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Abstract

In this thesis, we develop numerical schemes for the accurate and efficient computation of band structures

of two-dimensional photonic crystal waveguides, which are periodic nanostructures with a line defect.

The perfectly periodic medium on both sides of the line defect has to be modelled mathematically.

For this, we employ Dirichlet-to-Neumann and Robin-to-Robin transparent boundary conditions. These

boundary conditions are transparent in the sense that they do not introduce a modelling error, which is

in contrast to the well-known supercell method. The numerical realization of these transparent boundary

conditions in terms of high-order finite element discretizations addresses the first objective of this work,

i. e. to improve the accuracy of photonic crystal waveguide band structure calculations. The realization

of Robin-to-Robin transparent boundary conditions is more involved than the realization of Dirichlet-

to-Neumann boundary conditions. However, in contrast to Dirichlet-to-Neumann boundary conditions,

they do not exhibit any forbidden frequencies for which the boundary conditions are not well-defined or

their computation is ill-posed.

Since the eigenvalue problems with Dirichlet-to-Neumann or Robin-to-Robin transparent boundary

conditions are nonlinear, efficient numerical schemes for their solution are crucial. We propose an indirect

scheme based on Newton’s method that is ideally suited for the eigenvalue problems under consideration.

Moreover, we develop a path following algorithm, which we apply for the efficient approximation of the

eigenpaths of the nonlinear eigenvalue problems, the so-called dispersion curves of the photonic crystal

waveguide band structures. This path following algorithm is based on the fact that the dispersion curves

are analytic, and hence, a Taylor expansion can be applied. For this, we introduce formulas for the

derivatives of the dispersion curves and an adaptive selection of nodes at which a Taylor expansion is

computed. With this adaptive selection we can resolve the dispersion curves in full detail while saving

computation time.

Our proposed numerical scheme, that includes these two ingredients, i. e. the high-order finite element

discretization of the transparent boundary conditions for periodic media and the adaptive path following

algorithm, allows for efficiently resolving physical phenomena with high accuracy. For example, we show

how to identify mini-stopbands, i. e. avoided crossings of dispersion curves, and we discuss the behaviour

of dispersion curves at band edges, which is not possible with standard methods such as the supercell

method and an equidistant sampling of dispersion curves.
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Zusammenfassung

Diese Dissertation befasst sich mit der Entwicklung von numerischen Verfahren für die akkurate und

effiziente Berechnung der Bandstrukturen von zweidimensionalen Photonenkristallwellenleitern. Photo-

nenkristallwellenleiter sind periodische Nanostrukturen mit einem Liniendefekt.

Das perfekt periodische Medium an beiden Seiten des Liniendefekts muss mathematisch modelliert

werden. Hierfür werden transparente Dirichlet-zu-Neumann- und Robin-zu-Robin-Randbedingungen ver-

wendet. Diese Randbedingungen sind in dem Sinne transparent, als dass sie, im Gegensatz zu der be-

kannten Superzellenmethode, keinen Modellierungsfehler verursachen. Die numerische Umsetzung dieser

transparenten Randbedingungen in Form von finiten Elementen hoher Ordnung adressiert das erste Ziel

der vorliegenden Arbeit, also die Verbesserung der Genauigkeit von Bandstrukturberechnungen für zwei-

dimensionale Photonenkristallwellenleiter. Die Implementation der Robin-zu-Robin-Randbedingungen ist

komplizierter als die der Dirichlet-zu-Neumann-Randbedingungen, jedoch haben sie den Vorteil, dass sie

für alle Frequenzen wohldefiniert und ihre Berechnung wohlgestellt ist.

Da die Eigenwertprobleme mit Dirichlet-zu-Neumann- oder Robin-zu-Robin-Randbedingungen nicht-

linear sind, sind effiziente Methoden für ihre Lösung unabdingbar. Dafür wird ein neuartiges, iteratives

Verfahren vorgeschlagen, das auf der Newton-Methode basiert und das ideal auf die zu lösenden Probleme

abgestimmt ist. Ferner wird ein Pfadverfolgungsalgorithmus entwickelt, der für die effiziente Approximati-

on der Eigenpfade der nichtlinearen Eigenwertprobleme, den sogenannten Dispersionskurven, angewendet

wird. Dieser Pfadverfolgungsalgorithmus basiert auf der Tatsache, dass die Dispersionskurven analytische

Funktionen sind und somit eine Taylor-Entwicklung möglich ist. Dazu werden Formeln zur Berechnung

der Ableitungen der Dispersionskurven eingeführt und eine adaptive Auswahl der Knotenpunkte vorge-

schlagen, an denen eine Taylor-Entwicklung berechnet wird. Durch diese adaptive Auswahl können die

Dispersionskurven bei gleichzeitiger Zeitersparnis fein aufgelöst werden.

Das vorgeschlagene, numerische Verfahren für die Berechnung der Bandstrukturen von zweidimensiona-

len Photonenkristallwellenleitern, welches sowohl die Diskretisierung der transparenten Randbedingungen

mit finiten Elementen hoher Ordnung sowie den Pfadverfolgungsalgorithmus enthält, ermöglicht die ef-

fiziente Auflösung physikalischer Phänomene mit hoher Genauigkeit. So wird gezeigt, wie mit Hilfe des

vorgeschlagenen Verfahrens Ministoppbänder identifiziert werden können. Das sind Bereiche der Band-

struktur, in denen sich zwei Dispersionskurven sehr nahe kommen, ohne sich aber zu schneiden. Ferner

kann mit dem vorgeschlagenen Verfahren das Verhalten in einer sehr kleinen Umgebung der Bandkante

analysiert werden. Für beide genannten Phänomene gilt, dass sie mit Standardmethoden, wie der Super-

zellenmethode und einem äquidistanten Abtasten der Dispersionskurven, nicht aufgelöst werden können.
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1 Introduction

Photonic crystals (PhCs) are periodic nanostructures of dielectric material. The periodicity, whose lattice

is in the order of the wavelength of visible light, is induced by alternating refractive indices, or in other

words, by a periodic dielectric function [JJWM08].

Depending on its frequency light either propagates through PhCs or it is reflected. Intervals of fre-

quencies for which the PhC prohibits the propagation of light, and the light is totally reflected, are called

(photonic) band gaps or stop bands. If the propagation of any polarization and any direction is prohibited,

we speak of complete (photonic) band gaps, see for example the complete band gap in Figure 1.1. This

is why PhCs are sometimes also called photonic band gap materials. The PhC band structure describes

the different behaviour of light propagation and reflection. It shows the dispersion relation, which is the

relation of the frequency of propagating light in dependence on its direction, which is given in parame-

terized form in terms of the quasi-momentum or wave vector. The functions, that describe the dispersion

relation, are called band functions or, if the quasi-momentum is scalar, we speak of dispersion curves.

Due to the definition of allowed and forbidden frequencies of light, PhCs can be regarded as the optical

counterpart of crystalline solids, whose periodic potential opens up forbidden energy bands in which

electrons cannot propagate through the crystal [Kit04]. See also [Blo62] for more details on band theory

for crystalline solids.
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Figure 1.1: Band structure of the 2d PhC related

to the 2d PhC waveguide that we will present in

Example 2 in Chapter 2. The red area shows the

complete band gap of the PhC.
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Figure 1.2: Band structure of the 2d PhC wave-

guide that we will present in Example 2 in Chap-

ter 2. The red lines are dispersion curves that cor-

respond to guided modes, and the grey color shows

areas for which propagating PhC modes exist.

In general one has to distinguish between one-dimensional (1d), two-dimensional (2d) and three-

dimensional (3d) PhCs, where the number of the dimension stands for the number of axes of periodicity.

For example, a stack of dielectric layers is a 1d PhC, whose ability to open up band gaps was already

explained in 1887 by Lord Rayleigh [Ray87]. In this work we shall focus on 2d PhCs whose periodicity is

usually induced by periodically spaced, straight holes in a dielectric material, or by periodically spaced,

straight rods of a dielectric material. In practise, these 2d PhCs have finite extend but it is a common sim-

plification to assume that the device is infinite in the plane that is perpendicular to the holes/rods. These

perfectly periodic structures with finite height are called planar PhCs or PhC slabs. The propagation of

light in the plane is determined according to the PhC band structure with its band gaps. Using a stack of

layers with different refractive indices, the light in 2d PhC slabs can also be confined in vertical direction,
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1 Introduction

which is known as index guiding [JJWM08]. In Figure 1.3 we present a sketch of such a 2d PhC slab with

index guiding in vertical direction. The radiation, or, in other words the loss in vertical direction of PhC

slabs is — to the best of our knowledge — still an open question. For homogeneous, open waveguides,

however, this question has already been studied in detail [BBDHC09, JH08, JHN12]. Instead of directly

studying the properties 2d PhC slabs, it is a usual simplification to consider the corresponding, ideal

2d PhCs [JJWM08]. As we will elaborate in Chapter 2, this leads to a 2d problem whose geometry is

sketched in Figure 1.4.

Figure 1.3: Sketch of a 2d PhC slab with index guiding in vertical direc-

tion. The refractive indices are chosen such that the light is confined

in the centre layer [JJWM08].

Figure 1.4: Sketch of the 2d

approximation of the 2d PhC

slab in Figure 1.3.

The mathematical properties of PhC band structures, and in particular 2d PhC band structures, have

been studied extensively in the past decades, see for example the review article by Kuchment [Kuc01].

One of the main mathematical questions in the context of PhCs is the existence of band gaps. Even though

it is experimentally and numerically evident, that gaps can exist, see for example [FG97, JJWM08] or

the computer-assisted proofs in [HPW09], there is only little analytical knowledge for 2d PhCs [Kuc01].

However, there are specific cases for which the existence of gaps could be proved, e. g. high-contrast me-

dia [FK96a, FK96b]. If gaps exist the question remains how many gaps can exist. Bethe and Sommerfeld

conjectured, that the number in 2d and 3d settings is finite [BS67]. For the 2d case this was shown rather

recently in [Vor11].

The numerical computation of PhC band structures is addressed, for example, in the review article by

Busch [Bus02]. While finite differences time domain (FDTD) calculations are well-known and established

in the engineering community for simulations of finite PhCs, there has been much progress recently in

2d PhC band structure calculations in frequency domain using the finite element method (FEM). The

proposed methods range from edge FEM [BCG06] over adaptive hp-FEM [SK09, GG12] to generalized

FEM [BSS11, Bra13]. In this thesis we will follow the ideas in [SK09] and use high-order FEM for our

2d computations.

Due to the existence of band gaps in 2d PhCs light can be guided efficiently in 2d PhC waveguides.

That are PhCs with a line defect, that is usually created by omitting one (PhC W1 waveguide), two

(PhC W2 waveguide), or more rows of holes/rods. Inside the PhC band gaps there can exist modes, so

called guided modes or trapped modes, that propagate along the line defect while decaying exponentially

in the PhC, i. e. in perpendicular direction to the line defect, see for example the band structure of a

2d PhC W1 waveguide with its dispersion curves corresponding to guided modes in Figure 1.2. For

homogeneous line defects, as obtained when omitting one or more rows of holes/rods, e. g. for PhC W1

waveguides, the existence of guided modes was shown in [KO04], while the mathematical justification of

this observation in full generality is still under investigation, see for example [AS04] for an approach using

Green’s functions to describe the band gap structure of 2d PhCs with a line defect. An important feature

of 2d PhC waveguides is the possibility to tailor the dispersion of guided modes, and hence, obtaining,

for example, slow light modes [Kra08, LWO+08], i. e. guided modes with a small group velocity [Bri60].

Slow light modes lead to a simultaneous enhancement of the light intensity and are thus relevant for the

construction of devices in nonlinear optics [SJ04]. The group velocity of PhC modes and guided modes in

PhC waveguides can be determined with the help of band structure calculations, since the group velocity

2



is equal to the slope of the dispersion curves, i. e. the derivative of the dispersion curves with respect to

the quasi-momentum [KKEJ13].

Figure 1.5: Sketch of a 2d PhC W1 slab waveguide with index guiding

in vertical direction. The refractive indices are chosen such that the

light is confined in the centre layer [JJWM08].

Figure 1.6: Sketch of the 2d

approximation of the 2d PhC

slab waveguide in Figure 1.5.

Again we note that in practise 2d PhC waveguides have finite extend. Using index guiding in ver-

tical direction, i. e. along the holes/rods as sketched in Figure 1.5, motivates, however, the assumption

of vertical invariance. For 2d PhC waveguides with infinite extend in the plane perpendicular to the

holes/rods, that we will deal with in this work, for example see the 2d representation of a 2d PhC W1

waveguide in Figure 1.6, a plane wave expansion [Giv99], as used in [BSS11] for the homogeneous exte-

rior domain of 2d PhC waveguides with finitely mainly rows of holes/rods parallel to the line defect, or

as in [NS10, NS13] for PhC fibers, is not appropriate since it cannot account for the periodicity of the

infinite medium. Moreover, note that homogenization techniques for periodic structures, see for exam-

ple [BLP78], cannot be applied to the approximation of the periodicity of PhCs, since the wavelength

of visible light, which is considered in PhC band structure calculations, is in the order of the lattice of

the periodicity, and hence, asymptotic techniques for the approximation of the periodic domain by a

homogeneous domain will fail.

Objectives of this work

The frequently used supercell method [Sou05, SK10] is a simple procedure for the approximative compu-

tation of guided modes in PhC waveguides. While giving good results for well-confined modes, that are

guided modes with a large decay rate in perpendicular direction to the line defect, the supercell method

lacks accuracy for modes that are close to the boundaries of the band gaps, the so called band edges, since

the decay rate for these modes is significantly smaller [Sou05]. Apart from the problem of accuracy, a full

band structure calculation is very time-consuming if one aims to resolve all phenomena like crossings of

dispersion curves, avoided crossings, also known as anti-crossings [ORB+01, OBS+02], and the behaviour

at band edges in full detail. This shows that there is both, a need for

(i) accuracy, and

(ii) efficiency

in calculating PhC waveguide band structures. This thesis is concerned with these two objectives. The

goal of accuracy is addressed by introducing transparent boundary conditions at the interfaces of line

defect and perfectly periodic medium. Boundary conditions are called transparent if the solution of the

problem with these boundary conditions is identical to the solution of the original problem restricted to

the truncated domain. Transparent boundary conditions for periodic media using Dirichlet-to-Neumann

(DtN) maps were introduced in [JLF06] for 2d PhCs, see also [FJ09, FCB10, FJL10]. In [Fli13] this

approach was rigorously extended to the computation of guided modes in PhC waveguides. Depending

on the periodic medium, these DtN maps may not be well-defined at all frequencies and their computation

can be ill-posed. Robin-to-Robin (RtR) maps resolve this problem [Fli09]. In this thesis we will present

both, DtN transparent boundary conditions and RtR transparent boundary conditions. Note that the
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1 Introduction

DtN and RtR approaches in [JLF06, Fli09] are different in concept and objective from the DtN maps

developed in [YL06, YL07, HL08]. The latter DtN maps are employed for size robust computations in

finite periodic structures, while the DtN and RtR maps, that we will deal with in this work, model the

infinite periodic medium of PhCs.

The DtN and RtR transparent boundary conditions are an alternative to the frequently used supercell

approach. In contrast to the supercell approach they do not introduce a modelling error. In this sense

they allow for an exact computation of guided modes in PhC waveguides. In this work we will develop

the numerical realization of the DtN and RtR approaches, ranging from discretization to the numerical

solution of the nonlinear eigenvalue problems.

The second objective of this thesis is — as mentioned above — to improve the efficiency of PhC and PhC

waveguide band structure calculations. For this we will develop an adaptive path following algorithm,

that can be applied to the linear problems in 2d PhCs and 2d PhC waveguides using the supercell

approach as well as to the nonlinear problems of 2d PhC waveguides with DtN or RtR transparent

boundary conditions. The proposed method is based on the fact that the dispersion curves in band

structures are analytic functions and hence, a Taylor expansion of these functions is possible. We will

show how to compute the group velocity as well as any higher derivative of the dispersion curves. Our

approach differs significantly from the perturbation theory employed in [SS88, Sip00, HFBW01] for the

computation of the group velocity and the group velocity dispersion, which is the second dispersion curve

derivative, since we develop closed formulas that do not need to be truncated such as the infinite sums

in [SS88, Sip00, HFBW01] for the computation of the group velocity dispersion. Moreover, our approach

is unique, since it allows for an extension of the formulas to arbitrary orders.

Outline of the thesis

This thesis is organized as follows: In Chapter 2 we elaborate on the mathematical modelling involved

in PhC and PhC waveguide band structure calculations, we will review the spectral properties of the

associated differential operators, comment on the discretization of the eigenvalue problems using high-

order FEM and introduce problem settings of PhCs and PhC waveguides, that we will consider in our

numerical examples throughout this thesis. In Chapter 3 we give a very brief review of algorithms for

the numerical solution of matrix eigenvalue problem. Apart from reviewing well-known methods, we

will also propose a new iterative solver for nonlinear eigenvalue problems that is based on Newton’s

method. Chapter 4 is dedicated to the computation of the group velocity and any higher derivatives of

the dispersion curves of the linear eigenvalue problems related to PhC band structure calculations and

PhC waveguide band structure calculations when using the supercell approach. Chapter 5 then deals with

the adaptive path following algorithm. First we will generalize the procedure developed in Chapter 4 for

the computation of dispersion curve derivatives to general, nonlinear, parameterized matrix eigenvalue

problems. Then we propose the adaptive scheme and apply it for an efficient computation of the band

structure of a PhC W1 waveguide. In Chapters 6 and 7 we introduce transparent boundary conditions

based on DtN and RtR operators, respectively. We will comment on their computation, differentiability

and discretization, before employing them to truncate the domain of the eigenvalue problem. We elaborate

on the numerical solution of the resulting nonlinear eigenvalue problems using the methods, that we

reviewed and proposed in Chapter 3. Finally, we will present extensive numerical results including the

application of the adaptive path following algorithm. In Chapter 8 we give concluding remarks and

comment on the perspectives of future research.
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2 Mathematical modelling of photonic crystal

waveguides

In this chapter we will introduce the mathematical formulation of the problems that we shall deal with

in this thesis: the computation of modes in 2d PhCs and the computation of guided modes in 2d PhC

waveguides. We present the mathematical modelling of these problems and comment on their mathe-

matical properties. Before we start with the introduction of the two problems, we shall elaborate on the

description of electromagnetic waves in devices with invariance in one direction, which is assumed to be

the case for 2d PhCs and 2d PhC waveguides.

2.1 Electromagnetic waves in two dimensions

The propagation of light in PhCs is described by the macroscopic Maxwell equations without free charges

and currents

∇×E(t,x) = − ∂
∂tB(t,x), (2.1a)

∇×H(t,x) = ∂
∂tD(t,x), (2.1b)

∇ ·D(t,x) = 0, (2.1c)

∇ ·B(t,x) = 0, (2.1d)

where E : R+ × R3 → R3 and H : R+ × R3 → R3 are the macroscopic electric and magnetic fields, and

D : R+ × R3 → R3 and B : R+ × R3 → R3 are the displacement and magnetic induction fields. The

macroscopic Maxwell equations (2.1) are completed by the linear material laws

D(t,x) = ε0ε(x)E(t,x), (2.2a)

B(t,x) = µ0µ(x)H(t,x), (2.2b)

with the vacuum and relative dielectric permittivities ε0 and ε, and the vacuum and relative magnetic

permeability µ0 and µ. These linear material laws are reasonable approximations to the actually nonlinear

relations of the fields in case of small amplitudes. See for example the textbook by Jackson [Jac98] for a

comprehensive introduction to electromagnetic fields and Maxwell’s equations.

In PhCs the material can assumed to be nonmagnetic, i. e. we may set µ ≡ 1. Hence, Eqs. (2.1)

and (2.2) reduce to

∇×E(t,x) = −µ0
∂
∂tH(t,x),

∇×H(t,x) = ε0ε(x)
∂
∂tE(t,x),

∇ · ε(x)E(t,x) = 0,

∇ ·H(t,x) = 0.

Due to the time-independence of the coefficients our considerations can be reduced to time-harmonic

electric and magnetic fields

E(t,x) = Re
(
Ê(x)e−iωt

)
,

H(t,x) = Re
(
Ĥ(x)e−iωt

)
,

5



2 Mathematical modelling of photonic crystal waveguides

with frequency ω ∈ R+, that satisfy the time-harmonic Maxwell equations

∇× Ê(x) = iωµ0Ĥ(x), (2.3a)

∇× Ĥ(x) = −iωε0ε(x)Ê(x), (2.3b)

where the time-harmonic versions of Eqs. (2.1c) and (2.1d), i. e.

∇ · ε(x)Ê(x) = 0, (2.4a)

∇ · Ĥ(x) = 0, (2.4b)

are implicitly satisfied, which can easily be seen by applying the divergence operator to Eqs. (2.3a)

and (2.3b), and considering the fact that ω > 0.

Applying the curl operator to (2.3a) and using (2.3b), we obtain

∇×
(
∇× Ê(x)

)
− ω2

c2
ε(x)Ê(x) = 0, (2.5a)

where we substituted ε0µ0 = c−2, with the velocity of light c. On the other hand, applying the curl

operator to (2.3b) and using (2.3a), we arrive at

∇×
(

1

ε(x)
∇× Ĥ(x)

)
− ω2

c2
Ĥ(x) = 0. (2.5b)

As elaborated in Chapter 1, we shall consider 2d PhCs and 2d PhC waveguides as approximations

to realistic PhC slabs and PhC slab waveguides. While the latter have finite height, 2d PhCs and

2d PhC waveguides are invariant in the direction of the holes/rods, the x3-direction, say. In other words,

the relative dielectric permittivity ε satisfies ε(x) = ε(x1, x2, 0) for all x = (x1, x2, x3) ∈ R3, which

motivates that we only look for solutions of the electric field Ê and the magnetic field Ĥ that also

satisfy this condition, i. e. Ê(x) = Ê(x1, x2, 0) for all x = (x1, x2, x3) ∈ R3 and Ĥ(x) = Ĥ(x1, x2, 0)

for all x = (x1, x2, x3) ∈ R3. Then all x3-derivatives in the differential operators vanish and it is

straightforward [Kuc01] to verify that Eqs. (2.5a) and (2.3a) decouple into equations for (Ê3, Ĥ1, Ĥ2),

the transverse magnetic (TM) mode, for which the electric field in x3-direction satisfies the 2d scalar

Helmholtz equation

−∆Ê3(x)−
ω2

c2
ε(x)Ê3(x) = 0, x ∈ R2, (2.6)

and the magnetic field components Ĥ1 and Ĥ2 satisfy

Ĥ1(x) =
1

iωµ0

∂

∂x2
Ê3(x),

Ĥ2(x) = − 1

iωµ0

∂

∂x1
Ê3(x).

Similarly, Eqs. (2.5b) and (2.3b) decouple into equations for (Ĥ3, Ê1, Ê2), the transverse electric (TE)

mode, for which the magnetic field in x3-direction satisfies the 2d scalar Helmholtz equation

−∇ · 1

ε(x)
∇Ĥ3(x)−

ω2

c2
Ĥ3(x) = 0, x ∈ R2, (2.7)

and the electric field components Ê1 and Ê2 satisfy

Ê1(x) = − 1

iωε0ε(x)

∂

∂x2
Ĥ3(x),

Ê2(x) =
1

iωε0ε(x)

∂

∂x1
Ĥ3(x).

6



2.2 Modes in two-dimensional photonic crystals

Remark 2.1. The curl operator has an infinite-dimensional null-space [Mon03], which yields spurious

zero eigenvalues of the eigenvalue problems (2.5) for the time-harmonic electric and magnetic field, re-

spectively, if the divergence equations (2.4) are not explicitly taken into account. For 3d Maxwell equations

this issue can be resolved by applying the Helmholtz decomposition [Mon03]. In our case, the infinite-

dimensional null-space of the curl operator is implicitly removed by the transformation of the 3d Maxwell

eigenvalue problems (2.5) to the 2d scalar Helmholtz eigenvalue problems (2.8), which was motivated by

our assumption of a x3-independent dielectric permittivity and hence, a restriction to x3-independent

solutions.

In this thesis we shall consider both modes, the TM mode (2.6) and the TE mode (2.7), simultaneously

and choose

−∇ · α(x)∇U(x)− ω2β(x)U(x) = 0, x ∈ R2, (2.8)

as our governing equation. In the TM mode, U describes the electric field in x3-direction and the

coefficients α(x) and β(x) are determined through

α(x) = 1 and β(x) =
1

c2
ε(x). (2.9a)

On the other hand, in the TE mode, U denotes the magnetic field in x3-direction and the coefficients are

defined by

α(x) =
1

ε(x)
and β(x) =

1

c2
. (2.9b)

Note that, for simplicity of notation, the velocity of light c is incorporated in the coefficient β.

Finally, we note that (2.8) satisfies important scaling properties. On the one hand, it can easily be

verified that a coordinate stretching x′ = sx, with s ∈ R, results in the same system when rescaling

the frequency ω′ = s−1ω. On the other hand, one arrives at the same rescaling of the frequency when

choosing the rescaled permittivity ε′(x) = sε(x). These properties illustrate that the problem under

consideration does not have a specific length scale.

2.2 Modes in two-dimensional photonic crystals

PhCs have a discrete translational symmetry [JJWM08]. More precisely, there exist two linearly inde-

pendent vectors a1,a2 ∈ R2 such that the permittivity εPhC of 2d PhCs satisfies

εPhC(x+ a1 + a2) = εPhC(x) (2.10)

for all x ∈ R2. The vectors a1 and a2 with smallest possible lengths ai = |ai|, i = 1, 2, such that (2.10)

is satisfied, are called lattice vectors and their lengths are called lattice constants. These lattice vectors

span a parallelogram — the unit cell C of the PhC. The lattice vectors are not defined uniquely by the

pattern, or lattice of the PhC. Without loss of generality, we can set a1 = a1(1, 0)
T. The lattice vector

a2, however, is not fixed by this choice. For example, it is conventional for the square lattice shown

in Figure 2.1a that the lattice vector a2 is chosen to be a2 = a1(0, 1)
T with lattice constant a2 = a1.

However, it can also chosen to be a2 = a1(1, 1)
T with length a2 =

√
2 a1. On the other hand, for the

hexagonal lattice, sometimes also called triangular lattice, shown in Figure 2.2a, two different choices of

a2 are common: while the choice a2 =
√
3 a1(0, 1)

T is orthogonal to a1 and has length a2 =
√
3 a1, we

shall prefer a2 = a1

2 (1,
√
3)T, which has lattice constant a2 = a1. Hence, in case of a square or hexagonal

lattice we can choose a unit cell with lattice vectors that have the same length. In this case we may write

a = a1 = a2. Even though the scaling properties described above allow for choosing a unitary lattice

constant a = 1, we will explicitly use the lattice constants a, a1 and a2 in the sequel of this work.

In the context of PhC we may assume that the permittivity is a piecewise constant, positive function

εPhC : R2 → R+, that is bounded from below and above. All theoretical results that we will refer to or

develop in this work are also applicable to permittivities that are not piecewise constant. However, all

our numerical results are computed for such configurations where εPhC takes some constant value in the

dielectric material and ε0 = 1 in air.
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2 Mathematical modelling of photonic crystal waveguides

C

a1

a2

(a) Unit cell C of PhC with square lattice.

B̂2d
Γ

X

M

b1

b2

B2d

(b) Brillouin zone B2d of reciprocal lattice.

Figure 2.1: PhC of square lattice (a) with unit cell C, lattice vectors a1 = a(1, 0)T and a2 = a(0, 1)T,

and its reciprocal lattice (b) with Brillouin zone B2d, irreducible Brillouin zone B̂2d and reciprocal lattice

vectors b1 = 2π
a (1, 0)T and b2 = 2π

a (0, 1)T. The irreducible Brillouin zone B̂2d has vertices Γ = (0, 0)T,

X = π
a (1, 0)

T and M = π
a (1, 1)

T.

C

a1

a2

(a) Unit cell C of PhC with hexagonal lattice.

B̂2d

Γ

KM

B2d

b1

b2

(b) Brillouin zone B2d of reciprocal lattice.

Figure 2.2: PhC of hexagonal lattice (a) with unit cell C, lattice vectors a1 = a(1, 0)T and a2 = a
2 (1,

√
3)T,

and its reciprocal lattice (b) with Brillouin zone B2d, irreducible Brillouin zone B̂2d and reciprocal lattice

vectors b1 = 2π
a (1,−1/

√
3)T and b2 = 2π

a (1, 1/
√
3)T. The irreducible Brillouin zone B̂2d has vertices

Γ = (0, 0)T, K = 2π
a (1/3, 1/

√
3)T and M = 2π

a (0, 1/
√
3)T.

Considering the periodicity of the permittivity εPhC and hence, of the coefficients αPhC and βPhC, that

can be determined depending on the mode using (2.9), we can apply the Floquet theory [Kuc93] to (2.8).

The Floquet transform of U reads

Ũ(x,k) =
∑

m1,m2∈Z
U(x−m1a1 −m2a2)e

ik·(m1a1+m2a2),

where k = (k1, k2)
T ∈ R2 is called quasi-momentum or (Floquet) wave vector. The Floquet transform

can be regarded as analogue of the Fourier transform for periodic media. However, note that the Floquet

transform — in contrast to the Fourier transform — still depends on the spatial variable x. Shifting the

Floquet transform Ũ in space by m1a1 +m2a2, with m1,m2 ∈ Z, gives the Floquet condition

Ũ(x+m1a1 +m2a2,k) = eik·(m1a1+m2a2)Ũ(x,k), (2.11)
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2.2 Modes in two-dimensional photonic crystals

which shows that is sufficient to study Ũ(x,k) only in the unit cell C spanned by the lattice vectors

a1 and a2. Moreover, we can see easily that the Floquet transform Ũ is periodic with respect to the

quasi-momentum k, i. e.

Ũ(x,k+m1b1 +m2b2) = Ũ(x,k),

for all m1,m2 ∈ Z, where b1,b2 ∈ R2 are the reciprocal lattice vectors of the reciprocal lattice that satisfy

1

2π
ai · bj ∈ Z

for all i, j = 1, 2. The reciprocal lattices of the PhCs with square and hexagonal lattice and its reciprocal

lattice vectors are shown in Figures 2.1b and 2.2b. For a detailed description of how to construct

the reciprocal lattice the reader is referred to, e. g. the books by Kittel [Kit04] or Joannopoulos and

coworkers [JJWM08]. The periodicity of the Floquet transform Ũ with respect to the quasi-momentum

k implies that we can restrict the choice of k to a subset of R2, the so called (first) Brillouin zone B2d,

which is equal to the Wigner-Seitz cell [Kit04] of the reciprocal lattice centered at the origin k = 0.

Using the periodicity of the Floquet transform with respect to the quasi-momentum and employing the

Floquet condition (2.11) we can deduce that the problem (2.8), which is posed in R2, can be transformed

to a family of problems in the bounded domain C, i. e. for all k ∈ B2d the Floquet transform Ũ satisfies

−∇ · αPhC(x)∇Ũ(x,k)− ω2βPhC(x)Ũ(x,k) = 0, x ∈ C, (2.12a)

with quasi periodic boundary conditions

Ũ(·,k) |ΣR
= eik·a1Ũ(·,k) |ΣL

, (2.12b)

αPhC ∂nR
Ũ(·,k) |ΣR

= −eik·a1αPhC ∂nL
Ũ(·,k) |ΣL

, (2.12c)

Ũ(·,k) |ΣT
= eik·a2Ũ(·,k) |ΣB

, (2.12d)

αPhC ∂nT
Ũ(·,k) |ΣT

= −eik·a2αPhC ∂nB
Ũ(·,k) |ΣB

(2.12e)

on the left, right, bottom and top boundaries ΣL, ΣR, ΣB and ΣT of C, where ∂nLŨ , ∂nRŨ , ∂nBŨ and

∂nTŨ denote the outward normal derivatives of Ũ on the boundaries ΣL, ΣR, ΣB and ΣT, respectively,

i. e. ∂nL
Ũ = nL · ∇Ũ , ∂nR

Ũ = nR · ∇Ũ , ∂nB
Ũ = nB · ∇Ũ and ∂nT

Ũ = nT · ∇Ũ with the outward unit

normal vectors

nL =
1

a2

(
0 −1

1 0

)
a2, nR = −nL =

1

a2

(
0 1

−1 0

)
a2,

nB =

(
0

−1

)
, nT = −nB =

(
0

1

)
.

Now we introduce some function spaces to rigorously reformulate (2.12a). Let H1(C) be the usual

space of square integrable functions in C whose weak gradient is also square integrable. Then we define

the periodic space

H1
p(C) :=

{
u ∈ H1(C) with u |ΣL

= u |ΣR
and u |ΣB

= u |ΣT

}
.

Moreover, let H1(∆, C) be the subspace of H1(C) with functions whose Laplacian is square integrable.

Then we define

H1
p(∆, C, α) :=

{
u ∈ H1(∆, C) ∩ H1

p(C) with α∂nLu |ΣL= −α∂nRu |ΣR and α∂nBu |ΣB= −α∂nTu |ΣT

}
.

With these definitions and the substitution Ũ(x,k) = eik·xu(x,k), the quasi periodic problem (2.12a)

is equivalent to the eigenvalue problem: find (ω2,k) ∈ R+ × B2d such that there exists a non-trivial

u ∈ H1
p(∆, C, αPhC) that satisfies

− (∇+ ik) · αPhC(∇+ ik)u− ω2βPhCu = 0 in C. (2.13)
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2 Mathematical modelling of photonic crystal waveguides

The eigenvalues ω2
n, n ∈ N, of (2.13) in dependence of the quasi-momentum k ∈ B2d define the

band structure of the PhCs. The functions ω2
n(k) are continuous [Kuc01] and their projection onto the

frequency axis defines the spectrum σ̃PhC of the operator

ÃPhC := − 1

βPhC

∇ · αPhC∇

related to the eigenvalue problem (2.12a) with quasi periodic boundary conditions. Let σPhC(k) denote

the spectrum of the operator

APhC(k) := − 1

βPhC

(∇+ ik) · αPhC(∇+ ik)

defined on H1
p(∆, C, αPhC) and related to the PhC eigenvalue problem (2.13) with periodic boundary

conditions. Then the spectrum σ̃PhC of ÃPhC satisfies

σ̃PhC =
⋃

k∈B2d

σPhC(k).

