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ABSTRACT

Lossless Wideband Audio Compression:
Prediction and Transform

This thesis studies lossless audio compression. In the domain of lossless compression,
research takes place on two broad development sections, signal modeling and coding
algorithm. The former is concerned with the understanding of the source signal, while
coding is the more tightly specified task of efficiently representing a single symbol
as a code. The focus of this thesis is the evaluation and the development of signal
modeling techniques for lossless compression. Related with the modeling method used
to decorrelate a signal, the data compression schemes are generally divided in two
categories, predictive modeling and transform-based modeling. In the thesis, all two
categories are investigated in depth and handled from the lossless viewpoint.

The first contribution of the thesis is an exploration of the general audio
compression systems including the lossy compression system. In predictive modeling,
the structures of various linear prediction filters are introduced by presenting the
fundamental autoregressive modeling. The prediction filters including the approaches to
the nonstationary signal modeling and to the adaptive linear prediction filters are explored
and evaluated by testing within a prototypical lossless audio compression system.

For transform modeling, two well-known subband transform coding methods,
Laplacian pyramid and subband coding scheme, are first described, and then the design
methods of perfect reconstruction multirate filter banks are studied. Concerning with the
modulated lapped orthogonal transform, the efficiency of linear prediction from subband
and from fullband is formally compared and empirically examined. Wavelet transform is
in depth studied from the various viewpoints in order to find the theoretical relationship
between the wavelet and the multirate filter banks. Theoretical and practical aspects of
reversible transforms are discussed by introducing the S-transform, S+P transform, and
RTS transform. The lifting method is examined as a means to realize the biorthogonal
wavelets. Integer lifting scheme with rounding-off method is investigated to construct
reversible version of wavelet transforms and its performance is validated by applying to
lossless audio compression. Finally, some of the more important results presented in this
thesis are summarized with the suggesting directions for future research.





ZUSAMMENFASSUNG

Verlustfreie Kompression für Breitband-Audiosignale:
Prädiktion und Transformation

Das Ziel dieser Dissertation ist die Untersuchung von verlustfreier Audiokompression.
Im Bereich der verlustfreien Kompression teilt sich die Forschung in zwei große
Entwicklungsabschnitte, nämlich Signalmodellierung und Codierungsverfahren. Die
Signalmodellierung befasst sich mit dem Verstehen des Quellsignals, während sich
die Codierung mit dem speziellen Problem der effizienten Repräsentation von
Einzelsymbolen befaßt. Der Fokus dieser Dissertation liegt auf der Evaluation und
Entwicklung von Signalmodellierungstechniken für die verlustfreie Kompression.
Mit Bezug auf die Modellierungsmethode zur Dekorrelation des Signals fallen die
Datenkompressionssysteme in zwei Kategorien, nämlich die prädiktive Modellierung
und die auf Transformation basierende Modellierung. In der Dissertation wurden beide
Kategorien aus der Sicht verlustfreier Kompression ausführlich untersucht.

Der erste Beitrag der Dissertation ist der Erforschung von Audiokompressions-
systemen einschließlich der verlustbehafteten Kompressionssysteme gewidmet. Bei der
prädiktiven Modellierung werden die verschiedenen Strukturen der Linear-Prädiktions-
filter durch Vorlage der fundamentalen autoregressiven Modellierung vorgestellt. Die
Prädiktionsfilter einschließlich der Ansätze zur Modellierung des nicht-stationären
Signals und adaptiven Linear-Prädiktionsfiltern werden vorgestellt, und deren Effizienz
im Experiment mit einem prototypischen verlustfreien Audiokompressionssystem
evaluiert.

Bezüglich der Transformationsbasierten Modellierung werden zwei prominente
Codierungsmethoden beschrieben, die auf Subbandtransformation basieren, nämlich
Laplacian Pyramide und Subbandcodierung, beschrieben, und die Entwurfsverfahren
für perfekt rekonstruierbare Multirate-Filterbänke werden dargestellt. Die Effizienz
linearer Prädiktion von Vollbandsignalen und Subbandsignalen wird theoretisch
untersucht und empirisch validiert. Die Wavelet-Transformation wird nach verschiedenen
Aspekten gründlich untersucht, um die theoretische Verknüpfung zwischen der
Wavelet-Transformation und der Multirate-Filterbank zu diskutieren. Theoretische
und praktische Aspekte von reversiblen Transformationen werden in Zusammenhang
mit S-Transformation, S+P Transformation, und RTS Transformation untersucht. Die
Liftingmethode, die die biorthogonalen Wavelets realisiert, wird untersucht. Um eine
reversible Wavelet-Transformation zu konstruieren, wird das mit Ganzzahlen operierende
Liftingsystem durch Abrundungsverfahren entwickelt. Dessen Funktion wird durch
Anwendung auf die verlustfreie Audiokompression validiert. Zum Schluss sind einige
wichtige Untersuchungsergebnisse der Dissertation mit Vorschlägen für zukünftige
Forschungsarbeiten zusammengefasst.
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Chapter 1

Introduction

Recently a number of new technologies related to the storage capacity and the transmis-
sion bandwidth are emerging. From transmission part, for example, ADSL (Asymmetric
Digital Subscriber Line) provides several Mbps transmission bandwidth for normal tele-
phone line on down stream side. On storage part, hard disk capacity has being increased
dramatically. A new high-density disc such as DVD (Digital Versatile Disc) also provides
huge storage capability for audio and video sources. However, despite such tremendous
growth of the storage capacity and the transmission bandwidth, the demand for higher
quality of multimedia associated with audio, image, and video continues to outpace it.
For instance, the required data rate satisfying the high-quality audio (more word size,
more sample rate, and more channel) will be continuously increased, unless we give up
to enjoy the digital audio world. Hence the importance of data compression is not likely
to diminish, as a key technology to allow efficient storage and transmission.

The general idea behind data compression is to remove the redundancy present in the
data to find more compact representations. Two families of algorithms exist in compres-
sion. When the information can be exactly recovered from the bits, the source coding or
compression is called lossless; otherwise, it is called lossy. To achieve higher compres-
sion ratios, lossy algorithms remove information from the original in a way that comes
close to the original or that is not perceptible. In this case, therefore, we allow approxi-
mate representations of the original, instead of trying to represent the original exactly, and
have only a modified version of the original after transmission. In contrast, lossless algo-
rithms respect the integrity of the original signal. After transmission and reconstruction,
an exact copy of the original signal is available.

Two main drawbacks are related with lossless audio compression. The first one is the
time varying compression ratio, which makes difficult the allocation of a fixed bandwidth
to the transmitted audio data and also complicates the editing of compressed material.
The second one is the poor compression rate. The lossless audio compression usually
achieves compression ratio 2 to 3 without loss any quality, whereas lossy compression can
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achieve compression ratio 8 to 40 or higher. While achieving higher compression ratios,
the lossy audio compression is highly objectionable in high fidelity audio compression
applications, due to unexpected artifacts introduced even by the most heavily engineered
schemes which use perceptual auditory models. It is more problematical whenever the
audio signal undergoes multiple encoding-decoding operations.

Pure-Audio DVD standards and new audio format for high-density discs are receiving
serious consideration from audio community. Since the sample rate is going up to 96kHz
and quantization level up to 24 bits, lossless audio compression as a reformatting of the
standard PCM audio offers an opportunity to make a much better product in that more
precision and more channels can be provided. Another application where lossless com-
pression is currently used is archiving large corpus of speech data for distributing it to the
research community. Certain scenarios make use of both lossy and lossless audio com-
pression: an audio on demand application will use lossy compression for browsing and
ordering the desired tune, while lossless compression should be used for releasing the full
length audio material. All of these enlighten the lossless audio compression. Moreover,
as we can see today, it is fact that the growth of the storaging capacity is substantially
rapider than that of the network bandwidth. In this sense, it should not be impetuous to
say that we will have no reason to accept the lossy compressed audio data and that, there-
fore, the lossy compression will be no more dominating technology, at least in the storage
branch today.

This thesis studies lossless audio compression. In the domain of lossless compression,
research takes place on two broad development sections, signal modeling techniques and
coding algorithms. The former is concerned with the understanding of the source signal,
while the coding is the more tightly specified task of, given a set of estimated symbol
probabilities, efficiently representing a single symbol as a code, usually in binary. The
focus of this thesis is the development of signal modeling techniques. Related with the
modeling method used to decorrelate a signal, the data compression schemes are gen-
erally divided in two categories, predictive modeling and transform-based modeling. In
the thesis, all two categories, predictive coding and transform coding, are investigated in
depth and handled from the lossless viewpoint.

The first contribution of the thesis is an exploration of the general audio compression
systems including the lossy compression systems. Parallelly we state the problems that
we will discuss through the thesis from various angles. In Chapter 3, the structures of var-
ious linear prediction filters are introduced by presenting the fundamental autoregressive
modeling. We review the approaches to the nonstationary signal modeling and describe
the adaptive linear prediction filters. There are infinitely many alternative ways to form a
linear combination of signal history. As a good example of modified linear prediction fil-
ter, frequency-warped linear prediction is introduced by the generalization of the allpole
linear prediction filter. To remove the redundancy still remaining in the prediction er-
rors, we consider the context-based error modeling method. An experimental comparison
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of all these prediction filters is presented by testing within a prototypical lossless audio
compression system.

In Chapter 4, we begin to treat the transform-based coding methods. We first review
two well-known subband transform coding methods, Laplacian pyramid and subband
coding scheme, and then describe the design methods of perfect reconstruction multirate
filter banks. In principle, the block transforms e.g., discrete cosine transform and wavelet
transform, qualify also as a subband transform. To solve the blocking effect, which is
the discontinuity between block boundaries in block transforms, we discuss the lapped
orthogonal transform. The efficiency of prediction from subbands and from fullband is
formally compared and empirically investigated by designing a hybrid audio compression
system.

We explore the wavelet transform in Chapter 5. From the signal processing viewpoint,
it is clear that all block transforms and all subband transforms including wavelet trans-
form can be defined and implemented by the filter design and windowing theory. It is
also the fact that the terms in the literature, e.g., subband coding, filter bank method, and
multiresolution transform, that are used to eventually mean the wavelet transform, are
defined ambiguously and used heedlessly, strictly speaking. However, the wavelet trans-
form, that is one of the most important new phenomena in signal processing area since
the Fourier transform has long ruled over the area, has obviously different history and
characteristics. Hence, we study the wavelet transform in detail by beginning to review
the principles of time-frequency representation and describe the theoretical relationship
between the wavelet and the multirate filter banks.

In Chapter 6, both theoretical and practical aspects of reversible transforms are dis-
cussed. First, the reversibility property is defined and the reason why transforms with
this property are desirable is explained. Some good reversible transforms such as the S+P
transform are introduced. Next, lifting is examined as a means to realize the biorthogo-
nal wavelets. Integer lifting scheme with fixed-point arithmetic is proposed to construct
reversible version of wavelet transform. The chapter also evaluates the performance of
several reversible transforms for lossless audio compression.

Finally, Chapter 7 summarizes some of the more important results presented in this
thesis along with the contributions it makes. The chapter concludes by suggesting direc-
tions for future research.
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Chapter 2

High-Quality Digital Audio
Compression

In this chapter, we review the fundamental issues concerning the high-quality digital
audio and describe general framework for audio compression schemes. Parallelly we
state the problems that we will discuss in the thesis from various angles.

2.1 Digital Audio Representation

2.1.1 Wideband audio signal

Sound starts as a continuous vibration in air and we perceive it through an aural hearing
mechanism. As shown in Figure 2.1.1, sounds are characterized by sound pressure level
(SPL) and frequency limits. The SPL limit is bounded by the threshold of hearing and
feeling, while the perceptible frequency is limited by bandwidth of about 10Hz to 20KHz.
Wideband audio, which we will treat in this thesis, has a bandwidth of about 20-20KHz.
Note that the speech signal can also be considered a wideband audio signal.

The conversion from the analog to the digital domain begins by sampling the audio
input in regular, discrete intervals of time and quantizing the sampled values into a
discrete number of evenly spaced levels. As a result, digital audio signal consists of a
sequence of binary values representing the number of quantizer levels for each audio
sample. The conventional format that represents each sample with an independent code
word is linear pulse code modulation (PCM).

14 CHAPTER 2. HIGH-QUALITY DIGITAL AUDIO COMPRESSION
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Figure 2.1.1: Limits of aural perception.

Compared with the analogue form, the digital representation of audio signal offers
many advantages, e.g., high noise immunity, stability, and reproducibility. Audio
information in digital form can be transmitted without loss or the introduction of
interference and manipulated simply without distortions which are problematic in the
case of analogue processing.

2.1.2 Bandwidth, capacity, and high-quality audio

Compact disc (CD), which has become a de facto standard for digital audio represen-
tation, carries the PCM audio sampled at 44.1kHz and quantized into 16-bit amplitude
level. The bit rate of a CD stereo signal is then roughly 1.4Mbit/s. It is clear that the bit
rate is too large for a real-time transmission over a restricted network bandwidth these
days.

For storaging the PCM audio, the problem seemed to be nearly solved by introducing
new high-density CD formats, such as the Digital Versatile Disc (DVD) which has capac-
ity of 4.7GB (single layer), 8.5GB (dual layer), and 17GB (double sided dual layer), while
capacity of the conventional CD amounts 650 MB. Moreover, this capacity of DVDs will
vastly be multiplied in the near future. Practically the replacing the red laser or infrared
light, used to read the current CDs and DVDs, with blue laser having a shorter wavelength
than the red variety enables to read and write more bits of information (nearly six times
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the capacity of the current discs) on a given area of disc space. It is fact that the growth
of the storaging capacity is substantially rapider than that of the network bandwidth. In
this sense, it should not be impetuous to say that we will have no reason to accept the
lossy compressed audio data and that, therefore, the lossy compression will be no more
dominating technology, at least in the storage branch today.

Such high-density discs are a great evolution, indeed. On the other hand, the new
aspirations for high-quality audio to achieve finer audio processing and more professional
reproduction forces researchers to discuss issue of higher sample rate, larger word size,
and more channels (practically, the term of High-Quality Audio means these three
crucial factors) for such a high-density audio carrier. Consequently the first DVD-Audio
standard (Table 2.1) approved even the sample rate up to 192kHz with word size up to
24-bit. Moreover the number of channel for the DVD-Audio extended to eight channels.
The maximum data rate in this case amounts to 9.1Mbit/s. It is obvious that the required
data rate satisfying the high-quality audio will be increased continuously, unless we give
up enjoying the digital audio world.

Specification DVD-Audio CD

Audio Format PCM PCM
4.7Gb - Single layer

Disk Capacity 8.5Gb - Dual Layer 650Mb
17Gb - Double Sided Dual Layer

Channels Up to 6 2 (stereo)
Frequency Response 0 - 96kHz (max) 5 - 20kHz
Dynamic Range 144dB 96dB

44.1, 88.2, 176.4kHz
Sampling

2 Channel
or 48, 96, 192kHz

44.1kHz

Rate 44.1, 88.2kHzMultichannel
or 48, 96kHz

n/a

Sample Size 12, 16, 20, or 24bits 16bits
Maximum Data Rate 9.6Mbps 1.4Mbps

Table 2.1: DVD-Audio specification (version 1.0)

Lossless audio compression as a reformatting of the standard PCM audio offers an
opportunity to make a much better product in that more precision and more channels can
be provided. Hence it will continue to be a key technology for efficient transmission and
storaging, in terms of the high-resolution audio on the high-density discs.
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2.2 General Framework of Audio Compression System

Compression (source coding) is to represent information in smaller number of bits than
of original, without any distortion or loss of information. Audio compression takes
advantage of the continuity of digital audio, e.g., the statistical redundancy inherent in
the signal and the tendency of samples to be similar to their neighbors. Many techniques
for lossless compression exist. The most effective of these belong to a class of coders
commonly called “entropy coders”. These methods have proven effective for text
compression, but perform poorly on most kinds of audio data, as they fail to exploit the
high correlation that typically exists among the data samples. Therefore, preprocessing
the data to achieve decorrelation is a desirable main step for the audio compression.
Figure 2.2.1 shows a general framework of typical lossless audio compression system.

Figure 2.2.1: General framework of audio compression system

2.2.1 Segmentation of audio stream

At the first stage in Fig. 2.2.1, the PCM audio data stream is divided or grouped into
blocks (frames) with appropriate block length. The modeling is then carried out locally
and therefore each block has its own prefixed header that defines the parameters for de-
coding, which can change on block-to-block basis to follow the varying characteristics of
the input signal over the time. The block length should not be too short, because the over-
heads of transmitting the header information may outweigh the other advantages. On the
other hand, if the block length is too long, the temporal modification of the audio signal
characteristics would not be taken into account, implying less efficiency of the compres-
sion system. In the state-of-the-art audio compression systems, typical block length is
576 to 1152 samples, which result in 13 to 26 ms frames for a signal sampled at 44.1
kHz.

In practice, the choice of the block length has considerable influence on the efficiency
of the modeling scheme and on the resulting compression ratios consequently, since the
coefficients for predictor or transform used for the decorrelation are computed within the
each block separately, as mentioned above. Hence, the problem of finding an efficient
segmentation is crucial to the entire compression system and depends strongly on the
characteristics of the input audio signal. We discuss this problem more in detail in
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Chapter 3.

2.2.2 Signal decorrelation

Generally, audio signals show continuous behaviour in the time domain. So they are rep-
resented by a continuous waveform which is acoustic pressure variation as a function
of time. This continuity of the audio signals implies that a sample of sequence obtained
from discretizing the signal is more likely to be close (correlated) to its adjacent one.
Hence, applying universal coding methods, such as Lempel-Ziv related algorithms that
assume that all samples are independent each other, directly to the audio signal gives poor
compression results with a higher entropy than real entropy.

To take advantage of the long-term correlation related to the dependencies within
the audio sample sequence, most audio compression systems have a preprocessing stage
prior to the entropy coding, regardless of lossy or lossless. In the preprocessing stage,
the segmented signal is decorrelated by using a linear prediction or a linear transform
in order to compact the energy of the signal into a few uncorrelated coefficients. In
fact, the decorrelation methods used in preprocessing stage characterize the current
state-of-the-art audio compression schemes that are generally divided into two natures,
predictive coding and transform coding. If the signal decorrelation performs well, the
obtained coefficients (or residues resulted from predictive coding) will be uncorrelated
and have the reduced signal variance with a flat frequency spectrum. The coefficients
instead original audio signal are quantized into as few bits as possible by using either
scalar or vector quantization method.

Predictive modeling

In the linear prediction, current sample value is predicted by an estimate formed as a
linear combination of previous sample values. Then the difference between the original
sample value and the estimate value is quantized and coded. For decoding the predictor
coefficients must be coded as part of the lossless representation. Since signal redundancy
is represented by the predictor coefficients, the residual has a smaller variance and a flatter
signal spectrum than those of the original signal and therefore is amenable to quantization
and the entropy coding.

In lossless compression system, no loss may be allowed in the quantization stage,
whereas in the case of lossy compression, most of compression with an intentional loss
occurs in this stage. As the PCM audio data consist of integer number, it is main task for
lossless compression to retain the form of integer number through all the compression
stages. In predictive coding, we can easily make the compression stages operating with
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integer number by quantizing the prediction filter coefficients previously. We then obtain
the residues with integer number and reform these into an efficient bit level without any
quantization errors.

Arguably, an infinite number of alternative ways to form a linear combination
of previous samples and to predict using it can be found without any mathematical
limitation. In chapter 3, we investigate the various structures of the linear prediction filter
that are used for lossless audio compression and develop a novel method, a combination
of the linear prediction model with the context based error modeling.

Transform modeling

In transform coding, the input audio signal is decomposed by using a linear transform
to pack the energy of the signal into the uncorrelated coefficients. The success of trans-
form modeling depends on how well the basis functions of the transform represent the
features of the signal. The most commonly used transform is the Fourier transform, or
some variant of it.

Theoretically, the Karhunen-Loève transform (KLT) is best orthonormal energy-
compaction transform for a Gaussian source model. However, the KLT is rarely used in
practice for a variety of reasons. One crucial reason is that the KLT is signal dependent,
that is, the transform used in the encoder and decoder must be adjusted to correspond to
the covariance of the source in order to maintain optimality. In addition, since the KLT
has no special structure, the KLT requires more operations to compute than a harmonic
transform such as discrete cosine transform (DCT).

Most transform coders today employ the DCT, which yields nearly optimal energy
concentration and provides a superiority of the computational efficiency. The main disad-
vantage of the DCT is that its basis functions are non-local. The correlation present in a
signal, however, is mostly local. Since the signal is segmented into blocks, as mentioned
in previous section, and then each block is individually decomposed by the DCT, the
resulted coefficients can reveal their geometry that produces the well-known blocking ef-
fects. The lapped orthogonal transform (LOT) could be substituted for the DCT to avoid
the blocking effects. On the other hand, the Fourier like series are best suited for repre-
senting periodic signals, or signals with specific parity property, while each block does
not necessarily satisfy those properties. This slows down the convergence and hinders
high compression ratios.

All transforms result in real-valued coefficients with infinite precision. While most
of the compression occurs in the quantization of these coefficients, where an unrecover-
able loss arises, traditional transform coding is then lossy. To achieve a transform-based
lossless compression, one could maintain the coding error which is difference between
the original signal and its approximation signal that is reconstructed locally in coder side
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by local inverse transformation and dequantization. The coding residue is quantized and
entropy coded and transmitted along with the coded coefficients. At the decoder side, the
original signal can be exactly reconstructed by adding the residue to the approximation
signal. This scheme is called lossy-based lossless compression (see Fig. 2.3.5 in section
2.3.2). In this case, a precise quantization of the transform coefficients is not desirable,
while the problem is complex in lossy compression scheme.

Subband transform can be used for the transform coding scheme. In this case, the
signal is successively subdivided by analysis filters, of which impulse response is at most
as long as the subsampling factor used in the subbands. In Chapter 4, we describe the
subband coding scheme concerned with multirate filter banks. Wavelet transform, one of
the most successful tools in the data compression and signal processing, is explored in
depth in Chapter 5. In chapter 6, various reversible transforms including the biorthogonal
filtering structure using the lifting factorization are discussed. Lifting scheme is an
efficient algorithm for discrete wavelet transform and that enables us to easily make the
wavelet transform that maps integers to integers. Therefore the system can be used direct
for the lossless compression scheme, not as lossy-based lossless compression.

2.2.3 Entropy coding

Before transmitting the residue sequence or coefficients, which are assumed to be uncor-
related and therefore may be coded independently, entropy coding is used to further save
the bits in an invertible fashion. A signal carries a certain amount of information. This
information will be, in the theoretical side, large if the sample coming out of a certain
source (audio in our case) is seldom and small if it is frequent. In fact, a very frequent
sample will give very small “novelty” and thus will be easily predictable. On the other
hand, a rare sample will give new information and will be hardly predictable. After having
observed this phenomenon, Shannon [2] defined in 1948 his source entropy theory. He
showed that for the best possible compression code, the output length contains a contri-
bution of − log2 p bits from the encoding of each symbol whose probability of occurrence
is p. If we can do that, we have an optimal code.

Entropy coding typically involves run-length coding combined with well-known
Huffman or arithmetic codes. We briefly review these statistical codes and describe Rice
code which is less well known and used for our test compression system in this thesis.

Huffman coding

The fundamental idea of Huffman coding is to use a look-up table for the input words to
convert them to transmitted code words of varying length, so that commonly occurring
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input data words should be represented by short output code words, whereas rarely oc-
curring input words may be represented by fairly long code words, so that the average
coded word length is small.

Given the residue sequence, probabilities of each symbol (residue value) occurring
in the segmented stream are determined. The symbols are then ordered according to the
probabilities in decreasing order. It leads to a node, called leaf node. Two nodes with the
smallest probabilities are combined into a new node whose probability is the sum of the
two previous node probabilities. Each of the two branches going into the new node will
be assigned either a one or a zero. This process will be repeated until there is only one
node (root node) left. The code for a particular symbol can then be determined by reading
all the branch values sequentially starting from the root node and ending at the symbol
leaf nodes. For a fixed set of probabilities, this procedure is straightforward. In a dynamic
setting, however, changing the codes can be very time-consuming since small changes to
the probabilities can cause global changes to the optimal tree.

There are two classes of Huffman coders, fixed- and adaptive Huffman coders. Fixed
Huffman coding involves using a static symbol table based either on the entire data se-
quence or on global information. Adaptive Huffman coding involves forming a new code
table for each data sequence and encoding the table in addition to the data sequence.
Alternatively, the adaptive Huffman coder may switch at intervals between previously-
selected code tables, indicating at each interval the selected table. Adaptive Huffman
coders generally exhibit better performance in terms of the compression ratio achieved,
yet suffer from increased overhead. In real-time applications, fixed Huffman coders work
more quickly and have simpler hardware implementations.

Although Huffman codes are optimal among prefix codes, the expected code length
of a Huffman code is the same as the entropy only if all the probabilities are powers of
1/2.

Arithmetic coding

The fundamental idea behind arithmetic coding is to map a string of symbols into a subin-
terval of the interval [0, 1), where [x, y) denotes a half open interval, which includes x
but excludes y. There are two basic concepts in arithmetic coding, the probability of a
symbol and encoding interval range for a symbol [3] [4]. The occurrence probabilities
of source symbols determine the compression efficiency as well as the interval ranges of
source symbols for the encoding process. These interval ranges are contained within the
interval from zero to one and determine the compression output.

For example, assume that the source symbols are a, b and the probabilities of these
symbols are 0.4 and 0.6, respectively. Based on these probabilities, the interval [0, 1)
can be divided into the two subintervals, [0, 0.4) and [0.4, 1). The range [0, 0.4) is used
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to further subdivide an interval when the symbol a is encountered in the input data
and the range [0.4, 1) is used when the symbol b is encountered. To encode the string
baab as a subinterval of [0, 1), we begin with [0, 1) as the working subinterval and use
the encoding range of the first symbol b from the input string to narrow the working
subinterval to the last 6/10 of the current working subinterval. Therefore, the interval
[0, 1) is narrowed to [0.4, 1). Since the range of the second symbol a is [0, 0.4), the
working subinterval [0.4, 1) is reduced to its first 4/10 portion to obtain the new working
subinterval [0.4, 0.64). The third input symbol is a, and its encoding reduces the current
interval [0.4, 0.64) to its first 4/10 portion, that is to [0.4, 0.496). Encoding the fourth
symbol b produces the final interval [0.4576, 0.496). The input string baab is encoded as
the interval [0.4576, 0.496). From the symbol probabilities and the encoded interval, we
can reconstruct the input data. For example, the interval [0.4576, 0.496) is a subinterval
of b’s interval [0.4, 1). So the first symbol of the source string is b and the working
subinterval becomes [0.4, 1). Next we see that [0.4576, 0.496) is in the left 4/10 of the
interval [0.4, 1). So the next symbol in the source data is a and the working subinterval
becomes [0.4, 0.64). Since [0.4576, 0.496) lies wholly in a’s portion of the working
subinterval, the next source symbol is also a and the working subinterval becomes
0.4, 0.496). Then [0.4576, 0.496) lies in the right 6/10 of the working subinterval. So
the next source symbol is b and the working subinterval becomes [0.4576, 0.496). At
this time decoding terminates because the working subinterval and the coded subinterval
are the same. If each source data is assumed to end with a unique symbol (such as
end-of-file), the coded data can be represented by any number in the final subinterval
rather than by the endpoints of this interval. In practice, the arithmetic can be done by
storing the current interval in sufficiently long integers rather than in floating point of
exact rational numbers [4].

Main disadvantage of such basic approach to arithmetic coding is that the entire
sequence must be coded before transmission (incremental transmission is not possible)
and the representation for the symbol mapping table is cumbersome and can produce
significant overhead. For these problems, an adaptive arithmetic coding scheme is
developed [4][5]. For incremental transmission, the top-most bits are transmitted during
the coding process, when they are equal at each end of the interval, i.e. the interval
has become sufficiently narrowed. The second problem is alleviated by maintaining a
running, reversible symbol mapping table which starts with equal initial probabilities for
each possible symbol.

In theory, arithmetic coding gives an exactly optimal compression if we have a model
that provides correct probabilities of the symbols comprising the input data. However,
the cost of that is slow speed because of the exact arithmetic required, and the arithmetic
codes lack the direct correspondence between the symbols in the input data set and bits
or groups of bits in the coded output data.
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Golomb-Rice coding

Golomb coding [6] produces optimal prefix codes for exponentially decaying probability
distributions. It is assumed that the source probabilities (p) follow a geometric distribution
of the form Qn = (1 − ρ)pn, where 0 < p < 1. Golomb codes are distinguished from
each other by a single parameter m, so dynamic updating is accomplished by estimating
the value of the parameter. The symbols are arranged in descending probability order, and
non-negative integers are assigned to the symbols, beginning with 0 for the most probable
event. To encode integer n with given unique parameter m, Golomb code divides the
integer n into two parts: a binary representation of n mod m and a unary representation
of �n/m�. The optimal value of m is given [7] by

m = �log(1 + p)/ log(p−1)� . (2.2.1)

Rice codes, developed independently by Rice [8] [9] [10], are a special case of
Golomb codes. Rice coding uses a subset of the parameter values, i.e. m = 2k, and
other coding procedure is the same as Golomb coding. However, choosing m to be a
power of 2 leads to simpler coding procedure than Golomb coding: the code for integer
n consists of the k least significant bits of n, followed by the number formed by the
remaining higher order bits of n in unary representation. The length of this code is
then k + 1 + �n/2k�. Table 2.2 gives examples of Rice codes for k = 3. The resulting
codes give less compression efficiency than Golomb codes, but they are even easier to
implement, especially in hardware [11], since we can compute n/2k by shifting and n
mod 2k by masking out all but the k low order bits.

Number Sign Bit Lower Bits Number of 0’s Full Code

0 0 000 0 00001
18 0 010 2 0010001
-12 1 100 1 110001

Table 2.2: Example of Rice codes for k = 3

Golomb-Rice coding give the fast, flexible modeling obtained with arithmetic coding
without the time-consuming arithmetic. Particularly, Rice coding gives faster coding
even than Golomb coding or Huffman coding because of the especially simple prefix
codes involved, and adaptive modeling is possible without the complicated data structure
manipulations required in dynamic Huffman coding. Hence, the coding is extremely
straightforward to implement in software and hardware. The main drawback to Rice
coding is the limited compression performance because it is assumed that the model has
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a probability distribution of a particular, as we discussed above. However, this is not a
serious problem1 because the probabilities of the more probable events will be estimated
fairly well.

2.3 Lossy and Lossless Audio Compression

Two families of algorithms exist in compression. When the information can be exactly
recovered from the bits, the source coding or compression is called lossless; otherwise,
it is called lossy. Lossy algorithms remove information from the original in a way that
is not perceptible. However, after transmission with lossy compression, only a modified
version of the original signal is available. Lossless algorithms respect the integrity of
the original signal. After transmission and reconstruction, an exact copy of the original
signal is available.

2.3.1 Lossy compression

To achieve higher compression ratios, we give up on trying to represent the original sig-
nal exactly. Instead, we consider lossy compression, i.e. we allow approximate represen-
tations of the signal which come close to the original signal. Most lossy compression
schemes are then controlled by a parameter that trades fidelity against limited data rate.
Therefore, lossy compression is most appropriate for the data that is originally analogue
rather than digital.

The many forms of lossy audio compression techniques offer a range of encoder and
decoder complexity, compressed audio quality, and compression ratio. The well-known
µ-law transformation and adaptive differential pulse code modulation (ADPCM) are sim-
ple approaches with low-complexity, low-compression, and medium audio quality [12].
The MPEG/Audio standard is a high complexity, high compression, and high audio qual-
ity algorithm.

In lossy audio compression, limitation of human ear perception can be exploited
to omit components of the signal that will not be noticed. It is also referred to as a
perceptual coding. Using a psychoacoustic model based on the human receiver, the
perceptual coding schemes attempt to evaluate the irrelevant components of the audio
signal that fall outside the hearing threshold, or that will be masked by adjacent events.

1unless one event’s probability is close to 1
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In the result, an essence of the sound will be transmitted rather than the original audio
waveform.

Auditory perception

As a sound enters the ear, it is processed by overlapping, nonuniform filters along the
basilar membrane. These filters are tuned to specific frequencies and are called the
critical bands. The audible spectrum can be partitioned into the critical bands that reflect
the resolving power of the ear as a function of frequency. Table 2.3 gives a listing of
critical bandwidths.

Band Frequency(Hz)1 Band Frequency(Hz)1

0 50 14 1,970
1 95 15 2,340
2 140 16 2,720
3 235 17 3,280
4 330 18 3,840
5 420 19 4,690
6 560 20 5,440
7 660 21 6,375
8 800 22 7,690
9 940 23 9,375
10 1,125 24 11,625
11 1,265 25 15, 375
12 1,500 26 20,250
13 1,735

1Frequencies are at the upper end of the band

Table 2.3: Approximate critical band boundaries

Masking is a frequency domain phenomenon of the ear that occurs whenever the
presence of a strong audio signal makes a spectral neighborhood of weaker audio signals
imperceptible. This masking phenomenon has been observed and corroborated through
a variety of psychoacoustic experiments [13]. In particular, masking is strongest in the
immediate vicinity of the masker, masking increases with increased power level, low
frequencies are stronger maskers than high frequencies, and noise is a better masker
than a tone. Using psychoacoustic equations, masking thresholds can be calculated for
each critical band. Masking thresholds can then be used to eliminate redundant data
and to estimate quantization levels. Because of the ear’s limited frequency resolving
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26 2.3.1 Lossy compression

power, the masking threshold at any given frequency is solely dependent on the signal
activity within a critical band of that frequency. As an example, Figure 2.3.1 illustrates
the masking threshold for 1 kHz narrowband masker with 60 dB of SPL.
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Figure 2.3.1: Threshold in quiet and example of masking threshold

Figure 2.3.1 shows that a signal is inaudible even without a masker if its SPL is below
the threshold in quiet which depends on frequency and covers a dynamic range of more
than 60 dB. The distance between the level of the masker and the masking threshold
is called signal-to-mask ratio (SMR). Within a critical band, coding noise will not be
audible as long as its signal-to-noise ratio (SNRm) resulted from m-bit quantization is
higher than its SMR.

For audio compression, this property can be capitalized by transforming the audio
signal into the frequency domain, then dividing the resulting spectrum into subbands that
approximate critical bands, and finally quantizing each subband according to the audi-
bility of quantization noise within that band. For optimal compression, each band should
be quantized with no more levels than necessary to make the quantization noise inaudible.
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MPEG/Audio coding

Most well-known lossy audio compression standard is the MPEG (motion picture experts
group) compression algorithm of ISO (international organization for standardization)
which provides high fidelity audio compression. This algorithm can achieve perceptually
transparent compression2. The MPEG-1/Audio coding offers a subjective reproduction
quality that is equivalent to CD quality at stereo rates at and above 128-256 kb/s for many
types of music. The high performance of this algorithm is possible by the psychoacoustic
modeling that determines where the quantization noise will be masked, as described
above. Figure 2.3.2 shows the structure of the MPEG/audio encoder and decoder [14].

TIME-TO-FREQUENCY
MAPPING FILTER BANK

PSYCHOACOUSTIC
MODEL

BIT-STREAM
UNPACKING

FREQUENCY SAMPLE
RECONSTRUCTION

ENCODED
BIT STREAM

PCM AUDIO
INPUT

ANCILLARY DATA
(IF ENCODED)

ENCODED
BIT STREAM

FREQUENCY-TO-TIME
MAPPING

DECODED
PCM AUDIO

ANCILLARY DATA
(OPTIONAL)

BIT/NOISE ALLOCATION,
QUANTIZER, AND
CODING

BIT-STREAM
FORMATTING

(a) MPEG/Audio Encoder

(b) MPEG/Audio Decoder

Figure 2.3.2: General structure of MPEG/Audio compression

The input audio stream passes through an analysis filter bank that divides the input
into spectral multiple subbands. The input audio stream simultaneously passes through a
psychoacoustic model that determines the SMR of each subband. The number of bits for
each subband and a scale factor, a multiplier that sizes the samples to maximize the reso-
lution of the quantizer, are determined on block-by-block basis. A dynamic bit allocation
algorithm is used to decide the number of quantizer bits so that the quantization noise is
kept below the masking threshold. Finally, the subband codewords, the scale factor, and

2The subject listening tests of MPEG/audio committee showed that even with a 6-to-1 compression
ratio the listeners were unable to distinguish between coded and original audio clips under optimal listen-
ing condition. However, we are not prepared to accept the term “transparent”, because even the human
psychoacoustics used for such perceptual coding scheme is till in investigating.
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28 2.3.1 Lossy compression

the bit allocation information are multiplexed into one decodable bit stream including a
header and optional ancillary data that is not necessarily related to the audio stream. The
decoder simply reverses the formatting, then reconstructs the quantized subband values
by using a synthesis filter bank, and finally transforms the set of subband values into a
time-domain audio signal.

The MPEG/audio standard has three distinct layers for compression. Layer I forms
the most basic algorithm, and Layers II and III are enhancements that use some elements
found in Layer I. Each successive layer improves the compression performance but at
the cost of greater encoder and decoder complexity. Layer I makes use of a subband filter
bank that divides the audio signal into 32 constant-width frequency bands. The filter bank
provides 32 frequency samples, one sample per band, for every 32 input audio samples.
The Layer I algorithm groups together 12 samples from each of the 32 bands. Each group
of 12 samples receives a bit allocation and, if the bit allocation is not zero, a scale factor.
The Layer I encoder formats the 32 groups of 12 samples (i.e., 384 samples) into a frame.

The Layer II algorithm improves compression performance by coding data in larger
groups. It forms frames of 3 by 12 by 32 = 1, 152 samples per audio channel, i.e., it
codes the data in 3 groups of 12 samples for each subband, whereas Layer I codes in
single groups of 12 samples for each subband. The Layer II algorithm also improves
performance over Layer I by representing the bit allocation, the scale factor values, and
the quantized samples with a more efficient code (see Fig. 2.3.3).
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Figure 2.3.3: MPEG-1/Audio Layer II encoder

The Layer III algorithm compensates for some deficiencies of the filter bank found in
Layer I and II by using a hybrid filter bank. This Layer III hybrid filter bank approach has
become quite popular, in particular in Internet applications (MP3). Figure 2.3.4 shows a
block diagram of the filter bank.
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Figure 2.3.4: MPEG-1/Audio Layer III filter bank processing in encoder side

Applying modified discrete cosine transform (MDCT) to each of the 32 subband
signals, the Layer III filter bank subdivides the filter bank outputs further in frequency
content. This process provides a better spectral resolution closer to critical band parti-
tions. Layer III specifies two different MDCT lengths, i.e. 6-point and 18-point block
transform. Because of 50% overlapping transform, these lengths correspond to 12 and
36 subband samples in a window. Hence, when the short block length is used, then
three short blocks replace a single long block. The short block length improves the time
resolution to cope with transients. Note that the switch between long and short blocks
is not instantaneous. A long block with a specialized long-to-short or short-to-long data
window provides the transition mechanism from a long to a short block. In addition,
Layer III employs an analysis-by-synthesis approach, an advanced pre-echo control, and
nonuniform quantization with entropy coding. A buffer technique, called bit reservoir,
leads to further savings in bit rate.

