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Aus einem kleinen GebuÈsch
springt oftmals ein groûer Hase

Abstract

The mesoscopic concept in continuum mechanics consists of extending the domain of
the balance equations by the set of mesoscopic variables and of introducing a local
distribution function of these variables as a statistical element. The balance equations
defined on this extended domain and an example concerning liquid crystals of biaxial
molecules are discussed.

1. Introduction

Continuum mechanics is based on the balance equations of mass, momentum,
angular momentum or spin, total or kinetic energy, and internal energy. Additionally
one has to consider the balance of entropy for taking into account the second law. In
non-relativistic physics all these balances are de®ned on time and position �x; t�.
Beyond the quantities whose balance equations are mentioned above, complex
materials need more variables for their unique description. Examples for these
additional quantities are internal variables [1] [2], order and damage parameters [3]
[4], Cosserat triads [5], directors [6] [7], and alignment and conformation tensors [8]
[9]. In principle there are two possibilities to include these additional quantities into
the continuum theoretical description: One can introduce additional ®elds and their
balance equations de®ned on �x; t� 2 R3 � R1, or the additional quantities are
introduced as variables extending R3 � R1 to the so-called mesoscopic space on
which now the balances of mass, momentum, etc., are de®ned. The ®rst possibility for
describing complex materials by introducing additional ®elds has a long history in
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continuum mechanics. Starting out with the ®rst contribution of the Cosserat brothers
[10] [11] the development of mechanics of generalized continua is lasting since today
[12] [13] [14]. The second possibility introducing the mesoscopic space is called the
mesoscopic concept which stems historically from the theory of liquid crystals [3] [6]
[7] [15] [16] [17] [8] by taking the orientation distribution function of the molecules
into consideration [18] [19] [20]. This mesoscopic description of complex materials
is discussed in more detail in the next section.

2. Mesoscopic Concept

As discussed above the mesoscopic concept introduces the mesoscopic space

�m; x; t� 2M� R3 � R1 �1�

on which the balances are de®ned. Here m 2M is a set of mesoscopic variables
which is an element of a suitable manifold M on which an integration can be de®ned.

An example for m is the microscopic director n in mesoscopic liquid crystal theory
[19]. This microscopic director is de®ned as a unit vector pointing into the temporary
direction of a needle-shaped rigid particle, or, if the particle is of a plane shape, the
microscopic director is perpendicular to the particle. Because the microscopic
director is de®ned on a molecular level it is not a macroscopic ®eld d�x; t� describing
the mean orientation, but a mesoscopic variable. Here `̀ mesoscopic'' means that the
level of description is ®ner than the macroscopic one, but that no microscopic
concepts such as molecular interactions or potentials are used. In this example the
manifold M in (1) is the 2-dimensional unit sphere S2.

Beyond the use of additional variables m the mesoscopic concept introduces a
statistical element, the so-called mesoscopic distribution function (MDF) f �m; x; t�
generated by the different values of the mesoscopic variables of the molecules in a
volume element

f �m; x; t� � f ���; ��� � �m; x; t� 2M� R3 � R1: �2�

The MDF is defined on the mesoscopic space M� R3 � R1 describing the
distribution of m in a volume element around x at time t, and therefore it is always
normalized�

f �m; x; t�dM � 1: �3�

Now the ®elds as mass density, momentum density, speci®c internal energy, etc. are
de®ned on the mesoscopic space. For distinguishing these ®elds from the usual,
macroscopic ones we add the word `̀ mesoscopic''. Consequently the mesoscopic
mass density is de®ned by

%��� :� %�x; t� f ���: �4�
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Here %�x; t� is the macroscopic mass density. By use of (3) we obtain

%�x; t� �
�
%�m; x; t�dM: �5�

This equation shows, that the system can be formally treated as a mixture by
regarding all particles in a volume element of the same mesoscopic variables as one
component of the system having the partial density %��� [20]. Thus the MDF results as
the fraction of the mass density belonging to one component characterized by the
same mesoscopic variables over the total mass density of the mixture. Here the
`̀ component index'' m is a continuous one. Because mixture theory is well developed
[21], [22] mesoscopic balance equations can be written down very easily [23], what
we will do in the next section.

