(u) ≤ 1µ-a.e.}

is directed upwards, i.e. with u and v, also u ∨ v is in G′. Moreover also u ∧ v is in G′.

Proof: On the one hand the Dirichlet space is closed under extrema ([FOT], Theorem 1.4.2), so

u∨ v ∈ D(E). On the other hand, following Röckner and Schmuland ([RSchm92], Lemma 3.2), we get

by Lemma 1

Γ(u) ∨ Γ(v) =
1

2

(
Γ(u) + Γ(v) + |Γ(u)− Γ(v)|

)
=

1

4

(
Γ(u+ v) + 2|Γ(u)− Γ(v)|+ Γ(u− v)

)
=

1

4

(
Γ(u+ v) + 2|Γ(u+ v, u− v)|+ Γ(u− v)

)
≥ 1

4

(
Γ(u+ v) + 2|Γ(u+ v, |u− v|)|+ Γ(|u− v|)

)
≥ 1

4

(
Γ(u+ v) + 2Γ

(
u+ v, |u− v|

)
+ Γ

(
|u− v|

))
=

1

4
Γ
(
u+ v + |u− v|

)
= Γ(u ∨ v),

and hence also |Γ(u ∨ v)| ≤ 1 for u, v ∈ G′. The proof for the minimum is analogous, Γ(u) ∨ Γ(v) ≥
Γ(u ∧ v) and |Γ(u ∧ v)| ≤ 1 for u, v ∈ G′. �

Lemma 3. The metric functional d coincides with the metric functional d′ given by

d′(A,B) := sup
u∈G′

(
ess inf
x∈B

u(x)− ess sup
y∈A

u(y)
)
.

Proof: Note that it is sufficient to prove

G = {u ∈ D(E) ∩ L∞(X , µ) : Γ(u) ≤ 1µ-a.e.}, (2.5)

since we can approximate all elements of G′ by bounded ones. Indeed, for u ∈ G′ we can define its

cut-off uk ∈ G′ ∩ L∞(X , µ) via

uk := (−k) ∨ u ∧ k, k ∈ N.

Note that Γ(u) ≤ 1 µ-almost everywhere implies by Lemma 2 Γ(uk) ≤ 1 µ-almost everywhere. Propo-

sition I.4.17 of [MR] entails that uk → u with respect to ‖ · ‖E for k →∞.

To prove (2.5), we suppose first that u is a function in the right-hand set. Then its carré du champ is

bounded by 1 µ-almost everywhere and so it follows by (1.1) that

2E(uh, u)− E(h, u2) =

∫
X
hΓ(u) dµ ≤ ‖h‖L1(µ).
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Conversely, if for u ∈ G there would exist a set of positive measure where Γ(u) > 1, we could find

ε > 0 such that µ(E) > 0 for the set E := {x ∈ X : Γ(u)(x) ≥ 1 + ε}. But since the Dirichlet

space D(E) is dense in L2(X , µ), it is also dense in L1(X , µ) and we can find for every δ ∈]0, 1[ some

h′ ∈ D(E)∩L∞(X , µ) such that ‖h′− 1lE‖L1(µ) < δ. Without loss of generality we can assume h′ ≥ 0.

Indeed, otherwise we can take h′ ∨ 0 instead. Moreover, h′′ := h′ ∨ δ ∈ D(E) ∩ L∞(X , µ) satisfies

‖h′′ − 1lE‖L1(µ) ≤
∫
E
|h′ ∨ δ − 1lE | dµ+

∫
Ec
|h′ + δ| dµ < δ + 2δ = 3δ.

This implies

µ(E)− 3δ < ‖h′′‖L1(µ) < µ(E) + 3δ,

since by the triangle inequality, we get on the one hand

µ(E)− 3δ = ‖1lE‖L1(µ) − 3δ ≤ ‖1lE − h′′‖L1(µ) + ‖h′′‖L1(µ) − 3δ < ‖h′′‖L1(µ)

and on the other hand

‖h′′‖L1(µ) ≤ ‖1lE − h′′‖L1(µ) + ‖1lE‖L1(µ) < µ(E) + 3δ.

Thus we get

2E(uh′′, u)− E(h′′, u2) =

∫
X
h′′Γ(u) dµ ≥ (1 + ε)

∫
E
h′′ dµ > (1 + ε)

(
µ(E)− 3δ

)
.

Choosing now δ such that

0 < δ ≤ εµ(E)

3(2 + ε)
,

we get by

2E(uh′′, u)− E(h′′, u2) > µ(E) + 3δ > ‖h′′‖L1(µ)

a contradiction to the assumption u ∈ G. �
In the next step, we show that we can write the essential extrema in 2.1 in terms of a single, two-

dimensional essential infimum. Therefore we recall that the essential extrema are defined as

ess sup
x∈X

µu(x) := inf {c : c ≥ u(x) µ-a.e.},

ess inf
x∈X

µu(x) := sup {c : c ≤ u(x) µ-a.e.}.

Lemma 4. For u, v ∈ L0(X , µ),

ess inf
x∈X

µu(x)− ess sup
y∈X

µv(y) = ess inf
(x,y)∈X 2

µ⊗µ(u(x)− v(y)
)
.

Proof: Note that v(y) ≤ ess sup µ
z∈X v(z) µ-almost everywhere and hence

ess inf
(x,y)∈X 2

µ⊗µ(u(x)− v(y)
)
≥ ess inf

(x,y)∈X 2

µ⊗µ(u(x)− ess sup µ
z∈X v(z)

)
= ess inf

x∈X
µu(x)− ess sup µ

y∈X v(y).
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To prove the other direction, define for ε > 0 the set

C :=
{

(x, y) : u(x) ≤ ess inf
x∈X

µu(x) +
ε

2
; v(y) ≥ ess sup

y∈X

µv(y)− ε

2

}
and note that for ε small enough µ(C) > 0 by the definition of the essential extrema. It follows that{

c : u(x)− v(y) ≥ c µ⊗ µ-a.e.
}
⊆
{
c : µ⊗ µ({u(x)− v(y) < c} ∩ C) = 0

}
⊆
{
c : ess inf

x∈X
µu(x) +

ε

2
−
(
ess sup
y∈X

µv(y)− ε

2

)
≥ c µ⊗ µ-a.e.

}
.

Since the function in the right hand set is constant, taking the supremum on both sides and sending

ε to zero yields the result. �
Since we can restrict ourselves to functions u ≥ 0, we choose the functions u1lA, u1lB ∈ L0(X , µ) to

get

d′(A,B) = sup
u∈G′

(
ess inf
x∈B

µu(x)− ess sup
y∈A

µu(y)
)

= sup
u∈G′

(
ess inf
x∈X

µ(u1lB)(x)− ess sup
y∈X

µ(u1lA)(y)
)

= sup
u∈G′

ess inf
(x,y)∈X 2

µ⊗µ((u1lB)(x)− (u1lA)(y)
)

= sup
u∈G′

ess inf
(x,y)∈B×A

µ⊗µ(u(x)− u(y)
)
.

In the following we drop the superscripts µ and µ ⊗ µ if it is clear to which measure the essential

extremum refers. Now we want to go further and construct the pointwise intrinsic distance ρ. Here,

the quasi-regularity plays an essential role since it implies that every function u ∈ D(E) has an E-

quasi-continuous µ-version ũ ([MR], Proposition IV.3.3), i.e., a µ-version which is continuous on every

set of an increasing sequence (Euk ) of closed sets Euk with Cap1 (X \ Euk ) → 0. However, note that

we have by definition of quasi-regularity even an increasing sequence of compact sets Ek with this

property. So we can for every countable family of E-quasi-continuous functions assume that they

have µ-versions continuous on every of these compact sets (since otherwise we could create a sequence

of smaller compact sets with vanishing capacity - cf. [MR], Proposition III.3.3.). In particular the

point-separating family (ũn) is continuous on every Ek. From now on we fix a compact E-nest (Ek)

and let N =
⋂∞
k=1E

c
k.

Definition 1. The pointwise distance ρ on X is given by

ρ(x, y) :=

 sup
u∈G′

(
ũ(x)− ũ(y)

)
x, y ∈ X \N ;

∞ otherwise.

The distance of some point x from a set A is hence given by

ρA(x) := inf
y∈A

ρ(x, y).

Next we will show that ρ defines an extended pseudometric, i.e. a pseudometric which admits also ∞
as value.
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Proposition 1. ρ(·, ·) defines an extended pseudometric on X and it holds that dA ≤ ρA for any set

A ∈ B

Proof: Symmetry and triangle inequality are obvious. The dominance over dA follows from

ρA(x) = inf
y∈A

sup
u∈G′

(
ũ(x)− ũ(y)

)
≥ inf

y∈A
lim
M→∞

ess sup
u∈VMA

(
ũ(x)− ũ(y)

)
≥ inf

y∈A
lim
M→∞

ess sup
u∈VMA

u(x) = lim
M→∞

ess sup
u∈VMA

u(x) = dA(x)

for every x ∈ X and A ⊆ X \N . If A * X \N , it is enough to take the supremum over A \N , since

for y ∈ N , ρ(x, y) is trivially infinite for every x ∈ X . �

Remark 1. Note that the mapping (x, y) 7→ ũ(x) − ũ(y) is continuous on N c × N c, so ρ(·, ·) is as

supremum lower semi-continuous on N c × N c. However, it is not clear that it is also lower semi-

continuous on X ×X , e.g. if ρ(·, ·) is bounded on N c×N c, but N is closed with respect to the original

topology.

Length L and the energy E of a path ω ∈ Ω := C([a, b];X ) with respect to ρ are given by

La,b(ω) := sup
∆

∑
ti−1,ti∈∆

ρ(ωti−1 , ωti);

Ea,b(ω) := sup
∆

∑
ti−1,ti∈∆

ρ2(ωti−1 , ωti)

2(ti − ti−1)
,

where the supremum is taken over all partitions ∆ = {t0, . . . , tn}, a = t0 < t1 < · · · < tn = b, n ∈ N.

2.2 Energy

Lemma 5. The energy functional is additive, i.e. for any c, d, e ∈ [a, b], c < d < e, it holds for any

path ω ∈ Ω that

Ec,d(ω) + Ed,e(ω) = Ec,e(ω)

Proof: The set of all partitions of [c, e] is of course larger then the set of all partitions which contain

the point d, so “≤“ holds. To prove the other direction, we claim that adding an additional partitioning

point, the energy can only increase. It remains to show that

ρ2(ωt1 , ωt2)

(t2 − t1)
+
ρ2(ωt2 , ωt3)

(t3 − t2)
≥ ρ2(ωt1 , ωt3)

(t3 − t1)
.

Choosing λ ∈ (0, 1) such that t2 = λt1 + (1− λ)t3, we get that the above inequality is equivalent to

ρ2(ωt1 , ωt2)

1− λ
+
ρ2(ωt2 , ωt3)

λ
≥ ρ2(ωt1 , ωt3)
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which is clearly true by the triangle inequality and since(√
λ

1− λ
ρ(ωt1 , ωt2)−

√
1− λ
λ

ρ(ωt2 , ωt3)

)2

≥ 0.

�
This result can be used to give an alternative characterization of the energy of a path ω. Therefore

we define for a path ω : [a, b]→ X and u ∈ D(E) the functional

Ja,b(u, ω) := ũ(ωb)− ũ(ωa)−
1

2

∫ b

a
Γ(u)(ωr) dr

and

J ~u∆(ω) :=

n∑
i=1

Jti−1,ti(ui, ω)

for fixed n ∈ N, ~u = (u1, . . . un) ∈ D(E)n and a partition ∆ = {t0, . . . , tn}, a = t0 < t1 < · · · < tn = b,

n ∈ N.

Theorem 1. Given a path ω : [a, b]→ X ,

Ea,b(ω) = sup
∆; ~u
J ~u∆(ω). (2.6)

Proof: We can assume that ω stays in Ek for some set Ek of our compact E-nest (since otherwise both

sides of the equality would trivially be infinite). Note that the set H := {u ∈ D(E) : Γ(u) is bounded}
is point-separating by Assumption (BC) and it is a sub-algebra of D(E) by

Γ(u+ v) = Γ(u) + Γ(v) + 2Γ(u, v) ≤ 2
(
Γ(u) + Γ(v)

)
. (2.7)

So it is a point-separating sub-algebra which contains the constants, whence it is dense in C(Ek) with

respect to the uniform topology by the Stone-Weierstraß theorem. But since every u ∈ D(E) has a

µ-version which is continuous on Ek (and in fact we take the supremum only over this modifications),

it is enough to consider the supremum over ~u ∈ Hn.

So for any path ω : [a, b]→ Ek and c, d ∈ [a, b], c < d, we get on the one hand by maximizing over λ

sup
u∈H

Jc,d(u, ω) = sup
u∈G′,λ∈R

(
λũ(ωd)− λũ(ωc)−

1

2

∫ d

c
Γ(λu)(ωt) dt

)
= sup

u∈G′

(ũ(ωd)− ũ(ωc))
2

2
∫ d
c Γ(u)(ωt) dt

(2.8)

≥ sup
u∈G′

(ũ(ωd)− ũ(ωc))
2

2(d− c)
=
ρ2(ωc, ωd)

2(d− c)
. (2.9)

Summing up and taking the supremum over all partitions yields ”≤“ in (2.6).

On the other hand we can choose for some u ∈ H, γi := supsi−1≤r≤si Γ(u)(ωr) < ∞ and every given

ε > 0 a partition a ≤ c = s0 < · · · < sm = d ≤ b, such that

m∑
i=1

(si − si−1)γi ≤ ε+

∫ d

c
Γ(u)(ωt) dt. (2.10)
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With Hölder’s inequality we get by (2.10) and (2.9)

ũ(ωd)− ũ(ωc) =
n∑
i=1

(
ũ(ωsi)− ũ(ωsi−1)

)
=

n∑
i=1

ũ(ωsi)− ũ(ωsi−1)√
(si − si−1)γi

√
(si − si−1)γi

≤

(
n∑
i=1

(ũ(ωsi)− ũ(ωsi−1))2

(si − si−1)γi

) 1
2
(

n∑
i=1

(si − si−1)γi

) 1
2

≤

 n∑
i=1

(
ũ√
γi

(ωsi)− ũ√
γi

(ωsi−1)
)2

si − si−1


1
2 (∫ b

a
Γ(u)(ωt) dt+ ε

) 1
2

≤ (2Ec,d(ω))
1
2

(∫ d

c
Γ(u)(ωt) dt+ ε

) 1
2

since Γ(u/
√
γi)(ωsi) = Γ(u)(ωsi)/γi ≤ 1. Taking the infimum over all ε > 0 and, after rearranging the

inequality, the supremum over u ∈ G′, we get by (2.8)

Ec,d(ω) ≥ sup
u∈H

Jc,d(u, ω).

The additivity of the energy (Lemma 5) yields the result. �

2.3 More on the Distances ρ and d

To prove the small-time large deviation principle, we need more than the dominance of ρA over dA
(as proven in Proposition 1). Actually we need (besides lower semicontinuity) that the distances ρEk
from the sets of the compact E-nest are in G′. We can prove this only for locally compact state spaces.

Therefore we will need an additional assumption for the infinite dimensional setting. But it is not

clear whether it holds in full generality.

2.3.1 I. The Locally Compact Case

We assume that the state space X is locally compact and the Dirichlet form (E , D(E)) is regular, i.e.

D(E)∩C0(X ) is dense in D(E) with respect to ‖·‖E and in C0(X ) with respect to ‖·‖∞. The geometry

of this setting was studied by a series of papers by Sturm ([S94], [S95a], [S95b] and [S96]; actually

his setting is more general, since he considers local Dirichlet forms on Hausdorff spaces) under the

following additional assumption:

Assumption (A). The topology induced by ρ is equivalent to the original topology on X .

This implies in particular that ρ is not degenerate and that the open ρ-balls Bρ
r (x) := {y ∈ X :

ρ(x, y) < r} are relatively compact - at least if X is connected, since X is as Polish space complete
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([S95b], Theorem 2). Moreover, the pointwise distance ρx is for every x ∈ X continuous and lies in

the Dirichlet space D(E) ([S94], Lemma 1’). But even more, also the setwise distances ρA satisfy these

properties for every measurable subset A ⊆ X and Γ(ρA) ≤ 1 µ-almost everywhere ([S95a], Lemma

1.9 and the following remark). Moreover, he proves, that for compact sets A, B ⊆ X it holds even

that ρ(A,B) = d(A,B) ([S95a], Lemma 1.10).

But in fact, using the results by Hino and Ramı́rez [HR], we can prove even more:

Proposition 2. Let A ⊆ X a subset with µ(A) > 0. Then ρA = dA µ-almost everywhere.

We will give the proof below, together with that of the infinite-dimensional version.

2.3.2 II. The Infinite-Dimensional Case

For the prove of the upper bound of the large deviation principle the following assumption will be

sufficient.

Assumption (B). For all sets Ek of the compact E-nest it holds that ρEk ∈ G′.

To have a result on the equality we will need a little bit more, actually

Assumption (B∗). For all sets A, closed and of positive measure, it holds that ρA ∈ G′.

We note that all closed balls (with respect to the original topology) around points in the support of

the measure are of positive measure. Moreover, we can easily see that this implies also Assumption

(B) since we can choose the compact E-nest in such a way, that all Ek are of positive measure: Since

Cap1(Eck) → 0 for k → ∞ there exists a k0 such that µ(Ek) > 0 for all k ≥ k0. So starting the

sequence only at k0 yields such an E-nest.

Proposition 3. Let A ⊆ X a closed set of positive measure. Then ρA = dA µ-almost everywhere.

Proof: By Hino and Ramı́rez (cf. [HR], Theorem 1.2), the set distance dA defined in (2.3) is µ-almost

everywhere 0 on A, the truncated functional dA∧M lies in G (and so in D(E)) for every M ≥ 0 and it

is the µ-almost everywhere largest function which satisfies this two conditions. But for the functional

ρA it holds obviously that ρA = 0 on A. But since (by the consequences of Assumption (A) resp.

Assumption (B∗)) ρA ∈ D(E) with Γ(ρA) ≤ 1 µ-almost everywhere, it follows that for every M ≥ 0

also ρA ∧M ∈ D(E) with

Γ(ρA ∧M) ≤ Γ(ρA) ≤ 1 µ-a.e.

by Lemma 2. Hence dA ≥ ρA µ-almost everywhere and equality follows by Proposition 1. �
A partial weakening of Assumption (B) will be discussed in Section 5.
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Chapter 3

The Associated Markov Process

In this section we want to look on the probabilistic counterpart of our Dirichlet form (E , D(E)). Since

it is quasi-regular, there exists an associated Markov process (Xt) (cf. [MR], Section IV.3) which is

by locality in fact a diffusion ([MR], Section V.1). We are interested in small time asymptotics, so we

define for ε > 0 the process Xε by Xε
t := Xεt. Further we define for n ∈ N, ~u ∈ D(L)n and a partition

∆ = {t0, . . . , tn} the process M ε
t by

M ε,i
t :=

(
ũi(X

ε
t∧ti)− ũi(X

ε
ti−1

)− ε
∫ t∧ti

ti−1

Lui(X
ε
s ) ds

)
1l{ti−1≤t}

M ε
t :=

n∑
i=1

M ε,i
t .

We denote the exit times when Xε
t leaves Ek by

τk := inf {t : Xε
t 6∈ Ek}.

We know that the (M ε
t )τk are real-valued, continuous L2(Pµ)-martingales and since (Ek) is a compact

E-nest, τk → ∞ Pµ-almost surely for k → ∞ (cf. [MR], Theorem IV.5.29). So M ε
t is a continuous

local martingale with quadratic variation

〈M ε〉t =
n∑
i=1

ε1l{ti−1≤t}

∫ t∧ti

ti−1

Γ(ui)(X
ε
s ) ds. (3.1)

We shift our attention to the Doléans-Dade exponential exp (M ε
t − 1

2 〈M
ε〉t); it is well known that a

sufficient condition that this continuous local martingale is a true martingale, is given by Novikov’s

criterion

Eµ

[
exp

(1

2
〈M ε〉tn

)]
<∞.