Problem of perceptual coding schemes

The structure of the MPEG/audio has several compromised concessions. Notably, al-
though the idea of such perceptual coding is to exploit the phenomena that happen in our
hearing system, the constant bandwidths of the filter bank do not accurately reflect the
ear’s critical bands. The bandwidth is too wide for the lower frequencies so the number
of quantizer bits cannot be specifically tuned for the noise sensitivity within each critical
band. Instead, the included critical band with the greatest noise sensitivity dictates the
number of quantization bits required for the entire filter band. Second, because of a sig-
nificant frequency overlap between the adjacent subbands, a signal at a single frequency
can affect two adjacent filter bank outputs. Finally, the process of the filter bank and its
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inverse are not lossless transformations, i.e. it is not perfect reconstruction filter (PRF). It
implies that the inverse transformation would not perfectly recover the original input sig-
nal, even without quantization. In Chapter 4, we investigate the subband transformation
and multirate filter bank that enable us a perfect reconstruction.

There is a growing concern around multiple coding issues when passing audio signal
through several data reduction codecs. Particularly, the problems mentioned above,
overlapping transformation and the non-reversible filter bank, can reveal the originally
masked signal portions or can distort the signal uselessly by the multiple coding. This
problem applies especially to the post-production industry.

2.3.2 Lossless compression

Unlike lossy compression, where the encoder throws away the components that are not
psychoacoustically important, the encoder for lossless compression does not throw away
any of the audio data. It merely packs3 them more efficiently into the lower data rate,
and the decoder can recover an exact bit-for-bit copy of the original. Therefore, it is
very important to note that lossless compression can be regarded as a reformatting of the
standard PCM audio representation. Binary-weighted PCM is just one of a number of
possible formats for representing digital audio, and is not necessarily the most efficient
in any particular case. Lossless coding minimizes the redundancy in the standard PCM
representation and converts to a new format which needs only to be decoded. With this
fact, the lossless compression provides the key not only to satisfying the demands for
an increased data rate, but also to making it practical to design a system that will han-
dle a wide variety of requirements very simply. In addition to the efficient transmission
and storaging, the compressed format provides several supplementary advantages, for in-
stance, it can lead to reduced levels of correlated jitter, which is a critical factor in high
resolution digital audio systems.

Lossless compression has some obstacles to extend its practical application area. The
main drawback of lossless audio compression is lower compression ratio, usually com-
pression factors of 2 to 3, compared with the lossy compression that achieves compres-
sion factors ranging from 2.7 to 24 or higher, depending on the audio sampling rate. It
should be also obvious that the data rate after lossless compression is not fixed, but de-
pends on how much redundancy there is in the original audio signal. Some signals can be
compressed more tightly into a smaller data rate than others, so lossless coding will by
default produce a variable data rate which needs system that can handle a variable rate bit
stream.

3Practically, the terminology “packing” is often used in literature in order to emphasize the difference
between the lossy and the lossless compression,
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More recently, a lossless compression scheme has been developed, that is optimized
to produce a constant data rate in the compressed domain [15] [16]. Using this scheme,
16-bit 96kHz-sampled audio signals can almost always be losslessly compressed to 8 bits,
and 16-bit 48kHz-sampled signals to 12 bits, with exact reconstruction of the original. In
the result, the constant data rate of lossless compression costs lower compression ratio.
On the other side, compressed 96kHz audio does not double the data rate of compressed
48kHz audio as expected. It proves that the lossless compression of PCM audio becomes
more efficient as the sampling rate is increased. This is one of the important reasons why
lossless compression will become a standard audio format and will be more importantly
focused in the future, as the resolution of digital audio goes higher.

Apart from the importance of lossless compression, it is asserted in some literatures
that current lossless audio coders have reached a limit in what can be achieved for
lossless compression of audio. Indeed, by the nature of lossless coding, it could not be
possible to achieve so high compression ratio as lossy compression. But several new
decorrelation methods, for example, block-based prediction, parametric modeling or
context-based modeling, show a capability to hurdle the present limit (factor of 2 to 3) of
the lossless compression ratios.

Lossy-based lossless compression

In general, the spectrum resulting from a signal transform will be real-valued, even for an
integer input signal. For an efficient transmission, the coefficients have to be quantized,
which causes inevitable errors in the output signal. Therefore, except when the transform
used for signal decorrelation is an integer operation entirely, lossless transform coding has
to be considered as a combination of conventional lossy transform coding and additional
transmission of the residual in respect to the original signal, as illustrated in Figure 2.3.5.

As showed in Figure 2.3.5, the lossy compressed signal is locally reconstructed in
encoder side to obtain the residual. The reconstructed signal in this case is an approxima-
tion of the original and can be used as an estimate of the original. The lossy compressed
signal can be transmitted in many different forms. It is obvious that the residual signal
depends on the lossy coding algorithm. If the estimate is a good approximation of the
original then the residual signal will contain small values. On the other hand, if lossy
compression is not efficient, the residual will be large and correlated with redundancy.
It means that the coding problem passes from the original signal to the residual signal.
Thus, the most important task in such lossy-based lossless coding scheme is to find
the best compromise between a high compression ratio of the lossy algorithm and a
compressibility related to correlation state of the residual signal depending on lossy
compression process.
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Figure 2.3.5: Lossy-based lossless compression using lossless transmission of error
signal

A potential advantage of such lossy-based lossless coding schemes is that the lossy
coded part of the input signal, which maintains also the signal wave shape in lower bit
rate with no time shift, could be used for progressive transmission with varying data
rate. The lossless JPEG compression standard is a simple version of lossy-based lossless
approach.

2.4 Performance Criteria for Lossless Compression Sys-
tem

There are several criteria in quantifying the performance of a compression scheme. Com-
pression efficiency is measured by the compression ratio or by the bit rate. Compression
ratio is the ratio of the length of the input data sequence to the compressed output data
sequence for a given compression method. This is the most important measure of per-
formance for a compression technique. Compression bit rate is the number of bits per
sample required to represent the compressed data sequence. The relation between both
measurements is readily obtained as following

compression ratio =
bits / sample (original)

bits / sample (compressed)
. (2.4.1)

The source entropy of original data sequence is used to compare the effectiveness of
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a compression method. The entropy of a set of M samples is defined as

Hp = −
M−1∑
i=0

pi log2 pi (bits/sample) , (2.4.2)

where pi denotes individual probabilities of each sample. As the source entropy is a min-
imum number of bits required to encode a data stream, the effectiveness of a lossless
compression method can be measured by determining how closely the bit rate of com-
pressed data approximate the source entropy.

The variance of the zero-mean output of the decorrelation stage can be used to com-
pare the effectiveness of signal decorrelation models used in a compression scheme.
Given an N-point zero-mean data sequence x[n], the variance σ2

x is calculated by

σ2
x =

1

N − 1

N−1∑
n=0

x2[n] . (2.4.3)

Particularly, the variance is a useful quantity to determine compressibility of waveform
data and to choose suitable decorrelation method to be used. The coding gain is often used
to measure the performance of both the predictive modeling and transform modeling,

Gc =
σ2
x

σ2
e

, (2.4.4)

where σ2
x is the variance of the predictor input x(n), σ2

e is the variance of the prediction
error or the transform coefficient.

Another popular metric, the spectral flatness measure (sfm) gauges the flatness or
whiteness of a power spectral density (psd). The sfm may take values between zero and
unity where a unity spectral flatness measure represents a white process. The inverse
of the sfm measures the waveform predictability of a process where the value for an
unpredictable (white) process is unity and the value for a totally predictable process is
infinity. For linear prediction, the prediction gain is upper bounded by the waveform
predictability.

The complexity of an audio compression algorithm is measured by the number of
arithmetic operations required to perform both the encoding and decoding processes.
This is an important factor for applications involving online compression and decom-
pression where speed is crucial.
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2.5 Test Audio Materials

For our experiments in the thesis, nine audio materials are chosen; six materials from
SQAM-CD [17]4 and two from published music CDs. All materials are sampled at
44.1kHz, 16 bits step size, and stereo channel (except for speech).

Nr. Length Description

1 1:11 SQAM Track 8, Violin, Arpeggio and Melodious Phrase
2 0:46 SQAM Track 13, Flute, Arpeggio and Melodious Phrase
3 0:21 SQAM Track 53, Female Speech, German (Mono)
4 1:32 SQAM Track 60, Piano, Schubert
5 1:22 SQAM Track 67, Wind Ensemble, Mozart
6 0:33 SQAM Track 69, ABBA, Pop
7 0:21 SQAM Track 70, Eddie Rabbitt, Country
8 0:29 Def Leppard “Adrenalize”, Track 1 “Let’s get rocked”,

Bludgeon Riffola Ltd, Metal Rock
9 0:29 Stan Getz “The Artistry of Stan Getz”, Track 10 “Litha”,

Polygram Records, Soft Jazz

Table 2.4: Description of test audio materials

4SQAM(Sound Quality Assessment Material), European Broadcasting Union
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Chapter 3

Predictive Modeling

Autoregressive (AR) modeling by linear prediction (LP) forms the basis of a wide variety
of signal processing and communication systems including parametric spectral estimation
and system identification. Perhaps the greatest success of linear prediction techniques is
to be found in speech analysis and audio coding. It is also true that most of current lossless
audio compression schemes employ a predictive coding approach or its hybrid algorithm
combined with arithmetic coding.

The goal of the predictive modeling in audio compression is to reduce the sample
magnitudes by making a prediction of the current sample on the basis of previous sample
values and by transmitting just the difference between the current sample and the pre-
diction. Several predictive methods exist for exploiting correlation between neighboring
samples in a given data stream. The same decorrelation function is used in compression
and reconstruction, and this function must take as input a delayed version of the input
sequence.

In this chapter, we first review the general frameworks of predictive modeling and
investigate various prediction filter structures including the modified linear predictor. We
then compare the prediction filters by applying to the lossless audio compression system.

3.1 Theoretical Background

A discrete signal is a sequence of samples

x[n], n = · · · ,−2,−1, 0, 1, 2, · · · (3.1.1)
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Signal x[n] can be always be expressed as a linear combination of a set of some other
sequences

x[n] =
N∑
k=1

cksk[n] . (3.1.2)

For example in

x[n] =

N∑
k=1

cke
j2πkn/N , (3.1.3)

If n = 1, 2, · · · , N , this is called the inverse discrete Fourier transform. The basis func-
tions of this decomposition are defined by the following formula:

sk[n] = ejπkn/N . (3.1.4)

There are a set of orthogonal functions and they form a complete basis. This means that
a set of N basis functions can represent any signal of duration N exactly. In theory,
signals which can be represented exactly by, e.g., a set of elementary functions, are called
singular [18] or deterministic [19] signals.

The autocorrelation function of a discrete ergodic signal s[n] is defined by

∀k : Rk = E(s[n]s[n− k]) = lim
N→∞

1

2N + 1

N∑
n=−N

s[n]s[n− k] . (3.1.5)

White noise is a discrete stationary random signal r[n] defined as a sequence with

∀(n �= k) : Rk = E(r[n]r[n− k]) = 0 . (3.1.6)

In classical literature [20], r[n] is sometimes called a fundamental sequence. In practical
applications, signals are of finite length, and therefore a signal may be called random only
in respect to some signal model.

Signal x[n] can always be written as a sum of a deterministic signal sd[n] and an-
other signal sr[n] = x[n] − sd[n]. If x[n] is a stationary signal and sd[n] and sr[n] are
uncorrelated, it can be shown [18] that

x[n] = sd[n] + sr[n] = sd[n] +
∞∑
k=0

ckr[n− k] , (3.1.7)

where r[n] is an uncorrelated white noise signal and
∑∞

k=0|ck|2 < ∞. This is called
the Wold decomposition theorem for a stationary signal1. In classical terms [20], sr[n],

1Wold decomposition theorem was introduced in the first edition of Wold’s book, his doctoral thesis, in
1938.
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which is obtained from a fundamental sequence by sliding summation, is called a regu-
lar sequence. The Wold decomposition is of fundamental importance because it clearly
divides the universe of linear spectral estimation methods into two main branches: de-
terministic and stochastic techniques. Deterministic techniques can be associated with
non-parametric coding techniques such as transform coding. Similarly, parametric tech-
niques are usually related to a stochastic signal modeling principle.

In the equation (3.1.7), if the coefficients ck are fixed and sd[n] = 0, x[n] is a moving
average model for the stochastic process sr[n] given by

sr[n] =
∞∑
k=0

ckr[n− k] . (3.1.8)

The z-transform of (3.1.8) is then given

Sr(z) = C(z)R(z) =

[ ∞∑
k=0

ckz
−k

]
R(z) , (3.1.9)

and then

R(z) =
Sr(z)

C(z)
(3.1.10)

which shows that the white noise excitation r[n] is uniquely determined by the filter, its
output sr[n], and the initial conditions at the filter’s states.

Eq. (3.1.8) can be written as following

c0r[n] = sr[n] −
∞∑
k=1

ckr[n− k] = sr[n] − s̃r[n] . (3.1.11)

By denoting r[n] = c0r[n] in (3.1.11) with assuming that c0 = 1, this expression has
two important aspects. Firstly, r[n] obeys (3.1.6). Therefore, it also holds that r[n] is
uncorrelated with any linear combination of its past values r[n− k], k ≥ 1. That is,

E

(
r[n]

∞∑
k=1

ckr[n− k]

)
= E (r[n]s̃r[n]) = 0 . (3.1.12)

This is called the orthogonality principle. Secondly, as it was pointed out by Kolmogorov
[20], s̃r[n], which is uniquely determined by the history of sr[n], can be seen as a lin-
ear prediction for sr[n]. The prediction error is, by definition, a white noise signal r[n].
Therefore, (3.1.12) is an optimal solution to the prediction problem given by (3.1.11).

In parallel with Kolmogorov’s work, Wiener [21] studied the prediction problem
for continuous signals from a slightly different perspective2. Levinson [22] extended

2Wiener (1949) recognizes Kolmogorov’s work with the same problem in his book and points out that: ...
the parallelism between them may be attributed to the simple fact that the theory of the stochastic processes
had advanced to the point where the study of the prediction problem was the next thing on the agenda..
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Wiener’s theory for discrete-time signals. They started with minimization of the expecta-
tion of (3.1.11) by

∂E[|r[n]|2]
∂ck

= 0, k = 1, 2, · · · ,∞ , (3.1.13)

which leads to the same orthogonality condition given by (3.1.12) for an optimal set of
coefficients ck. It can be shown that this always gives the minimum of the expression.
Basically, this is the classical least squares regression technique which was already used
by Gauss and first published by Legendre in early 19th century, see, e.g., [23] [24] [25]
for a historical survey. For time series, this technique was first applied by Yule [26] and
Walker [27].

3.2 Linear Prediction System

3.2.1 General expressions

The basic idea behind linear prediction is that a sample of signal can be approximated
as a linear combination of previous samples. By minimizing the sum of the squared dif-
ferences between input samples and linearly predicted ones, a unique set of predictor
coefficients can be determined.

From the discrete signal processing viewpoint, a digital filter H(z) is assumed to
have p poles and q zeros in the general pole-zero case, which means that given the input
sequence x[n], its approximation x̂[n] can be modeled by a combination of the q previous
output samples and p+ 1 previous input samples in a discrete filter system:

x̂[n] =

p∑
k=0

bk x[n− k] +

q∑
k=1

ak x̂[n− k] , (3.2.1)

which is equivalent to

H(z) =
X̂(z)

X(z)
=

p∑
k=0

bk z
−k

1 −
q∑

k=1

ak z
−k
. (3.2.2)

This is the general description of pth-order recursive or infinite impulse response (IIR)
system. Such model with both poles and zeros is also called an autoregressive moving
average (ARMA) model. If we set the coefficients a1, a2, · · · , aq equal to zero, (3.2.1)
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becomes a finite impulse response (FIR) system, i.e.,

x̂[n] = b0x[n] + b1x[n− 1] + · · · + bpx[n− p] =

p∑
k=0

bk x[n− k] . (3.2.3)

This is an allpole model, also known as an autoregressive (AR) model, while the allzero
model (p = 0) is called a moving average (MA) model since the output is a weighted
average of the q prior inputs. Figure 3.2.1 shows the general representation of these filter
systems.

b0

bp-1

b1

bp

z-1

z-1

Σ

Σ

Σ

+

+

+

+

+

+

x[n] x[n]

x[n-p]

x[n-1]

x[n-p+1]

^

aq

a1

aq-1

z-1

z-1

Σ

Σ

Σ

+
+

+

+

-

-

x[n]x[n]

x[n-q]

x[n-1]

x[n-q+1]

^

^

^

^

b0

b1

bp

z-1

z-1

Σ

Σ

+

+

+

+

x[n]

x[n-p]

x[n-1]

aq

a1

z-1

z-1

Σ

Σ

+

+

+

-

x[n]

x[n-q]

x[n-1]

^

^

^

H(z)=b
0
+b

1
z-1+    +b

p
z-p...

...1+a1z
-1+a2z

-2+    +bqz
-q

1
H(z)=

...1+a1z
-1+a2z

-2+    +bqz
-q

H(z)=
b

0
+b

1
z-1+    +b

p
z-p

(a) (b)

(c)

Figure 3.2.1: Block diagram representation for three types of filters

As showed in Figure 3.2.1, the prediction of present value in an FIR system is per-
formed by combination of past values of the input signal, while for an IIR system the
estimation of present value depends on the immediate past values of the output and the
present and past values of the input. That is, an IIR system involves a recursive process in
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order to update the output by the present and past values. As the result, the terms of FIR
and IIR describe digital filters relative to the length of their sampled response sequences
since it is possible to implement an FIR filter in a recursive fashion and an IIR filter in a
nonrecursive manner.

Most of linear prediction system in literature assumes to use an allpole FIR filter be-
cause of its ability to provide extremely accurate estimate and its relative speed of com-
putation. From (3.2.3) the system function of a pth-order FIR LP filter is the polynomial

P (z) =

p∑
k=1

bk z
−k , (3.2.4)

where any zeros at z = 0 are ignored because such zeros contribute nothing to the spectral
magnitude and add only linear phase. Output of this predictive filtering is the difference
between the original input signal x[n] and its prediction x̂[n],

e[n] = x[n] − x̂[n] = x[n] −
p∑
k=1

bk x[n− k] , (3.2.5)

where the difference signal e[n] is called residual or prediction error3. From (3.2.5) it
can be seen that the prediction error sequence is the output of a system whose transfer
function is

A(z) = 1 −
p∑
k=1

bk z
−k , (3.2.6)

which is an inverse filter for the system H(z), i.e., H(z) = A(z)−1. The basic problem
of LP is to determine a set of predictor coefficients {bk} directly from the signal in such
a manner as to ontain a good estimate of the spectral properties of the signal through the
use of (3.2.6).

The optimal predictor coefficients bk are chosen to minimize the energy (average) in
residual signal which is defined as

E =

∞∑
n=−∞

e2[n] (3.2.7a)

=

∞∑
n=−∞

(x[n] − x̂[n])2 (3.2.7b)

=
∞∑

n=−∞

[
x[n] −

p∑
k=1

bkx[n− k]

]2

. (3.2.7c)

3In the information theory e(n) is often called the innovation sequence.
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By setting ∂E/∂bk = 0, k = 1, 2, 3, . . . , p, as a necessary condition for minimum energy,
we obtain p linear equations

∞∑
n=−∞

x[n− i]x[n] =

p∑
k=1

bk

∞∑
n=−∞

x[n− i]x[n− k], i = 1, 2, 3, . . . , p . (3.2.8)

If we define

φ(i, k) =

∞∑
n=−∞

x[n− i]x[n− k] , (3.2.9)

then the linear equations (3.2.8) can be written more compactly as

p∑
k=1

bk φ(i, k) = φ(i, 0), i = 1, 2, 3, . . . , p . (3.2.10)

From (3.2.7), (3.2.8) and (3.2.10) the minimum mean-squared prediction error can be
shown to be

E =

∞∑
−∞

x2[n] −
p∑
k=1

bk

∞∑
−∞

x[n]x[n − k] (3.2.11a)

= φ(0, 0) −
p∑
k=1

bkφ(0, k) (3.2.11b)

There are various algorithms to solve the linear equations (3.2.10), involving a
special recursive algorithm for symmetric Toeplitz matrices. We review these algorithms
in next section.

3.2.2 Estimation of the predictor coefficients

Autocorrelation method

To solve (3.2.10), the limits of summation in (3.2.7) and (3.2.8) must be over a finite
interval. One of the basic approaches to determination of the limits is the well-known
autocorrelation method. This approach assumes that the signal x[n] has finite duration
with length of N samples4, i.e., x[n] = 0 outside the range 0 ≤ n ≤ N − 1. In this
case, the residual signal e[n] obtained through pth-order LP filter will be nonzero over

4Normally, a Hamming or similar time window is used to segment the signal
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42 3.2.2 Estimation of the predictor coefficients

the interval 0 ≤ n ≤ N − 1 + p, and therefore the residual energy and (3.2.9) can be
written as

E =

N+p−1∑
n=0

e2[n] , (3.2.12a)

φ(i, k) =

N+p−1∑
n=0

x[n− i]x[n − k] , (3.2.12b)

where i = 1, 2, . . . , p and k = 0, 1, . . . , p. Since φ(i, k) of (3.2.12b) is identical to the au-
tocorrelation function evaluated for (i−k), the linear equations (3.2.10) can be expressed
as a normal equations, called Wiener-Hopf equations5 [28],

p∑
k=1

ak R(|i− k|) = R(i), i = 1, 2, . . . , p , (3.2.13)

which is in matrix form,
R(1)
R(2)
R(3)

...
R(p)

 =


R(0) R(1) . . . R(p− 1)
R(1) R(0) . . . R(p− 2)
R(2) R(1) . . . R(p− 3)

...
...

...
...

R(p− 1) R(p− 2) . . . R(0)




a1

a2

a3
...
ap

 (3.2.14)

Similarly to (3.2.11), the minimum mean squared prediction error becomes

E = R(0) −
p∑

k=1

akR(k) , (3.2.15)

where R(k) is the kth correlation of the source and R(0) is equal to the source variance
σ2
x. In (3.2.14), the p × p matrix of autocorrelation values is a Toeplitz matrix; i.e., it is

symmetric and all the elements along a given diagonal are equal. This special property
will be exploited to obtain an efficient algorithm for the solution of (3.2.13).

The Wiener-Hopf equations can be efficiently solved by the well-known Levinson-
Durbin recursive procedure [29], in which the following operations are performed recur-

5Note that (3.2.13) is identical to the Yule-Walker equations obtained for an AR(p) model. Thus the LP
filter can be considered as a whitening filter. The residual sequence e[n] is white and efficient codeable with
lower entropy than the entropy of x[n], only if the input sequence x[n] is an AR(p) process and pth-order
LP filter is optimal.
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sively for m = 1, 2, . . . , p:

km =

[
R(m) −

m−1∑
k=1

am−1[k]R(m− k)

]
Em−1

, (3.2.16a)

am[m] = km , (3.2.16b)

am[k] = am−1[k] − kmam−1[m− k], 1 ≤ k ≤ m− 1 , (3.2.16c)

Em = (1 − k2
m)Em−1 , (3.2.16d)

where initially E0 = R(0) and a0 = 0. The reflection coefficients km guarantees
a stable LP filter H(z) so that at each cycle m the coefficients am[k] describe the
optimal mth-order linear predictor and the minimum error Em is reduced by the factor
(1 − k2

m). Therefore, the necessary condition for stable system is given by |km| ≤ 1.
Particularly, the negatives of the km are called partial correlation (PARCOR) coefficients.

Covariance method

As mentioned in previous section, the autocorrelation method is usually preceded by a
windowing of input signal, so that x[n] values at the beginning and end of a block are
tapered to zero. Thus, the autocorrelation solution introduces distortion into the spectral
estimation procedure. The covariance method avoids this distortion since it does not need
to window the input signal, but residual signal is weighted uniformly in time by a simple
rectangular window of length N ;

E =

N−1∑
n=0

e2[n] . (3.2.17)

Then the covariance function for x[n] becomes

φ(i, k) =
N−1∑
m=0

x[n− i]x[n− k] (3.2.18a)

=

N−k−1∑
n=−k

x[n]x[n + k − i], 1 ≤ i ≤ p, 0 ≤ k ≤ p . (3.2.18b)

Setting ∂E/∂ak = 0 again to zero leads to p linear equations

p∑
k=1

ak φ(i, k) = φ(i, 0), i = 1, 2, . . . , p . (3.2.19)
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44 3.2.2 Estimation of the predictor coefficients

Since the evaluating φ(i, k) requires the input values of x[n] in the interval −p ≤ n ≤
N − 1, it does not need to taper the segment of input signal to zero at the ends as in the
autocorrelation method. In matrix form, (3.2.19) becomes

φ(1, 0)
φ(2, 0)
φ(3, 0)

...
φ(p, 0)

 =


φ(1, 1) φ(1, 2) . . . φ(1, p)
φ(2, 1) φ(2, 2) . . . φ(2, p)
φ(3, 1) φ(3, 2) . . . φ(3, p)

...
...

...
...

φ(p, 1) φ(p, 2) . . . φ(p, p)




a1

a2

a3
...
ap

 (3.2.20)

This covariance matrix is symmetric but not Toeplitz. As a result, the covariance method
leads to a function that is not a true autocorrelation function, but rather, the cross-
correlation between two very similar finite length segments of the input signal. From
the difference of limitations in (3.2.12b) and (3.2.18a), the linear equations (3.2.19) have
significantly different properties that strongly affect the method of solution and the prop-
erties of the resulting optimum predictor.

One of the well-known methods to solve the set of equations (3.2.19) is called the
Cholesky decomposition (also referred as the square root method). In matrix notation,
(3.2.19) can be written by

Φa = ψ , (3.2.21)

where Φ is a positive definite symmetric matrix with (i, j)th element φ(i, j), and a and ψ
are column vectors with elements aj , and φ(i, 0) respectively. For the Cholesky decom-
position the matrix Φ is given by

Φ = VDVT , (3.2.22)

where Φ is a lower triangular matrix whose main diagonal elements are all 1’s, and D is
a diagonal matrix. The elements of the matrices V and d are readily determined by

Vijdj = φ(i, j) −
j−1∑
k=1

VikdkVjk, 1 ≤ j ≤ i− 1 , (3.2.23a)

di = φ(i, i) −
i−1∑
k=1

V 2
ikdk, d1 = φ(1, 1), i ≥ 2 . (3.2.23b)

The column vector a can be solved by using a simple recursion of the forms

Yi = ψi −
i−1∑
j=1

VijYj, p ≥ i ≥ 2 , (3.2.24)

where
Y = DVTa, Y1 = ψ1 , (3.2.25)
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and then

ai = Yi/di −
p∑

j=i+1

Vjiaj, 1 ≤ i ≤ p− 1 , (3.2.26)

with initial condition
ap = Yp/dp . (3.2.27)

The index i in (3.2.26) proceeds backwards from i = p− 1 down to i = 1.

3.2.3 Lattice structure of LP coefficients

It is possible to convert any digital filter to a corresponding lattice filter [30] [31]. The
prediction in the LP systems discussed above is based on p previous samples of x[n], i.e.
forward prediction. In lattice LP model, the p ensuing samples are also used in a form of
backward prediction. Figure 3.2.2 shows a general lattice structure which involves both
the forward and backward prediction.
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Figure 3.2.2: Lattice Filters: (a) inverse filter A(z), which generates both forward and
backward error signals at each stage of the lattice; (b) synthesis filter 1/A(z).

As showed in previous section, the lattice structure is a direct consequence of the
Levinson-Durbin’s recursion with the PACOR coefficients km. Applying (3.2.16c), we
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46 3.2.3 Lattice structure of LP coefficients

see that the prediction error sequence em[n] can be expressed as

em[n] = e[n] ∗ am−1[n] − kmxm ∗ am−1[m− n] , (3.2.28)

where * denotes convolution. The first term in (3.2.28) is the forward prediction error
from an (m − 1)th predictor and the second term is a parallel backward error. Lattice
methods of linear prediction are order-recursive. That is, the optimal coefficients are first
solved for the first stage of the filter, then the prediction error signals are computed for the
next stage and so on. Assigning bm[n] to this backward prediction error yields a recursion
formula:

em[n] = em−1[n] − kmbm−1[n− 1] , (3.2.29)

where

bm[n] = x[n] ∗ am[m− n] = σnl=n−mx[l]am[m− n + l] (3.2.30a)

= x[n−m] −
m∑
l=1

am[l]x[n−m+ l] , am[0] = 1 (3.2.30b)

= bm−1[n− 1] − kmem−1[n] . (3.2.30c)

(3.2.29) and (3.2.30c) define the forward and backward prediction error sequences for an
mth order predictor in terms of the corresponding prediction errors of an (m− 1)th order
predictor (see Figure 3.2.2, with initial conditions of e0[n] = b0[n] = x[n]). This block-
based method is called Burg Algorithm [29]. In this method, the PACOR coefficients km
can be directly related to the forward and backward prediction errors. The relationship in
form of normalized cross-correlation function is

km =

N−1∑
n=0

em−1[n]bm−1[n− 1]

[
N−1∑
n=0

(em−1[n])2
N−1∑
n=0

(bm−1[n− 1])2

]1/2
(3.2.31)

The reflection coefficients km have many interesting properties. In [32], these
coefficients were derived directly from a non-uniform acoustic tube model, where the
coefficients, as the name indicates, are reflection coefficients of individual tube ele-
ments. Therefore, the reflection coefficients and the lattice structure have firm physical
interpretations. Their goal was to find a representation for LPC coefficients that is more
robust to quantization. Reflection coefficients also act in a reasonable way in temporal
interpolation of coefficients between frames. In addition, if all the reflection coefficients
obey |km| < 1, m = 1, 2, . . . , p, the synthesis filter is stable. Therefore, lattice methods
of linear prediction also give direct means to check and guarantee the stability of the
estimated model.
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3.2.4 Determination of LP filter order

Finding an optimal LP filter order p is crucial to achieving optimal compression. It is
not just a matter of decoder and encoder complexity because there is a tradeoff between
the lower variance of the residual sequence and the increasing overhead due to larger
predictor orders. On one hand, larger orders can capture the dynamics of a richer class of
signals. On the other hand, larger orders also require proportionally larger data sets for
the parameters to be accurately estimated and transmitted.

Obviously, determination of LP filter order is to find an order which minimizes the
variance of zero-mean residual sequence, i.e.,

σ2
e(p) =

1

N − p− 1

N−1∑
k=p

e2[k] . (3.2.32)

Simply, we might find an optimal LP filter order by incrementing p from p = 1 until the
residual variance σ2

e(p) reaches a minimum. Another method, called the Akaike informa-
tion criteria (AIC) [33], involves minimizing the following function

AIC(p) = N ln σ2
e(p) + 2p , (3.2.33)

where 2p serves to penalize for unnecessarily high predictor orders. The AIC, however,
has been shown to be statistically inconsistent, so the minimum description length (MDL)
criterion has been formed [34] [35],

MDL(p) = N ln σ2
e(p) + p lnN , (3.2.34)

which implies to minimize the number of bits that would be required to describe the
data. A method proposed by Tan [36] involves determining the optimal number of bits
necessary to code each residual,

B(p) = 2−1 log2 σ
2
e(p) . (3.2.35)

In this case, p is increased until the following criterion is no longer true,

(N − p)∆B(p) > ∆β(p) , (3.2.36)

where ∆B(p) = −[B(p) − B(p − 1)] and ∆β(p) denotes the increase in overhead
bits for each successive p. There are several other methods of order determination that
are often used in practice include the Bayes information criterion (BIC) [37], which is
equivalent to the MDL in many settings and the predictive least-squares (PLS) principle
for sequential coding [38] [39].
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3.2.5 Linear predictive coding (LPC)

Linear predictive coding(LPC) is an application of linear prediction modeling to signal
encoding. LPC was first proposed for speech coding applications to make an accurate and
economical representation of relevant speech parameters that capture information about
the configuration of the vocal tract. The encoding process involves computation of filter
coefficients ak and the prediction error signal e[n]. The residual e[n] and coefficients ak
are then quantized and transmitted to the decoder. In the decoder side, the original signal
is reproduced using

X(z) =
E(z)

1 −
∑p

k=1 akz
−k =

E(z)

A(z)
. (3.2.37)

The quantization of the residual, or excitation for the synthesis filter, can be based on
either scalar quantization or vector quantization. The quantization error eq[n] = e[n] −
Q(e[n]) is typically a nearly white noise process. Since 1/A(z) is a linear filter, its output
for E(z) +Eq(z) can be expressed as a sum of a clean signal X(z) and an additive noise
signal Xq(z), that is,

X(z) +Xq(z) =
E(z)

A(z)
+
Ep(z)

A(z)
, (3.2.38)

Equation (3.2.38) states that the coding error signal in prediction error coding has the
z-transform, Xq(z), characterized by the estimated allpole model 1/A(z). We have then
a closed-loop encoder by reformulating (2.25) to

E(z) = X(z)A(z) −Eq(z)P (z) , (3.2.39)

where P (z) = 1 −
∑p

k=1 γ
kakz

−k with 0 < γ < 1. If γ = 1, Xp(z) = Eq(z), that is,
coding error is approximately white noise. Other choices for P (z) can be used to shape
the spectrum of the coding error signal [40].

3.2.6 Polynomial LPC

With smooth signals, piecewise polynomial signal model can be employed. Filters with
polynomial responses arise e.g. in unbiased extrapolation of polynomial signals with
maximal noise attenuation. The goal of polynomial prediction filter design is to design
such FIR coefficients h(k), k = 1, 2, . . . , p, where p is FIR length, that a piecewise poly-
nomial input signal is exactly predicted. Thereafter, noise gain of the FIR is minimized.

NG =

p∑
k=1

h(k)2 (3.2.40)
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With the last input sample taken at time n − p, prediction of an input signal x[n] is
generally given by

x[n + i] =

p∑
k=1

h[k] x[n− k] . (3.2.41)

A polynomial with order p can be found that passes through the previous p data points
x[n−1], x[n−2], . . . , x[n−p]. This polynomial can be evaluated at the nth sample time in
a restrictive form of the linear predictor to obtain the predicted value x̂[n]. In this respect,
a simple adaptive prediction method using only integer coefficients was first proposed for
lossless audio compression in Shorten [41]. For example, we can obtain the

x̂0[n] = 0 (3.2.42a)

x̂1[n] = x[n− 1] (3.2.42b)

x̂2[n] = 2x[n− 1] − x[n− 2] (3.2.42c)

x̂3[n] = 3x[n− 1] − 3x[n− 2] + x[n− 3] (3.2.42d)

These polynomials and the predicted values that they produce are illustrated in Fig. 3.2.3
for typical set of previous samples.
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Figure 3.2.3: Four polynomial approximations of x[n].(After [1])
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50 3.3 Nonstationary Signal Modeling

An interesting property of these polynomial approximations is that the resulting resid-
ual signals, ep[n] = x[n]− x̂p[n], can be efficiently computed without any multiplications
in the following recursive manner:

e0[n] = x[n] (3.2.43a)

e1[n] = e0[n] − e0[n− 1]

= x[n] − x[n− 1] (3.2.43b)

e2[n] = e1[n] − e1[n− 1]

= (x[n] − x[n− 1]) − (x[n− 1] − x[n− 2])

= x[n] − (2x[n− 1] − x[n− 2]) (3.2.43c)

e3[n] = e2[n] − e2[n− 1]

= (x[n] − 2x[n− 1] + x[n− 2])

− (x[n− 1] − 2x[n− 2] + x[n− 3])

= x[n] − (3x[n− 1] − 3x[n− 2] + x[n− 3]) (3.2.43d)

The equations (3.2.43) mean also that the sum of absolute values is linearly related to the
variance. This may be used as the basis of predictor selection. In our experiment (Section
3.6), the four prediction residuals are computed at every sample in the frame, and the
absolute values of these residuals are averaged over the complete frame. The residual
with the smallest sum of magnitudes over all samples in the frame is then defined as
the best approximation for that frame, and that predictor is used for that frame. The
information on which predictor was used can be coded with two bits of information, and
that becomes part of the overhead information for the frame.

3.3 Nonstationary Signal Modeling

The techniques and concepts discussed in previous sections are all based on an as-
sumption about stationarity of the input signal. In practical LPC algorithms, the filter
coefficients are time-varying, i.e., parameters of a nonstationary signal model. Cremer
[42] showed that Wold decomposition principle applies also to nonstationary signal
models. It is possible to formulate an orthogonality condition of Eq. (3.1.12) for
this signal model. However, there is no unique solution for the optimal time-varying
coefficients ak[n]. The coefficient evolutions must be restricted somehow in order to find
one of the least-square optimal solutions to the coefficients. It is usually assumed that the
signal is locally stationary [29], or the coefficients are smoothly time-varying [43]. These
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are conceptually two different approaches. The local stationarity assumption is used
in conventional frame-based and continuously adaptive techniques. Smooth coefficient
evolution is assumed in smoothness priors techniques [44], and in techniques where the
coefficient evolutions are restricted to a class of functions which can be expressed as
linear combinations of predefined basis functions [45]. The latter approach is sometimes
called deterministic regression approach of time-varying autoregressive modeling.

3.3.1 General approaches

Frame-based filter design

The basic technique to obtain a nonstationary signal model is to perform linear predictive
analysis in frames such that the signal is assumed to be stationary within each analysis
frame. In a long time scale, this means that the signal model for linear predictive coding
is actually given by

x[n] =

p∑
k=1

ak[n]x[n− k] + e[n] = x̂[n] + e[n] , (3.3.1)

where filter coefficients ak[n] are now also functions of time n.
Audio and speech coding algorithms usually process the input signal in frames. For

example, in LP-based speech coders, the frame-length is typically 10-20 ms. The frames
are usually overlapping and, in the case of the autocorrelation method, some window
function is applied to each signal frame before analysis. The filter coefficients corre-
sponding to each frame are coded and transmitted along with excitation data. A direct
application of this procedure would produce discontinuities to the coefficient trajectories
in frame borders, which may produce unwanted artifacts. It is a common practice to inter-
polate filter coefficients smoothly from one frame to another. Therefore, the signal model
which is considered in these algorithms is essentially given by (3.3.1) even if the spectral
model is estimated in locally stationary frames.

It is possible to increase the amount of overlapping in the analysis so that the
coefficients are estimated more frequently. An extreme example is a sliding window
formulation of linear predictive modeling where coefficients are solved at each time
instant. However, this is computationally expensive and leads to an increased number
of filter coefficients to be transmitted. Barnwell [46] has introduced a computationally
efficient method for computation of adaptive autocorrelation. In this method, the
correlation terms in (3.2.14) are computed recursively using a leaky integrator. This is a
version of the autocorrelation method of linear prediction where the window function is
actually defined as an impulse response of a low-order IIR filter.

CHAPTER 3. PREDICTIVE MODELING 51



52 3.3.2 Normalized least mean square algorithm

Deterministic regression time-varying LPC

It was proposed by Subba Rao [45] that the time-varying coefficient evolutions ak[n]
could be expressed by

ak[n] =

M∑
l=0

cklφl[n] , (3.3.2)

where φl[n] are a set of M predefined basis functions. For this system it is possi-
ble to formulate normal equations where the least squares optimal coefficients ck
can be solved directly. Typically, basis functions are some elementary mathematical
functions such as the Fourier basis, Gaussian pulses, or prolate spheroidal sequences [47].