Other mesoscopic ®elds de®ned on the mesoscopic space are the mesoscopic material
velocity vvv��� of the particles belonging to the mesoscopic variable m at time t in a
volume element around x, the external mesoscopic acceleration k���, the mesoscopic
stress tensor T���, and the mesoscopic heat ¯ux density q���, etc. The balance
equations belonging to these mesoscopic ®elds are discussed in the next section.

3. Mesoscopic Balances

3.1. Global mesoscopic balances

First of all we write down a general global mesoscopic balance equation [19] which
has the following form

d

dt

�
%��������vvv��� ������dMd3x � Ztot; �6�

Ztot �
�
����� � rx � S��� � rm � R����dMd3x: �7�

Here ���� is the convective part of the balance, ���� its conductive part, ���� the
volume part, and S��� and R��� are the fluxes through the surface in position space
and on the manifold M, respectively. The total change Ztot is the sum of the
production and the total flux over the boundary and it belongs to the spatial and to the
mesoscopic part of the mesoscopic space. The interpretation of the balanced quantity

X��� :� %��������vvv��� ������ �8�

in (6) depends on ���� and on ���� which are functions on the mesoscopic space.
Therefore the meaning of the balanced quantity is also determined by the meaning of
the set of mesoscopic variables m. Consequently an interpretation of a global
mesoscopic balance equation can be given, if the physical character of the set of
mesoscopic variables is ®xed. In Section 6 we will treat an example chosen from the
®eld of liquid crystals.
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The global mesoscopic balance equation (6) can be transformed into a mesoscopic
one which is local in position, time, and in the set of mesoscopic variables. For this
purpose we need a generalized Reynolds' transport theorem [19].

d

dt

�
����dMd3x

�
�

@

@t
���� � rx � �vvv�������� � rm � �u��������

� �
dMd3x: �9�

Here the independent ®eld u���, de®ned on the mesoscopic space, describes the
change in time of the set of mesoscopic variables: With respect to m the mesoscopic
change velocity u��� is the analogue to the mesoscopic material velocity vvv��� referring
to x: If a molecule is characterized by �m; x; t�, then for �t! 0 it is characterized by
�m� u����t; x� vvv����t; t ��t�. Besides the usual gradient also the gradient with
respect to the set of mesoscopic variables appear. By use of (9) we can transform the
global mesoscopic balance equation (6) as usual into a local one.

3.2 Local mesoscopic balances

Presupposing the global balances we obtain by use of (9) local balance equations [24]
which are de®ned on the mesoscopic space and which are therefore denoted as local
mesoscopic balances. The general structure of these balances for the balanced quantity
(8) is

@

@t
X��� � rx � �vvv���X��� ÿ S���� � rm � �u���X��� ÿ R���� � ����: �10�

As already discussed the special balances are obtained by a special identi®cation of
���� and ���� by which an interpretation of S��� and R��� follows. In the special case
of the balance of mass these four quantities are independent of any interpretation of
m, because whatever m may be, the mass balance must be valid. We obtain the
mesoscopic balances by the subsequent identi®cations [23]:

Mass

���� � 0; ���� � 1; ���� � 0; �11�
S��� � 0; R��� � 0: �12�

@

@t
%��� � rx � f%���vvv���g � rm � f%���u���g � 0: �13�

Momentum

���� � 1; ���� � 0; ���� � %���k���; �14�
S��� � TT���; R��� �TT���; �15�

@

@t
�%���vvv���� � rx � �vvv���%���vvv��� ÿ TT����

� rm � �u���%���vvv��� ÿTT���� � %���k���: �16�
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Here k��� is the external acceleration, TT��� the transposed Cauchy stress tensor, and
TT��� the transposed stress tensor on M.