This criterion holds true by (3.1) for those ~u where the Γ(ui) are µ-a.e. bounded - moreover, then

even

Eµ
[
exp (λ 〈M ε〉tn)

]
<∞

17
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holds for every λ ∈ R.

In the following we will use the forward-backward-martingale decomposition of Lyons and Zheng

[LZhe]: Given a diffusion Xt, then for every continuous f ∈ D(L) there exist a continuous forward

martingale

Mf
t := f(Xt)− f(X0)−

∫ t

0
Lf(Xs) ds, t ∈ [0, T ],

and a continuous backward martingale

M̂f
t := f(XT−t)− f(XT )−

∫ T

T−t
Lf(Xs) ds, t ∈ [0, T ],

both square integrable and starting in 0, such that

f(Xt)− f(X0) =
1

2
(Mf

t + M̂f
T−t − M̂

f
T ).

This decomposition extends to f ∈ D(E); for details we refer to Appendix A.2. To apply this to our

situation, we introduce for ui ∈ D(L) and T = ti the backward martingale associated to M ε,i
t :

M̂ ε,i
t =

(
ũi(X

ε
(ti−t+ti−1)∧ti)− ũi(X

ε
ti)− ε

∫ ti

(ti−t+ti−1)∧ti
Lui(X

ε
s ) ds

)
1l{ti−1≤t≤ti}.

The Lyons-Zheng decomposition is then given by(
ũi(X

ε
t∧ti)− ũi(X

ε
ti−1

)
)

1l{ti−1≤t} =
1

2

(
M ε,i
t + M̂ ε,i

ti−t+ti−1
− M̂ ε,i

ti

)
1l{ti−1≤t≤ti},

and we get by summing up

n∑
i=1

(
ũi(X

ε
ti)− ũi(X

ε
ti−1

)
)

=

n∑
i=1

1

2

(
M ε,i
ti

+ M̂ ε,i
ti−1
− M̂ ε,i

ti

)
=

1

2

(
M ε
tn − M̂

ε
tn

)
where we write M̂ ε

t for
∑n

i=1 M̂
ε,i
t . As shown in the Appendix A.2 this generalizes to ~u ∈ D(E)n.

We denote by 〈M̂ ε〉t the quadratic variation of the backward martingale M̂ ε at time t and note that〈
M̂ ε
〉
tn

=
〈
M ε
〉
tn

.

Lemma 6. For every ε > 0 and ~u ∈ D(E)n with Γ(ui) µ-a.e. bounded it holds that

Eµ

[
exp

(
J ~u∆(Xε)

ε

)]
≤ 1. (3.2)

Proof: By

J ~u∆(Xε) =
1

2

(
M ε
tn −

1

2ε

〈
M ε
〉
tn

)
+

1

2

(
−M̂ ε

tn −
1

2ε

〈
M̂ ε
〉
tn

)
it follows that

exp

(
J ~u∆(Xε)

ε

)
= exp

(1

2

(1

ε
M ε
tn −

1

2ε2

〈
M ε
〉
tn

))
exp

(1

2

(
−1

ε
M̂ ε
tn −

1

2ε2

〈
M̂ ε
〉
tn

))
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since the quadratic variation is of course non-negative. So the Cauchy-Schwarz inequality implies with

Lemma 18

Eµ

[
exp

(
J ~u∆(Xε)

ε

)]
≤ Eµ

[
exp

(1

ε
M ε
tn −

1

2ε2

〈
M ε
〉
tn

)] 1
2

Eµ

[
exp

(
−1

ε
M̂ ε
tn −

1

2ε2

〈
M̂ ε
〉
tn

)] 1
2

≤ 1.

�
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Chapter 4

Large Deviations

4.1 Exponential Tightness

The aim of this section is to find a sufficient and tractable condition which implies the exponential

tightness of (Xε) with respect to the compact-open topology on the path space Ω := C([0, 1];X ). This

means that for every N > 0 there exists a compact set KN ∈ Ω with

lim sup
ε→0

ε logPµ[Xε
· /∈ KN ] ≤ −N.

In this generality this will not be possible, unless there exists a compact set with µ-full measure.

Instead we will show exponential tightness for families (Xε) of diffusions starting out of the compact

E-nest. This means to show that for every set Ek of the compact E-nest and every N > 0, there exists

a compact set KN ∈ Ω such that

lim sup
ε→0

ε logPµ[Xε
· /∈ KN |X0 ∈ Ek] ≤ −N.

Subsequently, we will work under the following assumption (only noticing that in the case that X is

compact it has not to be imposed).

Assumption (D). We require that for every k ∈ N and N > 0 there exists some l ∈ N, such that

ρEk ≥ N on the complement of one of the sets El in the compact E-nest (Ek).

We will first show that this Assumption is equivalent to the assumption of this property for pointwise

distances and that each of them implies lower semi-continuity of ρ(·, ·) on X × X .

Lemma 7. Suppose ρ(·, ·) is lower semi-continuous on X × X with respect to the original topology,

then for any compact set K the set distance ρK(·) is lower semi-continuous.

Proof: Since K is compact, the infimum in the definition of the set distance is attained. Thus there

exists to every x ∈ X a point yx ∈ K such that ρK(x) = ρ(yx, x). Fix now a point x ∈ X and take a

21
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sequence (xn), xn → x for n → ∞. Since K is compact, there exists a subsequence (xnk) and some

y′ ∈ K such that yxnk → y′ for k →∞. Now it follows by the lower semi-continuity of ρ(·, ·) that

lim inf
k→∞

ρK(xnk) = lim inf
k→∞

ρ(yxnk , xnk) ≥ ρ(y′, x) ≥ ρK(x),

hence ρK(·) is lower semi-continuous. �

Proposition 4. Assumption (D) is equivalent to the fact that for every x ∈ X and N > 0 there

exists some l ∈ N, such that ρx ≥ N on the complement of one of the sets El in the compact E-nest

(Ek). Moreover, it implies that ρ(·, ·) is lower semi-continuous on X × X with respect to the original

topology.

Proof: We show fist that Assumption (D) implies the growth condition for ρx: For x ∈ N the

assumption holds trivially, for x ∈ N c there exists a compact set Ek of the compact E-nest such that

x ∈ Ek. So it follows by Assumption (D) that there exists to every N > 0 some l ∈ N that

ρx ≥ ρEk ≥ N on Ecl .

Next we show that the condition on the groth of ρx implies the lower semi-continuity of ρ. This

property is clear on N c ×N c by Remark 1 and trivial if one of the points is in the interior of N . So

it remains to prove the lower semi-continuity in the case that x ∈ (N ∩ ∂N) and y ∈ X . We note

that to every neighborhood U of x, also Uk := U ∩Eck is a neighborhood. Thus we can extract of any

sequence (xn) with xn → x a subsequence (xnk) with xnk ∈ Uk ⊆ Eck. So we have by the assumption

on the growth of ρx for every N > 0 some l ∈ N that

ρ(xnk , y) = ρy(xnk) ≥ N for all k ≥ l,

whence lim infk→∞ ρ(xnk , y) =∞, proving the lower semi-continuity.

Finally the growth assumption on ρx together with the derived lower semi-continuity imply Assumption

(D) by Lemma 7. �

Lemma 8. Let Assumption (D) hold, then we can find for every N > 0 and every Ek of the compact

E-nest a compact set AN ∈ X with

lim sup
ε→0

ε logPµ[∃t : Xε
t /∈ AN , X0 ∈ Ek] ≤ −N.

Proof: Note first that the set {∃t : Xε
t /∈ AN , X0 ∈ Ek} is measurable, since every set {∃t : Xt /∈ A}

is Borel-measurable given that A is open or closed (cf. [J], Proposition 1.6.(v) and [Sch95], Remark

3). We define now the stopping times

τl := inf {t : Xε
t /∈ El}

and the corresponding stopped processes Y ε,l
t := Xε

t∧τl . Let nl the smallest number such that ρEk ≥ nl
on Ecl for the sets El ⊇ Ek of the compact E-nest. The sequence (nl) converges to infinity for l →∞



4.1. EXPONENTIAL TIGHTNESS 23

by Assumption (D). Note now that

Pµ[∃t : Xε
t /∈ El, X0 ∈ Ek] ≤ Pµ[∃t : ρEk(Xε

t ) ≥ nl, X0 ∈ Ek]

= Pµ

[
max
t∈[0,1]

ρEk(Xε
t ) ≥ nl, X0 ∈ Ek

]
= Pµ

[
ρEk(Y ε,l

1 ) ≥ nl, Y ε,l
0 ∈ Ek

]
= Pµ

[
e

1
ε
ρEk (Y ε,l1 ) ≥ e

nl
ε , Y ε,l

0 ∈ Ek
]

≤ e−
nl
ε Eµ

[
e

1
ε
ρEk (Y ε,l1 ), Y ε,l

0 ∈ Ek
]

≤ e−
nl
ε Eµ

[
e

1
2ε

∫ 1
0 Γ(ρEk )(Y ε,lr ) dre

1
ε
J
ρEk
0,1 (Y ε,lt ), Y ε,l

0 ∈ Ek
]

≤ e
1−2nl

2ε Eµ

[
e

1
ε
J
ρEk
0,1 (Y ε,lt ), Y ε,l

0 ∈ Ek
]
≤ e

1−2nl
2ε

by Chebyshev’s inequality, Lemma 7, since Γ(ρEk) ≤ 1 µ-almost everywhere by Proposition 2 /

Assumption (B), and an application of Lemma 6. So for every N > 0 we get a compact set AN with

lim sup
ε→0

ε logPµ[∃t : Xε
t /∈ AN , X0 ∈ Ek] ≤ −N

directly as the appropriate El. �
We denote by

|ũ(Xε
· )|α := sup

s,t∈[0,1]
s6=t

|ũ(Xε
t )− ũ(Xε

s )|
|t− s|α

the Hölder-norm of the real-valued process u(Xε
t ) on [0, 1] with exponent α.

Lemma 9. For every u ∈ H (i.e. u ∈ D(E) with bounded carré du champ), α ∈]0, 1/2[ and N > 0,

there exists an R > 0, such that

lim sup
ε→0

ε logPµ[|ũ(Xε
· )|α ≥ R] ≤ −N.

Proof: Fix s, t ∈ [0, 1], s 6= t, and set G(u) := ess sup x∈X Γ(u)(x). We define u′ := ũ/
√
|t− s|, then

Γ(u′) ≤ G(u)/|t− s| and Lemma 6 implies for every ε > 0

Eµ

[
exp

(
ũ(Xε

t )− ũ(Xε
s )

ε
√
|t− s|

)]
≤ e

G(u)
2ε Eµ

[
exp

(
Ju
′

s,t(X
ε)

ε

)]
≤ e

G(u)
2ε .

By exp |x| ≤ exp (x) + exp (−x) it follows that

Eµ

[
exp

(
|ũ(Xε

t )− ũ(Xε
s )|

ε
√
|t− s|

)]
≤ 2e

G(u)
2ε ≤ κ

1
ε

for ε ∈]0, 1] and a certain constant κ. Now we can use Corollary 7.1. of [Sch97a] and get that for all

0 < α < 1/2 there exists a constant C > 0 (depending only on α), such that

Pµ [|u(Xε
· )|α ≥ R] ≤ (1 + κ)

1
ε e−

R
εC
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for all R ≥ 0. So we can set R := C(N + log (1 + κ)) and choose K as in the Lemma above to get the

result. �

Theorem 2. Under Assumption (D) the family (Xε) is exponentially tight in Ω with respect to every

of the probability measures Pµ[ · |X0 ∈ Ek] and the compact open topology.

Proof: To prove exponential tightness, we will use the exponentially fast Jakubowski criterion

([Sch95], Theorem 1) which states that the family (Xε) is exponentially tight in the Skorohod space

D([0, 1];X ), exactly if on the one hand (Xε) satisfies an exponential compact containment condition

and on the other hand there exists an additive family of continuous, real valued functions, separating

points on X , such that for every function f of this family f(Xε) is exponentially tight in the Skorohod

space D([0, 1];R).

In our case it is easy to adopt the above lemmata under the conditions given there to get the existence

of AN and R such that

lim sup
ε→0

ε logPµ[∃t : Xε
t /∈ AN |X0 ∈ Ek] ≤ −N ;

lim sup
ε→0

ε logPµ[|ũ(Xε
· )|α ≥ R |X0 ∈ Ek] ≤ −N.

This follows, since 0 < µ(Ek) ≤ 1, simply from

lim sup
ε→0

ε logPµ[∃t : Xε
t /∈ AN |X0 ∈ Ek]

= lim sup
ε→0

ε logPµ[∃t : Xε
t /∈ AN , X0 ∈ Ek]/µ(Ek)

= lim sup
ε→0

ε logPµ[∃t : Xε
t /∈ AN , X0 ∈ Ek] ≤ −N

and

lim sup
ε→0

ε logPµ[|ũ(Xε
· )|α ≥ R |X0 ∈ Ek]

= lim sup
ε→0

ε logPµ[|ũ(Xε
· )|α ≥ R,X0 ∈ Ek]/µ(Ek)

≤ lim sup
ε→0

ε logPµ[|ũ(Xε
· )|α ≥ R] ≤ −N.

Moreover, even if U itself has not to be additive, the Q-vector space Ũ over U is an additive family

of quasi-continuous functionals on X . Indeed, by (2.7) we have Γ(u + v) ≤ 2
(
Γ(u) + Γ(v)

)
for u,

v ∈ D(E). Lemma 9 implies the exponential tightness in D([0, 1];R) by Theorem 3 of [Sch95] since

lim
R→∞

lim sup
ε→0

ε logPµ[ũ(X0) > R |X0 ∈ Ek] = −∞,

as the function ũ is continuous on the compact set Ek and hence bounded. (Note that in Theorem 1 of

[Sch95] continuity for the members of the point-separating family is required, but quasi-continuity is

sufficient, since in the proof continuity is used only on compacts. Compare also [Sch99], 7.Appendix,

in particular Proposition 4.). The exponential tightness in the Skorohod space is of course inherited to

the subspace Ω endowed with the compact-open topology since the Skorohod and the compact-open

topology coincide on Ω (cf. [J], Proposition 1.6.). �
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4.2 Upper Bound

The proof of the upper bound relies on the characterization of the energy in Theorem 1 an the

estimate for the J -functional, Lemma 6. Using these results we can adapt a general approach (cf.

[DZ], Theorem 4.5.3) to our setting. This yields the upper bound for compact sets, but having already

established exponential tightness it holds all closed sets in the path space.

Proposition 5. Given ~u ∈ Hn and a partition ∆ for some n ∈ N. Then for any path ω and δ > 0

there exists a neighborhood Vω of ω such that

lim sup
ε→0

ε logPµ[Xε ∈ Vω] ≤

{
−J ~u∆(ω) + δ ω0 ∈ suppµ;

−∞ else.

Proof: 1. If ω0 /∈ suppµ, then there exists a neighborhood U0, ω0 ∈ U0, such that µ(U0) = 0. Hence

we can choose Vω as the set of all paths ζ such that ζ0 ∈ U0. Thus Pµ[Xε ∈ Vω] = 0 and the statement

holds true.

2. If ω0 ∈ suppµ, we define

Vω :=
{
ζ : J ~u∆(ζ) > J ~u∆(ω)− δ

}
which is open in the compact-open topology by the definition of the functional J ~u∆(·). Thus we can

conclude by Lemma 6

−J ~u∆(ω) ≥ lim sup
ε→0

ε logEµ

[
exp

(
−1

ε
J ~u∆(ω)

)]
+ lim sup

ε→0
ε logEµ

[
exp

(
−1

ε
J ~u∆(Xε)

)]
= lim sup

ε→0
ε logEµ

[
exp

(
−1

ε

(
J ~u∆(ω)− J ~u∆(Xε)

))]
≥ lim sup

ε→0
ε logEµ

[
exp

(
−1

ε

(
J ~u∆(ω)− J ~u∆(Xε)

))
; Xε ∈ Vω

]
≥ lim sup

ε→0
ε logEµ

[
exp

(
−δ
ε

)
; Xε ∈ Vω

]
= −δ + lim sup

ε→0
ε logPµ[Xε ∈ Vω].

�

Proposition 6. For any compact set K in the path space Ω it holds that

lim sup
ε→0

ε logPµ[Xε ∈ K] ≤

{
− inf
ω∈K

E0,1(ω) ∃ ω̄ ∈ K with ω̄0 ∈ suppµ;

−∞ else.

Proof: Note first that for every ω ∈ K and δ > 0 we can find by (the proof of) Theorem 1 some n ∈ N
that there exists a partition ∆ and some ~u ∈ Hn such that J ~u∆(ω) ≥ Iδ(ω) for the δ-rate function by

Iδ(ω) := min
(
E0,1(ω)− δ, 1

δ

)
.
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Moreover, we can find for now for this path ω ∈ K an open cylinder set Vω, such that Lemma 5

holds. So (Vω) constitutes an open cover of K and since K is compact there exists a finite subcover

(Vi)i=1,...,r, Vi := {ζ : J ~u∆(ζ) > J ~u∆(ωi)− δ}. Thus we get by the above lemma

lim sup
ε↓0

ε logPµ[Xε ∈ K] ≤ lim sup
ε↓0

ε logPµ
[
Xε ∈

r⋃
i=1

Vi
]

≤ lim sup
ε↓0

ε log

(
r max

1≤j≤r
Pµ[Xε ∈ Vj ]

)
= lim sup

ε↓0
ε log r + lim sup

ε↓0
ε log max

1≤j≤r
Pµ[Xε ∈ Vj ]

≤

{
max

1≤j≤r
−J ~u∆(ωj) + δ ∃ ω̄ ∈ K with ω̄0 ∈ suppµ;

−∞ ω0 /∈ suppµ ∀ω ∈ K.

By the definition of the δ-rate function we have also

max
1≤j≤r

−J ~u∆(ωj) + δ ≤ max
1≤j≤r

−Iδ(ωj) ≤ sup
ω∈K
−Iδ(ω) = − inf

ω∈K
Iδ(ω),

whence we can conclude that

lim sup
ε↓0

ε logPµ[Xε ∈ K] ≤

{
− inf
ω∈K

Iδ(ω) ∃ ω̄ ∈ K with ω̄0 ∈ suppµ;

−∞ ω0 /∈ suppµ ∀ω ∈ K.

Sending now δ ↓ 0 yields the result. �
Since we have established in Theorem 2 exponential tightness for the case that we start out of the

compact E-nest, it is immediately clear (cf. [DZ], Lemma 1.2.18 (a)) that the general upper bound

holds true.

Theorem 3. For every closed thet F ⊆ Ω it holds that

lim sup
ε→0

ε logPµ[Xε ∈ F |X0 ∈ Ek] ≤ − inf
ω∈F

IEk(ω)

with rate function

IEk(ω) =

{
E0,1(ω) ω0 ∈ suppµ ∩ Ek;
∞ else.

If we assume now for a moment that also the lower bound would hold in general (which it actually

does in many cases), we can derive the following corollary.

Corollary 1. For x, y ∈ suppµ joined by a path of finite energy, we can describe the intrinsic metric

ρ by

ρ2(x, y) = 2 inf {E0,1(ω) : π{0,1}(ω) = (x, y)}.

Furthermore

ρ(x, y) = inf {L0,1(ω) : π{0,1}(ω) = (x, y)}.
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Proof: Note first that since x and y are joined by a path of finite energy, there exists a compact set Ek
of the compact E-nest such that x ∈ Ek. If we look at the projection π{0,1}, the contraction principle

(cf. [DZ], Theorem 4.2.1, resp. Appendix B, Proposition 16) entails a large deviation principle on

X × X with respect to Pµ[· |X0 ∈ Ek] with good rate function

Ĩ(x, y) =

{
inf{ω:π{0,1}(ω)=(x,y)} E0,1(ω), x ∈ suppµ ∩ Ek
∞ else.

But by Propositions 6 there holds also a large deviations principle upper bound with good rate function

I{0,1}(x, y) =

{
ρ2(x,y)

2 , x ∈ suppµ ∩ Ek
∞ else.