Adaptive filtering

While the method of frame-based linear prediction is effective, it suffers from the prob-
lem of finding a solution to the Yule-Walker equations, which becomes increasingly com-
putationally expensive with large block sizes. Stochastic gradient methods for adaptive
filtering also follow from a local formulation of the prediction problem. Here, the coef-
ficients are not solved directly for a long signal frame but adjusted iteratively such that
the filter coefficients converge towards optimal values. In this sense, these techniques are
time-recursive. A classical example is least mean square (LSM) algorithm in which the
coefficients of a direct form filter are adjusted using a simple gradient rule.

A backward adaptive formulation of linear predictive coding was introduced in [48]
which is closely related to backward adaptive quantization methods presented in [49].
Here, the spectral model is not formed from the original input signal but from the already
coded and transmitted signal. Since the same model can be computed at the decoder and
the spectral model is completely estimated from the signal already transmitted, there
is no need to code and transmit filter coefficients. Several different adaptive filtering
techniques were compared in [50]. In next section we briefly describe two adaptive
filtering methods.

3.3.2 Normalized least mean square algorithm

Adaptive FIR filters using normalized least mean square (NLMS) have been proposed
and used successfully [51] [52]. From (3.3.1) the signal x[n] and the time-varying filter
coefficients a[n] can be represented by the column vector, i.e., x[n] = (x[n−1], · · · , x[n−
N ])t and a[n] = (a0[n], · · · , aN−1[n])t. Then a time-varying prediction error is given by

e[n] = x[n] − aTx[n] , (3.3.3)
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If two fixed parameters, a smoothing parameter β and a convergence parameter u, are
specified, then a[n] can be computed iteratively as following

a[n+ 1] = b[n] + µ[n]e[n]x[n] , (3.3.4)

where

µ[n] =
u

σ2
N [n]

(3.3.5)

σ2
N [n] = βσ2

N [n− 1] + (1 − β)(e2[n− 1]) . (3.3.6)

Original signal can be exactly reconstructed by using the inverse of the algorithm

x[n] = e[n] + btx[n] . (3.3.7)

Eq. (3.3.7) shows that only a[0], x[0], and e[n] are needed to reconstruct the original
signal x[n]. This means that it is not necessary to transmit the coefficients a[n] and
therefore to segment the signal in blocks. This algorithm requires less overhead than the
standard LP method, but the coefficients should be updated very frequently.

3.3.3 Gradient adaptive lattice filter

In the gradient adaptive lattice (GAL) [53][54], the coefficients km are updated using the
approximation of the error energy of the mth order predictor, i.e.,

km[n+ 1] = km[n] − µm
∂Êm(n)

∂km[n]
, (3.3.8)

where µm are gradient weights and

Êm(n) = e2m[n] + b2m[n] . (3.3.9)

Applying the recursions after (3.2.29) (3.2.30c) for the current time index n leads to

∂Êm(n)

∂km[n]
= −2

[
em[n]bm−1[n− 1] + bm[n]em−1[n]

]
. (3.3.10)

From (3.3.8) and (3.3.10) we obtain a sample-by-sample update for the PACOR coeffi-
cients.

The gradient weights µm can be obtained by

2µm =
α

Dm(n)
, (3.3.11)
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where Dm(n) is the expectation value of the sum of the forward and backward prediction
error energies, i.e.,

Dm(n) = λDm(n− 1) + (1− λ)
(
e2m−1[n] + b2m−1[n− 1]

)
, with 0 < λ < 1 , (3.3.12)

and the constant value α is normally chosen to α = 1 − λ.
Due to the cascaded structure of a lattice filter, the GAL algorithm is both time-

recursive and order-recursive. In practice, GAL algorithm is significantly faster in
convergence than the conventional LMS algorithm. In adaptive filtering techniques, the
gradient update rule can also be interpreted as a method to produce a recursive window
function for linear predictive analysis.

3.4 Modified Linear Prediction Filter

As showed in previous sections, in traditional one-step forward linear prediction an
estimate for the current sample value is formed as a linear combination of previous
sample values, and the filter is assumed to be a conventional allpole filter. There are
infinitely many alternative ways to form a linear combination of signal history and use it
to predict the next signal value. The selection for sampling of signal history is not based
on any mathematical necessity. An example of a modified formulation of the prediction
principle which has been used in speech and audio application is frequency-warped linear
prediction [55] [56] [57] [58] [59]. Warped linear predictive coding is an alternative for
conventional LPC in speech and audio coding applications, especially for the perceptual
audio coding system.

3.4.1 Generalized form of linear prediction filter

Recall that the classical linear prediction for a sample value x[n] is given by

x̂[n] =

p∑
k=1

ax x[n− k] . (3.4.1)

The z-transform of (3.4.1) is

X̂(z) =

[
p∑

k=1

akz
−k

]
X(z) . (3.4.2)
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This scheme can be generalized by replacing the unit delay z−k with allpass filter Dk(z)
to obtain

X̂(z) =

[
p∑

k=1

akD
k(z)

]
X(z) . (3.4.3)

In time domain one may write

x̂[n] =

p∑
k=1

axdk
[
x[n]

]
, (3.4.4)

where dk
[
x[n]

]
= x[n− k]. The mean square error of the estimate can now be written as

MSE = E


∣∣∣∣∣x[n] −

p∑
k=1

akdk
[
x[n]

]∣∣∣∣∣
2
 , (3.4.5)

where E{·} is expectation. A conventional minimization procedure leads to a system of
normal equations

E
{
dj
[
x[n]

]
d0

[
x[n]

]}
∼

p∑
k=1

ak E
{
dk
[
x[n]

]
dj
[
x[n]

]}
= 0 (3.4.6)

with j = 0, . . . , p−1. Because D(z)−1 = D(z)−1 for an allpass filter, Parceval’s theorem
can be applied so that

E
{
dj+l

[
x[n]

]
dk+l

[
x[n]

]}
∼

∞∑
n=−∞

dj+l
[
x[n]

]
dk+l

[
x[n]

]
(3.4.7)

=
1

i2π

∮
C

D(z)j+lX(z)D(z−1)k+lX(z−1)
dz

z

=
1

i2π

∮
C

D(z)j+l−k−lX(z)X(z−1)
dz

z

=
∞∑

n=−∞
dj
[
x[n]

]
dk

[
x[n]

]
∼ E

{
dj
[
x[n]

]
dk
[
x[n]

]}
,

where k, j and l are any integers and ∼ indicates that the normalization of the expectation
is omitted to simplify notation. The equation (3.4.7) states that the same correlation
values appear in both terms of the left-hand side of (3.4.6). Therefore, (3.4.6) can be
seen as a generalized form of the Wiener-Hopf equations, and the optimal coefficients
ak can be obtained by using, for example, the Levinson-Durbin algorithm just like in the
conventional autocorrelation method of linear prediction.
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3.4.2 Warped linear prediction (WLP)

A set of orthogonal polynomial functions are given by [60]

D(z)k =

√
1 − |λk|2

1 − λkz−1

k∏
p=1

z−1 − λp
1 − λpz−1

. (3.4.8)

In equation (3.4.8), if λk = λp = 0 (∀k, p), this reduces to a traditional FIR filter, and if
λk = λp (∀k, p), this is the Laguerre model [61] which is a long tradition in the theory of
signal processing. A simplified version of (3.4.8) given by

D(z)k =
k∏
p=1

z−1 − λp
1 − λpz−1

(3.4.9)

is called a frequency-warped filter, and the corresponding modified LPC scheme is called
warped linear predictive coding (WLPC). From (3.4.7), the filter coefficients can be com-
puted by the autocorrelation method of LP. In Fourier domain the equation (3.4.8) can be
written as

D(e−iω) =

k∏
p=1

e
−ip

(
ω+2arctan( λ sin(ω)

1−λ cos(ω)
)
)

(3.4.10)

=

k∏
p=1

e−ipν(ω) ,

where ν(·) is the frequency warping function. Therefore the spectral mapping is deter-
mined by the phase function of D(z)k which can be controlled by the value of λ.

The transfer function of a warped linear predictor is then given by

A(z) = 1 −
p∑
k=1

akD(z)k , (3.4.11)

where D(z) is an allpass filter

D(z) =
z−1 − λ

1 − λz−1
. (3.4.12)

The current sample is estimated from samples of the frequency warped signal [56], which
is formed by the outputs of the allpass filter chain. Figure 3.4.1(a) gives the structure of
an WLP synthesis filter with order 2.
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Figure 3.4.1: (a) WLP synthesis filter, (b) realizable WLP synthesis filter.

Note that this has a delay-free branch and is therefore not realizable in a practical
implementation without modification. A possible modification is given Fig. 3.4.1(b) [58].
The coefficients g0 and b1, . . . , bp+1 can be calculated by using the following equations:

g0 =
1

1 +
∑p

k=1 ak(−λ)k
(3.4.13a)

b1 =

p∑
k=1

ak(−λ)k (3.4.13b)

bk =

p∑
k=l

ak(−λ)k−l −
p∑

k=l−1

ak(−λ)k−l+2 (3.4.13c)

with l = 1, . . . , p+ 1

A warped FIR lattice filter may be derived directly by replacing the unit delays
of the conventional lattice structure with first-order allpass elements. This leads to the
structure shown in Figure 3.4.2. The reflection coefficient of the warped structure can be
computed from the estimated coefficients of a warped direct-form filter as in the case of
a conventional filter [62].
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Figure 3.4.2: A warped FIR lattice filter structure

Since WLP performs linear prediction in the warped frequency domain, the resulting
auto-regressive process has different resolutions in modeling the spectral peaks at
different frequencies. The frequency resolution of a WLP model is controlled by the
allpass coefficient λ. This is advantageous in speech and audio signal processing because
the frequency resolution in the spectral estimate is relatively close to the frequency
resolution of human hearing [63]. The performance of conventional and warped LPC
algorithms is compared in a simulated coding system using listening tests and bit rate
[59].

3.5 Context-based Modeling

Statistical modeling of the source being compressed plays a central role in any data com-
pression systems. Given a finite source sequence with length N , x1, x2, . . . , xN , the opti-
mal code length of the sequence in bits is

Hopt = − log2

N∏
n=1

p(xn|xn−1) (3.5.1)

where xn−1 denotes the sequence xn−1, xn−2, . . . , x1. The key issue in context model-
ing for compression of the signal xN is to estimate p(xn|Xn−1), where Xn−1 denotes a
subset of the available past sequence xn−1 (causal template), with the assumption that
the random process producing xN is Markovian. The probability of the current symbol
is conditioned by the set of past observations X n−1 in the form of the conditional prob-
ability mass function (pmf), p̂(xn|Xn−1), that serves as a statistical model of the source.
In classical universal context tree modeling [64] [65], for example, the different contexts
of {Xn−1} are grouped in a context tree, having as nodes as possible values of {Xn−K},
up to a depth level dictated by the affordable memory resources. The tree is grown as the
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message is encoded, according to the contexts seen so far. Histogram tracking is used for
modeling the pmf to each node. The context algorithm can also be used for prediction, by
predicting x̂n = arg maxx p(xn|Xn−1).

The algorithm is optimal in encoding Markovian sources, but becomes extremely
complex for large size alphabets, such as the audio signal sampled at 16 bits/sample
or higher. In the case of large size alphabets, the Markov finite state machine (FSM)
becomes extremely large,6 incurring two major problems; the estimating of the condi-
tional probabilities for each context,7 and the excessive memory requirement to store
the large number of all possible states (contexts). As a result, the context model can not
learn the source statistics fast enough to estimate accurately the conditional probability
distribution, leading to the so called “context dilution” [66]. Hence, the main challenge
in audio compression applications is to find a compromise between the context size
and compression performance and to mimic the main principles of context algorithm
for sources with large size of the alphabet. Several different approaches to the reduced
context size are proposed such as context quantization [67], histogram bucketing [68]
[69], or context tree modeling [64].

3.5.1 Design of statistical prediction filter

An adaptive context algorithm for prediction modeling is proposed [70], using the com-
bination of L-predictor [71] and the FSM context modeler. The L-predictor is defined as
a linear combination of the order statistics

x̂n =

K∑
k=1

bkXk , (3.5.2)

where Xk denote the k-th order statistics in the set {X1, ..., XK}. The conditional infor-
mation Xn−1 = [X1, . . . , XK ] is obtained by ordering the xn−1 increasingly. This means
that the prediction is itself the main feature extracted from the contextual information.
The prediction error in this case is defined as

en = xn − x̂(n|X1, X2, . . . , XK) . (3.5.3)

For the given alphabet interval [0,M−1], (3.5.2) can be parameterized by settingX0 = 0
and XK+1 = M − 1;

x̂n = a0 +

K+1∑
k=1

ak(Xk −Xk−1) . (3.5.4)

6e.g., given a sample value with Z bits resolution, there are 2ZK different contexts.
7because even a very large signal does not provide sufficient samples to reach good estimates
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This reparameterization in (3.5.4) has several advantages [70]; the flexibility of the pre-
diction model, for example, that allows us to have a predictor with adapted properties at
each different contexts. By selecting the parameters of the model at time n, (3.5.4) can
be written as

x̂n = x̂(n|wn) = a0(wn) +

K+1∑
k=1

ak(wn)(Xk −Xk−1) , (3.5.5)

where wn denotes the suitable functions of the context at that time.
In [72], for example, two contexts are selected by context tree modeling and Hasse

diagram. With these contexts the prediction value of current sample is computed us-
ing the adaptive linear prediction model similar to (3.5.5). First the contextual infor-
mation is selected by a context mask containing the most recent Nc samples xn−1 =
[xn−1, . . . , xn−Nc ] and most recent Ne prediction errors en−1 = [en−1, . . . , en−Ne ], that is,
the prediction errors from (3.5.3) are also used as part of the contexts. A recursive least
squares (RLS) algorithm with forgetting factor w is used to perform the adaptive linear
prediction;

x̂n =

p∑
k=1

w
S

(n−1)
m

(k) xn−k , (3.5.6)

where Sm ∈ {1, . . . , Nm} is the main context, obtained by using a tree classification
procedure Sn−1

m = T (xn−1, en−1). A secondary context Ss ∈ {0, . . . , Ns− 1} is obtained
by use of a Hasse diagram selection Sn−1

s = H(xn−1). The Hasse cube forms the state
transition diagram of the finite state machine. Using the main and secondary contexts, the
Eq. (3.5.6) can be extended with the intercept ρ,

x̂n = ρSn−1
m ,Sn−1

s
+

p∑
k=1

wSn−1
m

(k) xn−k , (3.5.7)

where the intercept depends both on main and secondary contexts, while the parameters
wSn−1

m
(k) depend only on the main context.

3.5.2 Context-based error modeling

To achieve high compression ratio by entropy coding, e.g., by arithmetic or Golomb-Rice
coding, the residual signal consisting of prediction errors should be similar to stationary
white noise as much as possible. As a matter of fact, however, the residual signal has
ample redundancy and especially is still nonstationary. The better the prediction, how-
ever, the more noise like prediction errors will be. An improvement of coding rate can be
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obtained by applying the context algorithm to make use of the dependency between the
residuals. It is showed in [64] [73] that the context algorithm in conjunction with arith-
metic or Huffman coding provides to produce good results in lossless image and audio
compression.

In image compression, context algorithm for modeling of the prediction errors or
the transform coefficients is highly studied in order to condition the distribution of the
prediction errors [74] [75] [73]. In these cases, the prediction errors are arranged into
a predefined number of statistically homogeneous classes based on their spatial context,
i.e., prediction-based context modeling. If such classes are statistically discriminated,
then the zeroth-order entropy of a context-conditioned model of prediction errors will be
lower than that derived from a stationary memoryless model of the decorrelated source.

The cost of context modeling is proportional to the number of the parameters in the
statistical model and could then offset the entropy savings. It means also that a direct
implementation of the classical universal context algorithm to the high quality audio,
such as DVD audio sampled by 96 kHz at 20 or 24 bits/sample, does not provide a good
solution. Although the universal algorithms are proven to be asymptotically optimal for
stationary sources, the complexity of their underlying models will add an extra term to
the best achievable coding rate. Hence a key objective in a context modeling scheme
for high quality audio compression is to reduce the number of parameters defining the
coding distribution at each context and the number of contexts.

3.6 Experimental Comparison of Prediction Filters

A block diagram of the lossless predictive coding system for experimentation is shown
in 3.6.18. The linear prediction filters with different structures, i.e., FIR, IIR, lattice,
and polynomial approximation (PAP) are tested with various block lengths and different
filter orders. In addition, an efficient context-based error modeling (FIR-CM) is also
experimented in conjunction with FIR linear predictor and Golomb-Rice coding. The
audio materials used in the experiments are 9 files in CD-format, i.e., 44.1 kHz, Stereo,
16 bits, described in Section 2.5. There is provision to take advantage of dependency
between the two stereo channels, but this does not provide a significant improvement
except for the mono recorded test material Nr. 3 (female speech).

8This compression scheme is also used as a prototype system for all experiments in the thesis. In most
cases, the decorrelation stage is replaced by each filter discussed in next chapters.
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Figure 3.6.1: Block diagram of lossless audio coding system for the experiments.

3.6.1 Description of compression system

Segmentation

The input audio signal is divided into the blocks (frames), and each block is treated
separately during the coding operation. A simple rectangular windowing is used for
the segmentation without overlapping between frames and padding operation. We
experimented the compression system with various block lengths being a power of two,
2N , with N between 8 to 12, i.e., 256, 512, 1024, 2048, and 4096 samples.

Prediction filters

Four types of the linear prediction filters, i.e., FIR (Fig. 3.2.1.a), IIR (Fig. 3.2.1.b), lattice
(Fig. 3.2.2), and polynomial approximation predictor (PAP) with order p ≤ 4 using Eq.
(3.2.42), are tested to compare the efficiencies of the filters. Except for PAP, all filters
are tested by the prediction order up to 10. The coefficients for FIR, IIR, and lattice filter
are found using the standard Levinson-Durbin’s recursion algorithm (3.2.16). First the
autocorrelation coefficients of each block are computed and converted to prediction filter
coefficients by using Levinson-Durbin algorithm.
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Residual modeling and entropy coding

For entropy coding, we use Golomb-Rice code with fixed parameter k (see Section 2.2.3),
since Golomb-Rice code is optimized for a block of signals having a Laplacian probabil-
ity density (double-sided exponential distribution), which is found to be a good approxi-
mation for the distribution of the prediction residual samples resulted from the decorrela-
tion operations. The estimation of optimal parameter k is linearly related to the variance
of the signal. The Laplacian distribution is defined by

p (x) =
1√
2σ

e
−√

2
σ

|x| , (3.6.1)

where σ2 is the variance of the distribution. An expectation of the absolute value of x can
be given as following

E(|x|) =

∫ ∞

−∞
|x| p(x) dx (3.6.2)

=

∫ ∞

0

x

√
2

σ
e

−√
2

σ
x dx (3.6.3)

=

∫ ∞

0

e
−√

2
σ

x dx −
[
x e

−√
2

σ
x
]∞

0
(3.6.4)

=
σ√
2
. (3.6.5)

Since the optimal parameter k means that half the samples lie in the range ±2k, the
code word length of integer n is optimal when k + 1 bits are for probability 0.5 and
k + n + 1 bits for probability 2−(k+n). It leads to that

1

2
=

∫ 2k

−2k

p(x) dx (3.6.6)

=

∫ 2k

−2k

1√
2σ

e
−√

2
σ |x| dx (3.6.7)

= −e−√
2

σ
2k

+ 1 . (3.6.8)

Therefore, the expectation function for the parameter k is given by

k = log2

(
loge(2)

σ√
2

)
(3.6.9)

= log2

(
loge(2)E(|x|)

)
. (3.6.10)

In PAP implementation k is obtained using the Eq. (3.6.10). For the other schemes
with FIR, IIR, and Lattice predictor, the expectation of residual samples E(|e[n]|) is
derived from σ, which is computed for the calculation of predictor coefficients.
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Context-based error modeling (FIR-CM)

It is common that the residual signal has still redundancy even after the decorrelation by
prediction. In FIR-CM scheme, a context algorithm for error modeling is embedded into
the standard FIR prediction scheme in order to make use of the dependency between the
residuals.

We used the similar context selection algorithm proposed in [72]. After the context
indexing, the error remapping algorithm used in LOCO-I [73] is performed to improve the
Golomb-Rice coding performance. The error signal e[n] is remapped to positive integer
using the revertible remapping;

e′ =

{
2e if e ≥ 0 ,

2|e| − 1 otherwise .
(3.6.11)

3.6.2 Test results and discussion

Table 3.1 shows the test results for comparison of different prediction filters. As showed
in the test results, IIR prediction filter with large block length and higher prediction order
has superior compression result for nearly all kind of audio samples over other prediction
filters. Especially for the music samples with high treble energy and wide dynamic range
(e.g., Nr. 6, 7, 8), IIR prediction scheme provides an acceptably stable compression ra-
tio. It was clearly proven in our experiment that IIR prediction filter has more potential
for improving the compression rate than FIR prediction filter, as discussed in [15]. As
expected from its simple integer algorithm, PAP has lowest complexity with relative effi-
cient compression performance. Using context-based error modeling, FIR-CM improved
the compression rate 2-6% compared with that of FIR. In fact, this result of FIR-CM is
less than we expected. Using all nodes in the Hasse diagram instead of middle layer nodes
could have the potential of more improving the compression rate with several percents,
but unfortunately with the cost of a twofold will increase in the overall complexity of the
algorithm.

The choice of block length is an important consideration in implementation of most
LP filter systems. In general, a longer block length may require an unreasonably high
amount of computation and reduce the editibility. As showed in the results, for the non-
stationary signal with highly localized statistical behavior like the speech (in our case
Material Nr. 3) the block length should be small enough. Figure 3.6.2 shows the com-
pression ratio with respect to the different block legnths. In our experiment, the efficient
block length was between 2048 and 4096 samples for all LP filters.
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Materials PAP1 FIR IIR Lattice FIR-CM Gzip

Nr. 1 7.56 7.46 7.23 7.59 7.59 12.05
violin, solo (4096,3)2 (4096,3) (4096,10) (4096,3) (2048,9)

Nr. 2 5.76 6.12 5.77 5.86 6.11 11.04
flute, solo (4096,3) (4096,2) (4096,10) (4096,3) (2048,2)

Nr. 3 6.02 6.06 5.96 6.26 5.92 8.62
speech, fem. (256,2) (1024,5) (1024,9) (512,2) (1024,4)

Nr. 4 4.23 4.51 4.13 4.45 4.39 10.43
piano, solo (1024,3) (4096,2) (4096,5) (4096,3) (2048,2)

Nr. 5 5.73 6.07 5.92 5.90 5.79 12.79
classic, orch. (1024,3) (2048,3) (4096,4) (4096,3) (2048,4)

Nr. 6 7.13 7.05 6.87 7.21 6.93 11.76
pop, abba (512,2) (2048,5) (2048,7) (1024,2) (2048,3)

Nr. 7 6.38 6.35 6.28 6.57 6.37 9.65
country (4096,1) (1024,5) (1024,4) (1024,1) (1024,3)

Nr. 8 12.16 11.40 11.31 12.23 11.49 14.86
rock, metal (512,2) (2048,10) (4096,10) (4096,2) (2048,9)

Nr. 9 7.64 7.89 7.73 7.80 7.57 13.93
jazz, soft (512,2) (4096,2) (4096,10) (2048,2) (2048,2)

6.96 6.99 6.80 7.10 6.91 11.68Average
(1792,2.3) (2731,4.1) (3186,7.7) (2786,2.3) (1820,4.2)

1 prediction order p ≤ 4, for the other filters p ≤ 10
2 (block length, prediction order)

Table 3.1: Test results with compression rates (bits/sample)

The order of the prediction filter is also set as a tradeoff. For large predictor orders,
the number of bits necessary to send the side information will be large, but the quality
of the prediction will be better, and therefore the residuals will be encoded with a small
number of bits. For small predictor orders, the side information will be encoded using
a small number of bits, but encoding of residuals will require a large amount of bits.
However, there are reasons for keeping the filter order as low as possible. It is not just
a matter of decoder and encoder complexity, as the coefficients of the filter have to be
transmitted periodically, possibly with initialization data for the associated state variables,
and the overheads of transmitting the side information can be significant and increase with
filter order. Figure 3.6.3 shows the compression rate with respect to the prediction orders.
Compared with the case of the block length in Figure 3.6.2, the efficient order of the
prediction filter varies with the characteristics of each prediction filter. In our experiment,
predictor order of 6 to 10 provided the best results from IIR filter, and 2 to 4 from the
others.
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Figure 3.6.2: Comparison between block length and averaged compression ratios of
all test materials
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Figure 3.6.3: Comparison between prediction order and averaged compression rate of
all test materials
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Chapter 4

Filter Bank and Subband Transform

Subband transform is one of widely used signal decomposition techniques for data com-
pression. In the subband transform the source spectrum is bandpass filtered and subsam-
pled to obtain a time-frequency decomposition. Although the technique introduces delay
into the system, this drawback is offset by the coding gains obtained from processing
subband data rather than the fullband data. These observed gains have led to extensive
use of subband decomposition for compression of video, image, audio and speech signal.
Since the construction of the wavelet bases is equivalent to designing two-channel filter
banks, the subband transform with octave band decomposition is also often referred to as
discrete wavelet transform (DWT).

In this chapter we first review two well-known coding methods, Laplacian pyramid
and subband coding scheme, and then describe the design methods of multirate filter
banks. The efficiency of prediction from subbands and from fullband is formally com-
pared and empirically investigated by designing the hybrid audio compression system.

4.1 Subband Coding Algorithms

4.1.1 The Laplacian pyramid

One of the first methods for hierarchical decomposition is formally proposed, especially
for image coding, by Burt and Adelson [76]. They used a pyramid cascade of small
Gaussian-like filters to create an overcomplete subband representation which they
called a Laplacian pyramid. A signal will be decomposed in two pyramids. First, a
coarse approximation of the original signal is divided using lowpass filtering with a
halfband lowpass filter and subsampling by two (drop every other sample). Based on
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68 4.1.1 The Laplacian pyramid

this coarse approximation, the original signal is predicted using upsampling the coarse
approximation and convolving with an interpolation filter and a prediction error is cal-
culated. This prediction error represents the detail features that are missing in the coarse
approximation. Note that the subsampling by two is equivalent to doubling the scale
in the wavelet analysis. A schematic diagram of the one level pyramid decomposition
is illustrated in Figure 4.1.1. The scheme can be iterated on y[n] in order to create a
hierarchy of lower resolution signals at lower scales. In the result, signals become shorter
and shorter, therefore such schemes are called signal pyramid. Typically, the analysis
filters and synthesis filters in the iterated full pyramid scheme are set to some common,
compact lowpass filter, although better coding results are obtained by choosing the two
filters independently.

2
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x [n] x [n]
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d[n]
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Figure 4.1.1: Construction of one level Laplacian pyramid decomposition: A full pyra-
mid is recursively built by non-uniformly cascading this system to the lowpass sub-
band.

Given an original sequence x[n]n∈Z, the coarse approximation y[n] is given by

y[n] =
∑
k

h[k] x[2n− k] , (4.1.1)

where h[n] is impulse response of lowpass filter. To find an approximation a[n], y[n] is
upsampled by two, that is, inserting a zero between every sample, since we need a signal
at the original scale for comparison. Then, the upsampled sequence v[n] that has same
length with original sequence x[n] is interpolated with filter h̃[n].

v[2n] = y[n], v[2n+ 1] = 0 : upsampling, (4.1.2)

a[n] =
∑
k

h̃[k] v[n− k] : interpolation, (4.1.3)

d[n] = x[n] − a[n] : prediction error. (4.1.4)
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It is obvious that x[n] can be simply reconstructed by adding d[n] and a[n]. This
reconstruction is exact, regardless of the choice of the filters h[n] and h̃[n]. In the case
of perfect halfband lowpass filter, d[n] contains exactly the frequencies above π/2 of
x[n], and thus d[n] can be subsampled by two as well without loss of information. This
hints at the fact that critically sampled schemes must exist. It will be convenient to use
z-transform of filters, i.e. H(z) =

∑
n∈Z

h[n] z−n. (4.1.1) can be then written as follows,

Y (z) = 1
2
[H(z)X(z) +H(−z)X(−z)︸ ︷︷ ︸

aliasing term

] . (4.1.5)

The prediction error is

D(z) = X(z) − 1
2
H̃(z)[H(z)X(z) +H(−z)X(−z)] , (4.1.6)

and the input-output relation is

X̂(z) = H̃(z)Y (z) +D(z)

= 1
2
H̃(z)[H(z)X(z) +H(−z)X(−z)]

+X(z) − 1
2
H̃(z)[H(z)X(z) +H(−z)X(−z)] (4.1.7)

= X(z) .

Formula (4.1.7) shows that the aliasing term can be eliminated so that the input is a
delayed copy of the output, only if

H̃(z)H(−z) = 0 (4.1.8)

is satisfied for all frequency range. It means that the synthesis filters should be time-
inverted version of the analysis filters. However, in practice, it is impossible to realize
such a lowpass filter that satisfies this orthogonality condition. Most filter designs for
pyramid decomposition attempt to minimize the aliasing resulting from the subsampling
process in the pyramid schemes. An ideal subband system incorporates “brick-wall”
bandpass filters which avoid the aliasing in process. Such filters, however, produce the
ringing effect (Gibbs phenomenon) in the spatial domain which is perceptually undesir-
able.

In addition to suitability for data compression of the pyramid decomposition, the
Laplacian pyramid code formed as multi-scale data construction is particularly useful
for the progressive transmission. The progressive transmission can be achieved by send-
ing the pyramid codes in order from lowest to highest resolution. At the receiving end,
in result, an initial signal reconstructed from the code of lowest resolution becomes grad-
ually a finer signal by adding the rest of codes with higher resolution. This progression
allows also the receiver to choose the quality level of the signal.
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70 4.1.2 Subband coding scheme

The Laplacian pyramid has certain disadvantages, especially for lossless compression.
The quantization errors from highpass subbands do not remain in these subbands. Instead,
they appear in the reconstructed signal as broadband noise. Furthermore, as a result of the
non-orthogonality of the pyramid scheme, the number of samples representing the signal
is increased by a factor of 2 in one dimension and by a factor of 3

4
in two dimensions. This

is due to the correlation between the detail signals at different resolution. This correlation
can be suppressed with the multiresolution analysis (MRA) described in section 5.6. In
MRA, it is possible to extract the detail signal d[n] as an exact difference of information
between x[n] and y[n] by decomposing the signal into an orthonormal wavelet basis.

In two dimensions, the basis functions are not oriented, and thus will not extract
the oriented structural redundancy. On the other hand, for motion-compensated video
coding, this overcompleteness of the Laplacian pyramid has been effectively used to
make the coding system robust against motion-compensation errors [77].

4.1.2 Subband coding scheme

As mentioned above, the Laplacian pyramid produces a overcomplete representation. One
stage of a pyramid decomposition leads to both a half rate low resolution signal and a full
rate difference signal, resulting in a redundant set of samples. Subband coding scheme,
which is based on banks of quadrature mirror filter (QMF) and first developed in speech
compression [78] [79] [80], provides no such redundancy. As illustrated in Figure 4.1.2,
the lowpass, subsampled approximation is obtained exactly as the Laplacian pyramid,
but instead of a difference signal, the “added detail” as a bandpass filtered version of
input signal will be computed. It is then followed by subsampling by two as in lowpass
process. It is obvious that the added detail to the lowpass approximation has to be a
bandpass signal, and that if h[n] is an ideal halfband lowpass filter, then an ideal bandpass
or halfband highpass filter g[n] will lead to a perfect representation of the original signal
into two subsampled versions.

The input-output relation is

X̂(z) = Td(z)X(z) + Ta(z)X(−z), (4.1.9)

where

Td(z) =
1

2
[H(z)H̃(z) +G(z)G̃(z)] ,

Ta(z) =
1

2
[H(−z)H̃(z) +G(−z)G̃(z)] . (4.1.10)

The transfer function Td(z) is a linear shift-invariant (LSI) system response, and Ta(z)
is the system aliasing. In the subband decomposition, using a class of non-ideal FIR
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bandpass filters allows to avoid the aliasing in the overall system output.
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Figure 4.1.2: Subband decomposition. Two subsampled approximations are com-
puted, one corresponding to low and the other to high frequencies. The reconstructed
signal is obtained by re-interpolating the approximations and summing them.

As showed in Figure 4.1.2, the original signal x[n] can be recovered from its
two filtered subsampled versions, a[n] and d[n], which are upsampled and filtered by
synthesis filters h̃[n] and g̃[n]. Then we have the reconstructed signal x̂[n] by adding the
two upsampled filtered versions. Till now, unlike the pyramid case, the reconstructed
signal x̂[n] is not identical to the original signal x[n] unless the filters satisfy some
specific conditions, that is, perfect reconstruction conditions which will be discussed in
following section.

4.2 Design of Multirate Filter Banks

Multirate filter banks are fundamental building blocks for subband decompositions
and multiplexing on the frequency or time domain. Figure 4.2.1 illustrates a general
structure of M-channel filter banks where Gi(z) and Fi(z) are the analysis and synthesis
filters, respectively. A tree structure of the multirate filter banks can be obtained by
uniformly or non-uniformly iterating on first output of the filter bank. This tree structure
is a fundamental point in wavelet theory. Also, the tree leads to a multiresolution
decomposition of signal. We will later investigate the convergence of the tree structure to
the wavelet transform.
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Figure 4.2.1: A general structure of M -channel multirate filter bank. (a) Spectrum
division of the bandpass filters. (b) M -channel multirate filter banks with subsampling
by factor L, L ≤M (reconstruction condition).

In Figure 4.2.1, the system output in Fourier domain is given by

X̂(ω) =
1

L

M−1∑
i=0

[
L−1∑
k=0

Gi

(
ω + 2πk

L

)
X
(
ω + 2πk

L

)]
Fi(ω)

=
1

L

M−1∑
i=0

Gi(ω)Fi(ω)X(ω)

+
1

L

L−1∑
k=1

X
(
ω + 2πk

L

) M−1∑
i=0

Gi

(
ω + 2πk

L

)
Fi(ω), (4.2.1)

where the first sum corresponds to a linear shift-invariant system response and the second
contains the system aliasing. Note that the reconstruction condition L ≤ M means that
the filter banks constitute a frame so that any signal can be reconstructed from the subband
signals. If L = M , it is critically sampled filter banks, whereas the term of oversampled
filter banks refers to the case L < M . The oversampled filter banks are equivalent to a
particular class of frame in l2(Z), and the necessary and sufficient conditions on a filter
bank for implementing a frame or a tight frame expansion are investigated by Cvetković
and Vetterli [81]. They focused also on nonsubsampled filter banks which implement
transforms similar to continuous-time transforms and allow for very flexible design. In
this section, we assume that all filter banks are critically subsampled, i.e. L = M , always.
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Assume that we use a finite set of sequences gi[n], i = 0 . . .M − 1, to obtain a
structured orthonormal basis {ψi[n]}i∈Z in l2(Z) such that

〈ψi[n], ψj [n]〉 =
∑
n∈Z

ψ∗
i [n]ψj [n] = δi,j. (4.2.2)

For example, it can be achieved through shifts by M ,

ψi+kM [n] = gi[n− kM ], k ∈ Z, i = 0, 1, . . .M − 1 . (4.2.3)

In practice, this expansion can be computed using the M-channel multirate filter banks
in Figure 4.2.1. First, the analysis filter bank decomposes the input signal into M sub-
bands by convolving with parallel set of bandpass filters having impulse responses g i[n]
followed by subsampling by L = M . To reconstruct the signal, the subband signals are
upsampled, filtered with interpolation filters and then combined additively. Each subsam-
pled subband signal encodes a particular portion of the frequency spectrum. For example,
in signal compression, the spectral contents of the subband signals are coded depending
on their energies whereas in radar system, the subband signals might be used to null out
a narrow-band interference adaptively. Therefore, the structure of the filter bank depends
on the practical applications.

Because of the subsampling process, the reconstructed signal has aliasing and
distortion which is a main obstacle to designing the subband coding system. Perfect
reconstruction filter banks provide the system that has no such errors, that is, the output
as a time-delayed copy of the input signal. Quadrature mirror filters, developed by
Croiser, Esteban and Galand [79], that are generally two channel filter bank, can be used
to avoid aliasing in the overall system output. It is later discussed by Adelson [82] and
Mallat [83] that these filters also form an orthogonal subband transform. However, a
quadrature mirror filter can not have a finite impulse response, except for the simple Haar
filter. To obtain perfect reconstruction orthogonal filters with a finite impulse response,
necessary and sufficient conditions, called conjugate mirror filters, are found by Smith
and Barnwell [84] [85] and Mintzer [86]. The generalization to the theory is completed
by the biorthogonal equations of Vetterli [87] [88] and the general paraunitary matrix
theory of Vaidyanathan [89]. M-channel cosine-modulated filter banks, which are first
proposed by Nussbaumer [90] and Rothweiler [91] under the name of pseudo quadrature
mirror filters, are used in MPEG standard for audio compression [92] [93] [94] [95].
In that case, the amount of aliasing is comparable to the stopband attenuation, and the
distortion is minimized by an optimization process.
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4.2.1 Perfect reconstruction conditions

We will concentrate on the critically sampled two-channel filter bank (Figure 4.2.2),
because it is the simplest and most important case in practice and leads to wavelets.

G ( z)

2H( z) 2 H( z)

x [n] x [n]ˆ

analysis synthesis

P  
r 

o 
c 

e 
s 

s 
i n

 g
2 2 G ( z)

ω0 π/2

  |H(ω)|
low band

  |G(ω)|
high band

(a)

(b)

ua[n]

ud[n] yd[n] sd[n] vd[n] wd[n]

ya[n] sa[n] va[n] wa[n]~

~

Figure 4.2.2: Two-channel filter bank. (a) The two-channels, with filtering using h[n]
and g[n], subsampling, upsampling by factor 2 and interpolation filtering with h̃[n]
and g̃[n]. (b) Spectrum splitting between lowpass and bandpass filters.