The spectrum σ̃PhC can have gaps, that correspond to the band gaps of the PhC, i. e. intervals of frequen-

cies for which light does not propagate in the PhC.

At this point it seems necessary to distinguish between the meanings of the values ω2 and ω. While the

former is the linear eigenvalue of (2.13) and hence, is by definition an element of the spectrum σPhC(k)

of APhC(k), the latter is the frequency and thus, the relevant quantity in sense of physics. Since we

introduced a band gap as being a frequency interval for which no light propagates in the PhC, we shall

distinguish in this thesis between a gap of the spectrum and a band gap, i. e. if ω2 is in the gap of the

spectrum, ω is in the band gap. In this respect, only the function ωn(k) shall be called band function,

while in literature also ω2
n(k) can be denoted by this name.

The band functions ωn(k) show several mirror symmetries in the Brillouin zone B2d allowing for a

successive reduction of the Brillouin zone to the so-called irreducible Brillouin zone B̂2d [JJWM08], see

the red triangles in Figures 2.1b and 2.2b for the irreducible Brillouin related to PhCs with square and

hexagonal lattice, respectively.

It is widely accepted that for almost all PhC lattices that are of interest, it is sufficient to follow the

band functions along the edges of the irreducible Brillouin zone B̂ in order to compute the spectrum and

thus, the band gaps of PhCs [JJWM08], see for example the spectrum and the complete band gap of a 2d

PhC with hexagonal lattice that we already illustrated in Figure 1.1. However, this cannot be guaranteed

in general and in fact, it has be shown [HKSW07] that there exist academic counterexamples.

Finally, let us present the variational formulation of the eigenvalue problem (2.13) of finding modes in

2d PhCs. Multiplying (2.13) with the complex conjugate of some periodic and smooth test function v,

integrating over C using integration by parts, where we take the periodicity of u and v into account,

and weakening the smoothness requirements on u accordingly, we find that the variational formulation

of (2.13) reads: find (ω2,k) ∈ R+ ×B2d and a non-trivial u ∈ H1
p(C) such that∫

C

α(∇+ ik)u · (∇− ik)v − ω2βuv dx = 0 (2.14)

for all test functions v ∈ H1
p(C), where we can choose H1

p(C) as the space of test functions due to a

density argument of the space of periodic and smooth functions in H1
p(C). Using the sesquilinear forms

aαC(u, v) :=

∫
C

α∇u · ∇v dx, (2.15a)

cα,iC (u, v) :=

∫
C

iα (u(∂iv)− (∂iu)v) dx, i = 1, 2, (2.15b)

mα
C(u, v) :=

∫
C

αuv dx, (2.15c)

mβ
C(u, v) :=

∫
C

βuv dx, (2.15d)
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2.3 Guided modes in two-dimensional photonic crystal waveguides

and

bC(u, v;ω,k) := aαC(u, v) + k1c
α,1
C (u, v) + k2c

α,2
C (u, v) + |k|2mα

C(u, v)− ω2mβ
C(u, v), (2.15e)

the variational formulation (2.14) can be rewritten in the form: find (ω2,k) ∈ R+×B2d and a non-trivial

u ∈ H1
p(C) such that

bC(u, v;ω,k) = 0 (2.16)

for all v ∈ H1
p(C).

With this understanding of 2d PhCs, their mathematical modelling and related spectral properties, we

can now address the problem of finding guided modes in the following section.

2.3 Guided modes in two-dimensional photonic crystal waveguides

2d PhC waveguides can be constructed by introducing a line defects in 2d PhCs. Usually these line

defects are introduced by omitting one (PhC W1 waveguide), two (PhC W2 waveguide), or more rows of

holes/rods. However, we shall give a more general description of the geometry of 2d PhC waveguides by

a piecewise definition of their permittivities. As explained above, the permittivity εPhC : R2 → R+ of 2d

PhCs is bounded from below and above, and satisfies the periodicity condition (2.10). Let the line defect

be parallel to and centered at the x1-axis, and let it have height a022 > 0. Moreover, let εdefect : R2 → R+

denote the permittivity in the line defect that is bounded from below and above, and which is periodic

in x1-direction, i. e. it satisfies εdefect(x + a1) = εdefect(x) for all x ∈ R2, where a1 = a1(1, 0)
T. Then we

choose the piecewise definition

εwg(x) =

⎧⎪⎪⎨⎪⎪⎩
ε−PhC(x), if x2 < −a0

22

2 ,

εdefect(x), if − a0
22

2 < x2 <
a0
22

2 ,

ε+PhC(x), if x2 >
a0
22

2 ,

(2.17)

for the permittivity εwg : R2 → R+ of a 2d PhC waveguide, where ε±PhC are two possibly disjoint permit-

tivity functions that each satisfy the periodicity condition (2.10) with possibly different lattice vectors a±2
but matching lattice vectors a±1 = a1(1, 0)

T, see Figure 2.3a. The vector a02 = (a021, a
0
22)

T can be chosen

to match the choices of the unit cells C±
n , n ∈ N, on top and bottom of the defect.

As explained in the previous section, the spectrum of PhCs can exhibit band gaps, i. e. frequency inter-

vals in which there are no eigenvalues of (2.13) for all values of the quasi-momentum. In PhC waveguides

there can exist guided modes, which are eigensolutions of the time-harmonic Maxwell’s equations and

which propagate along the line defect (i. e. along the x1-axis) while decaying in the directions orthogonal

to the line defect (i. e. along the x2-axis).

As discussed in Section 2.1 the time-harmonic Maxwell’s equations decouple in 2d into a TM mode

and a TE mode that satisfy a 2d scalar Helmholtz equation. Considering both modes we choose (2.8) as

governing equation, i. e.

−∇ · α(x)∇U(x)− ω2β(x)U(x) = 0, x ∈ R2,

where in the TM mode U describes the electric field in x3-direction and the coefficients α and β are

given by α(x) = 1 and β(x) = c−2εwg(x), cf. Eq. (2.9a). On the other hand, in the TE mode, U denotes

the magnetic field in x3-direction and the coefficients are defined by α(x) = ε−1
wg (x) and β(x) = c−2,

cf. Eq. (2.9b). Note that for simplicity of notation, we do not use the subscript “wg” for the coefficients

α and β that are defined using the permittivity εwg of the PhC waveguide.

Due to the periodicity of the coefficients α and β in x1-direction, we can again apply the Floquet

theory. However, in contrast to the case of PhCs in the previous section, the periodicity is broken in

the direction of a2 and hence, the Floquet transformation is only one-dimensional. Revisiting all steps

in Section 2.2 while neglecting all parts related to the periodicity of the permittivity in the direction

of a2, we find that we can transform the problem in R2 into a family of problems in the infinite strip

11
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a−2

a02

a+2

a1

(a) Sketch of a PhC waveguide with homogeneous line defect, semi-

infinite PhC of square lattice below the defect, and semi-infinite PhC

of hexagonal lattice on top of the defect.
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L

Σ0
R

Σ+
L
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R

Γ+
0
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2

Γ+
3
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5
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0
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1

Γ−
2

Γ−
3

Γ−
4

(b) Notation of cells and boundaries of

the periodicity strip S.

Figure 2.3: Sketch of a PhC waveguide and its periodicity strip S.

S illustrated in Figure 2.3. Introducing the 1d Brillouin zone B = [− π
a1
, π
a1
], and the quasi-momentum

k ∈ B, the problem reads

−∇ · α(x)∇Ũ(x, k)− ω2β(x)Ũ(x, k) = 0, x ∈ S, (2.18a)

with quasi periodic boundary conditions

Ũ(·, k) |ΣR = eika1Ũ(·, k) |ΣL , (2.18b)

α∂nRŨ(·, k) |ΣR = −eika1α∂nLŨ(·, k) |ΣL (2.18c)

on the left ΣL = Σ+
L ∪ Σ0

L ∪ Σ−
L ⊂ ∂S and right ΣR = Σ+

R ∪ Σ0
R ∪ Σ−

R ⊂ ∂S boundaries of S. A guided

mode is, by definition, a non trivial solution of (2.18) that satisfies a decay condition for |x2| → ∞.

Similarly to the spaces H1
p(C) and H1

p(∆, C, αPhC) of periodic functions in C, we define the function

spaces

H1
1p(S) :=

{
u ∈ H1(S) with u |ΣL

= u |ΣR

}
,

whose functions implicitly satisfy a decay condition for |x2| → ∞, and

H1
1p(∆, S, α) :=

{
u ∈ H1(∆, S) ∩ H1

1p(S) with α∂nLu |ΣL= −α∂nRu |ΣR

}
of functions in S that are periodic in x1-direction.

With these definitions and the substitution Ũ(x, k) = eikx1u(x, k), the eigenvalue problem (2.18) of

finding guided modes is equivalent to: find couples (ω2, k) ∈ R+ ×B such that there exists a non-trivial

u ∈ H1
1p(∆, S, α) that satisfies

− (∇+ ik(10)) · α(∇+ ik(10))u− ω2βu = 0 in S. (2.19)

Then we call (ω2, k) an eigenvalue couple of (2.19) with associated eigenmode u. We shall distinguish

two different problem formulations:

12



2.3 Guided modes in two-dimensional photonic crystal waveguides

• the ω-formulation, where we fix k ∈ B which yields a linear eigenvalue problem in ω2, and

• the k-formulation, where we fix ω ∈ R+ and obtain a quadratic eigenvalue problem in k.

However, note that this problem is posed in the unbounded domain S. Therefore, we will later in

Chapters 6 and 7 introduce DtN and RtR transparent boundary conditions to truncate the infinite domain

S. More precisely, let H
1/2
1p (Γ

±
0 ) be the Dirichlet trace spaces of H1

1p(∆, C0, α) on Γ±
0 and let H

−1/2
1p (Γ±

0 )

be the corresponding dual spaces. Then we will show in Chapter 6 that under certain assumptions there

exist linear DtN maps D±(ω, k) ∈ L(H
1/2
1p (Γ

±
0 ),H

−1/2
1p (Γ±

0 )) such that the eigenvalue problem (2.19) is

equivalent to: find (ω2, k) ∈ R+ ×B and a non-trivial u ∈ H1
1p(∆, C0, α) that satisfies

−(∇+ ik(10)) · α(∇+ ik(10))u− ω2βu = 0 in C0, (2.20a)

±α∂2u = D±(ω, k)u on Γ±
0 . (2.20b)

On the other hand, in Chapter 7 we will show that the eigenvalue problem (2.19) is equivalent to: find

couples (ω2, k) ∈ R+ ×B such that there exists a non-trivial u ∈ H1
1p(∆, C0, α) that satisfies

−(∇+ ik(10)) · α(∇+ ik(10))u− ω2βu = 0 in C0, (2.21a)

(∓α∂2 + iρ)u = R±(ω, k)(±α∂2 + iρ)u on Γ±
0 , (2.21b)

where R±(ω, k) ∈ L(H
−1/2
1p (Γ±

0 )) are linear RtR maps and ρ ∈ R \ {0} is an arbitrary, real, nonzero

constant.

In the remainder of this section we will summarize the results of the spectral theory for the eigenvalue

problem (2.19) in ω-formulation. To this end, we introduce the operator

A(k) := − 1

β
(∇+ ik(10)) · α(∇+ ik(10)),

k ∈ B, defined on the function space H1
1p(∆, S, α) of the whole strip S, that is related to the eigenvalue

problem (2.19) with permittivity εwg as defined in Eq. (2.17). Furthermore, we introduce the operators

A±(k) := − 1

β± (∇+ ik(10)) · α
±(∇+ ik(10)),

k ∈ B, defined on H1
1p(∆, S

±, α), that are related to eigenvalue problems of the form (2.19) posed in the

infinite half strips S± with perfectly periodic permittivities ε±PhC of the top and bottom PhC respectively.

Let σ±
PhC(k) denote the spectra of the operators A±

PhC(k) related to the eigenvalue problem (2.13) when

replacing the coefficients α and β by α± and β± that correspond to the permittivities ε±PhC of the top and

bottom PhCs of the waveguide. Then the spectra of the operators A±(k) are connected to the spectra

σ±
PhC(k) through

σ±(k) := σ(A±(k)) =
⋃

k2∈]− π
a2

, π
a2

[

σ±
PhC(k, k2).

The following results were shown in [Fli13] for the TM mode operator, i. e. for α ≡ 1. However, using

the same arguments as in [Kuc93, FK97] for operators with perfectly periodic coefficients, in particular

for the TE mode operator called acoustic operator in [FK97], and applying the Weyl theorem [RS78], we

can show

Proposition 2.2. For all k ∈ B the operator A(k) is self-adjoint and positive, i. e. its spectrum satisfies

σ(k) ⊂ R+. Moreover, its essential spectrum σess(k), i. e. the spectrum σ(k) minus its isolated eigenvalues,

satisfies

σess(k) = σ+(k) ∪ σ−(k)

with

σ±(k) = R+ \
N±(k)⋃
n=1

G±
n (k),

where the gaps G±
n (k) ⊂ R+ are open intervals and N±(k) ∈ N0 is the number of band gaps.
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2 Mathematical modelling of photonic crystal waveguides

According to a result [Vor11] on the Bethe-Sommerfeld conjecture [BS67] for periodic Maxwell operators

in 2d, we note that the numbers N±(k) of band gaps are finite.

We conclude that there exists a number N(k) ∈ N0 of gaps Gn(k) ⊂ R+, n = 1, . . . , N(k), such that

σess(k) = R+ \
N(k)⋃
n=1

Gn(k),

with the set of gaps
⋃N(k)

n=1 Gn(k) =
⋃N+(k)

n=1 G+
n (k) ∩

⋃N−(k)
n=1 G−

n (k).

Using the theory of self-adjoint operators [RS78], we deduce

Proposition 2.3. Inside the gaps Gn(k), n = 1, . . . , N(k), k ∈ B, there exist only isolated eigenvalues

of finite multiplicity, which can only accumulate at the boundaries of the gaps Gn(k).

Let the isolated eigenvalues ω2
m(k) ∈ R+, m = 1, . . . ,M(k), of A(k) inside the gaps Gn(k), n =

1, . . . , N(k), be ordered such that

0 < ω2
1(k) ≤ . . . ≤ ω2

M(k)(k) (2.22)

with 0 ≤M(k) ≤ ∞. Then the functions

k ω2
m(k)

are 2π
a1
-periodic, even and continuous in k [Fli13]. Note that they are not necessarily continuous in B

since the number M(k) of eigenvalues ω2
m(k) is not constant in B. Using the fact that the self-adjoint

operator A(k) is analytic with respect to the quasi-momentum k, its domain H1
1p(∆, S

±, α) is independent

of the quasi-momentum k, and the eigenvalues of A(k) in the band gaps Gn(k) are isolated and have

finite multiplicity, we can apply the analytic perturbation theory for self-adjoint, linear operators, see

Chapter 7 in [Kat95], and prove a result that is fundamental for the numerical procedures, that we will

develop in this thesis.

Theorem 2.4. Let M = max{M(k) : k ∈ B}. Then there exists a mapping j(· ; k) : {1, . . . ,M} →
{1, . . . ,M(k)}, for all k ∈ B such that the functions

k ωj(k)

are analytic. These functions are called dispersion curves, or band functions. Moreover, the magnitude

and phase of the corresponding eigenmodes uj(· ; k) can be chosen such that the eigenmodes are also

analytic with respect to the quasi-momentum k.

Note that Theorem 2.4 is valid for all k ∈ B, i. e. the dispersion curves are also analytic at crossings.

It is well known that the first dispersion curve is not analytic in k = 0, see for example the band

structures in Figures 2.7 and 2.9, that we will present in Section 2.6. Note that this case is explicitly

excluded in Theorem 2.4 due to the assumption that the eigenvalues ω2
j (k) are positive, see Eq. 2.22.

Finally, we shall state a result related to the eigenfunctions of A(k) proven in [FK97].

Proposition 2.5. Let k ∈ B and let ω2 /∈ σess(k) be an eigenvalue of (2.19). Then the associated

eigenfunction u ∈ H1
1p(∆, S, α) decays exponentially with |x2|, where the decay rate is proportional to the

distance of the eigenvalue ω2 to the essential spectrum σess(k).

This motivates the notion of the confinement of guided modes. We speak of well-confined modes, if

the decay rate is large, which is in the sense of Proposition 2.5 equivalent to the distance to the essential

spectrum. Thus, guided modes close to the band edge, i. e. the boundary of essential spectrum and band

gap, are not well-confined.

Proposition 2.5 gives the mathematical justification for the supercell method, which we will explain in

the following section.
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2.4 Model reduction using the supercell approach

Before we will elaborate in Chapters 6 and 7 on the definition and numerical realization of DtN and

RtR transparent boundary conditions that are employed for the transformation of the eigenvalue prob-

lem (2.19) in the infinite strip S to the eigenvalue problems (2.20) and (2.21) in the defect cell C0, we

will now briefly discuss the frequently used supercell method. The supercell method provides access to

approximations of guided modes. Based on the observation in Proposition 2.5, that guided modes decay

exponentially with |x2| → ∞, the eigenvalue problem (2.19) is posed in a bounded supercell Sn ⊂ S

instead of the infinite strip S. The computational domain Sn is obtained by simply cutting the infinite

strip S after n ∈ N periodicity cells of the PhCs on top and bottom, and prescribing periodic boundary

conditions at the top and bottom boundaries ΣT := Γ+
n and ΣL := Γ−

n . Thus, the problem solved reads:

find couples (ω2, k) ∈ R+ ×B such that there exists a non-trivial u ∈ H1
p(∆, Sn, α) that satisfies

− (∇+ ik(10)) · α(∇+ ik(10))u− ω2βu = 0, in Sn. (2.23)

Since guided modes decay exponentially as |x2| → ∞, cf. Proposition 2.5, it can be expected that

the modelling error, that is introduced when prescribing periodic boundary conditions after a certain

number of holes, is reasonably small. In fact, Soussi [Sou05] showed that the solutions of the supercell

method converge exponentially towards the solutions of the exact problem (2.19) if the number n of

periodicity cells, that are included in the supercell, tends to infinity. However, as we shall demonstrate in

Chapter 6, where we present a comparison of the results of the supercell method with the results of the

problem (2.20) with DtN transparent boundary conditions, it is a not possible to control the modelling

error of the supercell method for a fixed the number n of periodicity cells, if no a priori knowledge about

the confinement of the guided mode is available.

The eigenvalue problem (2.23) of the supercell method is again linear in ω2 (ω-formulation) and

quadratic in k (k-formulation) allowing for standard numerical techniques of PhC band structure calcu-

lations to be applied [SK10]. However, note that the eigenvalue problem (2.23) of the supercell method

has eigenvalues also inside the essential spectrum σess(k) of A(k). These eigenvalues have to be excluded.

To this end, one needs to have access to the essential spectrum, i. e. a full computation of the spectra

σ±(k) = σ(A±(k)) of the operators related to the PhCs on top and bottom of the guide is needed.

It is important to note that we may not replace the periodic boundary conditions on ΣT and ΣB

by, e. g. homogeneous Dirichlet boundary conditions, even though we know that guided modes decay

exponentially as |x2| → ∞. The reason is that homogeneous Dirichlet boundary conditions will produce

spurious modes, so called surface modes, that are confined at the boundaries ΣT and ΣB, and that may

— like guided modes — appear outside the essential spectrum in the band structure calculations and

hence, cannot be distinguished from guided modes without taking the mode profile into account.

Note that the number of eigenvalues inside the essential spectrum grows with the number of periodicity

cells that are included in the supercell. Using an iterative eigenvalue solver, this implies that one should

restrict the eigenvalue computation — as far as possible — to the band gap by a shift and invert strategy,

in order not to spoil the performance of the iterative solver.

Similarly to Theorem 2.4, we can state a result on the eigenvalues and corresponding eigenmodes

of (2.23). Considering that the differential operator related to (2.23) is self-adjoint and analytic with

respect to the quasi-momentum k, and that its domain H1
1p(∆, Sα) is independent of the quasi-momentum,

we can again use the theory presented in [Kat95] and show

Theorem 2.6. For all k ∈ B the eigenvalues ω2
j (k) ∈ R+, j ∈ N, of (2.23) can be ordered such that the

dispersion curves

k ωj(k)

are analytic. Moreover, the magnitude and phase of the corresponding eigenmodes uj(· ; k) can be chosen

such that the eigenmodes are also analytic with respect to the quasi-momentum k.

Finally, we present the variational formulation of (2.23). Analogously to the procedure applied to

derive the variational formulation (2.14) of the eigenvalue problem (2.13) of finding modes in 2d PhCs,
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we arrive at the following formulation: find (ω2, k) ∈ R+ ×B and a non-trivial u ∈ H1
p(Sn) such that∫

Sn

α(∇+ ik(10))u · (∇− ik(10))v − ω2βuv dx = 0 (2.24)

for all test functions v ∈ H1
p(Sn), or, using the sesquilinear forms

aαSn
(u, v) :=

∫
Sn

α∇u · ∇v dx, (2.25a)

cα,1Sn
(u, v) :=

∫
Sn

iα (u(∂1v)− (∂1u)v) dx, (2.25b)

mα
Sn

(u, v) :=

∫
Sn

αuv dx, (2.25c)

mβ
Sn

(u, v) :=

∫
Sn

βuv dx, (2.25d)

and

bSn(u, v;ω, k) := aαSn
(u, v) + kcα,1Sn

(u, v) + k2mα
Sn

(u, v)− ω2mβ
Sn

(u, v), (2.25e)

we can write: find (ω2, k) ∈ R+ ×B and a non-trivial u ∈ H1
p(Sn) such that

bSn
(u, v;ω, k) = 0 (2.26)

for all v ∈ H1
p(Sn).

2.5 High-order finite element discretization

This section is dedicated to the spatial discretization of the variational formulations (2.14) and (2.24)

of the eigenvalue problem (2.13) of finding modes in 2d PhCs, and the eigenvalue problem (2.23) in the

supercell Sn. As elaborated in the introduction, we employ the finite element method (FEM), or shortly,

finite elements (FE).

The FEM provides discrete subspaces for Sobolev spaces involved in variational formulations. For the

variational formulations (2.14) and (2.24) we need to provide FE space of functions that are periodic. To

this end, we first elaborate on the FE meshes of the domains C and Sn, respectively.

Let the domains C and Sn be partitioned into non-overlapping possibly curved, triangular or quadri-

lateral subdomains, the geometrical cells. Each geometrical cell K is defined as a smooth map FK of

the reference cell K̂(K), which is for triangular cells the convex hull of the points (0, 0), (1, 0) and (0, 1)

and for quadrilaterals the square [0, 1]2. The sets of the geometrical cells, the meshes, are denoted by

M(C) and M(Sn), see for example the coarse meshes of PhC unit cells with curved, quadrilateral cells

in Figure 2.4 and the mesh of a supercell in Figure 2.5. These meshes are assumed to be periodic in

direction a1, i. e. for each edge of a geometrical cell on the left boundary ΣL there is an edge on the right

boundary ΣR, which is only shifted by a1. In particular, this means that the corresponding geometrical

cells need to have the same parameterization on the boundaries ΣL and ΣR. Moreover, we assume the

mesh M(C) of the PhC unit cell to be periodic in direction a2, i. e. for each edge of a geometrical cell on

the bottom boundary ΣB there exists an edge on the top boundary ΣT, which is shifted by a2. On the

other hand, the mesh M(Sn) is assumed to be periodic in direction a02 + n(a+2 + a−2 ), i. e. for every edge

on the bottom boundary ΣB := Γ−
n there is an edge on the top boundary ΣT := Γ+

n , that is shifted by

a02 + n(a+2 + a−2 ).

Based on the meshes M(C) and M(Sn) we define discrete subspaces of H1
p(C) and H1

p(Sn) as

Spp(Ω) := {v ∈ H1
p(Ω) ∩ C0(Ω) : v|K ◦ FK ∈ Pp(K̂(K)) ∀K ∈ M(Ω)},
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ΣL ΣR

ΣB

ΣT

(a) Unit cell of PhC with square lattice.

ΣL ΣR

ΣB

ΣT

(b) Unit cell of PhC with hexagonal lattice.

Figure 2.4: Meshes with curved, quadrilateral cells

of PhC unit cells C with top, bottom, left and

right boundaries ΣT,ΣB,ΣL,ΣR ⊂ ∂C.

ΣB = Γ−
4

ΣT = Γ+
4

ΣRΣL

Figure 2.5: Mesh with curved, quadrilateral cells

of a supercell S4 with top, bottom, left and right

boundaries ΣT,ΣB,ΣL,ΣR ⊂ ∂S4 of a PhC W1

waveguide with hexagonal lattice.

where p is a chosen polynomial degree, Ω stands for one of the computational domains C or Sn, and

Pp(K̂) is the space of polynomials with maximal (total) degree p

Pp(K̂) =

⎧⎪⎪⎨⎪⎪⎩
span{x̂ℓ1x̂m2 | 0 ≤ max{ℓ,m} ≤ p}, if K̂ is a quadrilateral,

span{x̂ℓ1x̂m2 | 0 ≤ ℓ+m ≤ p}, if K̂ is a triangle,

span{x̂ℓ | 0 ≤ ℓ ≤ p}, if K̂ is an interval.

(2.27)

Note that the last case in (2.27) is not needed for the FE spaces introduced above, but it is useful for the

FE spaces that we will introduce later in Section 6.1.5 for the discretization of the variational formulations

with DtN and RtR transparent boundary conditions.

If the maximal polynomial degree is p = 1 the basis functions of Spp(Ω) are hat functions, that take the

value one at a single node of the mesh M(Ω) and that vanish at all other nodes. In this case we speak of

linear FEM. For polynomial degrees larger than one the FEM is said to be of high-order [Sch98]. Besides

the hat functions, the basis of a high-order FEM consists of functions, the so-called edge functions, that

can be identified to an edge and that vanish on the closure of all other edges in the mesh. Furthermore,

in 2d, high-order FE bases comprise so-called bubble functions, that are identified to one cell of the mesh

and that vanish in the closure of all other cells.

Let

N(C) := dim Spp(C),

N(Sn) := dim Spp(Sn)

denote the dimensions of the FE spaces Spp(C) and Spp(Sn). Furthermore, let

bC,1, . . . , bC,N(C) ∈ Spp(C),

bSn,1, . . . , bSn,N(Sn) ∈ Spp(Sn)

denote the basis functions of Spp(C) and Spp(Sn), respectively. Then the discrete form of the variational

formulation (2.14) of the eigenvalue problem (2.13) of finding modes in 2d PhCs can be written in the

form: find (ω2,k) ∈ R+ ×B2d and a non-trivial u ∈ CN(C) \ {0} such that(
Aα

C + k1C
α,1
C + k2C

α,2
C + |k|2Mα

C − ω2Mβ
C

)
u = 0, (2.28)
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where the real symmetric matrices Aα
C ,M

α
C ,M

β
C ∈ RN(C)×N(C) and the purely imaginary, Hermitian

matrices Cα,1
C ,Cα,2

C ∈ iRN(C)×N(C) have entries

Aα
C,ij = aαC(bC,j , bC,i),

Cα,1
C,ij = cα,1C (bC,j , bC,i),

Cα,2
C,ij = cα,2C (bC,j , bC,i),

Mα
C,ij = mα

C(bC,j , bC,i),

Mβ
C,ij = mβ

C(bC,j , bC,i),

i, j = 1, . . . , N(C), with the sesquilinear forms as given in Eq. (2.15). Similarly, the discrete form of the

variational formulation (2.24) of the eigenvalue problem (2.23) of finding guided modes in the supercell

Sn reads: find (ω2, k) ∈ R+ ×B and a non-trivial u ∈ CN(Sn) \ {0} such that(
Aα

Sn
+ kCα,1

Sn
+ k2Mα

Sn
− ω2Mβ

Sn

)
u = 0, (2.29)

where the real, symmetric matricesAα
Sn
,Mα

Sn
,Mβ

Sn
∈ RN(Sn)×N(Sn) and the purely imaginary, Hermitian

matrix Cα,1
Sn

∈ iRN(Sn)×N(Sn) have entries

Aα
Sn,ij = aαSn

(bSn,j , bSn,i),

Cα,1
Sn,ij

= cα,1Sn
(bSn,j , bSn,i),

Mα
Sn,ij = mα

Sn
(bSn,j , bSn,i),

Mβ
Sn,ij

= mβ
Sn

(bSn,j , bSn,i),

i, j = 1, . . . , N(Sn), with the sesquilinear forms as given in Eq. (2.25).

With the help of the FEM, we are able to compute approximations to the solutions of the eigenvalue

problems (2.13) and (2.23) by solving the matrix eigenvalue problems (2.28) and (2.29). There are

basically three strategies to improve the accuracy of an existing FE approximation:

• refining the mesh of the computational domain (h-FEM),

• increasing the polynomial degree of the basis functions (p-FEM), or

• a combination of both (hp-FEM).

While h-FEM provides algebraic convergence, p-FEM converges exponentially if the solution is analytic in

subdomains that are resolved exactly by the cells of the mesh [Sch98]. This motivates the need of curved

cells in our FE mesh in order to exactly resolve the holes/rods of the PhCs. A comprehensive study of the

convergence of p-FEM in the context of PhC band structure calculations can be found in [SK09]. Note,

that in case of non-smooth material boundaries we can extend the previous and following definitions to

hp-adaptive FE spaces.

Concepts — A numerical C++ library for partial differential equations For the implementation of

the high-order FEM we employ Concepts, which is a C++ library for the numerical solution of partial

differential equations [Con15, FL02]. Originated from a software package for the boundary element

method, Concepts has been extended with high-order FEM as well as discontinuous Galerkin methods.

Concepts is based on concept-oriented design, i. e. mathematical concepts such as the FE meshes, the FE

spaces, the bilinear forms, matrices and vectors are implemented as C++ classes. The object-oriented

structure of the library allows the programmer to re-use these concepts in a very flexible way.

Concepts allows for FE meshes with curved cells, such that the circular holes of PhCs can be resolved

perfectly, e. g. by the meshes sketched in Figures 2.4 and 2.5. For a detailed description of how curved cells

are realized with Concepts, the reader is referred to [Sch08]. There is no upper bound for the polynomial

degree of the FE spaces other than the prohibitively increasing condition number of the resulting FE

matrices. This enables us to use p-FEM on the coarse meshes sketched above.

Since we assume the permittivity to be piecewise constant, it proves useful to compute separate FE

matrices for the dielectric medium and its complement. These matrices can then be exported to Matlab’s
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binary mat-files using the Concepts’s class concepts::MatfileIO. The matrices are loaded into Matlab

with which all further computations, in particular eigenvalue computations, are done. For plotting FE

solutions such as eigenvectors, the coefficient vectors, computed with Matlab, are again saved in mat-files

which are imported into Concepts using concepts::MatfileIO. For this purpose the integration rule

of the FE space is set to a rule that comprises endpoints, e. g. the trapezoidal rule, and a pointwise

evaluation of the FE solution is performed at all quadrature points. This delivers three vectors, the

vectors of the x1- and x2-components of the quadrature points as well as the vector of the values of

the FE solution at the quadrature points. These vectors, together with information on the mesh, is

exported to a mat-file, from which the data can be loaded into and plotted with Matlab. Both, the

pointwise evaluation of the FE solution as well as the export to a mat-file is bundled in Concepts’s class

graphics::MatlabBinaryGraphics.

2.6 Examples

In this section we introduce examples of a PhC and a PhC waveguide, that we will use in the following

chapters when numerically testing the proposed methods.

Example 1. We consider the TM mode in a PhC of square lattice with lattice constant a, holes of

relative radius r
a = 0.46 and permittivity ε = 1 that are surrounded by dielectric material of permittivity

ε = 8, see Figure 2.6. We shall only consider the Γ-X-interval of the irreducible Brillouin zone B̂2d, i. e.

we consider k1 ∈ B̂ := [0, πa ] and k2 = 0. In other words, the eigenvalue problem under consideration is

equivalent to the supercell problem (2.23) when replacing the domain Sn by the unit cell C of the PhC

described above and sketched in Figure 2.6. For illustration, the band structure of the TM mode along

the Γ-X-interval B̂ is presented in Figure 2.7.

|a2| = a

|a1| = a

2 · 0.46 · a

ε = 1

ε = 8

C

Figure 2.6: Sketch of the PhC with

square lattice in Example 1 and its unit

cell C with FE mesh of nine quadrilat-

erals.

0.0 0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

normalized quasi-momentum k1 a / 2π

n
o
rm

a
li
ze
d
fr
eq
u
en
cy

ω
a
/
2π
c

Figure 2.7: Band structure of the TM mode along the Γ-X-

interval B̂ = [0, πa ] of the irreducible Brillouin zone B̂2d for

the PhC of square lattice described in Example 1.

Example 2. We consider the TE mode in a PhC W1 waveguide with hexagonal lattice, i. e. with

a01 = a+1 = a−1 = a1(1, 0)
T and a02 = a+2 = a−2 = a1

2 (1,
√
3)T. The dielectric medium of the device has

permittivity ε = 11.4 and holes of relative radius r
a1

= 0.31 with permittivity ε = 1. Figure 2.9 shows

the band structure computed with the help of the supercell method using five periodicity cells on top and
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2 Mathematical modelling of photonic crystal waveguides

bottom of the guide. The black lines represent the dispersion curves while frequencies with propagating

PhC modes are shaded in grey. Note that the complete band gap of the 2d PhC was already shown in

Figure 1.1.