More precisely: Proposition 6 states the upper bound only for compact sets, but the exponential

tightness implies that it holds for all closed sets. The respective lower bound was assumed to hold

true as well.

By the definition of the energy it is clear that Ĩ ≥ I. To prove the converse, we will mimic the proof

of the uniqueness of the rate function of a large deviation principle (cf. [DZ], Lemma 4.1.4). Suppose

now that there would exist a (x0, y0) ∈ X 2 with Ĩ(x0, y0) > I(x0, y0). So we can find for δ > 0 small

enough a neighborhood B of (x0, y0) such that

inf
(x,y)∈B

Ĩ(x, y) ≥
(
Ĩ(x0, y0)− δ

)
∧ 1

δ
.

On the other hand side the respective large deviation principles imply

− inf
(x,y)∈B

Ĩ(x, y) ≥ lim sup
ε→0

ε logPµ[(X0, X
ε
1) ∈ B |X0 ∈ Ek]

≥ lim inf
ε→0

ε logPµ[(X0, X
ε
1) ∈ B |X0 ∈ Ek] ≥ − inf

(x,y)∈B
I(x, y).

So we get

I(x0, y0) ≥ inf
(x,y)∈B

I(x, y) ≥ inf
(x,y)∈B

Ĩ(x, y) ≥
(
Ĩ(x0, y0)− δ

)
∧ 1

δ

for delta arbitrarily small and hence a contradiction to the Assumption Ĩ(x0, y0) > I(x0, y0).

To prove the second statement, we remark that the Cauchy-Schwarz inequality implies(
n∑
i=1

ρ(ωti−1 , ωti)

)2

=

(
n∑
i=1

ρ(ωti−1 , ωti)√
ti − ti−1

√
ti − ti−1

)2

≤

(
n∑
i=1

ρ2(ωti−1 , ωti)

ti − ti−1

)(
n∑
i=1

(ti − ti−1)

)
= 2

n∑
i=1

ρ2(ωti−1 , ωti)

2(ti − ti−1)
,

whence L0,1(ω)2 ≤ 2E0,1(ω). But ρ(x, y) ≤ L0,1(ω) holds trivially, so also the second result follows.

�
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4.3 An Integral Representation of the Rate Function

In this chapter, our aim is to give an integral representation of the rate function. For this purpose we

recall the notion of absolutely continuous curves in a metric space (cf. [AT], [AGS04], [AGS05]).

Definition 2. Given an complete metric space (E, dE), we define the space ACp(E) of p-integrable

absolutely continuous curves on E as the set of all curves (i.e. continuous paths) ω ∈ C([0, 1];E),

such there exists a non-negative M ∈ Lp([0, 1], λ), p ∈ [1,∞], such that

dE(ωr, ωt) ≤
∫ t

r
M(s) ds, for all 0 ≤ r < t ≤ 1. (4.1)

We say that a curve is absolutely continuous, if it belongs to AC1(E).

Given an p-integrable absolutely continuous curve ω, we can define its metric derivative |ω′| by

|ω′|(t) := lim
r→t

dE(ωr, ωt)

|r − t|

which exists (Lebesgue-)almost everywhere, lies in Lp([0, 1], λ) and |ω′| is the (almost everywhere)

smallest p-integrable function for which (4.1) holds ([AGS04], Theorem 2.2, [AGS05], Theorem 1.1.2).

A direct application of this result is not possible, since our intrinsic metric functional ρ defines only

an extended pseudo-metric on X . But a close inspection of the proof shows, that in reality, it is only

required that dE restricted to any absolutely continuous curve has to be a true metric. To show that

this holds true in our setting, we prove the following lemma.

Lemma 10. Given a continuous path ω : [0, 1] → X , that satisfies ρ(ωr, ωt) < ∞ for every 0 ≤ r <

t ≤ 1. Then the restriction of ρ to the range Rω of ω, Rω := ω([0, 1]), is a true metric.

Proof: By the assumption it is clear that ρ is finite on Rω. But this implies that ω lies completely in

one of the sets Ek of the compact E-nest (since otherwise the distance from at least one point would

be infinite - cf. proof of Theorem 1). But on Ek we have by Assumption (BC) a point separating

family with E-quasi continuous µ-versions which separates points and has bounded carré du champ.

By simple scaling, the family can be chosen to have carré du champ bounded by 1, and so ρ(x, y) > 0

for x 6= y by definition of ρ. �
This enables us to point out the relation between finite energy and absolute continuity.

Proposition 7. Given a curve ω on X , then the following statements are equivalent:

(i) E0,1(ω) is finite;

(ii) ω belongs to AC2(X ).

If one (hence both) of these conditions holds, the energy functional is given by

E0,1(ω) =
1

4

∫ 1

0
|ω′|2(t) dt.
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Proof: To prove that (i) implies (ii), we note first that E0,1(ω) < ∞ implies d(ωr, ωt) < ∞ for all

0 ≤ r < t ≤ 1. Thus ρ is a true metric on Rω by the above lemma. We want now prove first that

every path of finite energy is absolutely continuous. To do so, we define for every open interval I in

[0, 1] the set-function m by

m(I) := sup
∆

∑
ti−1,ti∈∆∩I

ρ(ωti−1 , ωti).

We denote by I the algebra generated by the open intervals and define for A ∈ B([0, 1])

m∗(A) := inf

{ ∞∑
k=1

m(Ik) : A ⊆
∞⋃
k=1

Ik, Ik ∈ I

}
.

Moreover, since

m∗([0, 1]) = m([0, 1]) = L0,1(ω) ≤
√

2E0,1(ω) <∞

by Corollary 1, m∗ defines an outer measure on ([0, 1],B([0, 1]) which is in fact a true measure by [Bo],

Section 1.5.

In a next step, we want to show that m is absolutely continuous with respect to the Lebesgue measure

λ. We take some I ∈ I and assume without respect of generality that it is the disjoint union of finitely

many intervals Ik =]rk, sk[. So it follows that

m

(
n⋃
k=1

Ik

)
≤

n∑
k=1

m(Ik) =
n∑
k=1

sup
∆

∑
ti−1,ti∈∆∩Ik

ρ(ωti−1 , ωti)

=

n∑
k=1

sup
∆

∑
ti−1,ti∈∆∩Ik

√
ti − ti−1

ρ(ωti−1 , ωti)√
ti − ti−1

≤
n∑
k=1

√√√√√
sup

∆

∑
ti−1,ti∈∆∩Ik

|ti − ti−1|

sup
∆

∑
ti−1,ti∈∆∩Ik

ρ2(ωti−1 , ωti)

|ti − ti−1|


≤

n∑
k=1

√
λ(Ik)

√
2Erk,sk(ω),

whence the finiteness of the energy implies that m� λ. Thus there exists a Radon-Nikodym derivative

M = dm/dλ and we have

d(ωr, ωt) ≤
∫ t

r
M(s) ds.

Thus it remains only to show that M ∈ L2([0, 1], λ). Defining (using techniques analogous to [Sch96],

Lemma 26) the functions F (s, t) := Es,t(ω) and f(t) := F (0, t), f is a non-negative, non-decreasing

and bounded function. Moreover, F (r, t) = F (r, s) + F (s, t) for 0 ≤ r < s < t ≤ 1 by Lemma 5

and f is almost everywhere differentiable with almost everywhere non-negative derivative f ′(t) which

satisfies
∫ 1

0 f
′(t) dt ≤ f(1) = F (0, 1). So it holds that

1

4

∫ 1

0
|ω′|2(t) dt =

1

4

∫ 1

0

(
lim
h→0

ρ(ωs+h, ωs)

h

)2

dt ≤
∫ 1

0
lim
h→0

1

h
F (s, s+ h) ds

=

∫ 1

0
f ′(s) ds ≤ F (0, 1) = E0,1(ω) <∞. (4.2)
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To show that (ii) implies (i) we fix some ω ∈ AC2(X ). It follows by Jensen’s inequality that

E0,1(ω) = sup
∆

∑
ti−1,ti∈∆

ρ2(ωti−1 , ωti)

4(ti − ti−1)
≤ sup

∆

∑
ti−1,ti∈∆

(
1

2(ti − ti−1)

∫ ti

ti−1

|ω′|(s) ds

)2

· (ti − ti−1)

≤ sup
∆

∑
ti−1,ti∈∆

1

4(ti − ti−1)

∫ ti

ti−1

|ω′|2(s) ds · (ti − ti−1) =
1

4

∫ 1

0
|ω′|2(s) ds <∞ (4.3)

Combining (4.3) and (4.2) yields the integral representation of the energy functional. �
This integral representation of the rate function is elegant, but note, that in the case where X is e.g. a

manifold, we are rather interested in an integral representation via paths in the tangent bundle. Such

a representation has to be done case by case, cf Chapter 7.

Remark 2. We note only the case that X is a reflexive Banach space (X , ‖ · ‖X ) (with respect to the

norm generating the intrinsic metric!): The fact that ω ∈ AC2(X ) is equivalent to almost everywhere

Fréchet differentiability of ω with
·
ω ∈ L2([0, 1];X ) and

ωt − ωr =

∫ t

r

·
ωs ds, 0 ≤ r < t ≤ 1.

Here
·
ω denotes the Fréchet derivative and the integral is understood as Bochner integral (cf. [AGS05],

Remark 1.1.3). So we get as integral representation of the finite energy of a path

E0,1(ω) =
1

4

∫ 1

0
‖ ·ωs‖2X ds.



Chapter 5

Degenerate Cases

In this section we consider the degenerate cases, ruled out by Assumptions (A) and (B). We start with

a little example, a degenerate Ornstein-Uhlenbeck process on R2.

Example 1. We consider (R2,B(R2), ν) with

dν =
1

2π
e−

x21+x
2
2

2 dx1dx2,

the two-dimensional Gaussian measure. We define on C2
b (R2,R) the operator D by Df := ∂f

∂x1
and

compute its adjoint operator D∗ by

〈Df, g〉L2(ν) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

fx1(x1, x2)g(x1, x2)e−
x21+x

2
2

2 dx1dx2

= − 1

2π

∫ ∞
−∞

∫ ∞
−∞

f(x1, x2)
∂

∂x1

(
g(x1, x2)e−

x21+x
2
2

2

)
dx1dx2

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(x1, x2)
(
−gx1(x1, x2) + x1g(x1, x2)

)
e−

x21+x
2
2

2 dx1dx2

= 〈f,D∗g〉L2(ν),

where D∗ is given by D∗f = −Df + x1f . So we can define a degenerate Ornstein-Uhlenbeck operator

L as L := −D∗D. By construction this is a self-adjoint operator on L2(R2,B(R2), ν). The form

E(f, g) = 〈−Lf, g〉L2(ν) = 〈Df,Dg〉L2(ν), f , g ∈ D(L), is closable, since L is negative definite and

self-adjoint (cf. [MR], Proposition I.3.3). Thus we can define the Dirichlet form (E , D(E)) as its

closure. Obviously this Dirichlet form is local and conservative and has as carré du champ operator

Γ(f) = 2(Df)2. But it is also quasi-regular: We define the compact E-nest simply as Ek := [−k, k]2.

By the conservativeness of the Dirichlet form we have

Cap1(R2) = ‖1lR2‖E = 1.

But equally we have for k →∞ the convergence

Cap1(Ek) ≥ ‖1lEk‖L2(ν) → 1,
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so E is quasi-regular. The intrinsic metric generated by this Dirichlet form is

ρ(x, y) =

{
|x1−y1|√

2
if x2 = y2;

∞ else.

So every set A for which it holds that ρA ∈ L2(R2, ν) has to have the property that its projection to the

x2-axis covers this axis up to a null set. Hence there exists no compact set K such that ρK ∈ D(E).

This example indicates also what we can yet expect as result when we drop the Assumptions (A) and

(B): If we start in a compact set, then we will get exponential tightness, since the diffusion process

generated by L evolves only along lines parallel to the x1-axis. This intuitive consideration we can

make rigorous, so back to the general setting.

Definition 3. To a given closed set F of positive measure we define the set of F -accessible points as

acc(F ) := {x ∈ X : Pµ[X0 ∈ F,X1 ∈ Br(x)] > 0 for every r > 0},

where Br(x) denotes the open ball of radius r around x with respect to the original topology. Measurable

subsets C ⊆ acc(F )c we will call F -inaccessible.

We note that this definition has several different formulations, we note here

acc(F ) = {x ∈ X : ∃t > 0, Pµ[X0 ∈ F,Xt ∈ Br(x)] > 0 for every r > 0}
= {x ∈ X : Pµ[X0 ∈ F,Xt ∈ Br(x)] > 0 for every t > 0 and r > 0}
= {x ∈ X : dF (Br(x)) <∞ for every r > 0}.

This follows from [AH], Proposition 5.1 resp. [HR], Lemma 2.16. Note that acc(F ) ⊆ suppµ since

Pµ[X0 ∈ F,X1 ∈ Br(x)] = Pµ[X0 ∈ Br(x), X1 ∈ F ] ≤ µ(Br(x))

which vanishes for some small enough r if x is not in the support of the measure µ.

Proposition 8. The Assumptions (A) and (B) imply that for every closed set F of positive measure

it holds that acc(F ) = suppµ.

Proof: Fix x ∈ suppµ and some r > 0. Then µ(Br(x)) > 0, so there exists some z ∈ Br(x) with

ρF (z) <∞ (otherwise this would be a contradiction to ρF ∈ L2(X , µ)). This implies by the definition

of the setwise distance and Assumption (B) (resp. Assumption (A)) dF (Br(x)) = ρF (Br(x)) <∞, so

accF (X) ⊇ suppµ. But since accF (X) ⊆ suppµ holds in general, this yields the result. �
That is also exactly what fails in Example 1. There we have on the one hand suppµ = R2 but on the

other only

acc(F ) = R× π2(F ),

where π2 is the projection on the x2-axis, π2(x1, x2) = x2. So acc(F ) 6= suppµ for every compact set

F .

In the next lemma we collect a few additional facts of accessible sets:
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Proposition 9. For any closed set F of positive measure the following properties of acc(F ) hold:

acc(F ) is closed;

Pµ[Xt /∈ acc(F );X0 ∈ F ] = 0 for every t > 0;

Pµ[∃t ∈ R≥0 : Xt /∈ acc(F ), X0 ∈ F ] = 0;

τacc(F )c =∞ Pµ[· |X0 ∈ F ]-a.s.;

dF (acc(F )c) = ρF (acc(F )c) =∞.

Proof: We start by proving that the set acc(F ) is closed: Given a sequence (xn), xn ∈ acc(F ), which

converges to some x ∈ X . Then for every r > 0 there exists a xn such that xn ∈ Br/2(x). But since

xn ∈ acc(F ) and Br(x) ⊇ Br/2(xn), we have clearly µ(Br(x)) ≥ µ(Br/2(xn)) > 0 and so x ∈ acc(F ).

By the definition of accessible sets, we can find for every x /∈ acc(F ) a radius rx > 0 such that

Pµ[X0 ∈ F ;Xt ∈ Brx(x)] = 0

for the open balls Brx(x). So the collection of these balls constitutes an open cover of acc(F )c. Since

X is as Polish space Lindelöf (cf. [E], Corollary 4.1.16), we can extract a countable subcover Bri(xi),

i ∈ N. And since the countable union of null sets is again a null set, we can conclude by

Pµ[Xt /∈ acc(F );X0 ∈ F ] ≤ Pµ
[ ∞⋃
i=0

{
Xt ∈ Bri(xi);X0 ∈ F

}]
= 0. (5.1)

Since acc(F )c is open, the continuity of the paths of Xt imply

Pµ[∃t ∈ R≥0 : Xt /∈ acc(F ), X0 ∈ F ] = Pµ[∃t ∈ Q≥0 : Xt /∈ acc(F ), X0 ∈ F ]

= Pµ
[ ⋃
t∈Q≥0

{Xt ∈ acc(F )c, X0 ∈ F}] = 0

by (5.1) as countable union of null sets. That the first hitting time of acc(F )c is Pµ[· |X0 ∈ F ]-a.s.

infinite is a direct consequence.

The last statement follows directly from Varadhan’s principle and Proposition 1,

−∞ = lim
t→0

t logPµ[Xt /∈ acc(F );X0 ∈ F ] = −
d2
F

(
acc(F )c

)
2

≥ −
ρ2
F

(
acc(F )c

)
2

.

�
Note in particular that every X -inaccessible set C is an (Xt)- and E-exceptional set (of zero capacity

and with Pµ[τC < ∞] = 0 for the first hitting time τC). So we can understand the notion of F -

inaccessible sets as a generalization of exceptional sets.

The moral is hence that for the large deviation principle we do not have to care about inaccessible

sets. To make this rigorous, we have to find a weaker alternative to Assumption (B) which allows

also to treat degenerate cases. Since Assumption (B) was needed to prove the exponential compact

containment condition (Lemma 8), we have to prove these results then under the new Assumption.

Assumption (B’). For all sets Ek of the compact E-nest and all M > 0 it holds that ρEk ∧M ∈ G′.



34 CHAPTER 5. DEGENERATE CASES

Note that this implies immediately that ρEk itself is lower semi-continuous. It remains only to prove

the exponential compact containment condition. To do so, we need the following Lemma.

Lemma 11. Let Assumption (B’) hold, then we can find for every N > 0 and every Ek of the compact

E-nest a compact set AN ∈ X with

lim sup
ε→0

ε logPµ[∃t : Xε
t /∈ AN , X0 ∈ Ek] ≤ −N.

Proof: Note first that the set {∃t : Xε
t /∈ AN , X0 ∈ Ek} is measurable, since very set {∃t : Xt /∈ A}

is Borel-measurable given that A is open or closed (cf. [J], Proposition 1.6.(v) and [Sch95], Remark

3). We define now the stopping times

τl := inf {t : Xε
t /∈ El}

and the corresponding stopped processes Y ε,l
t := Xε

t∧τl . Let nl the smallest number such that ρEk ≥ nl
on Ecl for the sets El ⊇ Ek of the compact E-nest. The sequence (nl) converges to infinity for l →∞
by Assumption (D).

So for every given nl we can set ρ̃Ek := ρEk ∧ (nl + 1). Then ρ̃Ek ∈ G′ by Assumption (B’) and we can

conclude

Pµ[∃t : Xε
t /∈ El, X0 ∈ Ek] ≤ Pµ[∃t : ρEk(Xε

t ) ≥ nl, X0 ∈ Ek]
= Pµ[∃t : ρ̃Ek(Xε

t ) ≥ nl, X0 ∈ Ek]

= Pµ

[
max
t∈[0,1]

ρ̃Ek(Xε
t ) ≥ nl, X0 ∈ Ek

]
= Pµ

[
ρ̃Ek(Y ε,l

1 ) ≥ nl, Y ε,l
0 ∈ Ek

]
= Pµ

[
e

1
ε
ρ̃Ek (Y ε,l1 ) ≥ e

nl
ε , Y ε,l

0 ∈ Ek
]

≤ e−
nl
ε Eµ

[
e

1
ε
ρ̃Ek (Y ε,l1 ), Y ε,l

0 ∈ Ek
]

≤ e−
nl
ε Eµ

[
e

1
2ε

∫ 1
0 Γ(ρ̃Ek )(Y ε,lr ) dre

1
ε
J
ρ̃Ek
0,1 (Y ε,lt ), Y ε,l

0 ∈ Ek
]

≤ e
1−2nl

2ε Eµ

[
e

1
ε
J
ρ̃Ek
0,1 (Y ε,lt ), Y ε,l

0 ∈ Ek
]
≤ e

1−2nl
2ε

by Chebyshev’s inequality and an application of Lemma 6. So for every N > 0 we get a compact set

AN with

lim sup
ε→0

ε logPµ[∃t : Xε
t /∈ AN , X0 ∈ Ek] ≤ −N

directly as the appropriate El. �
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Chapter 6

Ornstein-Uhlenbeck Process on

Abstract Wiener Space

In this section we apply our general results to derive the pathwise small-time large deviation principle

for the Ornstein-Uhlenbeck process on an abstract Wiener space. We then generalize this result to

the case of Ornstein-Uhlenbeck processes with linear unbounded drift, given by a strongly elliptic

operator.