Angular Momentum

���� � x�; ���� � s���; �17�
���� � x� %���k��� � %���g���; �18�
S��� � �x� T����T �WT���; �19�
R��� � �x�T����T �WT���; �20�

M��� :� x� vvv��� � s���; �21�
@

@t
�%���M���� � rx � �vvv���%���M��� ÿ �x� T����T ÿWT����

� rm � �u���%���M��� ÿ �x�T����T ÿWT����
� %���x� k��� � %���g���: �22�

Here s��� is the vector of mesoscopic speci®c spin, g��� the vector of mesoscopic
angular momentum exerted by the external forces on m, the tensor W��� is the
mesoscopic surface torque, and W��� is the analogue to T��� acting on the
mesoscopic variable m.

Total Energy

���� � �1=2�vvv���; ���� � �1=2�s��� ��ÿ1 � s��� � "���; �23�
���� � %���k��� � vvv��� � %���g��� ��ÿ1 � s��� � %���r���; �24�
S��� � T���T � vvv��� �W���T ��ÿ1 � s��� � q���; �25�
R��� �T���T � vvv��� �W���T ��ÿ1 � s��� � Q���; �26�
e��� :� 1

2
vvv2��� � 1

2
s��� ��ÿ1 � s��� � "���; �27�

@

@t
�%���e����
� rx � �vvv���%���e��� ÿ T���T � vvv��� ÿW���T ��ÿ1 � s��� � q����
� rm � �u���%���e��� ÿT���T � vvv��� ÿW���T ��ÿ1 � s��� � Q����
� %���k��� � vvv��� � %���g��� ��ÿ1 � s��� � %���r���: �28�

Here "��� is the internal energy density, the mesoscopic absorption supply is r���;�
the moment of inertia tensor, q��� the mesoscopic heat ¯ux density, and Q��� is the
heat ¯ux density on M.

According to the de®nition of the mesoscopic mass density (4) we obtain from
the mesoscopic mass balance (13) a balance of the MDF f ��� by inserting its
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de®nition:

@

@t
f ��� � rx � �vvv��� f ���� � rm � �u��� f ����

� f ��� @
@t
� vvv��� � rx

� �
ln%�x; t� � 0: �29�

Because this balance equation of the mesoscopic distribution function includes
the macroscopic ®eld of the mass density (5), it is not independent of the macroscopic
mass balance de®ned on R3. Therefore the mesoscopic rate equation for the MDF
contains already macroscopic quantities in¯uencing its time rate. This can be
interpreted as an in¯uence of a `̀ mean ®eld'' on the mesoscopic motion. As can be
seen from (5) macroscopic quantities are de®ned by integration over the mesoscopic
part. This should be investigated in more detail in the next section.

4. Balances of Micropolar Media

Introducing the macroscopic ®elds by integrating over the mesoscopic part of the
mesoscopic space we can transform the local mesoscopic balances into local balances
for micropolar media [19]. So the de®nition of the macroscopic material velocity
vvv�x; t� is

%�x; t�vvv�x; t� :�
�
%���vvv���dM; �30�

and (13) results in the macroscopic mass balance, if we take

�
rm � �u���%����dM � 0 �31�

into consideration. This holds because of Gauss' or Stokes' theorem, and because
f ���, restricted to the mesoscopic part, has a compact support [19].