The overall system response of the filter bank in Fourier domain is given by (4.2.1),

X̂(ω) =
1

2

[
H(ω)H̃(ω) +G(ω)G̃(ω)

]
X(ω)

+
1

2

[
H(ω + π)H̃(ω) +G(ω + π)G̃(ω)

]
X(ω + π)

= X(ω) e−jlω, (4.2.4)

where the first term is a linear shift-invariant (LSI) system response related to distortion
and the second term with (ω+ π) reflects the system aliasing1. For the PR filter bank, the
filters have to satisfy the following two PR conditions:

• Distortion-free (DF) condition

H(ω)H̃(ω) +G(ω)G̃(ω) = 2 e−jlω

1It means that two inputs can give the same output, e.g. the constant vector y[n] ≡ 1 and the alternating
vector y[n] = (−1)n have the same even components, and therefore they look the same after downsampling
in Fig. 4.2.2 (a).
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H(z)H̃(z) +G(z)G̃(z) = 2 z−l, (4.2.5)

• Aliasing-free (AF) condition

H(ω + π)H̃(ω) +G(ω + π)G̃(ω) = 0

H(−z)H̃(z) +G(−z)G̃(z) = 0. (4.2.6)

In matrix form, the two PR conditions can be written[
H(z) G(z)
H(−z) G(−z)

][
H̃(z)

G̃(z)

]
=

[
2z−l

0

]
. (4.2.7)

Downsampling and upsampling

The two-fold subsampled signal y[n] = u[2n] in figure 4.2.2 can be written in Fourier
domain

Y (2ω) =

+∞∑
n=−∞

u[2n]e−j2nω = 1
2
(U(ω) + U(ω + π)) . (4.2.8)

The term U(ω + π) corresponds to a frequency folding leading to the system aliasing,
which must be canceled at the reconstruction. The upsampling (zero insertion) in time
domain defines

v[n] = s[n] =

{
s[p] if n = 2p

0 if n = 2p+ 1,
(4.2.9)

whose Fourier transform is

V (ω) =
+∞∑
−∞

s[n]e−j2nω = S(2ω). (4.2.10)

4.2.2 Quadrature mirror filter (QMF)

The term QMF refers to a particular choice of filters. The AF condition (4.2.6) leads to
the “alternating sign” constructions. In terms of polynomials, this is

G(z) = H̃(−z), G̃(z) = −H(−z) (4.2.11)

CHAPTER 4. FILTER BANK AND SUBBAND TRANSFORM 75



76 4.2.3 Conjugate mirror filter (CMF)

With this choice of filters, the AF condition is automatically satisfied.2 The remaining
LSI system response is given,

X̂(z) =
1

2

[
H(z)H̃(z) −H(−z)H̃(−z)

]
X(z) = X(z)z−l, (4.2.12)

which can be simplified using the product polynomial P (z) = H(z)H̃(z)

P (z) − P (−z) = 2 z−l. (4.2.13)

The left side of (4.2.13) is an odd function, so l must be an odd integer. The equation
means that the only odd terms in P (z) is z−l with coefficient 1, and is called quadrature
mirror condition. Assuming that the filter lengths of H(z) and H̃(z) are N0 and N1,
respectively. One can verify that P (z) is a halfband filter of the length N0 +N1 − 1.

Various designing methods and implementations of these filters are developed. For
example, an even length filter, which can be designed by minimizing an error function
containing a shift-invariant error term and a weighted stopband ripple term for a fixed
number of filter taps, was investigated by Johnson [96]. Using a similar error criterion in
the time domain, Jain [97] formulated an iterative design scheme in which each iteration
requires the constrained minimization of a quadratic function.

4.2.3 Conjugate mirror filter (CMF)

The original QMFs were linear-phase and non-orthogonal. In the case of orthogonal (of-
ten called “paraunitary”) filter bank, the filter lengths are equal, i.e., N0 = N1 = N =
even integer, and the synthesis filters are the time-inversed version of the analysis filters,
i.e., H̃(z) = z−(N−1)H(z−1). Then, the product filter P (z) = H(z)H̃(z) simplifies to
P (z) = z−(N−1)H(z)H(z−1). Related to the subsampling formula (4.2.8), the orthonor-
mality condition in z-domain is given

〈 h[n], h[n− 2k] 〉 = δk ⇐⇒ 1
2
(P (z) + P (−z)) = 1 (4.2.14)

where P (z) = H(z)H(z−1) is the deterministic autocorrelation of the sequence h[n].
A case of great importance is when the filters have a finite impulse response (FIR)

with length N which a QMF can not have. For FIR filters, there exist a ∈ R and l ∈ Z

[98] such that

G(z) = az−(2l+1) H̃(−z)
G̃(z) = a−1z−(2l+1)H(−z). (4.2.15)

2Note that it is the overall system aliasing that cancels, while the individual subbands contain aliasing.
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The factor a is a gain which is inverse for the analysis and synthesis filters and l is a
reverse shift. When we set a = 1 and l = 0, (4.2.15) becomes

g[n] = (−1)1−n h̃[1 − n]

g̃[n] = (−1)1−n h[1 − n] (4.2.16)

in time domain. The analysis and synthesis filter banks play a symmetric role and can be
inverted.

If we impose that the analysis filter H(z) is equal to the synthesis filter H̃(z), then
(4.2.5) becomes

|H(ejω)|2 + |H(ej(ω+π))|2 = 2 (4.2.17)

on the unit circle, that is, the filter is power complementary [99]. (4.2.15)and (4.2.17)
are conditions for obtaining perfect reconstruction orthogonal filters having a finite im-
pulse response that are called conjugate mirror filters by Smith and Barnwell [85] and
Mintzer [86]. Practically, they used following lowpass prototype A(z) in first designs of
orthogonal CMF banks with finite impulse response,

H(z) = A(z) H̃(z) = A(z−1)z−(N−1)

G(z) = A(−z−1)z−(N−1) G̃(z) = A(−z), (4.2.18)

where N must be an even integer in order to satisfy the AF condition. Apparently, if the
filters are linear-phase, then the choice of filters (4.2.18) is equivalent with the case of
QMF. However, for any non-trivial two-channel filter bank, linear-phase and orthogonal-
ity cannot be simultaneously imposed [100]3. With l = (N −1), the DF condition (4.2.5)
becomes

H(z)H(z−1) +H(−z)H(−z−1) = 2

or P (z) + P (−z) = 2, (4.2.19)

which defines a halfband filter of length 2N − 1. In order to satisfy the orthonormality
condition (4.2.14), P (z) must be a symmetric polynomial of the form

P (z) = 1 +
N−1∑
n=0

p2n+1(z
2n+1 + z−(2n+1)). (4.2.20)

For dividing P (z) into the mutually conjugated filters H(z) and H(z−1), there must exist
the zeros z0 inside the unit circle and the symmetric zeros z∗0

−1 outside the unit circle.
Therefore P (z) as an autocorrelation function must satisfy

P (ejω) ≥ 0, (4.2.21)

3They can coexist for filter banks with more channels (e.g., discrete cosine transform and lapped or-
thogonal transform).
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which assures of double zeros on the unit circle. Hence, one way to design an or-
thonormal FIR filter bank using CMF, which provides a systematic designing method as
compared to QMF, is to find an autocorrelation sequence satisfying (4.2.14), and then to
take its spectral factor, involving a choice of zeros and a possible delay factor.

4.2.4 Biorthogonal filters

By relaxing orthogonality, we can consider biorthogonal filter bank [101] [102]. In that
case, the filters satisfy the PR conditions (4.2.5) and (4.2.6), but H̃(z) is not necessarily
a time reversed version of H(z). Thus, the product filter P (z) in that case must be first
considered as P0(z) = H(z)H̃(z) instead of P (z) = H(z)H(z−1). Namely, orthogonal
filter banks obtained from CMFs are special cases of biorthogonal filter banks, and the
design of the former is more restrictive than that of the latter. To design these filters, we
choice the prototype of analysis and synthesis lowpass filters individually,

H(z) = A1(z)z
−K H̃(z) = A2(z)z

−(K+1)

G(z) = A2(−z)z−(K+1) G̃(z) = A1(−z)z−K . (4.2.22)

The filters are causal 4 with delay factor K and satisfy the AF condition. With total delay
l = K + 1, DF condition becomes

H(z)H̃(z) +H(−z)H̃(−z) = 2

P0(z) + P0(−z) = 2, (4.2.23)

where P0(z) = H(z)H̃(z). As mentioned,H(z) is not necessarily a time reversed version
of H̃(z).

In audio and image applications, one of the highly desirable filter characteristics is
linear-phase, which corresponds to symmetry properties. A great interest of the biorthog-
onal solution is that construction of linear-phase filters or combination of symmetry and
antisymmetry is possible, whereas it is excluded in the orthogonal case.5 Recall that a
linear-phase filter H(z) of length N satisfies the self-symmetry property (compared with
(4.2.16)), that is,

H(z) = ±z−(N−1)H(z−1), h[n] = ±h(N − 1 − n). (4.2.24)

The linear-phase biorthogonal filters have become quite popular in image coding
[103] [104], where a non-symmetric distortion in reconstruction is caused by using

4Causality can be ignored when the filters are FIR (or compactly supported
5except for the trivial Haar filters, where H̃(z) = 2−1/2(1 + z−1)
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nonlinear-phase synthesis filters.

4.3 Subbands from Block Transforms

4.3.1 Discrete cosine transform

From a statistical signal processing standpoint, the DCT is a robust approximation to the
optimal discrete-time Karhunen-Loeve transform (KLT) of a first-order Gauss-Markov
process with a positive correlation coefficient ρ when ρ → 1. The KLT is optimal in the
energy compaction sense, i.e., among unitary transforms, the KLT packs signal energy
into the fewest number of coefficients. However, the KLT is signal-dependent, therefore,
computationally complex and expensive. DCT has proven to be a much better alternative
in practice. It is signal independent and has linear phase, real coefficients, and fast
algorithms. Four types of the DCT with block size N are commonly known

DCT-I:

X(k) = c(k)

√
2

N

N−1∑
n=0

c(n)x(n) cos

(
nkπ

N

)
(4.3.1)

x(n) = c(n)

√
2

N

N−1∑
k=0

c(k)X(k) cos

(
nkπ

N

)
(4.3.2)

DCT-II:

X(k) = c(k)

√
2

N

N−1∑
n=0

x(n) cos

[
(2n+ 1)kπ

2N

]
(4.3.3)

x(n) =

√
2

N

N−1∑
k=0

c(k)X(k) cos

[
(2n+ 1)kπ

2N

]
(4.3.4)

DCT-III:

X(k) =

√
2

N

N−1∑
n=0

c(n)x(n) cos

[
n(2k + 1)π

2N

]
(4.3.5)

x(n) = c(n)

√
2

N

N−1∑
k=0

X(k) cos

[
n(2k + 1)kπ

2N

]
(4.3.6)

CHAPTER 4. FILTER BANK AND SUBBAND TRANSFORM 79



80 4.3.1 Discrete cosine transform

DCT-IV:

X(k) =

√
2

N

N−1∑
n=0

x(n) cos

[
(2n+ 1)(2k + 1)π

4N

]
(4.3.7)

x(n) =

√
2

N

N−1∑
k=0

X(k) cos

[
(2n+ 1)(2k + 1)π

4N

]
(4.3.8)

where

c(k) =

{ 1√
2
, if k = 0

1, otherwise

and n, k = 0, 1, 2, · · · , N −1. All of these forms of the DCT follow from the generalized
discrete Fourier transform defined as

Xg(k) =

N−1∑
n=0

x(k)W
(k+k0)(n+n0)
N (4.3.9)

and

x(k) =
1

N

N−1∑
k=0

Xg(k)W
(k+k0)(n+n0)
N (4.3.10)

where
WN = e2πj/N . (4.3.11)

Note that all of the DCT’s basis functions have linear phase, and DCT places heavy
emphasis on the lowpass frequency spectrum. Therefore, it provides superior energy com-
paction over other classical transforms such as FFT. The DCT-II is used in image and au-
dio compression and has compaction properties very close to the KLT. The popular DCT
in JPEG and MPEG is the 8-point DCT-II. When N is a power of 2, many efficient algo-
rithms for computing the DCT are known [105], such as the sparse matrix factorizations.
One factorization is even partly recursive, i.e., an N-point DCT-II can be implemented
via an N/2-point DCT-II and an N/2-point DCT-IV,

CII
N =

1√
2

[
CII
N/2 0

0 CIV
N/2J

] [
I J
J −I

]
, (4.3.12)

where the symbols CII
N , CIV

N , I, J denote, respectively, theN×N DCT-II matrix, DCT-
IV matrix, the identity matrix, and the reversal (antidiagonal) matrix.

In practice, the computing a DCT on non-overlapping blocks is equivalent to
convolving the signal with each of the block DCT basis functions and then subsampling
by a factor equal to the block spacing. The Fourier transform of the basis functions
indicates that each of the DCT functions is selective for a particular frequency subband,
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although it is clear that the subband localization is rather poor. Thus, the DCT also
qualifies as a subband transform.

4.3.2 Lapped orthogonal transform (LOT)

The block DCT is usually not computed globally, but is applied independently to non-
overlapping sub-blocks of the signal. Therefore the resulting block DCT basis functions
constitute a subband transform, but the subbands are not very well localized. Considered
in the framework of the filtering system, the subsampled subband signal will contain se-
vere amounts of aliasing. Since the transform is invertible (orthogonal), it should be clear
that this subband aliasing is canceled in the synthesis stage. However, if the transform
coefficients are quantized or discarded (e.g. in a coding system), the aliasing no longer
cancels, and the errors appear as block edge artifacts in the reconstructed signal, called
blocking effect. For images, this appears as a tiling effect, while for audio signals, periodic
clicking is heard.

These problems motivate the development of an overlapped blocking scheme, result-
ing in the lapped orthogonal transform (LOT) popularized by Malvar [106] [107]. An
M-band LOT is a linear transform that partitions the input signal into small overlapped
blocks and then processes each block independently. In the resulting transform, the
basis functions from adjacent blocks overlap each other, and their impulse responses are
tapered at the edges.
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Figure 4.3.1: General structure of a lapped transform coding

The input signal x can be blocked into short sequences xm of length L. The corre-
sponding transform vector Xm of length N is obtained from N × L transform matrix A
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as Xm = AT xm, which is in time domain

X(k) =
L−1∑

0

x(n)an,k . (4.3.13)

For the LOT, we take L samples for each block, with N < L ≤ 2N , so that each block
of input samples has an overlap of (L−N) samples with each of its adjacent neighbors,
xm−1 and xm+1. From now, we consider an uniform filterbank, so that the number of
blocks (subbands) M is same with the size of output transform coefficients in each block
N , i.e., M = N . Then this overlapped transform can be defined with H given by

A =


D1 0

D0

. . .
D0

0 D2

 (4.3.14)

where D0 is an L×M matrix that contains the LOT basis functions for each block. The
matrices D1 and D2 are introduced because the first and last blocks of a segment have
only one neighboring block, and thus the LOT for the first and last blocks must be defined
in a slightly different way, to guarantee that none of the basis functions extends beyond the
segment boundaries. Figure 4.3.1 shows a general structure of lapped transform coding,
which is a family of perfect reconstruction QMF filter banks. The system is critically
sampled, so that the outputs of the analysis filter bank are decimated by a factorM . Since
the basis functions overlap the adjacent blocks, it is referred to as lapped transform and
can be viewed as block transforms because of their relatively short lengths.

Each LOT basis function must be orthogonal not only to the other functions in same
block but also to the functions in the two adjacent blocks. Therefore the following condi-
tions must be hold,

DTD = I , and DTWD = 0 , (4.3.15)

where

W ≡
[
0 I
0 0

]
(4.3.16)

It was shown that the orthogonality conditions were satisfied by the following condition:

D =
1

2

[
CII
E − CII

O CII
E − CII

O

J(CII
E − CII

O ) −J(CII
E − CII

O )

]
Z , (4.3.17)

where Z is an orthogonal matrix of orderM , and CII
E and CII

O are theM×M/2 matrices
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containing the even and odd DCT-II, respectively, i.e., from Eqs. (4.3.3),

|CII
E |n,k = c(k)

√
2

M
cos

[
π

M
2k

(
n +

1

2

)]
, (4.3.18)

|CII
O |n,k =

√
2

M
cos

[
π

M
(2k + 1)

(
n +

1

2

)]
, (4.3.19)

for n = 0, 1, . . . ,M − 1, k = 0, 1, . . . ,M/2 − 1, where

c(k) =

{ 1√
2
, k = 0

1, otherwise .

There are several methods to obtain the matrix Z. The optimal Z can be closely
approximated by

Z =

[
I 0

0 Z̃

]
(4.3.20)

where Z̃ is a cascade of M/2 − 1 plane rotations

Z̃ = T 1T 2 · · ·TM/2−1 (4.3.21)

where each plane rotation is defined by

T i =

I 0 0
0 Y (θi) 0
0 0 I

 (4.3.22)

The matrix Y (θi) is a 2 × 2 butterfly

Y (θi) =

[
cos θi sin θi
− sin θi cos θi

]
(4.3.23)

With Z as in (4.3.20), the first M/2 columns of D will have even symmetry, and the last
M/2 columns will have odd symmetry.

As pointed out in [107], the M × L lapped transform is simply the polyphase im-
plementation of a maximally decimated M-channel L-tap filter banks. The precise rela-
tionship between the M × L lapped transform matrix A = [A0A1 · · ·AK−1] and the
polyphase matrix P is

P (z) =
K−1∑
i=0

Aiz
i (4.3.24)
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From the components with discrete sine transform (DST) and DCT, fast lapped trans-
forms can be constructed in polyphase form, e.g., the type-II fast LOT is given (see Fig.
4.3.2),

P (z) =
1

2

[
I 0

0 SIV
M/2C

IIT

M/2

] [
I I
I −I

] [
I 0
0 zI

] [
I I
I −I

]
CII
MJM (4.3.25)

where SIV denotes type-IV discrete sine transform (DST),

SIV =

√
2

M
sin

[
π

M

(
k +

1

2

)(
n+

1

2

)]
. (4.3.26)
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Figure 4.3.2: Fast lapped orthogonal transform.

There are many other fast solutions, and all of them involve replacing the product
SIV
M/2C

IIT

M/2 by different matrices V , usually cascades of various 2× 2 matrices along the
diagonal axis. If a larger overlapping percentage is desired, more modules U i(z) with
different V i can be added, i.e., P (z) = UK−1(z)UK−2(z) · · ·U 1(z)C

II
M . This is known

as the generalized LT [108].

4.3.3 Modulated lapped transform (MLT)

Another way to arrive at a good set of basis functions for a lapped transform is to define
an appropriate lowpass filter prototype in a modulated filter bank structure. If the length
of the lowpass prototype is chosen to be equal to 2M , it is possible to achieve not only
aliasing cancellation, but also perfect reconstruction with identical analysis and synthesis
filters, as noted in [109]. In this case, a window of 2M samples from two consecutive

84 CHAPTER 4. FILTER BANK AND SUBBAND TRANSFORM



4.3.3 Modulated lapped transform (MLT) 85

blocks undergoes a cosine transform, called modulated lapped transform (MLT). The
MLT is defined as

X(k) =
2M−1∑
n=0

x(n)an,k (4.3.27)

for k = 0, 1, · · · ,M − 1, where

an,k = h(n)

√
2

M
cos

[
(2n +M + 1)(2k + 1)π

4M

]
(4.3.28)

and h(n) is a lowpass half-band filter. The factor
√

2/M is necessary to generate an
orthogonal transform implementation. Note that only the first M transform coefficients
are returned from 2M samples. The window is then shifted by M samples and the next
set of M transform coefficients is computed. Thus, each window overlaps the last M
samples of the previous window. This overlap ensures the continuity of the reconstructed
samples despite the alteration of transform coefficients due to quantization.

The relationship of the MLT (4.3.28) to the DCT-IV (4.3.7) can be seen if we express
the coefficients, an,k, in the following manner:

an,k = h(n)

√
2

M
cos

[
(2n+ 1)(2k + 1)π

4M
+ (2k + 1)

π

2

]
(4.3.29)

The phase shift (2k + 1)(π/2) in the basis functions is important for ensuring aliasing
cancellation and perfect reconstruction.

To recover x(n), one requires not onlyX(k) for the current block but also the previous
block XP (k). Then

x(n) �
M−1∑
k=0

[
X(k)an,k +XP (k)an+M,k

]
. (4.3.30)

The approximation symbol in Eq. (4.3.30) means that there is no guarantee that x(n) can
be recovered exactly unless h(n) satisfies certain conditions, i.e.,

h(2M − 1 − n) = h(n), and h2(n) + h2(n +M) = c , (4.3.31)

where c is any constant. In order to keep orthogonality of the P matrix, we must choose
c = 1. One possible choice for h(n) which guarantees perfect reconstruction was given
by

h(n) = sin

[(
n +

1

2

)( π

2M

)]
(4.3.32)

where 0 ≤ n ≤ 2M and h(n) = 0, otherwise.
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As the case of the fast LOT, MLT can be efficiently implemented by means of a fast
transform of length M [107], i.e.,

Xk(m) =

√
2

M

M−1∑
n=0

ym(n) sin

[
π

M

(
k +

1

2

)(
n +

1

2

)]
, (4.3.33)

where

ym(n) =


xm(n+M/2)h(n+M/2) − xm(M/2 − n− 1)h(M/2 − n− 1)

for n = 0, · · · ,M/2 − 1

xm(n+M/2)h(n+M/2) + xm(5M/2 − n− 1)h(5M/2 − n− 1)

for n = M/2, · · · ,M − 1 .
(4.3.34)

Note that Eq. (4.3.33) can be obtained as the orthogonal DST-IV of ym(n).
MLT was extensively used in audio compression schemes (MPEG 1, MPEG 2, and

AC-3) to transform the time representation, more suitable for perceptually masking and
quantization. The MLT can be described from various viewpoints: filterbank theory,
wavelet packets, and orthonormal transformations. All of these approaches are useful. In
particular, the filterbank description leads to the set of conditions to be satisfied by the
window function h(n) for perfect reconstruction. The other viewpoints lead to a manner
for implementing time varying filters.

4.3.4 Coding efficiency of the block transforms

To compare the transform efficiency, the coding gain GTC can be employed which is
equivalent to maximizing the energy compaction measure. The coding gain is defined by

GTC =
1
M

∑M
i=1 σ

2
i(∏M

i=1 σ
2
i

)1/M
, (4.3.35)

where σ2
i is the variance of the output of the ith transform coefficient and also the ith

diagonal entry of the matrix
R0 = P TRxxP , (4.3.36)

where Rxx is the covariance matrix of a block of 2M samples of signal x[n]. The im-
portance is of the GTC measure is that it indicates the factor by which the mean-square
reconstruction error is reduced, compared to direct quantization of the signal. The relative
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efficiency of transforms is generally evaluated for a first-order autoregressive process, for
which

[Rxx]i,j = ρ|i−j| , (4.3.37)

where ρ is the intersample correlation coefficient. The empirical comparison for energy
compaction performance of several LOTs is presented in [110].

4.4 Linear Prediction from Subband Signals

Subband decomposition of a signal is shown to result in a whitening of the composite
subband spectrum. This implies that, for any stationary source, a pth order prediction
filter can be found that is better than the pth order prediction filter obtained by solving
the Yule-Walker equations resulting from the fullband signal. It has been shown [111]
[112] that when p → ∞, there is no gain to be obtained by coding subband samples. In
practice, however, when the order of prediction is finite, considerable gains have been
obtained from using the linear prediction in subbands over in the fullband. Moreover,
it is shown that the prediction error variance of the fullband always exceeds the total
prediction error variance of the combined subbands, for a given prediction order p. This
result is instrumental in proving that pth order entropy of the combined subbands is
closer to the entropy rate of the source than the pth order entropy of the fullband, for any
finite p, where p is the size of the block of source samples. In this section, we provide the
theoretical approach to prove the gain of the prediction in subband that have so far been
less focused.

4.4.1 pth order entropies

For a given Gaussian source x, the pth order per letter differential entropy of a block of p
source samples is given by

Hp(x) =
1

2
ln 2πe|Φp|

1
p , (4.4.1)

where |Φp| is the pth order covariance matrix of the source. For p = 1, we get the first-
order entropy and for p→ ∞, we arrive at the entropy rate of the source. the entropy rate
of the Gaussian source is defined as

H∞(x) =
1

2
ln 2πeQx , (4.4.2)
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where Qx is the source entropy power,

Qx = exp

{
1

2π

∫ π

−π
lnPxx(ω)dω

}
. (4.4.3)

In Eq. (4.4.3) Pxx denotes the power spectral density (PSD). Similarly, the pth order per
letter differential entropy for the mth subband is

Hm
p (xm) =

1

2
ln 2πe|Φm

p |
1
p . (4.4.4)

Hence the entropy rate of the mth subband can be written as

Hm
∞(xm) =

1

2
ln 2πeQm

xm
. (4.4.5)

Since the subbands are subsampled by a factor of Lm, the contributions of their per-
letter entropies to the combined per-letter entropy must each be reduced by this factor.
Therefore the combined per-letter pth order subband entropy is given by

Hp(xm) =

M∑
m=1

1

Lm
Hm
p (xm) , (4.4.6)

for all non-negative integers p.
The spectral flatness measure (SFM) ξx of the source is defined as the following ratio

ξx =
exp

{
1
2π

∫ π
−π lnPxx(ω)dω

}
1
2π

∫ π
−π Pxx(ω)dω

=
Qx

σ2
x

. (4.4.7)

The SFM is a real number between 0 and 1. When the source spectrum is white, the SFM
is 1 and when the source spectrum is maximally correlated, the SFM is 0. For the SFM
to be 0, the integral 1

2π

∫ π
−π lnPxx(ω)dω must be −∞. From the Paley-Wiener criterion,

this means that the source is perfectly predictable. The inverse of the SFM is a measure
of the predictability of the source. The distortion-rate function for the Gaussian source x
is equal to D(R) = 22Rξxσ

2
x, for mean squared error D(R) and D(R) ≤ minPxx(ω).

Thus smaller values of the SFM mean lesser entropy, more predictability and a smaller
theoretical mean-square distortion D for a given rate R bits/sample.

The difference between the entropy rate and the pth order entropy is the amount of
information per letter that the rest of the sequence contains about the first p samples, i.e.,

Hp(x) −H∞(x) = lim
N→∞

[
1

p
I(x1, x2, · · · , xp; xp+1, · · · , xp+N)

]
. (4.4.8)
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This difference, which we call the pth order memory, overbounds the rate difference
between coding p-tuples of the source and optimally coding the source and, for small
distortions, equals this rate difference. In terms of the rate-distortion function, the pth
order memory of the source can be written as

Hp(x) −H∞(x) = Rx
p(D) −Rx

∞(D) , (4.4.9)

whereRx
p(D) is the pth order rate distortion function for the source x. The pth order mem-

ory of the combined subbands can similarly be expressed in terms of the rate-distortion
function as

Hp(xm) −H∞(xm) = Rxm
p (D) − Rxm∞ (D) . (4.4.10)

If this rate difference is smaller for subbands than for a fullband source, then there is rate
advantage in coding subband p-tuples as opposed to encoding fullband p-tuples.

4.4.2 Prediction error variance in subbands

The kth correlation of the source, rxx(k), is given by

rxx(k) =
1

2π

∫ π

−π
Pxx(ω)ejωkdω (4.4.11)

=
1

2π

M∑
m=1

∫
Im

Pxx(ω)ejωkdω

At the output of the filter, the kth correlation is given by

rmxx(k) =
1

2π

∫ π

−π
|Hm(ω)|2Pxx(ω)ejωkdω (4.4.12)

=
1

2π

∫
Im

Pxx(ω)ejωkdω ,

where Hm(ω) denotes the ideal bandpass filters. From Eqs. (4.4.11) and (4.4.12) it is
clear that

rxx(k) =

M∑
m=1

rmxx(k), and Φp =

M∑
m=1

Φm
p , (4.4.13)

where Φp and Φm
p are the p × p autocorrelation matrices of the source and bandpass

filtered source, respectively.
The prediction error spectrum before subsampling is

Pm
ee (ω) = |Ã(ω)|2Pm

xx(ω) , (4.4.14)
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90 4.4.2 Prediction error variance in subbands

where Ã(ω) = 1 +
∑p

k=1 a(k)e
−jωk,i.e., optimal subband prediction filter. The variance

of the prediction error is then

ρmp =
1

2π

∫ π

−π
Pm
ee (ω)dω (4.4.15)

After subsampling by Lm it is

P (m)
ee (ω) =

1

Lm
Pm
ee

(
ω

Lm
+ ωmsgn(ω)

)
. (4.4.16)

Integration over P (m)
ee (ω) yields the prediction error variance after subsampling,

ρ(m)
p =

1

2π

∫ π

−π
P (m)
ee (ω)dω (4.4.17)

=
1

2π

∫ π

−π

1

Lm
Pm
ee

(
ω

Lm
+ wmsgn(ω)

)
dω

=
1

2π

∫
Im

Pm
ee (ω)dω

= ρmp

Eq. (4.4.17) shows that the prediction error variance before and after subsampling are
equal, as claimed. One should notice that the subsampled error process is not a linear
combination of the subsampled subband elements x(m)(n), but is comprised of elements
which are linear combinations of subband elements xm(n), some of which are no longer
present in x(m)(n) after subsampling. However, it is evident that since these latter ele-
ments can be reconstructed with zero mean-squared error from linear combinations of
subband elements. When one first forms the prediction form the decimated subband sam-
ples, the variance of the error also remains the same after upsampling and ideal bandpass
filtering with gain factor Lm in reconstruction of the bandpass subband process.

With the optimal subband prediction filters Ã(m)(ω) and the optimal prediction filter
for the fullband Ã(ω), the minimum prediction error can be written as

ρp =
1

2π

∫ π

−π
|Ã(ω)|2Pxx(ω)dω (4.4.18)

≥ 1

2π

M∑
m=1

∫ π

−π
|Ã(m)(ω)|2P (m)

xx (ω)dω

=
M∑
m=1

ρ(m)
p
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It is also proven in [113] that the prediction error spectrum obtained by combining the
individual subband prediction error spectra is flatter than the fullband prediction error
spectrum, i.e.,

ξSBe ≥ ξFBe . (4.4.19)

This inequality in Eqs. (4.4.18) and (4.4.19) states that linear prediction from subbands
is superior to linear prediction from the fullband.

Since each subband has a different SFM, one would intuitively choose a lower
order of prediction for the flatter subbands, and conversely. Some algorithms to find
the optimal assignment of orders pi,

∑M
i=1 pi = p, are proposed in [114] such that the

composite SFM of the error spectrum is closed to 1.

4.4.3 Empirical comparison of prediction from Subbands

Audio Fullband LP Subband LP Compressed
Materials Entropy (p = 12) Entropy (

∑
pi = 12) Bit rates

Violin 11.56 10.92 10.01
Flute 11.39 10.84 9.89

Speech 11.20 10.45 9.67
Piano 12.26 11.90 11.02

Classic 11.48 10.53 9.74
Pop Abba 11.27 10.45 9.49
Country 11.75 11.08 10.29

Metal Rock 12.49 11.92 11.22
Soft Jazz 11.38 10.64 9.81

Average 11.64 10.97 10.12

Table 4.1: Test results for comparing the prediction error entropy from fullband and
subbands

The performance of subband prediction versus fullband prediction for lossless audio
compression applications is tested by entropy comparison in Table 4.1. For the exper-
iment, the fast LOT (see Figure 4.3.2) with L = 2M is chosen to converse the audio
signal from time to a subband representation with M = 4.

By exploiting the time correlation of samples in each subband, we use the FIR linear
predictor used for the prediction experiment in Chapter 3. The prediction value in mth
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92 4.4.3 Empirical comparison of prediction from Subbands

subband is computed as

X̂m(k) =

pi−1∑
j=0

Amj Xm(k − j) (4.4.20)

We have chosen the prediction order p =
∑4

i=1 pi = 12. A different LP filter order was
used in each subband, i.e., p1 = 2, p2 = 3, p3 = 3, p4 = 4. The last column in the
Table 4.1 As we have shown in Chapter 3, the order of LP filter is set as a trade off. In
practice, the prediction order over p = 12 does not provide a proportional improvement
of compression ratio. Therefore we have chosen the order p = 12 = pSB1+pSB2+pSB3+
pSB4.
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Chapter 5

Wavelet Transform and Filter Bank

Transform coding systems are usually based on orthogonal linear transforms. The classic
example of such a transform is the discrete Fourier transform (DFT), the discrete cosine
transform (DCT) and the Karhunen-Loeve transform (KLT). Other choice for the trans-
form is the wavelet transform (WT) that has achieved significantly improved performance
over other transforms and represents the current state-of-the-art in image compression
and audio compression as well. In addition to the compression performance, encoding of
wavelet coefficients provides more interesting editibility, since the decomposition of the
signal into a time-frequency representation allows to cope separately with different audio
features and events.

From the signal processing viewpoint, it is clear that all block transforms and all
subband transforms including wavelet transform can be defined and implemented by
the filter design and windowing theory, as we mentioned in previous chapter. It is also
the fact that the terms in the literature, e.g., subband coding, filter bank method, and
multiresolution transform, that are used to eventually mean the wavelet transform,
are defined ambiguously and used heedlessly. However, the wavelet transform, that
is one of the most important new phenomenons in signal processing area since the
Fourier transform has long ruled over the area, has obviously different history and
characteristics. Hence, we study the wavelet transform in depth by beginning to review
the time-frequency representation and describe the theoretical relationship between the
wavelet and the multirate filter banks.
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5.1 Introduction

The most important and fundamental variables in nature of signals are time and frequency.
While the time domain function indicates how a signal’s amplitude changes over time, the
frequency domain function tells how often such changes take place. The bridge between
time and frequency is the Fourier transform, which has long ruled over signal processing.
Fourier series separate the “whole” signal into pure harmonics and are ideal for analyzing
periodic signals. However, since the periodic sinusoidal functions as a basis function of
Fourier transform are used to expand non-periodic signals and stretch out to infinite time,
the Fourier integral transform is a far less natural tool for the real signals, especially for
approximating a transient signal. This means that Fourier expansion has only frequency
resolution, no spatial resolution, and is not associated with a particular instant in space.
As a result, we might be able to determine all the frequencies present in a signal but do
not know when, or where they are present.

To overcome this problem, in the past decades several solutions have been developed,
such as short time Fourier transform (STFT), Gabor expansion, Wigner-Ville distribution
(WVD) and wavelet analysis, which are able to represent a signal in the time and
frequency domain at the same time, called time-frequency joint representation (TFR).
The wavelet analysis or wavelet transform is most recent solution for efficient TFR. Not
only for signal analysis and signal synthesis, the multi-resolution properties of wavelet
transform can be effectively used for data compression with several advantages over the
other traditional transforms for coding system, e.g., discrete cosine transform (DCT),
lapped orthogonal transform (LOT) and Karhunen-Loeve transform (KLT).

5.2 Time-Frequency Distribution

5.2.1 Linear expansions of signals

In signal processing and numerical analysis, a preliminary task is to find an efficient rep-
resentation of the signal that is particularly suitable for a problem. Signal expansions are
central to such representation. It is methods of decomposing a signal as a linear combi-
nation of elementary “atoms” or building blocks. That is, we write a signal f as a linear
combination

f =
∑
i

αi ψi , (5.2.1)

where the set of elementary signals {ψi}i∈Z is complete for a space S, if all signals f ∈ S
can be expanded as in (5.2.1). Space S can be finite-dimensional (for example, Rn, Cn)
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5.2.1 Linear expansions of signals 95

or infinite-dimensional (for example, l2(Z), L2(R)). In general we will be concerned
with signals that belong to the space of square integrable functions (L2(R)) or the space
of square summable sequences (l2(Z)). In representation (5.2.1) that is conceptually a
change of point of view, the set is actually a basis, if the vectors ψi are linearly indepen-
dent. In that case, there exists a dual set {ψ̃i}i∈Z such that the expansion coefficients can
be computed as follows,

αi =
∑
n

ψ̃i[n] f [n] , (5.2.2)

where it is assumed that f and ψ̃ are sequences in l2(Z). If the set {ψi}i∈Z is orthonormal
and complete, then we have an orthonormal basis for S, and the basis and its dual are the
same, i.e. ψi = ψ̃i. Then

〈ψi, ψj〉 = δi,j , (5.2.3)

where 〈·, ·〉 is the usual inner product and δi,j, called Kronecker’s symbol, is defined as
1 if i = j and 0 otherwise. In such case of orthonormal set, each member of the set
is orthogonal to every other member of the set and is also normalized. This is a great
interest and utility both from theoretical and applied viewpoints.
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Figure 5.2.1: The sets of vectors for the expansion. The standard Euclidean basis is
given by e0 and e1. (a) orthonormal basis. (b) biorthogonal basis. (c) overcomplete set.

The equation (5.2.1) becomes

f =
∑
i

〈ψi, f〉ψi , (5.2.4)

where the convergence is in the square norm sense. If the set is complete and the vectors
ψi are linearly independent but not orthonormal, then we have a biorthogonal basis, and
the basis and its dual satisfy

〈ψ̃i, ψj〉 = δi,j , (5.2.5)

and (5.2.1) becomes
f =

∑
i

〈ψ̃, f〉ψi =
∑
i

〈ψ, f〉 ψ̃i . (5.2.6)
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96 5.2.2 Time-frequency representation

If the set is complete but the vectors are not linearly independent (i.e., redundant),
then we do not have a basis but an overcomplete representation called a frame. In that
case, this set behaves as an orthonormal basis, even though the vectors are linearly de-
pendent (see section 5.5.2). Figure 5.2.1 illustrates the possible sets of vectors for the
expansion.

For analytical and computational reasons, we will be interested only in structured
bases, that is, the basis functions that are obtained through a small set of operations from
a prototype function. These operations typically include the shifting in time, the scaling
and the modulation which is shifting in frequency. In this case, the atoms or the basis
vectors used to write the function f are closely related to each other.

Historically, the Fourier series for periodic signals is the first example of a structured
signal expansion. Despite its obvious limitation to periodic signals, the Fourier transform
has useful properties, such as the convolution property which comes from the fact that
the basis functions are eigenfunctions of linear time-invariant systems. For non-periodic
signals, a smooth window function is used to segment the signal and a piecewise
Fourier expansion is applied to each segment of the signal. The Gabor expansion and
short time Fourier transform are well-known examples of such local Fourier expansion.
This localization, that is a key concept in signal analysis, leads to a time-frequency
representation.

5.2.2 Time-frequency representation

The need for a time-frequency joint representation stemmed from the inadequacy of either
time domain or frequency domain analysis to fully describe the nature of non-stationary
signals. A time-frequency distribution of a signal provides information about how the
spectral content of the signal evolves with time, thus providing an ideal tool to dissect,
analyze and interpret non-stationary signals. This is performed by mapping a one dimen-
sional signal in time domain into a two dimensional time-frequency plane so as to illumi-
nate two important properties, localization in time of transient phenomena and presence
of specific frequencies.

The fundamental idea behind Fourier’s original work was to decompose a signal as
the sum of weighted sinusoidal functions. These sinusoids are very well localized in the
frequency domain, but not in time or space, since their support has an infinite length.
Indeed, the Fourier transform is defined through an integral which covers the whole time
domain, and does therefore not provide any information about the time dependency of
the signal. This is problematic when analyzing signals of a non-stationary nature where it
is often beneficial to be able to acquire a correlation between the time and frequency do-
mains of a signal. Another deficiency of Fourier transform, because of its assumption that
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the signal to be transformed is periodic in nature, is its inability to accurately represent a
non-periodic signal without any specific parity properties, such as transient impulses.

In order to overcome these shortcomings of Fourier transform, in the past decades sev-
eral solutions have been devised, most notably the short time Fourier transform (STFT),
Wigner-Ville distribution and the wavelet transform. They provide a representation in-
termediating between a spatial and a Fourier representation. To represent the frequency
behavior of a signal locally in time, the central task is to cut the signal of interest into sev-
eral pieces, called time-frequency atoms which are localized both in time and frequency,
and draw idealized representations of these atoms in the time-frequency plane and then
analyze them separately. Note that a main idea behind the time-frequency analysis is thus
to express the signal as a linear combination of the time-frequency atoms that should be
functions constrained by the definition, to be zero outside of a small interval, formally
called “compact support”.