6.1 Abstract Wiener Spaces and Malliavin Calculus

Let (H, 〈·, ·〉H) a real separable Hilbert space endowed with a mean zero Gaussian cylinder set measure

µ̃. We take a measurable norm ‖·‖ to get a Banach space (E, ‖·‖) as closure of H with respect to ‖·‖.
Note that this implies that ‖ · ‖ is weaker then ‖ · ‖H , i.e., there exists c1 > 0 such that ‖x‖ ≤ c1‖x‖H
for all x ∈ H. (cf. [Ku], Lemma I.4.2). µ̃ induces a mean zero Gaussian cylinder measure µ on the

on the σ-ring R generated by the cylinder subsets of E. Then E, endowed with the σ-algebra F
generated by R (which is in fact the Borel-σ-algebra on E) and the measure µ, is a measure space.

The embedding ι : H → E is dense and continuous, the triple (E,H, µ) is called abstract Wiener space

in the sense of Gross ([G]). Note that ι′ : E′ → H ′ as embedding of the dual space is also dense and

we can present the whole structure in the following diagram:

E′
ι′
↪→ H ′ ↔ H

ι
↪→ E.

In particular, given a separable Banach space (E, ‖·‖) endowed with a mean-zero Gaussian measure µ,

we can find an Hilbert space H (the reproducing kernel Hilbert space), such that (E,H, µ) is an abstract

Wiener space (cf. [Ku], Theorem I.4.4). A stochastic process W indexed by the Hilbert space H is

called an isonormal Gaussian process, if the random variables W (h1), . . . ,W (hn) are jointly mean zero

Gaussian for every finite choice h1, . . . , hn ∈ H and the covariance is given by E[W (g)W (h)] = 〈g, h〉H .
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(cf. [Nua], [CT], [Le]).

Example 2. As concrete example we consider the classical Wiener space E = (C0([0, T ];Rd), ‖ · ‖∞)

as probability space (E,B, γ) with Borel-σ-algebra B (induced by the norm ‖ ·‖∞) and Wiener measure

γ. The Hilbert space H is in this case the Cameron-Martin space

H :=

{
h ∈ C1

0 ([0, T ];Rd) : h(t) =

∫ t

0
h′(s) ds, h′(s) ∈ L2([0, T ];Rd)

}
endowed with the inner product 〈f, g〉H :=

∫ T
0 f ′(s)g′(s) ds. If (Xt) denotes the coordinate process

Xt(x) = x(t), x ∈ E, and (Ft) the filtration generated by (Xt), then X(h) :=
∫ T

0 h′(s) dXs is an

isonormal Gaussian process.

Define now the set of smooth functions

S :=
{
f
(
W (h1), . . . ,W (hn)

)
: f ∈ C∞b (Rn;R), hi ∈ H, n ∈ N

}
.

Their directional derivatives are given for g ∈ H and F ∈ S by

lim
ε→0

F
(
W (h1) + ε〈g, h1〉H , . . . ,W (hn) + ε〈g, hn〉H

)
− f

(
W (h1), . . . ,W (hn)

)
ε

= 〈DF, g〉H .

The gradient DF is called the Malliavin derivative, H plays here the role of the tangent space of E.

For F , G ∈ S we define the bilinear form

〈F,G〉D1,2 := E[FG] + E[〈DF,DG〉H ],

the completion of S with respect to the associated norm ‖ · ‖D1,2 is the Hilbert space D1,2. The

integration by parts formula reads here for F ∈ D1,2, G ∈ S and h ∈ H

E[G〈DF, h〉H ] = E[FGW (h)]− E[F 〈DG,h〉H ].

Note that the Malliavin derivative D is a mapping L2(E) ⊇ D1,2 → L2(E;H). The adjoint operator

δ : L2(E;H) ⊇ D(δ)→ L2(E), defined via

E[〈DF, u〉H ] = E[Fδ(u)], for all F ∈ D1,2, u ∈ D(δ),

is called the Skorohod integral.

The operator L := −δ ◦D is the Ornstein-Uhlenbeck operator on the abstract Wiener space, it is for

F = f(W (h1), . . . ,W (hn)) ∈ S concretely given by

LF = (−δ ◦D)F =

n∑
i,j=1

∂2f

∂yi∂yj

(
W (h1), . . . ,W (hn)

)
〈hi, hj〉 −

n∑
i=1

∂f

∂yi

(
W (h1), . . . ,W (hn)

)
W (hi).

It holds that

E(F,G) := E[(−LF )G] = E[〈DF,DG〉H ], F,G ∈ S,



6.2. SMALL-TIME ASYMPTOTICS FOR THE ORNSTEIN-UHLENBECK PROCESS 39

so this defines a Dirichlet form (E , D(E)) with domain D(E) = D1,2 and inner product 〈F,G〉E =

〈F,G〉D1,2 (cf. [Nua], Chapter 1). It is quasi-regular by [MR], IV.4.b), and obviously conservative and

local, the associated carré du champ operator is given by

Γ(F ) = 2‖DF‖2H .

The diffusion process (Xt) associated to the Dirichlet form (E , D(E)) is the Ornstein-Uhlenbeck process

on the abstract Wiener space (E,H, µ). It is the weak solution of the stochastic differential equation

dXt = dWt −
1

2
Xt dt,

where (Wt) is a Brownian motion on E, starting in 0 ∈ E, with covariance 〈·, ·〉H (cf. [FZ99]). The

corresponding intrinsic metric on E is given by the Cameron-Martin distance ρH

ρH(f, g) =

{
‖f−g‖H√

2
if (f − g) ∈ H;

∞ otherwise.

6.2 Small-Time Asymptotics for the Ornstein-Uhlenbeck Process on

Abstract Wiener Spaces

Now we want to prove the small-time large deviation principle for the Ornstein-Uhlenbeck process on

an abstract Wiener space. Therefore we need some topological preliminaries.

Lemma 12. Given a compact E-nest (Ek), then (Ẽk) defined by

Ẽk := {x ∈ E : ‖x− Ek‖H ≤ k}

is also a compact E-nest.

Proof: Note first that the ‖ · ‖H -closed unit ball is ‖ · ‖-compact (cf. [Le], Chapter and [Kue], Lemma

2.1). Moreover, it is clear that

Ẽk = Ek +B
H
k = {x+ y : x ∈ Ek, y ∈ B

H
k },

where B
H
k denotes the closed ‖ · ‖H -ball of radius k around the origin. Thus so Ẽk is ‖ · ‖-compact as

sum of two ‖ · ‖-compact sets (cf. [E], Theorem 3.2.3). However, since Ẽk ⊇ Ek, also Cap1(E \ Ẽk)
tends obviously to zero, so (Ẽk) is a compact E-nest. �
We define the space of absolutely continuous paths on E with square integrable derivatives in H by

H(E) :=

{
h ∈ C([0, 1], E) : ∃

·
h ∈ L1([0, 1];H), ht = h0 +

∫ t

0

·
hr dr,

∫ 1

0
‖
·
hr‖2H dr <∞

}
.

The integral
∫ t

0

·
hr dr is an H-valued Bochner integral and

·
h can be understood as Fréchet derivative.
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Proposition 10. The Ornstein-Uhlenbeck process (Xt) on the abstract Wiener space satisfies a small-

time large deviation principle upper bound

lim sup
ε→0

ε logPµ[Xε
t ∈ B |X0 ∈ Ẽk] ≤ − inf

h∈B
IH
Ẽk

(h)

for any set B ⊆ C([0, 1];E) with rate function

IH
Ẽk

(h) =

{
1
4

∫ 1
0 ‖
·
ht‖2H dt h ∈ H(E), h0 ∈ suppµ ∩ Ẽk;

∞ otherwise.

Proof: Proving the proposition means essentially to show that the Assumptions (BC), (B) and (D)

are fulfilled.

For any σ-compact positive measure set K ⊆ E the distance functional ρHK is µ-almost everywhere

H-Lipschitz continuous in the sense of Enchev and Stroock ([ES], cf. also Kusuoka, [Kus82a] and

[Kus82b]). This means that there exists a C > 0 and a µ-version ρ̃HK of ρHK such that∣∣ρ̃HK(x+ h)− ρ̃HK(x)
∣∣ ≤ C‖h‖H , for all x ∈ E and h ∈ H.

This implies that ρHK ∈ D(E) with carré du champ bounded by 1 (cf. [Hir], Proposition 4.4, Proposition

4.5 and Theorem 4.2, compare also [ES] and [FLP], Proposition 4). Assumption (BC) is satisfied, since

we can easily construct a point-separating family: Let Y a countable, dense subset of E \N (such a

set exists by construction of the E-nest (Ek), cf. [MR], Proposition IV.4.2) and take x, y ∈ Y with

x 6= y. Then we can separate x and y by open ‖ · ‖-balls, i.e. there exists an r ∈ Q, r > 0 such that

BE
r (x)∩BE

r (y) = ∅. Thus, by the separation version of the Hahn-Banach theorem (cf. [W], Theorem

III.2.4) we can found a linear functional l′ ∈ E′ such that

l′(z) < l′(w) ∀z ∈ BE
r (x), w ∈ BE

r (y).

However, these linear functionals are of course ‖ · ‖E-Lipschitz and thus also ‖ · ‖H -Lipschitz, so they

are in the Dirichlet space with bounded carré du champ (cf. [Hir], Theorem 4.2). Hence this countable

family of Lipschitz functionals separating balls of rational radius around points in the countable dense

subset Y is our point-separating family. (An alternative family is given directly by (uk,x)k∈N,x∈Y ,

uk,x := ρH
B
E
1/k(x)

(·) ∧M for some M > 0. The rational balls are closed sets of positive measure, so

the set distances are (by Assumption(B) proved below) in the Dirichlet space with bounded carré du

champ.)

For Assumption (D) we construct to (Ek) the sequence (Ẽk) of the above lemma. Then it holds by

construction of the compact E-nest (Ẽk), that for every y ∈ Ẽcl , l ≥ k,

ρẼk(y) = inf
x∈Ẽk

‖x− y‖H√
2

≥ l − k√
2

and so Assumption (D) holds true.

Let now A be a closed set of positive measure. Then ρA = ρA\N since N is a null set where the

distance is infinite. But since Ak := A ∩ Ek is a compact set, it follows that A \ N =
⋃∞
k=1Ak is
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σ-compact and hence Assumption (B) holds true, since ρA\N ∈ D(E).

So the large deviations principle holds with rate function

IH(h) = E0,1(h) = sup
∆

∑
ti−1,ti∈∆

‖hti − hti−1‖2H
2(ti − ti−1)

.

Moreover, Proposition 7 provides the integral representation of the rate function. �

6.3 Ornstein-Uhlenbeck Process with Unbounded Linear Drift

Now we want to generalize this process. We take therefore a self-adjoint, strongly elliptic (i.e. A ≥
c2 IdH0 for some c2 > 0) operator A onH with domainH0 := D(A) ⊆ H and we define LA := −δ◦A◦D.

The space H0 with inner product 〈·, ·〉H0 = 〈A
1
2 ·, A

1
2 ·〉H is another Hilbert space contained in H; the

embedding H0 ↪→ H is dense and continuous. So we can define the Dirichlet form (EA, D(EA)) as

closure of

EA(F,G) := E[−(LAF )G] = E[〈A
1
2DF,A

1
2Dg〉H ] = E[〈DF,DG〉H0 ], F, G ∈ S.

This Dirichlet form is also quasi-regular ([AR], Section 7.I) and [R92], Section 6.(a)), local and con-

servative, it admits a carré du champ operator given by

Γ(F ) = 2‖DF‖2H0
.

The associated diffusion (Xt) we call generalized Ornstein Uhlenbeck process. The intrinsic metric is

given by

ρH0(f, g) =

{ ‖f−g‖H0√
2

if (f − g) ∈ H0;

∞ otherwise.

The generalized Ornstein-Uhlenbeck process can be understood informally as weak solution of the

SDE

dXt = dWt −
1

2
A(Xt) dt, (6.1)

therefore we can look at A as a drift. But to be more precise, let’s define Xh for h ∈ H and a sequence

(ln), ln ∈ E′, ln → h in ‖ · ‖H , as L2(E,µ)-limit Xh := limn→∞ E′〈ln, ·〉E . Let now β : E → E an

F-F-measurable mapping that satisfies

E′〈k, β〉E = XAk µ-a.e. for all k ∈ E′ ∩H0

and
∫
E ‖β‖ dµ < ∞. (Note that such a mapping exists at least in the case where the embedding

H ↪→ E is Hilbert-Schmidt and E is chosen as particular Hilbert space, cf. [R92], Proposition 4.15

and Section 6.(a). The proof relies on the Gross-Minlos-Sazonov theorem, for generalizations see [Y],

Section 3) Then (Xt) is the solution of the SDE

dXt = dWt −
1

2
β(Xt) dt, (6.2)
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where (Wt) is a Brownian motion on E, starting in 0 ∈ E, with covariance 〈·, ·〉H . The reason why we

called the equation (6.1) an “informal expression” of (6.2) is the following: In the case that A(E′) ⊆ E′

and A|E′ : E′ → E′ is ‖ · ‖E′-continuous, it holds that β(z) = A′(z) for µ-a.e. z ∈ E for the operator

A′ defined as

E′〈k,A′(z)〉E = E′〈Ak, z〉E for all z ∈ E, k ∈ E′.

(cf. [R], Section 6.(a); for a different approach to the SDE via “second quantization” we refer to [AR],

Section 7.I) and [FZ99]).

In the following we will show that the generalized Ornstein-Uhlenbeck process obeys a large deviations

principle.

Lemma 13. The closed ‖ · ‖H0-unit ball

B
H0

1 := {x ∈ E : ‖x‖H0 ≤ 1}

is weakly-‖ · ‖H0-compact and ‖ · ‖-compact.

Proof: Weak compactness holds for every unit ball of a reflexive Banach space (cf. [W], Satz

VIII.3.18). To prove ‖ · ‖-compactness, we note that strong ellipticity implies directly

‖x‖2H0
= ‖A

1
2x‖2H ≥ c2‖x‖2H .

So B
H0

1 ⊆ BH
1/c2 which is a ‖ · ‖-compact set. So B

H0

1 is relatively ‖ · ‖-compact.

But B
H0

1 is also ‖ · ‖-closed: Fix a sequence (xn), xn ∈ B
H0

1 converging to some x ∈ E in ‖ · ‖. Since

B
H0

1 is weak-‖ · ‖H0-compact, so there exists a subsequence (xnj ) which converges weakly to some

z ∈ B
H0

1 . E′ separates points in E, so x = z ∈ B
H0

1 , whence the unit ball is ‖ · ‖-closed and so

‖ · ‖-compact. �

Lemma 14. (EA, D(EA)) satisfies Assumption (D), Assumption (B’) and Assumption (BC).

Proof: Since Lemma 13 states the compactness properties required in the proof of Lemma 12, we can

copy directly this proof to get to a given compact E-nest (Ek) a compact E-nest (Ẽk) given by

Ẽk := {x ∈ E : ‖x− Ek‖H0 ≤ k}.

So (analogously to the proof of Proposition 10) Assumption (D) holds.

To prove Assumption (B’), we note that for every M > 0 it holds that∣∣∣ρH0
K (x+ h) ∧M − ρH0

K (x) ∧M
∣∣∣ ≤ ρH0(x, x+ h) = ‖h‖H0 . (6.3)

Indeed, suppose first that K is compact and without loss of generality ρH0
K (x) ≥ ρH0

K (y). Since K is

compact, it holds that ρH0
K (y) = ρH0(y, k) for some k ∈ K. Then

ρH0(x, y) ∧M ≥ ρH0(x, k) ∧M − ρH0(y, k) ∧M ≥ ρH0
K (x) ∧M − ρH0

K (y) ∧M
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and (6.3) holds. If K is merely σ-compact, we can write it as increasing union of compacts Kn, so

ρH0
Kn

(x) is a decreasing sequence and the inequality (6.3) remains true. Thus we can conclude that

ρH0
K ∈ D(EA) with carré du champ bounded by 1.

Again we can fix a countable dense subset Y of E \N by construction of the compact E-nest (Ek) (cf.

[RSchm95], Proposition 3.1). To prove now Assumption (BC) we can repeat the proof of Proposition

10, since the point-separating linear functionals are also H0-Lipschitz by the ellipticity of the operator

A. �

Remark 3. If A is additionally of trace class, then (EA, D(EA)) satisfies also Assumption (B): Since

A is of trace class, it holds for z ∈ H for any orthonormal basis (ek)k of H that

‖z‖2H0
= ‖A

1
2 z‖2H =

∞∑
k=1

〈A
1
2 z, ek〉2H =

∞∑
k=1

〈z,A
1
2 ek〉2H ≤ ‖z‖2H

∞∑
k=1

‖A
1
2 ek‖2H

= ‖z‖2H
∞∑
k=1

〈Aek, ek〉H = ‖z‖2H · tr (A). (6.4)

by Parseval’s identity and Cauchy’s inequality. So we get for every σ-compact set K ⊆ E, µ(K) > 0,

ρH0
K (x) = inf

y∈K

‖x− y‖2H0√
2

≤ inf
y∈K

tr (A) · ‖x− y‖2H√
2

= tr (A) · ρHK(x),

whence ρH0
K ∈ L2(E,µ). But by (6.3) with (6.4) it follows even that ρH0

K ∈ D(EA), so Assumption (B)

is fulfilled.

So we can collect all these results and define

H0(E) :=

{
h ∈ C([0, 1], E) : ∃

·
h ∈ L1([0, 1];H0), ht = h0 +

∫ t

0

·
hr dr,

∫ 1

0
‖
·
hr‖2H0

dr <∞
}
.

The integral representation of the rate function holds by Proposition 7, so we get the following propo-

sition.

Proposition 11. The generalized Ornstein-Uhlenbeck process (Xt) on the abstract Wiener space sat-

isfies a small-time large deviation principle upper bound

lim sup
ε→0

ε logPµ[Xε
t ∈ B |X0 ∈ Ẽk] ≤ − inf

h∈B
IH0

Ẽk
(h)

for any set B ⊆ C([0, 1];E) with rate function

IH0

Ẽk
(h) =

{
1
4

∫ 1
0 ‖
·
ht‖2H0

dt h ∈ H0(E), h0 ∈ suppµ ∩ Ẽk;
∞ otherwise.

Note that this result generalizes the work of Fang and Zhang ([FZ99], Proposition 2.5), who proved the

pathwise large deviations for a fixed starting point by a direct approach via the associated semigroup

in the case that the embedding H0 ↪→ E is trace class.
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Chapter 7

Wasserstein Diffusion on P([0, 1])

The Wasserstein diffusion (µt)t≥0 on the space P([0, 1]) of probability measures over the unit interval

[0, 1] equipped with the L2-Wasserstein distance was introduced by von Renesse and Sturm in their

paper [vRS] whose presentation we follow closely. The L2-Wasserstein distance is given by

dW (µ, ν) := inf
γ∈Γµ,ν

(∫∫
[0,1]2

|x− y|2γ(dx, dy)

) 1
2

where γ ranges over all probability measures on [0, 1]2 with marginals µ and ν,

Γµ,ν :=
{
γ ∈ P([0, 1]2) : γ(A× [0, 1]) = µ(A), γ([0, 1]×B) = ν(B), A,B ⊆ [0, 1]

}
.

The Wasserstein diffusion on the space (P([0, 1]), dW ) is constructed via a Dirichlet form defined in

terms of an entropic measure on P([0, 1]) and a gradient on a convenient tangent space in such a way,

that the associated intrinsic metric is the L2-Wasserstein distance.

The construction draws heavily on the isometry between P([0, 1]) and the non-decreasing, right-

continuous functions on [0, 1]: Define

G0 := {g : [0, 1]→ [0, 1] : g is right-continuous, non-decreasing with g(1) = 1},

then there exists a bijection

χ : (G0, ‖ · ‖L2(λ))→ (P([0, 1]), dW )

given by the push-forward of the Lebesgue measure

χ(g)(·) = (g∗λ)(·) = λ(g−1(·)).