The shape of the macroscopic balances by integrating (10) over the mesoscopic part
is

@

@t
f%�x; t����x; t�vvv�x; t� ���x; t��g
� rx � f%�x; t�vvv�x; t����x; t�vvv�x; t� ���x; t��g
� ��x; t� � rx � S�x; t�: �32�
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Here the following mesoscopic de®nitions of macroscopic quantities are introduced:

%�x; t���x; t� :�
�
%�������dM; �33�

��x; t� :�
�

����dM; �34�

%�x; t���x; t� :�
�
%��������vvv��� ������dM

� %�x; t���x; t�vvv�x; t�; �35�

S�x; t� :�
�
fS��� ÿ %���vvv��������vvv��� ������gdM
ÿ %�x; t�vvv�x; t����x; t�vvv�x; t� ���x; t��: �36�

If ����;����;����, and S��� are speci®ed according to (11) and (12) we obtain
the macroscopic balance of mass. Those of momentum, angular momentum and
energy follow in the same way by the speci®cations (14), (15), (17) to (20), and (23)
to (26).

Besides these balances an other one is essential: the entropy balance. Because of the
second law which can be formulated only for the whole system the entropy balance is
only interesting in its macroscopic form. It writes

@

@t
�%�x; t���x; t�� � rx � �%�x; t���x; t�vvv�x; t� � ����x; t��
� ��x; t� � ��x; t� �37�

(��x; t� � speci®c entropy, ����x; t� � entropy ¯ux density, ��x; t� � entropy supply,
��x; t� � entropy production density). The second law is now expressed by the
dissipation inequality

��x; t� � 0 �38�

which has to be taken into account for writing down constitutive equations.

5. Order Parameters and Constitutive Equations

Using the set m of mesoscopic variables we can introduce the family of the
macroscopic ®elds of order parameters which is de®ned by different moments of the
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MDF

1 �
�

f ���dM �39�

A�x; t� :�
�

f ���mdM �40�

a�x; t� :�
�

f ��� mm dM; �41�

a 4�x; t� :�
�

f ��� mmmm dM; �42�

a N�x; t� :�
�

f ��� m . . . N times . . . m dM; etc: �43�

Here the symbol denotes the traceless symmetric part of the tensor in its argument
[25].

These ®elds of order parameters describe macroscopically the mesoscopic state of the
system introduced by m and its MDF f ���. Consequently these ®elds are the link
between the mesoscopic background description of the system and its extended
description by additional macroscopic ®elds. An example for order parameter ®elds is
given in Section 6. Here in liquid crystal theory the ®elds of order parameters are
alignment tensors of different orders. Other examples for order parameter ®elds are
micro-stress ®elds in solids or order ®elds in polycrystalline materials.

In a purely macroscopic phenomenological theory the order parameters are internal
variables and relaxation equations for them are postulated [26, 27]. The mesoscopic
background in mind equations of motion for these variables can be derived starting
out with the differential equation (29) of the MDF. We multiply (29) with m�1

� � �m�l
,

integrate over the manifold M and obtain

�
@

@t
� f ��� m�1

� � �m�l
� dM

�
�
rx � �vvv��� f ��� m�1

� � �m�l
� dM

�
�

m�1
� � �m�l

rm � �u��� f ����dM

�
�

f ��� m�1
� � �m�l

dM

@

@t
ln��x; t� � vvv��� � rxln��x; t�

� �
� 0: �44�
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We supose that the mesoscopic manifold M is time independent. Then the time
derivative and the derivative with respect to position can be interchanged with the
integration over M. We split the mesoscopic velocity into the macroscopic velocity
and the deviation from this average

vvv��� � vvv�x; t� � �vvv���: �45�

The resulting equation of motion for the MDF reads

@

@t

�
f ��� m�1

� � �m�l
dM

�rx � vvv�x; t�
�
� f ��� m�1

� � �m�l
� dM�

�
��vvv��� f ��� m�1

� � �m�l
�dM

� �
�
�

m�1
� � �m�l

rm � �u��� f ����dM�
�

f ��� m�1
� � �m�l

dM

@

@t
ln��x; t� � vvv��� � rxln��x; t�

� �
� 0: �46�

Introducing the de®nition of the order parameters (43) we obtain

@

@t
al �rx � vvv�x; t�al �

�
��vvv��� f ��� m�1

� � �m�l
�dM

� �
�
�

m�1
� � �m�l

rm � �u��� f ����dM

� al

@

@t
ln��x; t� � vvv��� � rxln��x; t�

� �
� 0: �47�

In case of a general mesoscopic manifold M this equation cannot be simpli®ed
further, but we will derive a simpli®ed equation for the example of biaxial liquid
crystals later.