One of main purposes of the time-frequency representation is to explore instan-
taneous frequencies in signal. Let f(t) = A(t)ejφ(t), where both A(t) and φ(t) are
real-valued time functions. Then, the first derivate of the phase φ(t) represents the
weighted average of the momentary frequency. This φ

′
(x) is traditionally called instan-

taneous frequency, which is actually incorrect for several reasons. For instance, φ
′
(x)

is a single-valued function, whereas at each time instant, generally there are multiple
frequencies. It is caused also by the fact that the time and frequency measurements are
limited by uncertainty relation in which Heisenberg’s inequality1(see Appendix) prevents
us from making the product of the uncertainties smaller than a fixed constant. If a
nonzero function f is small outside a time-interval of length T and its Fourier transform
is small outside a frequency band of width Ω, then an inequality of the type ΩT ≥ c must
hold for some positive constant c ∼ 1. The precise value of c depends on how the width
T and Ω of the signal in time and frequency are measured.

5.2.3 Approaches to time-frequency analysis

The algorithms for TFR often fall into two categories, linear and quadratic. The first uses
the inner product and the expansion, like the classical Fourier analysis, while the last
uses the time-dependent spectrum of signal whose power spectra change with time. The
Wigner-Ville distribution is one of the quadratic analysis. In addition, as Jean Ville(1947)
proposed, there are two possible types of time-frequency analysis. The first approach
is to appropriately cut the signal into slices in time and then pass these different slices
through a system of filters to examine their frequency content. The other approach is to

1“The more precisely the position is determined, the less precisely the momentum is known in this
instant, and vice versa” -Heisenberg, uncertainty paper, 1927- see Appendix

CHAPTER 5. WAVELET TRANSFORM AND FILTER BANK 97
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first filter different frequency bands and then carve up these bands individually to study
their energy variations. The first approach leads us to construction of short time Fourier
transform and Gabor expansion, and second to wavelet and wavelet packet transform,
which leads to focus of this chapter. We briefly review these approaches:

Short Time Fourier Transform (STFT)
The most intuitive way to resolve the obstacle of Fourier transform is to localize the
sinusoids in Fourier representation by windowing. Instead of processing the entire signal
at once, STFT takes the Fourier transform on a block-by-block basis. Therefore, the
resulting Fourier transform can then be thought of as a signal’s frequency behavior
during the time period covered by the windowed data block. For a given signal f(t) in
L2(R), the procedure can be described by

STFTf (ω, τ) =

∫ ∞

−∞
f(t) γ(t− τ)e−jωtdt, (ω, τ) ∈ R

2. (5.2.7)

It is even more familiar to signal analysis in its discrete version, where τ and ω are
assigned regularly values τ = mT , ω = nΩ. Then (5.2.7) becomes

STFTDf (m,n) =

∫ ∞

−∞
f(t) γ(t−mT )e−jnΩt dt, (m,n) ∈ Z (5.2.8)

The analysis window function γ(t) balances the time and frequency resolution. The
smaller the time duration of γ(t), the better the time resolution (poorer frequency res-
olution). Therefore, there is a trade-off between time accuracy and frequency accuracy.
The blocks could be overlapped or disjointed. The percentage of overlap between each
block is determined by the time sampling step T and the length of the analysis window
function γ(t).

The main disadvantage of STFT, especially on STFT-based spectrogram, is that
there are sudden breaks between segments, called window effect or blocking effect.
Hence, although the STFT can be simple and easily implemented, it has been found
inadequate for the applications where both high time and frequency resolutions are
required, and where frequency contents of a signal change dramatically over time.

Gabor expansion
Dennis Gabor, in 1946, proposed expanding a signal into a set of functions that are
concentrated in both the time and frequency domains, then using the coefficients as the
description of the signal’s local property. The resulting representation is now known as
the Gabor expansion.

f(t) =
∞∑

m=−∞

∞∑
n=−∞

Cm,n hm,n(t) (5.2.9)
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f(t)g(t)

Figure 5.2.2: Short-time Fourier transformation

where Cm,n are called the Gabor coefficients. The set of elementary functions {hm,n(t)}
consists of a time-frequency-shifted window function h(t) which allows the signal f(t) to
be cut into segments that are regularly spaced in time, h(t−mT )f(t), m = 0,±1,±2..,
i.e.,

hm,n(t) = h(t−mT )ejnΩt. (5.2.10)

This is known as the first time-frequency wavelets or Gabor wavelets. In Gabor’s original
work, the parameter T > 0 is the time sampling step, and h(t) is the normalized Gaussian
function,

g(t) = (α/π)1/4e−αt
2

(5.2.11)

because it is optimally concentrated in the time-frequency domain, in terms of the un-
certainty principle. The product of T and Ω determines the density of the sampling grid
(however, Gabor limited TΩ = 2π). The smaller the product, the denser the sampling
(length of segments).

The time and frequency resolutions of hm,n(t) can be adjusted by the parameter α
in (5.2.11). The smaller the value of α, the better the frequency resolution (poorer time
resolution), vice versa. In two dimension, the Gabor wavelets are directional sinusoids
weighted by Gaussian windows. Daugman [115] [116] has used two-dimensional Gabor
transforms for image compression.

Note that the windows function in (5.2.8) and (5.2.10) have exactly the same form.
Both are time- and frequency-shifted versions of a single prototype function. Let Cm,n =
STFT (m,n), then (5.2.9) and (5.2.7) form a pair of Gabor expansions. This indicates
that the STFT is, in fact, the Gabor coefficient, and conversely the Gabor expansion can
be thought of as the inverse of the STFT. However, the Gabor wavelets lead to serious
algorithmic difficulties;

• The primary difficulty with Gabor expansion is that it is strongly non-orthogonal.
If h(t) is sufficiently regular and well localized, more precisely if the two inte-
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grals
∫∞
−∞(1 + |t|)2|h(t)|2dt and

∫∞
−∞(1 + |ω|)2|ĥ(ω)|2dω are both finite, then the

functions hm,n(t), m,n ∈ Z, can never be an orthonormal basis for L2(R).

• By the choosing Ω = 1 and T = 2π, the windowed analysis consists in restraining
the signal to each interval [2mπ, 2(m + 1)π) and using Fourier series to analyze
each of the corresponding functions. But the functions obtained the crude segmen-
tation, h(t)=1 on [0, 2π) and h(t)=0 elsewhere, are not 2π-periodic, and the Fourier
analysis will highlight this lack of periodicity and interpret it as a discontinuity or
an abrupt variation in the signal. One way to attenuate these numerical artifacts is
to use the discrete cosine transform (DCT), which does not eliminate them never-
theless [117].

In conclusion, Gabor expansion can be used as if they formed an orthonormal basis,
as long as one does only continuous decompositions. But the corresponding discrete
algorithms do not exist, in general, or they require so much tinkering that they become
too complicated. It is only very recently that some discrete versions of Gabor expansion
are discovered [118] [119] [120] [121], but they are not motivated by expansion and
inner product operations.

Granular Representation
In computer music, there is an approach to the representation and generation of music
sounds, called “granular synthesis”, which was first proposed also by Gabor [122]. The
basic idea is that any sound can be considered as a sequence of elementary acoustic
quanta called grains that correspond to a local time-frequency components of the
sound. The features of the grains and their temporal location determine the sound’s
timbre. Furthermore, such descriptions are psychoacoustically appropriate given the
time-frequency resolution tradeoffs and limitations observed in the auditory system.

Various types of grains and a high-level organization of grains based on the concept
of tendency masks in the time-frequency plane are suggested by Roads [123]. Some
simple analysis methods for deriving grains from real sounds were proposed in [124]
[125]. The objective of such granulation approaches is to derive a representation of
natural sounds that enables modifications such as time-scaling or pitch-shifting prior to
resynthesis. The basic idea of these analysis methods is to extract grains by applying
time-domain windows to the signal. Each windowed portion of the signal is treated
as a grain, and parameterized by its window function and time location. These grains
can be realigned in time or resampled in various ways to achieve desirable signal
modifications. Similar ideas have been developed in the speech processing community
[126]. In addition, while the granulation by time-windowing is effective for modification
of signal, these grains are disparate from the elementary acoustic quanta suggested by
Gabor and thus not appropriate analysis for Gabor’s time-frequency representation. This
fact motivates the technique called “sinusoidal modeling” as an alternative granular
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analysis-synthesis, which is widely researched recently in acoustic signal analysis and
speech audio coding [127] [128] [129].

Wigner-Ville distribution (WVD)
Formula (5.2.12) is known as the Wigner-Ville distribution, which was originally
developed in the area of quantum mechanics by an American physicist, Eugene P.
Wigner, in 1932. Fifteen years later, it was introduced into the signal processing area by
a French scientist J. Ville.

WVD (t, ω) =

∫ ∞

−∞
R(t, τ) e−jωτ dt, (5.2.12)

where the correlation function R(τ) is the average of the instantaneous correlation
f(t)f(t− τ), i.e.,

R(τ) =

∫ ∞

−∞
R(t, τ) dt =

∫ ∞

−∞
f(t+ τ/2) f ∗(t+ τ/2) dt. (5.2.13)

The mean frequency of the WVD at time t is equal to the signal’s weighted average
instantaneous frequency, i.e.,∫∞

−∞WVD(t, ω)ω dω∫∞
−∞WVD(t, ω) dω

= φ
′
(t) . (5.2.14)

It is thus true that the WVD describes the signal’s time-frequency behavior, and that the
energy of the WVD is the same as the energy content in the signal f(t), i.e.,

1

2π

∫ ∞

−∞

∫ ∞

−∞
WVD(t, ω) dtdω =

∫ ∞

−∞
|f(t)|2 dt =

1

2π

∫ ∞

−∞
|F (ω)|2 dω . (5.2.15)

As a result of (5.2.15), the WVD is often thought of as energy distribution of a signal in
the time-frequency plane and does not introduce a reference function, such as window
function or wavelet, against which the signal has to be integrated. This is the advantage
of WVD by contrast with the STFT or the wavelet transform. The disadvantage is that
the signal enters in the WVD in as quadratic rather than linear way, which is the cause
of many interference phenomena. One of them is so-called “crossterm interference”, in
Figure 5.2.3, that reflects the correlation of signal components in vicinity of a certain
moment. This artifact in the crossterm and the fact that there does not exist an algorithm
to find an atomic decomposition of a signal by it’s transform, prevent the WVD from
being used for practical applications to TFR, even though it possesses many desirable
properties for signal analysis and has practically much better time-frequency resolution
compared with STFT, especially for signals which have a very short time duration, [130]
[131].
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Figure 5.2.3: Wigner-Ville distribution of two Gaussian function. (a) input signal: sum
of two Gaussian functions. (b) Wigner-Ville distribution. (c) Choi-Williams distribu-
tion

To reduce the crossterm interference with limited affects on the useful properties, an
intuitive approach is to apply a 2-D low-pass filter to the WVD, i.e.,

1

2π

∫ ∞

−∞

∫ ∞

−∞
WVD(t− µ, ω − τ)φ(µ, τ) dτ dµ . (5.2.16)

Expanding the term of WVD in (5.2.16) yields

C(t, ω) =

∫ ∞

−∞
e−jωτ

∫ ∞

−∞
Φ(t− µ, τ) s(µ+ τ/2) s∗(µ− τ/2) dµ dτ , (5.2.17)

where the function Φ(t, τ) denotes the Fourier transform of φ(µ, τ). Formula (5.2.17)
is called as “Cohen’s class” developed in the field of the quantum mechanics by Leon
Cohen [132] [133] [134]. Figure 5.2.3.(c) shows the alias-free WVD of the signal (a)
filtered by Choi-Williams filter [135], which is one of the prominent members of Cohen’s
class.

Wavelet transform (WT)
The wavelet transform or wavelet analysis is probably the most recent solution to
overcome the shortcomings of the Fourier transform. The main idea behind wavelet
analysis is to decompose a signal f into a basis of windows function Ψ i;

f =
∑
i

aiΨi . (5.2.18)
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The wavelet transform provides a similar time-frequency description to STFT (5.2.7),
with a few important differences. The continuous wavelet transform formula is

Wf (a, b) = |a|−1/2

∫
f(t) ψ

(
(t− b)

a

)
dt, (a, b) ∈ R

2 , (5.2.19)

and by restricting a, b in (5.2.19) to only discrete values, a = am0 , b = nb0a
m
0 , the discrete

wavelet transform is obtained,

WD
f (m,n) = a0

−m/2
∫
f(t)ψ(a−m0 t− nb0) dt, (m,n) ∈ Z , (5.2.20)

where a0 > 1, b0 > 0 fixed. In both cases we assume that ψ satisfies∫
ψ(t) dt = 0. (5.2.21)

One similarity between the wavelet transform and STFT is clear that both (5.2.7) and
(5.2.19) take the inner products of f with a family of analyzing functions indexed by two
labels, γω,τ (t) = γ(t− τ)e−jωt in (5.2.7) and ψa,b(t) = |a|−1/2ψ

(
t−b
a

)
called “wavelets”

in (5.2.19). The beginning atom function ψ(t) is called mother wavelet or analyzing
wavelet. The important difference that distinguishes the wavelet transform from the STFT
lies in the shapes of their analyzing functions. While the frequency localization width of
γω,τ in STFT does not depend on ω0 and the resulting decomposition is consequently of
∆ω = constant type, the analyzing functions ψa,b of wavelet transform are shifted along
the signal with the parameter of translation b in time and dilated with scaling parameter
a, which covers different frequency ranges, i.e., large values of the scaling parameter |a|
correspond to small frequencies and small values of |a| to high frequencies. Hence, in
the case of wavelets we normally do not speak about time-frequency representations but
about time-scale representations, scale being in a way the opposite of frequency, because
the term frequency is reserved for the Fourier transform.

The localization of wavelets depends on the parameter a and the resulting decom-
position will be a collection of time-frequency representation at ∆ω/ω = constant of
the signal, all with different resolutions. Wavelets can be hereby interpreted as impulse
responses of constant-Q filters, and because of this collection of representations we
can speak of a multiresolution analysis. There exist many different types of wavelet
transform, but they start from the basic formulas (5.2.19), (5.2.20).

5.2.4 Comparison by time-frequency tiling

In previous section, we have showed some expansions for time-frequency localization.
An easy way to compare such expansions is in terms of their time-frequency tiling.
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Each atom in an expansion has a particular localization characterized by energy
concentration of the atoms. Furthermore, in the case of a structured expansion, these
localizations are related to each other through simple transformations. This results in a
tiling of time-frequency plane, which depends on the set of transformations. Figure 5.2.4
shows schematically the different localizations of the expansions in time-frequency plane.

t

A

f f f f

t t t t(b) (c) (d) (e)

(a)

Figure 5.2.4: Time-frequency tiling. (a) input signal, sine wave plus impulse. (b) iden-
tity transform (expansion on impulse basis). (c) discrete-time Fourier transform. (d)
short-time Fourier transform (Gabor expansion). (e) discrete-time wavelet transform.

Given the input signal (a) in Figure 5.2.4, it would be desirable to have an expansion
(or transform) that captures both the isolated impulse and the isolated frequency com-
ponent. The impulse basis in part (b) locates the impulse of the input signal very well,
but its representation of the sinusoid is very redundant. By contrast, the Fourier trans-
form (c) isolates the sinusoid frequency well, but its localization of impulse is not clear.
The short-time Fourier transform (d) and wavelet transform (e) provide a compromise
between the two former transforms. Typically, the short-time Fourier Transform leads to
a rectangular tiling, while the wavelet transform leads to a dyadic tiling. The wavelet
transform (e) achieves better localization of the time-domain impulse, without sacrificing
too much of the frequency localization, however, a high-frequency sinusoid would not be
well localized.

The wavelet transform operates as a microscope with scalable window function
which focuses on smaller time phenomenon as the scale becomes small, whereas the
STFT decomposes a signal with the window function that is constant at all frequencies,
as shown in the figure. Namely, the wavelet permits a local characterization of signal,
which the Fourier transform does not, and it is one of most important advantages of
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wavelet transform in signal analysis. For the purpose of signal compression, it is clear
that a transform whose basis function most closely resembles the input signal would
provide the greatest efficiency and compression ratio. With some constraints one can
constructs the wavelets that are appropriate to each class of input signals. Because of
this adaptability of wavelet basis, the wavelet transform can be an efficient method for
transform coding in signal compression system.

5.3 Wavelets In General

5.3.1 Wavelets

Wavelets are building block functions that cut up data into different frequency compo-
nents, and then study each component with a resolution matched to its scale. In real
world we usually have the signals that are limited in time or in frequency (band-limited).
The time-limited signals can be efficiently represented using a basis of block functions,
e.g. Dirac delta functions. However these block functions are not limited in frequency.
For band-limited signals we intuitively use the Fourier basis of which sines and cosines
are not limited in time. A compromise between the pure time-limited and band-limited
basis functions is wavelets, namely, the elementary constituents used signal analysis and
synthesis, and is also called as time-frequency atoms or wavelet packets, depending on the
circumstances. The wavelets are obtained by scaling and translation of the single atom
function called mother wavelet or analyzing wavelet. The mother wavelet ψ(t) satisfies
the conditions ∫ ∞

−∞
ψ(t) dt = 0,

∫ ∞

−∞
|ψ(t)| dt <∞,

where ψ̂(ω) is the Fourier transform of ψ(t). A typical choice for the mother wavelet ψ
is so-called “mexican hat” function as follows

ψ(t) = (1 − t2)e−t
2/2 ,

which is second derivative of the Gaussian e−t
2/2, as shown in Figure 5.3.1.

The mexican hat function is well localized in both time and frequency and satisfies
the conditions mentioned above. Given a mother wavelet ψ(t), we construct a sequence
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Figure 5.3.1: Mexican hat function (second derivative of the Gaussian probability
density function) and its scaled and translated wavelets

of wavelets by dilation parameter a and translation parameter b of ψ(t),

ψa,b(t) = |a|−1/2 ψ

(
t− b

a

)
a > 0, b ∈ R .

This is the Grossmann-Morlet wavelets.
In wavelet analysis, temporal analysis is performed with a contracted high-frequency

version (small value of a) of the mother wavelet ψ, while frequency analysis is performed
with a dilated low-frequency version (high value of a) of the same wavelet. This process is
nearly identical with work of our auditory system, which consists of the representation of
the ears as a bank of filters with constant δf/f for frequencies higher than about 500Hz,
so it suggests that wavelet-based methods for acoustical analysis have a better chance
than other methods. Because the original signal or function can be represented in terms
of wavelet expansion (using coefficients in a linear combination of the wavelet functions),
data operations can be performed using just the corresponding wavelet coefficients.

One of the main advantages of wavelet transform is the fact that one can choose the
mother wavelet depending on the characteristics of information in the signal which has to
be pointed out. The choice of mother wavelet is subject only to some mathematical admis-
sibility conditions that are not very restrictive in practice (see the admissibility conditions
in next subsection). By choosing the best wavelets adapted to our signal, or truncating
the coefficients below a threshold, the signal is sparsely represented. This sparse coding
makes wavelets an excellent tool in the field of data compression.

Since the wavelet transform associates to a function of two variables, time and
scale, it generates a two-dimensional representation from a one-dimensional signal.
This double representation allows to interpret all the specific information carried by the
signal, and establishes a relation between the result of the wavelet transform and physical
parameters associated with the signal. Consequently, the wavelet transform can be used
to localize discontinuities and to extract modulation laws, and the phase of the wavelet
transform can be used to define an instantaneous frequency at a given scale.
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5.3.2 Properties of wavelet transform

Linearity
The Wavelet transform is linear. This property is very useful. It means that the transform
of the sum of signals is the sum of their transforms, which is convenient for the analysis
of polyphonic signals. It should be remarked that the TFR by Wigner-Ville distribution
is not linear but rather bilinear or quadratic, as we showed in the previous section.

Admissibility Conditions
Since the wavelet transform is linear, we may ask for an inversion formula by resum-
mation of wavelets weighted by the coefficients. From the Formula (5.2.19) it is given
by

f(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
Wf(a, b) ψa,b(t)

da db

a2
, (5.3.1)

where Cψ is a constant,

Cψ = 2π

∫ ∞

−∞

|ψ̂(ω)|2

ω
dω <∞, (5.3.2)

that depends on the choice of the mother waveletψ. From the formulas (5.3.1) and (5.3.2),
we notice that the lossless reconstruction of the function f from the wavelet transforma-
tion is possible only ifCψ exists, that is, if the integral in (5.3.2) converges. This condition
that a mother wavelet has to satisfy is called the admissibility condition. It implies also
that the Fourier transform of ψ(t) vanishes at the zero frequency. In practice this condition
therefore relaxes into

−Eψ =

∫
|ψ(t)|2 dt < +∞, −ψ̂(0) =

∫
ψ(t) dt = 0. (5.3.3)

They mean that ψ(t) has finite energy, that is, a bandpass like spectrum and zero mean
value in time domain, respectively. So ψ(t) has to oscillate, and in other words it must
be a wave. This is a very important observation, which we will use later on to build an
efficient wavelet transform.

Regularity (decay property)
For practical applications that seek a signal description with as few components as possi-
ble, it is not a desirable property that the time-bandwidth product of wavelet transform is
the square of the input signal. It can be tackled by making a quickly decreasing wavelet
transform with corresponding scale a. The regularity conditions state that the wavelet
function should have some smoothness and concentration in both time and frequency
domains.
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The term of regularity seems to be derived from the definition that a filter is regular
with k if its z-transform has k zeros at z = eiπ. In wavelet theory, it is related with scale
function, which is possible only if all wavelet moments up to k−1 vanish. The regularity
condition can be also explained using the concept of vanishing moments. We expand the
wavelet transform into the Taylor series at t = 0 [136], for simplicity b = 0, and it is
given by

Wf(a, b=0) =
1√
a

[
n∑
p=0

f (p)(0)

∫
tp

p!
ψ

(
t

a

)
dt + O(n+ 1)

]
, (5.3.4)

where f (p) stands for the pth derivative of f , and O(n+ 1) denotes the rest of the expan-
sion. We define the moments of the wavelet by Mp,

Mp =

∫
tp ψ(t) dt, (5.3.5)

then we can rewrite (5.3.4) with the finite development as follows,

W(a, 0) =
1√
a

[
f(0)aM0 +

f (1)(0)

1!
a2M1 +

f (2)(0)

2!
a3M2 + ...

...+
f (n)(0)

n!
an+1Mn +O(an+2)

]
. (5.3.6)

From the admissibility condition, M0 = 0, therefore, the first term in the right-hand side
of the (5.3.6) is zero. If the other moments Mn = 0 also, then the coefficients of W(a, b)
will decay as fast as an+2 for a smooth signal f(t). This is called vanishing moments or
approximation order. N vanishing moments corresponds to N approximation order of
the wavelet transform. These moments do not need to be exactly zero, but small value is
often enough. In practice, the number of vanishing moments required depends heavily on
the application [137]. With the admissibility conditions, the regularity is one of the most
important properties of wavelet transform. For more detail about it, we refer to [138]
[100].

As mentioned in previous section, we precedently have the wave from the admissibil-
ity condition. The regularity and vanishing moments give us the property of fast decay,
that is, let. Now they together give us the term wavelet.

Energy Conservation
The total energy of the signal can be expressed in term of the values of the transforms by

Ef =

∫
|f(t)|2 dt =

1

Cψ

∫
|Wf (a, b)|2

da db

a2
. (5.3.7)
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This expression allow us to interpret the square of the modulus of the transforms as a
density of energy distributed over the domains of representation.

Constraints on Coefficients
The wavelets are, in general, not orthogonal:

〈ψa,b, ψa′,b′〉 =

∫
ψ̄a,b(t) ψa′,b′(t) dt �= 0. (5.3.8)

The coefficients of the transform are constrained to satisfy

Wf (a, b) =

∫
Pψ(a, b; a′, b′) Wf(a

′, b′)
da′ db′

a′2
, (5.3.9)

where Pψ(a, b; a′, b′) = Cψ
−1〈ψa,b, ψa′,b′〉. Formula (5.3.9) means that it is possible to

find a grid such that the analysis coefficients at the points of the grid allow an arbitrarily
accurate reconstruction of the coefficients on the representation plane. Figure 5.5.1
illustrates the points form of such a grid compared with the case of STFT.

5.4 The Continuous Wavelet Transform

5.4.1 Definition of CWT

As mentioned previously, a wavelet expansion uses dilations and translations of one fixed
function, the mother wavelet ψ ∈ L2(R). In the case of continuous wavelet transform
(CWT), the dilation and translation parameters a,b vary continuously over R, with the
constraint a �= 0. In result, a doubly-indexed family of wavelets from ψ by dilating and
translating is generated as

ψa,b(t) =
1√
|a|

ψ
(x− b

a

)
with a, b ∈ R, a �= 0 . (5.4.1)

The variable x usually denotes either time or space. These functions are scaled so that
their L2(R) norms are independent of a, i.e., for all a, b ‖ψa,b‖ = ‖ψ‖ with assuming
‖ψ‖ = 1. The CWT of a function f ∈ L2(R) is now defined by

Wf(a, b) = 〈 f, ψa,b 〉 (5.4.2)

=

∫
f(x) |a|−1/2 ψ

(
x−b
a

)
dx . (5.4.3)
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Using Parseval’s identity, we can also write this as

2πWf(a, b) = 〈 f̂ , ψ̂ a,b 〉 , (5.4.4)

where
ψ̂ a,b(ω) =

a√
|a|

e−iωb ψ̂(aω) . (5.4.5)

Suppose that the wavelet ψ satisfies the admissibility condition mentioned in the section
5.3.2, and we recall it,

Cψ = 2π

∫
|ω|−1 |ψ̂(ω)|2 dω <∞ . (5.4.6)

Then, the resolution of the identity holds for all f, g ∈ L2(R) as follows,∫ ∞

−∞

∫ ∞

−∞
Wf (a, b) Wg(a, b)

da db

a2
= Cψ〈f, g〉 . (5.4.7)

Now the continuous wavelet transform W(a, b) is invertible on its range, and an inverse
transform is given by the relation

f(x) = Cψ
−1

∫ ∞

−∞

∫ ∞

−∞
Wf (a, b) ψa,b(x)

da db

a2
. (5.4.8)

In formula (5.4.2), the continuous wavelet transform is calculated by continuously
shifting a continuously scalable function over a signal and calculation the correlation be-
tween the two signals. The correspondence f(x) → Wf (a, b) represents a one-variable
function by a function of two variables, into which lots of correlations are built in, and
it will be also clear that the scaled functions will be nowhere near an orthogonal basis.
Therefore, the obtained wavelet coefficients will be highly redundant. In fact, orthogo-
nality is one of most important properties in signal analysis, but it is often not desirable,
for example, when one wants to explore the characteristics of signal with well correlated
fine representation [139] [140].

In some applications the redundancy can help to reduce the sensitivity to noise
[136]or improve the shift invariance of the transform [138]. However, for most practical
applications, especially for the data compression, in where require a perfect reconstruc-
tion property and a signal description with as a few components as possible, we would
like to remove this redundancy. This links to the orthonormal wavelet basis, the perfect
reconstruction filter banks and the multiresolution analysis in discrete-time wavelet
transform, which are discussed in section 5.6 and 5.7.
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5.4.2 The CWT in higher dimensions

We consider the CWT that can be made in dimensions lager than 1, i.e., L2(Rn) with
n > 1. One possibility is to choose the wavelet ψ ∈ L2(Rn) so that it is spherically
symmetric, as well as ψ̂(ω) = η(|ω|) [100]. Then the admissibility condition becomes

Cψ = (2π)n
∫ ∞

0

|η(t)|2 dt
t
<∞ . (5.4.9)

The resolution of the identity in (5.4.7) is supplemented for all f, g ∈ L2(Rn) as follows,∫ ∞

0

∫ ∞

−∞
Wf (a, b) Wg(a, b) db

da

an+1
= Cψ〈f, g〉 , (5.4.10)

where Wf(a, b) = 〈f, ψa,b〉, as before, and ψa,b(x) = a−n/2ψ(x−b
a

), with a ∈ R+, a �= 0,
and b ∈ R

n. Consequently, the reconstruction version of high-dimensional CWT is given
by

f = Cψ
−1

∫ ∞

0

∫
Rn

Wf (a, b) ψa,b db
da

an+1
. (5.4.11)

Other approach is to choose a ψ that is not spherically symmetric, and to introduce
rotation as well as dilations and translations [141] [142]. In two dimensions, for instance,
we then define

ψa,b,θ(x) = a−1 ψ

(
R−1
θ

(x− b

a

))
, (5.4.12)

where a > 0, b ∈ R
2, and where Rθ is the matrix ( cos θ − sinθ

sin θ cos θ ). Then the admissibility
condition becomes

Cψ = (2π)2

∫ ∞

0

∫ 2π

0

|ψ̂(r cos θ, r sin θ)|2 dθ dr
r
<∞ , (5.4.13)

and the corresponding resolution of the identity is

f = Cψ
−1

∫ ∞

0

∫
R2

∫ 2π

0

Wf (a, b, θ) ψa,b,θ dθ db
da

a3
. (5.4.14)
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5.5 Discreet Wavelets: Wavelet Series

In CWT we do not put any constraints on the choice of the two coordinates a and b, and
they can therefore map the whole (a, b) plane, in principle. In discrete wavelets, however,
we restrict the choice of possible (a, b) values as a = am0 and b = nb0a

m
0 . Compared with

discrete-time wavelet transform, the discrete wavelets or wavelet series are merely the
discrete representation of the both time and scale axes of CWT. This discretization allows
the wavelet transform to be numerically computed as a series of discrete convolutions in
time at discrete intervals of scale.

5.5.1 Discretization of parameters

In practical applications, the CWT can only be computed on a discrete grid of points
(an, bn)n∈Z. As in the case of the STFT, the most intuitive way of doing this is simply
uniform sampling the time-frequency plane. However, in the case of wavelet transform,
the scale change can be used to reduce the sampling rate. At higher scales (lower frequen-
cies), the sampling rate can be decreased, according to Nyquist’s rule. In other words, if
the time-scale plane needs to be sampled with a sampling rate of N1 at scale s1, the same
plane can be sampled with a sampling rate ofN2, at scales2, where s1 < s2 andN2 < N1.
The actual relationship between N1 and N2 is given by

N2 =
s1

s2

N1 . (5.5.1)

If synthesis is not required, the Nyquist criteria does not need to be satisfied. The restric-
tions on the discretization and the sampling rate become important if, and only of, the
signal reconstruction is desired.

Now we describe the discretization procedure in mathematical terms. Suppose that ψ
is simply defined by

ψ̂(ω) =

{
1 |ω| ∈ [1, a0],

0 elsewhere,
(5.5.2)

for some a0 > 1. Since, in that particular case, the scaled function fa is band-limited
by ψ̂(ω) to [−a0

a
,−1

a
] ∪ [ 1

a
, a0
a
], it is completely determined by its samples fa( ma

π(a0−1)
),

m ∈ Z. Moreover, the frequency axis is tiled by the intervals [−am0 ,−am−1
0 ]∪ [am−1

0 , am0 ],
m ∈ Z, so that f can be recovered form the data of fm = fam

0
,m ∈ Z, where the different

values of m correspond to wavelets of different widths. Therefore, the discretization of
the translation parameter b should depend on m, that is, high frequency wavelets are
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translated by small dilation steps in order to cover the whole time range, while lower
frequency wavelets are translated by larger dilation steps2.

To discretize b we therefore choose b = nb0a
m
0 , m,n ∈ Z, for some fixed b0 > 0.

With formula (5.4.1) given before, we can now define the discrete wavelets as follows,

ψm,n(x) = a
−m/2
0 ψ(a−m0 x− nb0), m, n ∈ Z, (5.5.3)

where fixed a0 > 1 and b0 > 0. Although (5.5.3) is called a discrete wavelet, it is
piecewise a continuous function normally. Consequently, the effect of discretizing the
wavelet is that the time-scale plane is now sampled at discrete intervals, as shown in
Figure 5.5.1.

s

τ τ

ω

(a) (b)

Figure 5.5.1: Comparison of analysis grids for wavelet transform (a), and the STFT
(b).

We usually choose s0 = 2 so that the sampling of the frequency axis corresponds to
dyadic sampling [143] [144]. This is very natural choice for computers, the human ear
and music, for instance. For the translation factor we usually choose b0 = 1 so that we
also have dyadic sampling grid of the time axis. In this case, the sampling rate is reduced
for the time axis by a factor of 2 at every scale, since the discrete scale changes by factors

2The following analogy may clear this concept. Consider the whole process as looking at a particular
object. The human eyes first determine the coarse view which depends on the distance of the eyes to the
object. This corresponds to adjusting the scale parameter a−m

0 . When looking at a very close object, with
great detail, m is negative and large (low scale, high frequency, analyses the detail in the signal). Moving
the head (or eyes) very slowly and with very small increments (of angle, of distance, depending on the
object that is being viewed), corresponds to small values of b = nam

0 b0. Note that when m is negative and
large, it corresponds to small changes in time, b, (high sampling rate) and large changes in s −m

0 (low scale,
high frequencies, where the sampling rate is high). The scale parameter can be thought of as magnification
too.
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of 2. This choice of a0 = 2 and b0 = 1 is also used to construct an orthonormal wavelet
basis which is a very important class of discrete wavelets (see section 5.5.3). It has been
also covered to sample with more irregular sets of a, b [145] [146] [147].

Now the wavelet transformation using discrete wavelets is given by

Wf (m,n) = a0
−m/2

∫
f(t)ψ(a−m0 t− nb0) dt, (m,n) ∈ Z . (5.5.4)

Formula (5.5.4) implies also that the transformation of a continuous signal using the
discrete wavelets results in a series of wavelet coefficients. Generally, the transform that
only uses the dyadic values of a and b as (5.5.4) was called the discrete wavelet transform.
However, at this time, this term is ambiguous, since the discrete wavelets are not time-
discrete actually, only the translation and scale steps are discretized, as described above.
Furthermore, the term DWT is also used to denote the transform from the sequence of
scaling function coefficients of a function to its wavelet coefficients (see section 5.6).
Therefore, in the discrete wavelets case, it is referred to as the wavelet series or wavelet
series decomposition instead of DWT, analogous to the Fourier series and discrete Fourier
transform (DFT).

In such a decomposition scheme, an important issue is naturally the question of re-
construction. In the case of the CWT, this question was answered immediately by the
resolution of the identity (5.4.7), which does not exist in this discrete case. The recon-
struction of a signal from its wavelet series is only possible if the ψm,n constitute either a
frame, an orthonormal basis or a biorthogonal basis. Let us start with the frame that we
give some detail in the next section. The relationship between the frame and numerically
stable reconstructions from discretized wavelets was first pointed out by A. Grossmann
(1985). In [100], it is proven that the necessary and sufficient condition for stable re-
construction is that the energy of the wavelet coefficients must lie between two positive
bounds, i.e.

A‖f‖2 ≤
∑
m,n

|〈f, ψm,n〉|2 ≤ B‖f‖2 , (5.5.5)

where ‖f‖2 is the energy of f(t), A > 0, B <∞, and A, B are independent of f(t). The
family of basis functions ψm,n(t) with m,n ∈ Z is referred to as a frame with bounds
A and B, if, and only if, for all f ∈ Ł2(R), (5.5.5) is satisfied. When A = B, the
frame is tight and the discrete wavelets behave exactly like an orthonormal basis. When
A �= B, exact reconstruction is still possible at the expense of a dual frame. In a dual
frame the decomposition wavelet is different from the reconstruction wavelet. Now, if
ψm,n satisfy (5.5.5), we can recover f by summing the wavelet series, weighted by the
wavelet transform coefficients:

f(t) =
∑
m,n

Wf (m,n) ψm,n(t). (5.5.6)
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If ψm,n are orthonormal or biorthonormal, the transform will be non-redundant,
whereas if they form a frame, the transform will be redundant. On the other hand, it
is much easier to find frames than to find orthonormal or biorthonormal bases. One of
the main disadvantages of discrete wavelets is that the resulting wavelet transform is no
longer shift-invariant (or time-invariant), which means that the wavelet transforms of a
signal and of a time-shifted version of the same signal are not simply shifted versions of
each other.

5.5.2 Frames of wavelets

A frame is a family of vectors which can represent any finite energy signal by the se-
quence of its inner products with the vectors of the family. It is a generalization of the
concept of basis in a linear space. Note that not all sequences of values may represent
a sequence of samples. In general, frames are a stable and redundant representation of
signals. We briefly review here this frames introduced by Duffin and Schaffer, [148].

Let Φ = {ϕn}n∈Z in a Hilbert space H. Φ is called a frame if there exist A > 0,
B <∞ so that

A‖f‖2 ≤
∑
n∈Z

|〈f, ϕn〉|2 ≤ B‖f‖2, for all f ∈ H. (5.5.7)

It is called frame condition. A and B are called the frame bounds. A frame Φ is called a
tight frame if the frame bounds can be taken to be equal. To such a sequence in (5.5.7),
we associate the frame operator U that transforms any f ∈ H into the square-summable
sequence of its frame inner products, i.e. (〈f, ϕn〉)n∈Z in l2(Z). The adjoint of U is U ∗ :
l2 → H. If we define that G ≡ U∗U : H → H is any positive Hermitian operator such
that f ∗ Gf ≥ 0 for all f ∈ H, then we can simply rewrite the frame condition (5.5.7)
with the identity operator I : Cn → Cn (defined by Iu ≡ u for all u ∈ Cn) as follows,

AI ≤ G ≤ BI , (5.5.8)

in the sense that A〈f, f〉 ≤ 〈U ∗Uf, f〉 ≤ B〈f, f〉 for all f ∈ H. From (5.5.8) it can be
immediately concluded that the eigenvalues of G lie in the interval [A,B], and are equal
in the tight frame case.

With traditional assuming that A is chosen as large as possible and B as small as pos-
sible, in particular, the frame bounds will be often taken as the minimum and maximum
eigenvalues of G. Because all eigenvalues of G are nonzero it follows from (5.5.8) that G
is invertible so that we can define a new sequence Φ̃ = G−1Φ. Thus it turns out that Φ̃ is
itself a frame with bounds A−1 > 0, B−1 <∞,

1

B
‖f‖2 ≤

∑
n∈Z

|〈f, ϕ̃n〉|2 ≤
1

A
‖f‖2 , (5.5.9)
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since we have
〈f, ϕ̃n〉 = 〈f,G−1ϕn〉 = 〈G−1f, ϕn〉 . (5.5.10)

The frame Φ̃, which is an image of the frame Φ through G−1, is called the dual frame
of the Φ. It can be easily checked that the associated frame operator Ũ satisfies Ũ =
U(U∗U)−1 so that we have

Ũ∗U = [UG−1] ∗ U = G−1G = I ,

U∗Ũ = U∗UG−1 = I . (5.5.11)

This shows that any f ∈ H can be expressed as

f =
∑
n∈Z

〈f, ϕn〉ϕ̃n =
∑
n∈Z

〈f, ϕ̃n〉ϕn . (5.5.12)

Thus, it is true that the reconstruction of an arbitrary signal is also possible by applying
the dual frame Φ̃ or using inverse of G (≡ U ∗U). This can be done by a fast algorithm
given as follows,

G =
A +B

2
(I − R) , (5.5.13)

where the residual operator R = I − 2
A+B

G, which satisfies

‖R‖ ≤ B − A

A+B
< 1 , (5.5.14)

according to (5.5.8). Hence the series
∑∞

k=0R
k converges in norm, and its limit is (I −

R)−1. Consequently, we have

ϕ̃n = G−1 ϕn =
2

A+B

∞∑
k=0

Rk ϕn , (5.5.15)

which means that we can approximate G−1 by truncating the series of Rk at a certain
order depending on the desired accuracy. Note that the convergence of (5.5.15) is very
fast when the frame bounds are close in the sense A− B � A+B.