The inverse of χ is given by the quantile function

χ−1 : (P([0, 1]), dW )→ (G0, ‖ · ‖L2(λ))

µ 7→ gµ := inf {s ∈ [0, 1] : µ([0, s]) > t}

45
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(with inf ∅ = 1). Moreover, this bijection is in fact an isometry,

dW (µ, ν) = ‖gµ − gν‖L2(λ).

Indeed, this is nothing else than the Fréchet-Hoeffding theorem for optimal transport of probability

measures on the real line with quadratic cost functional. For the background we refer to Villani’s

book [Vi]. The concrete statement there is Theorem 2.18 (cf. also [AGS05], Theorem 6.0.2). The

L2-topology on G0 and the image of the Wasserstein topology on P([0, 1]) under the map χ−1 : g 7→ gµ
coincide and G0 is compact with respect to this topology ([vRS], Section 2.1).

7.1 Entropic Measure

Using this isometry, we can construct the desired objects on G0 and pushing them forward to P([0, 1]).

To construct the entropic measure on G0 we fix some β > 0. Then for N ∈ N, a partition ∆N :=

{t0, . . . , tN+1}, 0 = t0 < t1 < . . . < tN < tN+1 = 1 and the simplex

ΣN := {(x1, . . . , xN ) ∈ [0, 1]N : 0 = x0 < x1 < . . . < xN < xN+1 = 1},

we define the marginals of the measure Qβ0 by requiring∫
G0
u(gt1 , . . . , gtN ) dQβ0 (g)

=
Γ(β)∏N+1

i=1 Γ(β(ti − ti−1))

∫
ΣN

u(x1, . . . , xN )
N+1∏
i=1

(xi − xi−1)β(ti−ti−1) dx1 · · · dxN∏N+1
i=1 (xi − xi−1)

(7.1)

for every bounded and measurable u : [0, 1]N → R. Here Γ stands for the Gamma function. We define

Gi as the set of mappings ∆i → Σi. The above family of marginals is consistent, so Kolmogorov’s

extension theorem implies the existence of a unique measure Q̃β0 on the projective limit lim←−G
i. The

canonical projections pi : G0 → Gi are consistent with the canonical projections πji : Gj → Gi, j ≥ i.
So G0 is homeomorphic to a subset of

∏
i∈N Gi and we can embed G0 continuously into lim←−G

i. The

restriction of the measure Q̃β0 to G0 defines the measure Qβ0 on G0 (compare Appendix 2).

Note that the measure Qβ0 is nothing else then a Dirichlet distribution. To show this, we define the

measure ν on the unit interval by

ν(]a, b]) :=

∫ b

a
β ds, 0 ≤ a < b ≤ 1.

Applying the substitution yi := xi − xi−1, i = 1, . . . , N , to (7.1), we get∫
G0
u(gt1 , . . . , gtN ) dQβ0 (g)

=
Γ(ν(]0, 1]))∏N+1

i=1 Γ(ν(]ti−1, ti]))

∫
[0,1]N

u(y1, . . . , yN )

N+1∏
i=1

y
ν(]ti−1,ti])−1
i δ1−

∑N−1
k=1 yk

(dyN )dyN−1 · · · dy1,
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which is the Dirichlet distribution on the unit interval with parameter ν (cf. [Sch02], (6)).

The entropic measure P β0 on P([0, 1]) we get by pushing Qβ0 forward, hence by requiring that∫
P([0,1])

u(µ) dP β0 (µ) =

∫
G0
u(g∗λ) dQβ0 (g)

for all bounded and measurable u : P([0, 1]) → R ([vRS], Section 3.3). We note that the measures

Qβ0 have full support on G0, that Qβ0 -almost surely the function s 7→ g(s) is strictly increasing, but it

increases only by jumps (by heights adding up to 1, the jump locations are dense in [0, 1]), and that

for every fixed s0 ∈ [0, 1], the function s 7→ g(s) is Qβ0 -almost surely continuous in s0. The asymptotics

of the family (Qβ0 )β∈]0,∞[ in β are the following: For β → ∞ the measures Qβ0 converge weakly to

the Dirac measure δe on the identity map e of [0, 1]; for β → 0 they converge weakly to the uniform

distribution on the set {1l[s,1] : s ∈]0, 1]}.
In terms of P β0 , this means that µ ∈ P([0, 1]) is P β0 -almost surely singular continuous (i.e., it has no

atoms, is not absolutely continuous and behaves ’Cantor-like’) and the measures P β0 converge weakly

to δλ for β →∞ and to the uniform distribution on the set {(1− s)δ{0}+ sδ{1} : s ∈ [0, 1]} for β → 0

([vRS], Section 3.5).

For both measures, Qβ0 and P β0 , a Girsanov style change of variable formula holds. Let h ∈ G0 a

C2-isomorphism, hence an increasing homeomorphism h : [0, 1] → [0, 1], such that h and h−1 are

both bounded in C2([0, 1]). Then under the translation τh : G0 → G0 given by g 7→ h ◦ g for every

g ∈ G0, the measure Qβ0 is quasi-invariant, so is P β0 under τ̃h : P([0, 1])→ P([0, 1]) given by µ 7→ h∗µ.

More explicitly, the densities (bounded and bounded away from 0) are given by

dQβ0 (h ◦ g)

dQβ0 (g)
=
d(τh−1)∗Q

β
0 (g)

dQβ0 (g)

=eβ
∫ 1
0 log h′(g(s)) ds 1√

h′(0)h′(1)

∏
a∈Jg

√
h′(g(a−)h′(g(a+))
h(g(a+))−h(g(a−))

g(a+)−g(a−)

where Jg ⊆]0, 1[ denotes the set of the jump locations of g on ]0, 1[; Analogously

dP β0 (h∗µ)

dP β0 (µ)
= eβ

∫ 1
0 log h′(s)µ(ds) 1√

h′(0)h′(1)

∏
I∈gaps (µ)

√
h′(I−)h′(I+)

|h(I)|/|I|

where gaps (µ) denotes the set of intervals I =]I−, I+[⊆ [0, 1] of maximal length with µ(I) = 0 and |I|
denotes the length of such an interval ([vRS], Section 4.3).

7.2 Directional Derivatives and Integration by Parts on G0

For each ϕ ∈ C∞([0, 1];R) with ϕ(0) = ϕ(1) = 0, we define the flow generated by ϕ as the map

eϕ : R× [0, 1]→ [0, 1],
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that assigns to each x ∈ [0, 1] the function

eϕ(·, x) : R→[0, 1];

t 7→eϕ(t, x).

eϕ(t, x) denotes here the unique solution of the ordinary differential equation

dxt
dt

=ϕ(xt),

x0 =x.

The property eϕ(t, x) = etϕ(1, x) allows us the use of the shorthand etϕ(x) := eϕ(t, x). For every

ϕ ∈ C∞([0, 1];R), the family (etϕ)t∈R is a group of order-preserving C∞-diffeomorphisms of [0, 1].

Note that etϕ(0) = 0 and etϕ(1) = 1 for all t ∈ R and ∂
∂tetϕ(x)|t=0 = ϕ(x).

Given a function u ∈ G0, we can define for every ϕ the directional derivative along ϕ by

Dϕu(g) := lim
t→∞

u(etϕ ◦ g)− u(g)

t

in the case that this limit exists.

This is in particular the case for the following family of functions u : G0 → R, for which the derivative

Dϕu(g) exists for every point g ∈ G0 in every direction ϕ: Define Zk(G0) by

Zk(G0) :={
u : u(g) = U

(∫ 1

0
α1(g(s))ds, . . . ,

∫ 1

0
αm(g(s)) ds

)
, αi ∈ Ck([0, 1],R), U ∈ Ck(Rm,R),m ∈ N

}
,

then we get for u ∈ Z1(G0)

Dϕu(g) =

m∑
i=1

∂

∂yi
U
(∫ 1

0
α1(g(s)) ds, . . . ,

∫ 1

0
αm(g(s)) ds

)
·
∫ 1

0
α′i(g(s))ϕ(g(s)) ds.

This operator is closeable in L2(G0, Q
β
0 ) and we will denote the closure by (Dϕ, D(Dϕ)).

Denoting for ϕ ∈ C∞([0, 1];R) by D∗ϕ the operator adjoint to Dϕ in L2(G0, Q
β
0 ), we get for u in the

family Z1(G0) the integration by parts formula

D∗ϕu = −Dϕu− V β
ϕ · u.

The drift operator V β
ϕ : G0 → R is given at the point g ∈ G0 by

∑
a∈Jg

(
ϕ′(g(a+)) + ϕ′(g(a−))

2
− ϕ(g(a+))− ϕ(g(a−))

g(a+)− g(a−)

)
+ β

∫
]0,1[

ϕ′(g(x)) dx− ϕ′(0) + ϕ′(1)

2

(cf. [vRS], Section 5.4).
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7.3 Gradient and Dirichlet Form on G0

To define a gradient for functionals on G0, we have to specify the tangent space in the points g ∈ G0.

In accordance to our definition of the directional derivatives we choose

‖ϕ‖Tg :=

(∫ 1

0
ϕ(g(s))2 ds

) 1
2

to get

TgG0 = L2([0, 1], g∗λ).

So we can define the gradient Du(g) ∈ TgG0 by

Dϕu(g) = 〈Du(g), ϕ〉Tg for all ϕ ∈ Tg.

It exists if and only if

sup
ϕ∈Tg

Dϕu(g)

‖ϕ ◦ g‖L2(λ)
<∞.

This definition of a tangent space is isometrically isomorphic to another one: If we understand G0 as

subset of L2([0, 1], λ), we can choose

TgG0 := L2([0, 1], λ)

and define the the directional derivative Df for u : G0 → R in direction f ∈ Tg as Gâteaux derivative

Dfu(g) := lim
t→0

u(g + tf)− u(g)

t

which is in fact a Fréchet derivative and so Du by

Dfu(g) = 〈Du(g), f〉Tg , for all f ∈ Tg.

It exists if and only if

sup
f∈Tg

Dfu(g)

‖f‖L2(λ)
<∞.

In particular we get

Dϕu(g) = Dϕ◦gu(g) and ‖Du(g)‖Tg = ‖Du(g)‖Tg

(cf. [vRS], Section 7.1). For u ∈ Z1(G0) we can understand the gradient Du as mapping

Du : G0 × [0, 1]→R;

(g, t) 7→Du(g)(t). (7.2)

So (D,Z1(G0)) is an operator

D : Z1(G0)→ L2(G0 × [0, 1], Qβ0 ⊗ λ)
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and as such it is closable in L2(G0, Q
β
0 ) with closure (D, D(D)).

For u, v ∈ Z1(G0) we can hence define the so called Wasserstein Dirichlet integral

E(u, v) :=

∫
G0
〈Du(g),Dv(g)〉L2(λ) dQ

β
0 (g).

(E,Z1(G0)) is closeable, too, and its closure (E, D(E)) defines a regular, recurrent and local Dirichlet

form. Its domain coincides with D(D), since both are the closure of Z1(G0). We get the representation

E(u, v) =

∫
G0×[0,1]

Du · Dv d(Qβ0 ⊗ λ),

understanding the gradient as mapping G0 × [0, 1] → R as in (7.2). Furthermore (E, D(E)) admits a

carré du champ operator Γ(u, v) ∈ L1(G0, Q
β
0 ) with domain D(Γ) = D(E)∩L∞(G0, Q

β
0 ) which is given

by

Γ(u, v)(g) = 2 〈Du(g),Dv(g)〉L2(λ)

(cf. [vRS], Section 7.2). We note two important classes of functions which are contained in the domain

of the Dirichlet form. On the one hand, for every f ∈ G0 the function

u0
f : G0 →R;

g 7→ 〈f, g〉L2(λ)

belongs to D(E). And on the other hand also the function

u1
f : G0 →R;

g 7→
‖f − g‖L2(λ)√

2
, (7.3)

belongs to D(E) with the additional property Γ(u1
f ) ≤ 1 Qβ0 -almost surely. Moreover, we have for func-

tions in the domain of the Dirichlet form the following Rademacher property: Every 1/
√

2-Lipschitz

function u on G0 is contained in D(E) with Γ(u) ≤ 1 Qβ0 -almost surely. Vice versa, every continuous

function u ∈ D(E) with Γ(u) ≤ 1 Qβ0 -almost surely is 1/
√

2-Lipschitz. The intrinsic metric ρ on G0

generated by the carré du champ Γ is the L2-metric:

ρ(f, g) =
‖f − g‖L2(λ)√

2
for all f, g ∈ G0

(cf. [vRS], Section 7.3, compare also [RSchi]). The Dirichlet form has a generator 1
2L and an associated

Markov process, the diffusion (gt)t≥0 on G0 starting in some g0 ∈ G0.

7.4 Wasserstein Dirichlet Form and Wasserstein Diffusion

Now we can push forward the Dirichlet form from G0 to P([0, 1]) by means of the isometry χ. Therefore

we define the set Zk(P([0, 1])) by

Zk(P([0, 1])) :={
u : u(µ) = U

(∫ 1

0
α1 dµ, . . . ,

∫ 1

0
αm dµ

)
, αi ∈ Ck([0, 1],R), U ∈ Ck(Rm,R),m ∈ N

}
.
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For any µ ∈ P([0, 1]) we can identify the tangent space TµP([0, 1]) with L2([0, 1], µ). So for u ∈
Z1(P([0, 1])) the gradient Du(µ) is given by

Du(µ) =
m∑
i=1

∂

∂yi
U
(∫ 1

0
α1 dµ, . . . ,

∫ 1

0
αmdµ

)
· α′i(·)

with norm

‖Du(µ)‖Tµ =

∫ 1

0

∣∣∣∣∣
m∑
i=1

∂

∂yi
U
(∫ 1

0
α1 dµ, . . . ,

∫ 1

0
αmdµ

)
· α′i

∣∣∣∣∣
2

dµ

 1
2

.

The associated flow by means of ϕ ∈ Tµ is given by the push-forward ϕ∗µ.

Pushing the Dirichlet form (E, D(E)) on G0 forward yields the Wasserstein Dirichlet form (E , D(E))

on L2(P([0, 1]), P β0 ) which is regular, recurrent and local and on Z1(P([0, 1])) given by

E(u, v) =

∫
P([0,1])

〈Du(µ), Dv(µ)〉L2(µ) dP
β
0 (µ), u, v ∈ Z1(P([0, 1])).

The associated carré du champ operator is defined on D(E)∩L∞(P([0, 1]), P β0 ) and has on Z1(P([0, 1]))

the representation

Γ(u, v)(µ) = 2 〈Du(µ), Dv(µ)〉2L2(µ) , u, v ∈ Z1(P([0, 1])).

The Rademacher property is here given in the following sense: Every 1/
√

2-Lipschitz function u on

P([0, 1]) (the Lipschitz property is understood with respect to the L2-Wasserstein distance dW ) is

contained in D(E) with Γ(u) ≤ 1 P β0 -almost surely. Conversely, every continuous function u ∈ D(E)

with Γ(u) ≤ 1 P β0 -almost surely is 1/
√

2-Lipschitz. The intrinsic metric on P([0, 1]) generated by Γ is

the L2-Wasserstein metric:

ρ(µ, ν) =
dW (µ, ν)√

2
for all µ, ν ∈ P([0, 1]).

Moreover, we can represent the generator 1
2L of the Dirichlet form (E , D(E)) on Z2

0(P([0, 1])) defined

by

Z2
0(P([0, 1])) :=

{
u ∈ Z2(P([0, 1])) : α′i(0) = α′i(1) = 0 for all i ∈ {1, . . . ,m}, m ∈ N

}
as sum L = L1 + L2 + βL3 with

L1u(µ) =
m∑
i=1

m∑
i=1

∂

∂yi

∂

∂yj
U
(∫ 1

0
α1 dµ, . . . ,

∫ 1

0
αmdµ

)
·
∫ 1

0
α′iα

′
j dµ

L2u(µ) =

m∑
i=1

∂

∂yi
U
(∫ 1

0
α1 dµ, . . . ,

∫ 1

0
αmdµ

)
·

·

 ∑
I∈gapsµ

(
α′′i (I−) + α′′i (I+)

2
− α′i(I−)− α′i(I+)

|I|

)
− α′′i (0) + α′′i (1)

2


L3u(µ) =

m∑
i=1

∂

∂yi
U
(∫ 1

0
α1 dµ, . . . ,

∫ 1

0
αmdµ

)
·
∫ 1

0
α′′i dµ.
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Here L1 describes a diffusion on P([0, 1]) in all directions, L2 is the drift part due to the change

of variable formula and L3 is the generator of the deterministic Neumann heat flow (Ht)t≥0 on

L2(P([0, 1]), P β0 ) given by

Htu(µ) = u(htµ).

ht is the heat kernel on [0, 1] with reflecting boundary conditions and

htµ(·) =

∫ 1

0
ht(·, y)µ(dy).

Note that for β →∞ we have the convergence 1/βL→ L3.

For P β0 -almost every µ0 ∈ P([0, 1]) we can associated a Markov process (µt)t≥0 starting in µ0 to the

generator 1
2L. This process (µt)t≥0 we will call the Wasserstein diffusion on (P([0, 1]), P β0 ). Note that

it is related to the diffusion process on G0 by

µt = (gt)∗λ,

where (gt)t≥0 is the Markov process associated to the Dirichlet form (E, D(E)) on L2(G0, Q
β
0 ) with

starting point g0 := χ−1(µ0) (cf. [vRS], Section 7.5).

7.5 Small Time Large Deviations on G0

Now we want to apply our general results on pathwise small-time large deviations to the case of the

Wasserstein diffusion. We start with G0 and define the space H(G0) as subspace of the sample path

space C([0, 1],G0) by

H(G0) :={
h ∈ C([0, 1],G0) : ∃

·
h ∈ L1([0, 1];L2([0, 1];R)), ht = h0 +

∫ t

0

·
hr dr,

∫ 1

0
‖
·
hr‖2L2(λ) dr <∞

}
.

Note that the integral
∫ t

0

·
hr dr is an L2([0, 1];R)-valued Bochner integral; H(G0) is the space of ab-

solutely continuous paths on (G0, ‖ · ‖L2(λ)) with square integrable Fréchet derivative (cf. Remark 2).

Furthermore we denote by Hg0(G0) the subspace of all sample paths starting g0.

Proposition 12. The diffusion process (gt)t≥0 on (G0, ‖ · ‖L2(λ)) associated to the Dirichlet form

(E, D(E)) and starting in g0 obeys a large deviation upper bound with rate function

Ẽ0,1(h) = Ĩg0(h) :=

{
1
4

∫ 1
0 ‖
·
hr‖2L2(λ) dr for h ∈ Hg0(G0);

∞ otherwise.

Proof: To prove this result means essentially to check if our conditions for the large deviation principle

hold. The Dirichlet form is quasi-regular (since regular), local, conservative (since recurrent, cf.
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[FOT], Theorem 1.6.3) and admits a carré du champ operator. So Assumption (A) is fulfilled. A

point-separating family with bounded square field operator is given by (u1
f )f∈Y ,

u1
f (g) = ‖f − g‖L2(λ)/

√
2 = ρ(f, g) = ρf (g)

for a countable dense subset Y of G0 (see (7.3) above). In particular ρf ∈ D(E) for every f ∈ G0; the

exponential compact containment condition holds true (even without Assumption (D)) since G0 itself

is compact (cf. Section 5). The integral representation holds true by Proposition 7. �
But our general results imply in fact more, we can randomize the initial condition to get the following

Corollary.

Corollary 2. The diffusion (gt)t≥0 on G0 satisfies the small time large deviation upper bound

lim sup
ε→0

ε logP
Qβ0

[gεt ∈ A] ≤ − inf
h∈A

Ĩ(h)

for any set A ⊆ C([0, 1];G0) with rate function

Ĩ(h) :=

{
1
4

∫ 1
0 ‖
·
hr‖2L2(λ) dr h ∈ H(G0), h0 ∈ suppQβ0 ;

∞ otherwise.