For writing down constitutive equations a state space has to be introduced [28]. In
mesoscopic theories there are different possibilities to do that: A state space of purely
mesoscopic variables, a mixed one consisting of mesoscopic and macroscopic
variables, or one containing only macroscopic variables can be introduced. In case of
a state space of mesoscopic variables the well known macroscopic constitutive
equations can be analogously reformulated on the mesoscopic state space [19], if the
mesoscopic manifold M can be embedded in R3 (which is, of course, not generally
the case). Such an embedding is possible for example in the mesoscopic theory for
uniaxial liquid crystals. The mesoscopic background of the constitutive theory has
been applied to the stress tensor of liquid crystals of uniaxial molecules [29]. The
result is the order parameter dependence of viscosity coef®cients, which cannot be
obtained from a purely macroscopic theory. Another possibility is to introduce the
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mesoscopic de®nitions of the macroscopic quantities into the macroscopic balances.
Consequently we obtain mesoscopically de®ned macroscopic quantities for which we
can derive the class of the macroscopic constitutive equations by use of Liu's
procedure [30, 31, 32]. In this case the simplest example of mesoscopically de®ned
variables are the alignment tensors which are introduced additionally to the classical
®elds into the state space in order to take into account the dependence of material
properties on the internal structure of the material. Mixed state spaces containing
mesoscopic as well as macroscopic variables appear, if the dynamics of the order
parameter ®elds is derived [33, 34].

6. Example: Liquid Crystals of Biaxial Molecules

As reported in Section 2 a prominent example for m is the microscopic director in
liquid crystal theory for uniaxial molecules, because the orientation of such a
molecule can be described by one direction represented by this microscopic director.
In case of biaxial molecules we need two directions for describing the orientation of
the molecule. A constraint between these two directors is the ®xed angle between
them, usually chosen to be �=2. Therefore the orientation of a biaxial molecule is
®xed by three parameters, two for the orientation of the ®rst director, a third one for
that of the second director [35]. Because of this constraint a two-director theory [36,
37] is clumsy to handle. Therefore it is advantageous to look for another set of
mesoscopic variables for describing the orientation of biaxial liquid crystals. This is
the item of the following section.

6.1 Set of mesoscopic variables

The orientation of a biaxial molecule is described by a proper orthogonal
transformation Q which is de®ned on a triad of reference and which results in the
actual orientation of the molecule [38]. Because Q is characterized by three
parameters we may choose them as a set of mesoscopic variables. But this set is
dif®cult to handle, and therefore we will replace it by another on. First of all we
remember the

&Proposition (Euler-D'Alembert): Each proper orthogonal transformation on R3 can
be described uniquely by a 3-dimensional unit vector n0 2 R3; jn0j � 1, and an angle
' 2 �0; ��, if we identify �n0; �� � �ÿn0; ��:

Q �QT � QT �Q � 1; Q � n0 � n0; �48�

0 � n0 � z0 � n0 �QT �Q � z0 �: n0 � z0�; �49�

z0 � z0� � cos': & �50�

According to this proposition all rotations around an arbitrary, but ®xed axis of the
direction fn0;ÿn0g are represented by the sets �n0; '� and �ÿn0; '�.
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The three free parameters of an orthogonal transformation which are included in n0

and ' can be represented by quaternions [39]. A quaternion x 2 H2� is de®ned as
follows

x � x0 � x1i� x2 j� x3k �: x0 � ~x 2 H; �51�

i2 � j2 � k2 � ÿ1; ij � k�cycl:�; ji � ÿk�cycl:�: �52�

The multiplication is as usual, but non-commutative. The part x0 2 ReH is called the
real, and ~x 2 ImH is the imaginary part of the quaternion x.