S5

|a1| = a1

2 · 0.31 · a1

ε = 11.4

Figure 2.8: Sketch of the PhC W1 wave-

guide with hexagonal lattice of Exam-

ple 2 and the supercell S5 with FE mesh

consisting of 95 quadrilaterals, that was

used for the computation of the band

structure in Figure 2.9.
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Figure 2.9: Approximation to the band structure of the TE

mode in the PhC W1 waveguide of Example 2 using the su-

percell method with five unit cells on top and bottom of the

defect cell C0. Areas shaded in grey correspond to the essen-

tial spectrum σess(k), i. e. they show the set of frequencies for

which propagating PhC modes exist and the supercell results

(grey lines) are spurious. The essential spectrum was com-

puted separately by computing the eigenvalues of a propaga-

tion operator, see Definition 6.16. On the other hand, blank

areas represent the band gaps, i. e. areas where the eigenval-

ues of the supercell method (black lines) correspond to guided

modes.

20



3 Numerical solutions of eigenvalue problems

Besides the discretization of the eigenvalue problems related to PhC and PhC waveguide band structure

calculations, the solution of the resulting matrix eigenvalue problems is the main numerical task. These

matrix eigenvalue problems can either be linear or nonlinear, which rules the choice of the algorithms for

their numerical solution. In this chapter we will give a brief review of algorithms for the numerical solution

of eigenvalue problems. Furthermore, we shall propose a new iterative procedure to solve nonlinear

eigenvalue problems that will prove useful in the context of PhC waveguide band structure calculations

with DtN and RtR transparent boundary conditions.

Solution techniques for linear eigenvalue problems are standard [GVL96] and many software packages

are available [ABB+99, LSY98]. Similarly, the solution of quadratic eigenvalue problems is well under-

stood [TM01]. Nevertheless, we shall comment on their numerical solution and implementation issues in

Section 3.1.

In PhC and PhC waveguide band structure calculations we also have nonlinear eigenvalue problems,

e. g. when employing DtN and RtR transparent boundary conditions or when considering dispersive

material. Algorithms for the numerical solution of nonlinear eigenvalue problems, in particular of non-

polynomial eigenvalue problems, on the other hand, have been a topic of extensive study in the recent

decades. While there has been much progress in the development of a wide range of numerical methods,

appropriate software packages for nonlinear eigenvalue problems, like those for linear eigenvalue problems,

are not yet available [MV04]. In Section 3.2 we will briefly introduce some algorithms, that we will later

use in this work, and comment on their requirements and implementation. In Section 3.3 we will finally

propose a new iterative solver for nonlinear eigenvalue problems, that is based on Newton’s method.

3.1 Algorithms for linear and quadratic eigenvalue problems

The FE discretization (2.29) of the eigenvalue problem (2.23) of finding approximations to guided modes

in PhC waveguides by using the supercell approach is a matrix-valued eigenvalue problem that is

• linear in ω2 when keeping k ∈ B fixed, and

• quadratic in k when keeping ω ∈ R+ fixed.

Similarly, the FE discretization (2.28) of the eigenvalue problem (2.13) of finding modes in 2d PhCs is a

matrix-valued eigenvalue problem that is either linear (in ω2 when keeping k ∈ B2d fixed) or quadratic

(in either component of k when keeping ω ∈ R+ and the other component of k fixed).

Let N ∈ N denote the number of degrees of freedom. Then the linear eigenvalue problem in ω2 can be

written in short form like

(M0 − λM1)u = 0

with eigenvalue λ = ω2, associated eigenvector u ∈ CN \ {0}, and Hermitian matrix M0 ∈ CN×N , and

symmetric, positive definite matrix M1 ∈ RN×N . For this simple sort of generalized, linear, Hermitian,

sparse eigenvalue problem we employ the comprehensive software package ARPACK [LSY98, LMSY15].

The FE software Concepts offers an interface to the C++ wrapper of ARPACK [Con15], which allows for

a straightforward implementation of the PhC and PhC waveguide band structure calculation, only writing

one main program. However, as we elaborated in Section 2.5, we use the possibility of Concepts to export

the FE matrices to Matlab’s binary data format mat and then use Matlab for the post-processing including

the solution of linear eigenvalue problems using Matlab’s eigs function, which is a reimplementation of

the ARPACK functions.

The quadratic eigenvalue problem in k, or ki, i = 1, 2, respectively, takes the form(
M0 + λM1 + λ2M2

)
u = 0 (3.1)
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3 Numerical solutions of eigenvalue problems

with eigenvalue λ = k, associated eigenvector u ∈ CN \ {0}, symmetric, positive definite matrices

M0,M2 ∈ RN×N , and purely imaginary, Hermitian matrix M1 ∈ iRN×N . If we want to solve (2.28)

for either component of k ∈ B2d while keeping the other component fixed, M0 is instead a complex-

valued, Hermitian matrix with positive definite real part. Quadratic eigenvalue problems can easily be

transformed to linear eigenvalue problems of double size [TM01]. Since the three matrices M0, M1 and

M2 are Hermitian, we know that the eigenvalues λ are either real or they come in complex conjugate

pairs. A suitable linearization that preserves the structure of the spectrum is obtained by substituting

λ̃ = iλ, introducing

ũ =

(
λ̃u

u

)
∈ C2N ,

and solving the linear eigenvalue problem (
A0 + λ̃A1

)
ũ = 0

with matrices

A0 =

(
−iM1 M0

−M0

)
and A1 =

(
−M2

M0

)
.

In case of the supercell eigenvalue problem (2.29) the matrices A0,A1 ∈ R2N×2N are skew-symmetric

and symmetric, respectively, while in the case of the eigenvalue problem (2.28) the matrices A0,A1 ∈
C2N×2N are skew-Hermitian and Hermitian, respectively. This linearization is structure preserving in

the sense that the skew-Hamiltonian, isotropic, implicitly restarted shift-and-invert Arnoldi algorithm

(SHIRA) [MW01] can be applied, that allows for finding the complex conjugate pairs of the eigenvalue λ

simultaneously. However, note that we are only interested in the real eigenvalues λ of (3.1), and hence,

the linearization [TM01] [(
M1 M0

M0

)
+ λ

(
M2

−M0

)](
λu

u

)
= 0

proves reasonable when applying ARPACK’s algorithms for generalized, Hermitian eigenvalue problems.

3.2 Algorithms for nonlinear eigenvalue problems

Now we consider nonlinear eigenvalue problems as they appear when using DtN or RtR transparent

boundary conditions for the exact computation of guided modes in PhC waveguides. To this end, let us

consider the nonlinear eigenvalue problem

N(λ)u = 0 (3.2)

with eigenvalue λ ∈ Ω ⊆ C and associated eigenvector u = u(λ) ∈ CN \ {0}, where

N : Ω → CN×N (3.3)

is a nonlinear, matrix-valued, holomorphic function. There exists a wide variety of methods to solve (3.2),

see for example the comprehensive review of Mehrmann and Voss [MV04]. This variety of methods ranging

from projection methods like Arnoldi-type methods or Jacobi-Davidson-type methods, to Newton-type

methods and inverse iteration, has been extended in recent years by methods that rely on the concept

of invariant pairs that allow for the simultaneous computation of several eigenvalues [Kre09]. This idea

was also extended to the continuation of eigenvalues of parameterized, nonlinear eigenvalue problems

in [BEK11]. The simultaneous computation of several eigenvalues of (3.2) is also addressed in [Bey12],

where an integral method is proposed to solve (3.2) for all its eigenvalues inside a given contour in

the complex plane. As an alternative there is the possibility of linearizing the nonlinear matrix func-

tion (3.3). For this, Effenberger and Kressner [EK12] proposed an elegant procedure based on Chebyshev

interpolation that does not increase the overall size of the system that needs to be solved.

For the numerical solution of nonlinear eigenvalue problems related to waveguides in homogeneous

media truncated by DtN transparent boundary conditions Jarlebring and coworkers recently proposed a
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3.2 Algorithms for nonlinear eigenvalue problems

tensor infinite Arnoldi method [JMR15]. This method is a computationally advantageous variant of the

infinite Arnoldi method [JMM12], i. e. a method that transforms the concept of Arnoldi methods for linear

eigenvalue problems to nonlinear eigenvalue problems. It is based on a Taylor expansion of the nonlinear

matrix function N and can be applied to any nonlinear eigenvalue problem with differentiable N. However,

problem specific adaptions are crucial for its application. For the waveguide problem these adaptions

were presented in [JMR15].

In this work we do not aim to give an extensive study and comparison of methods to solve the nonlinear

eigenvalue problems related to PhC waveguide band structure calculations. Instead we will briefly review

and apply two methods:

• the method of successive linear problems (MSLP), and

• the linearization based on Chebyshev interpolation.

The former method, which is a widely used variant of inverse iteration [MV04], shall deal as a benchmark

for the Newton-type method that we will propose later in Section 3.3. The latter method, on the other

hand, is an easy to implement, yet elegant way to simultaneously compute several eigenvalues of (3.2)

and will be used later in Chapters 6 and 7, particularly for the k-formulation.

Method of successive linear problems

The MSLP is based on a Taylor expansion of the nonlinear matrix function N, [Ruh73]. Let Ω ⊂ R,
which is the case for both, the ω-formulation and the k-formulation of PhC band structure calculations.

Then, writing (3.3) in the form

N(λ+ ℓ) = N(λ) + ℓN′(λ) +R(λ, ℓ)

and neglecting the matrix R, whose norm is bounded by

R(λ, ℓ)
 ≤ ℓ2

2
sup

0<ℓ̂<ℓ

N′′(λ+ ℓ̂)
 ,

we can proceed as described in Algorithm 3.1 to compute an eigenvalue of the nonlinear eigenvalue

problem (3.2).

Algorithm 3.1. Method of successive linear problems.

1: Choose start value λ(0) ∈ R.
2: for i = 0, . . . do

3: Solve the generalized, linear eigenvalue problem(
N(λ(i)) + hN′(λ(i))

)
w = 0

for its eigenvalue h with smallest magnitude.
4: if h ≈ 0 then

5: exit, λ(i) is an eigenvalue of (3.2).

6: end if

7: Compute new value λ(i+1) = λ(i) + h.

8: end for

The MSLP as sketched in Algorithm 3.1 converges quadratically [Ruh73] and its convergence factors

were studied in [Jar12].

Chebyshev interpolation

Effenberger and Kressner [EK12] proposed a linearization of nonlinear eigenvalue problems using the

Chebyshev interpolation that allows for a simultaneous computation of several eigenvalues that lie on a

curve in the complex plane. We consider the nonlinear eigenvalue problem (3.2) with the matrix-valued,
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3 Numerical solutions of eigenvalue problems

nonlinear function N : Ω → CN×N , cf. Eq. (3.3). We aim to find a polynomial approximation Nd of

order d to the nonlinear function N, that is valid on a closed curve I ⊂ Ω. For simplicity, let I be an

interval on the real axis. In fact, we will later in Chapters 6 and 7, where we employ the Chebyshev

interpolation, only be interested in real eigenvalues, and hence a choice Iλ = [λa, λb] ⊂ R is reasonable.

On this interval I we project the d + 1 Chebyshev nodes cos( i+0.5
d+1 π) ∈ [−1, 1], i = 0, . . . , d, of the first

kind to obtain the d+ 1 projected Chebyshev nodes

λi =
λb − λa

2
cos

(
i+ 0.5

d+ 1
π

)
+
λa + λb

2
∈ Iλ, i = 0, . . . , d.

Let cj : Iλ → R, λ cj(λ), j = 0, . . . , d, denote the first d + 1 Chebyshev polynomials defined on the

interval Iλ, i. e.

c0(λ) = 1,

c1(λ) = λ,

cj+2(λ) = 2λcj+1(λ)− cj(λ), j = 0, . . . , d− 2.

(3.4)

Then we approximate

N(λ) ≈ Nd(λ) =
d∑

j=0

Cjcj(λ) (3.5)

where the d+ 1 matrices Cj ∈ CN×N are given by the interpolation condition

N(λi) =
d∑

j=0

Cjcj(λi) =
d∑

j=0

Cj cos
j(i+ 0.5)π

d+ 1

for all i = 0, . . . , d, which can be solved efficiently for Cj using the discrete cosine transformation [ANR74]

of the second type, i. e.

C0 =
1

d+ 1

d∑
i=0

N(λi),

Cj =
2

d+ 1

d∑
i=0

N(λi) cos
j(i+ 0.5)π

d+ 1
, j = 1, . . . , d.

Substituting uj(λ) := cj(λ)u and searching the kernel of Nd(λ) defined in (3.5), we obtain the polynomial

eigenvalue problem
d∑

j=0

Cjuj(λ) = 0,

that can be linearized into the general linear eigenvalue problem⎛⎜⎜⎜⎜⎜⎜⎝
0 I

I 0 I
. . .

. . .
. . .

I 0 I

−C0 · · · −Cd−3 Cd −Cd−2 −Cd−1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎝ u0

...

ud−1

⎞⎟⎠ = λ

⎛⎜⎜⎜⎜⎜⎜⎝
I

2I
. . .

2I

2Cd

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎝ u0

...

ud−1

⎞⎟⎠ (3.6)

of dimension d ·N , where we used the three term recurrence relation (3.4) of the Chebyshev polynomials.

Applying a shift and invert strategy to compute the eigenvalues of (3.6) the matrix of the left hand

side needs to be inverted. However, due to the structure of this matrix its inverse can be determined by

simply inverting a matrix of size N ×N , cf. [EK12]. To explain this, let us assume we want to solve⎛⎜⎜⎜⎜⎜⎜⎝
0 I

I 0 I
. . .

. . .
. . .

I 0 I

−C0 · · · −Cd−3 Cd −Cd−2 −Cd−1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎝ x0

...

xd−1

⎞⎟⎠ =

⎛⎜⎝ y0

...

yd−1

⎞⎟⎠ .
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We can then deduce that

x1 = y0, x2j+1 = y2j − x2j−1, j = 1, . . . , ⌊d/2⌋ − 1,

and

x2j = ỹ2j−1 + (−1)jx0, j = 1, . . . , ⌊(d− 1)/2⌋,

with

ỹ1 = y1, ỹ2j+1 = y2j+1 − ỹ2j−1, j = 1, . . . , ⌊(d− 1)/2⌋ − 1.

Finally, x0 is determined as solution of the N -dimensional linear system⎛⎝⌊d/2⌋∑
j=0

(−1)j+1C2j

⎞⎠x0 = yd−1 +

⎛⎝⌊d/2⌋−1∑
j=0

C2j+1x2j+1

⎞⎠+

⎛⎝⌊(d−1)/2⌋∑
j=1

C2jỹ2j−1

⎞⎠−Cdz,

with

z =

{
ỹd−3, if d is even,

xd−2, if d is odd.

Thus, it simply remains to invert the matrix
(∑⌊d/2⌋

j=0 (−1)j+1C2j

)
∈ CN×N .

3.3 A new Newton-type method for nonlinear eigenvalue problems

Let us rewrite the nonlinear eigenvalue problem (3.2) in the form(
N0(λ) + λN1(λ)

)
u = 0 (3.7)

with eigenvalue λ ∈ Ω ⊆ C and associated eigenvector u = u(λ) ∈ CN \ {0}, N ∈ N, where N0 and N1

are matrix-valued, holomorphic functions

Ni : Ω → CN×N , i = 0, 1,

and N1 is regular for all λ ∈ Ω.

For the nonlinear eigenvalue problem (3.7) we propose an iterative solution technique that employs

Newton’s method. In every iteration we solve a linear eigenvalue problem that is related to the nonlinear

problem (3.7) in fixpoint-like fashion. Keeping λ̃ ∈ Ω fixed, we introduce the linear eigenvalue problem(
N0(λ̃) + λN1(λ̃)

)
u(λ̃) = 0, (3.8a)

with eigenvalue λ = λ(λ̃) ∈ Ω and associated right eigenvector u(λ̃) ∈ CN \ {0}, and

vH(λ̃)
(
N0(λ̃) + λN1(λ̃)

)
= 0, (3.8b)

with associated left eigenvector v(λ̃) ∈ CN \{0}. If this linear eigenvalue problem admits an eigenvalue λ

that is equal to the parameter λ̃, then λ is an eigenvalue of the nonlinear eigenvalue problem (3.7). On

the other hand, for all eigenvalues λ̃ of the nonlinear eigenvalue problem (3.7) we can construct a linear

eigenvalue problem of the form (3.8) that has an eigenvalue λ which is equal to λ̃. In this sense, the

nonlinear eigenvalue problem (3.7) is equivalent to finding the fixpoints of the function

λ̃ λ(λ̃).

We shall state the following assumption.

Assumption 3.1. The eigenvalues λj(λ̃), 1 ≤ j ≤ N , of (3.8) can be ordered such that the functions

λ̃ λj(λ̃)

and the corresponding right eigenvectors uj(λ̃) = u(λj(λ̃)) are differentiable with respect to λ̃ in Ω.
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3 Numerical solutions of eigenvalue problems

Remark 3.2. From the theory presented in [ACL92, ACL93] we know that the eigenvalue λj and its

associated right and left eigenvectors uj and vj are analytic in a neighbourhood of λ̃ ∈ Ω if λj(λ̃) is a

simple eigenvalue, which is equivalent to

(i) N0(λ̃) + λj(λ̃)N1(λ̃) has rank n− 1, and

(ii) vH
j (λ̃)N1(λ̃)uj(λ̃) /= 0.

Thus, if conditions (i) and (ii) are satisfied for all λ̃ ∈ Ω, Assumption 3.1 is fulfilled.

Due to Assumption 3.1 we can differentiate (3.8) with respect to λ̃, which yields(
N′

0(λ̃) + λj(λ̃)N
′
1(λ̃) + λ′j(λ̃)N1(λ̃)

)
uj(λ̃) +

(
N0(λ̃) + λj(λ̃)N1(λ̃)

)
d
λ̃
uj(λ̃) = 0. (3.9)

Multiplying (3.9) from the left with the conjugate transpose vH
j (λ̃) of the left eigenvector vj(λ̃) and

considering (3.8b), we arrive at

λ′j(λ̃) = −
vH
j (λ̃)

(
N′

0(λ̃) + λj(λ̃)N
′
1(λ̃)

)
uj(λ̃)

vH
j (λ̃)N1(λ̃)uj(λ̃)

. (3.10)

Remark 3.3. From the formula (3.10) for the derivative λ′j(λ̃) of the eigenvalue λj(λ̃) with respect to λ̃

we can see that

vH
j (λ̃)N1(λ̃)uj(λ̃) /= 0

is a necessary condition for the analyticity of the functions λ̃ λj(λ̃), i. e. a necessary condition for

Assumption 3.1 to be satisfied.

Remark 3.4. If the matrices N0 and N1 are Hermitian, the left eigenvector is identical to the right

eigenvector, and hence, it is sufficient to solve (3.8) for its right eigenvector.

The formula (3.10) for the derivative λ′j(λ̃) of the eigenvalue λj(λ̃) will be used in the iterative scheme

that we shall explain in the following.

We introduce the signed distance functions

dj(λ̃) = λ̃− λj(λ̃), (3.11)

1 ≤ j ≤ N , that are — thanks to Assumption 3.1 — continuously differentiable. Hence, we can apply

Newton’s method to compute the roots of (3.11) for 1 ≤ j ≤ N , which are — due our above considerations

— eigenvalues of the nonlinear eigenvalue problem (3.7). The global signed distance function

d(λ̃) = λ̃− λj∗(λ̃), (3.12)

with

j∗ = j∗(λ̃) = arg min
1≤j≤N

⏐⏐⏐dj(λ̃)⏐⏐⏐ , (3.13)

however, is only continuous and piecewise analytic, but its roots are by definition also eigenvalues of (3.7).

The advantage of computing the roots of the global signed distance function d is that we only have to

find the roots of a single functions, instead of computing the roots of the N signed distance functions

dj . Note that the outer min-operator in the definition (3.13) is needed in the case that two or more

eigenvalues of (3.8) have the same distance to λ̃ in magnitude.

The proposed iterative scheme is then as easy as shown in Algorithm 3.2, where the derivative of the

global signed distance function (3.12) is defined as

d′(λ(i)) := d′j∗(λ
(i)) = 1− λ′j∗(λ

(i))

with j∗ = j∗(λ(i)) as given in (3.13) and with the derivative λ′j∗ of λj∗ with respect to λ(i) as presented

in Eq. (3.10).

Even though the global signed distance function d is not continuously differentiable, Newton’s method

as sketched in Algorithm 3.2 converges quadratically [KS86], since the global signed distance function d

is piecewise identical to some continuously differentiable signed distance function dj , 1 ≤ j ≤ N .
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3.3 A new Newton-type method for nonlinear eigenvalue problems

Algorithm 3.2. Newton’s method applied to global signed distance function.

1: Choose start value λ(0) ∈ R.
2: for i = 0, . . . do

3: Evaluate global signed distance function d(λ(i)).

4: if d(λ(i)) ≈ 0 then

5: exit, λ(i) is an eigenvalue of (3.7).

6: end if

7: Compute derivative d′(λ(i)).

8: if d′(λ(i)) ≈ 0 then

9: exit, λ(i) is a saddle point, retry with new start value.

10: end if

11: Compute new value λ(i+1) = λ(i) − d(λ(i))
d′(λ(i))

.

12: end for

The computational effort of the proposed method is comparable to the effort of the MSLP, see Sec-

tion 3.2 as in each iteration a linear eigenvalue problem of size N ×N has to be solved for one eigenvalue.

Moreover, both methods have the same convergence rate, which can also be seen later in numerical results

presented in Chapter 6.

The proposed Newton-type method to solve nonlinear eigenvalue problems of the form (3.7) will later

be employed in Chapters 6 and 7 for the nonlinear eigenvalue problems that result from truncating the

domain of PhC waveguides using DtN or RtR transparent boundary conditions.

An alternative application of this method in the context of PhC band structure calculations is the

eigenvalue problem of finding modes in PhCs with dispersive material, i. e. with frequency-dependent

permittivity. When considering the ω-formulation this eigenvalue problem becomes nonlinear and it

satisfies the form (3.7) we studied in this section. Note that the k-formulation still remains a quadratic

eigenvalue problem. The reader is referred to [ER09, Eng14] for this formulation.
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4 Group velocity and higher derivatives of

dispersion curves

The group velocity is the first derivative of the dispersion curve ω(k). Guided modes of small group

velocity, also denoted by slow light modes, are of special interest in optics since the reduction of the

group velocity simultaneously yields an enhancement of the light intensity [Kra08]. In this chapter, whose

results were already published in condensed form in [KS14b], we will derive a closed formula for the group

velocity of guided modes in PhC waveguides. This formula can be used for an exact computation of the

group velocity for example in waveguide optimizations [LWO+08], replacing the difference quotient to

compute the slope of the band functions.

Our approach does not only allow for deriving a closed formula for the group velocity but also for

the second derivative, the so-called group velocity dispersion, and for any higher-order derivative of the

dispersion curves. In this sense our approach is different from the perturbation theory employed in [SS88,

Sip00, HFBW01], where the vector k · p approach of electronic band structure theory is transferred to

PhC band structure calculations. Our computational procedure has two main advantages:

(i) it is “exact” in the sense that no additional modelling error is introduced in comparison to the

perturbation approach in [SS88, Sip00, HFBW01] where an infinite sum for the computation of the

group velocity dispersion has to be truncated, and

(ii) it allows for a successive computation of derivatives up to any order with marginal extra computa-

tional costs for each additional order.

The latter point motivates an algorithm for efficient band structure calculations that employs these

derivatives and that we will present in Chapter 5.

Before we shall derive the formulas for the dispersion curve derivatives in Section 4.2, we will elaborate

on the differentiability of the dispersion curves and their corresponding eigenmodes in Section 4.1. A proof

of the eigenmode differentiability, that only uses the variational formulation of the eigenvalue problem,

is then presented in Section 4.3, and in Section 4.4 we will give concluding remarks.

4.1 Differentiability of dispersion curves and eigenmodes

In this chapter we simultaneously consider the eigenvalue problem (2.13) in the PhC unit cell C, the

eigenvalue problem (2.19) in the infinite strip S of a PhC waveguide, and the eigenvalue problem (2.23)

in the bounded supercell Sn with n ∈ N PhC unit cells C±
i , i ≤ n, on top and bottom of the defect cell C0.

All these eigenvalue problems are linear in ω2. For the sake of simplicity, we shall assume k2 = 0 in the

2d PhC eigenvalue problem (2.13). Then we employ the Floquet transform in x1-direction, considering

the 1d Brillouin zone B = [− π
a1
, π
a1
], and hence, all mentioned eigenvalue problems are identical except

for the domain, which is either C, S or Sn. In the sequel we shall use C for the domain, keeping in mind

that it can be interchanged with S and Sn.

In Chapter 6 we will introduce DtN transparent boundary conditions for the interfaces Γ±
0 of C0 to

the semi-infinite periodic strips S± on top and bottom of the guide. In that chapter we will also extend

the formulas for the dispersion curve derivatives that we will now introduce for the case with periodic

boundary conditions.

Let k ∈ B. Directly considering the variational formulation, we search for eigenvalues ω2
j (k) ∈ R+ and

corresponding non-trivial eigenmodes uj(k) ≡ uj(· ; k) ∈ H1
p(C) such that

bC(uj(k), v;ωj , k) = 0 (4.1)
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4 Group velocity and higher derivatives of dispersion curves

for all test functions v ∈ H1
p(C), where the sesquilinear form bC reads

bC(u, v;ω, k) = aαC(u, v) + kcα,1C (u, v) + k2mα
C(u, v)− ω2mβ

C(u, v)

with

aαC(u, v) =

∫
C

α∇u · ∇v dx,

cα,1C (u, v) =

∫
C

iα (u(∂1v)− (∂1u)v) dx,

mα
C(u, v) =

∫
C

αuv dx,

mβ
C(u, v) =

∫
C

βuv dx.

Now we give the main result, the proposed formulas rely on.

Theorem 4.1. The eigenvalues ω2
j (k) ∈ R+, j ∈ N, of (4.1) can be ordered such that the dispersion

curves

k ωj(k)

are analytic. In addition, the magnitude and phase of the corresponding eigenmodes uj(· ; k) can be chosen

such that the eigenmodes are analytic with respect to the quasi-momentum k.

Proof. This theorem is a direct consequence of Theorems 2.4 and 2.6, where the same result is shown

for the eigenvalue problems (2.19) and (2.23) in operator formulation using the perturbation theory for

linear operators [Kat95]. Since the sesquilinear form in (4.1) is bounded in H1
p(C) and the corresponding

linear operator is bounded in H1
p(∆, C, α), we conclude that the spectral results of the operator theory

directly transfer to the eigenvalue problem (4.1) in variational formulation [Kat95].

In addition to the well known eigenvalue analyticity, Theorem 4.1 also guarantees that the correspond-

ing eigenmodes are analytic. Nevertheless, we shall present in Section 4.3 a proof of the differentiability

of the eigenmodes only using the variational formulation.

4.2 Dispersion curve derivatives

4.2.1 First derivative of dispersion curves — The group velocity

Thanks to Theorem 4.1 we can take the derivative of Eq. (4.1) with respect to k and obtain

bC(dkuj , v;ωj , k) = f(1)(v) (4.2)

for all v ∈ H1
p(C), with the linear form

f(1)(v) = f(1)(v; k, ωj , ω
′
j , uj) = −2kmα

C(uj , v)− cα,1C (uj , v) + 2ωjω
′
jm

β
C(uj , v) (4.3)

and the short notations ω′
j(k) :=

∂ωj

∂k (k) and dkuj(· ; k) :=
duj

dk (· ; k) ∈ H1
p(C). Taking v = uj as test

function in Eq. (4.2) yields

f(1)(uj ; k, ωj , ω
′
j , uj) = 0 (4.4)

since the sesquilinear form bC is self-adjoint, and hence,

bC(dkuj , uj ;ωj , k) = bC(uj ,dkuj ;ωj , k) = 0

as uj is an eigenmode of (4.1) at k with associated eigenvalue ω2
j . We can solve (4.4) for the group

velocity ω′
j and obtain

ω′
j(k) =

2kmα
C(uj , uj) + cα,1C (uj , uj)

2ωjm
β
C(uj , uj)

. (4.5)
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4.2 Dispersion curve derivatives

Note that the group velocity is real-valued since the bilinear forms mα
C , m

β
C and cα,1C are self-adjoint, and

thus, e. g.

Im
(
cα,1C (uj , uj)

)
=

1

2

(
cα,1C (uj , uj)− cα,1C (uj , uj)

)
= 0.

Considering that cα,1C (uj , uj) is real-valued, using integration by parts and the fact that uj is periodic,

we can write

cα,1C (uj , uj) =

∫
C

iα (uj(∂1uj)− (∂1uj)uj) dx = 2

∫
C

iαuj(∂1uj) dx+

∫
C

i(∂1α)|uj |2 dx

= 2Re

(∫
C

iαuj(∂1uj) dx

)
= −2 Im

(∫
C

αuj(∂1uj) dx

)
. (4.6)

Note that the derivative of α, that appears in the above equation, has to be understood in distributional

sense and thus, it is well-defined even though we assume only α ∈ L∞(R2). Moreover, it is obvious, that∫
C
(∂1α)|uj |2 dx is well-defined since all other integrals of the equation are well-defined. Thus, we can

rewrite the group velocity formula (4.5) in the form

ω′
j(k) =

k
∫
C
α|uj |2 dx− Im

(∫
C
αuj ∂1uj dx

)
ωj

∫
C
β|uj |2 dx

.

Remark 4.2. The formula (4.5) for the group velocity contains the eigenmode uj associated to the

eigenvalue ω2
j (k). However, the eigenmode is not uniquely defined. If the eigenvalue has multiplicity

equal to one, any non-trivial, scalar multiple of an eigenmode is also an eigenmode. However, such a

scalar cancels out in (4.5) and the group velocity formula is well-defined. If the eigenvalue has multiplicity

larger than one, the situation is more involved. Nevertheless, we claim that the eigenmodes in (4.5) can

be chosen as the limit of the eigenmodes associated to the eigenvalues of multiplicity one, that lie on the

dispersion curves which intersect at (ωj(k), k). For this, it is important that the approximation quality of

the eigenmodes is not influenced by the distance to a crossing of dispersion curves. For example, when

using the software package ARPACK [LSY98, LMSY15], i. e. an implementation of implicitly restarted

Arnoldi iterations, for the numerical solution of the corresponding matrix eigenvalue problem, we can

expect that the approximation of eigenvectors of multiple eigenvalues and of eigenvalues that are close

to a multiplicity larger than one is of the same quality like the approximation of eigenvectors of simple

eigenvalues, since a deflation technique [LS96] is used, [LSY98].

4.2.2 Higher derivatives of dispersion curves

To simplify the presentation and in accordance to Remark 4.2, we shall assume in the sequel, that the

eigenvalue ω2
j (k) has multiplicity one and is sufficiently far away from a crossing. In Section 4.2.3 we

will discuss what is meant by “sufficiently far away from a crossing” in practise. If the multiplicity of

ω2
j (k) is larger than one or if the distance of ω2

j (k) to a crossing is not sufficient, the reader is referred to

Remark 4.5.

In order to extend the procedure to higher order derivatives of the dispersion curves, we have to compute

the derivative dkuj of the eigenmode uj with respect to the quasi-momentum. However, the computation

of dkuj ∈ H1
p(C) using Eq. (4.2) is ill-posed since any eigenmode uj ∈ H1

p(C) solves Eq. (4.2) with zero

right hand side and hence, any of these eigenmodes uj can be added to the solution dkuj of Eq. (4.2)

and the equation will still be satisfied. Applying the Fredholm–Riesz–Schauder theory, see for example

Section 2.1.4 in [SS11], we can compute a particular solution of Eq. (4.2) by additionally requiring H1(C)-

orthogonality to any of the finitely many [RS78], linearly independent eigenmodes uj,1, . . . , uj,m. With

the above mentioned assumption we look for the particular solution of Eq. (4.2) that is H1(C)-orthogonal

to the single, possibly normalized eigenmode uj . This orthogonality condition differs from the condition

we will introduce in the proof of the differentiability of the eigenmodes, cf. Theorem 4.1, presented in

Section 4.3. There we will choose the solution of (4.2) that is H1(C)-orthogonal to the eigenmode uj(·; k0)
for some k0 in the vicinity of k. However, in accordance to Proposition 4.4, that we shall prove later,

we can in fact use any extra condition to fix the solution of (4.2), as long as the resulting problem is
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4 Group velocity and higher derivatives of dispersion curves

well-posed. In this respect, we shall refrain from calling a particular solution of (4.2) the derivative of

the eigenmode with respect to the quasi-momentum. Instead, we shall compute an auxiliary function

u
(1)
j ∈ H1

p(C) and a Lagrange multiplier λ ∈ C that satisfy

bC(u
(1)
j , v;ωj , k) + λ⟨uj , v⟩H1(C) = f(1)(v), (4.7a)

⟨u(1)j , uj⟩H1(C) = 0, (4.7b)

for all v ∈ H1
p(C), where ⟨·, ·⟩H1(C) denotes the usual H1(C)-inner product, i. e. ⟨u, v⟩H1(C) =

∫
C
∇u ·

∇v + uv dx. This auxiliary function satisfies u
(1)
j = dkuj + cuj , c ∈ C, such that bC(u

(1)
j , v;ωj , k) =

bC(dkuj , v;ωj , k) for all v ∈ H1
p(C).

Remark 4.3. From the Fredholm alternative, see for example [SS11], and the theory of saddle point

problems, see for example [Bra07], and by considering our assumption that the eigenvalue ω2
j (k) of (4.1)

has multiplicity one, we know that the mixed variational problem (4.7) has a unique solution. The

Lagrange multiplier λ of this unique solution is zero, since, testing (4.7a) with v = uj, ∥uj∥H1(C) = 1,

yields λ = f(1)(uj), which is identical to zero due to (4.4).