7.6 Small Time Large Deviations on Wasserstein Space

Now we want to derive the corresponding small time large deviation principle on the Wasserstein

space. The isometry between G0 and P([0, 1]) implies that such a principle holds with rate function

I(ω) := E0,1(ω) = sup
∆

∑
ti−1,ti∈∆

d2
W (ωti−1 , ωti)

4(ti − ti−1)
,

ω a sample path on Ω := C([0, 1];P([0, 1])). In particular ρµ ∈ D(E) for every µ ∈ P([0, 1]) and (ρµ)µ
separates points with Γ(ρµ) ≤ 1. But instead of directly carrying over the integral representation on

G0, we prefer to give first a representation directly in terms of the Wasserstein geometry.

To introduce the notion of a tangent velocity field, we look at the so called continuity equation: We

say that a curve ω on P([0, 1]) solves the continuity equation

∂

∂t
ωt + div(vtωt) = 0,

for a Borel vector field v, vt ∈ L2([0, 1], ωt), vt(x) : [0, 1]×]0, 1[→ [0, 1], (x, t) 7→ vt(x), if it solves the

equation in the sense of distributions. This means that for every smooth test function Φ on [0, 1]×]0, 1[

with compact support, the equation∫ 1

0

∫ 1

0

( ∂
∂t

Φ(x, t) + 〈vt(x),∇xΦ(x, t)〉L2(ωt)

)
ωt(dx) dt = 0
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is satisfied. If ω is absolutely continuous, then there exists a vector field v with ‖vt‖L2(ωt) ≤ |ω′|(t)
almost everywhere such that ω solves the equation with respect to v. Conversely, if ω satisfies the

continuity equation for some Borel vector field v with ‖vt‖L2(ωt) ∈ L2([0, 1], λ), then ω is absolutely

continuous and |ω′|(t) ≤ ‖vt‖L2(ωt) almost everywhere. (cf. [AGS04], Theorem 3.6 and [AGS05],

Theorem 8.3.1). To a given curve ω there exists indeed no unique vector field v such that ω solves the

continuity equation with respect to v. If ω is a solution with respect to v, then it is also a solution

with respect to v + w for every w which satisfies div(wtωt) = 0. But there exists a minimal solution,

that is unique up to (Lebesgue-)null sets and for which

‖vt‖L2(ωt) = |ω′|(t) λ-almost surely (7.4)

holds (cf. [AGS04], Section 3.2 and [AGS05], p.167). This vector field v is called the tangent velocity

field associated to ω. It can be understood as a sample path on the tangent bundle of P([0, 1]), t 7→ vt
defines a mapping [0, 1]→ TP([0, 1]).

Proposition 13. Given a curve ω on P([0, 1]), the following statements are equivalent:

(i) E0,1(ω) is finite;

(ii) ω belongs to AC2(P([0, 1]));

(iii) there exists a tangent velocity field v associated to ω such that ‖vt‖L2(ωt) ∈ L2([0, 1], λ).

If one (hence all) of these conditions holds, then the energy functional is given by

E0,1(ω) =
1

4

∫ 1

0
|ω′|2(t) dt =

1

4

∫ 1

0
‖vt‖2L2(ωt)

dt.

Proof: The equivalence of (i) and (ii) is true by Proposition 7. That implication (iii) entails (ii)

is clearly true: Since v is the tangent velocity field such that ω solves the continuity equation, ω is

absolutely continuous. But since ‖vt‖L2(ωt) ∈ L2([0, 1], λ), it follows that |ω′|(t) ∈ L2([0, 1], λ) and so

ρ(ωr, ωt) ≤
∫ t

r
|ω′|2(s) ds, 0 ≤ r < t ≤ 1.

Conversely, the existence of a tangent velocity field implies that ω is absolutely continuous. Hence the

metric derivative exists, and since ‖vt‖L2(ωt) ∈ L2([0, 1], λ), it is square integrable by (7.4), proving

the equivalence of (ii) entails (iii). The integral representation follows also directly by Remark 2 and

(7.4). �
From this proposition, we can directly derive the small time asymptotics of the Wasserstein diffusion.

Theorem 4. The Wasserstein diffusion (µt)t≥0 satisfies a small time large deviation upper bound

lim sup
ε→0

ε logP
Pβ0

[µεt ∈ A] ≤ − inf
ω∈A

I(ω)

for any set A ⊆ Ω = C([0, 1];P([0, 1])) with rate function

I(ω) =

{
1
4

∫ 1
0 ‖vt‖

2
L2(ωt)

dt ω ∈ AC2(P([0, 1])), ω0 ∈ suppP β0 ;

∞ otherwise,

where v is the tangent velocity field associated to ω.
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Proof: This is straightforward from Proposition 13 and our general result Theorem 3. �
A remarkable result gives the reformulation of Corollary 1 in terms of the Wasserstein geometry, it

recovers actually the celebrated Benamou-Brenier formula (cf. [AGS04], Theorem 3.9, [AGS05], p.168

and [Vi], Theorem 8.1):

Corollary 3. Suppose that also the lower bound of the large deviation principle holds. Let µ0, µ1 ∈
P([0, 1)) two measures connected by a curve in AC2(P([0, 1])). We define by π{0,1} : Ω → P([0, 1])2

the projection ω 7→ (ω0, ω1) to get

d2
W (µ0, µ1) = inf

{ω:π{0,1}(ω)=(µ0,µ1)}

1

2

∫ 1

0
‖vt‖2L2(ωt)

dt.

7.7 More on the Relation between G0 and the Wasserstein Space

Till now, we used extensively the isometry of (G0, ‖ · ‖L2(λ)) and (P([0, 1]), dW ) to construct the

Wasserstein diffusion, but developed the large deviation principles in both cases independently. Now

we want to relate this two approaches and point out the relation between the vector fields v and the

derivatives
·
g.

Proposition 14. Suppose that a curve ω ∈ AC2(P([0, 1])) solves the continuity equation with respect

to the tangent velocity field v. Then (gt), gt = χ−1(ωt), lies in H(G0) with derivative
·
gt = vt ◦

gt. Conversely, if g ∈ H(G0) with derivative
·
g, then the curve ω on P([0, 1]), ωt = χ(gt), is in

AC2(P([0, 1])) and solves the continuity equation with respect to the tangent velocity field v, vt =
·
gt ◦ g−1

t .

Proof: We note first the equivalence of the integrability conditions,

‖vt‖L2(ωt) = ‖vt ◦ gt‖L2(λ) = ‖ ·gt‖L2(λ).
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Assume now that g ∈ H(G0) with derivative
·
g. Then ω, ωt = χ(gt) = (gt)∗λ, solves the continuity

equation with respect to the vector field v, vt =
·
gt ◦ g−1

t , since for any test function Φ∫ 1

0

∫ 1

0

(
Φt(x, t) + 〈vt(x),Φx(x, t)〉L2(ωt)

)
ωt(dx) dt

=

∫ 1

0
〈1,Φt(·, t)〉L2(ωt) + 〈vt,Φx(·, t)〉L2(ωt) dt

=

∫ 1

0
〈1,Φt(gt, t)〉L2(λ) + 〈vt ◦ gt,Φx(gt, t)〉L2(λ) dt

=

∫ 1

0
〈1,Φt(gt, t)〉L2(λ) + 〈 ·gt,Φx(gt, t)〉L2(λ) dt

=

∫ 1

0
〈1,Φt(gt, t) +

·
gtΦx(gt, t)〉L2(λ) dt

=

∫ 1

0

〈
1,
∂

∂t

(
Φ(gt, t)

)〉
L2(λ)

dt

=〈1,Φ(g1, 1)− Φ(g0, 0)〉L2(λ) = 0.

But v is also the minimal vector field which solves the continuity equation, since

‖vt‖L2(ωt) = ‖ ·gt‖L2(λ) = lim
h→0

∥∥∥∥gt+h − gth

∥∥∥∥
L2(λ)

= lim
h→0

dW (ωt+h, ωt)

h
= |ω|′(t),

so it is the tangent velocity field to ω.

To prove the other direction, assume that ω ∈ AC2(P([0, 1])) solves the continuity equation with

respect to the tangent velocity field v. The above considerations imply∫ 1

0
〈vt ◦ gt,Φx(gt, t)〉L2(λ) + 〈1,Φx(gt, t)〉L2(λ) dt =

∫ 1

0

〈
1,
∂

∂t
Φ(gt, t)

〉
L2(λ)

dt

for every smooth test function on [0, 1]×]0, 1[ with compact support. So vt ◦ gt is a weak derivative

of gt. Moreover, it is clear that we have by the isometry between (P([0, 1]), dW ) and (G0, ‖ · ‖L2(λ))

the identity E0,1(ω) = E0,1(g) for the energy functionals defined by the respective metrics. Thus,

since ω ∈ AC2(P([0, 1])), it has by Proposition 7 finite energy; so has g, which is thus in AC2(G0) by

Proposition 7. It follows that gt is Fréchet differentiable, and since the Fréchet derivative has to be

the same as the weak derivative, we have
·
gt = vt ◦ gt. �

This machinery allows us to calculate in an easy way the tangent velocity field v, avoiding the messy

task to find a vector field for which ω solves the continuity equation.

7.8 Some Examples

We start with an easy example:
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Example 3. We consider the curve ωt = δt on the Wasserstein space. Direct calculations yield that

the distribution function is given by g−1
t (x) = 1l[t,1](x) and the quantile function by gt = t1l[0,1[(x) +

(1− t)1l{1}(x) with derivative
·
gt(x) = 1l[0,1[(x)− 1l{1}(x). So the tangent velocity field is given by

vt(x) = (
·
gt ◦ g−1

t )(x) = 1l[0,t[(x)− 1l[t,1](x).

In this case, divergence free vector fields are given by wt = f ◦ g−1
t for every f : [0, 1] → R, that

satisfies
∫ 1

0 f(x) dx = 0: For any test function Φ it holds that∫ 1

0
〈wt,Φx(·, t)〉L2(ωt) dt =

∫ 1

0
〈f,Φx(gt, t)〉L2(λ) dt =

∫ 1

0
f dλ

∫ 1

0
Φx(t, t) dt = 0,

so any vector field of the form v + w satisfies the continuity equation.

The following example is intended as warning that regularity properties in the space variable (as

Lipschitz continuity) are not preserved under the transformation mapping g−1
t .

Example 4. We consider the path gt(x) = x2+t. The derivative with respect to time t is
·
gt(x) =

x2+t lnx which is for every t ∈ [0, 1] globally Lipschitz in x with some Lipschitz constant uniformly

bounded in t. The inverse of gt is g−1
t (x) = x

1
2+t , so the tangent velocity field is given by

vt(x) =
x lnx

2 + t

which is for every t ∈ [0, 1] clearly not globally Lipschitz in x (and in particular also not locally

Lipschitz in 0, with exponentially exploding Lipschitz constants approaching this value): Thus v does

not induce a flow in the sense of Ambrosio and Gigli (cf. next section) along the curve ωt (given by

their distribution functions x
1

2+t ).

7.9 Flows along Regular Curves in the Wasserstein Space

One question remains yet open, namely if the velocity field v induces a flow of the curve ω on P([0, 1]).

Note that till now, we had only the notion of a flow with respect to some ϕ ∈ C∞([0, 1];R) which

was pushed forward from G0. But now we need a definition of a flow that is associated to the tangent

velocity field v, so vt belongs to a different tangent space for every t. So we will understand now

under a flow along ω a mapping T(s, t, x) : [0, 1]2 × [0, 1] → [0, 1], that is absolutely continuous in t,

Lipschitz in x, and satisfies
T(s, s, x) = x for all x, s ∈ [0, 1];

d
dτ

∣∣
τ=t

T(s, τ, x) = vt(T(s, t, x)) for all x, s, and almost every t ∈ [0, 1];

T(s, t,T(r, s, x)) = T(r, t, x) for all x, r, s, t ∈ [0, 1];

T(s, t, ·)∗ωs = ωt(·) for all s, t ∈ [0, 1].

In general, we cannot associate to every absolutely continuous curve ω a flow T which is Lipschitz

in the space variable (cf. Example 4); so to describe the results, we introduce the notion of regular

curves ([AG], Definition 5.1).
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Definition 4. Let ω an absolutely continuous curve on P([0, 1]) with associated tangent velocity field

v, vt ∈ L2([0, 1], ωt). We call ω regular, if∫ 1

0
Lip(vt) dt <∞.

If a curve ω is regular, then there exists a flow T induced by the tangent velocity field v of ω, that

pushes the probability measure ω0 forward along the curve ω (cf. [AG], Section 5). Regularity is in

general not fulfilled, as pointed out in Example 4. As shown there, we have also no direct relationship

between the Lipschitz properties (in x) of
·
g and v. But we can at least formulate a sufficient condition

for regularity:

Proposition 15. Suppose that
·
gt and g−1

t are Lipschitz in x for almost every t and that it holds for

the respective Lipschitz constants ∫ 1

0
Lip (

·
gt) · Lip (g−1

t ) dt <∞.

Then the absolutely continuous curve ω, that solves the continuity equation for v, vt =
·
gt ◦ g−1

t , is

regular.

Proof: The proof is straight forward,

|vt(x1)− vt(x2)| =|
( ·
gt ◦ g−1

t

)
(x1)−

( ·
gt ◦ g−1

t

)
(x2)|

≤Lip (
·
gt) · |g−1

t (x1)− g−1
t (x2)| ≤ Lip (

·
gt) · Lip (g−1

t ) · |x1 − x2|,

which implies the integrability condition. �
Moreover, Ambrosio and Gigli [AG] pointed out, that the set of regular curves on P([0, 1]) is dense

in the set of absolutely continuous curves. More precisely: Given an absolutely continuous curve ω

with tangent velocity field v, we can construct a sequence of regular curves ωn with associated tangent

velocity fields vn, such that for n → ∞ both supt∈[0,1] dW (ωnt , ωt) → 0 and ‖vnt ‖L2(ωnt ) → ‖vt‖L2(ωt).

For details on this rather tricky approximation result we refer to [AG], Section 6.
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Appendix A

Backward Martingales and the

Lyons-Zheng Decomposition

A.1 Backward Martingales

In the following we consider a probability space (Ω,F , P ) and a symmetric diffusion process (Xt)t∈[0,T ]

on some Polish space X as introduced in Chapter 1. We define the filtration (Ft)t∈[0,T ] by Ft =

σ(Xs, 0 ≤ s ≤ t) and the backward filtration (F̂t)t∈[0,T ] by F̂t := σ(XT−s, 0 ≤ s ≤ t).

Definition 5. A martingale with respect to the filtration (F̂t) we will call a backward martingale, while

a “classical” martingale (hence with respect to the original filtration (Ft)) we will call forward mar-

tingale. More precisely: (M̂t) is a backward martingale, if it is an integrable, (F̂t)-adapted stochastic

process such that

E[M̂t | F̂s] = M̂s for all 0 ≤ s ≤ t ≤ T

holds.

Note that this definition of a backward martingale is in accordance with that of Lyons and Zhang

[LZha], in particular it is a special case of the two-parameter backward martingale of Kunita (cf.

[Kun], pp. 111f.) with the second parameter fixed at T . Next we will assemble some results on the

Itô-calculus for backward martingales.

Definition 6. For a given backward martingale (M̂t) and some continuous function f , we define

the stochastic backward integral with respect to (M̂t) as L2-limes along a refining sequence (ζn) of

partitions of [0, T ] with mesh tending to zero,∫ t

0
f(M̂s) dM̂s := lim

n→∞

∑
τi∈ζn
τi≤t

f(M̂τi)(M̂τi+1 − M̂τi).

61
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Of course this definition generalizes straightforward to integrals with respect to a local backward

martingale by stopping along an increasing sequence of stopping times diverging to infinity almost

surely. Remark that by definition the stochastic integral is anticipating with respect to the filtration

(F), but it is non-anticipating for our backward filtration (F̂t). This is also in accordance with the

definition of Kunita [Kun] who defines the backward integral as∫ T

r
f(M̂s) dM̂s := lim

n→∞

∑
ti∈ζn
ti≥r

f(M̂ti+1)(M̂ti+1 − M̂ti)

for the refining sequences ζ̃n = {0 = t0 < t1 < · · · < tn−1 = tn = T} (although requiring only

convergence in probability!). This on the one hand from∫ t

0
f(M̂s) dM̂s = −

∫ T

T−t
f(M̂s) dM̂s

and on the other, setting for the partition ζ̃n ti := T − τn−i

lim
n→∞

∑
τi∈ζn
τi+1≤t

f(M̂τi)(M̂τi+1 − M̂τi) = lim
n→∞

∑
ti∈ζn

tn−i≥T−t

f(M̂T−tn−i−1)(M̂T−tn−i−1 − M̂T−tn−i)

=− lim
n→∞

∑
ti∈ζn

tn−i≥T−t

f(M̂T−tn−i−1)(M̂T−tn−i − M̂T−tn−i−1).

Since we are thus in the framework of classical Itô-calculus, we can use straightforward the classical

proofs of the following statements

Lemma 15. For every continuous function f the stochastic backward integral is a local martingale,

E

[∫ t

0
f(M̂r) dM̂r

∣∣∣∣ F̂s] =

∫ s

0
f(M̂r) dM̂r 0 ≤ s ≤ t ≤ T.

Lemma 16. The backward Itô formula reads for g ∈ C2(R) and a (F̂t)-semimartingale Ŝ = M̂ + Â

g(Ŝt) = g(Ŝ0) +

∫ t

0
g′(Ŝs) dŜs +

1

2

∫ t

0
g′′(Ŝs) d〈M̂〉s.

Lemma 17. The backward stochastic exponential exp
(
M̂t − 1

2〈M̂〉t
)

is a local backward martingale.

Lemma 18. For the backward stochastic exponential we have

E
[
exp

(
M̂t −

1

2
〈M̂〉t

)]
≤ 1.

Lemma 19. Suppose that

E
[
exp

(
M̂t −

1

2
〈M̂〉t

)]
<∞.

Then exp
(
M̂t − 1

2〈M̂〉t
)

is a uniformly integrable backward martingale, in particular

E
[
exp

(
M̂t −

1

2
〈M̂〉t

)]
= 1.
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A.2 Lyons-Zheng Decomposition

In the following we want to present the Lyons-Zheng (cf. [LZhe]) forward-backward martingale de-

composition, relying on the approach given by Lyons and Zhang ([LZha]). We will remain in the

setting laid out in Chapter 1.

Theorem 5. For every continuous f ∈ D(E) there exist a continuous forward Pµ-martingale Mf
t

and a continuous backward Pµ-martingale M̂f
t , both square integrable with respect to Pµ and with

Mf
0 = M̂f

0 = 0, such that

f(Xt)− f(X0) =
1

2
(Mf

t + M̂f
T−t − M̂

f
T ). (A.1)

Proof: In a first step we restrict ourselves to the case f ∈ D(L). Then it is clear that

Mf
t := f(Xt)− f(X0)−

∫ t

0
Lf(Xs) ds, t ∈ [0, T ],

is a square-integrable (forward) Pµ martingale. But since the operator L is self-adjoint, it follows that

XT−t has under Pµ the same law as Xt and hence

M̂f
t :=f(XT−t)− f(XT )−

∫ t

0
Lf(Xs) ds

=f(XT−t)− f(XT )−
∫ t

0
Lf(XT−s) ds

=f(XT−t)− f(XT )−
∫ T

T−t
Lf(Xs) ds, t ∈ [0, T ],

is a square-integrable backward Pµ-martingale and
〈
M̂f
〉
T

=
〈
Mf
〉
T

. Putting these equations to-

gether, this yields

Mf
t + M̂f

T−t − M̂
f
T = 2(f(Xt)− f(X0))

and hence (A.1).

The extension to the general case f ∈ D(E) relies on the isometry

Eµ
[
〈M̂f 〉T

]
=Eµ

[
〈Mf 〉T

]
= Eµ

[∫ T

0
Γ(f)(Xs) ds

]
=

∫ T

0
Eµ[Γ(f)(Xs)] ds

=

∫ T

0

∫
X

Γ(f) dµ ds = 2TE(f). (A.2)

For f ∈ D(E) we can choose a sequence fn ∈ D(L) in such a way that

E(f − fn) +

∫
X
|f − fn|2 dµ→ 0.