We now introduce two (basis-dependent) mappings

V : Im H! R3; ~a 7! a � V�~a�; �53�

W : H! R4; a 7! a � W�a�: �54�

The multiplication of two quaternions can be represented by use of these mappings as

xy � �xy�0 � exy; �55�

�xy�0 � x0y0 ÿ V�~x� � V�~y�; �56�

exy � x0~y� ~xy0 � Vÿ1�V�~x� � V�~y��: �57�

Introducing the conjugate complex quaternion by

x� :� x0 ÿ ~x �58�

we obtain for the square of its norm

xx� � x�x �: jxj2 � x2
0 � V2�~x� � W2�x�: �59�

With regard to the Euler-D'Alembert proposition we now consider the special unit
quaternion

n � cos�'=2� � sin�'=2�Vÿ1�n0� 2 H; n�n � 1: �60�

Because according to the Euler-D'Alembert proposition 0 � ' � � is valid, the real
part of n is always not negative, whereas the imaginary part depends on the direction
of n0. Consequently all n of negative real part do not represent a rotation, that means,
not all unit 4-vectors n0 � W�n� decribe a rotation. This is a disadvantageous
situation because the unit 4-vectors n0 � W�n� 2 S3 spanning the 3-dimensional
sphere would be a suitable and easy set of mesoscopic variables.

2�The letter H has been chosen to honour R. W. Hamilton who invented these numbers in the

middle of the 19th century.
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The solution of this dilemma is to consider S3 as a universal covering C of the space
spanned by the vectors belonging to the imaginary parts of (60) which is the ball D3

of radius one (see Fig. 1)

C � <S3;D3;�>;� : S3 ! D3; �61�

n0 :� cos#e0 � sin#n0 7!��n0� :� �sgn cos#�sin#n0: �62�

This procedure is now explained in more detail: According to the Euler-D-Alembert
proposition the 3-vector

n � V�~n� � sin�'=2�n0 2 D3 �63�

represents a rotation of angle ' around the axis directed along n0. The imaginary part
of the unit quaternion (60)

~n � sin�'=2�Vÿ1�n0� 2 Im H; jn0j � 1: �64�

is connected to this rotation by (63). Comparison of (63) with (62) makes evident,
that then also ��n0� represents a rotation. Because of

��ÿn0� � ÿfsgn�ÿcos�'=2��gsin�'=2�n0 � ��n0� �65�

we obtain the result that, by introducing the universal covering C (61), both the unit
4-vectors n0 and ÿn0 are mapped onto the same rotation, although only one of them

Fig. 1. The antipodes n0 and ÿn0 of the S3 represent by projection � the same rotation,
characterized by points of the ball D3. Thus S3 is a universal covering of D3.
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(that of cos�'=2� � 0) is representing one. Thus two unit 4-vectors, n0 2 S3, belong
to each rotation.

If we now introduce n0 as the set of mesoscopic variables, (1) results in

�n0; x; t� 2 S3 � R3 � R1: �66�
Because n0 and ÿn0 belong to the same rotation the MDF (2) has the symmetry

f �n0; x; t� � f �ÿn0; x; t� � f ���: �67�
Before we can write down the local mesoscopic balances (10) we have to introduce
the mesoscopic change velocity u��� which appear in (9) and (10).