In order to determine higher derivatives of k ωj(k) let us introduce the following short notations

ω
(n)
j (k) :=

∂nωj

∂kn
(k) and dnkuj(· ; k) :=

dnuj
dkn

(· ; k),

n ∈ N0. Then taking the n-th derivative of Eq. (4.1) with respect to k yields

bC(d
n
kuj , v;ωj , k) = f(n)(v)

for all v ∈ H1
p(C), where the linear form f(n) = f(n)(· ; k, ω(0)

j , . . . , ω
(n)
j , u

(0)
j , . . . , u

(n−1)
j ), that is obtained

using binomial and trinomial expansions, reads

f(n)(v) =

n−1∑
p=0

n−p∑
q=0

n!

p! q! (n− p− q)!
ω
(n−p−q)
j ω

(q)
j mβ

C(u
(p)
j , v)

−
n∑

p=1

(
n

p

)
∂pk

∂kp
cα,1C (u

(n−p)
j , v)−

n∑
p=1

(
n

p

)
∂pk2

∂kp
mα

C(u
(n−p)
j , v)

=
n−1∑
p=0

n−p∑
q=0

n!

p! q! (n− p− q)!
ω
(n−p−q)
j ω

(q)
j mβ

C(u
(p)
j , v)

− n cα,1C (u
(n−1)
j , v)− 2nkmα

C(u
(n−1)
j , v)− n(n− 1)mα

C(u
(n−2)
j , v),

(4.8)

where we replaced the eigenmode derivatives dmk uj(k), 1 ≤ m ≤ n−1, by the auxiliary functions u
(m)
j (k),

and u
(0)
j (k) = uj(k). From this we deduce the n-th derivative of ωj(k)

ω
(n)
j (k) =

1

2ωjm
β
C(uj , uj)

(
n(n− 1)mα

C(u
(n−2)
j , uj) + 2nkmα

C(u
(n−1)
j , uj) + n cα,1C (u

(n−1)
j , uj)

−
n−1∑
p=1

n−p∑
q=0

n!

p!q!(n− p− q)!
ω
(n−p−q)
j ω

(q)
j mβ

C(u
(p)
j , uj)

−
n−1∑
q=1

(
n

q

)
ω
(n−q)
j ω

(q)
j mβ

C(uj , uj)

)
.

(4.9)

Analogously to above — using the Lagrange multiplier λ ∈ C — we can then compute a particular

solution u(n) ∈ H1
p(C) of (4.2.2) that satisfies

bC(u
(n)
j , v;ωj , k) + λ⟨uj , v⟩H1(C) = f(n)(v) (4.10a)

⟨u(n)j , uj⟩H1(C) = 0 (4.10b)
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4.2 Dispersion curve derivatives

for all v ∈ H1
p(C), which is, for n = 1, equivalent to Eq. (4.7). Note that the sesquilinear forms on the

left hand side of Eq. (4.10) are identical for all n ∈ N, while the linear forms f(n) differ for all orders.

In order to compute ω
(n)
j we have to solve (4.1) for its eigenvalue ω2

j (k) and associated eigenmode uj .

Then we successively compute ω
(ℓ)
j from (4.9) and solve the linear system (4.10) for u

(ℓ)
j , ℓ = 1, . . . , n−1.

Finally, it remains to compute ω
(n)
j from (4.9). In total we have to solve one eigenvalue problem (4.1),

n− 1 linear systems (4.10), and n algebraic equations (4.9).

Let us discuss the effect of the proposed orthogonality condition in the linear systems (4.7) and (4.10).

Proposition 4.4. The formula (4.9) for n-th dispersion curve derivative is independent of the orthogo-

nality condition (4.10b).

Proof. First we note that by construction of (4.10) it is easy to see that for all n ∈ N

u
(n)
j = dku

(n−1)
j + c(n)uj

with c(n) ∈ C. Recursively applying this identity yields

u
(n)
j = dnkuj +

n∑
i=1

c(i)dn−i
k uj . (4.11)

Let us assume that we can properly define and compute dnkuj , n ∈ N. Replacing the auxiliary functions

u
(n)
j in (4.9) by dnkuj we obtain a formula that we denote by ω̃

(n)
j (k). Trivially, we have

ω
(1)
j (k) = ω̃

(1)
j (k).

Using Eq. (4.11) for n = 1 we find that

ω
(2)
j (k) =

mα
C(uj , uj) + 2kmα

C(dkuj , uj) + cα,1C (dkuj , uj)− 2ω′
jωjm

β
C(dkuj , uj)− (ω′

j)
2mβ

C(uj , uj)

ωjm
β
C(uj , uj)

.

+ c(1)
2kmα

C(uj , uj) + cα,1C (uj , uj)− 2ω′
jωjm

β
C(uj , uj)

ωjm
β
C(uj , uj)

.

Inserting (4.5) shows that the numerator of the second term vanishes and hence, also

ω
(2)
j (k) = ω̃

(2)
j (k).

We proceed by induction. Let n ∈ N. Assuming that ω
(m)
j (k) = ω̃

(m)
j (k) for all m = 1, . . . , n − 1, we

apply (4.11) and obtain

ω
(n)
j (k) = ω̃

(n)
j (k) +

1

2ωjm
β
C(uj , uj)

(
n(n− 1)

n−2∑
i=1

c(i) mα
C(d

n−i
k uj , uj)

+ n
n−1∑
i=1

c(i)
(
2kmα

C(d
n−i
k uj , uj) + cα,1C (dn−i

k uj , uj)
)

−
n−1∑
p=1

n−p∑
q=0

p∑
i=1

n!

p!q!(n− p− q)!
ω
(n−p−q)
j ω

(q)
j c(i)mβ

C(d
i
kuj , uj)

)
.

We sort the right hand side for terms with c(1), . . . , c(n−1). Using the formula (4.9) for ω
(n−i)
j , 1 ≤ i ≤ n−1,

which is by assumption identical to ω̃
(n−i)
j , we find that the c(i)-term vanishes and, hence, we can conclude

that

ω
(n)
j (k) = ω̃

(n)
j (k).

This shows that the orthogonality condition (4.10b) can in fact be replaced by any other orthogonality

condition as long as the resulting system (4.10) is well-posed.
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4 Group velocity and higher derivatives of dispersion curves

Finally, let us give a remark on the case of multiple eigenvalues.

Remark 4.5. If there are multiple, linearly independent eigenmodes uj,1, . . . , uj,m, associated to the

eigenvalue ω2
j (k) of (4.1), m− 1 extra orthogonality conditions and Lagrange multipliers λ2, . . . , λm ∈ C

have to be added to the linear system (4.10). Note that the eigenmodes uj,1, . . . , uj,m have to be selected as

described in Remark 4.2, i. e. as the limit of the eigenmodes corresponding to the eigenvalues of multiplicity

one in the vicinity of ω2
j (k). The procedure to compute the n-th derivative ω

(n)
j,m′ , 1 ≤ m′ ≤ m, of ωj(k)

associated to uj,m′ remains the same, only that we have to bear in mind that each eigenmode uj,m′

associated to the eigenvalue ω2
j (k) yields different quantities u

(n)
j,m′ and ω

(n)
j,m′ .

4.2.3 Extra orthogonality conditions at simple eigenvalues

The extra orthogonality conditions for the linear system (4.10), mentioned in Remark 4.5 for the case

of multiple eigenvalues of (4.1), have to be added to (4.10) also for the case of simple eigenvalues ω2
j (k)

of (4.1), if there exist other eigenvalues ω2
j′(k), j

′ /= j, of (4.1) at k, that are very close to ω2
j (k). This is

for example always the case in the vicinity of an eigenvalue with multiplicity larger than one. The reason

is that the condition number of the matrix related to the linear system (4.10) increases dramatically in

such a case.

These extra orthogonality conditions, when posed at simple eigenvalues instead of multiple eigenvalues,

imply that Eq. (4.2) and its higher order analogues are not exactly satisfied, since the Lagrange multipliers

do not vanish, or in other words, the solution of (4.2), if ω2
j (k) is an simple eigenvalue of (4.1), cannot

satisfy more than one orthogonality condition.

Therefore, the size of the vicinity, for which extra orthogonality conditions are added to (4.10), has

to be chosen very carefully. We observed that reasonably good results can be obtained if orthogonality

conditions are added to (4.10) for all eigenvalues ω2
j′(k) with distance to ω2

j (k) smaller than 0.01 · c2

a2
1
.
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(b) Magnitude of tenth dispersion curve derivative.

Figure 4.1: Condition number of the FE system matrix (a) related to the source problem (4.10) and

magnitude of the tenth dispersion curve derivative (b) of the third dispersion curve of the band structure

of Example 1 when adding an extra orthogonality condition for all eigenvalues closer than 0.01 · c2

a2
1
(red)

and when not adding any extra orthogonality conditions (black).

Numerical experiments show that extra orthogonality conditions in the suggested vicinity do not yield

a significant error. When comparing the group velocity dispersion, i. e. the second dispersion curve

derivative, in the vicinity of a crossing of two dispersion curves, we find that the difference of the computed

values for the cases with and without extra orthogonality condition is negligible. Instead the effect of an

increasing condition number of the matrix related to the linear system (4.10) is of larger importance. Let

us study the behaviour of the condition number numerically. To this end, we consider the band structure

of Example 1. The second and third dispersion curves intersect at k = 0, see Figure 2.7. For the FE
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4.3 Proof of eigenmode differentiability

discretization we choose the coarse mesh with nine quadrilateral cells as sketched in Figure 2.6 and the

polynomial degree p = 5. In Figure 4.1a we present the condition number of the FE matrix related to

the linear system (4.10) for the third dispersion curve in the vicinity of k = 0. The black curve shows the

condition number if no extra orthogonality condition is taken into account no matter how close another

eigenvalue is located. The red curve shows the condition number for the case as suggested above, i. e.

we add an orthogonality condition to (4.10) for all eigenvalues ω2(k) with distance to ω2
3(k) smaller than

0.01 · c2

a2
1
. This is the case for all quasi-momenta smaller than k ≈ 0.01 2π

a1
, where the eigenvalues on the

second dispersion curve have taken into account. We can observe that the condition number of the matrix

without extra orthogonality condition increases dramatically in the vicinity of the crossing at k = 0. The

condition number of the matrix including an extra orthogonality with respect to the eigenmodes on the

second dispersion curve, however, only shows a minor increase just before the extra condition is switched

on, while it remains almost constant at a relatively low level when we continue to approach the crossing

at k = 0.

In Figure 4.1b the effect of the increasing condition number on the computation of the dispersion curve

derivatives is shown. We present the magnitude of the tenth derivative of the third dispersion curve of the

band structure of Example 1. It becomes obvious that the dramatic increase of the condition number, if

no extra orthogonality conditions are added to (4.10), also yields a significant increase of the magnitude

of the computed value for the dispersion curve derivative. This significant increase, however, is not the

correct behaviour as the results for the case including an extra orthogonality condition with respect to

the eigenmodes on the second dispersion curve show. This spurious behaviour is even intensified if higher

order derivatives are computed. For the tenth derivative as presented in Figure 4.1b it turned out that it

is sufficient to add extra orthogonality conditions only for eigenvalues closer than 0.01 · c2

a2
1
. If, however,

one should be interested in computing even higher orders of the dispersion curve derivatives, one might

has to increase the radius within eigenvalues are considered for extra orthogonality conditions.

Extra orthogonality conditions with respect to eigenmodes on close dispersion curves are thus compul-

sory for the computation of dispersion curve derivatives if other dispersion curves are not sufficiently far

away.

4.2.4 Comparison of group velocity formula and difference quotient

Let us now discuss a possible drawback of the group velocity formula (4.5) in the context of a FE

discretization. According to the Babuška-Osborn theory on eigenvalue problems [BO91], we expect

that — using a FE discretization — the eigenvectors converge with smaller convergence rate than the

eigenvalues when increasing the refinement of the discretization. Since approximations to the eigenmodes

are needed to compute the group velocity using formula (4.5), we may expect that the convergence of the

group velocity formula (4.5) when increasing the refinement of the discretization is of smaller rate than

the convergence of the difference quotient of the dispersion curve, that is an approximation to the group

velocity which only involves the eigenvalues and no eigenvectors.

In order to analyse this expectation, let us do a convergence study for the setup in Example 1. Figure 4.2

shows the convergence of the error of the group velocity formula (4.5) and the (first order) difference

quotient of the first dispersion curve at k = π
2a1

when increasing the mesh refinement of a FE discretization

of polynomial degree one. The reference solution, on the other hand, is computed with the smallest mesh

refinement and with polynomial degree 20. Both, the formula (4.5) for the group velocity as well as

the difference quotient converge with the same convergence rate when increasing the refinement of the

discretization, which demonstrates that the group velocity formula (4.5) has no disadvantages compared

to a difference quotient in a FE discretization.

4.3 Proof of eigenmode differentiability

In Theorem 4.1 we already argued, using perturbation theory for linear operators [Kat95], that not only

the eigenvalues ω2
j (k) of (4.1) are analytic with respect to the quasi-momentum k, but also the phase and

magnitude of the corresponding eigenmodes uj(· ; k) can be chosen such that the eigenmodes are analytic
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Figure 4.2: Convergence of the error of the group velocity formula (solid line) and the first order difference

quotient (markers) when increasing the grid refinement of a FE computation with polynomial degree one.

The reference solution is computed with polynomial degree 20.

with respect to the quasi-momentum. Nevertheless, we will now present a proof for the differentiability

of the eigenmodes with respect to the quasi-momentum to any order. For this proof we will only argue

with the help of the variational formulation of (4.1). However, we will restrict the proof to the case where

the eigenvalue ω2
j (k) has algebraic multiplicity one in a vicinity of k = k0 ∈ B.

Then there exists h0 > 0 such that for all h ∈]−h0, h0[ the eigenvalue ω2
j (k0+h) of (4.1) has algebraic

multiplicity one, and the eigenmode uj(· ; k0+h) corresponding to the eigenvalue ω2
j (k0+h) is unique up

to a complex-valued multiplicative factor. Hence, continuity and differentiability of this eigenmode with

respect to k at k = k0 is subject to a complex scaling of uj(· ; k0 + h) for all h ∈]− h0, h0[.

Given that the eigenvalue ω2
j (k) is analytic in k0 we prove that the complex scaling can be chosen such

that the eigenmode uj(· ; k) is differentiable at k0 to any order.

We start by proving the continuity at k0.

Lemma 4.6. Let uj(· ; k0 +h), with h ∈]−h0, h0[, be an arbitrary eigenmode of (4.1) at k = k0 +h with

H1(C)-norm one that corresponds to the eigenvalue ω2
j (k0 + h). Then, in the limit h → 0, uj(· ; k0 + h)

is an eigenmode of (4.1) at k = k0 corresponding to the eigenvalue ω2
j (k0) and uj(· ; k0 + h) → γuj(· ; k0)

in H1
p(C) for some γ ∈ C with |γ| = 1.

Proof. We know that uj(k0) ≡ uj(· ; k0) satisfies

bC(uj(k0), v;ωj(k0), k0) = 0

for all v ∈ H1
p(C) and uj(k0 + h) ≡ uj(· ; k0 + h) satisfies

bC(uj(k0 + h), v;ωj(k0 + h), k0 + h) = 0

for all v ∈ H1
p(C). Consequently, the function ej(h) ≡ ej(· ;h) := uj(· ; k0 + h)− uj(· ; k0) satisfies

bC(ej(h), v;ωj , k0) = gh(v; k0, ωj , uj)

for all v ∈ H1
p(C) with the linear form

gh(v; k0, ωj , uj) =
(
ω2
j (k0 + h)− ω2

j (k0)
)
mβ

C(uj(k0 + h), v)

− h (2k0 + h)mα
C(uj(k0 + h), v)− h cα,1C (uj(k0 + h), v). (4.12)

Since ω2
j is continuous at k = k0, we know that gh(v; k0, ωj , uj) → 0 as h → 0. Hence, in the limit

h → 0 the function ej(· ;h) is either zero or it is an eigenmode of (4.1) at k = k0 with corresponding
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4.3 Proof of eigenmode differentiability

eigenvalue ω2
j (k0). Since the algebraic multiplicity of ω2

j (k0) is one, we can conclude that in both cases

limh→0 ej(· ;h) = γ̃uj(· ; k0) with some complex number γ̃ ∈ C. This implies that limh→0 uj(· ; k0 + h) =

γuj(· ; k0), with γ = γ̃ + 1. Now we use the fact that the space of all functions in H1
p(C) with magnitude

one is closed, and hence, it is — as a closed subspace of a Banach space — also complete. Now taking

the norm of the previous equation, we can conclude that |γ| = 1, which finishes the proof.

Now let us — in addition to the norm — also fix the phase of the eigenmode. To this end, we define

w := uj(· ; k0) as an arbitrary but fixed eigenmode of (4.1) at k = k0 with H1(C)-norm one. Then we

introduce the following problem: find ũj(k) ≡ ũj(· ; k) ∈ H1
p(C), k = k0 + h, and the Lagrange multiplier

λũj
(k) ∈ C that satisfy

bC(ũj(k), v;ωj , k) + λũj
(k)⟨w, v⟩H1(C) = 0, (4.13a)

⟨ũj(k), w⟩H1(C) = 1, (4.13b)

for all v ∈ H1
p(C).

Lemma 4.7. If k is sufficiently close to k0, the problem (4.13) has a unique solution.

Proof. First let us prove existence. Let uj(· ; k) denote an arbitrary eigenmode of (4.1), that is associ-

ated to ω2
j (k) and normalized with respect to the H1(C)-norm, and let γ(h) = ⟨uj(k), w⟩H1(C). From

Lemma 4.6 we know that uj(· ; k) → γw as h → 0 for some γ ∈ C with |γ| = 1. This implies that

γ(h) → γ as h → 0 and hence, γ(h) /= 0 if k is sufficiently close to k0. Then, ũj(· ; k) = 1
γ(h)uj(· ; k)

solves (4.13) with the Lagrange multiplier λũj
(k) = 0.

Now let us prove uniqueness. To this end, we assume that — apart from the eigenmode solution

(ũj,1(· ; k), λũj,1
(k)) = (ũj(· ; k), 0) ∈ H1

p(C) × C — there exists another solution (ũj,2(· ; k), λũj,2
(k)) ∈

H1
p(C)× C with ũj,2(· ; k) /≡ ũj,1(· ; k) or λũj,2

(k) /= λũj,1
(k) = 0.

Since (ũj,2(· ; k), λũj,2
(k)) is a solution of (4.13), we can write

bC(ũj,2(k), v;ωj , k) + λũj,2
(k)⟨w, v⟩H1(C) = 0,

⟨ũj,2(k), w⟩H1(C) = 1,

for all v ∈ H1
p(C). Now we test the first equation with v = ũj(· ; k). Since this is an eigenmode of (4.1)

and it satisfies the constraint condition (4.13b), we obtain λũj,2
(k) = 0. However, this implies that ũj,2(k)

is an eigenmode of (4.1). But from the constraint condition (4.13b) and the assumption that the two

solutions are not identical, it follows that ũj,2(· ; k) /≡ γũj,1(· ; k) with some γ ∈ C. Hence, ũj,2(· ; k) is an
eigenmode of (4.1) that is linear independent of the eigenmode ũj,1(· ; k), which is a contradiction to our

assumption that the multiplicity of the eigenvalue problem (4.1) is one at k ∈]k0 − h0, k0 + h0[.

Now we are able to state the following result.

Corollary 4.8. The unique solution ũj(· ; k) of (4.13) is an eigenmode of (4.1) with associated eigenvalue

ω2
j (k).

Finally, we can prove continuity of ũj(· ; k) at k = k0.

Lemma 4.9. The eigenmode ũj(· ; k) that solves (4.13) is continuous at k = k0.

Proof. Let ẽj(h) ≡ ẽj(· ;h) := ũj(· ; k0+h)−ũj(· ; k0), h ∈]−h0, h0[. We introduce the Lagrange multiplier

λẽj (h) = λũj
(k0 + h)− λũj

(k0) and hence,

bC(ẽj(h), v;ωj , k0) + λẽj (h)⟨w, v⟩H1(C) = gh(v; k0, ωj , ũj), (4.14a)

⟨ẽj(h), w⟩H1(C) = ⟨ũj(k0 + h)− ũj(k0), w⟩H1(C), (4.14b)

for all v ∈ H1
p(C), where the linear form gh is given in (4.12). The term on the right hand side of

Eq. (4.14b) vanishes since both functions, ũj(· ; k0+h) and ũj(· ; k0), satisfy Eq. (4.13a). Since k ωj(k)

is continuous at k = k0 we conclude that the right hand side of Eq. (4.14a) tends to zero as h → 0, and

hence, — considering that the problem (4.14) is well-posed — we have ẽj(· ;h) → 0 in H1
p(C) as h → 0,

which finishes the proof.
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4 Group velocity and higher derivatives of dispersion curves

In order to prove that ũj(· ; k) is differentiable at k = k0 we introduce a new mixed variational problem:

find ũ′j(k) ≡ ũ′j(· ; k) ∈ H1
p(C), k = k0 + h, and the Lagrange multiplier λũ′

j
(k) ∈ C that satisfy

bC(ũ
′
j(k), v;ωj , k) + λũ′

j
(k)⟨w, v⟩H1(C) = f(1)(v; k, ωj , ω

′
j , ũj), (4.15a)

⟨ũ′j(k), w⟩H1(C) = 0 (4.15b)

for all v ∈ H1
p(C) with the linear form f(1) as given in Eq. (4.3). Using the same arguments as in the

proof of Lemma 4.7 we can conclude that (4.15) has a unique solution.

Remark 4.10. Note that in the limit h → 0, the problem (4.15) is equivalent to (4.7). In this context,

it becomes clear that in the limit h → 0 the Lagrange multiplier λũ′
j
(k) vanishes, see Remark 4.3. Since

the compatibility condition of the mixed variational problem (4.15), i. e. taking the eigenmode ũj(· ; k) as
test function in (4.15a), yields f(1)(ũj(k); k, ωj , ω

′
j , ũj) = λũ′

j
(k), we can conclude that in the limit h→ 0

the compatibility condition of (4.15) yields the group velocity formula (4.5) with uj = ũj(· ; k).

Lemma 4.11. The eigenmode ũj(· ; k) that solves (4.13) is Fréchet differentiable with respect to k at

k = k0, and
d
dk ũj(· ; k0) = ũ′j(· ; k0).

Proof. Let ẽ′j(h) ≡ ẽ′j(· ;h) := 1
h

(
ũj(· ; k0 + h)− ũj(· ; k0)− hũ′j(· ; k0)

)
, h ∈] − h0, h0[. Introducing the

Lagrange multiplier λẽ′j (h) =
1
h

(
λũj

(k0 + h)− λũj
(k0)− hλũ′

j
(k0)

)
, we have

bC(ẽ
′
j(h), v;ωj , k) + λẽ′j (h)⟨w, v⟩H1(C) =

1

h
gh(v; k0, ωj , ũj)− f(1)(v; k0, ωj , ω

′
j , ũj), (4.16a)

⟨ẽ′j(h), w⟩H1(C) =
1

h
⟨ũj(k0 + h)− ũj(k0), w⟩H1(C), (4.16b)

for all v ∈ H1
p(C). The term on the right hand side of Eq. (4.16b) vanishes since both functions, ũj(· ; k0+

h) and ũj(· ; k0), satisfy Eq. (4.13a). Finally, — using the analyticity of the eigenvalue and Lemma 4.9 —

we conclude that 1
hgh(· ; k0, ωj , ũj) → f(1)(· ; k0, ωj , ω

′
j , ũj) as h → 0, and hence, — considering that the

problem (4.16) is well-posed — we have ẽ′j(· ;h) → 0 in H1
p(C) as h→ 0, which finishes the proof.

In order to extend the theory to higher orders we introduce ũ
(n)
j (k) ≡ ũ

(n)
j (· ; k) ∈ H1

p(C), n ∈ N,
k = k0 + h, as the unique solution of

bC(ũ
(n)
j (k), v;ωj , k) + λ

ũ
(n)
j

(k)⟨w, v⟩H1(C) = f(n)(v; k, ω
(0)
j , . . . , ω

(n)
j , ũ

(0)
j , . . . , ũ

(n−1)
j ),

⟨ũ(n)j (k), w⟩H1(C) = 0,

for all v ∈ H1
p(C) with the Lagrange multiplier λ

ũ
(n)
j

∈ C. Using the same arguments as in the proof of

Lemma 4.11 we conclude the following statement.

Lemma 4.12. The eigenmode ũj(· ; k) that solves (4.13) is Fréchet differentiable with respect to k at

k = k0 up to any order, and dn

dkn ũj(· ; k0) = ũ
(n)
j (· ; k0).

This finishes the proof of the desired result. Since w can be chosen to be any eigenmode of (4.1) at

k = k0, we showed that we can choose the magnitude and phase of the eigenmodes of (4.1) associated to

eigenvalues that have multiplicity one at k = k0, such that the eigenmodes are continuously differentiable

with respect to k at k = k0 to any order.

4.4 Conclusions

In this chapter we derived closed formulas for the group velocity and any higher derivative of dispersion

curves of PhC and PhC waveguide band structures.

The formulas rely on the differentiability of the eigenvalues and eigenmodes with respect to the quasi-

momentum k, which is a classical result of perturbation theory for linear operators [Kat95] transferred

to the variational formulation (4.1). Nevertheless, we provided a proof for the differentiability of the
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eigenmodes in Section 4.3. In this proof we only argue with the help of the variational formulation of the

eigenvalue problem (4.1). This proof is, however, restricted to the case where the associated eigenvalue

as multiplicity one, and hence, it excludes crossings of dispersion curves.

The formulas for higher derivatives of the dispersion curves require the solution of source problems.

These source problems vary from order to order only in their right hand side, which implies that the

extra cost for computing higher orders is marginal.

In the vicinity of crossings, or whenever two eigenvalues are very close, the condition number of the

system matrix related to these source problems becomes prohibitively large. Therefore, we proposed to

add extra orthogonality conditions with respect to the eigenmodes of close dispersion curves. These extra

orthogonality conditions help to keep the condition number at low levels while not spoiling the numerical

results of the dispersion curve derivatives.

The numerical analysis of this effect as well as a mathematical proof for the observed convergence rate

of the group velocity formula when enriching the FE discretization is subject to future research.

The results of this chapter will be transferred to a more general, discrete case in Chapter 5, and the

formulas for the dispersion curve derivatives will be used in an adaptive Taylor expansion of dispersion

curves, that we will also propose in Chapter 5. The generalization of the formulas for the dispersion curve

derivatives to the case with DtN transparent boundary conditions for the exact computation of guided

modes in PhC waveguides, see Eq. (2.20), will be addressed in Chapter 6.
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5 Adaptive path following for parameterized,

nonlinear eigenvalue problems

In Chapter 4 we showed that the dispersion curves of PhC and PhC waveguide band structuresare analytic

and their derivatives to any order can be computed by closed formulas in variational sense. These facts

motivate the approximation of the dispersion curves with a Taylor expansion. We will propose in this

chapter an algorithm for an adaptive selection of the quasi-momenta for which Taylor expansions are

computed.

Later in Chapters 6 and 7 we will apply this algorithm also to PhC waveguide band structure calcu-

lations when using DtN and RtR transparent boundary conditions for truncating the infinite, periodic

domain. Note that our algorithm can also be applied to band structure calculations of waveguides with

dispersive material like in [ER09, Eng14, SK10].

Before we introduce the adaptive algorithm and show numerical results, we want to generalize the

results of Chapter 4 to parameterized, nonlinear eigenvalue problems in discrete form. To this end,

we introduce a discrete problem in Section 5.1, before we derive the formulas for the derivatives of its

eigenvalues with respect to a parameter up to any order in Section 5.2. Then in Section 5.3 we elaborate

on the Taylor expansion and show first numerical results, before we introduce the adaptive algorithm in

Section 5.4, whose numerical results, when applied to the dispersion curves of PhC and PhC waveguide

band structures, are shown in Section 5.5. The conclusions of this chapter can finally be found in

Section 5.6.

The adaptive algorithm was already published in an article together with K. Schmidt [KS14b]. The

basic concept and first numerical results can also be found in [KS14a]. The generalization to parameter-

ized, nonlinear eigenvalue problems, however, has not yet been published elsewhere, and the numerical

results in Section 5.5 were extended by a convergence study.

5.1 Abstract problem setting

Let Ωλ,Ωµ ⊆ C and let a matrix-valued, holomorphic function

N : Ωλ × Ωµ → CN×N ,

N ∈ N, be given. Then we consider the parameterized, nonlinear eigenvalue problem: for any µ ∈ Ωµ find

eigenvalues λ = λ(µ) ∈ Ωλ and associated right eigenvectors u = u(λ, µ) ∈ CN \{0} and left eigenvectors

v = v(λ, µ) ∈ CN \ {0} such that

N(λ, µ)u = 0 (5.1a)

and

vHN(λ, µ) = 0. (5.1b)

In this chapter we aim to develop an algorithm for the efficient computation of approximations to the

eigenvalues λ(µ) of (5.1) for parameters µ inside some curve Iµ ⊂ Ωµ in the complex plane. Without loss

of generality, we may set Iµ = (0, 1), since the results for Iµ = (0, 1) can be transferred to arbitrary real-

valued intervals and, with the help of a suitable reparameterization, to arbitrary curves in the complex

plane.
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5 Adaptive path following for parameterized, nonlinear eigenvalue problems

In Chapter 4 we argued that the eigenvalues ω2(k) of the linear eigenvalue problem (4.1) in variational

formulation related to PhC and PhC waveguide band structure calculations can be ordered such that the

so-called dispersion curves k ωj(k) and their corresponding eigenmodes are analytic for all k ∈ B

Let us assume for now that the same is true for the eigenvalue problem (5.1).

Assumption 5.1. The eigenvalues λj(µ), j ∈ N, of (5.1) can be ordered such that the functions

µ λj(µ), (5.2)

the so-called eigenpaths, are analytic in Iµ, and the corresponding right eigenvectors uj(µ) = u(λj(µ), µ)

are differentiable with respect to µ up to any order.

Remark 5.2. Again we note that from the theory presented in [ACL92, ACL93] we know that the

eigenvalue λj and its associated right and left eigenvectors uj and vj are analytic in a neighbourhood of

µ ∈ Iµ if the eigenvalue λj(µ) has multiplicity one, which is equivalent to

(i) N(λj , µ) has rank n− 1, and

(ii) vH
j (µ)Nλ(λj , µ)uj(µ) /= 0.

Thus, if conditions (i) and (ii) are satisfied for all µ ∈ Ω, Assumption 5.1 is fulfilled.

In the sequel we shall propose a new adaptive eigenpath following algorithm for the nonlinear eigen-

value problem (5.1). The algorithm relies on Assumption 5.1 that the eigenpaths (5.2) are analytic and

hence, a Taylor expansion of these eigenpaths is possible. This Taylor expansion can be understood as

eigenvalue continuation technique. The homotopy method, see for example [LG95] for Hermitian prob-

lems and [LKK97] for non-Hermitian problems, is a well established technique to follow eigenpaths. The

objective of the homotopy method, however, differs from our problem. The homotopy method aims to

compute the eigenvalues of a matrix M1, say, that cannot by computed directly, either because its size is

prohibitively large or it does not satisfy certain properties that are beneficial for the numerical computa-

tions of its eigenvalues, e. g. self-adjointness or linearity. The idea is to introduce an auxiliary matrix M0

of the same size like the original matrix M1, whose eigenvalues are either known or can be computed with

significantly smaller effort than the eigenvalues of M1. Then one introduces the matrix-valued function

M(t) = (1− t)M0 + tM1, 0 ≤ t ≤ 1,

and one follows the eigenvalues of M(t) from the known eigenvalues at t = 0 to the desired eigenvalues

at t = 1. For our problem (5.1), however, we assume that the effort of the eigenvalue computation does

not differ significantly for different values of the parameter µ. Hence, we do not aim to depart from some

value of µ = µ0 where the eigenvalues are known in order to get to some other state µ /= µ0. Instead,

we are interested in the eigenpath itself, as for example in our context of PhC and PhC waveguide

band structure computations, where the eigenpaths correspond to dispersion curves which form the band

structure. Apart from the different objective of the homotopy method, our procedure has a considerable

advantage. The Taylor expansion can be computed up to any order, since closed formulas for the eigenpath

derivatives up to any order are available, while the homotopy method is, in general, a first order method,

that does not take higher derivatives into account. A key feature of our method is to adaptively refine

the step size of the path following. This is done by estimating the remainder of the Taylor expansion.

For the homotopy method for non-Hermitian problems, Carstensen and coworkers [CGMM11] proposed

an adaptive selection of the step size, where they also control the refinement of the FE computation.

Such an adaptive FE refinement is is not needed for the application that we consider in this thesis, i. e.

band structure calculations for PhCs and PhC waveguides with perfectly circular holes/rods, for example

see the sketched geometries in Figures 2.6 and 2.8, since p-FEM on coarse meshes, that perfectly resolve

the circular holes/rods, can be expected to converge exponentially, see Section 2.5. However, note that

all ideas, that we will present in the following, can also be applied to hp-adaptive FE discretizations,

which become crucial, for example, if the hols/rods of the PhC have corners, and hence, the eigenmodes

show corner singularities that need to be resolved adaptively. In this case, it proves useful to stick to a

FE refinement for the computation of all eigenmode derivatives associated to an eigenvalue, as we shall

discuss later in Remark 5.4.
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5.2 Derivatives of eigenpaths

Before we shall present the Taylor expansion and the adaptive algorithm, we will derive the formulas

for the eigenpath derivatives in the next section.

5.2 Derivatives of eigenpaths

Due to Assumption 5.1 that the eigenpaths (5.2) are analytic in Iµ and the associated right eigenvectors

are differentiable up to any order, we can revisit all steps done in Chapter 4, where we derived formulas

for the group velocity and all higher derivatives of the dispersion curves. Formulas for the first and second

derivative of eigenpaths were already presented by Lancaster [Lan64]. Formulas for the derivatives of

eigenpaths of arbitrary order were developed in [Jan94]. While details for the computation of derivatives

especially of higher order are rare in [Jan94], we aim to present the computational procedure in full detail.

Moreover, our approach allows the eigenvalues in principle to have multiplicity larger than one, which is

explicitly excluded in [Jan94]. If the eigenvalue multiplicity is one, the left and right eigenvectors of (5.1)

are uniquely defined up to a scalar constant. If the multiplicity is larger than one, this is not the case

as any linear combination of two eigenvectors associated to the same eigenvalue is also an eigenvector.