Since the fn have E-quasi-continuous µ-versions f̃n, there exist by [MR], Proposition III.3.5 a subse-

quence (fnk) such that (f̃nk) converges E-quasi uniformly to f̃ , an E-quasi-continuous µ-versions of f .



64 APPENDIX A. THE LYONS-ZHENG DECOMPOSITION

Since we have by the quasi-regularity of the Dirichlet form on the other hand for the diffusion process

Xt and τN its first hitting time of the E-exceptional set N , we have Px[τN <∞] = 0 for E-quasi every

x ∈ X (cf. [MR], Proposition IV.5.30), we can conclude that for the subsequence (fnk) we have for

E-quasi-every x ∈ X .

Px[fnk(Xt) converges uniformly in t on every compact interval of [0,∞[ ] = 1.

Now we define Mf
t = limn→∞M

fn
t and, analogously, M̂f

t = limn→∞ M̂
fn
t as L2(Ω, Pµ)-limits via the

isometry (A.2). Since, of course, also fn(Xt) converges almost surely to f(Xt) for each t ∈ [0, T ], the

decomposition extends to all continuous functions in the domain of the Dirichlet form. �

Remark 4. We note that the result in [LZha] is even more precise: For the above constructed decom-

position it holds that A given by

At := Mf
t − M̂

f
T−t + M̂f

T

is a continuous additive functional of zero energy, i.e.

e(A) := lim
t→0

1

2t
Eµ[A2

t ] = 0.

Moreover, requiring that A is a continuous additive functional of zero energy, the decomposition is

unique.



Appendix B

Projective Limits and their Large

Deviations

B.1 Contraction Principles

For convenience we note here some results on the transformation of large deviation principles under

continuous mappings, proofs can be found in [DZ], Section 4.2. We start with the contraction principle.

Proposition 16. Suppose we have given two topological Hausdorff spaces X , Y and a continuous

function f : X → Y. Suppose further that the family of probability measures (µε)ε≥0 satisfies a

large deviation principle on X with good rate function I. Then the family of probability measures

(µε ◦ f−1)ε≥0 on Y satisfies a large deviation principle with good rate function

Ĩ(y) = inf
x∈f−1({y})

I(x), y ∈ Y.

In the case that the function is a bijection, we can derive also the so called inverse contraction principle.

Proposition 17. Let X , Y two topological Hausdorff spaces and g : Y → X a continuous bijection.

If (νε)ε≥0 is a family of exponentially tight probability measures on Y such that (νε ◦g−1)ε≥0 satisfies a

large deviation principle on X with rate function I, then the family (νε)ε≥0 satisfies a large deviation

principle on Y with good rate function

Ĩ(y) = I(g(y)), y ∈ Y.

An easy corollary of this theorem is the following possibility to strengthen a large deviation principle

to a finer topology.

Corollary 4. Suppose we have given two Hausdorff topologies σ, τ on the topological Hausdorff space

X , τ finer then σ. If the family of probability measures (µε)ε≥0 on X is exponentially tight with respect

65
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to τ and obeys a large deviation principle with respect to σ, then it satisfies also a large deviation

principle on X with respect to τ .

B.2 Projective Limits

Let (J,≤) a partially ordered, right filtering (i.e. for i, j ∈ J there exists k ∈ J with i ≤ k and j ≤ k)

index set such that for every i ∈ J we have a topological space Xi given in such a way that for i,

j ∈ J , i ≤ j a continuous mapping πji : Xj → Xi is defined. Furthermore we require the following

consistency: Given i, j, k ∈ J with i ≤ j ≤ k, we have πji ◦πkj = πki and for every i ∈ J the mapping πii
is given by the identity map on Xi. The family (Xi, πji )i, j∈J is called the inverse system of the spaces

Xi under the bonding maps πji . The subspace of
∏
i∈J Xi consisting of those elements (called threads)

{xi}i∈J ∈
∏
i∈J Xi, that satisfy πji (xj) = xi for any i, j ∈ J , i ≤ j, is called the limit of the inverse

system (Xi, πji )i, j∈J and is denoted by lim←−(Xi, πji )i, j∈J or shortly lim←−Xi. The canonical topology on

lim←−Xi is the topology induced by the product topology on
∏
i∈J Xi.

Note that the limit of an inverse system of topological Hausdorff spaces Xi is a closed subset of the

Cartesian product
∏
i∈J Xi and as such Hausdorff itself. In the case that πi is the projection πi :∏

j∈J Xj → Xi, we denote by a slight abuse of notation the continuous mapping πi|lim←−Xj : lim←−Xj → Xi
also by πi. For any i, j ∈ J , i ≤ j, the projections πi and πj are consistent in the sense that πi = πji ◦πj .
The mappings πi are called projections of the limit of (Xi, πji )i, j∈J to Xi and lim←−Xj the projective limit.

A basis of the the projective limit is given by a family of open subsets π−1
j (Uj) where Uj is an open

subset of Xj and j ranges over the cofinal subsets J ′ ⊆ J (this means that there exists a k ∈ J ′ such

that j ≤ k for any j ∈ J).

Every closed subset F of lim←−Xi is itself a projective limit, indeed the system (F j , π̃
j
i ) with Fj := πj(F ),

π̃ji := πji |Fj is an inverse system with projective limit lim←−F j = F . Moreover, a projective limit of non-

empty, compact sets is non-empty. Given a topological property P that is hereditary with respect to

closed subsets and finitely multiplicative. Then a topological vector space X is homeomorphic to a

projective limit of topological Hausdorff spaces with property P exactly iff X is homeomorphic to a

closed subspace of a Cartesian product of topological Hausdorff spaces with property P. For proofs

of these statements we refer to Engelking ([E], pp. 98ff.).

B.3 Large Deviations for Projective Limits

Projective limits as tool to lift large deviation principles from projections to the whole space were

introduced by Dawson and Gärtner ([DG], Section 3.3; see also [DZ], Section 4.6). Here the spaces

Xi are topological Hausdorff spaces and we require that the projective limit X := lim←−Xi is not empty.

Suppose now that (µε)ε≥0 is a family of probability measures on X and define µiε := µε ◦ π−1
i , so µε

can be regarded as kind of projective limit of the probability measures µiε.

Theorem 6. The family (µε)ε≥0 satisfies a large deviation principle on X with with speed 1/ε and
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good rate function I exactly if for every i ∈ J , the family (µiε)ε≥0 satisfies a large deviation principle

on Xi with speed 1/ε and good rate function Ii. Moreover, the rate functions are related by

I(x) = sup
i∈J

Ii
(
πi(x)

)
, x ∈ X ;

Ii(z) = inf
x∈π−1

i ({z})
I(x), z ∈ Xi, i ∈ J.

Proof: That the large deviation principle on the projective limit implies the large deviation principles

on the spaces Xi with good rate function Ii is a direct consequence of the contraction principle

Proposition 16.

Assume now that the large deviation principles on the spaces Xi hold with good rate functions Ii and

the function I is given as above. First we want to show that I is a good rate function; therefore we

define for α ∈ [0,∞[ the level sets

ΨIi(α) := {xi ∈ Xi : I(xi) ≤ α}, ΨI(α) := {x ∈ X : I(x) ≤ α}.

Since the mappings πji are continuous and consistent with the families (µiε)ε≥0 in the sense that

µiε = πji ◦ µ
j
ε for i ≤ j, we can write the rate function Ii as

Ii(z) = inf
yj∈(πji )−1({z})

I(yj), z ∈ Xi, i ≤ j,

again by contraction principle. So it follows for the level sets that ΨIi(α) = πji
(
ΨIj (α)

)
and hence

(ΨIi(α), πji )i,j∈J is a projective system with projective limit

ΨI(α) = lim←−ΨIi(α) = lim←−
(
Xi ∩

∏
i∈J

ΨIi(α)
)
.

But as product of compact subsets, the set
∏
i∈J ΨIi(α) is compact by Tychonov’s theorem and so is

ΨI(α) as closed relative compact set in a topological Hausdorff space. So the rate function I is good.

Since the rate function I is good, it is sufficient to show that for any measurable set A ⊆ X and any

x ∈ A◦

lim inf
ε→0

ε logµε(A) ≥ −I(x)

to prove the lower bound. Note that a basis of the topology of X is given by the collection {π−1
j (Uj) :

Uj ⊆ Xj , Uj open, j ∈ J ′, J ′ ⊆ J cofinal} (see above). So there exists some j ∈ J and some Uj ⊆ Xj
such that π−1

j (Uj) ⊆ A◦ and we get by the lower bound on Xj

lim inf
ε→0

ε logµε(A) ≥ lim inf
ε→0

ε logµjε(Uj) ≥ − inf
y∈Uj

Ij(y) ≥ −Ij
(
πj(x)

)
≥ −I(x).

Finally, to prove the upper bound, we note that the upper bound holds trivially if infx∈F I(x) = 0 for

some non-empty, closed set F ⊆ X . Otherwise we can find some α ∈ [0,∞[, α < infx∈F I(x), such

that F ∩ ΨI(α) = ∅ . Since F is closed, we have for Fi := πi(F ) the representation F = lim←−F i, and

since moreover ΨI(α) = lim←−ΨIi(α) it follows that

F ∩ΨI(α) = lim←−
(
F i ∩ΨIi(α)

)
.



68 APPENDIX B. PROJECTIVE LIMITS AND THEIR LARGE DEVIATIONS

Our assumption that F ∩ ΨI(α) = ∅ implies the existence of some i ∈ J with F i ∩ ΨIi(α) = ∅, since

the projective limit of non-empty compact sets would be non-empty (cf. [E], Theorem 3.2.13). So the

upper bound on Xi implies

lim sup
ε→0

ε logµε(F ) = lim sup
ε→0

ε logµiε(F i) ≤ −α

which conversely implies the upper bound on X since I is a good rate function. �
The following version of the large deviation principle for projective limits by Schied (cf. [Sch96], Lemma

19) is in particular useful for our setting since it is based on the notion of exponential tightness.

Corollary 5. Suppose we have given a topological Hausdorff space E and a family of mappings (pi)i∈J ,

pi : E → Xi that is point-separating on E and consistent with πji in the sense that pi = πji ◦ pj for i,

j ∈ J and i ≤ j. If (µε) is an exponentially tight family of probability measures on E, such that for

every i ∈ J , (µiε)ε≥0, µiε := µε ◦ pi, satisfies a large deviation principle on Xi with speed 1/ε and rate

function Ii, then (µε)ε≥0 satisfies a large deviation principle on E with speed 1/ε and rate function

I(x) = sup
i∈J

Ii
(
pi(x)

)
, x ∈ E.

Proof: Since the set P (y) := {x ∈
∏
i∈J : x = π−1

i ◦ pi(y), y ∈ E} is well defined and not dependent

on i by the consistency of pi and πi with πji , the space E is homeomorphic to a subset of
∏
i∈J Xi

and we can find a continuous embedding ι : E → ιE ⊆ X of E into the projective limit X = lim←−Xi.
Since the family of measures (µε) is exponentially tight on E, it is also exponentially tight on X and

so a fortiori the family (µiε) on Xi. So the large deviation principle on Xi holds with rate function

Ii. Moreover this rate function is good: Fix some α ∈ [0,∞[, so exponential tightness implies the

existence of a compact set Kα with lim supε→0 ε logµε(K
c
α) < −α and hence ΨIi(α) ⊆ Kα which yields

the compactness of the level set. Theorem 6 implies also a large deviation principle on X with good

rate function

Ĩ(x̃) = sup
i∈J

Ii
(
πi(x̃)

)
, x̃ ∈ X .

Fix now some y ∈ X \ ιE, then Ĩ(y) =∞ by the exponential tightness of (µε). So for any measurable

set A ⊆ X we have

inf
x∈A

Ĩ(x) = inf
x∈A∩ιE

Ĩ(x)

and so both bounds, upper and lower, hold for all measurable subsets of ιE. But since the level sets

ΨĨ(α) are closed subsets of ιE, the rate function remains also lower semi-continuous when restricted

to ιE. So the large deviation principle on ιE holds with rate function

Ĩ(x̃) = sup
i∈J

Ĩi
(
πi(x̃)

)
, x̃ ∈ ιE,

with respect to the topology induced by the product topology. But Corollary 4 enables us to strengthen

the topology to the topology induced by the original topology on E via ι and hence a large deviations

principle holds on E with good rate function

I(x) = sup
i∈J

Ii
(
pi(x)

)
= sup

i∈J
Ĩi
(
πi(ιx)

)
= Ĩ(ιx), x ∈ E,

with respect to the original topology on E. �



Appendix C

Preliminary results for the lower bound

Till now we have no complete prove for the lower bound of the large deviation principle, but we will

recollect yet a lemma which will play a prominent role therein: an estimate in the spirit ofLemma 6,

which gives a bound for the second moment of the Doléans-Dade exponentials.

Lemma 20. For every ~u ∈ D(E)n with Γ(ui) µ-a.e. bounded it holds that

Eµ

[
exp

(
2

ε
J ~u∆(Xε)

)]
≤ exp

(G(~u)

ε

)
. (C.1)

with G(~u) := max1≤i≤n ess sup x∈X 1/tnΓ(ui). Moreover, we have thus

lim
ε→0

ε logEµ

[
exp

(
2

ε
J ~u∆(Xε)

)]
≤ G(~u). (C.2)

Proof: We start by giving a moment estimate for the stochastic exponential Since the exponential

satisfies the stochastic differential equation

exp
(1

ε
M ε
tn −

1

2ε2

〈
M ε
〉
tn

)
= 1 +

∫ tn

0
exp

(1

ε
M ε
s −

1

2ε2

〈
M ε
〉
s

)
d
(1

ε
M ε
s

)
we can derive that

Eµ

[(
exp

(1

ε
M ε
tn −

1

2ε2

〈
M ε
〉
tn

))2
]

=Eµ

[〈
exp

(1

ε
M ε − 1

2ε2

〈
M ε
〉)〉

tn

]

=Eµ

[〈∫ ·
0

exp
(1

ε
M ε
s −

1

2ε2

〈
M ε
〉
s

)
d
(1

ε
M ε
s

)〉
tn

]

=Eµ

[∫ tn

0

(
exp

(1

ε
M ε
s −

1

2ε2

〈
M ε
〉
s

))2
d
〈1

ε
M ε
〉
s

]
=

1

ε2
Eµ

[∫ tn

0

(
exp

(1

ε
M ε
s −

1

2ε2

〈
M ε
〉
s

))2
d 〈M ε〉s

]
≤G(~u)

ε

∫ tn

0
Eµ

[(
exp

(1

ε
M ε
s −

1

2ε2

〈
M ε
〉
s

))2
]
ds
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by (3.1). Applying now Gronwall’s inequality leads to

Eµ

[(
exp

(1

ε
M ε
s −

1

2ε2

〈
M ε
〉
s

))2
]
≤ exp

(G(~u)

ε

)
,

such that we can conclude

lim
ε→0

ε logEµ

[(
exp

(1

ε
M ε
s −

1

2ε2

〈
M ε
〉
s

))2
]
≤ G(~u).

The same reasoning applies of course for the stochastic backward exponential

exp
(
1/εM ε

tn − 1/(2ε2)
〈
M ε
〉
tn

)
.

Thus we can conclude as in Lemma 6 by Cauchy’s inequality,

lim
ε→0

ε logEµ

[
exp

(
2

ε
J ~u∆(Xε)

)]
≤ lim
ε→0

ε

2
logEµ

[(
exp

(1

ε
M ε
tn −

1

2ε2

〈
M ε
〉
tn

))2
]

+ lim
ε→0

ε

2
logEµ

[(
exp

(
−1

ε
M̂ ε
tn −

1

2ε2

〈
M̂ ε
〉
tn

))2
]

≤ G(~u).

�



Appendix D

Some Remarks on the Geometry

Generated by Diffusions on σ-finite

Measure Spaces

In this appendix we will give some remarks on the intrinsic geometry generated by diffusions on σ-

finite measure spaces. Thus µ is no longer a probability measure but merely a σ-finite measure. This

implies of course, that the Dirichlet form will be no longer conservative. As classical example one

can think of Brownian motion on Rd. Hence we will now consider quasi-regular, local Dirichlet forms

(E , D(E)) defined on a σ-finite measure space (X ,B, µ) which admit a carré du champ operator.

A Varadhan type large deviation principle for local Dirichlet forms was proved (generalizing the work

of Hino and Ramı́rez, [HR]) by Ariyoshi and Hino ([AH], compare also [ERS]). They insist, that also

in the case we drop only conservativeness, another concept of distance is necessary, since, roughly

speaking, the set G of Section 2.1. is to small. A convenient example herefore is Brownian motion on

the interval [−1, 1] killed in 0 (cf. [AH], Example 2.9.(i)).

The work of Ariyoshi and Hino is built up on the concept of a (topology free) measure theoretic nest.

Definition 7. An increasing sequence (Ek) of measurable sets is called a measure theoretic nest, if

i) for every k ∈ N there exists a function χEk ∈ D(E) such that χEk ≥ 1 µ-almost everywhere on

Ek;

ii) the union of the sets

D(E)Ek :=
{
f ∈ D(E) : f = 0 µ-a.e. on Eck

}
is dense in D(E) with respect to ‖ · ‖E .

In particular we can choose the function χEk in such a way that 0 ≤ χEk ≤ 1, since 0 ∨ χEk ∧ 1 is

also in D(E) and satisfies i). We define the domain of local Dirichlet forms D
(Ek)
loc (E) with respect to

a given measure-theoretic nest (Ek) as the set of all measurable functions u ∈ L0(X , µ), that there
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exists a sequence (uk)k such that uk ∈ D(E) and uk = u µ-almost everywhere on Ek. The set of all

such functions that are bounded will be denoted by D
(Ek)
loc,b (E).

For u, h ∈ D(E) ∩ L∞(X , µ) we define the functional

Iu(h) := 2E(uh, u)− E(h, u2).

The locality of (E , D(E)) implies that Iu(h) = 0 whenever (a+ h)u = 0 µ-almost everywhere for some

a ∈ R. So we can extend the definition of Iu(h) to u ∈ D(E)
(Ek)
loc,b and h ∈ D(E)Ek ∩L∞(X , µ) for some

Ek by setting Iu(h) = Iuk(h) where uk ∈ D(E) ∩ L∞(X , µ) and uk = u µ-almost everywhere on Ek.

We can hence define the set

Ğ :=
{
u ∈ D(Ek)

loc,b (E) : Iu(h) ≤ ‖h‖L1(µ), for all h ∈
∞⋃
k=1

(
DEk(E) ∩ L∞(X , µ)

)}
and the metric functional d̆ as

d̆(A,B) := sup
u∈Ğ

(
ess inf
x∈B

u(x)− ess sup
y∈A

u(y)
)
.

Note that the definition of Ğ (and hence d̆) does not depend on the particular choice of the measure-

theoretic nest (Ek) (cf. [AH], Proposition 3.9).

As in Chapter 2, we can associate a set distance d̆A to the metric functional d̆. We define analogously

for A ∈ B and M ≥ 0

V̆M
A :=

{
u ∈ Ğ : u|A = 0, 0 ≤ u ≤M µ-a.e.

}
and

d̆A(x) := lim
M→∞

ess sup
u∈V̆MA

u(x).

Again d̆A ∧M is the almost everywhere maximal element of V̆M
A and

d̆(A,B) = ess inf
x∈B

d̆A(x)

(cf. [AH], Proposition 3.11).

The main result of the article by Ariyoshi and Hino([AH], Theorem 2.7.) is that this metric is the

correct generalization of d, so it holds for all sets A, B ∈ X with positive, but finite measure that

lim
t→0

t logPt(A,B) = − d̆(A,B)2

2
.