6.2 Angular and mesoscopic change velocity

Like the mesoscopic set n0 the mesoscopic change velocity u��� is a 4-vector de®ned
on the mesoscopic space which indicates the change of the unit 4-vector n0. Therefore
u is an element of the tangent space of the S3, and we have according to (56) and (58)

n0 � u � 0 � �n�u�0: �68�

This relation can easily be verified by introducing

u � _n! u � W� _n�; �69�
and inserting (60) into (68). According to (60) and (69) we obtain

V�~u� � �1=2�cos �'=2� _'n0 � sin�'=2� _n0 �70�
which consists of two parts belonging to the changes of the rotation angle and the
rotation axis. This 3-vector will appear in the balance of energy. The gradient with
respect to the set of mesoscopic variables reads now

rm � u � rn � u: �71�
The angular velocity x is defined by the time dependent proper orthogonal
transformations Q�t� in (48)

x :� �1=2�"3 : 
; 
 :� QT � _Q: �72�

Here "3 is the Levi-Civita tensor. Thus by introducing the tensor � of inertia the
angular momentum and the rotation energy are

n :� � � x; "r :� �1=2�x �� � x; �73�

and we consider the special balances for liquid crystals of biaxial molecules in the
next section.

Concepts of mesoscopic continuum physics 191

J. Non-Equilib. Thermodyn. � 2000 �Vol 25 �No. 2
Bereitgestellt von | Technische Universität Berlin

Angemeldet
Heruntergeladen am | 04.10.18 15:31



6.3 Balances

As we can see from (67) in comparison with (2) the argument ��� corresponds to the
argument ���. Consequently the balance equations written down in section 3.2 are
already those for biaxial liquid crystals, if we replace all arguments ��� by
��� 2 S3 � R3 � R1. The balances are now de®ned on the nematic space as a special
case of the mesoscopic one, and some of the quantities have another interpretation
than in Section 3.2.

The mixed tensor T is the stress tensor on S3 represented by the linear mapping

T : S3 ! R3; a 7! a �T��� � a ; �74�

g��� is the 3-vector of angular momentum exerted by the external forces on the
orientation, the 3-tensor W��� and the mixed tensor

W : S3 ! R3; a 7! a �W��� � a ; �75�

are the analogues to T and T and are called spin tensors, r��� is the absorption
supply, q��� the heat ¯ux density, and Q��� the heat ¯ux density on the S3.

6.4 Alignment tensors

According to (43) the alignment tensors are introduced as the symmetric irreducible
moments of the ODF

a�k��x; t� :�
�

S3

f ��� n0 . . . k times . . . n0 d3n: �76�

They are macroscopic ®elds describing the orientational order, being non-zero in the
ordered phase and vanishing in the isotropic one. Therefore they are order parameters
in the sense of the theory of phase transitions. Within a purely macroscopic
phenomenological theory they are internal variables independent in non-equilibrium
and depending in equilibrium on the equilibrium variables density and temperature.

The equations of motion for these internal variables can be derived in the way we
derived the equations of motion for the order parameters (47) in the general
mesoscopic theory

@

@t
al �rx � vvv�x; t�al �

�
S3

��vvv��� f ��� n0
�1
� � � n0

�l
�d3n

� �
�
�

S3

n0
�1
� � � n0

�l
rn � �u��� f ����d3n

� al

@

@t
ln��x; t� � vvv��� � rxln��x; t�

� �
� 0: �77�
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For the manifold M being a unit sphere in Rk (here S3) this equation can be
simpli®ed using [38, 25]

n0
�1
� � � n0

�l
rn � �u��� f ����

� rn � �u��� f ��� n0
�1
� � � n0

�l
� ÿ f ���u��� � rn n0

�1
� � � n0

�l

� rn � �u��� f ��� n0
�1
� � � n0

�l
� ÿ lf ��� u�1

���n0
�2
� � � n0

�l
; �78�

where rn denotes here the covariant derivative on the unit sphere.