For simplicity and in accordance to the application under consideration, i. e. PhC and PhC waveguide

band structure calculations, we assume that the eigenvalue multiplicity is one almost everywhere in Iµ.

In situations where this assumption does not hold true we refer to the procedures presented in [AT98,

QACT13] for symmetric, linear and quadratic eigenvalue problems, and to the procedure in [AMM07]

for general, complex linear eigenvalue problems. If the eigenvalue problem, however, is nonlinear there

does not exist — to the best of our knowledge — a procedure of how to uniquely identify eigenvectors

of multiple eigenvalues. Recall from Remark 4.2 that we claim that the eigenvectors at crossings of

dispersion curves can be determined as the limits of the eigenvectors in the vicinity of the crossing.

5.2.1 First derivative of eigenpaths

We start by differentiating (5.1a) with respect to µ which yields(
λ′j(µ)Nλ(λj , µ) +Nµ(λj , µ)

)
uj(µ) +N(λj , µ)dµuj(µ) = 0, (5.3)

where Nλ and Nµ are the partial derivatives of N with respect to λ and µ, and dµuj is the total

derivative of uj with respect to µ. Multiplying (5.3) from the left with the left eigenvector vj(µ) and

considering (5.1b), we arrive at

λ′j(µ)v
H
j (µ)Nλ(λj , µ)uj(µ) + vH

j (µ)Nµ(λj , µ)uj(µ) = 0.

Thus, we obtain a formula for the derivative λ′j(µ) of the eigenvalue λj(µ) with respect to the parameter

µ. It reads

λ′j(µ) = −
vH
j (µ)Nµ(λj , µ)uj(µ)

vH
j (µ)Nλ(λj , µ)uj(µ)

(5.4)

and is the abstract, discrete analogue of the group velocity formula (4.5) for nonlinear eigenvalue problems.

Remark 5.3. From the formula (5.4) for the derivative λ′j(µ) of the eigenvalue λj(µ) with respect to µ

we can see that

vH
j (µ)Nλ(λj , µ)uj(µ) /= 0

is a necessary condition for the analyticity of the eigenpath µ λj(µ), i. e. a necessary condition for

Assumption 5.1 to be satisfied.

The matrix that corresponds to Nλ in the context of PhC and PhC waveguide band structure calcu-

lations, in the latter case when using the supercell approach, is the mass matrix, i. e. the matrix that is

related to the sesquilinear form

mβ
C(u, v) =

∫
C

βuv dx,

multiplied with (−2λ), where λ denotes the frequency ω. Since the mass matrix is positive definite, the

matrix Nλ is negative definite in this context as long as the frequency ω is strictly positive, which is by

definition the case, see Section 2.1, and hence, the matrix Nλ fulfills the condition in Remark 5.3.
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5 Adaptive path following for parameterized, nonlinear eigenvalue problems

5.2.2 Higher derivatives of eigenpaths

In order to extend this procedure to higher orders of the derivatives of λj(µ) we have to compute an

auxiliary vector u
(1)
j (µ), that is associated to the total derivative dµuj(µ) of the eigenvector uj(µ) cor-

responding to λj(µ) in the sense that u
(1)
j (µ) = dµuj(µ) + cuj(µ), c ∈ C, and hence, N(λj , µ)u

(1)
j (µ) =

N(λj , µ)dµuj(µ).

Since the derivative λ′j(µ) of the eigenvalue does not depend on the derivative dµuj(µ) of the eigen-

vector, we can plug (5.4) into (5.3) and obtain the source problem

N(λj , µ)dµuj(µ) = f (1)(µ) (5.5)

with the vector of the right hand side

f (1)(µ) = −
(
λ′j(µ)Nλ(λj , µ) +Nµ(λj , µ)

)
uj(µ). (5.6)

Similarly to Chapter 4 we have to note that (5.5) does not admit a unique solution, since N(λj , µ) is

singular. However, additionally imposing orthogonality conditions with respect to some inner product

to all linearly independent right eigenvectors of N(λj , µ) corresponding to the eigenvalue λj(µ), we can

construct a linear system that is well-posed. As mentioned above, let us assume that λj(µ) is a simple

eigenvalue, i. e. there is only one linearly independent right eigenvector uj(µ) corresponding to λj(µ).

Then the linear system (
N(λj , µ) Quj(µ)

uH
j (µ)Q

)(
u
(1)
j (µ)

ν

)
=

(
f (1)(µ)

0

)
, (5.7)

with some symmetric, positive definite matrix Q ∈ RN×N , has a unique solution, where ν ∈ C is a scalar

Lagrange multiplier and u
(1)
j (µ) ∈ CN denotes a particular solution of (5.5), which — in general — cannot

be regarded as the derivative of the right eigenvector. We refer to the discussion in Section 4.2.2 why

the choice of the orthogonality condition is arbitrary and hence, it is sufficient to compute a particular

solution of (5.5) instead of properly defining and computing the derivative of the right eigenvector with

respect to the quasi-momentum.

If the eigenvalue λj(µ) has multiplicity larger than one, we have to impose orthogonality conditions

to an appropriate basis of the eigenspace and carefully select the right eigenvector uj(µ). As mentioned

above, we may use the procedure sketched in [AMM07] if the eigenvalue problem is linear, or as presented

in [AT98, QACT13] if the problem is symmetric and linear or symmetric and quadratic, respectively. For

general, nonlinear problems no such procedure exists, but for the problem under consideration, i. e.

PhC and PhC waveguide band structures, we claimed in Remark 4.2 that we can take the limits of the

eigenvectors in the vicinity of the crossing of dispersion curves.

Now we repeat these steps, i. e. we differentiate (5.3) with respect to µ, which yields(
λ′′j (µ)Nλ(λj , µ) + (λ′j(µ))

2Nλλ(λj , µ) + λ′j(µ)Nµλ(λj , µ) +Nµµ(λj , µ)
)
uj(µ)

+ 2
(
λ′j(µ)Nλ(λj , µ) +Nµ(λj , µ)

)
dµuj(µ) +N(λj , µ)d

2
µuj(µ) = 0, (5.8)

where we use the short notations Nλλ, Nµλ, Nµµ for the second, partial derivatives ∂2

∂λ2N, ∂2

∂µ∂λN, ∂2

∂µ2N

of N, and d2µuj(µ) denotes the second, total derivative of uj(µ) with respect to µ. We multiply (5.8) from

the left with the left eigenvector vj(µ) of (5.1b) and obtain a formula for the second derivative λ′′j (µ) of

the eigenvalue λj(µ) of (5.1) with respect to the parameter µ

λ′′j (µ) = −
vH
j (µ)

(
(λ′j(µ))

2Nλλ(λj , µ) + λ′j(µ)Nµλ(λj , µ) +Nµµ(λj , µ)
)
uj(µ)

vH
j (µ)Nλ(λj , µ)uj(µ)

−
vH
j (µ)

(
λ′j(µ)Nλ(λj , µ) +Nµ(λj , µ)

)
u
(1)
j (µ)

vH
j (µ)Nλ(λj , µ)uj(µ)

, (5.9)
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5.2 Derivatives of eigenpaths

where we could replace dµuj(µ) by u
(1)
j (µ) since u

(1)
j (µ) = dµuj(µ) + cuj(µ), c ∈ C, and

vH
j (µ)

(
λ′j(µ)Nλ(λj , µ) +Nµ(λj , µ)

)
uj(µ) = 0

due to (5.4).

Analogously to (5.7), we can compute a particular solution of (5.8), the auxiliary vector u
(2)
j (µ), that

is associated with the second µ-derivative d2µuj(µ) of the eigenvector uj(µ) corresponding to λj(µ). We

obtain the linear system

(
N(λj , µ) Quj(µ)

uH
j (µ)Q

)(
u
(2)
j (µ)

ν

)
=

(
f (2)(µ)

0

)
, (5.10)

with the vector of the right hand side

f (2)(µ) = −
(
λ′′j (µ)Nλ(λj , µ) + (λ′j(µ))

2Nλλ(λj , µ) + λ′j(µ)Nµλ(λj , µ) +Nµµ(λj , µ)
)
uj(µ)

− 2
(
λ′j(µ)Nλ(λj , µ) +Nµ(λj , µ)

)
u
(1)
j (µ). (5.11)

Remark 5.4. The matrices of the linear problems (5.7) and (5.10) are identical, and hence, matrix

factorizations computed to solve (5.7) can be reused to solve (5.10). This shows, that it is beneficial

to stick to a FE refinement for the computation of the eigenmode uj, the auxiliary vectors u
(1)
j and

u
(2)
j associated to the first and second eigenmode derivatives, and, as we shall see in the following, all

subsequent auxiliary vectors u
(n)
j , n ≥ 3, associated to higher order eigenmode derivatives.

This procedure can be repeated successively to find formulas for the derivatives of the eigenvalue λj(µ)

with respect to the parameter µ up to any order. In the PhC context, we studied in Chapter 4, the

matrix N has polynomial dependences on the parameter µ = k and eigenvalue λ = ω of order two, which

allows for straightforward generalizations of the formulas for the derivatives up to any order. However, in

the general, discrete case, we investigate in this chapter, the formulas are not that straightforward as one

has to use a multivariant version [CS96] of Faà di Bruno’s formula [FdB57]. Taking the n-th derivative

of the eigenvalue problem (5.1) with respect to the parameter µ yields

dnµ

(
N(λj , µ)uj(µ)

)
=

n∑
m=0

(
n

m

)
dn−m
µ N(λj , µ)d

m
µ uj(µ) = 0,

i. e.

N(λj , µ)d
n
µuj(µ) = f (n)(µ) (5.12)

where

f (n)(µ) = −
n−1∑
m=0

(
n

m

)
dn−m
µ N(λj , µ)u

(m)
j (µ) (5.13)

with the auxiliary vectors u
(m)
j (µ), 1 ≤ m ≤ n − 1, associated to the eigenvector derivatives dmµ uj(µ),

and with u
(0)
j (µ) = uj(µ).

According to the multivariant version of Faà di Bruno’s formula presented in [CS96], the total derivative

dnµN(λj , µ) can be expanded in the form

dnµN(λj , µ) =
∑

m1,m2∈N0,
1≤m1+m2≤n

∂m1+m2

∂λm1 ∂µm2
N(λj , µ)

∑
N(n,m1,m2)

n!
n∏

i=1

(
∂ℓiµ λ

)q1,i (
∂ℓiµ µ

)q2,i
q1,i! q2,i! (ℓi!)q1,i+q2,i

, (5.14)
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5 Adaptive path following for parameterized, nonlinear eigenvalue problems

where by convention 0! = 00 = 1, and the set N(n,m1,m2) reads

N(n,m1,m2) =

{
(q1,1, . . . , q1,n, q2,1, . . . , q2,n, ℓ1, . . . , ℓn) ∈ N3n

0

⏐⏐⏐ ∃s ∈ {1, . . . , n} such that

q1,i = q2,i = ℓi = 0 ∀i ∈ {1, . . . , n− s},
q1,i + q2,i > 0 ∀i ∈ {n− s+ 1, . . . , n},
0 < ℓn−s+1 < . . . < ℓn, and

n∑
i=1

q1,i = m1,
n∑

i=1

q2,i = m2,
n∑

i=1

(q1,i + q2,i)ℓi = n

}
.

Due to the term
(
∂ℓiµ µ

)q2,i
in (5.14), that takes the form

(
∂ℓiµ µ

)q2,i
=

{
1, if ℓi = 1 or if ℓi > 1 and q2,i = 0,

0, otherwise,

we can simplify (5.14) to

dnµN(λj , µ) =
∑

m1,m2∈N0,
1≤m1+m2≤n

∂m1+m2

∂λm1 ∂µm2
N(λj , µ)

∑
Ñ(n,m1,m2)

n!
n∏

i=1

(
∂ℓiµ λj

)q1,i
q1,i! q2,i! (ℓi!)q1,i+q2,i

(5.15)

with the set

Ñ(n,m1,m2) =

{
(q1,1, . . . , q1,n, q2,1, . . . , q2,n, ℓ1, . . . , ℓn) ∈ N3n

0

⏐⏐⏐ ∃s ∈ {1, . . . , n} such that

q1,i = q2,i = ℓi = 0 ∀i ∈ {1, . . . , n− s},
q1,i > 0 and q2,i = 0 ∀i ∈ {n− s+ 2, . . . , n},
q2,n−s+1 = m2,

0 < ℓn−s+1 < . . . < ℓn, where ℓn−s+1 = 1 if m2 > 0, and

n∑
i=1

q1,i = m1,
n∑

i=1

q1,iℓi = n−m2

}
.

(5.16)

Now we multiply (5.12) with vH
j (µ) from the left and obtain

n−1∑
m=0

(
n

m

)
vH
j (µ)d

n−m
µ N(λj , µ)d

m
µ uj(µ) = 0.

Using the expansion (5.15), we find that the n-th derivative ∂nµλj(µ) of the eigenvalue λj(µ) with respect

to µ can be expressed as

∂nµλj(µ) = −
(
vH
j (µ)Nλ(λj , µ)uj(µ)

)−1
(

n−1∑
m=1

(
n

m

)
vH
j (µ)d

n−m
µ N(λj , µ)u

(m)
j (µ)

+
∑

m1,m2∈N0,
1≤m1+m2≤n

vH
j (µ)

∂m1+m2

∂λm1 ∂µm2
N(λj , µ)uj(µ)

∑
˜̃
N(n,m1,m2)

n!
n∏

i=1

(
∂ℓiµ λj

)q1,i
q1,i! q2,i! (ℓi!)q1,i+q2,i

)
(5.17)
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with the set

˜̃
N(n,m1,m2) =

{
(q1,1, . . . , q1,n, q2,1, . . . , q2,n, ℓ1, . . . , ℓn) ∈ N3n

0

⏐⏐⏐ ∃s ∈ {1, . . . , n} such that

q1,i = q2,i = ℓi = 0 ∀i ∈ {1, . . . , n− s},
q1,i > 0 and q2,i = 0 ∀i ∈ {n− s+ 2, . . . , n},
q2,n−s+1 = m2,

0 < ℓn−s+1 < . . . < ℓn < n, where ℓn−s+1 = 1 if m2 > 0, and

n∑
i=1

q1,i = m1,
n∑

i=1

q1,iℓi = n−m2

}
.

Note that we replaced the derivatives dmµ uj(µ) of the right eigenvector uj(µ) in (5.17) by the auxiliary

vectors u
(m)
j (µ).

Similarly to the linear systems (5.7) and (5.10), we add an orthogonality condition to the ill-posed

problem (5.12), and finally, we can compute the auxiliary vector u
(n)
j (µ) associated to the n-th derivative

dnµuj(µ) with respect to µ of the eigenvector uj(µ) corresponding to λj(µ) by solving(
N(λj , µ) Quj(µ)

uH
j (µ)Q

)(
u
(n)
j (µ)

ν

)
=

(
f (n)(µ)

0

)
, (5.18)

where the vector f (n)(µ) is given in (5.13). Note that the matrix on the left hand side of (5.18) is identical

for all orders n ∈ N, and hence, matrix factorizations, computed for n = 1, can be reused for all orders

n > 1, cf. Remark 5.4.

The implementation of the multivariant version of Faà di Bruno’s formula in (5.15) and (5.17) is very

technical. Therefore, we shall introduce a recursive algorithm as an alternative to compute the total

derivative dnkN. Note that we can write

dnµN(λj , µ) = dn−1
µ

(
λ′j(µ)Nλ(λj , µ) +Nµ(λj , µ)

)
= dn−1

µ Nµ(λj , µ) +
n−1∑
m=0

(
n− 1

m

)
∂m+1
µ λj(µ) d

n−m−1
µ Nλ(λj , µ) (5.19)

for all n ∈ N, which motivates the recursive algorithm sketched in Algorithm 5.1.

Apart from this algorithm, Eq. (5.19) also shows that we can write the n-th derivative ∂nµλj(µ) of

the eigenvalue λj(µ) with respect to µ, that is presented in (5.17) using the multivariant Faà di Bruno

formula, in an alternative way, i. e.

∂nµλj(µ) = −
(
vH
j (µ)Nλ(λj , µ)uj(µ)

)−1
(

n−1∑
m=1

(
n

m

)
vH
j (µ)d

n−m
µ N(λj , µ)u

(m)
j (µ)

+ vH
j (µ)

(
dn−1
µ Nµ(λj , µ) +

n−2∑
m=0

(
n− 1

m

)
∂m+1
µ λj(µ) d

n−m−1
µ Nλ(λj , µ)

)
uj(µ)

)
, (5.20)

where the total derivatives dmµ N, dmµ Nλ and dmµ Nµ, for 0 ≤ m ≤ n − 1, can be evaluated recursively

using Algorithm 5.1.

Remark 5.5. If the matrix N is Hermitian for all µ ∈ Iµ and λ ∈ Ωλ, the left eigenvector vj is identical

to the right eigenvector uj and hence, we do not need to solve (5.1b) for the left eigenvector.

5.2.3 Discretization of the formulas for the dispersion curve derivatives

Before we proceed with the Taylor expansion of eigenpaths where we will employ the eigenpath deriva-

tives (5.20), we want to be present briefly the discrete formulas for the dispersion curve derivatives which
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5 Adaptive path following for parameterized, nonlinear eigenvalue problems

Algorithm 5.1. Recursion algorithm for the computation of the total derivative dnkN(λj , µ), n ∈ N0.

Requirements: Let the partial derivatives of N(λj , µ) with respect to λ and µ be stored in a triangular

array pN with entries pN(m, ℓ) = ∂m+ℓ

∂λm∂µℓN(λj , µ) for all m, ℓ ∈ N0 with m+ ℓ ≤ n. Furthermore, let

the derivatives of λj(µ) with respect to µ be given for all orders m = 0, . . . , n.

1: function recursion(n, pN, ∂0µλj , . . . , ∂
n
µλj)

2: if n = 0 then

3: return pN(0, 0)

4: else if n = 1 then

5: return ∂µλj · pN(1, 0) + pN(0, 1)

6: else

7: tN =recursion(n− 1, pN(0 : n− 1, 1 : n), ∂0µλj , . . . , ∂
n−1
µ λj)

8: for m = 0, . . . , n− 1 do

9: tN +=
(
n−1
m

)
∂m+1
µ λj · recursion(n− 1, pN(1 : n, 0 : n− 1), ∂0µλj , . . . , ∂

n−1
µ λj)

10: end for

11: return tN

12: end if

13: end function

we introduced in Chapter 4 in variational sense. These discrete formulas will later be used in this chapter

for numerical applications of the proposed Taylor expansion and adaptive algorithm.

Using the FE discretizations of the 2d PhC eigenvalue problem and the supercell approximation to the

eigenvalue problem in 2d PhC waveguides, which we introduced in Eqs. (2.28) and (2.29), we find that

the discrete version of the group velocity formula (4.5) reads

ω′
j(k) =

uH
j (k)g

(1)(k)

uH
j (k)h(k)

, (5.21)

with

g(1)(k) = g(1)(k,uj(k)) =
(
2kMα

C +Cα,1
C

)
uj(k)

and

h(k) = h(k,uj(k)) = 2ωj(k)M
β
Cuj(k),

where uj(k) denotes an eigenvector related to the eigenvalue ωj(k) of the PhC problem (2.28) with k1 = k

and k2 = 0, or the supercell problem (2.29). Then we compute the auxiliary vector u
(1)
j (k) associated to

the first derivative of the eigenvector uj(k) with respect to k by solving(
Aα

C + kCα,1
C + k2Mα

C − ω2Mβ
C (A1

C +M1
C)uj(k)

uH
j (k)(A

1
C +M1

C)

)(
u
(1)
j (k)

ν

)
=

(
ω′
j(k)h(k)− g(1)(k)

0

)
,

which is the discretization of the mixed variational formulation (4.7). The formula (5.21) can be extended

to higher orders without the need of the multivariant version (5.15) of Faà di Bruno’s formula or the

recursion formula (5.19) and Algorithm 5.1, since the eigenvalue problems (2.28) and (2.29) only show a

second-order polynomial dependence on ω and k. In accordance to the formula (4.9) in variational sense,

we find

ω
(n)
j (k) =

uH
j (k)g

(n)(k)

uH
j (k)h(k)

(5.22)
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with

g(n)(k) = g(n)(k,u
(0)
j (k), . . . ,u

(n−1)
j (k))

= n(n− 1)Mα
Cu

(n−2)
j (k) + 2nkMα

Cu
(n−1)
j (k) + nCα,1

C u
(n−1)
j (k)

−
n−1∑
p=1

n−p∑
q=0

n!

p!q!(n− p− q)!
ω
(n−p−q)
j (k)ω

(q)
j (k)Mβ

Cu
(p)
j (k)

−
n−1∑
q=1

(
n

q

)
ω
(n−q)
j (k)ω

(q)
j (k)Mβ

C(k),

(5.23)

where u
(0)
j (k) = uj(k). Finally, the auxiliary vector u

(n)
j (k) associated to the n-th derivative of the

eigenvector uj(k) corresponding to ωj(k) is obtained by solving(
Aα

C + kCα,1
C + k2Mα

C − ω2Mβ
C (A1

C +M1
C)uj(k)

uH
j (k)(A

1
C +M1

C)

)(
u
(n)
j (k)

ν

)
=

(
ω
(n)
j (k)h(k)− g(n)(k)

0

)
,

which is the discrete version of (4.10).

5.3 Taylor expansion of eigenpaths

In this section we explain and demonstrate how to employ the derivatives ∂nµλj(µ), n ∈ N, of the eigenvalue
λj(µ) in a Taylor expansion of the eigenpath µ λj(µ).

5.3.1 Taylor theorem

Since the eigenpath µ λj(µ) is analytic we can apply the Taylor theorem, and hence, for any µ0 ∈ Iµ
and n ∈ N

λj(µ) =
n∑

i=0

(µ− µ0)
i

i!
∂iµλj(µ0) +Rn(µ), µ ∈ Iµ, (5.24)

with the remainder

Rn(µ) =
1

n!

∫ µ

µ0

(µ− µ̃)n∂n+1
µ λj(µ̃) dµ̃, (5.25)

see for example [Rud64].

The expansion (5.24) can be used to approximate the eigenpath

λj(µ) ≈
n∑

m=0

(µ− µ0)
m

m!
∂mµ λj(µ0)

where the nonlinear eigenvalue problem (5.1) only has to be solved at µ = µ0 for λj and uj , and the

derivatives ∂nµλj(µ0) have to be computed according to the procedure described in the previous section.

Taylor expansions of analytic functions are known to converge in a vicinity of µ0 but not necessarily in

the whole interval Iµ.

Before we will present numerical results of the Taylor expansion of eigenpaths, we want to derive an

estimate of the remainder Rn. Without loss of generality let µ > µ0. According to the mean value

theorem for integration, there exists µ̂ ∈ [µ0, µ] such that the remainder satisfies

Rn(µ) =
1

n!
∂n+1
µ λj(µ̂)

∫ µ

µ0

(µ− µ̃)n dµ̃ =
(µ− µ0)

n+1

(n+ 1)!
∂n+1
µ λj(µ̂),

which is known as the Lagrange form of the remainder. Clearly,

RUB
n (µ) =

(µ− µ0)
n+1

(n+ 1)!
max

µ̃∈[µ0,µ]
∂n+1
µ λj(µ̃)
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is an upper bound for Rn(µ), while

RLB
n (µ) =

(µ− µ0)
n+1

(n+ 1)!
min

µ̃∈[µ0,µ]
∂n+1
µ λj(µ̃)

is a lower bound for Rn(µ). Hence, assuming small variations of ∂n+1
µ λj in [µ0, µ], a simple, non-rigorous

estimate for the remainder Rn(µ) is given by

Rest
n (µ) =

(µ− µ0)
n+1

(n+ 1)!
∂n+1
µ λj(µ0). (5.26)

5.3.2 Numerical results — Taylor expansion of dispersion curves

For illustration we will now show numerical results for Example 1, i. e. we consider the eigenvalue prob-

lem (2.13) of finding TM modes in a 2d PhC with square lattice. Assuming a fixed second component

k2 = 0 of the quasi-momentum k ∈ B2d, the eigenvalue problem (2.13) of finding modes in 2d PhCs is

linear in ω2(k1), where the first component k1 ∈ B = [− π
a1
, π
a1
] of the quasi-momentum k plays the role of

a real-valued parameter. For simplicity of notation let us omit the index “1” in the first component k1 of

the quasi-momentum k. Then we recall from Eq. (2.29) that the discrete form of this eigenvalue problem

reads: given k ∈ B = [− π
a1
, π
a1
] find eigenvalues ω2(k) ∈ R+ and associated eigenmodes u(k) ∈ CN(C)\{0}

such that

NTM
C (ω, k)u = 0, (5.27)

with

NTM
C : (ω, k) Aα=1

C + kCα=1,1
C + k2Mα=1

C − ω2Mβ=ε
C . (5.28)

Note that choosing the second component k2 /= 0 of the 2d quasi-momentum k ∈ B2d in the PhC

eigenvalue problem (2.13), will only yield the additional matrix k2C
α,2
C in (5.28).

Recall that in the context of PhC band structure calculations the eigenpaths are called dispersion

curves. Formulas for its first derivative, i. e. the group velocity, and its higher derivatives in variational

formulation were already presented in Chapter 4. In particular, we want to point out that the second-order

polynomial dependence of the matrix-valued function NTM
C (ω, k) on the parameter k and the eigenvalue

ω leads to a closed formula (5.22) for the n-th derivative ω(n)(k) of the dispersion curve ω(k) that does

not involve the complicated multivariant version of Faà di Bruno’s formula as the general formula (5.17)

for the n-th eigenpath derivative does.

We study the TM mode in the Γ-X-interval B̂ = [0, π
a1
] of the irreducible Brillouin zone B̂2d, and

compare the dispersion relation ω(k) at 40 values of k with the results of the Taylor expansion around

the centre k0 = π
2a1

of the Γ-X-interval B̂.

In Figure 5.1 we present a comparison of the Taylor expansion of orders n = 3 and n = 20 with the

“exact” sixth and seventh dispersion curve. We can see from Figure 5.1a that already a Taylor expansion

of order n = 3 provides a good approximation of the sixth dispersion curve (red line). For the presented

level of detail, we can only see a difference of the Taylor expansion and the exact curve near k = π
a1
. The

seventh dispersion curve (blue line) is also well approximated in a vicinity of the centre k0 = π
2a1

of the

expansion but the error increases towards the borders of B̂, i. e. where |k − k0| becomes large.

However, increasing the order n of the Taylor expansion does not lead to lower error levels near the

end points as can be seen in Figure 5.1b where the Taylor expansion of order n = 20 is shown. While

the approximation error of the sixth dispersion curve decreases, the approximation error of the seventh

dispersion curve becomes even larger near k = 0 and k = π
a1
. This can be explained by analysing the

behaviour of the remainder Rn. But before we do so, we present the convergence of the Taylor expansion.

In Figure 5.2 the maximum errors over a set of 40 equidistant values of k ∈ B̂ of the Taylor expansion of

the sixth and seventh dispersion curves are plotted with respect to the order n of the Taylor expansion.

While we observe exponential convergence of the error of the sixth dispersion curve, the error of the

seventh dispersion curve diverges when increasing the order n.

Now let us study the remainder Rn(k) in order to explain the behaviour of the Taylor expansion of the

seventh dispersion curve in Figure 5.1 when increasing the order n of the Taylor expansion. In Figure 5.3
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Figure 5.1: Sixth (red) and seventh (blue) dispersion curves of Example 1. Taylor expansion (solid lines)

of order n = 3 (a) and n = 20 (b) around k0 = π
2a1

(crosses) compared to “exact” dispersion curves

(dotted lines) evaluated at 40 equidistant values of k.

the estimate Rest
n (k) is presented for the sixth and seventh dispersion curve of the example introduced

above. The estimate is evaluated at k = π
a1
, i. e. where the distance |k − k0| is maximal. We can see

that the estimate Rest
n (k) of the sixth dispersion curve decreases with the order n, which corresponds to

the decrease of the actual maximum error presented in Figure 5.2. The estimate Rest
n (k) of the seventh

dispersion curve, however, increases with the order n, which explains the increasing error of the Taylor

expansion, that was observed in Figure 5.1. In other words, the derivatives ω(n) increase faster with n

than the ratio n!
|k−k0|n . This means that we have to restrict the computation of the Taylor expansion

to a vicinity of k0 such that |k − k0|n is sufficiently small and hence, the ratio |k−k0|n+1

(n+1)! dominates the

estimate Rest
n (k). This fact motivates the definition of an interval in which the estimate of the remainder

is bounded by some desired error tolerance. We will define such an interval in the following section where

it will be used to develop an adaptive algorithm for the approximation of eigenpaths.

The quality of the non-rigorous estimate Rest
n (k) of the remainder can be seen from a comparison of

Figures 5.2 and 5.3. We can see that the maximum error in Figure 5.2 behaves very similar to the

estimate of the remainder in Figure 5.3. In fact the effectivity of the estimate, i. e. the ratio of estimate

and maximum error, varies between 0.21 (n = 1) and 1.31 (n = 6) for the sixth dispersion curve, and

between 0.02 (n = 13) and 2.48 (n = 17) for the seventh dispersion curve, and is hence, reasonably close

to one.

5.4 An adaptive algorithm for eigenpath following

With the help of the Taylor expansion of eigenpaths and the estimation of its remainder, we can define

an adaptive approximation of eigenpaths by a path following algorithm. For the application under

consideration in this thesis, i. e. PhC band structure calculations, Spence and Poulton proposed a path

following algorithm in [SP05]. They also employ a Taylor expansion of the dispersion curves. However,

their algorithm is not adaptive as they use a fixed step size.

5.4.1 Step size control

A key ingredient is the control of the step size. For this we shall use the non-rigorous estimate (5.26) of

the remainder (5.25) of the Taylor expansion.

For example, if we want the error of the Taylor expansion of λj(µ) around some µ0 ∈ Iµ to be (roughly)

smaller than some error tolerance εsteptol we restrict our expansion to the domain [µ0 − hj,n(µ0), µ0 +
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hj,n(µ0)], where the step size hj,n(µ0) is obtained from

hj,n(µ0) =

(
εsteptol

(n+ 1)!

|∂n+1
µ λj(µ0)|

) 1
n+1

. (5.29)

With the help of the step size (5.29), we propose a simple algorithm for the adaptive computation of an

approximation to an eigenpath λj(µ), µ ∈ Iµ, see Algorithm 5.2, i. e. we start by choosing an order n of

the Taylor expansion, an error tolerance εsteptol for the step size, and a start start value µ(0) ∈ Iµ, e. g. the

centre of the interval Iµ, i. e. µ
(0) = 1

2 . Then we compute a set of eigenvalues λj(µ
(0)), j = 1, . . . , J , that,

e. g. lie in a desired interval. In the case of PhC waveguide band structure calculations this would be, for

example, a band gap. For each eigenvalue λj(µ
(0)) we proceed as follows: We determine the acceptable

step size hj,n(µ
(0)) according to (5.29). If hj,n(µ

(0)) ≥ 1
2 we approximate λj(µ) in Iµ by its Taylor

expansion around µ(0) = 1
2 . Otherwise, we set µ(−1) = µ(0)−hj,n(µ(0)) and µ(+1) = µ(0)+hj,n(µ

(0)), and

compute the eigenvalues λj(µ
(−1)) and λj(µ

(+1)) which are closest to their estimation that is obtained

by a Taylor expansion of order n around µ(0) at µ(−1) and µ(+1), respectively. Then we compute the

acceptable step sizes hj,n(µ
(±1)). We continue with this procedure until µ(−p) − hj,n(µ

(−p)) ≤ 0 and

µ(+q) + hj,n(µ
(+q)) ≥ 1 for some p, q ∈ N.

Note that using an iterative scheme to compute the eigenvalues, it cannot be guaranteed that the

eigenvalue, the iterative scheme converges to, is the eigenvalue closest to the start value of the iterative

scheme. Thus, lines 12 and 21 of Algorithm 5.2 have to be changed when using an iterative eigenvalue

solver. In this case we compute the eigenvalue by choosing the expected location of the eigenvalue as

start value of the iterative scheme, having in mind that the result of the iterative solver might not be the

closest eigenvalue.

We take the values λj and their derivatives ∂iµλj , i = 1, . . . , n, at µ(ℓ), ℓ = −p, . . . , q and compute an

approximation to the dispersion curve using, e. g. an Hermite interpolation [QSS07] or a weighted Taylor

expansion where we approximate

λj(µ) ≈
µ(ℓ+1) − µ

µ(ℓ+1) − µ(ℓ)

n∑
i=0

(µ− µ(ℓ))i

i!
∂iµλj(µ

(ℓ)) +
µ− µ(ℓ)

µ(ℓ+1) − µ(ℓ)

n∑
i=0

(µ− µ(ℓ+1))i

i!
∂iµλj(µ

(ℓ+1)), (5.30)

if µ ∈ [µ(ℓ), µ(ℓ+1)], ℓ = −p, . . . , q − 1, and in the intervals (0, µ(−p)] and [µ(+q), 1) we take the Taylor

expansion directly. The former approach has the advantage that it delivers a smooth curve but it yields
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Algorithm 5.2. Adaptive path following algorithm.

1: Fix the order n ∈ N of the expansion, the error tolerance εsteptol ≪ 1 and the start value µ(0) ∈ Iµ.

2: Compute a set of eigenvalues λj(µ
(0)), j = 1, . . . , J .

3: for j = 1, . . . , J do

4: Compute the derivatives ∂iµλj(µ
(0)), i = 1, . . . , n+ 1.

5: Compute the acceptable step size hj,n(µ
(0)).

6: Set µ
(0)
j = µ(0).

7: Set p = 0.

8: while µ
(−p)
j − hj,n(µ

(−p)
j ) > min Iµ do

9: Set p = p+ 1.

10: Set µ
(−p)
j = µ

(−p+1)
j − hj,n(µ

(−p+1)
j ).

11: Compute the approximative eigenvalue λ̃j(µ
(−p)
j ) at µ

(−p)
j using Taylor expansion of order n

around µ
(−p+1)
j .