In the tight frame case, i.e., A = B, we simply have Φ̃ = A−1Φ and rewrite (5.5.7),
for all f ∈ H, ∑

n∈Z

|〈f, ϕn〉|2 = A‖f‖2 ,

and it follows
f = A−1

∑
n

〈f, ϕn〉 ϕn , (5.5.16)

which gives a trivial way to recover f from the 〈f, ϕn〉. Although the formula (5.5.16) is
very similar to the expansion of f in an orthonormal basis, it is redundant and also not
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orthonormal basis. However if the frame bounds A = B = 1, and if ‖Φ‖ = 1 for all
n ∈ Z, then the Φ constitute an orthonormal basis, and its transform is not redundant.
In other words, the discrete wavelets, for instance, can be made orthogonal to their own
dilations and translations by special choice of the mother wavelet, e.g.∫

ψm,n(t)ψ
∗
m′,n′(t) dt =

{
1 if m = m′ and n = n′ ,

0 otherwise .
(5.5.17)

Then the reconstruction formula (5.5.6) will be the expansion of orthonormal bases. In
next section we discuss more about the orthonormal basis.

In the case of wavelet family ψm,n, a criterion for the existence of the frame bounds
was derived by Daubechies [100] under the assumptions that

0 < c1 ≤
∑
n∈Z

|ψ̂(am0 ω)|2 ≤ c2 <∞ (5.5.18)

and
β(s) = sup

ω∈R

∑
n∈Z

|ψ̂(am0 ω)ψ̂(am0 ω + s)| ≤ C(1 + |s|)−(1+ε) , (5.5.19)

for some ε > 0. Note that the dual frame ψ̃m,n = G−1 ψm,n will not be generated by the
translations and dilations of its mother function ψ̃. The frame bounds are given by

A =
2π

b0

{
c1 −

∑
k∈Z
k �=0

[
β
(2π

b0
k
)
β
(
−2π

b0
k
)]1/2

}
,

B =
2π

b0

{
c2 −

∑
k∈Z
k �=0

[
β
(2π

b0
k
)
β
(
−2π

b0
k
)]1/2

}
, (5.5.20)

under the condition that A is strictly positive. It is easy to verify that this is always the
case when b0 is smaller than a certain threshold bt, recall that c1 > 0. Moreover, if we
choose a0 and b0 close to 1 and 0, respectively, then the ratio A−B

A+B
tends to 0, hence, A

and B arbitrarily close to 1 after renormalization. In the result, the ψm,n will be closely
a tight frame and an orthonormal basis. This process is quite equivalent to oversampling
the CWT on a very dense grid. For this reasons, the wavelet series decomposition is
often referred to as the oversampled wavelet transform.

5.5.3 Orthonormal wavelet bases

As the case of CWT, it is clear that the wavelet series decomposition is also redundant
representation of a signal, since it is merely to discretize the scale and translation steps
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of CWT. In the case of a tight frame, if all wavelets ψm,n(x) in (5.5.3) are necessary to
reconstruct a general signal, then the wavelets form an orthonormal basis of the space
of signals with finite energy [149]. That is, by considering more restrictions on the sam-
pling parameters a0 and b0, it is possible to remove the redundancy in the reconstruction
formula (5.4.8), so that it may be regarded as the expansion of f in a basis.

Meyer [150] and Strömberg [151] showed that if we choose a0 = 2, b0 = 1, then there
exist some wavelets ψ(x) ∈ L2(R) with good time-frequency localization properties,
such that

ψm,n(x) = 2−m/2 ψ(2−mx− n), m, n ∈ Z (5.5.21)

constitute an orthonormal basis for L2(R). These particular wavelets are called orthog-
onal wavelets. In this case, an arbitrary signal can be represented exactly as a weighted
sum of basis functions obtained by scaling and translation of a single prototype function
ψ(x),

f =
∑
m,n∈Z

〈 f, ψm,n 〉ψm,n . (5.5.22)

It is true that the orthonormal wavelet bases can be built for sequences of scales other than
(2m)m∈Z, but we will concentrate on dyadic scales which lead to simpler decomposition
algorithms.

ψ( t)

ψ( 2jt)

ψ( 2jt-k)

t

t

t

2-j

2-jk

2-j( k+1)

1

-1

0

Figure 5.5.2: Haar wavelet and its scaled and shifted version.

The Haar basis is the oldest example of a function ψ for which the ψm,n defined by
(5.5.21) constitute an orthonormal basis for L2(R). The Haar basis is a piecewise function
such that

ψ(x) =


1 0 ≤ x < 1

2

−1 1
2
≤ x < 1

0 otherwise .
(5.5.23)

Note that the Haar wavelet is not continuous (see Figure 5.5.2), and its Fourier trans-
form decays only like |ω|−1. These correspond to inefficient approximation for smooth
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functions and bad frequency localization, respectively, and are therefore a major incon-
venience of the Haar wavelet for many applications. On the other hand, the Haar basis is
an unconditional basis for Lp(R), 1 < p < ∞, and it is advantage of the Haar basis in
comparison with the short-time Fourier basis [100].

Another most important wavelet example is the sinc basis, which is well known as a
key function for the reconstruction of special band-limited signals in signal processing,
that is,

ψ̂(ω) =

{
1 π < |ω| ≤ 2π,
0 otherwise.

(5.5.24)

They are limit cases of orthonormal wavelet bases with good time resolution (Haar
basis) and good frequency resolution (sinc basis).3 Namely, they have complemental
time-frequency properties to each other.

0

0

0 05-5

0.5
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1
1

-1
10-10 20-20

0.2

0.4

0.6

0.8

ψ(t) |ψ(ω)|^

Figure 5.5.3: Example of orthogonal wavelet. (a) Cubic spline by Lemarié and Battle.
(b) Modulus of its Fourier transform. This wavelet ψ(x) can be interpreted as the
impulse response of a band-pass filter.

The methods for orthogonal wavelet construction can be divided into two classes.
First, there are direct constructions by Strömberg [151], Meyer [152], Battle [153] and
Lemarié [154], which consist in “smoothing” the sinc function in the Fourier domain so
that the function in time domain has faster decay. Figure 5.5.3 shows an example of a
particular orthogonal wavelet which is a cubic spline studied independently by Lemarié
and Battle. Another method, which is pioneered by Daubechies [155] and seems more
relevant for numerical applications, is to construct indirectly the wavelets from iterated
discrete-time filter banks in time domain, and this study of the iteration leads to the
notion of regularity of the discrete-time filter. These constructions can be considered as
smoothed versions of the Haar function, leading to better frequency resolution. Hence,

3In addition to sinc basis, the Littlewood-Paley basis, with ψ(x) = (πx)−1 (sin 2πx − sinπx) or
ψ̂(ξ) = (2π)−1/2 if π ≤ |ξ| ≤ 2π, 0 otherwise, is also an orthonormal wavelet basis with good frequency
localization.

CHAPTER 5. WAVELET TRANSFORM AND FILTER BANK 119



120 5.5.3 Orthonormal wavelet bases

it can be seen that one of the main goals of the wavelet bases theory is to construct the
wavelet bases that have the time-frequency properties of the two extreme cases of Haar
and sinc bases, simultaneously. In the STFT case, according to the Balian-Low Theorem
[156] [98], it is impossible to construct an orthonormal windowed Fourier basis with
such a function well localized in time and frequency.
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ψ(t)

ϕ( t)

Figure 5.5.4: Meyer wavelet and scaling function.

As an example of the direct constructions of orthonormal wavelet basis, the Meyer
wavelet basis is given by

ψ̂ =


2−1/2 eiω/2 sin[π

2
ν (3|ω|

2π
− 1)] 2π

3
≤ |ω| ≤ 4π

3

2−1/2 eiω/2 cos[π
2
ν (3|ω|

4π
− 1)] 4π

3
≤ |ω| ≤ 8π

3

0 otherwise,

(5.5.25)

where ν is a Cn function that is on the interval [0, 1] and satisfies

∀x ∈ [0, 1], ν(x) + ν(1 − x) = 1. (5.5.26)

Meyer wavelet is a tight frame, and its transform is generally implemented in the Fourier
domain. The construction of (5.5.25) is a frequency band-limited function whose Fourier
transform is smooth, and this smoothness provides a much faster asymptotic decay in
time. As a result, the combining positive and negative frequencies gets rid of the re-
dundancy of the frame (i.e., tight frame with frame bound 1), and the orthonormality is
achieved by the smooth function ν(x). We refer to [100] for proving that the wavelets
constitute an orthonormal basis. Figure 5.5.4 shows an example of the ψ(x), with the
choice ν(x) = x4(35 − 84x+ 70x2 − 20x3).
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In fact, the simple statement of (5.5.21) opened an important exchange between
harmonic analysis and discrete signal processing. For example, orthogonal wavelets
dilated by 2m carry signal variations at the resolution 2−m, and the decomposition of
a function in such an orthonormal wavelet basis can be computed with a quadrature
mirror filter bank. It means that the construction of the orthonormal bases is directly
related to the multiresolution analysis and the multirate filter banks which are discussed
in following sections. Practically, using the multiresolution analysis developed by S.
Mallat and Y. Meyer, all the constructions of the orthonormal wavelet bases referred in
this section can be more satisfyingly explained.

5.6 Multiresolution Analysis and Wavelets

Stephane Mallat (1985) discovered some close connections among the quadrature mirror
filters, the pyramid algorithms and the orthonormal wavelet bases. With the concept of
orthonormal wavelet bases as a tool, he tried to describe mathematically the “increment in
information” needed to go from a coarse resolution to a higher resolution approximation.
On the basis of this insight, Mallat [157] and Meyer [152] formulated such successive
approximations and created a framework for wavelet expansions called multiresolution
analysis (MRA), which provides a natural framework to understand wavelet decomposi-
tions and new construction methods of orthonormal wavelet bases.

One of the most important contributions of MRA was to establish links with the ideas
and methods that are related to the wavelet analysis and independently developed in
various fields, for example, in quantum mechanics, mathematics and signal processing.
Indeed, the MRA provided a formalized bridge between the ideas of other disciplines
and then catalyzed the rediscovery of wavelets with comprehensive studies and the
proliferation of its application areas, indeed.

5.6.1 Multiresolution approximations of closed subspaces

A multiresolution analysis (MRA) of L2(R) is defined as a sequence of closed subspaces
Vj of L2(R), j ∈ Z, with the following properties [157] [155] [100]:
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f(t) ∈ Vj ⇔ f(t− 2jk) ∈ Vj , (5.6.1)

Vj+1 ⊂ Vj ,
4 (5.6.2)

f(t) ∈ Vj ⇔ f(2jt) ∈ V0 , (5.6.3)

lim
j→+∞

Vj =
+∞⋂
j=−∞

Vj = {0} , (5.6.4)

lim
j→−∞

Vj =

+∞⋃
j=−∞

Vj = L2(R) , (5.6.5)

and there exist a scaling function ϕ ∈ V0 such that

the collection {ϕ(t− n)}n∈Z is an orthonormal5basis of V0 . (5.6.6)

The space Vj can be viewed as the set of all possible approximations of functions at
the resolution 2−j. MRA is then obtained by computing the approximation of signals at
various resolutions with orthogonal projections onto different spaces {Vj}j∈Z. In order
to calculate the approximation, the orthogonal basis of each space Vj is generated by
dilating and translating a single function ϕ called scaling function, i.e.,

ϕj,n(t) = 2−j/2ϕ(2−jt− n), n ∈ Z. (5.6.7)

When the resolution 2−j goes to 0, the property (5.6.4) implies that we lose all the details
of f and

lim
j→+∞

‖Pjf‖ = 0, (5.6.8)

where Pj denotes the orthogonal projection operator onto Vj. When the resolution 2−j

goes +∞, the completeness property (5.6.5) ensures that

lim
j→−∞

Pjf = f in L2(R), lim
j→−∞

‖f −Pjf‖ = 0. (5.6.9)

When the resolution 2−j increases, the decay rate of the approximation error ‖f −PVj
f‖

depends on the regularity of f .
The inner products 〈f, ϕj,k〉, which provide a discrete approximation at the scale 2j,

can be rewritten by convolution product as following,

〈 f, ϕj,n 〉 =
1√
2j

∫ +∞

−∞
f(t)ϕ(2−jt− n) dt = f ∗ ϕ̄j(2jn) , (5.6.10)

4As in the ladder of Sobolev spaces, we use also this nesting order which is the most practical for
numerical analysis, even though the reverse ordering (i.e. V j ⊂ Vj+1) is used in many literatures.

5Since an orthogonal MRA is of interest for most practical applications, we use only orthonormal basis
instead of Riesz basis to define the MRA
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where ϕ̄j(t) = 2−j/2ϕ(2−jt). Since the frequency contents ofϕ are typically concentrated
in [−π, π], the calculation of the inner products 〈 f, ϕj,n 〉 is a lowpass filtering of signal
f sampled at interval 2j .

From the multiresolution causality property (5.6.2) with (5.6.6), it is immediate that
the scaling function ϕ may be expressed as a linear combination of the basis function of
V−1. Since ϕ ∈ V0 ⊂ V−1, and the ϕ−1,n are an orthonormal basis in V−1, a sequence
h[n] ∈ l2(Z) exists such that ϕ satisfies

ϕ(t) =
√

2
∑
n∈Z

h[n]ϕ(2t− n), (5.6.11)

where
h[n] = 〈ϕ(t),

√
2ϕ(2t− n) 〉 ⇒

∑
n∈Z

h[n] =
√

2. (5.6.12)

The equation (5.6.11) is called refinement equation6. The sequence h[n] will be inter-
preted as a discrete filter. The Fourier transform of (5.6.11) yields

Φ(ω) =
1√
2
H(ω/2)Φ(ω/2) , (5.6.13)

where H is a 2π-periodic function defined by H(ω) =
∑+∞

n=−∞ h[n]e−jnω. The periodic-
ity gives H(nπ) = 0 for all odd integer n. Then the equation (5.6.13) yields

Φ(2kπ) = δk, k ∈ Z. (5.6.14)

Practically, this is the first of the so-called “Strang-Fix conditions”7. To be able to use the
collection {ϕ(t − n)} to approximate even the simplest functions such as f(t) ≡ 1, it is
natural to assume that the scaling function and its integer translates form a partition of
unity, which we may normalize to 1:∑

n∈Z

ϕ(t− n) =
∑

ϕ(t) = Φ(0) = 1. (5.6.15)

By Poisson’s summation formula, (5.6.15) is equivalent to (5.6.14) essentially. The or-
thogonality of the collection {ϕ(t− n)}n∈Z in property (5.6.6) means that

〈ϕ(t), ϕ(t− n)〉 = δn . (5.6.16)

6It goes by several different names: dilation equation, scaling equation or two-scale equation
7The Strang and Fix conditions characterize the approximating properties of a shift-invariant localized

operator by its ability to reconstruct polynomials. In MRA, it is used to relate the number of vanishing
moments of a wavelet to the order of multiresolution approximation. [158] [159] [160]
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As the relation between (5.6.14) and (5.6.15), the orthogonality (5.6.16) is equivalent to∑
k∈Z

|Φ(ω + 2kπ|2 = 1. (5.6.17)

When we apply (5.6.13) recursively, we obtain the infinite product formula:

Φ(ω) = Φ(2−jω)

+∞∏
j=1

H(2−jω)√
2

. (5.6.18)

If ϕ(t) is integrable, then Φ(ω) is continuous for all ω. It means also that
limj→+∞ Φ(2−jω) = Φ(0). Since Φ(0) = 1, (5.6.18) can be simplified such that

Φ(ω) =

+∞∏
j=1

H(2−jω)√
2

. (5.6.19)

(5.6.19)8 shows that scaling function ϕ(t) can be constructed directly from the h[n]. In
many applications, we never need the explicit expression of the scaling function, indeed.
However, there are fast algorithms that use the refinement equation (5.6.11) to evaluate
the scaling functionϕ at dyadic points [155][161][159][162]. To guarantee that (5.6.19) is
the Fourier transform of a scaling function, the Fourier series of h[n] = 〈ϕ(t),

√
2ϕ(2t−

n)〉 satisfies

|H(ω)|2 + |H(ω + π)|2 = 2 (5.6.20)

H(0) =
√

2. (5.6.21)

The relation between the two necessary conditions is that

H(π) = 0 ⇒
∑
n∈Z

(−1)nh[n] = 0. (5.6.22)

Since the condition (5.6.20) is identical to the quadrature condition (4.2.17) of
discrete filter in section 4.2.3, it is proved that any scaling function is specified by the
CMF.

8The convergence of this product is proved in [100] [98].
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5.6.2 Orthogonal wavelet function and detail spaces

By considering a space Wj to be the orthogonal complement of Vj in Vj−1, we can con-
struct wavelets from MRA. The space Wj satisfies

Vj−1 = Vj ⊕Wj , (5.6.23)

where the symbol ⊕ stands for direct sum. Because Vj ⊂ Vj−1, the orthogonal projection
of f on Vj−1 can be decomposed as

Pj−1f = Pjf + Qjf , (5.6.24)

where Qj denotes the orthogonal projection operator ontoWj . The space Wj contains the
“detail” information of f that is needed to go from a coarser approximation at resolution
2−j to a finer approximation at resolution 2−j−1. Since Wj ⊂ Vj−1 ⊥ Wj−1, it follows
that Wj is also orthogonal to Wj−1. It is therefore immediate that all the subspaces Wj

are mutually orthogonal unlike the subspaces Vj. Consequently, it implies that we can
decompose

L2(R) =
⊕
j

Wj . (5.6.25)

Similarly to the definition of scaling function ϕ, if a collection of closed subspaces
satisfies (5.6.1)-(5.6.6), there exist wavelet function ψ such that {ψ(t − n)}n ∈ Z is
an orthonormal basis of W0. For all scales, the whole collection {ψj,n}(j,n)∈Z, ψj,n(t) =
2−j/2ψ(2−jt − n), is then an orthonormal basis of L2(R). Since ψ0,n ∈ W0 ⊂ V−1, a
sequence g[n] ∈ l2(Z) exists such that

ψ(t) =
√

2
∑
n∈Z

g[n]ϕ(2t− n) . (5.6.26)

The Fourier transform of (5.6.26) is given by

Ψ(ω) =
1√
2
G(ω/2)Φ(ω/2) , (5.6.27)

where G is a 2π-periodic function, i.e., G(ω) =
∑+∞

n=−∞ g[n]e−jnω. If the sequence h[n]
is the corresponding CMF, the sequence g[n] can be directly obtained from h[n], i.e.,

G(ω) = e−jωH∗(ω + π) , (5.6.28)

and its inverse Fourier transform is

g[n] = (−1)1−nh[1 − n] . (5.6.29)

This mirror relation enables us to consider a fast wavelet transform.
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The sufficient conditions for a orthogonal MRA and for a orthogonal wavelet, i.e.,
〈ψ(t), ϕ(t− n)〉 = 0 and 〈ψ(t), ψ(t− n)〉 = δn, are equivalent to∑

k∈Z

Ψ(ω + 2kπ)Φ∗(ω + 2kπ) = 0 , (5.6.30)∑
k∈Z

|Ψ(ω + 2kπ)|2 = 1 , (5.6.31)

respectively. From these conditions, the necessary and sufficient conditions on G(ω) for
designing an orthogonal wavelet are given as

|G(ω)|2 + |G(ω + π)|2 = 2, (5.6.32)

G(ω)H∗(ω) +G(ω + π)H∗(ω + π) = 0. (5.6.33)

We observe that once the filter H has been chosen, it completely determines the
functions ϕ and ψ and therefore, the multiresolution analysis. Moreover, in properly
constructed algorithms, the values of the functions ϕ and ψ are usually never computed.
Due to the recursive definition of the wavelet bases, all the manipulations are performed
with the CMFs H and G, even if they involve quantities associated with ϕ and ψ.

5.6.3 Relation between regularity and vanishing moments

Regularity condition states that the wavelet function should have some smoothness, which
plays an important role in compression applications, and concentration in both time and
frequency domains. A higher degree of smoothness corresponds to better frequency lo-
calization of the filters, and is strongly desired in numerical analysis applications. From
the refinement equation it is clear that the regularity of ϕ and ψ is the same. Tchamitchian
[163] related the uniform Lipschitz regularity of ϕ and ψ to the number of zeros of H(ω)
at ω = π. To make ψ and ϕ reasonably regular, H(ω) should be of the form

H(ω) =
√

2

(
1 + e−jω

2

)M
L(ω) , (5.6.34)

with M ≥ 1. L(ω) is a 2π-periodic smooth function with L(0) = 1 and L(1) �= 0, since
H(ω) has a root of multiplicity M at ω = π. This factorization of H(ω) implies that
the regularity of ϕ and ψ increases with M , which is equal to the number of vanishing

moments of ψ. Note that when L(ω) = 1, the choice H(ω) =
(

1+e−jω

2

)M
corresponds to

the basic spline scaling function. The moments of ϕ and ψ are defined by

Mϕ =

∫ ∞

−∞
tm ϕ(t) dt , Mψ =

∫ ∞

−∞
tm ψ(t) dt , (5.6.35)
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with 0 ≤ m < M . The vanishing moments property means that the basis functions are
chosen to be orthogonal to any polynomial of degree less thanM , namely, if the collection
of functions {ψ(t− k)} is an orthonormal basis of W0, then∫ ∞

−∞
tm ψ(t) dt = 0, m = 0, . . . ,M − 1. (5.6.36)

If a signal f is reasonably regular and ψ has enough vanishing moments then the
wavelet coefficients |〈f, ψj,k〉| are small at the fine scales 2j. If m = 0 in (5.6.36), then
ψ has a vanishing integral (admissibility condition of CWT) which allows us to give a
precise characterization of the functions with a certain smoothness in terms of the decay
of the CWT. Similarly, to obtain the characterization of functions with more smoothness,
the ψ needs to have more vanishing moments. According to the Strang-Fix conditions
[158], this is closely related to the property that the scaling function and its translates
can be used to represent polynomials. By using (5.6.13) and (5.6.14), the fact that H(ω)
having number of zeros at ω = π implies that

im Φm(2kπ) = δkMϕ , 0 ≤ m < M. (5.6.37)

It follows that
Mϕ =

∑
n∈Z

(t− n)m ϕ(t− n) , 0 ≤ m < M. (5.6.38)

Thus this proves that ψ has M vanishing moments if and only if any polynomial with
degree smaller than M can be written as a linear expansion of {ϕ(t− n)}n∈Z.

The decay of |ϕ(t)| and |ψ(t)| implies that Φ(ω) and Ψ(ω) are M times continuously
differentiable. Hence the rate of decay depends also on the number of vanishing
moments of the functions of the basis. The Haar functions have only one vanishing
moment, and for this reason the gain in the decay is insufficient to make computing in
the Haar basis practical. To have a faster decay, it is necessary to use basis functions
with several vanishing moments. The vanishing moments are responsible for attaining
practical algorithms, i.e. controlling the constants in the complexity estimates of the fast
algorithms.

5.6.4 Compactly supported wavelets

If a signal f has an isolated singularity at the inside of the support of ψj,n(t), then the
coefficients may have a large amplitude. To minimize the number of high amplitude co-
efficients we must reduce the support size of ψ. To minimize the size of the support, we
must synthesize CMFs with as few non-zero coefficients as possible. Form the definition
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128 5.6.4 Compactly supported wavelets

of the h[n], h[n] = 〈ϕ(t),
√

2ψ(2t − n)〉, it is immediate that if h[n] has finite impulse
response (FIR) CMFs then ϕ and ψ have also compact support. For compactly supported
ϕ the H(ω) becomes a trigonometric polynomial:

H(ω) =
N−1∑
n=0

h[n] e−jnω. (5.6.39)

We recall the factorization formula (5.6.34),

H(ω) =
√

2

(
1 + e−jω

2

)M
L(e−jω) , (5.6.40)

where (1 + e−jω)M is a minimum size polynomial having M zeros at ω = π. Since
|H(ω)|2 and |L(e−jω)|2 are polynomial in cosω, we can rewrite (5.6.40) as following

|H(ω)|2 = 2
(
cos

ω

2

)2M

P
(
sin2 ω

2

)
. (5.6.41)

In terms of P , the orthonormal condition (5.6.20) is equivalent to

(1 − y)MP (y) + yMP (1 − y) = 1 , (5.6.42)

for any y = sin2(ω/2) ∈ [0, 1].
By using the Bezout theorem [100] we can obtain the solution P (y) ≥ 0 of minimum

degree, which enables to minimize the number of non-zero terms of the finite Fourier
series H(ω). Let us study this theorem in some detail. If Q1(y) and Q2(y) are two poly-
nomials of degrees p1 and p2 with no common zeros, then there exist unique polynomials
P1(y) andP2(y) of degrees p2 − 1 and p1 − 1 so that

P1(y)Q1(y) + P2(y)Q2(y) = 1 . (5.6.43)

By applying this to (5.6.42), there exist two unique polynomials P1(y) and P2(y) such
that

(1 − y)MP1(y) + yMP2(y) = 1 . (5.6.44)

Substituting P2(y) = P1(1−y) = P (1−y) leads to the unique minimum degree solution
of (5.6.42) as

P (y) =
M−1∑
k=0

(
M − 1 + k

k

)
yk , (5.6.45)

with P (y) ≥ 0 for y ∈ [0, 1]. Higher degree solution P+ ≥ 0 can also be obtained by the
factorization of

P+(y) = P (y) + yMR(1
2
− y) , (5.6.46)

128 CHAPTER 5. WAVELET TRANSFORM AND FILTER BANK



5.6.4 Compactly supported wavelets 129

where R is an odd polynomial. To construct a minimum degree polynomial given by

L(e−jω) =

p∑
k=0

lke
−jkω = l0

p∏
k=0

(1 − ake
−jω) (5.6.47)

with |L(e−jω)|2 = P (sin2(ω/2)), we factor the |L(e−jω)|2 as

|L(e−jω)|2 = L(e−jω)L(ejω) (5.6.48)

= P

(
2 − ejω − e−jω

4

)
= Q(e−jω) , (5.6.49)

which can then be solved by extending it to the whole complex plane with the variable
z = ejω:

L(z)L(z−1) = l20

p∏
k=0

(1 − akz)(1 − akz
−1) (5.6.50)

= P

(
2 − z − z−1

4

)
= Q(z) . (5.6.51)
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Figure 5.6.1: Daubechies orthogonal wavelets ψ and scaling function ϕ with m van-
ishing moments.

In order to obtain the polynomial L(z) of the form (5.6.40), it remains only to find
the square root L(z)of Q(z), referred to as spectral factorization. To prove the existence
of L(z) of Q(z), we refer to [100] [164]. In the result, we have the polynomial L(z) with
the minimum degree p = M − 1, with l20 = Q(0) = P (1/2) = 2M−1. It leads to the filter
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130 5.6.5 Biorthogonal wavelet bases

h of minimum size N = M + p+ 1 = 2M . All the works till now can then be seen as to
synthesize a FIR CMF h of size 2M .

Daubechies compactly supported orthonormal wavelets are constructed by the spec-
tral factorization of (5.6.46), with different choicesM andR. Figure 5.6.1 displays ϕ and
ψ, for M = 2, 3, 4, 5 and R ≡ 0, i.e. minimum size support. Due to the choice of min-
imum phase square root of Q(e−jω), Daubechies wavelets are highly non-symmetric as
showed in Figure 5.6.1. A more symmetric wavelets, called symmlet, can be constructed
by obtaining an almost linear complex phase [155]. Lina and Mayrand [165] constructed
the complex CMFs with a compact support and a linear phase, but they have redundant
coefficients when the signal is real. Determining the regularity of compactly supported
orthonormal wavelets is harder than, e.g. the case of the Meyer or the Battle-Lemarié
wavelets. It is due to the partly different degree of regularity of them. Several methods
for the problem are suggested in [155] [161] [162] [166].

5.6.5 Biorthogonal wavelet bases

Note again that the Haar wavelet is the only real-valued wavelet that satisfies the linear-
phase (symmetry) and orthogonality (paraunitarity) simultaneously. By relaxing the or-
thogonality conditions to biorthogonal properties, we can obtain wavelets with more flex-
ibility that are limited in the case of orthogonal wavelets. In the biorthogonal case, a dual
scaling function ϕ̃ and a dual wavelet ψ̃ exist that generate a dual multiresolution analysis
with subspaces Ṽj and W̃j , such that

Ṽj ⊥Wj , Vj ⊥ W̃j , and W̃j ⊥Wj′ (j �= j′) . (5.6.52)

Namely the biorthogonality of the decomposition and reconstruction wavelets implies
that Wj is not orthogonal to Vj but is to Ṽj whereas W̃j is not orthogonal to Ṽj but is to
Vj. The biorthogonality of (5.6.52) is equivalent with

〈ϕ̃(t), ψ(t− n)〉 = 〈ψ̃(t), ϕ(t− n)〉 = 0 , (5.6.53)

〈ϕ̃(t), ϕ(t− n)〉 = 〈ψ̃(t), ψ(t− n)〉 = δn , (5.6.54)

〈ϕ̃j,n, ϕj,n′〉 = δn−n′ , (5.6.55)

〈ψ̃j,n, ψj′,n′〉 = δj−j′δn−n′ , (5.6.56)

for any (j, j′, n, n′) ∈ Z. Since the dual functions define also a MRA, they have to satisfy

ϕ̃(t) =
√

2
∑
n∈Z

h̃[n] ϕ̃(2t− n) , (5.6.57)

ψ̃(t) =
√

2
∑
n∈Z

g̃[n] ϕ̃(2t− n) . (5.6.58)

130 CHAPTER 5. WAVELET TRANSFORM AND FILTER BANK



5.6.6 Discrete-time wavelet transform (DWT) 131

Using the same fashion as (5.6.28), (5.6.30) and (5.6.31) the necessary conditions are
given by

H∗(ω)H̃(ω) +H∗(ω + π)H̃(ω + π) = 2 , (5.6.59)

G∗(ω)G̃(ω) +G∗(ω + π)G̃(ω + π) = 2 , (5.6.60)

H∗(ω)G̃(ω) +H∗(ω + π)G̃(ω + π) = 0 , (5.6.61)

G∗(ω)H̃(ω) +G∗(ω + π)H̃(ω + π) = 0 , (5.6.62)

and
G(ω) = e−jωH̃∗(ω + π) , G̃(ω) = e−jωH∗(ω + π). (5.6.63)

The projection operators take the form

Pjf =
∑
n∈Z

〈f, ϕ̃j,n〉ϕj,n and Qjf =
∑
n∈Z

〈f, ψ̃j,n〉ψj,n . (5.6.64)

and
f =

∑
j,n∈Z

〈f, ψ̃j,n〉ψj,n =
∑
j,n∈Z

〈f, ψj,n〉 ψ̃j,n . (5.6.65)

IfH(ω) andG(ω) are FIR CMFs, ϕ and ψ are compactly supported, whereas the dual
functions are, in general, not compactly supported. The number of vanishing moments of
ψ and ψ̃ depends on the number of zeros at ω = π of H(ω) and H̃(ω). Since G(ω) =

e−jωH̃∗(ω + π), the number of vanishing moments of ψ̃ is equal to the number M of
zeros at ω = π of H(ω).

As mentioned, an advantage of the biorthogonal wavelets is that the construction of
linear-phase filters or combination of symmetry and antisymmetry is possible. If h[n]
and h̃[n] have an odd number of non-zero samples and are symmetric about n = 0,
then ϕ(t) and ϕ̃(t) are symmetric about t = 0, while ψ(t) and ψ̃(t) are symmetric with
respect to a shifted center. If h[n] and h̃[n] have an even number of non-zero samples and
are symmetric about n = 1/2, then ϕ(t) and ϕ̃(t) are symmetric about t = 1/2, while
ψ(t) and ψ̃(t) are antisymmetric with respect to a shifted center.

5.6.6 Discrete-time wavelet transform (DWT)

From the equations (5.6.11), (5.6.16) and (5.6.26) we see that

h[n− 2k] = 〈ϕ(t− k), ϕ(2t− n)〉 , (5.6.66)

g[n− 2k] = 〈ψ(t− k), ϕ(2t− n)〉 . (5.6.67)
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This leads to a form of multirate decomposition as a discrete wavelet transform (DWT),
i.e.

ϕ(2t− n) =
∑
k∈Z

h[n− 2k]ϕ(t− k) +
∑
k∈Z

g[n− 2k]ψ(t− k) . (5.6.68)

Since Vj = Vj+1 ⊕Wj+1, we can express a function vj ∈ Vj as the sum of a function
vj+1 ∈ Vj+1 and a function wj+1 ∈Wj+1:

vj(t) = vj+1(t) + wj+1(t) =
∑
n∈Z

aj [n]ϕj,n (5.6.69)

=
∑
n∈Z

aj+1[n]ϕj+1,n +
∑
n∈Z

dj+1[n]ψj+1,n , (5.6.70)

where aj [n] = 〈f, ϕj,n〉 and dj[n] = 〈f, ψj,n〉. The coefficients aj [n] and dj[n] can then
be calculated as

aj+1[k] =
∑
n∈Z

h[n− 2k] aj [n] , (5.6.71)

dj+1[k] =
∑
n∈Z

g[n− 2k] dj[n] , (5.6.72)

for the decomposition, and

aj [k] =
∑
n∈Z

h[k − 2n] aj+1[n] +
∑
n∈Z

g[k − 2n] dj+1[n] , (5.6.73)

for the reconstruction. It is easy to see that the same algorithm can be applied to the dual
functions. This process is equivalent to the cascade discrete filtering with subsampling
and upsampling, as illustrated in Figure 5.6.2. It is often called Mallat’s algorithm [83].
Since the complexity of this operation is O(n)9, i.e. the amount of work is proportional
to the signal length, this algorithm is also known as the fast wavelet transform (FWT).

If we iterate the decomposition up to the largest scale 2J , we obtain an multirate
orthogonal wavelet representation of a signal f with resolutions 2−J < 2−j ≤ 2−L. The
finest approximation aL can then be composed by following

aL = aJ

L<j≤J⊕
j

dj. (5.6.74)

9as a comparison, the fast Fourier transform (FFT) has a complexity of O(n log n)
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Figure 5.6.2: Cascade structure for fast wavelet transform.

The economy of the wavelet transform stems from the fact that the DWT tends to
compress real-world signals into just a few coefficients of large magnitude. Compression
follows form the vanishing moments property of wavelets, which guarantees that the
wavelet coefficients of low-order polynomial signals are zero. Thus, if a signal is exactly
polynomial, it can be completely described using scaling coefficients alone. In more
realistic situations, the signal will not be polynomial, but may be well-approximated by
a piecewise polynomial function. Because wavelet functions also have localized support,
most of the wavelet coefficients of such a signal will be zero except those corresponding
to wavelets having support near the breakpoints of the polynomial segments.

5.7 Filter Banks and Wavelets

Paralleling the advances of wavelet analysis in pure and applied mathematics were those
of multirate filter bank in signal processing, but in the context of discrete-time signals.
Discrete-time wavelet transform (DWT),10 which we use practically in applications,
can be computed by using multirate filter banks. The construction of the wavelet bases
is equivalent to designing two-channel filter banks. In computer vision, the filter bank

10It must be cleared that discrete wavelets or wavelet series are not discrete-time processing, but they are
merely discrete representation of the time-scale plane of CWT
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has been used to obtain the successive approximations of images starting from a coarse
resolution and going to finer resolution. This successive approximation view is closely
related to the multiresolution analysis (MRA), which is a natural framework for the
construction of the orthonormal wavelet bases.

5.7.1 QMF and wavelets

We have seen with (5.3.3) that the wavelet has a bandpass like spectrum. If wavelet can be
considered as a bandpass filter, then a series of dilated wavelets can be seen as a bandpass
filter bank. In a particular configuration, that is, when the filter bank has octave bands, one
obtains a discrete wavelet series. In signal processing, such an octave band or logarithmic
spectrum has been popular less for its mathematical properties than because it is more
nature for certain applications such as audio compression since it emulates the hearing
process of the ears.

To accomplish the octave division of the frequency space, a standard way is using the
QMF such as in Figure 4.2.2(b), which consists of a pair of lowpass and highpass filter.
The symmetry of the QMFs enables to facilitate minimizing leakage between filters and
to minimize phase distortion. If we can create a wavelet function whose spectral content
mimics the QMFs and which also satisfy the additional requirements for valid wavelet
functions, then we can use these functions as a basis set for the wavelet transform11.
Thus one way to understand the need for several types of wavelet functions is to realize
that they correspond to different shapes of the QMFs in the Fourier domain, i.e. different
ways to bandlimit the signal. In result, if one wavelet can be seen as a bandpass filter and
a scaling function is a lowpass filter, then a series of dilated wavelets together with the
scaling function can be seen as a filter bank.

5.7.2 Scaling function and lowpass filter

Even with discrete wavelets (wavelet series) in previous section 5.5, there still exist the
problem of an infinite number of scalings and translations to calculate the wavelet trans-
form. This problem can be solved by using scaling function, introduced by Mallat [83].
Scaling function sets lower bound for the wavelets as a lowpass filter12 in Figure 5.7.1.

11The STFT can also be described in terms of lowpass and highpass filters but here they divide the
frequency axis equally and not proportionally as for the wavelet QMFs.

12Because of the lowpass nature of the scaling function spectrum, it is sometimes referred to as the
averaging filter
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If we analyze a signal using the combination of scaling function and wavelets as in
Figure 5.7.1, the scaling function undertakes the low spectrum band which otherwise
should be covered by all the wavelets up to unlimited scale, while the rest is done by the
wavelets. Consequently we can limit the number of wavelets from an infinite number to a
finite number. In that case, the highpass filter corresponds to the wavelet function whereas
lowpass filter corresponds to the scaling function. Scaling function is defined by

ϕm,n(x) = 2−m/2ϕ(2−mx− n). (5.7.1)

Its Fourier transform is

Φ(ω) =
Θ(ω)(∑∞

k=−∞|Θ(ω + 2kπ)|2
)1/2

, (5.7.2)

where the function {θ(t− n)}n∈Z is a orthonormal Riesz basis.
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Figure 5.7.1: Lower bounding of an infinite set of wavelets by scaling function.