In accordance with the definition of Ğ we will also relax Assumption (BC), requiring only

Assumption (BC’). There exists a countable family Ŭ = (un), un ∈ L0(X , µ), point-separating on

X \ N , such that un = vkn µ-almost everywhere on Ek for functions vkn ∈ D(E) with carré du champ

uniformly bounded on Ek, i.e.

sup
k∈N

ess sup
x∈Ek

Γ(vkn)(x) <∞.
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In the same spirit we can weaken Assumption (B’), where ρ̆ is the generalized pointwise distance

defined later on:

Assumption (B”). For all sets A of positive measure and closed with respect to the original topology

and all M > 0 it holds that ρ̆A ∧M ∈ Ğ′ and ρ̆A ∧M is lower semi-continuous.

Moreover, we will require, of course, Assumption(D).

D.1 Generalized Pointwise Distance

The first task in generalizing the small time large deviation principle to this setting is to establish the

connection to the pointwise distance. To do so, we need first the correct definitions of quasi-regularity

(and hence capacity and compact E-nest) in this case (cf. [MR], Chapter III and [AM91]). Let (Gα)α>0

denote the resolvent of the semigroup (Tt). We define the set

H = {h ∈ D(E) : h = G1f, f ∈ L2(X , µ), 0 < f ≤ 1µ-a.e.}.

The h-weighted capacity Caph(·) is given for h ∈ H, U ⊆ X , U open, by

Caph(U) := inf{‖w‖E : w ∈ D(E), w ≥ h µ-a.e. on U},

and for general A ⊆ X by

Caph(A) := inf{Caph(U) : A ⊆ U ⊆ X , U open}.

For h, h′ ∈ H, h ≤ h′, it follows that Caph ≤ Caph′ and in particular Caph ≤ Cap1 (but note that 1

has not to be in H).

Caph is again a Choquet capacity and we will call an increasing sequence of closed sets (Fk) a closed

E-nest, if for some h ∈ H the capacities Caph(X \ Fk) tend to zero for k →∞. Note that this implies

the asymptotic vanishing of the capacities for every h ∈ H. Moreover, by [MR], Theorem III.2.11,

(see also [AM91], Proposition 1.5) this is equivalent to the fact that
⋃∞
k=1DEk(E) is ‖ · ‖E -dense in

D(E). With this definition of capacity we can define the notions compact E-nest, E-quasi-everywhere,

E-quasi-continuity and quasi-regularity as in Section 1. Note that for a compact E-nest (Ek), also

µ(X \
⋃∞
k=1Ek) = 0.

Now we have to join the different notions of nests, compact E-nests and measure theoretic nests.

Lemma 21. There exist measure theoretic nests which are also compact E-nests. Moreover, every

measure theoretic nest consisting of compacts is a compact E-nest.

Proof: Note that if (Fk) is a compact E-nest, then it satisfies condition ii) of the definition of the

measure theoretic nest. Fix now f ∈ L2(X , µ) and define h = G1f , then (Ek) defined by Ek := {h ≥
1/k} is a measure theoretic nest by [AH], Lemma 3.1. In particular the sets Ek are closed. Take now
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an arbitrary compact E-nest (Fk) and define E′k := Ek∩Fk. Then (E′k) is also a compact E-nest, since

E′k is as closed, relatively compact set compact itself and

Caph(E′k
c
) = Caph(Eck ∪ F ck) ≤ Caph(Eck) + Caph(F ck)

by the subadditivity of the capacity. But for k → ∞ we have Caph(Eck) → 0 by definition and

Caph(F ck) → 0 by the above characterization of closed E-nests. Moreover, χEk ≥ 1 µ-almost every-

where on E′k ⊆ Ek trivially, so (E′k) is also a measure theoretic nest. �
So from now on, if we mention a compact E-nest, we assume implicitly that it is also a measure

theoretic nest. We define for a given compact E-nest (Ek)

Ğ′ :=
{
u ∈ D(Ek)

loc (E) : ∀k ∃uk ∈ D(E), Γ(uk)|Ek ≤ 1µ-a.e., u = uk µ-a.e. on Ek
}
.

Lemma 22. The metric functional d̆ coincides with the metric functional d̆′ given by

d̆′(A,B) := sup
u∈Ğ′

(
ess inf
x∈B

u(x)− ess sup
y∈A

u(y)
)
.

Proof: As in the proof of Lemma 3, we can approximate elements of Ğ′ by bounded ones, since with

w1 and w2 also w1 ∧ w2 and w1 ∨ w2 are elements of Ğ′ (the proof of Lemma 2 remains true in our

generalized setting): Given v ∈ Ğ′, vk := (−k) ∨ v ∧ k, k ∈ N, converges for k → ∞ to v µ-almost

everywhere and on every Ek also in ‖ · ‖E . So it is sufficient to prove

Ğ =
{
u ∈ D(Ek)

loc,b (E) : ∀k ∃uk ∈ D(E), Γ(uk)|Ek ≤ 1µ-a.e., u = uk µ-a.e. on Ek
}
. (D.1)

Suppose now that u is a function in the right-hand set. Then for a given compact E-nest, the carré du

champ of the approximating functions uk is bounded by 1 µ-almost everywhere on Ek and so it follows

by the definition of the carré du champ operator in (1.1) that for every h ∈
⋃∞
k=1

(
DEk(E)∩L∞(X , µ)

)
Iuk(h) = 2E(ukh, uk)− E(h, u2

k) =

∫
X
hΓ(uk) dµ ≤ ‖h‖L1(µ).

Choose now hk in D(E)Ek ∩ L∞(X , µ) and hk → h in ‖ · ‖E such that (hk) is uniformely bounded.

(This is possible by taking an arbitrary approximating sequence (gk) in D(E) which converges with

respect to ‖ · ‖E and setting hk := 0 ∨ gk ∧ h.) Then it holds true that

Iuk(hk) = Iu(hk) ≤ ‖hk‖L1(µ).

Sending k to infinity, Lemma 3.3.(iii) of [AH] implies Iu(h) ≤ ‖h‖L1(µ) and so u ∈ Ğ.

Conversely, suppose that for u ∈ Ğ there would exist for some k ∈ N a set of positive measure where

Γ(uk)|Ek > 1 at least for one uk of the approximating sequence (uk), uk ∈ D(E), with respect to some

compact E-nest (Ek). Then we could find ε > 0 such that there exists a set E ⊆ Ek of positive, but

finite measure on which Γ(uk)(x) ≥ 1 + ε. But since the Dirichlet space D(E) is dense in L2(X , µ),

it is also dense in L1(X , µ) and we can find for every δ ∈]0, 1[ some h′ ∈ D(E) ∩ L∞(X , µ) such that



D.1. GENERALIZED POINTWISE DISTANCE 75

‖h′ − 1lE‖L1(µ) < δ. Without loss of generality we can assume h′ ≥ 0. Indeed, otherwise we can take

h′ ∨ 0 instead. Moreover, h′′ := h′ ∨ δχ2
Ek
∈ D(E) ∩ L∞(X , µ) satisfies

‖h′′ − 1lE‖L1(µ) ≤
∫
E
|h′ ∨ δ − 1lE | dµ+

∫
Ec
|h′ ∨ δχ2

Ek
| dµ < δ +

∫
Ec
h′ dµ+ δ

∫
Ec
χ2
Ek
dµ

≤2δ + δ

∫
Ec
χ2
Ek
dµ ≤ δ

(
2 + ‖χEk‖

2
L2(µ)

)
.

Since χEk ∈ D(E), ‖χEk‖L2(µ) is finite, so from here on we can copy the proof of Lemma 3 to get a

contradiction to the assumption u ∈ Ğ. �
Note that (D.1) and the approximation result imply in particular that Ğ′ does not depend on the

choice of the compact E-nest. So we can introduce the pointwise distance ρ̆ as

ρ̆(x, y) :=

 sup
u∈Ğ′

(
ũ(x)− ũ(y)

)
x, y ∈ X \N,

∞ else.

Here ũ is of course the µ-version of u such that ũ is continuous on every Ek. Indeed, such a µ-

version exists: Since we can restrict ourselves to the case that u is nonnegative, it is directly given

as supk∈N ũk1lEk . Moreover we note that by the µ-a.e. identity with functions in the Dirichlet space

on every Ek, also the carré du champ operator is µ-a.e. well defined for u ∈ D(E)
(Ek)
loc . The proof of

Lemma 4 remains true exactly as it is, to show Proposition 1, we substitute the generalizations Ğ′,
ρ̆A, d̆A and V̆M

A for G′, ρA, dA and VM
A . So immediately we get the following Proposition:

Proposition 18. ρ̆(·, ·) defines an extended pseudometric on X and it holds that d̆A ≤ ρ̆A for an

arbitrary set A ∈ B.

But by Assumption (B”) we can conclude exactly as in Section 2.3:

Proposition 19. Let A ⊆ X a closed set of positive measure. Then ρ̆A = d̆A µ-almost everywhere.

The only difference in the proof is that we have to use now the corresponding result by Ariyoshi and

Hino ([AH], Proposition 3.11) on the characterization of d̆A instead that of Hino and Ramı́rez ([HR],

Theorem 1.2). Clearly, the energy functional associated to ρ̆ is given by

Ĕa,b(ω) := sup
∆

∑
ti−1,ti∈∆

ρ̆2(ωti−1 , ωti)

2(ti − ti−1)
.

Lemma 5 (additivity of the energy functional) remains still true, to show Theorem 1 (characterization

of the energy via J ~u∆) in this generalized setting, we have to adapt the proof slightly. We define for a

path ω : [a, b]→ X and u ∈ D(E)
(Ek)
loc the functional

Ja,b(u, ω) := ũ(ωb)− ũ(ωa)−
1

2

∫ b

a
Γ(u)(ωr)

and

J ~u∆(ω) :=

n∑
i=1

Jti−1,ti(ui, ω)
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for fixed n ∈ N, ~u = (u1, . . . un) ∈ (D(E)
(Ek)
loc )n and a partition ∆ = {t0, . . . , tn}, a = t0 < t1 < · · · <

tn = b, n ∈ N.

Theorem 7. Given a path ω : [a, b]→ X ,

Ĕa,b(ω) = sup
∆; ~u
J ~u∆(ω). (D.2)

Proof: We can assume that ω stays in Ek for some set Ek of our compact E-nest (since otherwise

both sides of the equality would trivially be infinite). Note that the set

H̆ := {u ∈ D(E)
(Ek)
loc : u = vk µ-a.e. on Ek, vk ∈ D(E), sup

k∈N
ess sup
x∈Ek

Γ(vk)(x) <∞}

is point-separating by Assumption (BC’) and it is a sub-algebra of D(E) by

Γ(u+ v) = Γ(u) + Γ(v) + 2Γ(u, v) ≤ 2
(
Γ(u) + Γ(v)

)
. (D.3)

So it is a point-separating sub-algebra which contains the constants, whence it is dense in C(Ek) with

respect to the uniform topology by the Stone-Weierstraß theorem. But since every u ∈ D(E)
(Ek)
loc has a

µ-version which is continuous on Ek (and in fact we take the supremum only over this modifications),

it is enough to consider the supremum over ~u ∈ H̆n.

So for any path ω : [a, b]→ Ek and c, d ∈ [a, b], c < d, we get on the one hand by maximizing over λ

sup
u∈H̆

Jc,d(u, ω) = sup
u∈Ğ′,λ∈R

(
λũ(ωd)− λũ(ωc)−

1

2

∫ d

c
Γ(λu)(ωt) dt

)
= sup
u∈Ğ′

(ũ(ωd)− ũ(ωc))
2

2
∫ d
c Γ(u)(ωt) dt

(D.4)

≥ sup
u∈Ğ′

(ũ(ωd)− ũ(ωc))
2

2(d− c)
=
ρ̆2(ωc, ωd)

2(d− c)
. (D.5)

Summing up and taking the supremum over all partitions yields ”≤“ in (D.2).

On the other hand we can choose for some u ∈ H̆, γi := supsi−1≤r≤si Γ(u)(ωr) < ∞ and every given

ε > 0 a partition a ≤ c = s0 < · · · < sm = d ≤ b, such that

m∑
i=1

(si − si−1)γi ≤ ε+

∫ d

c
Γ(u)(ωt) dt. (D.6)
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With Hölder’s inequality we get by (D.6) and (D.5)

ũ(ωd)− ũ(ωc) =
n∑
i=1

(
ũ(ωsi)− ũ(ωsi−1)

)
=

n∑
i=1

ũ(ωsi)− ũ(ωsi−1)√
(si − si−1)γi

√
(si − si−1)γi

≤

(
n∑
i=1

(ũ(ωsi)− ũ(ωsi−1))2

(si − si−1)γi

) 1
2
(

n∑
i=1

(si − si−1)γi

) 1
2

≤

 n∑
i=1

(
ũ√
γi

(ωsi)− ũ√
γi

(ωsi−1)
)2

si − si−1


1
2 (∫ b

a
Γ(u)(ωt) dt+ ε

) 1
2

≤
(

2 Ĕc,d(ω)
) 1

2

(∫ d

c
Γ(u)(ωt) dt+ ε

) 1
2

since Γ(u/
√
γi)(ωsi) = Γ(u)(ωsi)/γi ≤ 1. Taking the infimum over all ε > 0 and, after rearranging the

inequality, the supremum over u ∈ Ğ′, we get by (D.4)

Ĕc,d(ω) ≥ sup
u∈H̆

Jc,d(u, ω).

The additivity of the energy yields the result. �

D.2 A Note on the Locally Compact Case

In the locally compact case (under Assumption (A)) we can even prove that the two notions of energy,

Ĕ and E coincide: By Assumptions (A) and (D) we can find to every compact set Ek of the compact

E-nest another compact set El such that

Ek ⊆
◦
El ⊆ El.

Lemma 23. Suppose that x ∈
◦
Ek for some set Ek of the compact E-nest. Then we can find a finite

family vi ∈ D(E) with bounded carré du champ such that

n⋂
i=1

{
y : ṽi(y)− ṽi(x) > ε

}
⊆
◦
Ek.

Proof: Assumption (D) implies that we can find a set El of the compact E-nest such that Ek ⊆
◦
El.

By Assumption(BC’) there exists to every y ∈ ∂Ek a function uy ∈ D(E), such that ũy(x) = −1 and

ũy(y) = 1. We set now

Vy := {z : ũy(z) > 0}.

The family (Vy)y constitutes now an open cover of the compact set ∂Ek. So we can extract a finite

subcover (Vi)i=1,...n generated by functions (ũi)i=1,...n. Set now W :=
⋃n
i=1 Vi. Since W \ Ek is open,
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we can define a function χ ∈ D(E), 0 ≤ χ ≤ 1, with χ|Ek = 1 and χ|Eck∩W c = 0 which has bounded

carré du champ. Indeed, we choose a compact set Em of the compact E-nest (Ek) such that

Ek ⊆
◦
El ⊆ El ⊆

◦
Em ⊆ Em

and set

W̃ := (Em \
◦
El) ∪ (El \W ).

This is a closed set of positive, but finite measure. Moreover, ρ(W̃ , Ek) > 0 by the compactness of Ek
and since ρ(W̃ , x) > 0 for every x ∈ Ek. So we can define the required χ ∈ D(E) directly by setting

χ(x) :=

{
ρW̃ (x)

ρ(W̃ ,Ek)
∧ 1 x ∈ Em;

0 else.

Set now vi := ui · χ, then vi lies in the Dirichlet space D(E) and has bounded carré du champ, so the

vi satisfy the required condition. �

Lemma 24. Let x ∈ Ek for some fixed Ek and u ∈ Ğ′. Then there exists a neighborhood U(x) and a

function w ∈ D(E) such that

i) ũ(y)− ũ(x) ≤ w̃(y)− w̃(x) for all y ∈ U(x);

ii) Γ(w) ≤ 1 µ-almost everywhere.

Proof: By the introductory remark of this section there exists a set El of the compact E-nest such

that x ∈
◦
El. The function u coincides on El with a function in the Dirichlet space with carré du

champ bounded by 1, its continuous version we will denote by ũl. Moreover, by the previous lemma

there exists functions vi, i = 1, . . . , k with bounded carré du champ of the point separating family Ŭ
and ε > 0 such that

V := {y : ũl(y)− ũl(x) < ε} ∩
k⋂
i=1

{y : ṽi(y)− ṽi(x) < ε} ⊆
◦
El

We define now a function v̄ ∈ D(E) by

v̄(y) :=

k∨
i=1

(
(vi(y)− vi(x)

)
∨
(
(ul(y)− ul(x)

)
.

Since v̄(x) = 0, it follows that

v̄(y)− v̄(x) =
k∨
i=1

(
(vi(y)− vi(x)

)
∨
(
(ul(y)− ul(x)

)
≥ ul(y)− ul(x)

globally. Moreover, we have by Lemma 2

Γ(v̄) ≤ max
i=1,...n

G(vi), G(vi) = ess sup x∈X Γ(vi)(x),
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and it follows that {
y : ˜̄v(y) <

2ε

3

}
⊆ V ⊆

◦
El.

Defining now v(y) := v̄(y) ∧ 2ε/3 and U(x) := {y : ṽ(y) < ε
3}, we have U(x) ⊆ V ⊆

◦
El. Again by

Lemma 2, Γ(v) = Γ(v̄)1l ◦
El
≤ maxi=1,...nG(vi) µ-almost everywhere, and furthermore

ṽ(y)− ṽ(x) = ˜̄v(y)− ˜̄v(x) ≥ ũl(y)− ũl(x) = ũ(y)− ũ(x)

holds in U(x). The same is true for w := v/(maxi=1,...nG(vi) ∨ 1) with the additional property that

Γ(w) ≤ 1 µ-almost everywhere. �
This implies immediately the following lemma.

Lemma 25. Let x ∈ Ek for some fixed Ek, then there exists a neighborhood U(x) where ρ̆(y, x) =

ρ(y, x) for all y ∈ U(x).

Proof: Take an arbitrary function u ∈ Ğ′. By the previous Lemma there exists a function w ∈ G′

such that w̃(·) − w̃(x) ≥ ũ(·) − ũ(x) on a neighborhood U(x). So ρ(y, x) ≥ ρ̆(x, y) for y ∈ U(x), but

the other direction holds trivially, so the metric functionals coincide. �
This corollary implies the equivalence of the two notions of energy.

Proposition 20. For every path ω ∈ Ω = C([a, b];X ) it holds that Ea,b(ω) = Ĕa,b(ω)

Proof: Suppose first that {ωt : a ≤ t ≤ b} ∩ N 6= ∅, then we have trivially Ea,b(ω) = ∞ = Ĕa,b(ω).

Otherwise {ωt : a ≤ t ≤ b} ⊆ Ek for some set Ek of the compact E-nest. But by the previous lemma

we can find to every point x ∈ {ωt : a ≤ t ≤ b} a neighborhood where the metric functionals coincide.

But since {ωt : a ≤ t ≤ b} is compact, we can extract a finite subcover U(ωti), ti ∈ [a, b], i = 1, . . . , n.

Set ∆′ = {t1, · · · , tn}. So for any partition ∆ of [a, b]. ∆ ∪∆′ is a subpartition and

∑
ti−1,ti∈∆∪∆′

ρ̆2(ωti−1 , ωti)

2(ti − ti−1)
=

∑
ti−1,ti∈∆∪∆′

ρ2(ωti−1 , ωti)

2(ti − ti−1)
.

Clearly also the suprema coincide, too, so the Proposition holds true. �
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ω Fréchet derivative of ω, p. 30

89



90 BIBLIOGRAPHY

|ω′| Metric derivative of ω, p. 28

acc(F ) Set of F -accessible points of (Xt), p. 32

ACp(E) Space of p-integrable absolutely continuous curves on E, p. 28

B Borel-σ-Algebra on X , p. 3

Bρ
r (x) Open ρ-ball around x with radius r, p. 14

Cap1(·) Capacity of a subset of X , p. 4

Ckb (R2,R) Space of k-times continuously differentiable functions on R2 with bounded deriva-

tives, p. 31

C0(X ) Space of continuous functions on X with compact support, p. 4

D(E) Domain of the symmetric Dirichlet form E(·, ·), p. 3

D(Γ) Domain of the carré du champ operator, p. 3
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