12: Compute the eigenvalue λj(µ
(−p)
j ) that is closest to λ̃j(µ

(−p)
j ).

13: Compute the derivatives ∂iµλj(µ
(−p)
j ), i = 1, . . . , n+ 1.

14: Compute the acceptable step size hj,n(µ
(−p)
j ).

15: end while

16: Set q = 0.

17: while µ
(q)
j + hj,n(µ

(q)
j ) < max Iµ do

18: Set q = q + 1.

19: Set µ
(q)
j = µ

(q−1)
j + hj,n(µ

(q−1)
j ).

20: Compute the approximative eigenvalue λ̃j(µ
(q)
j ) at µ

(q)
j using Taylor expansion of order n

around µ
(q−1)
j .

21: Compute the eigenvalue λj(µ
(q)
j ) that is closest to λ̃j(µ

(q)
j ).

22: Compute the derivatives ∂iµλj(µ
(q)
j ), i = 1, . . . , n+ 1.

23: Compute the acceptable step size hj,n(µ
(q)
j ).

24: end while

25: Approximate the j-th eigenpath by an Hermite interpolation or a piecewise, weighted Taylor

expansion (5.30) of order n using the the eigenvalues λj and their derivatives ∂iµλj , i = 1, . . . , n,

at µ
(ℓ)
j , ℓ = −p, . . . , q.

26: end for

additional costs for the interpolation. The latter approach, on the other hand, comes with negligible

additional costs and its implementation is straightforward.

The computational effort of this algorithm is as follows: In addition to the eigenvalue problem (5.1) at

the start value µ(0), we have to solve for each dispersion curve a total of p+ q eigenvalue problems (5.1),

n(p + q + 1) linear systems (5.18) and (n + 1)(p + q + 1) algebraic equations (5.17). For each of the

p + q + 1 values of µ we have to compute the acceptable step size using Eq. (5.29), which is a simple

scalar equation.

In the following two sections let us introduce additional refinement checks, that will help to improve

our approximation.

5.4.2 Backward check

An improvement of the adaptive scheme can be realized by a backward check, i. e. we check if the Taylor

expansion around µ(ℓ±1) recovers the original value λj(µ
(ℓ)) plus/minus some tolerance εbwd

tol . If not, it is

possible that we mistakenly switched to another eigenpath or the acceptable step size at µ(ℓ±1) is much

smaller than at µ(ℓ). Then we refine the step size hj,n(µ
(ℓ)), i. e. we multiply it by a factor σbwd smaller

than one, e. g. σbwd = 1
2 , and take µ(ℓ±1) = µ(ℓ) ± σbwdhj,n(µ

(ℓ)) as subsequent parameter value for our

sampling. When carrying out the backward check we also have to solve the eigenvalue problem (5.1)
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5 Adaptive path following for parameterized, nonlinear eigenvalue problems

and compute the derivatives at the boundaries of the interval Iµ, i. e. at µ = 0 and µ = 1, such that the

the Taylor expansions around µ(−p) and µ(+q) can be validated. The adaptive path following algorithm

including backward check is sketched in Algorithm 5.3.

5.4.3 Crossing check

A special emphasis in algorithms for eigenpath following has to be put into the question whether two

eigenpaths cross or if they only come very close but avoid a crossing.

In the context of PhC waveguide band structures, such an avoided crossing, or anti-crossing, is called

mini-stopband [ORB+01]. It is well known, that for symmetric waveguides, e. g. W1 waveguides with

square or hexagonal lattice, modes of opposite parity cross while modes of identical parity form a mini-

stopband. On the other hand, for waveguides, whose holes/rods on top of the line defect are shifted

exactly by a1

2 compared to the holes/rods below the guide, e. g. W2 waveguide with hexagonal lattice,

just the opposite holds true: modes of identical parity cross while modes of opposite parity form a mini-

stopband. If the waveguide does not satisfy either of these conditions, e. g. if the shift is less than a1

2 , all

modes avoid to cross and form very narrow mini-stopbands [OBS+02]. Even though this classification

allows for an identification of crossings and avoided crossings, we will apply later in Section 5.5 the

proposed crossing check also to PhC waveguide band structure calculations, which allows us to identify

mini-stopbands without comparing the parities of the modes.

The crossing check works then as described in Algorithm 5.4. After two eigenpaths were approximated

with the adaptive scheme described above and it turned out that the approximated eigenpaths cross

at some point µ0, say, we solve the eigenvalue problem (5.1) at µ0 where we will obtain two close

Algorithm 5.3. Adaptive path following algorithm including backward check.

1: Fix the order n ∈ N of the expansion, the error tolerances εsteptol , ε
bwd
tol ≪ 1, the refinement factor

σbwd < 1 and the start value µ(0) ∈ Iµ.

2: Compute a set of eigenvalues λj(µ
(0)), j = 1, . . . , J .

3: for j = 1, . . . , J do

4: Compute the derivatives ∂iµλj(µ
(0)), i = 1, . . . , n+ 1.

5: Compute the acceptable step size hj,n(µ
(0)).

6: Set µ
(0)
j = µ(0).

7: Set p = 0.

8: while true do

9: Set p = p+ 1.

10: Set µ
(−p)
j = max

{
µ
(−p+1)
j − hj,n(µ

(−p+1)
j ),min Iµ

}
.

11: Compute the approximative eigenvalue λ̃j(µ
(−p)
j ) at µ

(−p)
j using Taylor expansion of order n

around µ
(−p+1)
j .

12: Compute the eigenvalue λj(µ
(−p)
j ) that is closest to λ̃j(µ

(−p)
j ).

13: Compute the derivatives ∂iµλj(µ
(−p)
j ), i = 1, . . . , n+ 1.

14: Compute the approximative eigenvalue λ̃j(µ
(−p+1)
j ) at µ

(−p+1)
j using Taylor expansion of or-

der n around µ
(−p)
j .

15: if |λ̃j(µ(−p+1)
j )− λj(µ

(−p+1)
j )| > εbwd

tol then

16: Set p = p− 1.

17: Set hj,n(µ
(−p)
j ) = σbwdhj,n(µ

(−p)
j ).

18: else if µ
(−p)
j = min Iµ then

19: break

20: else

21: Compute the acceptable step size hj,n(µ
(−p)
j ).

22: end if

23: end while
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24: Set q = 0.

25: while true do

26: Set q = q + 1.

27: Set µ
(q)
j = min

{
µ
(q−1)
j + hj,n(µ

(q−1)
j ),max Iµ

}
.

28: Compute the approximative eigenvalue λ̃j(µ
(q)
j ) at µ

(q)
j using Taylor expansion of order n

around µ
(q−1)
j .

29: Compute the eigenvalue λj(µ
(q)
j ) that is closest to λ̃j(µ

(q)
j ).

30: Compute the derivatives ∂iµλj(µ
(q)
j ), i = 1, . . . , n+ 1.

31: Compute the approximative eigenvalue λ̃j(µ
(q−1)
j ) at µ

(q−1)
j using Taylor expansion of order n

around µ
(q)
j .

32: if |λ̃j(µ(q−1)
j )− λj(µ

(q−1)
j )| > εbwd

tol then

33: Set q = q − 1.

34: Set hj,n(µ
(q)
j ) = σbwdhj,n(µ

(q)
j ).

35: else if µ
(q)
j = max Iµ then

36: break

37: else

38: Compute the acceptable step size hj,n(µ
(q)
j ).

39: end if

40: end while

41: Approximate the j-th eigenpath by an Hermite interpolation or a piecewise, weighted Taylor

expansion (5.30) of order n using the the eigenvalues λj and their derivatives ∂iµλj , i = 1, . . . , n,

at µ
(ℓ)
j , ℓ = −p, . . . , q.

42: end for

eigenvalues near the expected crossing. Note that, also if the expected crossing turns out to be an

actual crossing, these two eigenvalues are most likely not identical but only very close. Then we compute

the first derivatives of these two eigenmodes at µ0 using the formula (5.4) and compare them with the

first derivatives of the approximated eigenpaths (5.30). If the derivatives of the two eigenmodes do not

coincide, i. e. the two curves do not cross with the same slope, and each derivative matches well with the

derivative of one of the approximated eigenpaths in the sense that the magnitude of the difference does

not exceed an error tolerance of εxngtol , we take this as evidence that the two eigenpaths cross. On the

other hand, if the two derivatives are very close, i. e. the two eigenpaths have approximately the same

slope at µ0, we also have to compute higher derivatives of the eigenpaths at µ0 using the formula (5.17)

and compare them with the corresponding derivatives of the approximated eigenpaths (5.30). In fact

we have to compute and compare at least derivatives of order n, if the derivatives of the two eigenpaths

coincide up to order n− 1. If for all m, with 1 ≤ m ≤ n, the derivatives of order m of the two eigenpaths

coincide with one of the derivatives of order m of the two approximated eigenpaths, i. e. the magnitude of

the difference does not exceed an error tolerance of εxngtol , we shall assume that the two eigenpaths cross.

Otherwise, we refine our approximations by additionally applying the adaptive scheme to the eigenpaths

around µ0, taking µ0 as start value and stopping the scheme if a value of µ is reached for which we

already solved the eigenvalue problem (5.1).

If we compare derivatives up to order n we shall denote this test as n-th order crossing check. If n = 1,

we simply call it crossing check.

Note that the crossing check can also be understood as a validation test for crossings, in particular in

the case when the two eigenpaths cross and have the same slope at the crossing. To this end, we also

perform the crossing check if the two approximated eigenpaths come very close but do not cross. For

those points it is necessary to perform at least a second order crossing check.
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Algorithm 5.4. Crossing check of order n.

Requirements: Let two approximated eigenpaths λ̃1 ≈ λ1 and λ̃2 ≈ λj with nodes µ
(−pj)
j , . . . , µ

(qj)
j ,

j = 1, 2, be given. The nodes may either be obtained by Algorithm 5.2 without backward check, or

by Algorithm 5.3 including backward check, and the approximative curves may either result from a

Hermite interpolation or a weighted Taylor expansion. Let the two approximated eigenpaths intersect

at µ0 with µ
(ℓj)
j < µ0 < µ

(ℓj+1)
j , where ℓj ∈ {−pj , . . . , qj − 1}, j = 1, 2.

1: Fix the crossing check tolerance εxngtol ≪ 1.

2: Compute the two eigenvalues λj(µ0), j = 1, 2, at µ0 that are closest to λ̃1(µ0) = λ̃2(µ0).

3: Compute the derivatives ∂iµλj(µ0), j = 1, 2, i = 1, . . . , n, of the two eigenpaths at µ0 up to order n.

4: Set refine to false.

5: for i = 1, . . . , n do

6: if |∂iµλ1(µ0)− ∂iµλ̃1(µ0)| > εxngtol or |∂iµλ2(µ0)− ∂iµλ̃2(µ0)| > εxngtol then

7: Set refine to true.

8: break

9: end if

10: end for

11: if refine then

12: Apply Algorithm 5.2 or Algorithm 5.3 with start value µ0 for the adaptive eigenpath following in

the intervals [µ
(ℓ1)
1 , µ

(ℓ2)
2 ] and [µ

(ℓ2)
2 , µ

(ℓ1)
1 ].

13: end if

5.5 Adaptive path following of dispersion curves

In this section we want to test the proposed adaptive scheme and show numerical results. We aim to

adaptively follow the eigenpaths of PhC and PhC waveguide band structures, the so-called dispersion

curves. We start with the TE mode band structure of a PhC W1 waveguide and of a perturbed W1

waveguide, before we will return to the TM mode band structure of Example 1 that we already used in

our numerical experiments in Section 5.3.

5.5.1 Band structure of a PhC W1 waveguide

We consider the TE mode band structure of the PhC W1 waveguide with hexagonal lattice introduced

in Example 2 and apply the supercell method with a supercell S5 ⊂ R2 of five PhC unit cells on top

and bottom of the defect cell to compute approximations to guided modes. In other words, we consider

the eigenvalue problem (2.23) whose discrete form, as given in (2.29) reads: given a quasi-momentum

k ∈ B̂ = [0, π
a1
] find eigenvalues ω2(k) ∈ R+ \ σess(k) and associated eigenmodes u(k) ∈ CN(S5) \ {0}

such that

NTE
S5

(ω, k)u = 0, (5.31)

with

NTE
S5

: (ω, k) A
α=1/ε
S5

+ kC
α=1/ε,1
S5

+ k2M
α=1/ε
S5

− ω2Mβ=1
S5

.

Analogously to (5.27) this eigenvalue problem is linear in ω2(k), and formulas for the derivatives of the

dispersion curves k ω(k) in variational formulation were already presented in Chapter 4.

Using the adaptive algorithm introduced in Section 5.4 without any additional refinement checks, like

the backward check or the crossing check, we aim to compute an approximation to the two dispersion

curves in the second band gap, that is approximately located in the frequency interval [0.2 · 2πca1
, 0.3 · 2πca1

],

see Figure 2.9 for an illustration of the band structure. We choose a desired error tolerance of εsteptol = 10−4

to compute the acceptable step sizes, set the order of the expansion to n = 10, and select the start value

k(0) = π
2a1

. When solving (5.31) for its eigenvalues ω2 at the start value k(0) we omit eigenvalues inside

the essential spectrum σess(k(0)) in order to follow guided modes only. However, note that the procedure

can be applied to any eigenpaths of (5.31), not only those corresponding to dispersion curves of guided

modes, since all eigenpaths of (5.31) are analytic in B, cf. Theorem 4.1. In fact, we shall continue to
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follow the dispersion curves even if they leave the band gap. This will be different later in Chapter 6

where we employ DtN transparent boundary conditions, that are only well-defined in band gaps.
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(a) No backward check.
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(b) Backward check with εbwd
tol = 10−2.

Figure 5.4: Adaptive Taylor scheme of order n = 10 applied to dispersion curves of the hexagonal PhC

W1 waveguide. The error tolerance of the step size computation is εsteptol = 10−4 and the start value of

the iteration is set to k(0) = π
2a1

.

The results can be seen in Figure 5.4a where the dots indicate the location of the values of k for which

the dispersion relation ω(k) and its derivatives ω′(k), ω(2)(k), . . . , ω(10)(k) were computed. The lines

connecting the dots result from the post-processing, where we chose the weighted Taylor expansion (5.30).

Note that the red dispersion curve leaves the band gap at k ≈ 0.1 · 2π
a1

and enters the frequency domain

for which propagating PhC modes exist. As elaborated above, we can continue following this curve

towards k = 0 having in mind, that these supercell eigenmodes are spurious and that this part of the

dispersion curve has no physical meaning. Most noticeable is the numerical artifact of the red line between

k ≈ 0.08 · 2π
a1

and k ≈ 0.14 · 2π
a1
. Recall, that we chose k(0) = π

2a1
and hence, we followed the dispersion

curve in this part from right to left. For the computation of the acceptable step size the derivatives

at k ≈ 0.14 · 2π
a1

are relevant. But obviously, the derivatives at k ≈ 0.08 · 2π
a1

are significantly larger in

magnitude than at k ≈ 0.14 · 2πa1
yielding a smaller step size in the following step (distance to next red dot)

and hence, explain the numerical error in the post-processing. This numerical artifact can be eliminated

when performing the backward check. The results are presented in Figure 5.4b where we chose an error

tolerance of εbwd
tol = 10−2 for the backward check.

Clearly, the computational costs of the adaptive scheme including backward check are smaller than

the costs of the standard procedure to solve the eigenvalue problem (5.27) for an equidistant sample of

quasi-momenta k, if one aims to get the same accuracy as the adaptive scheme. In the post-processing

of the adaptive Taylor expansions in Figure 5.4 we chose an equidistant sample of 100 values of the

quasi-momentum k for which we computed the weighted Taylor expansion and from which we draw

the solid red and blue curves. This shall deal as a reference for the desired accuracy. That means the

standard procedure to calculate the band structure is to solve 100 eigenvalue problems (5.27). On the

other hand, the adaptive scheme including backward check for the unperturbed waveguide accounts for 25

eigenvalue problems (5.27) and the computation of the frequency derivatives (5.22) of 24 modes, where

we solve the eigenvalue problem (5.27) at k = 0, k = π
a1

and k = k(0) for two eigenvalues in order

to save time. Four eigenmodes of these 25 eigenvalue computations are rejected due to the backward

check which explains that the number of nodes for which we compute the frequency derivatives (5.22) is

smaller than the number of eigenvalue problems (5.27) to be solved. Considering that the computational

costs of solving (5.22) for the frequency derivatives is significantly smaller than solving the eigenvalue

problem (5.27), we can expect clearly smaller computational costs of the adaptive scheme compared to the

standard procedure. Note that the computational advantage of the adaptive scheme especially becomes

obvious in the case of a rather simple dispersion curve, e. g. the blue curve in Figure 5.4. In fact, only
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5 Adaptive path following for parameterized, nonlinear eigenvalue problems

a very small number of eigenvalue problems and corresponding source problems have to be computed in

order to figure out the dispersion curve’s slope correctly.

5.5.2 Band structure with mini-stopband of a perturbed PhC W1 waveguide

Now we want to test the proposed crossing check. Applied to the numerical example above, a W1

waveguide with hexagonal lattice which is symmetric with respect to the line defect, we find that a

refinement is not necessary since the approximated slopes and computed group velocities at the projected

crossing match well, which is in line with the theory [ORB+01] that says that modes with even parity

(red dispersion curve) and modes with odd parity (blue dispersion curve) have to cross and do not form

a mini-stopband. Therefore, we shall apply our crossing check to a perturbed configuration. We shift

the upper PhC by as little as 10−4a1 to the left. This breaks the symmetry and we can expect that the

crossing of the two guided modes becomes an avoided crossing.
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Figure 5.5: Adaptive Taylor scheme of order n = 10 with backward check of tolerance εbwd
tol = 10−2

applied to dispersion curves of the perturbed PhC W1 waveguide of hexagonal lattice (upper PhC shifted

by 10−4a1 to the left). The error tolerance of the step size computation is εsteptol = 10−4 and the start

value of the iteration is set to k(0) = π
2a1

.

In Figure 5.5 we show the results of the adaptive Taylor scheme including backward check with tolerance

εbwd
tol = 10−2 applied to the perturbed W1 waveguide of hexagonal lattice. The results are very similar

to the results of the unperturbed waveguide in Figure 5.4b. In particular, the approximated dispersion

curves cross in Figure 5.5 which we know is not true. Thus, a crossing check as introduced above needs

to be performed in order to identify the avoided crossing correctly. The two approximated dispersion

curves in Figure 5.5 cross at k0 ≈ 0.2266 · 2π
a1

and their slopes are approximately −0.261c (red curve) and

0.044c (blue curve). But when solving the eigenvalue problem (5.27) at k0 we find two eigenmodes which

have both negative group velocity, and hence — using a tolerance εxngtol = 10−2 for the crossing check —

a refinement at k0 is necessary. The result can be seen in Figure 5.6 where we also show a detailed view

of the mini-stopband.

The behaviour of the eigenmodes near the mini-stopband is illustrated in Figure 5.7, where we plotted

the six eigenmodes marked with a cross in Figure 5.6b. We observe that the eigenmodes on the upper

dispersion curve have even parity for quasi-momenta smaller than the quasi-momentum k ≈ 0.2266 · 2π
a1

of the mini-stopband, see Figure 5.7a, while the eigenmodes on the lower dispersion curve have odd

parity, see Figure 5.7d. At the mini-stopband both modes are neither even nor odd, see Figures 5.7b

and 5.7e, and when continuing to follow the two dispersion curves to the right, we find that the upper

curve has changed its parity to odd, see Figure 5.7c, while the parity of the lower curve becomes even,

see Figure 5.7f.

The computational advantage of the proposed adaptive Taylor expansion compared to the standard pro-

cedure even increases when trying to identify mini-stopbands. The adaptive scheme including backward
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(b) Detailed view of the mini-stopband.

Figure 5.6: Adaptive Taylor scheme of order n = 10 with backward check of tolerance εbwd
tol = 10−2 and

first order crossing check of tolerance εxngtol = 10−2 applied to dispersion curves of the perturbed PhC W1

waveguide with hexagonal lattice (upper PhC shifted by 10−4a1 to the left). The error tolerance of the

step size computation is εsteptol = 10−4 and the start value of the iteration is set to k(0) = π
2a1

. For the

nodes marked with a cross in (b) the eigenmodes are plotted in Figure 5.7.

check but without crossing check, as presented in Figure 5.5, accounts for 25 eigenvalue problems (5.27)

and the computation of the frequency derivatives (5.22) for 24 modes. When additionally performing the

crossing check and refining near the avoided crossing, as done in Figure 5.6, we have another 13 eigenvalue

problems (5.27) and a total of 26 frequency derivatives (5.22) to solve. We save time by simultaneously

refining both dispersion curves together with the same step size and solving (5.22) for two eigenvalues,

while computing the frequency derivatives (5.22) of all 26 computed eigenmodes. This makes a total

of 38 eigenvalue problems (5.27) and 50 frequency derivatives (5.22), that we have to solve in order to

approximate the two dispersion curves of the perturbed waveguide as presented in Figure 5.6. Using the

standard procedure to compute the band structure would clearly comprise the solution of more eigenvalue

problems (5.27) since a very dense grid of values of the quasi-momentum k is needed in order to resolve

the mini-stopband as accurate as in Figure 5.6b.

5.5.3 Dispersion curves intersecting with identical group velocity

Now let us return to Example 1 and the eigenvalue problem (5.27). We want to study the behaviour of

our numerical scheme when two dispersion curves intersect at a point but do not cross. This is the case

for the second and third dispersion curves at k = 0, as can be seen from the band structure in Figure 2.7.

Due to symmetry at k = 0, we restricted our computations so far to the Γ-X-interval B̂ = [0, π
a1
] of

the irreducible Brillouin zone B̂2d. Now let us consider the interval B = [− π
a1
, π
a1
] having in mind that

the band structure is symmetric with respect to the frequency axis at k = 0. That means we know in

advance that the two dispersion curves, that have a common eigenvalue at k = 0, do not cross but touch

only. Let us now study if the proposed adaptive scheme can construct this band structure correctly. We

choose the start point k(0) = 0.01 · 2π
a1
. Recall that we cannot choose k(0) = 0, the centre of the interval

B, since the second and third dispersion curves intersect at this point and hence, the multiplicity of the

eigenvalue at k = 0 is two, which implies that the group velocity formula (5.21), as well as the formula for

higher derivatives, Eq. (5.22), is not well-defined without knowledge about the eigenmodes in the vicinity

of k = 0, as we elaborated in Remark 4.2.

We start by setting the order of the Taylor expansion to n = 1. The step size tolerance is chosen

to be εsteptol = 10−4 and we employ the backward check with tolerance εbwd
tol = 10−2 but do not use the

crossing check. Figure 5.8a shows the numerical result for this configuration. We can see that the second

dispersion curve (blue) is computed incorrectly, since from k = 0 to the left it follows the third dispersion
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5 Adaptive path following for parameterized, nonlinear eigenvalue problems

(a) k ≈ 0.2255 · 2π
a1

. (b) k ≈ 0.2266 · 2π
a1

. (c) k ≈ 0.2292 · 2π
a1

.

(d) k ≈ 0.2240 · 2π
a1

. (e) k ≈ 0.2266 · 2π
a1

. (f) k ≈ 0.2277 · 2π
a1

.

Figure 5.7: Real parts of the magnetic field components of the guided modes on the upper (a)–(c) and

lower (d)–(e) dispersion curve of the perturbed PhC W1 waveguide with mini-stopband presented in

Figure 5.6.

curve (red). When choosing a smaller backward check tolerance, as done in Figure 5.8b, where we set

εbwd
tol = 10−4, we do not resolve this problem. In fact, both tolerance parameters, εbwd

tol as well as the step

size tolerance εsteptol , cannot be chosen small enough since an expansion of first order cannot account for

the curvature of the dispersion curve. This explains that an expansion of first order is in general not a

good choice no matter how small the tolerance parameters are chosen.

Now we increase the order of the expansion to n = 2 and choose again εbwd
tol = 10−2. Figure 5.9a

shows that the two dispersion curves are computed correctly. However, using an expansion of order

n = 2 does not always resolve the problem as Figure 5.9b shows, where we set the start value of the

scheme to k(0) = 0.25 · 2π
a1
. It turns out that we were only lucky by previously setting the start value to
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(a) Backward check tolerance εbwd
tol = 10−2.
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(b) Backward check tolerance εbwd
tol = 10−4.

Figure 5.8: Adaptive Taylor scheme of order n = 1 with backward check applied to the second and third

dispersion curves of Example 1. The start value of the scheme is set to k(0) = 0.01 · 2π
a1
.
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(a) Start value k(0) = 0.01 · 2π
a1

.
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(b) Start value k(0) = 0.25 · 2π
a1

.

Figure 5.9: Adaptive Taylor scheme of order n = 2 with backward check of tolerance εbwd
tol = 10−2 applied

to the second and third dispersion curves of Example 1.

k(0) = 0.01 · 2πa1
, where the second derivative is large enough in magnitude to account for the correct slope

of the second dispersion curve. In the case presented in Figure 5.9b, however, the tolerance parameters

εsteptol and εbwd
tol are chosen too large so that the adaptive scheme does not place a Taylor node close enough

to k = 0 and hence, the magnitude of the second derivative at the smallest positive node is too small to

account for the correct curvature at k = 0.

Choosing a smaller backward check tolerance may help to resolve this problem. When selecting a

higher order we can also resolve this problem, as shown in Figure 5.10, where we set the order to n = 3,

keeping the start value at k(0) = 0.25 · 2π
a1

and leaving the backward check tolerance unchanged.

Alternatively, we can do a second order crossing check in order to resolve this problem even if we keep

n = 2 and εbwd
tol = 10−2. The two approximated dispersion curves in Figure 5.9b come very close near

k = 0. In fact, we observe that the two approximated curves cross at k0 ≈ 0.02 · 2π
a1
. At k0 we solve the

eigenvalue problem and compare the first and second derivatives of the dispersion relation with the slopes

and curvatures of the approximated curves. It turns out that the second derivatives do not match well

with the curvatures of the approximated curves. We refine the approximation as described in the section

on the crossing check and find that the left branch of the refined blue curve does not fit to the left branch

shown in Figure 5.9b, so that a full computation of the adaptive approximation in the interval [− π
a1
, k0]
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5 Adaptive path following for parameterized, nonlinear eigenvalue problems

is necessary. This yields the band structure presented in Figure 5.11, which shows that the adaptive

scheme with second order crossing check produces appropriate approximations of two dispersion curves

intersecting with the same slope, even if the order is as low as n = 2.
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Figure 5.10: Adaptive Taylor scheme of order n =

3 with backward check of tolerance εbwd
tol = 10−2

applied to the second and third dispersion curves

of Example 1. The start value of the scheme is set

to k(0) = 0.25 · 2π
a1
.
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Figure 5.11: Adaptive Taylor scheme of order

n = 2 with backward check of tolerance εbwd
tol =

10−2 and second order crossing check of tolerance

εxngtol = 10−2 applied to the second and third dis-

persion curves of Example 1. The start value of

the scheme is set to k(0) = 0.25 · 2π
a1
.

To summarize, we note that an expansion of order two or larger is needed to correctly identify the

behaviour of two curves, that intersect with the same slope. An expansion of order larger than two is

preferable in order to decrease the influence of the start value on the approximation. A second order

crossing check can be employed to resolve the intersection correctly.

5.5.4 Convergence study

After showing in the previous examples that our proposed adaptive algorithm is applicable to PhC and

PhC waveguide band structure calculations and that it can handle various difficulties like mini-stopbands

and crossings of identical slope, we now turn to the question what can be said about the error of our

algorithm and its convergence.

To this end, we study again Example 1. We want to compute the maximum error of our approximation

to the fifth dispersion curve in the Γ-X-interval B̂ = [0, π
a1
], see the band structure in Figure 2.7. We

evaluate the maximum error on an equidistant sample of 10 000 values of the quasi-momentum k ∈ B̂.

We solve the eigenvalue problem (5.27) at each sample point to obtain a reference solution ωref(k) for

our approximation.

The fifth dispersion curve of the TM mode band structure of Example 1 shown in Figure 2.7 does not

intersect with or comes very close to any other dispersion curve. Therefore, we neither need to apply the

crossing check, nor is there a need for additional orthogonality conditions in sense of Section 4.2.3 when

computing the derivatives of the eigenmodes.

In Figure 5.12 we show the convergence of the maximum error for three different orders n = 1, 2, 5 of

the Taylor expansion in our adaptive scheme. The step size and backward check tolerances are chosen to

be εsteptol = εbwd
tol = 10−ℓ, ℓ = 2, . . . , 7, i. e. each marker on the three curves for the three different orders

corresponds to one of the six different values of the step size and backward check tolerances. Note that

the actual maximum error is smaller than the chosen tolerances, which shows the overestimation of the

actual error, that was already discussed in Section 5.4.1. In Figure 5.12a the maximum error is compared

to the number of nodes in B̂ at which the eigenvalue problem (5.27) is solved and the dispersion curve

derivatives up to the respective orders n = 1, 2, 5 are computed. Note that for the step size control in fact
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Figure 5.12: Convergence of the maximum error of adaptive scheme of orders n = 1, 2, 5 for different

values of the step size and backward check tolerances εsteptol = εbwd
tol = 10−ℓ, ℓ = 2, . . . , 7, when applied to

the fifth dispersion curves of the PhC TM mode band structure of Example 1.

the derivatives up to order n+1 have to be computed. The results show that the order of the convergence

is approximately identical to the order of the scheme plus one. This is the expected convergence rate of

Taylor expansions, which can be seen for example from the estimate (5.26) of the remainder (5.25) of the

Taylor expansion.

On the other hand, we show in Figure 5.12b the maximum error in relation to the relative computation

time, i. e. the ratio of computation time and the time needed to compute the reference solution. While

the convergence order for the low order computations, i. e. n = 1, 2, is again approximately equal to n+1,

the convergence order of the maximum error with respect to the computation time for n = 5 is smaller

than the convergence order of the maximum error with respect to the number of nodes. This shows that

the time for computing the dispersion curve derivatives by solving source problems is small but cannot

be entirely neglected. Nevertheless, higher order expansions prove beneficial, in particular if we chose

small step size and backward check tolerances.

5.6 Conclusions

In this chapter we introduced an adaptive path following algorithm for the eigenvalues of parameterized,

nonlinear eigenvalue problems. We derived closed formulas for the derivatives of the eigenpaths and

employed these formulas in a Taylor expansion. For the selection of the nodes of the Taylor expansion

we proposed an adaptive algorithm based on the estimation of the remainder of the Taylor expansion.

As an example, we employed the proposed scheme to the computation of the dispersion curves of

PhC and PhC waveguide band structure calculations, the latter one when using the supercell method.

We showed that with the help of an additional refinement technique, the backward check, and the post-

processing of the crossing check, we obtain reliable results also in involved cases such as avoided crossings.

With the help of the proposed scheme the computation time of band structure calculations is effectively

reduced as our numerical results demonstrate. This reveals that the adaptive path following algorithm

is an efficient procedure for PhC and PhC waveguide band structure calculations, and hence, meets the

goal of efficiency in the context of PhC and PhC waveguide band structure calculations.

In Chapters 6 and 7 we will apply the adaptive algorithm also to problems with DtN and RtR trans-

parent boundary conditions, i. e. to parameterized, nonlinear eigenvalue problems.
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6 Dirichlet-to-Neumann transparent boundary

conditions

In the introduction we identified two objectives for our work on PhC waveguide band structure calcula-

tions. After addressing efficiency in the previous chapter, let us now focus on accuracy, i. e. the exact

computation of guided modes in PhC waveguides.

In Section 2.4 we introduced the supercell approach, which is a simple and frequently used procedure

to compute approximations to guided modes in PhC waveguides, i. e. approximations to the solutions

of the eigenvalue problem (2.19) in the infinite strip S. The modelling error of the supercell method

depends on the confinement of the guided mode, which is the main disadvantage of the supercell method

and which motivates the DtN approach presented in [Fli13] for the exact computation of guided modes

independent of their confinement. The advantage of not introducing a modelling error comes with the

disadvantage of transforming the problem to a nonlinear eigenvalue problem.

In this chapter we will explain the FE discretization and numerical solution of the resulting nonlinear

eigenvalue problem in detail. We first published the numerical realization of the DtN approach in [KSF14].

This chapter comprises in addition the extension of the theory in Chapter 4, i. e. the computation of the

group velocity and higher derivatives of the dispersion curves, and the procedure in Chapter 5, i. e. the

usage of these derivatives in an adaptive Taylor expansion of the dispersion curves, to the case with DtN

transparent boundary conditions.

The chapter is organized as follows: in Section 6.1 we introduce the DtN operators and comment on their

characterization, differentiability and FE discretization. In Section 6.2 we present a nonlinear eigenvalue

problem, that is posed in the defect cell C0 and which is equivalent to the eigenvalue problem (2.19) in

the infinite strip S. We derive formulas for the group velocity and any higher derivative of the dispersion

curves, show the FE discretization of the nonlinear eigenvalue problem and comment on its numerical

solution, before we present numerical results in Section 6.3, including the results of the path following

algorithm. Finally, we give concluding remarks in Section 6.4.

6.1 The Dirichlet-to-Neumann operators

In this section we define the DtN operators, show there characterization using local cell problems and a

quadratic operator equation, and prove their differentiability. Finally, we will elaborate on the discretiza-

tion of the DtN operators and the local cell problems.

6.1.1 Definition of the Dirichlet-to-Neumann operators

As a first step towards the definition of the DtN operators, we introduce Dirichlet problems in the infinite

half-strips S±: for any φ ∈ H
1/2
1p (Γ

±
0 ) find u

± ≡ u±(·;ω, k, φ) ∈ H1
1p(∆, S

±, α) such that

−(∇+ ik(10)) · α(∇+ ik(10))u
± − ω2βu± = 0 in S±, (6.1a)

u± = φ on Γ±
0 . (6.1b)

Theorem 4.1 in [Fli13] gives the following result.