For a lowpass filter, the polynomial H(z) =
∑
h[n]e−jnω is near zero at the ω = π

(z = −1 in z-plane). The lowest frequency ω = 0 (z = 1) passes through an ideal filter
provided H(1) = 1. The condition H(−1) = 0 is fundamental in wavelet theory. It must
hold exactly to have any chance of continuous scaling functions and wavelets. Therefore
the scaling function has to satisfy admissibility condition similar to (5.3.3),∫

ϕ(x) dx = 1, (5.7.3)

which means that the 0th moment of the scaling function can not vanish.
The scaling function ϕ(x) can be written in terms of itself on a smaller scale ϕ(2x),

ϕ(x) =

M−1∑
k=0

ck ϕ(2x− k), (5.7.4)

where the ck are numerical constants that define the scaling function. This functional
equation is called refinement equation or dilation equation. The range of the summation
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is determined by the specified number of nonzero coefficients M . (5.7.4) is orthogonal
to its translation, i.e.,

∫
ϕ(x)ϕ(x− k) dx = 0. The corresponding wavelet function ψ(x)

which is orthogonal to its dilations, i.e.,
∫
ψ(x)ψ(2x−k) dx = 0, has a recursive relation

to the scaling function with reversed order of the coefficients,

ψ(x) =
∑
k

(−1)k c1−k ϕ(2x− k) . (5.7.5)

The wavelet function ψ is dependent upon the solution of scaling function ϕ. The value
of the coefficients is determined by constraints of orthogonality and normalization [161].
Normalization requires that ∑

k

ckck−2l = 2δ0l , (5.7.6)

which means that the sum of the squares of all coefficients is two. From the above condi-
tions, ∑

k

(−1)k c1−kck−2l = 0 . (5.7.7)

Hence, it turns out that the above conditions of scaling function correspond to the condi-
tions of perfect reconstruction filter bank, and that the ck are the coefficients of lowpass
filter H(z) for the CMF.

Because of the recursive relations between the scaling and wavelet function, it is pos-
sible to represent a signal gradually, i.e., coarse-to-fine representation. This “increment
in information” leads to the MRA. Mallat proved that a multiresolution approximation is
entirely characterized by the scaling function which is specified by a CMF.

When we use scaling function instead of wavelets, we lose information. That is to
say, from a signal representation point of view we do not loose any information, since it
will still be possible to reconstruct the original signal, but from a wavelet analysis point
of view we discard possible valuable scale information. The width of the scaling function
spectrum is therefore an important parameter for using the wavelet transform. The shorter
its spectrum the more wavelet coefficients we will have and the more scale information.
But, as always, there will be practical limitations on the number of wavelet coefficients
we can handle.

Data compression using wavelet transform will be achieved by its ability to efficiently
approximate a signal with few non-zero wavelet coefficients. The design of wavelets must
therefore be optimized to produce a maximum number of wavelet coefficients that are
close to zero. A signal f has few non-negligible wavelet coefficients if most of the fine-
scale wavelet coefficients are small. This depends mostly on the regularity of f , the num-
ber of vanishing moments of ψ and the size of its support.
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Chapter 6

Reversible Design of Subband and
Wavelet Transform

Theoretically the wavelet transformation and PR filter banks are losslessly invertible.
However, this invertibility often depends on the fact that the transform is calculated using
exact arithmetic. For lossless compression, however, it should be considered that the re-
sulting output data of most non-singular linear transforms consist of rational or real num-
bers because of their floating point coefficients. In practice, a finite-precision arithmetic
is employed to perform the transforms, and such arithmetic is inherently inexact due to
errors introduced by rounding. Therefore it is to say, in the strict sense, that the transforms
that are lossless invertible in exact arithmetic are lossy in finite-precision arithmetic, e.g.,
when using computers in practice. Even when the input data consist of sequences of in-
teger samples (this is the case for audio, image, and video signal in digital world), the
outputs no longer consist of integers. Moreover the loss of the information would in-
crease still more in the stage of the quantization of the transform coefficients in signal
compression system.

This chapter begins by introducing the concept of reversibility of the transforms and
the several reversible design methods that are efficiently used in signal compression.
Next, the lifting scheme is presented as a general framework for the design and imple-
mentation of wavelet transform, and we show how the lifting scheme can be modified to
a transform that allows an integer version of every wavelet transform. We then examine
how lifting can be used in conjunction with M-channel subband transform. Finally, an
experimental investigation of the proposed reversible transforms is presented by testing
them in decorrelation stage on the lossless audio compression system.
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6.1 The concept of reversible transform

It is important to clearly define the terms of perfect (exact) reconstruction system and
reversible system in order to avoid the possible ambiguity in both terms;

Perfect reconstruction system: if the signals x(n) and x̂(n) are identical up to multi-
plicative constant and a delay term, the system is called PR system.

Reversible System: a reversible system is an implementation of a PR system, in integer
arithmetic, so that a signal with integer coefficients can be losslessly recovered. An
efficient reversible system is a reversible system with transform matrix of determi-
nant ≈ ±1.

In principle, the construction of reversible transforms is simple. Through the appropri-
ate use of quantization or rounding, any PR linear transform can be modified so that it can
be computed using finite-precision arithmetic while preserving lossless invertibility. Be-
cause of the use of quantization, the resulting reversible transform is generally nonlinear
and only serves to approximate the linear transform from which it was derived. If the re-
versible transform fails to mimic the behavior of its parent transform, the desirable prop-
erties of the parent transform will likely be lost and poor results will be obtained. Hence,
the key consideration in the design process is to construct efficient reversible transforms
that successfully approximate their parent transform. Hence, this efficient construction
is by no means a straightforward task, although the idea behind generating reversible
transform is easily stated.

In the past, reversible transforms have been developed largely by ad hoc methods
that are difficult to generalize. Some good transforms were developed, e.g., S-transform,
RTS transform, and S+P transform, that are all nonlinear approximation to well-known
linear transforms, and were devised using ad hoc methods. Fortunately, a symmetric
method for construction reversible transform based on lifting scheme has been recently
proposed. The lifting scheme enables us to construct the wavelets without the translation
and dilation of one fixed function (wavelet). More interestingly, it can be easily modified
to implement reversible wavelet transform that maps integers to integers, and that is also
reversible. On the other hand, integer computations are much faster than floating point
for computers and much easier to implement in hardware which is more important in
some applications.
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6.2 Reversible subband transforms

6.2.1 S-Transform

A classic example of a reversible transform is the S-transform (Sequential transform)
proposed in [167] [168] which has become quite popular for lossless signal compression
(especially image compression). A sequence of random integers x[n] with length N , can
be perfectly represented by the two sequences with length N/2 defined by

lp[n] = �(x[2n] + x[2n + 1])/2� , (6.2.1)

hp[n] = x[2n] − x[2n + 1] ,

where the floor �·� represents a maximum integer not exceeding a real number x. This
is so called (2 × 2)1 S-transform. Several slightly different definitions of this transform
exist in the literature. In fact, the S-transform is a nonlinear approximation to a scaled ver-
sion of the Haar transform. The Haar transform itself is one of the simplest two-channel
subband transforms, as shown in Chapter 5. Again that the transfer functions of Haar
transform are defined as,

H(z) = (1 + z)/2 , G(z) = 1 − z ,

H̃(z) = 1 + z , G̃(z) = (1 − z)/2 .

This transform is a scaled version of an orthogonal transform. Therefore, the coefficients
of the S-transform must be weighted on a per subband basis in order to approximate an
orthogonal transform. The inverse transformation of (6.2.1) is

x[2n] = lp[n] + �(hp[n] + 1)/2� , (6.2.2)

x[2n+ 1] = x[2n] − hp[n] . (6.2.3)

The idea behind the reversibility of the S-transform is the observation of the facts; the
sum and the difference of two integers are sufficient knowledge to recover the numbers
and have the same parity, i.e., they share the same least significant bit. Therefore the
division by 2 (or a shift right by 1) in Eq. (6.2.1) eliminates a redundant least significant
bit. Figure 6.2.1 shows a block diagram of the transform.

In fact, this transformation is equal to subband decomposition, except for the trun-
cation procedure. Therefore lp[n] and hp[n] are the lowpass and highpass components,
respectively. The main idea behind this representation is that, if the correlation coefficient
of x[2n] and x[2n + 1] is larger than 1/3, then the average variance of lp[n] and hp[n] is
smaller than the variance of x[n]. In this case, hp[n] normally has small variance, while
the variance of lp[n] is approximately equal to the variance of x[n]. The main advantage

1Let the numbers of taps of the lowpass filter and that of the highpass filter be (n×m).
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of S-transform is also that it is easy to find the truncation allowing the PR system.
Moreover, there is no data expansion, i.e., it uses use the same number of samples of the
original signal.
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Figure 6.2.1: Filtering structure of S-transform (Q(x) = �x�).

Unfortunately, the ideas on which the S-transform is based do not generalize to trans-
forms using more complicated relationships that simple pairwise sums and differences.
Consequently the S-transform does not provide any further insight into how other classes
of reversible transforms might be constructed.

6.2.2 Reversible TS-Transform

To design a symmetric short kernel filter (SSKF), Gall and Tabatabei in [169] used a
factorization of a product filter into two linear phase low-pass components. These cor-
respond to the lowpass analysis and synthesis filters. By using the QMF properties the
highpass filters are derived. In their most important example, the following product filter
is factorized

P (z) = 1
16

(1 + z−1)3(−1 + 3z−1 + 3z−2 − z−3) . (6.2.4)

Its two factorized versions are given in [169]

P1(z) = [1
4
(1 + z−1)3] × [1

4
(−1 + 3z−1 + 3z−2 − z−3)]

P2(z) = [1
2
(1 + z−1)3] × [1

8
(1 + z−1)(−1 + 3z−1 + 3z−2 − z−3)] . (6.2.5)

Using this factorization method, another version is considered in [170],

P3(z) = [1
2
(1 + z−1)] × [1

8
(1 + z−1)2(−1 + 3z−1 + 3z−2 − z−3)] . (6.2.6)
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From the third version, a (2×6) PR subband filter can be defined with following filter
coefficients

h =
1√
2
(1, 1)

g =
1

8
√

2
(−1,−1, 8,−8, 1, 1) . (6.2.7)

This transform is called TS(two-six)-transform in the literature [171]. A reversible version
(RTS) of Eq. (6.2.7) is proposed in [172],

lp[n] =

⌊
x[2n] + x[2n + 1]

2

⌋
(6.2.8)

hp[n] =

⌊
1

4

(
−

⌊
(x[2n] + x[2n + 1])

2

⌋
+ 4(x[2n+ 2] − x[2n + 3])

+

⌊
(x[2n + 4] + x[2n+ 5])

2

⌋)⌋
(6.2.9)

The expression for hp can be simplified and written with the use of lp, and the integer
division by 4 can be rounded by adding a 2 to the numerator. These result in,

lp[n] =

⌊
x[2n] + x[2n + 1]

2

⌋
(6.2.10)

hp[n] = x[2n + 2] − x[2n + 3] +

⌊
−lp[n] + lp[n+ 2] + 2

4

⌋
(6.2.11)

The inverse transform of the RTS-transform is quite simple,

x[2n] = lp[n] +

⌊
s[n] + 1

2

⌋
(6.2.12)

x[2n + 1] = lp[n] −
⌊
s[n]

2

⌋
(6.2.13)

where

s[n] = hp[n− 1] −
⌊
−lp[n− 1] + lp[n + 1] + 2

4

⌋
(6.2.14)

As the case of S-transform, the lowpass signal of RTS-transform has the same range
of values as the input signal. This property is especially important in a pyramid system
where the lowpass signal is successively decomposed. There is no systemic error due to
rounding in the integer implementation of the transform, so all error in a lossy system
can be controlled by quantization.
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6.2.3 S+P Transform

Initially proposed by Said and Perlman [173], the S+P transform (S-transform + predic-
tion) is a reversible transform that maps integers to integers and is parameterized by two
sets of filter coefficients. This transform is a further refinement of the S-transform where
the S-transformed highpass output hpo is replaced by the difference between the hpo[n]
and the estimate ĥp[n] obtained using the prediction;

lp[n] = �1
2
(x[2n] + x[2n + 1])� (6.2.15)

hp[n] = hpo[n] − �ĥp[n] + 1/2� (6.2.16)

(6.2.17)

where

hpo[n] = x[2n] − x[2n− 1] (6.2.18)

ĥp[n] =

L1∑
i=L0

αi∆lp[n + i] −
H∑
j=1

βj hpo[n + j] , (6.2.19)

where ∆lp[n] = lp[n − 1] − lp[n]. The use of ∆lp[n] instead of lp[n] allows to have
zero-mean estimation terms, and thus there is no need to subtract the mean from x[n].
Note that the index i can be negative because lp[n] is not replaced by a prediction error.
The optimal predictor coefficients α and β can be found by solving the Yule-Walker
equations (see Chapter 3). The inverse transform uses lp[n] and hp[n] to reconstruct the
original input signal x[n] as given by

x[2n] = lp[n] + �1
2
(hpo[n] + 1)� (6.2.20)

x[2n + 1] = x[2n] − hpo[n] , (6.2.21)

where
hpo[n] = hp[n] + �ĥp[n] + 1

2
� , (6.2.22)

and ĥp[n] is as given above.

Type α−1 α0 α1 β1

A 0 1/4 1/4 0
B 0 2/8 3/8 2/8
C -1/16 4/16 8/16 6/16

Table 6.1: S+P transform predictor coefficients
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In Table 6.12, three sets of predictor coefficients are listed that have been suggested
in [174]. The predictor A in the table has the smallest computational complexity and
yields a reversible version of the TS-transform. In the degenerate case where all of the
predictor coefficients are zero (αi = βi = 0), the S-transform is obtained.
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Figure 6.2.2: Structure of S+P transform. (a) Forward transform, (b) Inverse transform

The filtering structure for the S+P transform is shown in Figure 6.2.2, where A(z),
B(z), QT (x), and Q(x) are defined as

A(z) = (1 + z−1)

L1∑
i=L0

αiz
−1, B(z) =

H∑
j=1

βjz
−j , (6.2.23)

Q(x) = �x�, QT (x) = �x+ 1
2
� . (6.2.24)

Note that the first part of the forward transform structure and last part of the inverse
transform structure are nothing more than the S-transform. If we disregard the effects of

2In image compression applications, the predictor B is the best suited for natural images and the pre-
dictor C is for very smooth medical images.
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the truncation in the S+P transform, we have a linear subband transform that corresponds
to a QMF bank having analysis filters with transfer functions,

H(z) = 1
2
(1 + z),

G(z) = −1
2
(1 + z)A(z2) + (1 − z)[1 +B(z2)] (6.2.25)

As we have seen that the S+P transform does not directly approximate an orthogonal
or near-orthogonal transform. By weighting the transform coefficients associated with
each subband by an appropriate constant, a near-orthogonal transform is obtained.
To handle finite-length signal, it should be assumed that the signal is defined for
n = 0, 1, 2, . . . , N − 1 where N is even. This assumption is required so that when the
input signal is split into two polyphase components. If the signal is not of even length,
the simple solution is to pad the signal by one sample. The S+P transform is typically
applied in a pyramid fashion such that the lowpass signal is successively decomposed. In
this case, we have a reversible wavelet transform.

6.3 Lifting Scheme

Lifting is an iterative procedure for constructing biorthogonal wavelet bases. It was
first developed by Swelden [175] [176] as a method to improve the general wavelet
properties. The procedure takes a simple initial basis and fine-tunes such properties as
the number of vanishing moments and the order of approximation, through successive
modifications of the basis functions. The canonical lifting step involves either modifying
the wavelets while holding the scaling functions fixed or modifying the dual wavelets
while holding the dual scaling functions fixed. This cycle of modifications is repeated
until the desired basis properties are obtained.

6.3.1 Characterization of biorthogonal wavelet bases

The lifting scheme is inspired from a relationship among all biorthogonal wavelets that
share the same scaling function such that one can construct the desired wavelet from a
simple one. The lifting scheme is available only if an initial set of biorthogonal filters hav-
ing a finite impulse response is defined. We assume that the scaling function, wavelet and
their duals are compactly supported. As shown in section 5.6.5, the necessary conditions
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for the finite biorthogonal filters {h, g, h̃, g̃} in matrix form are given by

M(z−1)TM̃(z) = 2I , (6.3.1)

with the modulation matrix M ,

M(z) =

[
H(z) H(−z)
G(z) G(−z)

]
, (6.3.2)

and
G(z) = z−1H̃(−z−1) , G̃(z) = z−1H(−z−1) . (6.3.3)

Note that the orthogonal case corresponds to M being a unitary matrix.
To design the biorthogonal filters, there are various methods for deriving the highpass

filter G(z) from the lowpass filter H(z). For example, Chui [177] showed that if, given
the biorthogonal filters h and h̃, g and g̃ are chosen such that

G(z) = z−1H̃(−z−1)R−1(z−2) , (6.3.4)

G̃(z) = z−1H(−z−1)R(z2) , (6.3.5)

then the filters g and g̃ satisfy the condition (6.3.1). R(z) belongs to the Wiener class if
R(z) �= 0 and r[n] ∈ l1. In this case, the highpass filters g and g̃ are finite only if theR(z)
is a monomial.

According to the theorem of Chui, it is proven by Herley, Vetterli [178] and Sweldens
[175] that if there exists a finite filter s such that

HS(z) = H(z) + z−1H̃(−z−1)S(z−2), (6.3.6)

then the finite filter hs is also biorthogonal to h̃. From using (6.3.3) it then turns out that if
{h, g, h̃, g̃} are biorthogonal then we can construct a new set of finite biorthogonal filters
{hs, g, h̃, g̃s} with

HS(z) = H(z) +G(z)S(z−2) (6.3.7)

G̃S(z) = G̃(z) − H̃(z)S(z2) , (6.3.8)

where S(z) is a trigonometric polynomial. In the time domain it becomes

hs[n] = h[n] +
∑
k∈Z

g[n− 2k] s[−k] (6.3.9)

g̃s[n] = g̃[n] −
∑
k∈Z

h̃[n− 2k] s[k] , (6.3.10)

and these new filters are said to be lifted. In result the lowpass filter h is lifted with the
help of the highpass filter g. It is called primal lifting.
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Given an initial set of biorthogonal scaling functions and wavelets {ϕ, ψ, ϕ̃, ψ̃}, the
new set {ϕs, ψs, ϕ̃, ψ̃s} can be derived by inserting (6.3.9) (6.3.10) in the refinement
equation (5.6.57) (5.6.58):

ϕs(t) =
√

2
∑
k∈Z

h[k]ϕs(2t− k) +
∑
k∈Z

s[−k]ψs(t− k) (6.3.11)

ψs(t) =
√

2
∑
k∈Z

g[k]ϕs(2t− k) (6.3.12)

ψ̃s(t) = ψ̃(t) −
∑
k∈Z

s[k] ϕ̃(t− k) , (6.3.13)

where the coefficients of finite filter s[n] can be freely chosen. In practice the lifting filter
s is designed to produce the new filter G̃S(z) with more zeros at z = 1. Since the support
size of ψ and ψ̃ increases correspondingly to the length of the filter s, construction for
a minimum size of s should be considered in order to achieve specific properties. For
each choice of s, however, the biorthogonality conditions (5.6.53) and (5.6.54) have to be
verified.

To improve the properties of ψ and ϕ̃ we use a dual lifting which modifies highpass
filter g with the help of the lowpass filter h̃. By inverting h with g and g with g̃ in (6.3.9)
and (6.3.10), we obtain the new set {h, gu, h̃u, g̃} from an initial set {h, g, h̃, g̃}:

GU(z) = G(z) +H(z)U(z−2) , (6.3.14)

H̃U(z) = H̃(z) − G̃(z)U(z2) , (6.3.15)

and in the time domain

gu[n] = g[n] +
∑
k∈Z

h[n− 2k] u[−k] , (6.3.16)

h̃u[n] = h̃[n] −
∑
k∈Z

g̃[n− 2k] u[k] . (6.3.17)

Similarly we have new set of formally biorthogonal scaling function and wavelets
{ϕ, ψu, ϕ̃u, ψ̃u}:

ϕ̃u(t) =
√

2
∑
k∈Z

h̃[k] ϕ̃u(2t− k) −
∑
k∈Z

u[k] ψ̃u(t− k) (6.3.18)

ψ̃u(t) =
√

2
∑
k∈Z

g̃[k] ϕ̃u(2t− k) (6.3.19)

ψu(t) = ψ(t) +
∑
k∈Z

u[−k]ϕ(t− k) , (6.3.20)
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Figure 6.3.1: Primal lifting and dual lifting on classical subband scheme

Figure 6.3.1 displays the lifting and dual lifting based on the classical subband filter
scheme. Primal lifting and dual lifting can be iterated to improve the regularity and
vanishing moments of both ψ and ψ̃. It allows us to construct a multiresolution analysis
with desired properties.

6.3.2 Polyphase representations

The polyphase representation provides a particularly convenient tool to describe the spe-
cial structure of the modulation matrix [179] and the mechanics of lifting scheme. It is
based on the fact that one can associate a unitary operator with an orthogonal filter bank.

We define the even and odd polyphase components he and ho of the filter h by

he(z) =
∑
k∈Z

h2k z
−k and ho(z) =

∑
k∈Z

h2k+1 z
−k . (6.3.21)

This can be written also as a discrete equivalent of Euler’s formula:

he(z
2) =

H(z) +H(−z)
2

, ho(z
2) =

H(z) −H(−z)
2z−1

. (6.3.22)

The polyphase representation of the filter h is then given by

H(z) =
∑
k

hk z
−k = he(z

2) + z−1ho(z
2) . (6.3.23)

Concerning to the modulation matrix M(z) (6.3.2) we define the polyphase matrix P (z)
as following

P (z) =

[
he(z) ho(z)
ge(z) go(z)

]
=

∑
k∈Z

[
h2k h2k+1

g2k g2k+1

]
z−k (6.3.24)
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so that

P (z2) = 2−1M(z)

[
1 z
1 −z

]
. (6.3.25)

P̃ (z) is defined in similar way. The condition for perfect reconstruction now can be writ-
ten in unitary form such that

P (z) P̃ (z−1)T = I . (6.3.26)

Assuming that P (z) is of finite degree, i.e. Laurent polynomial3, and has a monomial
determinant. It implies that P (z) and P̃ (z) are invertible and their inverses are also of
finite degree. Such matrices are often called unimodular matrix. From Cramer’s rule with
assuming, det P (z) = 1, and (6.3.26) we see that

h̃e(z) = go(z
−1) , h̃o(z) = −ge(z−1) ,

g̃e(z) = −ho(z−1) , g̃o(z) = he(z
−1) . (6.3.27)

It shows that once we have such a matrix P (z), the dual matrix P̃ (z) follows imme-
diately. If the polyphase matrix P (z) has determinant 1, then the filter pair (h, g) is
called complementary. If the pair (h, g) is complementary, then the pair (h̃, g̃) is also
so. Because of the perfect reconstruction condition the wavelet filter pairs are always
in this case. If the polyphase matrix is the unit matrix, i.e. P (z) = I, then it results
in h(z) = h̃(z) = 1 and g(z) = g̃(z) = z−1. This transform is referred to as the lazy
wavelet transform in the context of lifting. The lazy transform does nothing more than
splitting the input signal into even and odd components.

6.3.3 DWT and MRA in polyphase representation

As we showed in previous chapter, the DWT is performed by lowpass, highpass filtering
and subsampling as illustrated in Figure 6.3.2. Then we have a coarse approximation
a1,i (lowpass filtered) and a detail information d1,i (highpass filtered) of input signal
x[n] = a0[n]. In order to obtain a successive multiresolution representation of the signal,
we iterate this same processing on each coarse approximations aj [n].

3The z-transform of a FIR filter is a Laurent polynomial h(z) given by h(z) =
∑q

k=p hkz
−k, A Laurent

polynomial differs from a normal polynomial in that it can have negative exponents. The degree of a Laurent
polynomial h is defined as |h| = q − p. Note that de Laurent polynomial z p has degree zero.
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Figure 6.3.2: Discrete wavelet transform using 2-channel perfect reconstruction filter
bank

We can describe the discrete wavelet transform by using the polyphase representation.
The lowpassed signal jp(z) and highpassed signal hp(z) in Figure 6.3.2 can be written as[

lp(z)
hp(z)

]
=

[
H(z)
G(z)

]
X(z) , (6.3.28)

while the following subsampling part corresponds to

lp(z2) =
lp(z) + lp(−z)

2
= lpe(z

2) , (6.3.29)

hp(z2) =
hp(z) + hp(−z)

2
= hpe(z

2) . (6.3.30)

This can be combined as[
lp(z2)
hp(z2)

]
=

1

2

[
H(−z) H(z)
G(−z) G(z)

] [
X(−z)
X(z)

]
. (6.3.31)

However, by first filtering and then subsampling, we first compute all the coefficients and
then throw away half of the work done. It would be more efficient if the subsampling step
could be done before the filtering, which means that we only compute the even parts of
lp and hp, i.e.,

lpe(z) = [H(z)X(z)]e = he(z)xe(z) + z−1ho(z)xo(z) (6.3.32)

Thus lpe(z) and hpe(z) are obtained using the polyphase matrix as following[
lpe(z)
hpe(z)

]
= P (z)

[
xe(z)

z−1xo(z)

]
(6.3.33)
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Figure 6.3.3: Polyphase representation for wavelet filter bank

Figure 6.3.3 illustrates the polyphase representation of the wavelet filter bank in
Figure 6.3.2. The interest in such a polyphase representations is that paraunitary matrices
possess complete factorizations in terms of elementary matrices of degree zero (rotations)
and one (diagonal matrix with delays). Thus one can optimize such a factorized structure
to find a filter bank meeting specific constraints. Note that the constraint of a large
number of zeros at ω = π (as required for wavelet designs) is difficult to enforce in this
form.

6.3.4 Lifting algorithm

In previous section we have shown through the biorthogonal wavelets how the lifting
affects them. In this section we introduce the lifting scheme using a natural way, i.e. how
the lifting affects the discrete wavelet transform and multiresolution representation. It is
fruitful to view the DWT as a prediction-error decomposition. The scaling coefficients at
a given scale j are “predictors” for the data at the next higher resolution or finer scale
j − 1. The wavelet coefficients are simply the “prediction errors” between the scaling
coefficients and the higher resolution data that they are attempting predict. In fact, this
interpretation has led to lifting scheme as a new framework for DWT design.

2

2

z

x[n]=a0,i
a0,2i

a0,2i+1

K1

K2
d1,i

a1,i

Split Predict Update Predict Update Scaling

p1 pm

u1 um

-

-

-

-

Figure 6.3.4: General structure of lifting scheme.
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The fundamental idea behind the lifting scheme is to efficiently implement all the
decorrelation procedures in classical wavelet transform in time (spatial) domain. The
corresponding tool in lifting scheme is comprised of three steps, i.e. split, predict, and
update:

Split: The first step of lifting algorithm separates the input signal a0[n] (from
the MRA viewpoint, we set a signal x[n] = aj=0[n] = a0[n]) into its even and
odd indexed subsequences, a0,2i = a0[2n] and a0,2i+1 = a0[2n + 1].4 Practically
the splitting step is performed using the unit polyphase transform, called lazy
transform. This is equivalent to the subsampling in wavelet transform. If the signal
a0[n] is smooth and regular, then a0,2i and a0,2i+1 are closely correlated. In this
case it is intuitive that one can efficiently predict one of the sets from the other set.

Predict: Since the correlation structure is typically local, we predict the odd sam-
ples a0,2i+1 (for example) from the neighboring even samples a0,2i:

d1,i = a0,2i+1 −P(a0,2i) , (6.3.34)

where the prediction function P is a linear combination of neighboring even sam-
ples, i.e. Pa0,2i =

∑
k∈Z

pk ae[n + k]. In many cases the order of P is up to and
including M − 1, while the analysis wavelet has M zero moments. If the signal
is locally smooth, the prediction errors d1,i will be small, and then its first order
entropy is also smaller than that of a0,2i+1. When we replace a0,2i+1 by the de-
tail d1,i (it is basic idea of the well-known DPCM methods [12]), we will lose no
information of the signal a0,2i+1 because it can easily be recovered by noting that

a0,2i+1 = d1,i + P(a0,2i) . (6.3.35)

As a result, this prediction procedure is equivalent to applying a highpass filter
g[n] to signal x[n] in classical wavelet transform.

Update: In order to preserve the average of the a0,2i same as that of the input
signala[n], we need a second lifting step, which replaces a0,2i with

a1,i = a0,2i + U(d1,i) , (6.3.36)

where U is a linear combination of neighboring detail samples, i.e., U [n] =∑
k∈Z

uk d1[n + k]. Then a1,i corresponds to the lowpass output in wavelet trans-
form. The updating step is also trivially invertible:

a0,2i = a1,i − U(d1,i) . (6.3.37)

4It is also possible to split a[n] into other non-overlapping sets [176]
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By iteration of these steps on the aj [n] we obtain a multiresolution decomposition of a
signal. Consequently, no matter how P and U are chosen, the lifting scheme with these
steps is always invertible and thus leads to critically sampled perfect reconstruction filter
banks. It also leads to fast polyphase implementation of filter bank decomposition. Figure
6.3.4 illustrates the typical lifting stage.

The flexibility of the lifting scheme allows to adjust wavelet transforms to complex
geometric situations and irregular sampling leading to so-called second generation
wavelets [176] [180].

6.4 Factoring WT into the Lifting Scheme

It is proved in [181] that any wavelet with FIR filters can be factorized into a finite
number of alternating lifting and dual lifting steps starting from the Lazy wavelet. This
implies that all classical wavelet transforms can be implemented by factorization of
the wavelets into lifting steps. The key problem is how to design these lifting and dual
lifting steps to satisfy some constraints, e.g., the number of vanishing moments. For the
factorization the Euclidean algorithm provides a bridge between the classical wavelet
transforms and the lifting scheme.

6.4.1 Decomposition into lifting steps

Any polyphase matrix representing of a wavelet transform with finite filters can be fac-
tored in a finite product of unit upper and lower triangular 2× 2 matrices, and a diagonal
normalization matrix;

P (z) =

[
K1 0
0 K2

]
︸ ︷︷ ︸
normalization

1∏
i=m


primallifting︷ ︸︸ ︷[
1 si(z)
0 1

] [
1 0

ui(z) 1

]
︸ ︷︷ ︸
duallifting

 , (6.4.1)

where si(z) and ui(z) are Laurent polynomials and K1 and K2 are scaling constants
unequal to zero. If scaling is not desired for some reason, it is even possible to factor the
scaling matrix into four more lifting steps, one of which can be combined with the last
real lifting step so that factoring a scaling matrix costs three extra lifting steps. From this
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it immediately follows that the inverse transform can be written as

P−1(z) =

m∏
i=1

{[
1 0

−ui(z) 1

] [
1 −si(z)
0 1

]}[
1/K1 0

0 1/K2

]
(6.4.2)

To find the si(z) and ui(z), we first decompose the polyphase matrix using primal
lifting as

P (z) =

[
he(z) ho(z)
ge(z) go(z)

]
=

[
he(z) hnewo (z)
ge(z) gnewo (z)

] [
1 s(z)
0 1

]
(6.4.3)

2

2

z

x[n]=a0,i
a0,2i

a0,2i+1

1 1

11

0

0ui(z)

si(z) K1

K2
d1,i

a1,i

Split Predict Update

Figure 6.4.1: Polyphase representation of lifting process, analysis side.

We then have to find Laurent polynomials s(z), hnewo , and gnewo (z) such that

ho(z) = s(z)he(z) + hnewo (z) , (6.4.4)

go(z) = s(z)ge(z) + gnewo (z) ,

with

|hnewo (z)| < |ho(z)| (6.4.5)

|gnewo (z)| < |go(z)| ,

where |·| means degree. This corresponds to two long division with remainder schemes
of Laurent polynomials, with a common quotient s(z). To perform this, we can use the
Euclidean algorithm for Laurent polynomials, which was originally developed to find the
greatest common divisor (gcd) of two natural numbers. In [181] it is given as:
Take two Laurent polynomials a(z) and b(z) �= 0 with |a(z)| ≥ |b(z)|. Let a0(z) = a(z)
and b0(z) = b(z) and iterate the following steps starting from i = 0,

ai+1(z) = bi(z) (6.4.6)

bi+1(z) = ai(z)%bi(z) (6.4.7)

qi+1(z) = ai(z)/bi(z) (6.4.8)
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Then an(z) = gcd(a(z), b(z)) where n is the smallest number for which bn(z) = 0.

The result of this algorithm can be written as[
a(z)
b(z)

]
=

n∏
i=1

[
qi(z) 1

1 0

] [
an(z)

0

]
, (6.4.9)

which looks very much like a series of lifting steps. The gcd found might not be unique
since it is defined only up to a factor zp, i.e. there are several factorizations possible5.
This turns out to be an advantage because it allows us to select the factoring which best
suits our needs.

As an example, we make a decomposition of the Cohen-Daubechies-Feauveau
biorthogonal wavelets [101] with 2 vanishing moments. The CDF(2,2)6 is given as

H(z) = −1

8
z−2 +

1

4
z−1 +

3

4
+

1

4
z − 1

8
z2 , (6.4.10)

G(z) =
1

4
z−2 − 1

2
z−1 +

1

4
. (6.4.11)

The corresponding polyphase matrix is

P (z) =

[
hnewe (z) 1

4
+ 1

4
z

gnewe (z) −1
2

] [
1 0

u(z) 1

]
(6.4.12)

We have to find Laurent polynomials u(z), hnewe (z), and gnewe (z) such that

−1

8
z−1 +

3

4
− 1

8
z = hnewe (z) + u(z)

(
1

4
+

1

4
z

)
, (6.4.13)

1

4
z−1 +

1

4
= gnewe (z) + u(z)

(
−1

2

)
. (6.4.14)

Thus we calculate the quotient u(z) and the remainder hnewe (z) of a long division. This
division is not unique, but there are three solutions:

−1

8
z−1 +

3

4
− 1

8
z =


(
−1

2
z−1 + 7

2

) (
1
4

+ 1
4
z
)

− z(
−1

2
z−1 − 1

2

) (
1
4

+ 1
4
z
)

+ 1(
−7

2
z−1 − 1

2

) (
1
4

+ 1
4
z
)

− z−1

(6.4.15)

5We write the long division with remainder of a0 and a1 as a0 = q1∆a1 + a2. But we can express a1 in
a similar way as a1 = q2∆a2+a3 and a2 also, and so on. The row of remainders will eventually reach zero,
a1 > a2 > · · · > an > an+1 = 0, and this is where it stops. The gcd of a0 and a1 is now an. However,
we are more interested in the intermediate results a0 = q1∆(q2∆(. . . (qn∆an + an+1) + . . . ) + a3) + a2

(an+ 1 = 0).
6(number of vanishing moments of the analyzing high pass filter, number of vanishing moments of the

synthesizing high pass filter)
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If we choose the middle line of the solutions in (6.4.15) as the factorization, we have
a symmetrical one, which goes nicely with g(z) as well, i.e.,

u(z) = −1

2
z−1 − 1

2
, (6.4.16)

hnewe = 1 , (6.4.17)

gnewe (z) = 0 , (6.4.18)

and thus the decomposition is given by

P (z) =

[
1 1

4
+ 1

4
z

0 −1
2

] [
1 0

−1
2
z−1 − 1

2
1

]
(6.4.19)

We can continue the decomposition to obtain

P (z) =

[
1 0
0 −1

2

] [
1 1

4
+ 1

4
z

0 1

] [
1 0

−1
2
z−1 − 1

2
1

]
(6.4.20)

Clearly the number of lifting steps is bounded by the length of the original filters.
Figure 6.4.2 shows the practical implementation scheme with the factorized CDF(2,2)
biorthogonal filter.

2

2

z

x[n]=a0,i
Σ

Σ -1/2

-1/2 -1/2

1/4 1/4

1

z-1

z

d1,i

a1,ia0,2i

a0,2i+1

Figure 6.4.2: Implementation of lifting transform using CDF(2,2) biorthogonal filter

It is important to point out that the lifting factorization is highly non-unique process.
For a given wavelet transform, we do not know exactly how many essentially different
factorizations are possible and how they differ. One can choose the best one depending
on the applications.
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6.4.2 Normalization factor K

In practice, we can omit the normalization factors K1 and K2. However, for compression
applications it is important to know the magnitudes of the normalized wavelet coefficients
that indicate the importance of the corresponding wavelet components. Furthermore, if
we want the energy of the signal to be retained in the wavelet coefficients (or at least an
approximation in the non-orthogonal case) we have to use normalized filter coefficients
that are

√
2 times as large as the filter coefficients we used. Thus the real normalization

factors are
√

2K1 for the lowpass band, and
√

2K2 for the highpass band. Note that the
normalization factors for the lowpass band accumulate, due to the iteration on the lowpass
band.

It is also shown in [182] how, with at most 3 extra lifting steps, K can always be set
to 1. One can then build the integer version of those extra lifting steps. This comes down
to shifting one coefficient b bits to the left and the other b bits to the right. The b bits that
get lost in the shift to the right end up in the b locations freed up by the shift to the left.

6.4.3 Lifting properties

The lifting scheme has some properties which are not found in many other transforms.
First, the inverse transform is immediately as showed in Figure 6.3.4. This easy invert-
ibility is always true for the lifting scheme. Secondly, lifting can be done in-place. It
means that we never need samples other than the output of the previous lifting step and
therefore we can replace the old stream by the new stream at every summation point.
This allows also for adaptive wavelet transforms. One can start the analysis of a function
from the coarsest levels and then build the finer levels by refining only in the areas of
interests [180]. Thirdly, lifting is not causal. Usually this is not really a problem since we
can always delay the signal enough to make it causal, but it will never be real-time. In
some cases however it is possible to design a causal lifting transform. The last important
property is the calculation complexity. In [181] it is proven that for long filters the lifting
scheme cuts computation complexity in half, compared to the standard iterated FIR filter
bank algorithm. This type of wavelet transform has already a complexity of O(N), in
other words, much more efficient than the FFT with its complexity of O(N logN) and
lifting speeds things up with another factor of two.
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6.5 Integer Reversible WT

In previous section we have seen that the lifting scheme leads to a fast in-place calculation
of the wavelet transform that does not require auxiliary memory. The lifting scheme can
be easily modified to implement integer reversible wavelet transform (IRWT) that maps
integers to integers. Namely, the IRWT provides the decomposition of original signal into
a set of integer coefficients and is also invertible. Since it allows perfect reconstruction
[182], by inverse transform of IRWT the original signal can be reconstructed without
any loss. Practically, non-integer transforms expand the input data (for example, 16
bit audio signal) to 32 bit wide floating point numbers in order to describe the real
numbers of their coefficients. During the quantization or rounding process of these real
numbers to low bit integers in a compression system, we will lose some corresponding
information and thus can not reconstruct the original signal from the decoder side of
the system. From a lossless compression point of view, it is thus very important that
IRWT coefficients consist of the integers and have same dynamical range as the input
signal. These discharge some from the consideration regarding the size of the variables
to be used and the designing fast algorithms. The memory utilization of integers is also a
positive consideration.

6.5.1 Rounded Lifting Scheme

From the Figure 6.3.4 and Eqs. (6.3.34) and (6.3.36), we consider the quantized version
of P and U , as following

d1,i = a0,2i+1 − Int{P(a0,2i)} (6.5.1)

a1,i = a0,2i + Int{U(d1,i)} (6.5.2)

where the operation Int{·} denote the two possible quantization operations, either round-
ing or truncation, i.e., ⌊

x+ 1
2

⌋
, or �x� (6.5.3)

Obviously, as long as the same rounding operation is employed on both the analysis
and synthesis sides, PR is not affected. The original signal can always be reconstructed
without any loss as

a0,2i = a1,i − Int{U(d1,i)} (6.5.4)

a0,2i+1 = d1,i + Int{P(a0,2i)} (6.5.5)

It means that whatever deterministic rounding operation is used, the lifting scheme is
always reversible. Of course, the resulting system is nonlinear, and the new subband
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signals serve only to approximate the original subband signals.