The divergence on the unit sphere is transformed by use of Gauss' theorem, and the
corresponding term vanishes after integration over the closed unit sphere. We
introduce the abbreviation h� � �i for the avarage with the orientational distribution
function over the unit sphere and obtain

@

@t
a�1����l

�x; t� � rx � �vvv�x; t�a�1����l
�x; t��

� rx � h�vvv��� n0
�1
� � � n0

�l
i ÿ lh u�1

���n0
�2
� � � n0

�l
i

� a�1����l
�x; t� @

@t
ln��x; t� � vvv�x; t� � rxln��x; t�

� �
� h�vvv��� n0

�1
� � � n0

�l
i � rxln��x; t� � 0 �79�

or

@

@t
a�1����l

�x; t� � vvv�x; t� � rxa�1����l
�x; t�

� rx � h�vvv��� n0
�1
� � � n0

�l
i ÿ lh u�1

���n0
�2
� � � n0

�l
i

� a�1����l
�x; t� 1

��x; t�
@

@t
��x; t� � rx�vvv�x; t���x; t��

� �
|���������������������������{z���������������������������}

�0

� h�vvv��� n0
�1
� � � n0

�l
i � rxln��x; t� � 0: �80�

To decompose the term h u�1
���n0

�2
� � � n0

�l
i we introduce the mesoscopic angular

velocity which is different from (72)

x��� :� n� u��� ! u��� � x��� � n; �81�

and write

u��� � 
2��� � n; �82�

and by use of the Levi-Civita tensor we have


2��� :� ÿ"3 � x���: �83�
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Using this we de®ne the mean angular velocity tensor which is also different from
(72) by


2�x; t� :� h
2���i �84�

and decompose 
2��� according to


2��� � 
2�x; t� � �
2���: �85�

Using the material time derivative we obtain the differential equation in time of the
alignment tensor family

d

dt
a�1����l

ÿ l 
�1��x; t�a��2����l

� lh �
�1����n0
�n0

�2
� � � n0

�l
i ÿ rx � h�vvv��� n0

�1
� � � n0

�l
i

� h�vvv��� n0
�1
� � � n0

�l
i � rxln��x; t�: �86�

Here are some remarks on the general structure of the equation of motion (86) of the
alignment tensor family: The left hand side is Jaumann's (co-moving and co-
rotational) time derivative of a symmetric, l-th rank tensor describing the changes of
al which are noted by an observer travelling with velocity vvv�x; t� and rotating with
x�x; t�. The right hand side of (86) describes the non-trivial changes of al, that are the
changes by alignment production and supply. If the peculiar velocities �vvv��� and
�
2��� vanish, the alignment tensor al will only change in time by the motion of the
observer and not by production and supply. The right hand side of (86) contains
averages with respect to f ���, and therefore it is a rather complicated function of all
alignment tensors of the family. Thus we obtain an in®nite system of partial
differential equations which does not decouple in general. The coupling is due to the
moments of the peculiar velocities �vvv��� and �
2���.

7. Summary

For describing complex materials additional ®elds besides the mass density, the
momentum density, the angular momentum density, and the energy density are
needed. There are different procedures to introduce these additional ®elds. They can
be introduced by their balance equations de®ned on space-time, or they can be
introduced as additional variables spanning together with the space-time variables
the mesoscopic space. This second procedure is called the mesoscopic concept. The
usual balances are now de®ned on the mesoscopic space and can be written down
easily by using an extended Reynolds transport theorem. In connection with the
mesoscopic mass density a statistical quantity, the mesoscopic distribution function,
and its moments can be introduced. These moments are ordinary ®elds on space-time
taking into account the mesoscopic back-ground introduced by the mesoscopic
concept.
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The nematic space of biaxial molecules can be interpreted as special case of a
mesoscopic space. Here the mesoscopic variables M are unit 4-vectors spanning the
S3. Then the nematic balance equations for mass, momentum, angular momentum,
and energy can be written down for liquid crystals of biaxial molecules which
represents a general Cosserat continuum. The connection of these balances to those of
micropolar media is discussed. The theory of constitutive equations is out of scope of
this sketch and will be treated elsewhere.

In the case of liquid crystals the moments of the MDF are called alignment tensors.
They are the macroscopic (internal) variables characterizing the orientational order in
the liquid crystaline phase. A hierarchy of coupled differential equations has been
derived for them.
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