Theorem 6.1. Let the unit cells C±
n and C±

n+1, n ∈ N, of the infinite half-strips S± be symmetric

with respect to their common interface Γ±
n , i. e. the material functions α and β are axis symmetric in

C±
n ∪C±

n+1 with respect to Γ±
n . Then the infinite half-strip problems (6.1) are well-posed in H1

1p(∆, S
±, α)

for all ω2 /∈ σ±(k). If the unit cells of the infinite half-strips S± do not satisfy this symmetry property,
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6 Dirichlet-to-Neumann transparent boundary conditions

the problems (6.1) are well-posed in H1
1p(∆, S

±, α) for all ω2 /∈ σ±(k) except for a countable set of

frequencies ω2.

The values of ω2 for which (6.1) is not well-posed correspond to so-called Dirichlet eigenvalues of (6.1),

i. e. eigenvalues of (6.1) when prescribing homogeneous Dirichlet boundary conditions on Γ±
0 . We shall

call these values global Dirichlet eigenvalues, in order to distinguish them from Dirichlet eigenvalues of

local cell problems we will introduce later.

Remark 6.2. If the symmetry property in Theorem 6.1 is not fulfilled, the Dirichlet boundary condi-

tions (6.1b) can be replaced by Robin boundary conditions, yielding well-posed problems for any ω2 /∈
σ±(k) [Fli09, FJL10]. This approach will be discussed in Chapter 7.

Remark 6.3. PhC waveguides with square lattice and circular holes or rods of constant permittivity

satisfy the symmetry property mentioned in Theorem 6.1, i. e. their unit cells C±
n and C±

n+1, n ∈ N,
of the infinite half-strips S± are symmetric with respect to their common interface Γ±

n . On the other

hand, PhC waveguides with hexagonal lattice, e. g. see the waveguide in Example 2, do not satisfy the

symmetry property, and hence, their can exist global Dirichlet eigenmodes in the semi-infinite strips S±

with hexagonal lattice.

In the sequel we shall assume that the infinite half-strip problems (6.1) are well-posed. Then, for any

φ ∈ H
1/2
1p (Γ

±
0 ), the DtN operators D±(ω, k) ∈ L(H

1/2
1p (Γ

±
0 ),H

−1/2
1p (Γ±

0 )) are defined as

D±(ω, k)φ = ±α∂2u±(· ;ω, k, φ) |Γ±
0
. (6.2)

Proposition 6.4 (Proposition 4.3 in [Fli13]). Let k ∈ B and ω2 ∈ R+ \ σ±(k), then the DtN operators

D±(ω, k) are continuous from H
1/2
1p (Γ

±
0 ) onto H

−1/2
1p (Γ±

0 ) and their norms are continuous with respect to

ω ∈ R+ \ σ±(k).

Considering the half-strip problems (6.1) in variational formulation and choosing u±(· ;ω, k, ψ), with
ψ ∈ H

1/2
1p (Γ

±
0 ), as test function, we find that the DtN operators satisfy∫

Γ±
0

D±(ω, k)φψ ds(x) = −
∫
S±

α(∇+ ik(10))u
±(· ;ω, k, φ) · (∇− ik(10))u

±(· ;ω, k, ψ) dx

+ ω2

∫
S±

βu±(· ;ω, k, φ)u±(· ;ω, k, ψ) dx (6.3)

for any φ,ψ ∈ H
1/2
1p (Γ

±
0 ).

6.1.2 Characterization of the Dirichlet-to-Neumann operators

In Eq. (6.2) the DtN operators are defined via Dirichlet problems (6.1) on an unbounded domain. In this

subsection we summarize the results in [JLF06, Fli13] how to compute the DtN operators via local cell

problems, i. e. by solving Dirichlet problems on a single periodicity cell, and a stationary Riccati equation.

To this end, we note that the infinite strips S± on top and bottom of the guide can be expressed as

union of an infinite number of periodicity cells C±
n , n ∈ N, i. e.

S± =
∞⋃

n=1

(
C±

n ∪ Γ±
n

)
,

cf. Figure 2.3b. The top and bottom boundaries of these cells C±
n shall be denoted by Γ±

n−1 and Γ±
n , i. e.

Γ±
0 = C0 ∩ C±

1 ,

Γ±
n = C±

n ∩ C±
n+1, n ≥ 1,

see Figure 2.3b.
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We also note that — due to the periodicity and the infinity of the half strips — all cells C±
n can be

identified by the first cell C±
1 and all boundaries Γ±

n can be identified by the first boundary Γ±
0 .

Therefore, let us introduce shift operators S±
n ∈ L(C∞(Γ±

0 ),C
∞(Γ±

n )), n ∈ N, defined by

S±
n φ(x) = φ(x∓ na±2 ). (6.4)

By a density argument of C∞(Γ±
n ) in H

1/2
1p (Γ

±
n ) and H

−1/2
1p (Γ±

n ), respectively, we can extend the shift

operators S±
n to functions in H

1/2
1p (Γ

±
n ) and H

−1/2
1p (Γ±

n ). For simplicity of notation we shall write S± := S±
1 .

Furthermore, we introduce the inverse (S±)−1 of S± which is simply given by

(S±)−1φ(x) = φ(x± a±2 ). (6.5)

These shift operators become important in the FE discretization which we will discuss in Sections 6.1.5

and 6.2.4.

With the help of these operators we can express the trace of the unique solution u±(· ;ω, k, φ) of the

Dirichlet problem (6.1) at the edges Γ±
n , n ∈ N, as

u±(· ;ω, k, φ) |Γ±
n
= S±

n (P±(ω, k))nφ,

with the propagation operator P±(ω, k) ∈ L(H
1/2
1p (Γ

±
0 )) defined for any φ ∈ H

1/2
1p (Γ

±
0 ) by

P±(ω, k)φ = (S±)−1u±(· ;ω, k, φ) |Γ±
1
. (6.6)

As shown in [JLF06], the propagation operator P±(ω, k) is the unique solution of the so-called Riccati

equation

T ±
10 (ω, k)(P±(ω, k))2 + (T ±

00 (ω, k) + T ±
11 (ω, k))P±(ω, k) + T ±

01 (ω, k) = 0 (6.7)

with spectral radius strictly less than one. Here, the operators T ±
ij (ω, k) ∈ L(H

1/2
1p (Γ

±
0 ),H

−1/2
1p (Γ±

0 )),

i, j = 0, 1, are defined by

T ±
00 (ω, k)φ = ∓α∂2u±0 (· ;ω, k, φ)) |Γ±

0
,

T ±
01 (ω, k)φ = (S±)−1

[
±α∂2u±0 (· ;ω, k, φ)) |Γ±

1

]
,

T ±
10 (ω, k)φ = ∓α∂2u±1 (· ;ω, k,S±φ)) |Γ±

0
,

T ±
11 (ω, k)φ = (S±)−1

[
±α∂2u±1 (· ;ω, k,S±φ)) |Γ±

1

]
,

for any φ ∈ H
1/2
1p (Γ

±
0 ), where u

±
i ≡ u±i (·;ω, k, φ) ∈ H1

1p(∆, C
±
1 , α), i = 0, 1, solve

−(∇+ ik(10)) · α(∇+ ik(10))u
±
i − ω2βu±i = 0 in C±

1 , (6.8a)

with Dirichlet boundary data

u±i = δijφ on Γ±
j . (6.8b)

Here and in the following, δij denotes the usual Kronecker delta, i. e. δij = 1 if i = j, and δij = 0 if i /= j.

Then the DtN operators D±(ω, k) are given by [JLF06]

D±(ω, k) = −T ±
00 (ω, k)− T ±

10 (ω, k)P±(ω, k). (6.9)

Remark 6.5. The Dirichlet cell problems (6.8) are well-posed except for a countable set of frequencies ω,

the so-called local Dirichlet eigenvalues, and hence, the operators Tij, i, j = 0, 1, are injective for almost

any ω [JLF06] . Moreover, we can show — using the Fredholm theory — that the operators T00, T11 and

T00+T11 are isomorphisms from H
1/2
1p (Γ

±
0 ) onto H

−1/2
1p (Γ±

0 ). On the other hand, the operators T01 and T10
are compact and hence, they are not bijective [Fli09].

Remark 6.6. Replacing the Dirichlet boundary conditions (6.8b) by Robin boundary conditions, the local

cell problems (6.8) become well-posed for all frequencies ω [Fli09, FJL10]. The characterization of the

DtN operators with the help of local cell problems with Robin boundary conditions will be discussed in

Chapter 7.
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6.1.3 Derivatives of the Dirichlet-to-Neumann operators

In this section we show that the DtN operators D±(ω, k) are differentiable with respect to the frequency

ω and the quasi-momentum k inside the band gaps up to any order. Furthermore, we shall explain how

to compute the derivatives of the DtN operators via local cell problems.

The differentiability of the DtN operators with respect to ω and k is an important property that is

needed for solving the nonlinear eigenvalue problem with DtN transparent boundary conditions, that

we will introduce later in Section 6.2. Moreover, we need the differentiability of the DtN operators up

to any order in Section 6.2.3, where we will derive formulas for the derivatives of the dispersion curves

with respect to the quasi-momentum k when prescribing DtN transparent boundary conditions on Γ±
0 in

contrast to periodic boundary conditions as done in Chapter 4.

Differentiability of the Dirichlet-to-Neumann operators

Let us again assume that ω2 /∈ σ±(k) and let the half strip problem (6.1) as well as the local cell

problems (6.8) be well-posed. Then the DtN operators are defined uniquely and can be computed using

Eq. (6.9).

Let u±(· ;ω, k, φ) be the unique solution in H1
1p(∆, S

±, α) of the Dirichlet problem (6.1). Then we

introduce u±ω (· ;ω, k, φ) as the unique solution in H1
1p(∆, S

±, α) of

−(∇+ ik(10)) · α(∇+ ik(10))u
±
ω − ω2βu±ω = 2ωβu± in S±, (6.10a)

u±ω = 0 on Γ±
0 , (6.10b)

and u±k (· ;ω, k, φ) as the unique solution in H1
1p(∆, S

±, α) of

−(∇+ ik(10)) · α(∇+ ik(10))u
±
k − ω2βu±k = (2α (−k + i∂1) + i∂1α)u

± in S±, (6.11a)

u±k = 0 on Γ±
0 . (6.11b)

Note that ∂1α exists almost everywhere in S±. The functions u±ω (· ;ω, k, φ) and u±k (· ;ω, k, φ) are well-

defined for almost any ω2 /∈ σ±(k) thanks to the following proposition.

Proposition 6.7. Let ω2 /∈ σ±(k) and let the problem (6.1) be well-posed. Then the source prob-

lems (6.10) and (6.11) are well-posed.

Proof. The result directly follows from the fact that by assumption the infinite half-strip problem (6.1) is

well-posed for any Dirichlet data φ ∈ H
1/2
1p (Γ

±
0 ). Then it is also clear that the problems (6.10) and (6.11),

with well-defined source term and homogeneous Dirichlet boundary conditions on Γ±
0 are well-posed.

Now we can show the Fréchet-differentiability of u(· ;ω, k, φ).

Theorem 6.8. Suppose that ω2 /∈ σ±(k) and that the problem (6.1) is well-posed in a neighbourhood of

ω2. Then for any φ ∈ H
1/2
1p (Γ

±
0 ), u(· ;ω, k, φ) is Fréchet-differentiable with respect to ω and k, and

∂u±(· ;ω, k, φ)
∂ω

= u±ω (· ;ω, k, φ) and
∂u±(· ;ω, k, φ)

∂k
= u±k (· ;ω, k, φ).

Proof. For simplicity of notation, let us write u±(ω) = u±(· ;ω, k, φ) and u±ω (ω) = u±ω (· ;ω, k, φ) for any ω.
Let ω2

0 /∈ σ±(k) and suppose that the problem (6.1) is well-posed for any ω2 ∈ ((ω0 − h0)
2, (ω0 + h0)

2)

with some h0 > 0. It is easy to see that for all h ∈ (0, h0)

e±ω (h) := u±(ω0 + h)− u±(ω0)

is a solution in H1
1p(∆, S

±, α) of

−(∇+ ik(10)) · α(∇+ ik(10))e
±
ω (h)− ω2

0βe
±
ω (h) = (2hω0 + h2)βu±(ω0 + h) in S±,

e±ω (h) = 0 on Γ±
0 .
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Due to Proposition 6.7, this problem is well-posed and we can deduce limh→0 e
±
ω (h) = 0 in H1

1p(∆, S
±, α),

which implies that u±(ω) is continuous at ω = ω0.

Now we introduce

ẽ±ω (h) :=
1

h

(
u±(ω0 + h)− u±(ω0)− hu±ω (ω0)

)
.

It is straightforward to verify that ẽ±ω (h) is a solution in H1
1p(∆, S

±, α) of

−(∇+ ik(10)) · α(∇+ ik(10))ẽ
±
ω (h)− ω2

0βẽ
±
ω (h) = 2ω0β(u

±(ω0 + h)− u±(ω0)) + hβu±(ω0 + h) in S±,

ẽ±ω (h) = 0 on Γ±
0 .

Again we can employ Proposition 6.7 and deduce that this problem is well-posed. Finally, using the

continuity of u±(ω) at ω = ω0 we obtain limh→0 ẽ
±
ω (h) = 0 in H1

1p(∆, S
±, α) and hence, u±(ω) is Fréchet-

differentiable with respect to ω at ω = ω0 with derivative u±ω (· ;ω0, k, φ).

The proof for the derivative with respect to k uses exactly the same ideas. We introduce the short

notation u±(k) = u±(· ;ω, k, φ) and u±k (k) = u±k (· ;ω, k, φ) for all k ∈ B. Let k0 ∈ B and ω2 /∈ σ±(k0).

Suppose that ω2 /∈ σ±(k) and that the problem (6.1) is well-posed for any k ∈ (k0, k0 + h) with some

h0 > 0. It is easy to see that for all h ∈ (0, h0)

e±k (h) := u±(k0 + h)− u±(k0)

is a solution in H1
1p(∆, S

±, α) of

−(∇+ ik0(10)) · α(∇+ ik0(10))e
±
k (h)− ω2βe±k (h)

= h (2α (−(k0 + h) + i∂1) + i∂1α)u
±(k0 + h) in S±,

e±k (h) = 0 on Γ±
0 .

This problem is well-posed thanks to Proposition 6.7, and then limh→0 e
±
k (h) = 0 in H1

1p(∆, S
±, α), which

implies that u±(· ;ω, k, φ) is continuous at k = k0.

Now we introduce

ẽ±k (h) :=
1

h

(
u±(k0 + h)− u±(k0)− hu±k (k0)

)
,

which is a solution in H1
1p(∆, S

±, α) of

−(∇+ ik0(10)) · α(∇+ ik0(10))ẽ
±
k (h)− ω2βẽ±k (h)

= (2α (−k0 + i∂1) + i∂1α)
(
u±(k0 + h)− u±(k0)

)
− 2hαu±(k0 + h) in S±,

ẽ±k (h) = 0 on Γ±
0 .

Once more using Proposition 6.7 we can deduce that this problem is well-posed. Finally, employing

the continuity of u±(k) at k = k0 we obtain limh→0 ẽ
±
k (h) = 0 in H1

1p(∆, S
±, α) and hence, u±(k) is

Fréchet-differentiable with respect to k at k = k0 with derivative u±ω (· ;ω, k0, φ).

Using the definition (6.2) of the DtN operators D±(ω, k), we deduce their Fréchet-differentiability with

respect to ω and k.

Corollary 6.9. Suppose that ω2 /∈ σ±(k) and that the problem (6.1) is well-posed in a neighbourhood of

ω2. Then the DtN operators D±(ω, k) are differentiable with respect to the frequency ω and the quasi-

momentum k, and for all φ ∈ H
1/2
1p (Γ

±
0 )

∂D±

∂ω
(ω, k)φ = ±α∂2u±ω (· ;ω, k, φ) |Γ±

0
(6.12a)

and

∂D±

∂k
(ω, k)φ = ±α∂2u±k (· ;ω, k, φ) |Γ±

0
. (6.12b)
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Remark 6.10. Iteratively repeating the same steps as above we can deduce that the DtN operators

D±(ω, k) are differentiable to any order with respect to the frequency ω and the quasi-momentum k if

ω2 /∈ σ±(k) and the problem (6.1) is well-posed in a neighbourhood of ω2.

For simplicity of notation, let us write

D±
ω (ω, k) =

∂D±

∂ω
(ω, k) and D±

k (ω, k) =
∂D±

∂k
(ω, k)

in the sequel.

Characterization of the derivatives of Dirichlet-to-Neumann operators

For the characterization of the derivatives (6.12) of the DtN operators we employ the same concepts as

in Section 6.1.2 for the characterization of the DtN operators. First we will show that the propagation

operators P±(ω, k) are differentiable with respect to ω and k. Then we note that the same is true for

the local DtN operators T ±
ij (ω, k) and present their derivatives of with respect to ω and k. Finally, we

show how to compute the derivatives D±
ω (ω, k) and D±

k (ω, k) of the DtN operators with the help of these

operators.

Analogously to Corollary 6.9, we obtain the following result for the propagation operators.

Corollary 6.11. Suppose that ω2 /∈ σ±(k) and that the problem (6.1) is well-posed in a neighbourhood

of ω2. Then the propagation operators P±(ω, k) are differentiable with respect to the frequency ω and the

quasi-momentum k, and for all φ ∈ H
1/2
1p (Γ

±
0 )

∂P±

∂ω
(ω, k)φ = (S±)−1u±ω (· ;ω, k, φ) |Γ±

1
and

∂P±

∂k
(ω, k)φ = (S±)−1u±k (· ;ω, k, φ) |Γ±

1
.

Now we want to characterize first the derivatives of the propagation operators and then the derivatives

of the DtN operators via solutions of local cell problems. In the following, we explain the characterization

of the derivative with respect to ω, the ideas for the derivatives with respect to k are exactly the same.

To this end, we have to introduce the derivatives of the local DtN operators T ±
ij (ω, k). Let us suppose

that the Dirichlet cell problems (6.8) are well-defined and let us introduce for all φ ∈ H
1/2
1p (Γ

±
0 ) the unique

solutions u±ω,i(· ;ω, k, φ), i = 0, 1, in H1
1p(∆, C

±
1 , α) of the new local cell problems

−(∇+ ik(10)) · α(∇+ ik(10))u
±
ω,i − ω2βu±ω,i = 2ωβu±i in C±

1 , (6.13a)

u±ω,i = 0 on Γ±
0 and Γ±

1 , (6.13b)

where u±i ≡ u±i (· ;ω, k, φ) are the unique solutions of the local cell problems (6.8). Using exactly the

same ideas as above, we can show that the operators T ±
ij (ω, k) are Fréchet differentiable with respect to

ω and for all φ ∈ H
1/2
1p (Γ

±
0 )

∂T ±
00 (ω, k)

∂ω
φ = ∓α∂2u±ω,0(· ;ω, k, φ)) |Γ±

0
,

∂T ±
01 (ω, k)

∂ω
φ = (S±)−1

[
±α∂2u±ω,0(· ;ω, k, φ)) |Γ±

1

]
,

∂T ±
10 (ω, k)

∂ω
φ = ∓α∂2u±ω,1(· ;ω, k,S±φ)) |Γ±

0
,

∂T ±
11 (ω, k)

∂ω
φ = (S±)−1

[
±α∂2u±ω,1(· ;ω, k,S±φ)) |Γ±

1

]
.

Finally, we can uniquely characterize the derivatives of the propagation operators P±(ω, k).

Proposition 6.12. The derivatives of P±(ω, k) with respect to ω are the unique solutions in L(H
1/2
1p (Γ

±
0 ))

of (
T ±
10 (ω, k)P±(ω, k) + T ±

00 (ω, k) + T ±
11 (ω, k)

)∂P±(ω, k)

∂ω
+ T ±

10 (ω, k)
∂P±(ω, k)

∂ω
P±(ω, k)

= −∂T
±
10 (ω, k)

∂ω

(
P±(ω, k)

)2 − (∂T ±
00 (ω, k)

∂ω
+
∂T ±

11 (ω, k)

∂ω

)
P±(ω, k)− ∂T ±

01 (ω, k)

∂ω
. (6.14)
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Proof. Differentiating Eq. (6.7) with respect to ω, it is easy to see that the derivatives of P±(ω, k) with

respect to ω are solutions of Eq. (6.14). To deduce uniqueness, it suffices to show that the operator

Tω,k : L(H
1/2
1p (Γ

±
0 )) → L(H

1/2
1p (Γ

±
0 ))

X
(
T ±
10 (ω, k)P±(ω, k) + T ±

00 (ω, k) + T ±
11 (ω, k)

)
X + T ±

10 (ω, k)XP±(ω, k)

is injective. However, injectivity of this operator was already proven in [Coa12], where it occurs in the

determination of the DtN operators for time domain problems. Finally, if there exist two solutions Pω,1

and Pω,2 of Eq. (6.14) then their difference satisfies Tω,k (Pω,1 −Pω,2) = 0 and by injectivity of Tω,k, the

two solutions are necessarily the same.

The techniques for solving the linear operator equation (6.14) on a discrete level will be discussed in

Section 6.1.5.

Differentiating Eq. (6.9), we can deduce that the derivatives of the DtN operators D±(ω, k) with respect

to ω read

D±
ω (ω, k) = −∂T

±
00 (ω, k)

∂ω
− ∂T ±

10 (ω, k)

∂ω
P±(ω, k)− T ±

10 (ω, k)
∂P±(ω, k)

∂ω
. (6.15)

The derivatives of the propagation operators P±(ω, k) and of the DtN operators D±(ω, k) with respect

to k are characterized similarly by simply replacing all ω-derivatives in Eqs. (6.14) and (6.15) by k-

derivatives. On the other hand, the k-derivatives of the operators T ±
ij (ω, k), i, j = 0, 1, are for all

φ ∈ H
1/2
1p (Γ

±
0 ) given by

∂T ±
00 (ω, k)

∂k
φ = ∓α∂2u±k,0(· ;ω, k, φ)) |Γ±

0
,

∂T ±
01 (ω, k)

∂k
φ = (S±)−1

[
±α∂2u±k,0(· ;ω, k, φ)) |Γ±

1

]
,

∂T ±
10 (ω, k)

∂k
φ = ∓α∂2u±k,1(· ;ω, k,S

±φ)) |Γ±
0
,

∂T ±
11 (ω, k)

∂k
φ = (S±)−1

[
±α∂2u±k,1(· ;ω, k,S

±φ)) |Γ±
1

]
,

where u±k,i ≡ u±k,i(·;ω, k, φ) are the unique solutions in H1
1p(∆, C

±
1 , α), i = 0, 1, of

−(∇+ ik(10)) · α(∇+ ik(10))u
±
k,i − ω2βu±k,i = (2α (−k + i∂1) + i∂1α)u

±
i in C±

1 , (6.16a)

u±k,i = 0 on Γ±
0 and Γ±

1 . (6.16b)

Remark 6.13. In contrast to the Dirichlet cell problems (6.8) to determine the DtN operators, the

Dirichlet cell problems (6.13) and (6.16) to compute the ω- and k-derivatives of the DtN operators have

homogeneous Dirichlet boundary conditions but a source term that depends on the solutions u±i , i = 0, 1,

of the original cell problems (6.8).

Extension to higher order derivatives

As elaborated in Remark 6.10 the DtN operators are differentiable with respect to ω and k up to any

order. The same is true for the propagation operators and the local DtN operators. Hence, we can

characterize the partial derivatives of the DtN operators with respect to ω and k of any order in a similar

fashion like we characterized D±
ω (ω, k) and D±

k (ω, k).

To this end, let us introduce u
±,(m,n)
i (· ;ω, k, φ) ∈ H1

1p(∆, C
±
1 , α), m,n ∈ N, i = 0, 1, as the unique

solution of

−(∇+ ik(10)) · α(∇+ ik(10))u
±,(m,n)
i − ω2βu

±,(m,n)
i = f

±,(m,n)
i in C±

1 , (6.17a)

u
±,(m,n)
i = 0 on Γ±

0 and Γ±
1 (6.17b)
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with

f
±,(m,n)
i = 2mωβu

±,(m−1,n)
i +m(m− 1)βu

±,(m−2,n)
i

+ n (2α(−k + i∂1) + i∂1α)u
±,(m,n−1)
i − n(n− 1)αu

±,(m,n−2)
i .

Note that this notation implies

u
±,(0,0)
i (· ;ω, k, φ) = u±i (· ;ω, k, φ),

u
±,(1,0)
i (· ;ω, k, φ) = u±ω,i(· ;ω, k, φ),

u
±,(0,1)
i (· ;ω, k, φ) = u±k,i(· ;ω, k, φ).

Introducing the short notation

T ±,(m,n)
ij (ω, k) :=

∂m+nT ±
i,j(ω, k)

∂ωm∂kn
,

i, j = 0, 1, we have

T ±,(m,n)
00 (ω, k)φ = ∓α∂2u±,(m,n)

0 (· ;ω, k, φ)) |Γ±
0
,

T ±,(m,n)
01 (ω, k)φ = (S±)−1

[
±α∂2u±,(m,n)

0 (· ;ω, k, φ)) |Γ±
1

]
,

T ±,(m,n)
10 (ω, k)φ = ∓α∂2u±,(m,n)

1 (· ;ω, k,S±φ)) |Γ±
0
,

T ±,(m,n)
11 (ω, k)φ = (S±)−1

[
±α∂2u±,(m,n)

1 (· ;ω, k,S±φ)) |Γ±
1

]
,

for any m,n ∈ N0.

With these operators we can characterize the derivative of the propagation operator P±(ω, k). Similarly

to Proposition 6.12, we find that the derivatives

P±,(m,n)(ω, k) :=
∂m+nP±(ω, k)

∂ωm∂kn

of the propagation operators P±(ω, k) of order m with respect to ω and order n with respect to k are

the unique solutions of

0 =
∂m+n

∂ωm∂ωn

[
T ±
10

(
P±)2 + (T ±

00 + T ±
11

)
P± + T ±

01

]

=
∑

(m,n)∈N3(m,n)

(
m

m

)(
n

n

)
T ±,(m1,n1)
10 P±,(m2,n2)P±,(m3,n3)

+
∑

(m,n)∈N2(m,n)

(
m

m

)(
n

n

)(
T ±,(m1,n1)
00 + T ±,(m1,n1)

11

)
P±,(m2,n2)

+ T ±,(m,n)
01 (6.18)

with the multinomial coefficient (
m

m

)
=

(
m

m1, . . . ,md

)
=

m!

m1! · · ·md!
, (6.19)

d ∈ N, m ∈ N0, m ∈ Nd, and the sets N2(m,n) and N3(m,n), that are defined by

Nd(m,n) :=
{
(m,n) ∈ Nd

0 × Nd
0

⏐⏐⏐ ∑d

i=1
mi = m and

∑d

i=1
ni = n

}
. (6.20)
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Eq. (6.18) can be brought into a similar form like (6.14), i. e.(
T ±
10P± + T ±

00 + T ±
11

)
P±,(m,n) + T ±

10P±,(m,n)P±

= −
∑

(m,n)∈Ñ3
{2,3}(m,n)

(
m

m

)(
n

n

)
T ±,(m1,n1)
10 P±,(m2,n2)P±,(m3,m3)

−
∑

(m,n)∈Ñ2
{2}(m,n)

(
m

m

)(
n

n

)(
T ±,(m1,n1)
00 + T ±,(m1,n1)

11

)
P±,(m2,n2)

− T ±,(m,n)
01 , (6.21)

where the sets Ñ2
{2}(m,n) and Ñ3

{2,3}(m,n) are defined by

Ñd
J(m,n) :=

{
(m,n) ∈ Nd(m,n)

⏐⏐⏐ mj + nj /= m+ n ∀j ∈ J
}
, (6.22)

where J ⊆ {1, . . . , d}.
Finally, differentiating Eq. (6.9) m times with respect to ω and n times with respect to k, we can

deduce that the m-th ω- and n-th k-derivatives

D±,(m,n)(ω, k) :=
∂m+nD±(ω, k)

∂ωm∂kn

of the DtN operators D±(ω, k) read

D±,(m,n) = −T ±,(m,n)
00 −

m∑
p=0

n∑
q=0

(
m

p

)(
n

q

)
T ±,(p,q)
10 P±,(m−p,n−q). (6.23)

6.1.4 Variational formulation of the local cell problems

In this section we will introduce variational formulations of the local cell problems (6.8) for the computa-

tion of u±i , i = 0, 1, and of the local cell problems (6.17) for the computation of the ω- and k-derivatives

of u±i .

To this end, we start by introducing a Dirichlet lift w±
i ≡ w±

i (· ;φ) ∈ H1
1p(C

±
1 ) with w±

i |Γ±
j
= δijφ, and

the space

H1
1p,0(C

±
1 ) :=

{
u ∈ H1

1p(C
±
1 ) with u |Γ±

0
= u |Γ±

1
= 0
}
.

Then the weak solutions u±i ≡ u±i (· ;ω, k, φ) ∈ H1
1p(C

±
1 ) of the Dirichlet cell problems (6.8) can be

decomposed into u±i (· ;ω, k, φ) = w±
i (· ;φ) + u±i,0(· ;ω, k, φ), where u±i,0 ≡ u±i,0(· ;ω, k, φ) ∈ H1

1p,0(C
±
1 )

satisfies

bC±
1
(u±i,0, v;ω, k) = −bC±

1
(w±

i , v;ω, k) (6.24)

for all v ∈ H1
1p,0(C

±
1 ), with the sesquilinear form bC±

1
(·, · ;ω, k) defined by

bC±
1
(u, v;ω, k) := aα

C±
1
(u, v) + kcα,1

C±
1

(u, v) + k2mα
C±

1
(u, v)− ω2mβ

C±
1

(u, v) (6.25a)

with

aα
C±

1
(u, v) :=

∫
C±

1

α∇u · ∇v dx, (6.25b)

cα,1
C±

1

(u, v) :=

∫
C±

1

iα (u(∂1v)− (∂1u)v) dx, (6.25c)

mα
C±

1
(u, v) :=

∫
C±

1

αuv dx, (6.25d)

mβ

C±
1

(u, v) :=

∫
C±

1

βuv dx. (6.25e)
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The DtN-like operators T ±
ij (ω, k), i, j = 0, 1, then satisfy for any φ,ψ ∈ H

1/2
1p (Γ

±
0 )∫

Γ±
0

T ±
ij (ω, k)φψ ds(x) =

∫
Γ±
0

(S±)−j
[
∓(−1)jα∂2u

±
i (· ;ω, k, (S

±)iφ)
]
ψ ds(x)

=

∫
Γ±
j

∓(−1)jα∂2u
±
i (· ;ω, k, (S

±)iφ) (S±)jψ ds(x)

= bC±
1
(u±i (· ;ω, k, (S

±)iφ), w±
j (· ; (S

±)jψ);ω, k),

(6.26)

where we used the relations (6.4) and (6.5) and integration by parts.

Note that from Eq. (6.24) it follows that bC±
1
(u±i (· ;ω, k, (S±)iφ), v;ω, k) = 0 if v ∈ H1

1p,0(C
±
1 ). The

term on the right hand side of Eq. (6.26) has exactly this form only that w±
j (· ; (S±)jψ) has a non-

vanishing trace on Γ±
j .

Now we proceed with the variational formulation of (6.17). Considering that∫
C±

1

∂1αu v dx = −
∫
C±

1

α (∂1u v + u ∂1v) dx

for all u, v ∈ H1
1p,0(C

±
1 ), it is easy to see that (6.17) is equivalent to: find u

±,(m,n)
i ∈ H1

1p,0(C
±
1 ) such that

bC±
1
(u

±,(m,n)
i , v;ω, k) = 2mωmβ

C±
1

(u
±,(m−1,n)
i , v) +m(m− 1)mβ

C±
1

(u
±,(m−2,n)
i , v)

− 2nkmα
C±

1
(u

±,(m,n−1)
i , v)− n cα,1

C±
1

(u
±,(m,n−1)
i , v)− n(n− 1)mα

C±
1
(u

±,(m,n−2)
i , v) (6.27)

for all v ∈ H1
1p,0(C

±
1 ). Similarly to (6.26) we can deduce that for any φ,ψ ∈ H

1/2
1p (Γ

±
0 ) the derivatives of

the local DtN operators T ±
ij (ω, k), i, j = 0, 1, of order m with respect to ω and order n with respect to k

satisfy∫
Γ±
0

T ±,(m,n)
ij (ω, k)φψ ds(x) = bC±

1
(u

±,(m,n)
i (· ;ω, k, (S±)iφ), w±

j (· ; (S
±)jψ);ω, k)

− 2mωmβ

C±
1

(u
±,(m−1,n)
i (· ;ω, k, (S±)iφ), w±

j (· ; (S
±)jψ))

−m(m− 1)mβ

C±
1

(u
±,(m−2,n)
i (· ;ω, k, (S±)iφ), w±

j (· ; (S
±)jψ))

+ 2nkmα
C±

1
(u

±,(m,n−1)
i (· ;ω, k, (S±)iφ), w±

j (· ; (S
±)jψ))

+ n cα,1
C±

1

(u
±,(m,n−1)
i (· ;ω, k, (S±)iφ), w±

j (· ; (S
±)jψ))

+ n(n− 1)mα
C±

1
(u

±,(m,n−2)
i (· ;ω, k, (S±)iφ), w±

j (· ; (S
±)jψ)).

6.1.5 Discretization

In this section we discuss the discretization of the local cell problems, the solution of the discrete Riccati

equation and the computation of the discrete DtN operators and its derivatives. However, before we start

with discussing the discretization of the local cell problems we introduce the FE spaces.

High-order finite element spaces

For the discretization of the variational formulations (6.24) of the local cell problems (6.8), we need FE

subspaces of H1
1p(C

±
1 ) and its trace spaces H

1/2
1p (Γ

±
i ), i = 0, 1. We shall simultaneously introduce the

FE subspace of H1
1p(C0), which we will employ later in Section 6.2, when transforming the eigenvalue

problem (2.19) in the infinite strip S to an eigenvalue problem in the defect cell C0 using the DtN

operators D±.