6.5.2 Rounding the rational filter coefficients

As we discussed in Section 6.3.1, the lifting step can be written by using z-transform

HS(z) = H(z) + S(z)G(z) (6.5.6)

Because the signal part G(z) is not changed by the lifting step, the result of the filter
operation can be rounded

HS(z) = H(z) + Int{S(z)G(z)} (6.5.7)

while retaining a reversible operation

H(z) = HS(z) − Int{S(z)G(z)} (6.5.8)

In some cases, all filter coefficients of S(z) are rational and the corresponding lifting step
can be written as

h[n] = h[n] − 1

a

∑
k

b[k]g[k] (6.5.9)

where a and b[k] are integers. This is true for various wavelet transforms, among which
the CDF biorthogonal wavelets. Such a lifting step can be modified in one of the following
ways:

Full rounding The result of the division by a is rounded,

ḣ[n] = h[n] − Int

{∑
k b[k]g[k]

a

}
, (6.5.10)

where ḣ is an integer approximation to the h obtained with floating point lifting.
In most cases, this rounding method is used, except when we want to control the
dynamic range of the result.

No rounding We avoid the division by a by multiplying the other terms with a,

ḣ[n] = ah[n] −
∑
k

b[k]g[k] . (6.5.11)

In this case, the dynamic range of the coefficients will increase. This has to be taken
into account in later steps of lifting scheme. Note that in this case no real rounding
is performed, and thus this can be considered to be an exact implementation of the
floating point version, yielding integers.

158 CHAPTER 6. REVERSIBLE DESIGN OF SUBBAND AND WAVELET
TRANSFORM



6.5.3 Boundary treatment 159

Mixed form We combine the rounding and multiplication steps of both methods above,

ḣ[n] = a1h[n] − Int

{∑
k b[k]g[k]

a2

}
, (6.5.12)

with

a1, a2 ∈ Z ,

a1, a2 = a .

This variant can be used if we want to have more control over the dynamic range
of the resulting ḣ.

All of the three cases above the modified lifting step is still reversible, and thus PR
property is still present.

6.5.3 Boundary treatment

The signals in practice do not extend infinitely in time or space, but are limited to a finite
interval. However, filter bank algorithms assume infinite signal lengths. The difficulty
is how to handle filtering at the boundaries of the signal. Since the outputs of the filters
depend on past and/or future sample values, once we get close enough to a signal edge,
the filters need sample values that are not defined. A general approaches that can be used
to address this problem is to extend the signal so that it is defined for all possible sample
indices.

Periodic extension

Periodic extension is the simplest approach to handling finite-length signals. We extend
the finite-length signal by putting copies of itself in front of and behind the original
signal. After a wavelet transform we can simply discard the coefficients that lie outside of
the interval in which the original signal was defined, i.e., if the original signal is defined
over N sample indices, periodic extension results in an infinite-length signal of period
N . However, periodic extension has the potential disadvantage that unless the first and
the last sample have the same value, the extended signal may possess some unexpected
discontinuities at the boundaries of the original signal. These discontinuities will locally
enlarge the wavelet coefficients and make compression of the signal more difficult. Of
course, we can always pad the signal with extra samples so that divisibility is achieved,
but doing this is not acceptable, since it would lead to much more wavelet coefficients
than original samples.
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Symmetric extension

A relatively better solution is the symmetric extension of the finite-length signal. We
extend the signal by mirroring it around its endpoints so that it is both symmetric and
periodic, which makes the discontinuities disappear. Thus the symmetric extension can
be considered as periodic extension applied to a concatenation of the original signal and
a mirrored copy of the original signal. After filtering one has to retain twice as much
coefficient. Fortunately one can discard half of them if the filters are symmetric, yielding
the same number of coefficients as the original signal length7.

Signal

(1,1) (1,2)

(2,1) (2,2)

Figure 6.5.1: Symmetric signal extension. (first sample,last sample): 1 for undupli-
cated and 2 for duplicated.

A signal can either be symmetric about one of its samples or about a point midway
between two samples. These two cases are referred to as whole-sample symmetry
and half-sample symmetry, respectively. The centers of symmetry of periodic signals
always come in pairs. If the period of the signal is even, both symmetry centers will
be whole-sample symmetry, while if the period is odd, one will be whole-sample
symmetry and the other half-sample symmetry. There is more than one way in which to
symmetrically extend a signal. For example, Figure 6.5.1 shows the four possible ways
to symmetrically extend a discrete signal.

7That is why we use biorthogonal wavelets for lifting implementation instead of orthogonal wavelets,
since they can be symmetric
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6.6 Experiment on lossless audio compression

We tested various reversible transforms described in previous sections for lossless audio
compression. For the decorrelation stage in our prototype compression system 3.6.1,
the two symmetric biorthogonal interpolating wavelets, Deslauriers-Dubuc symmetric
wavelet (4,2) and Cohen-Daubechies-Feauveau wavelet (2,2), and the S+P transform
with the predictor type B (see Table 6.1) were investigated with various block lengths 29

to 212 and decomposition levels 3 to 6 in successive form through the lowpass subbands.

6.6.1 Tested reversible filters

Deslauriers-Dubuc (4, 2): symmetric, biorthogonal, interpolating, K = 1
impulse response:

h =
1

16
(1, 0,−9, 16,−9, 0, 1)

g =
1

16

(
1, 0,−2, 4,

23

2
, 4,−2, 0,

1

4

)
(6.6.1)

lifting implementation:

d1,i = a0,2i+1 −
⌊

9

16
(a0,2i + a0,2i+2) −

1

16
(a0,2i−2 + a0,2i+4) +

1

2

⌋
8,

a1,i = a0,2i +

⌊
1

4
(d1,i−1 + d1,i) +

1

2

⌋
. (6.6.2)

Cohen-Daubechies-Feauveau (2, 2): symmetric, biorthogonal, interpolating, K = 1
impulse response:

h =
1

8
(−1, 2, 6, 2, 1) ,

g =
1

4
(1, −2, 1) . (6.6.3)

lifting implementation:

d1,i = a0,2i+1 −
⌊

1

2
(a0,2i + a0,2i+2) +

1

2

⌋
,

a1,i = a0,2i +

⌊
1

4
(d1,i−1 + d1,i) +

1

2

⌋
. (6.6.4)

8For the floor operations above, we used a biased floor function, i.e., �·� = �x+ 1
2�.
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S+P Transform: α0 = 2
8
, α1 = 3

8
, β1 = 2

8

ĥp[n] =
1

8
{2(∆lp[n] + ∆lp[n + 1] − hpo[n + 1]) + ∆lp[n + 1]} (6.6.5)

6.6.2 Test results and discussion

The resulting bite rates are tabulated in Table 6.2. It is turned out that there is no single
filter that has superior compression performance for all classes of audio materials, and
that the transform effectiveness depends strongly on the audio signal content.

Materials S SPB CDF(2,2) DD(4,2) LP-IIR

Nr. 1 9.12 8.92 8.61 8.69 7.23
violin, solo (1.74) (1.79) (1.86) (1.84) (2.21)

Nr. 2 7.54 7.49 7.57 7.52 5.77
flute, solo (2.12) (2.14) (2.11) (2.13) (2.77)

Nr. 3 7.32 7.30 7.37 7.42 5.92
speech, fem. (2.19) (2.19) (2.17) (2.16) (2.70)

Nr. 4 5.95 5.82 5.73 5.81 4.13
piano, solo (2.69) (2.75) (2.79) (2.75) (3.87)

Nr. 5 7.50 7.36 7.46 7.43 5.92
classic, orch. (2.13) (2.17) (2.14) (2.15) (2.70)

Nr. 6 8.35 8.33 8.29 8.32 6.87
pop, abba (1.92) (1.92) (1.93) (1.92) (2.33)

Nr. 7 7.42 7.53 7.43 7.55 6.28
country (2.16) (2.12) (2.15) (2.12) (2.55)

Nr. 8 12.44 12.49 12.39 12.47 11.31
rock, metal (1.29) (1.28) (1.29) (1.28) (1.41)

Nr. 9 9.54 9.45 9.47 9.44 7.73
jazz, soft (1.68) (1.69) (1.69) (1.69) (2.06)

8.35 8.30 8.26 8.29 6.91Average
(1.92) (1.93) (1.94) (1.93) (2.32)

Table 6.2: Test results with compressed bit rate (bits/sample) und compression ratio
(orig./comp.)

For smooth audio signals, the DD(4,2) and the SPB are most effective, while the
CDF(2,2) and S-transform perform best for audio signals with a large dynamic range and
a strong treble energy with the lowest computational complexity. Consequently, the test
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results suggest that the number of vanishing moments is not only the important factor
which affects compression efficiency.

As illustrated in Figure 6.6.1, the compression ratio is nearly independent of the block
length. It is because that the reversible transforms tested do not need to perform a block-
based calculation for any correlation coefficient. Figure 6.6.2 shows the compression ra-
tios with respect to different decomposition levels. Considering the whole complexity, a
6-level decomposition seems to be a good tradeoff for lossless audio compression.

The main advantage of using integer reversible wavelet transform to represent signal
is multiresolution representation, which lossless compression methods based on time-
domain prediction cannot offer. This easily allows the progressive transmission, lower
resolution versions first, followed by transmissions of successive details. Such a mode of
transmission is especially valuable in scenarios where bandwidth is limited, audio signal
size are large and lossy compression is not acceptable.

In Table 6.2, the bit rates obtained by the IIR linear prediction filter in Chapter
3 is also tabulated in order to compare the compression performance between linear
prediction in time domain and reversible transform. Obviously, the linear prediction
methods outperform the reversible transform methods. However, the reversible transform
possesses still big improvement potential, because of the highly non-unique factorization
results, as mentioned before. A good choice of the factorization, which approximates
better the characteristics of its parent linear transform and is more suitable for the lossless
compression application, can improve its compression performance substantially more
effective. Therefore it may be an interesting topic for future work.

1

2

0 512 1024 2048 4096

Block Length (Samples)

C
o
m

p
re

s
s
io

n
 R

a
te

 (
O

ri
g
in

./
C

o
m

p
.)

Decomposition Level

Level 3Level 4Level 5Level 6

Figure 6.6.1: Compression ratios in function of decomposition level and block length
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Chapter 7

Conclusion and Future Work

This thesis has touched on a range of issues in lossless audio compression. More
precisely, its major focus is on the signal decorrelation methods in the compression
scheme, predictive modeling and transform modeling. A variety of signal modeling
techniques used for signal compression are explored and empirically validated, namely
the linear prediction filter, subband decomposition, multirate filter banks, wavelet
transform, reversible integer transforms, and lifting algorithms. In this Chapter, the key
results of the thesis are summarized and directions for further research are discussed.

7.1 Prediction and Transform

Predictive modeling

In modeling a signal, it is of primary importance that the model be well approximated
to the signal in question. Otherwise, the model will not necessarily provide a meaningful
decorrelation performance in the compression scheme. The goal of the predictive mod-
eling is to reduce the sample magnitudes by making a prediction of the current sample
based on previous sample values.

Various prediction filters that are characterized by their prediction structures and coef-
ficients are compared by applying to lossless audio compression. To explore the influence
of the filter parameters on compression performance, various block lengths and prediction
orders are tested for each prediction filter. Complexity is also an important factor for the
evaluation of the prediction filters. With its lowest complexity, the polynomial predictor
(PAP) provides efficient compression performance for certain of the audio materials. On
the other side, applying the context-based error modeling into the compression scheme
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does not specifically improve the compression ratio compared to its very high complexity.
It is clearly shown through the test results that the selection of the prediction filter and
the parameters depends strongly on the audio signal content.

In general, the lattice structure offers a powerful characterization in both filter
design and implementation with the independently variable coefficients. However, for
the compression applications, it may be not good choice because of the increasing
side information and complexity. IIR prediction filter with large block length (2048
to 4096 samples) and high prediction order (p = 10) has superior compression result
for nearly all kind of audio samples over other prediction filters. Furthermore, for the
music samples with high treble energy and wide dynamic range, the IIR prediction filter
provides an acceptably stable compression ratio. In contrast with the FIR filter, the IIR
filter offers more possible ways to efficiently design or modify the filter structure because
of its backward adaptation.

Transform Modeling

In transform modeling, the subband transform, wavelet transform, and reversible integer
transform are theoretically and empirically investigated. In fact, from signal processing or
implementation viewpoint, they converge onto almost same transform results. However, it
is also the fact that they can be improved by understanding the particular characteristics of
each transform. In the thesis, therefore, the wavelet transform is mathematically in depth
explored in order to make clear its heterogeneous nature related to the other transforms
and to avoid the ambiguous use of the term in literature.

With the design theory of multirate filter banks, the subband coding scheme and two-
channel perfect reconstruction filter banks are explored. Parallel with the subband trans-
form, the block transforms are discussed. Lapped transform takes account inter-block
correlation and is capable of eliminating the discontinuities between block boundaries.
The effectiveness of the linear prediction from subbands and fullband are first formally
studied and then empirically compared by the entropies of prediction errors in both cases.
Theoretically, it is shown that the prediction error variance of the fullband always exceeds
the total prediction error variance of the combined subbands, for a given prediction order
p. From the test results, it is also shown that the effectiveness of the subband predic-
tion depends strongly on the used subband transform. For example, in the experiment,
an adaptive inverse transform used to transform the subband signal into time domain has
improved compressibility of the subband signals.

The lifting scheme is an efficient implementation of a wavelet transform algorithm.
Furthermore, it can easily be converted to operate on integer values. The inverse trans-
form is trivial to find and always provides perfect reconstruction of the input signal. All
other reversible transforms discussed in the thesis, e.g., S-transform, RTS transform, and
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S+P transform, can be shown as a special cases of the lifting scheme. We have worked
out the details of integer wavelet transforms for the biorthogonal wavelets. A problem,
that can also mean a potential for an improvement factor, is that the lifting factorization
is highly non-unique process. For a given wavelet transform, we do not know exactly
how many essentially different factorizations are possible and how they differ. One can
choose the best one depending on the applications.

In conclusion, for the signal compression there is always trade-off between the
decorrelation level and the side information. It means that the better decorrelation does
not always provide a better compression result. It is also empirically shown that the
predictive modeling methods discussed in the thesis outperform over the transform
modeling methods in lossless audio compression. IIR prediction filter offers more
potential for improving the compression ratio. Main advantage of the using transform
modeling in compression scheme is multiresolution representation of the signal, which
lossless compression methods based on time-domain prediction cannot offer. This allows
the progressive transmission and editibility of the audio features and events.

7.2 Suggestions for Future Research

This thesis has made some meaningful contributions to broadly examining the lossless
compression methods, from linear prediction to subband transform. In fact, the works
done in the thesis and other state-of-the-art lossless audio coders show us that the lossless
audio compression seems to be already reached its limit of compression ratio (i.e., max. 3
to 4), as often said in the literature, no matter whether using a simple prediction method or
a complex transform to decorrelate the audio signal. However, there are still some points
that could potentially pave the way to overcome the limit.

First, parametric signal segmentation will improve compression performance. The
choice of effective block length is a critical factor for designing signal compression sys-
tem. For both the prediction method and the transform method, the decorrelation proce-
dure is performed in each block separately. In this case, a cross correlation between the
blocks is generally ignored. The musical signal, for example, is quasi-periodic signal be-
cause of its repeating rhythm and harmonic progress. If we segment the signal according
to the period of rhythm and beat and take a cross correlation between the blocks into
account, it is feasible to enhance compression ratios. As a starting point, one might incor-
porate a beat tracking stage into the compression system to estimate the parameters for
the effective block length.

Another possibility for improving precision of predictors is to develop prediction
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method with blockwisely varying prediction order. As we know, efficient decorrelation
of signal with high treble portion and wide dynamic range needs in general higher pre-
diction order than the case of the smooth signal. Therefore it might be useful endeavor
to estimate the prediction order for each block by calculating variance of the blocks, for
example.

Discrete Wavelet transform in two-channel subband scheme have been exhaustively
studied. There are, however, some good reasons to believe that M-channel (M > 2)
transforms may be more effective for signal compression. One desirable feature of M-
band subband systems is that it is possible to have orthogonality with symmetric, finitely-
supported scaling and wavelet functions. This is not possible with two-channel systems
except for the trivial case of the Haar and other Haar-like transforms. Further work on
developing a hybrid compression system that combines the M-channel wavelet transform
with linear prediction for each subband would be beneficial.

Histogram forgetting is another technique that can potentially improve the proposed
context based entropy coder. Using this technique, a coefficient less than one is used to
multiply the older histogram counts before it is incremented. The influence of the old
symbols is gradually reduced. Entropy coders with modified histograms are more likely
to have a higher compression ratio than the conventional coders with uniformly-initialized
histograms.

Finally, a reversible transform scheme where the scaling is chosen based on the char-
acteristics of a particular signal would need to be devised. Reversible transform is con-
structed to calculate a scaled version of its parent linear transform. It has been observed,
however, that one particular scaling does not lead to the best compression results in all
cases. In lifting scheme, since the factorization of biorthogonal wavelets is highly non-
unique process, we could design further experiments to explore potential of the integer
lifting scheme.
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Appendix A

Heisenberg’s Uncertainty Principle

In quantum mechanics, Heisenberg’s derivation of the uncertainty relations showed that
the simultaneous measurement of two canonically conjugate variables (such as the
momentum(ξ) and position(x) or the energy(E) and time(t) for a moving particle) en-
tails a limitation on the precision (standard deviation) of each measurement. In the most
extreme case, absolute precision of one variable would entail absolute imprecision re-
garding the other. This uncertainty relation can be written in the shorthand by,

∆x∆ξ ≥ h/4π, ∆E∆t ≥ h/4π, (A.0.1)

where h denotes Planck’s constant. Suppose that ψ is a modulated waveform of finite
total energy, and that both the position and momentum uncertainties of ψ are finite;

∆x(ψ)
def
= inf

x0

(
‖ (x− x0) u(x) ‖

‖ ψ(x) ‖

)
<∞, (A.0.2)

∆ξ(ψ)
def
= inf

ξ0

(
‖ (ξ − ξ0) û(ξ) ‖

‖ ψ̂(ξ) ‖

)
<∞. (A.0.3)

Finite ∆x requires that on average ψ(x) decays faster than |x|−3/2 as |x| → ∞. Finite
∆ξ requires that ψ is smooth, in the sense that ψ

′
must also have finite energy. Note that

every function ψ belonging to the Schwartz class S satisfies (A.0.2).
In signal processing terms, if the window function ψ gives the instantaneous value of

a time-varying signal, then it is reasonable to speak of time t and frequency ω rather than
position x and momentum ξ, especially since both pairs of quantities are related by the
Fourier transform. We will say then that ψ is well localized in both time and frequency
if the product of its time and frequency uncertainties is small enough. Heisenberg’s un-
certainty principle states that it is impossible to know the exact frequency and the exact
time of occurrence of this frequency in a signal, ∆t∆ω ≥ 1/4π. In other words, if f is
non zero with a compact support, then its Fourier transform cannot be zero on a whole
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interval. Similarly, if its Fourier transform is compactly supported, then it cannot be zero
on a time interval, i.e. in the limit case of a sinusoid, ∆t is zero and ∆ω is infinite. Hence,
even if the Heisenberg constrains are verified, it is impossible to have a function in L2(R)
which is compactly supported both in the time and Fourier domains. In particular, this
means that there is no instantaneous frequency analysis for finite energy signals. The
time-frequency localization is thus achievable only in the mean squares sense, i.e.,

∆t2 =

∫
(t− t0)

2 |ψ(t)|2 dt∫
|ψ(t)|2 dt

t0 =

∫
t |ψ(t)|2 dt∫
|ψ(t)|2 dt

(A.0.4)

∆ω2 =

∫
(ω − ω0)

2 |ψ̂(ω)|2 dω∫
|ψ̂(ω)|2 dω

ω0 =

∫
ω |ψ̂(ω)|2 dω∫
|ψ̂(ω)|2 dω

, (A.0.5)

and is represented not as a “point” in the time frequency plane but as a rectangle or an
ellipse (Figure A.0.1), whose position indicates the nominal time and frequency and
whose shape suggests the relative uncertainties of the two quantities. The amplitude of
a waveform may be indicated by darkening the rectangle in proportion to its energy.
Consequently, a balance has to be reached between time and frequency resolution for
efficient TFR, and it is very important how one cuts a signal.
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Figure A.0.1: Heisenberg’s cell in time-frequency plane

In Figure A.0.1, the uncertainties in time and in frequency are given by the width and
hieght of the cell, respectively. The product of the uncertainties is the area of the cell,
which can never be made smaller than the lower bound 1/4π given by Heisenberg’s in-
equality. Only for Gaussian function g(t) = e−πt

2/2, the Heisenberg inequality becomes
an equality, i.e. minimal Heisenberg cell area, 4πΩT = 1. However, Gaussian function
is not causal because it does not vanish for t > 0. In practice, we will avoid the many
restrictions of the Gaussian by relaxing the minimality condition in order to perform
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the approximate time-frequency analysis. For instance, the concept of multiresolution
analysis (MRA) allows us to estimate the approxiamate atoms in a natural way.
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Appendix B

A Short History of Wavelets

The term wavelets or ondelettes (French) was coined originally in France, the so called
“French school” lead by J. Morlet, A. Grossmann and Y. Meyer. The concept of wavelets
can be viewed as a synthesis of ideas which indepandently originated in engineering
(quadrature mirror filters, subband coding), physics (coherent states, renormalization
group), and pure mathematics (study of Calderón-Zygmund operators). In looking back
over the history of mathematics, for instance, we will uncover several different origins of
wavelet analysis [117]. Therefore, for a conceptional understanding about wavelets, it is
not vain to survey a flow of the researches which correspond to a specific point of view
and a particular techniques in each area. As the history of wavelets could be the topic of
a separate paper, we are going to give a short, subjective account.

Although the wavelet transform has come into prominence during the last decade, the
founding principles behind wavelets can be traced back as far as 1909 when Alfred Haar
[183] discovered the first orthonormal system of basis functions, at the same time, opened
one of the routes leading to wavelets. For any continuous function f(x), the series

f(x) =
∞∑
j=0

2j−1∑
k=0

a2j+k h(2
jx− k), with 0 ≤ x < 1 (B.0.1)

converges to f(x) uniformly over the interval [0,1). This Haar’s work led to the simplest
of the orthogonal wavelets. However, the Haar basis function has a lack of coherence
since the atoms hn(x) used to construct the continuous function f(x) are not themselves
continuous functions and its Fourier transform decays only like |ξ|−1, corresponding to
bad frequency localization. The theories expounded by Haar extended to Lévy’s study
of Brownian motion, a type of random signal, in the 1930s. He used the Schauder basis
to examine local regularity properties that were not accessible through the trigonometric
system. A similar difficulties were encountered when Littlewood and Paley attempted
to localize the energy of function, the integral 1

2π

∫ 2π

0
|f(x)|2dx. They were interested in

whether the energy of a function was spread evenly over its entire interval or concentrated
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about a few points. To reveal this information that is hidden in the Fourier series of f(x),
Littlewood and Paley discovered a series manipulated using the “dyadic blocks” ∆jf(x),
which is a sequence of operators that act essentially as a bank of band pass filters with an
interval of separation of approximately an octave. The dyadic block was defined by

∆jf(x) =
∑

2j≤k<2j+1

(ak cos kx+ bk sin kx), (B.0.2)

where a0 +
∑∞

1 (ak cos kx+ bxsinkx) denotes the Fourier series of f(x). Then we have
a effective substitution for Fourier series,

f(x) = a0 +
∞∑
0

∆jf(x) , (B.0.3)

which later provides an effective algorithm for numerical image processing, thanks to the
work of Marr [184] and Mallat [185] [186].

In the 1940s, as we indicated in the preceding section, the problem of developing
a mixed signal representation in term of a double sequence of a elementary signals in
time-frequency plane was addressed by Dennis Gabor (1946) who introduced the first
time-frequency wavelets (Gabor wavelets) in communication theory, and by Jean Ville
(1947) who proposed another approach which was tied into the research of Hermann
Wigner (1932), a physicist working in the field of quantum mechanics, and led to the
development of the Wigner-Ville transform.

In the 1950s and 60s, the Littlewood-Paley techniques were brought in to relief as
powerful tools for studying other things, such as solutions of partial differential equations
and integral equations. They were then efficiently engrafted into Calderón-Zygmund the-
ory (1960) in area of harmonic analysis that is still very heavily researched. It was at this
point that the mother wavelet ψ(x) appeared. One of the standard approaches in that time,
not only in Calderón-Zygmund theory, but in analysis in general, is to break up a compli-
cated phenomenon into many simple pieces and study each of the pieces separately.

Guido Weiss and Ronald R. Coifman, in 1975, interpreted Lusin’s Hardy spaces
Hp(R) in terms of atoms and atomic decompositions [187]. The purpose of their study
is to find what we now consider the “atoms” (simplest elements of a function space) and
“molecules” (assembly rules of theirs) which allow the reconstruction of all the elements
of the function space using these atoms. One of the approaches to decomposition is given
also by Calderón formula,

f(x) =

∫ ∞

0

∫ ∞

−∞
(ψt ∗ f)(y) ψ̃t(x− y) dy

dt

t
, (B.0.4)

where ∗ denotes convolution, and ψt(x) = t−1ψ(x/t). ψ̃t(x) is defined similarly for ap-
propriate fixed functions ψ and ψ̃. The representation (B.0.4) is , in fact, an example
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of a continuous wavelet transform. In mathematical physics the Aslaksen-Klauder con-
struction of the (ax + b)-coherent states can be seen as another independent derivation
of the Calderón formula [188] [189]. With further understanding the functions in the
Hardy spaces H(R) which play now a fundamental role in signal processing, Strömberg
discovered the first orthogonal wavelets [151] in the early 1980s. He showed also that
the orthonormal wavelet basis for L2(R), defined ψm,n(x) = 2−m/2ψ(2−mx − n), is an
unconditional basis for the real Hardy space H(R).

Independent from these developments in harmonic analysis, Alex Grossmann (theo-
retical physicist) and Jean Morlet (geophysicist) [190] [191] [192] studied the wavelet
transform in its continuous form using theory of frames introduced by Duffin and Scha-
effer (1952) [148] [193] [194], and employed the wavelets to analyse earthquakes and
model the process of sound waves travelling through the Earth’s crust [195]. Indeed, their
research gave an impetus to the enormous interest in wavelet theory. Later they suggested
the word “wavelet” for the building blocks, and what earlier had been referred to as
Littlewood-Paley theory, now started to be called wavelet theory. In terms of Grossmann-
Morlet theory, which is identical to Calderón’s theory, a wavelet is defined as a function

in L(R) whose Fourier transform ψ(ξ) satisfies the criterion
∫∞

0
|ψ̃(t, ξ)|2 dt

t
= 1 almost

everywhere.

Paralleling the advances in pure and applied mathematics were those in signal pro-
cessing, but in the context of discrete-time signals. Driven by applications such as speech
and image compression, a method called subband coding was proposed by Croisier, Este-
ban, and Galand [79] using a special class of filters called quadrature mirror filters (QMF)
in the late 1970’s, and by Crochiere, Webber and Flanagan [78]. This led to the study of
perfect reconstruction filter banks, a problem solved in the 1980’s by several people,
including Smith and Barnwell [84] [85], Mintzer [86], Vetterli [88], and Vaidyanathan
[196]. In a particular configuration, namely when the filter bank has octave bands, one
obtains a discrete-time wavelet series. Such a configuration has been popular in signal
processing less for its mathematical properties than because an octave band or logarith-
mic spectrum.

In the early to mid 80’s, several groups, perhaps most notably the one associated with
Yves Meyer and his collaborators, independently realized, with some excitement, that
tools from Calderón-Zygmund theory, in particular the Littlewood-Paley representations,
had discrete analogs and could give a unified view of many of the results in harmonic
analysis. Also, one started to understand that these techniques could be effective sub-
stitutes for Fourier series in numerical applications. In 1985, Y. Meyer found a family
of wavelets that he showed to be the most efficient for modelling complex phenomena
[150] [197]. He was actually unaware at that time of Strömberg’s construction of the or-
thonormal wavelets. Soon after, Tchamitchian constructed the first example of biorthog-
onal wavelet bases [163]. Battle (1987) and Lemarié (1988) constructed new orthogo-
nal wavelet expansions using some of Tchmitchian’s computations [153] [154]. In 1986,
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Stephane Mallat discovered some relationships between quadrature mirror filters, pyra-
mid algoritms and orthonormal wavelet bases through his work in numerical image pro-
cessing. In result, Mallat and Meyer developed a systematic framework “multiresolution
analysis” [157] [83] [152], which gave a satisfactory explanation for all constructions of
orthogonal expansions, and provided a tool for the construction of yet other bases. Soon,
Ingrid Daubechies gave a construction of wavelets, non-zero only on a finite interval and
with arbitrarily high, but fixed, regularity [155] [198].

Since this final transition from continuous signal processing to discrete signal pro-
cessing was achieved by Mallat and Daubechies, there has been a proliferation of activity
with comprehensive studies expanding on the wavelet transform and its implementation
into many fields of endeavour. Applications that have been explored include multireso-
lution signal processing, image and data compression, telecommunications, fingerprint
analysis, numerical analysis and speech processing.
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[94] Y. F. Dehéry, M. Lever, and P. Urcum, “A MUSICAM source codec for digital
audio broadcasting and storage,” in Proc. IEEE Int. Conf. Acoust., Speech, and
Signal Proc., (Toronto, Canada), pp. 3605–3608, May 1991.

[95] G. Theile and G. Stoll, “MUSICAM-Surround: A Universal Multi-Channel Coding
System Compatible with ISO 11172-3,” in 93rd Convention of AES, (San Frran-
cisco), p. Preprint 3403, Oct. 1992.

[96] J. D. Johnson, “A filter family ddesigned for use in quadrature mirror filter banks,”
in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Proc., pp. 291–294, 1980.

[97] V. K. Jain and R. E. Crochiere, “Quadrature mirror filter design in the time do-
main,” IEEE Trans. Acoust., Speech, and Signal Proc., vol. 32, pp. 353–360, April
1984.

[98] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 1999.

[99] P. P. Vaidyanathan, Multirate Systems and Filter Banks. NJ:Prentice Hall, 1993.

[100] I. Daubechies, Ten Lectures on Wavelets. no. 61 in CBMS-NSF Series in Applied
Mathematics, Philadelphia: SIAM, 1992.

[101] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of compactly
supported wavelets,” Commun. on Pure and Appl. Math., vol. 45, pp. 485–560,
1992.

[102] M. Vetterli and C. Herley, “Wavelets and filter banks: Theory and design,” IEEE
Trans. Signal Proc., vol. 40, pp. 2207–2232, Sept. 1992.

[103] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using
wavelet transform,” IEEE Trans. Image Proc., vol. 1, pp. 205–220, Apr. 1992.

[104] J. D. Villasenor, B. Belzer, and J. Liao, “Wavelet filter evaluation for image com-
pression,” IEEE Trans. Image Proc., vol. 4, pp. 1053–1060, Aug. 1995.

[105] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Appli-
cations. NY: Academic Press, 1990.

[106] H. S. Malvar and D. H. Staelin, “Lapped transforms for efficient trans-
form/subband coding,” IEEE Trans. Acoust., Speech, and Signal Proc., vol. 38,
pp. 969–978, June 1990.

BIBLIOGRAPHY 183



184

[107] H. S. Malvar, Signal Processing with Lapped Transform. Nordwood: Artech
House, 1992.

[108] R. L. de Queiroz, T. Q. Nguyen, and K. R. Rao, “The genlot: generalized linear-
phase lapped orthogonal transform,” IEEE Trans. Signal Proc., vol. 40, pp. 497–
507, Mar. 1996.

[109] M. Vetterli and D. L. Gall, “Perfect reconstruction FIR filter banks: Lapped trans-
forms, pseudo-QMF’s and paraunitary matrices,” in Proc. IEEE Int. Symp. Circ.
and Syst., (Espoo, Finland), pp. 2249–2253, June 1988.

[110] A. N. Akansu and F. E. Wadas, “On lapped orthogonal transforms,” Signal Proc.,
vol. 40, Feb. 1992.

[111] J. W. Woods and S. D. O’Neil, “Subband coding of images,” IEEE Trans. Acoust.,
Speech, and Signal Proc., vol. ASSP-34, pp. 1278–1286, Oct. 1986.

[112] J. W. Woods, ed., Subband Image Coding. Kluwer Academic Publishers, 1991.

[113] S. Rao and W. A. Pearlman, “On the superiority of coding and estimation from
subbands,” in Proc. 1992 Conf. on Information Sciences and Systems, (Princeton,
N.J.), pp. 890–895, Mar. 1992.

[114] S. Rao, Analysis of Linear Prediction and Spectral Estimation from Subbands with
Applications. PhD thesis, Electrical, Computer and Systems Engineering Dept.,
Rensselaer Polytechnic Institute, Dec. 1993.

[115] J. G. Daugman, “Complete discrete 2-D Gabor transforms by neural networks for
image analysis and compression,” IEEE Trans. Acoust., Speech, and Signal Proc.,
vol. 36, pp. 1169–1179, 1988.

[116] J. G. Daugman, “Entropy reduction and decorrelation in visual coding by ori-
ented neural receptive fields,” IEEE Trans. Biomedical Engineering, vol. 36, no. 1,
pp. 107–114, 1989.

[117] Y. Meyer, Wavelets: Algorithms and Applications. Philadelphia: SIAM, 1993.

[118] S. Li, “A general theory of discrete Gabor expansion,” in Proc. SPIE’94 Mathe-
matical Imaging: Wavelet Applications, (San Diago, CA), July 1994.

[119] S. Li and D. M. Healy Jr., “A parametric Class of discrete Gabor Expansions,”
IEEE Trans. Signal Proc., vol. 44, pp. 201–211, Feb. 1996.

[120] S. Qian and D. Chen, “Discrete Gabor transform,” IEEE Trans. Signal Proc.,
vol. 41, pp. 2429–2439, July 1993.

184 BIBLIOGRAPHY



185

[121] J. Yao, “Complete Gabor trnaformation for signal representation,” IEEE Trans.
Image Proc., vol. 2, pp. 152–159, Apr. 1993.

[122] D. Gabor, “Acoustical quanta and the theory of hearing,” Natur, vol. 159(1044),
pp. 591–594, May 1947.

[123] C. Roads, “Automated granular synthesis of sound,” Computer Music Journal,
vol. 2(2), pp. 61–62, 1978.

[124] D. Jones and T. Parks, “Generation and combination of grains for music synthesis,”
Computer Music Journal, vol. 12(2), pp. 27–34, 1988.

[125] B. Truax, “Discovering inner complexity: Time shifting and transposition with a
real-time granulation technique,” Computer Music Journal, vol. 18(2), pp. 38–48,
1994.

[126] E. Mouines and J. Laroche, “Non-parametric techniques for pitch-scale and time-
scale modification of speech,” Speech Communication, vol. 16, pp. 175–205, 1995.

[127] R. McAulay and T. Quatieri, “Speech analysis/synthesis based on a sinusoidal rep-
resentation,” IEEE Trans. Acoust., Speech, and Signal Proc., vol. 34, Aug. 1986.

[128] X. Serra and J. Smith, “Spectral modeling synthesis: A sound analysis/synthesis
system based on a deterministic plus stochastic decomposition,” Computer Music
Journal, vol. 14(4), pp. 12–24, 1990.

[129] P. Prandoni, M. goodwin, and M. Vetterli, “Optimal time segmentation for signal
modeling and compression,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal
Proc., 1997.

[130] B. Boashash, Time-Frequency Signal Analysis, ch. in Advances in Spectrum Anal-
ysis and Array Processing, pp. 418–517. Prentice-Hall, Englewood Cliffs, S.
Haykin ed., 1990.

[131] C. P. Janse and A. Kaiser, “Time-frequency distributions of loud-speakers: The ap-
plication of the wigner distribution,” Journal of Audio Eng. Soc., vol. 37, pp. 198–
223, 1983.

[132] L. Cohen, “Generalized phase-space distribution functions,” Journ. of Math. Phys.,
vol. 7, pp. 781–806, 1966.

[133] L. Cohen, “Time-frequency distribution - a review,” in Proc. IEEE, vol. 77,
pp. 941–981, July 1989.

[134] L. Cohen, Time-Frequency Anaysis. Englewood Cliffs, NJ: Prentice Hall, 1995.

BIBLIOGRAPHY 185



186

[135] H. Choi and W. J. Williams, “Improved time-frequency representation of multi-
component signals using exponential kernels,” IEEE Trans. Acoust., Speech, and
Signal Proc., vol. 37, pp. 862–871, June 1989.

[136] Y. Sheng, “Wavelet transform,” in The Transforms and Applications Handbook
(A. D. Poularikas, ed.), The Electrical Engineering Handbook Series, pp. 747–827,
Boca Raton, FL(USA): CRC Press, 1996.

[137] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Lossless image
compression using integer to integer wavelet transforms,” in Proc. IEEE Conf. on
Image Proc., vol. 1, (Santa Barbara, California), pp. 596–599, Oct. 1997.

[138] C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet
Transforms, A Primer. Upper Saddle River, NJ, USA: Pretice Hall, 1998.

[139] M. Frazier and B. Jawerth, “Decomposition of Besov spaces,” Indiana Univ. Math.
J., vol. 34, pp. 777–799, 1985.

[140] S. Mallat and W. L. Hwang, “Singularity detection and processing with wavelets,”
IEEE Trans. Inform. Th., vol. 38, pp. 617–643, 1992.

[141] R. Murenzi, “Wavelet transforms associated to the n-dimensional Euclidean group
with dilations: signals in more than one dimension,” in Wavelets (J. M. Combes,
A. Grossmann, and P. Tchamitchian, eds.), pp. 239–246, Berlin: Springer-Verlag,
1989.
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1986.

[198] I. Daubechies, “Orthonormal basess of compactly supported wavelets II. Variations
on a theme,” SIAM Journ. on Math. Analysis, vol. 24, pp. 499–519, 1993.

190 BIBLIOGRAPHY



Curriculum Vitae

Name: Jong-Hwa Kim
Date of Birth: May 5. 1966 in Seoul / Republic of Korea

EDUCATION

Ph.D. Candidate in Communication Sciences, degree expected in 2003
Institute for Communication Sciences, Technical University Berlin, Germany
Dissertation title: Lossless Wideband Audio Compression: Prediction and Transform
Supervisor: Prof. Dr. Manfred Krause, Prof. Dr. Helga de la Motte-Haber
Completion of Course: Diplom-Toningenieur, summer 1997 - winter 1998
Communication Engineering I II, Sound Studio Engineering I II, Digital Signal
Processing, Lab. and Studio Practices

M.Sc. Electronic Engineering, February 1994
DSP Laboratory, Graduate School of Kyungwon University, Seongnam, Korea
Thesis: A study on signal reconstruction using adapted iterative estimation algorithm
Supervisor: Prof. Dr. Sung-Il Kim

B.A. Electronic Engineering, February 1992
Department of Electronic Engineering, Kyungwon University, Seongnam, Korea

POSITIONS HELD AND PROJECTS

Research Assistant, July 2002-present, Lab for Multimedia Concepts and Applications,
Dept. of Computer Sciences, University Augsburg, Germany.

PhD Work, 1998-present, supported by NaFöG Scholarship from Berliner Senate.
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