To this end, let us first discuss the FE meshes. Similarly to the FE meshes of PhC unit cells and

supercells of PhC waveguides, that we discussed in Section 2.5, we assume that the domains C0 and C±
1

are partitioned into possibly curved geometrical cells, that are either quadrilaterals or triangles, see for
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6.1 The Dirichlet-to-Neumann operators

example the mesh of the domain C+
1 ∪C0∪C−

1 with curved, quadrilateral cells in Figure 6.1. The meshes

M(C0) and M(C±
1 ) are assumed to be periodic in direction a1, i. e. for each edge of a geometrical cell

on the left boundary there exists an edge on the right boundary, which is shifted by a1. On the other

hand, we do not necessarily have to assume that the mesh M(C0) is periodic in direction of a02. However,

the meshes M(C±
1 ) have to be again periodic in direction a±2 , i. e. for each edge of a geometrical cell on

the boundary Γ±
0 there exists an edge on the boundary Γ±

1 , that is shifted by ±a±2 . Moreover, we need

that the meshes M(C0) and M(C±
0 ) coincide on their interfaces Γ±

0 , i. e. the set of of edges of M(C0) and

M(C±
0 ) are identical and define the geometrical cells of the interface meshes M(Γ±

0 ). The geometrical

cells K in M(Γ±
0 ) can alternatively be defined by affine maps FK from the reference interval K̂ = [0, 1].

C0

C+
1

Γ+
0

Γ+
1

C−
1

Γ−
0

Γ−
1

Figure 6.1: Mesh with curved, quadrilateral cells of the defect cell C0 and the PhC unit cells C±
1 on top

and bottom, the interfaces Γ±
0 and the top and bottom boundaries Γ±

1 .

Based on the meshes M(Ω), Ω = C0, C
±
1 ,Γ

±
0 , we can define discrete subspaces of H1

1p(C0), H
1
1p(C

±
1 )

and H
1/2
1p (Γ

±
0 ) as

Sp1p(Ω) := {v ∈ H1
1p(Ω) ∩ C0(Ω) : v|K ◦ FK ∈ Pp(K̂(K)) ∀K ∈ M(Ω)},

where p is the polynomial degree, Pp(K̂) is the space of polynomials with maximal (total) degree p as

defined in (2.27), and Ω is either C0, C
±
1 or Γ±

0 . Due to the periodicity of the meshes M(C±
1 ) in direction

of a±2 , the basis functions of Sp1p(Γ
±
0 ) shifted to Γ±

1 are enclosed in H
1/2
1p (Γ

±
1 ) and hence, form a basis of

Sp1p(Γ
±
1 ). Thus, we can refrain from defining an independent FE subspace for H

1/2
1p (Γ

±
1 ).

Let us from now on assume that the FE subspaces of H1
1p(C0), H

1
1p(C

±
1 ) and H

1/2
1p (Γ

±
0 ) have the same

maximal (total) polynomial degree p. We will denote the dimensions of these FE spaces by

N(C0) := dim Sp1p(C0),

N(C±
1 ) := dim Sp1p(C

±
1 ),

N(Γ±
0 ) := dim Sp1p(Γ

±
0 ).

It will prove useful to introduce basis functions bC0,n, n = 1, . . . , N(C0), of S
p
1p(C0) which are ordered

such that

• the basis functions with index n ∈ S(C0,Γ
+
0 ) := {1, . . . , N(Γ+

0 )} vanish on Γ−
0 , but their traces on

Γ+
0 build a basis of Sp1p(Γ

+
0 ),

• the basis functions with index n ∈ S(C0,Γ
−
0 ) := {N(Γ+

0 ) + 1, . . . , N(Γ+
0 ) +N(Γ−

0 )} vanish on Γ+
0 ,

but their traces on Γ−
0 build a basis of Sp1p(Γ

−
0 ), and

• the basis functions with index n ∈ S(C0, C0) := {N(Γ+
0 ) +N(Γ−

0 ) + 1, . . . , N(C0)} vanish on Γ±
0 .

With this special ordering we can relate the basis functions of Sp1p(Γ
±
0 ) and the traces of the basis functions
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6 Dirichlet-to-Neumann transparent boundary conditions

of Sp1p(C0), i. e.

bΓ+
0 ,n =

N(Γ+
0 )∑

m=1

Q+
C0,mnbC0,m|Γ+

0
, (6.28a)

bΓ−
0 ,n =

N(Γ−
0 )∑

m=1

Q−
C0,mnbC0,N(Γ+

0 )+m|Γ−
0
, (6.28b)

with permutation matrices Q+
C0

∈ RN(Γ+
0 )×N(Γ+

0 ) and Q−
C0

∈ RN(Γ−
0 )×N(Γ−

0 ). Analogously, we assume

that the basis functions bC±
1 ,n, n = 1, . . . , N(C±

1 ), of Sp1p(C
±
1 ) are ordered such that

• the basis functions with index

n ∈ S(C±
1 ,Γ

±
0 ) := {1, . . . , N(Γ±

0 )} (6.29a)

vanish on Γ±
1 , but their traces on Γ±

0 build a basis of Sp1p(Γ
±
0 ),

• the basis functions with index

n ∈ S(C±
1 ,Γ

±
1 ) := {N(Γ±

0 ) + 1, . . . , 2N(Γ±
0 )} (6.29b)

vanish on Γ±
0 , but their traces on Γ±

1 shifted to Γ±
0 , using the shift operator (S±)−1 build a basis

of Sp1p(Γ
±
0 ) as well, and

• the basis functions with index

n ∈ S(C±
1 , C

±
1 ) := {2N(Γ±

0 ) + 1, . . . , N(C±
1 )} (6.29c)

vanish on Γ±
0 and Γ±

1 .

Hence, we obtain analogously to (6.28) a relation of the basis functions of Sp1p(Γ
±
0 ) and the traces of the

basis functions of Sp1p(C
±
1 ), i. e.

bΓ±
0 ,n =

N(Γ±
0 )∑

m=1

Q0
C±

1 ,mn
bC±

1 ,m|Γ±
0
=

N(Γ±
0 )∑

m=1

Q1
C±

1 ,mn
bC±

1 ,m+N(Γ±
0 )|Γ±

1
(6.30)

with matrices Qi
C±

1

∈ RN(Γ±
0 )×N(Γ±

0 ), i = 0, 1.

−0.2

0.0

0.2

Γ±
0

(a) Edge function of second

order.

−0.2

0.0

0.2

Γ±
0

(b) Edge functions of third

order.

−0.2

0.0

0.2

Γ±
0

(c) Edge function of fourth

order.

−0.2

0.0

0.2

Γ±
0

(d) Edge functions of fifth

order.

Figure 6.2: Basis functions of Sp1p(Γ
±
0 ) according to Karniadakis and Sherwin [KS05] if no h-refinement

is applied the edge Γ±
0 , see the coarse mesh in Figure 6.1. Note that due to periodicity, the first order

basis function, which is not shown in this figure, is constant with value one. While the basis functions

of even order are uniquely defined, the basis functions of odd order are not unique (blue and red curves)

and depend on the local and global orientation of the edge.

Using the same sort of shape functions for the spaces Sp1p(C0), S
p
1p(C

±
1 ) and Sp1p(Γ

±
0 ), the matrices Q±

C0

and Qi
C±

1

, i = 0, 1, have the structure of permutation matrices with entries ±1, where there are only
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6.1 The Dirichlet-to-Neumann operators

entries −1, if the corresponding edge functions are of odd order and the global and local orientations

of the edge, which are responsible for the direction, mismatch. We use a hierarchical family of shape

functions proposed by Karniadakis and Sherwin [KS05] based on integrated Legendre polynomials. Their

edge functions are shown in Figure 6.2, which illustrates the possibility of mismatching orientations.

Now we ready to discuss the discretization of the local cell problems.

Discretization of the local cell problems

We aim to find approximate solutions u±i,h(· ;ω, k, φh) ∈ Sp1p(C
±
1 ) to the cell problems (6.24), from which

we can construct the discrete local DtN operators Tij,h(ω, k) ∈ L(Sp1p(Γ
±
0 )), i, j = 0, 1, that can be

represented in terms of the local DtN matrices T±
ij(ω, k) ∈ CN(Γ±

0 )×N(Γ±
0 ), i, j = 0, 1, with entries

T±
ij,mn(ω, k) =

∫
Γ±
0

T ±
ij (ω, k)bΓ±

0 ,n bΓ±
0 ,m ds(x). (6.31)

With the special ordering of the basis functions and the relation (6.30) between the traces of the basis

functions in Sp1p(C
±
1 ) and Sp1p(Γ

±
0 ) we can define the discrete Dirichlet lifts

w±
0,h(· ; bΓ±

0 ,n) =

N(Γ±
0 )∑

m=1

Q0
C±

1 ,mn
bC±

1 ,m, w±
1,h(· ; bΓ±

0 ,n) =

N(Γ±
0 )∑

m=1

Q0
C±

1 ,mn
bC±

1 ,m+N(Γ±
0 ).

Let us introduce the matrix

BC±
1
(ω, k) = Aα

C±
1
+ kCα,1

C±
1

+ k2Mα
C±

1
− ω2Mβ

C±
1

CN(C±
1 )×N(C±

1 ) (6.32)

where the matrices Aα
C±

1

,Cα,1

C±
1

,Mα
C±

1

,Mβ

C±
1

∈ RN(C±
1 )×N(C±

1 ) have entries

Aα
C±

1 ,mn
= aα

C±
1
(bC±

1 ,n, bC±
1 ,m),

Cα,1

C±
1 ,mn

= cα,1
C±

1

(bC±
1 ,n, bC±

1 ,m),

Mα
C±

1 ,mn
= mα

C±
1
(bC±

1 ,n, bC±
1 ,m),

Mβ

C±
1 ,mn

= mβ

C±
1

(bC±
1 ,n, bC±

1 ,m),

m, n = 1, . . . , N(C±
1 ), with the sesquilinear forms as given in Eq. (6.25).

Let N0(C
±
1 ) := N(C±

1 ) − 2N(Γ±
0 ). Furthermore, let e

N(Γ±
0 )

n ∈ RN(Γ±
0 ) be the n-th unit vector of

dimension N(Γ±
0 ), and let BC±

1
(Ω1,Ω2;ω, k) with Ω1,Ω2 ∈ {C±

1 ,Γ
±
0 ,Γ

±
1 } be the block with row indices

S(C±
1 ,Ω1) and column indices S(C±

1 ,Ω2), cf. Eq. (6.29), of the matrix BC±
1
(ω, k). If the arguments Ω1

and Ω2 are replaced by a dot, all rows and columns, respectively, are considered. Then we can write the

cell problems for u±i,h as linear systems of equations

BC±
1
(C±

1 , C
±
1 ;ω, k)u±

i,0,h(ω, k, bΓ±
0 ,n) = −BC±

1
(C±

1 ,Γ
±
i ;ω, k)Q

i
C±

1
e
N(Γ±

0 )
n , n = 1, . . . , N(Γ±

0 ),

where u±
i,0,h(ω, k, bΓ±

0 ,n) ∈ CN0(C
±
1 ) is the coefficient vector of u±i,0,h(· ;ω, k, bΓ±

0 ,n) ∈ Sp1p(C
±
1 )∩H1

1p,0(C
±
1 )

with respect to the basis functions bC±
1 ,j , j ∈ S(C±

1 , C
±
1 ). These discrete local cell problems are well-posed

as long as the mesh width h is chosen small enough and the polynomial degree p is large enough [SS11,

Thm. 4.2.9], [MS11]. The discrete cell solution u±i,h can then be represented by a vector u±
i,h(ω, k, bΓ±

0 ,n) ∈
CN(C±

1 ), whose entries with indices S(C±
1 ,Γ

±
i ) are set to the n-th column of Qi

C±
1

, the entries with indices

S(C±
1 , C

±
1 ) are set to u±

i,0,h(ω, k, bΓ±
0 ,n) and the remaining entries are set to zero.

We can collect the coefficient vectors u±
i,0,h(ω, k, bΓ±

0 ,n) for n = 1, . . . , N(Γ±
0 ) in (rectangular) matrices

U±
i,0,h(ω, k) ∈ CN0(C

±
1 )×N(Γ±

0 ) that solve

BC±
1
(C±

1 , C
±
1 ;ω, k)U±

i,0,h(ω, k) = −BC±
1
(C±

1 ,Γ
±
i ;ω, k)Q

i
C±

1
. (6.33)
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Similarly to above, we define U±
i,h(ω, k) ∈ CN(C±

1 )×N(Γ±
0 ), whose rows with indices S(C±

1 ,Γ
±
i ) are set to

Qi
C±

1

, the rows with indices S(C±
1 , C

±
1 ) are set to U±

i,0,h(ω, k) and the remaining rows are set to zero.

Inserting the basis functions bΓ±
0 ,n, n = 1, . . . , N(Γ±

0 ), of S
p
1p(Γ

±
0 ) into (6.26) yields

T±
ij(ω, k) = (Qj

C±
1

)TBC±
1
(Γ±

j , · )U
±
i,h(ω, k),

or

T±
ij(ω, k) = (Qj

C±
1

)TBC±
1
(Γ±

j , C
±
1 )U±

i,0,h(ω, k) + (Qj

C±
1

)TBC±
1
(Γ±

j ,Γ
±
i )Q

i
C±

1
,

which can be rewritten when solving (6.33) for U±
i,0,h in the from

T±
ij(ω, k) = (Qj

C±
1

)T
(
BC±

1
(Γ±

j ,Γ
±
i )−BC±

1
(Γ±

j , C
±
1 )BC±

1
(C±

1 , C
±
1 )−1BC±

1
(C±

1 ,Γ
±
i )
)
Qi

C±
1
. (6.34)

Here we omitted the (ω, k)-dependence of the matrices BC±
1
(Ω1,Ω2;ω, k), Ω1,Ω2 ∈ {C±

1 ,Γ
±
0 ,Γ

±
1 }.

Solution of the discrete Riccati equation

Using the basis functions bΓ±
0 ,n, n ∈ {1, . . . , N(Γ±

0 )}, of the discrete space S
p
1p(Γ

±
0 ), the propagation opera-

tors P±
h (ω, k) ∈ L(Sp1p(Γ

±
0 )) on the discrete spaces are represented by matrices P±(ω, k) ∈ CN(Γ±

0 )×N(Γ±
0 )

with entries P±
mn(ω, k) ∈ C, m,n = 1, . . . , N(Γ±

0 ), satisfying

P±(ω, k) bΓ±
0 ,n =

N(Γ±
0 )∑

m=1

P±
mn(ω, k) bΓ±

0 ,m. (6.35)

The Riccati equation (6.7) is fulfilled for any φ ∈ H
1/2
1p (Γ

±
0 ) the operators are applied to. A discrete

Riccati equation results if we apply the operators to a basis of the discrete space Sp1p(Γ
±
0 ) and take the

duality product with this basis.

Using the matrices T±
ij(ω, k) with entries as given in (6.31) and the propagation matrix P±(ω, k) as

defined in (6.35), we can write the discrete Riccati equation as a linear system of equations

T±
10(ω, k)(P

±(ω, k))2 + (T±
00(ω, k) +T±

11(ω, k))P
±(ω, k) +T±

01(ω, k) = 0. (6.36)

Considering that the discretization preserves the periodicity properties of C±
1 in a2-direction we deduce

that the propagation matrix P±(ω, k) is the unique matrix satisfying Eq. (6.36) with eigenvalues whose

magnitude is strictly less than one.

In [JLF06] Joly and coworkers proposed a modified Newton method to solve the matrix valued prob-

lem (6.36) where the spectral constraint is integrated implicitly into the algorithm. This modified Newton

method only requires the matrix T±
00(ω, k) +T±

11(ω, k) to be invertible, which is guaranteed by the fact

that the corresponding linear operator T ±
00 (ω, k) + T ±

11 (ω, k) is an isomorphism, see Remark 6.5, and by

the fact that the discrete local cell problems — as already mentioned above — are well-posed as long as

the mesh width h is chosen small enough and the polynomial degree p is large enough.

Another method that was sketched in [JLF06] is based on a spectral decomposition of the propagation

matrixP±(ω, k). This spectral decomposition has two main advantages compared to the modified Newton

method: first, its computational performance is better, and second, its results have a physical meaning

as we will see later in Definition 6.16 and Remark 6.17. Even though it has not been proven that the

propagation matrix P±(ω, k) is diagonalizable — in fact Hohage and Soussi [HS13] showed that the

propagation operator P±(ω, k) of the TM mode is of Jordan type — we will use this spectral method

because in practise it seems that the matrix is always diagonalizable. But also if this should not be the

case, and the propagation matrix is of Jordan type, we can still use this spectral method in a generalized

form by identifying the Jordan blocks and computing the Jordan chains. See [Fli09] for more details.

Thus, we seek eigenvalues µ±(ω, k) ∈ C with magnitude strictly less than one and their corresponding

eigenvectors ψ±(ω, k) ∈ CN(Γ±
0 ) of the quadratic eigenvalue problem[

T±
10(ω, k)

(
µ±(ω, k)

)2
+
(
T±

00(ω, k) +T±
11(ω, k)

)
µ±(ω, k) +T±

01(ω, k)
]
ψ±(ω, k) = 0, (6.37)
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6.1 The Dirichlet-to-Neumann operators

which can be transformed into the generalized linear eigenvalue problem(
−(T±

00(ω, k) +T±
11(ω, k)) −T±

01(ω, k)

I 0

)
Ψ±(ω, k) = µ±(ω, k)

(
T±

10(ω, k) 0

0 I

)
Ψ±(ω, k), (6.38)

cf. [TM01], with

Ψ±(ω, k) =

(
µ±(ω, k)ψ±(ω, k)

ψ±(ω, k)

)
. (6.39)

Now let us come to an important symmetry property of the eigenvalues of the propagation matrix

P±(ω, k). To this end, we first show

Lemma 6.14. The matrices T±
ij(ω, k), i, j = 1, 2, corresponding to the linear operators T ±

i,j, i, j = 0, 1,

are Hermitian, i. e. they satisfy

T±
ij(ω, k)

T = T±
ji(ω, k), i, j = 0, 1. (6.40)

Proof. The results directly follows from the definition (6.31) of the entries of T±
ij(ω, k), the relation (6.26)

and the fact that the bilinear form bC±
1

satisfies bC±
1
(u, v;ω, k) = bC±

1
(v, u;ω, k).

Using Lemma 6.14 it is easy to see that the quadratic eigenvalue problem (6.37) satisfies

Proposition 6.15. If µ±(ω, k) ∈ C \ {0} is an eigenvalue of (6.37), then
(
µ±(ω, k)

)−1

is also an

eigenvalue.

Proof. Taking the complex conjugate of (6.37) and inserting (6.40) yields[
T±

01(ω, k)
(
µ±(ω, k)

)2
+
(
T±

00(ω, k) +T±
11(ω, k)

)
µ±(ω, k) +T±

10(ω, k)

]T
ψ±(ω, k) = 0.

Multiplying with
(
µ±(ω, k)

)−2

and taking the transpose gives

ψ±(ω, k)
T
[
T±

10(ω, k)
(
µ±(ω, k)

)−2

+
(
T±

00(ω, k) +T±
11(ω, k)

) (
µ±(ω, k)

)−1

+T±
01(ω, k)

]
= 0.

This implies that there exists a vector ψ̃
±
(ω, k) ∈ CN(Γ±

0 ) such that[
T±

10(ω, k)
(
µ±(ω, k)

)−2

+
(
T±

00(ω, k) +T±
11(ω, k)

) (
µ±(ω, k)

)−1

+T±
01(ω, k)

]
ψ̃

±
(ω, k) = 0,

and hence,
(
µ±(ω, k)

)−1

is an eigenvalue of (6.37) with (right) eigenvector ψ̃
±
(ω, k) and left eigenvector

ψ±(ω, k)
T
.

An advantage of the spectral decomposition, that also contributes to its better computational perfor-

mance compared to the modified Newton method, is that we can directly determine whether ω2 is inside

the discrete approximation of the spectrum σ±(k).

Definition 6.16. We call the set of numbers ω2 for which the quadratic eigenvalue problem (6.37)

has eigenvalues with magnitude one the approximative spectrum σ±
h (k). The approximative spectrum

in an approximation to the spectrum of the operator A±(k) related to the eigenvalue problem (2.19).

Furthermore, define the approximative essential spectrum σess
h (k) := σ+

h (k) ∪ σ
−
h (k).

With the help of Proposition 6.15 and Definition 6.16 it is now clear how to compute the spectral

decomposition of the propagation matrix P±(ω, k). We solve the general eigenvalue problem (6.38) for

its 2N(Γ±
0 ) eigenvalues µ±(ω, k). If there exist eigenvalues with magnitude equal to one we stop our

computation as we know from Definition 6.16 that this means that ω2 is in the approximative essential

spectrum σess
h (k). Otherwise, and in accordance to Proposition 6.15, the 2N(Γ±

0 ) eigenvalues µ±(ω, k)
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6 Dirichlet-to-Neumann transparent boundary conditions

split into N(Γ±
0 ) eigenvalues with magnitude strictly less than one and N(Γ±

0 ) eigenvalues with magnitude

strictly larger than one. While discarding the N(Γ±
0 ) eigenvalues with magnitude strictly larger than one,

theN(Γ±
0 ) eigenvalues µ

±(ω, k) with magnitude strictly less than one and their corresponding eigenvectors

ψ±(ω, k) form the spectral decomposition of the propagation matrix P±(ω, k).

Note at this point that we do not introduce a modelling error when we compute the propagation

matrix since all 2N(Γ±
0 ) eigenvalues of the general eigenvalue problem (6.38) are computed and taken

into account. Thus, the only error that we expect is due to the choice of the discretization.

Remark 6.17. Assuming that P±(ω, k) is diagonalizable, the eigenvectors of P±(ω, k) form a basis of

the traces of the discretized evanescent PhC modes.

Definition of the discrete Dirichlet-to-Neumann operators

Considering Eq. (6.9) for the characterization of the DtN operators D±(ω, k), we can define the discrete

DtN operators

D±
h (ω, k) = −T ±

00,h(ω, k)− T ±
10,h(ω, k)P

±
h (ω, k) ∈ L(Sp1p(Γ

±
0 ))

with the discrete local DtN operators T ±
ij,h(ω, k) ∈ L(Sp1p(Γ

±
0 )), i, j = 0, 1, and the discrete propagation

operators P±
h (ω, k) ∈ L(Sp1p(Γ

±
0 )). Using the matrix representations of these discrete operators, we can

compute DtN matrices D±(ω, k) ∈ CN(Γ±
0 )×N(Γ±

0 ) with entries D±
mn(ω, k), m,n ∈ {1, . . . , N(Γ±

0 )}, that
satisfy

D±
h (ω, k)bΓ±

0 ,n =

N(Γ±
0 )∑

m=1

D±
mn(ω, k)bΓ±

0 ,m,

such that

D±(ω, k) = −T±
00(ω, k)−T±

10(ω, k)P
±(ω, k), (6.41)

cf. Eq. (6.9).

Derivatives of the discrete Dirichlet-to-Neumann operators

Let us define T
±,(m,n)
ij ∈ CN(Γ±

0 )×N(Γ±
0 ), m,n ∈ N0, i, j = 0, 1, to be the matrices with entries

T
±,(m,n)
ij,pq (ω, k) =

∫
Γ±
0

T ±,(m,n)
ij (ω, k) bΓ±

0 ,q bΓ±
0 ,p ds(x),

p, q = 1, . . . , N(Γ±
0 ). Directly taking the m-th ω- and n-th k-derivative of (6.34) in order to get expres-

sions for T
±,(m,n)
ij is very involved since higher order derivatives of the inverse of BC±

1
(ω, k) can only

be expressed in terms of Faà die Bruno’s formula [FdB57]. Thus, we shall explicitly solve (6.33) for

U±
i,0,h(ω, k) ∈ CN0(C

±
1 )×N(Γ±

0 ) and construct U±
i,h(ω, k) ∈ CN(C±

1 )×N(Γ±
0 ) as described above. Then we

recursively solve

BC±
1
(C±

1 , C
±
1 )U

±,(m′,n′)
i,0,h = Mβ

C±
1

(C±
1 , · )

(
2m′ωU

±,(m′−1,n′)
i,h +m′(m′ − 1)U

±,(m′−2,n′)
i,h

)
−Mα

C±
1
(C±

1 , · )
(
2n′kU

±,(m′,n′−1)
i,h + n′(n′ − 1)U

±,(m′,n′−2)
i,h

)
− n′Cα

C±
1
(C±

1 , · )U
±,(m′,n′−1)
i,h ,

for U
±,(m′,n′)
i,0,h (ω, k) ∈ CN0(C

±
1 )×N(Γ±

0 ) for all m′ = 0, . . . ,m and n′ = 0, . . . , n with m′ + n′ > 0, where we

define U
±,(0,0)
i,h (ω, k) := U±

i,h(ω, k), and the matrices U
±,(m′,n′)
i,h (ω, k) ∈ CN(C±

1 )×N(Γ±
0 ), with m′ + n′ > 0,

are obtained by setting their rows with indices S(C±
1 , C

±
1 ) to U

±,(m′,n′)
i,0,h (ω, k) and the remaining entries

to zero.

80



6.2 Nonlinear eigenvalue problem with Dirichlet-to-Neumann operators

Then the matrices T
±,(m,n)
ij (ω, k), m,n ∈ N0, read

T
±,(m,n)
ij = (Qj

C±
1

)TBC±
1
(Γ±

j , · )U
±,(m,n)
i,h

− (Qj

C±
1

)TMβ

C±
1

(Γ±
j , · )

(
2mωU

±,(m−1,n)
i,h +m(m− 1)U

±,(m−2,n)
i,h

)
+ (Qj

C±
1

)TMα
C±

1
(Γ±

j , · )
(
2nkU

±,(m,n−1)
i,h + n(n− 1)U

±,(m,n−2)
i,h

)
+ n(Qj

C±
1

)TCα
C±

1
(Γ±

j , · )U
±,(m,n−1)
i,h .

The matrices P±,(m,n)(ω, k) ∈ CN(Γ±
0 )×N(Γ±

0 ), i. e. the discrete versions of the derivatives of the prop-

agation operators, can be obtained when transferring the linear operator equation (6.21) into discrete

form by replacing all operators with their corresponding matrices. The resulting linear matrix equation

is of the form AP±,(m,n) + BP±,(m,n)C = D, with matrices A,B,C,D ∈ CN(Γ±
0 )×N(Γ±

0 ). It can be

transformed into a linear system of equation with (N(Γ±
0 ))

2 unknowns, i. e. the entries of P±,(m,n)(ω, k),

cf. [Lan70].

Similarly, we find that the derivatives of the discrete DtN operator read

D±,(m,n)(ω, k) = −T
±,(m,n)
00 (ω, k)−

m∑
p=0

n∑
q=0

(
m

p

)(
n

q

)
T

±,(p,q)
10 (ω, k)P±,(m−p,n−q)(ω, k), (6.42)

cf. Eq. (6.23).

6.2 Nonlinear eigenvalue problem with Dirichlet-to-Neumann

operators

In the previous section we introduced DtN operators for periodic media, explained their computation and

discretization. In this section we now want to show how to employ these operators in order to transform

the linear (or quadratic) eigenvalue problem (2.19) on the unbounded domain S to a nonlinear eigenvalue

problem posed in the defect cell C0. We will start with the problem in strong formulation. After

introducing a variational formulation, we will elaborate on the discretization of this nonlinear eigenvalue

problem and finally, we present numerical solution techniques to solve the nonlinear eigenvalue problem

in discretized form.

6.2.1 Main theorem

Now we state the main result of the DtN method.

Theorem 6.18. [Theorem 4.5 in [Fli13]] Let the problems (6.1) in the semi-infinite strips S± be well-

posed. Then the eigenvalue problem (2.19) is equivalent to: find couples (ω2, k) ∈ R+ × B, with ω2 /∈
σess(k), such that there exists a non-trivial u ∈ H1

1p(∆, C0, α) that satisfies

−(∇+ ik(10)) · α(∇+ ik(10))u− ω2βu = 0 in C0, (6.43a)

±α∂2u = D±(ω, k)u on Γ±
0 . (6.43b)

Note that the eigenvalue problem (6.43) — in comparison to problem (2.19) — is posed in the bounded

domain C0 but it is nonlinear with respect to ω and k. Furthermore, note that the characterization of

the DtN operators D± as described in Section 6.1.2 requires the local cell problems (6.8) to be well-posed

as well.

6.2.2 Variational formulation

The weak formulation of the nonlinear eigenvalue problem (6.43) is: find couples (ω2, k) ∈ R+ ×B such

that there exists a non-trivial u ∈ H1
1p(C0) that satisfies

bC0(u, v;ω, k)− d(u, v;ω, k) = 0 (6.44)
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6 Dirichlet-to-Neumann transparent boundary conditions

for all v ∈ H1
1p(C0), where the sesquilinear forms bC0

(·, · ;ω, k) and d(·, · ;ω, k) are defined as

bC0
(u, v;ω, k) := aαC0

(u, v) + kcα,1C0
(u, v) + k2mα

C0
(u, v)− ω2mβ

C0
(u, v) (6.45a)

and

d(u, v;ω, k) :=

∫
Γ+
0

D+(ω, k)u v ds(x) +

∫
Γ−
0

D−(ω, k)u v ds(x), (6.45b)

with

aαC0
(u, v) :=

∫
C0

α∇u · ∇v dx, (6.45c)

cα,1C0
(u, v) :=

∫
C0

iα (u(∂1v)− (∂1u)v) dx, (6.45d)

mα
C0

(u, v) :=

∫
C0

αuv dx, (6.45e)

mβ
C0

(u, v) :=

∫
C0

βuv dx. (6.45f)

Remark 6.19. Considering Eq. (6.3), it is easy to see that the nonlinear eigenvalue problem (6.44) is

equivalent to: find couples (ω2, k) ∈ R+ ×B and a non-trivial u ∈ H1
1p(S) such that∫

S

α(∇+ ik(10))u · (∇− ik(10))v dx− ω2

∫
S

βuv dx = 0

for all v ∈ H1
1p(S), which is the variational formulation of the eigenvalue problem (2.19), that is linear

in ω2 and quadratic in k, but posed in the infinite strip S.

Before we will discuss the discretization of the nonlinear eigenvalue problem (6.44), we shall prove

that the nonlinear eigenvalue problem is symmetric in the Brillouin zone B. This result is needed in

Section 6.2.3 when deriving formulas for the derivatives of the dispersion curves. Let us first show some

auxiliary results.

Lemma 6.20. Let k ∈ B and ω2 ∈ R+ \ σess(k). Furthermore, let (6.1) be well-posed. Then

d(u, v;ω, k) = d(v, u;ω,−k). (6.46)

Proof. This is a direct consequence of the definition (6.45b) of the sesquilinear form d and the weak

formulation (6.3) of the DtN operators D±.

Lemma 6.21. Let k ∈ B and ω2 ∈ R+ \ σess(k). Furthermore, let (6.1) be well-posed. Then

d(u, v;ω, k) = d(u, v;ω,−k). (6.47)

Proof. Using Lemma 6.20 and the fact that

d(u, v;ω, k) = d(v, u;ω, k) = d(v, u;ω, k), (6.48)

which follows from the definition (6.45b) of d, the weak formulation (6.3) of the DtN operators D±, and

the fact that k = k if k ∈ B ⊂ R, we can directly conclude Eq. (6.47).

Lemma 6.22. For any (ω2, k) ∈ R+ × C

bC0
(u, v;ω, k) = bC0

(u, v;ω,−k).

Proof. This follows directly from the definition (6.45a) of the sesquilinear form bC0 .

Now we are ready to prove
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Proposition 6.23. Let (ω2, k) ∈ R+ × B with ω2 /∈ σess(k) be an eigenvalue couple of the nonlinear

eigenvalue problem (6.44) with associated eigenfunction u ∈ H1
1p(C0). Then (ω2,−k) ∈ R+ × B is an

eigenvalue couple of (6.44) with associated eigenfunction u ∈ H1
1p(C0).

Proof. If (ω2, k) ∈ R+×B with ω2 /∈ σess(k) is an eigenvalue couple of (6.44) with associated eigenfunction

u ∈ H1
1p(C0), then

bC0
(u, v;ω, k)− d(u, v;ω, k) = bC0

(u, v;ω, k)− d(u, v;ω, k) = 0

for all v ∈ H1
1p(C0). Using Lemmas 6.21 and 6.22 as well as the fact that k = k if k ∈ B ⊂ R, we obtain

bC0
(u, v;ω,−k)− d(u, v;ω,−k) = 0

for all v ∈ H1
1p(C0), from which the result directly follows.

6.2.3 Group velocity and higher derivatives of dispersion curves

In this section we transform the procedure to derive formulas for the derivatives of dispersion curves,

as presented in Chapter 4 for linear eigenvalue problems, to nonlinear eigenvalue problems with DtN

transparent boundary conditions.

We consider the ω-formulation of the variational formulation with DtN transparent boundary conditions

as shown in (6.44), i. e. for k ∈ B we search for eigenvalues ω2
j (k) ∈ R+ \ σess(k) and corresponding non-

trivial eigenmodes uj(k) ≡ uj(· ; k) ∈ H1
1p(C0) such that

bC0
(uj(k), v;ωj(k), k)− d(uj(k), v;ωj(k), k) = 0 (6.49)

for all v ∈ H1
1p(C0), where the sesquilinear forms are defined in (6.45).

In Remark 6.19 we argued that the eigenvalue problem (6.49) with DtN operators is equivalent to

the variational formulation of the eigenvalue problem (2.19) in the infinite strip S, for which we showed

already in Chapter 4 that the eigenvalues ω2
j (k) and their corresponding eigenmodes uj(k) are analytic

with respect to the quasi-momentum k. Hence, analyticity of the eigenvalues and eigenmodes of (6.49)

follows directly from this equivalence.

In Section 6.1.3, we showed that the DtN operators D± are differentiable to any order with respect to ω

and k inside the band gaps, i. e. ∂m+n

∂km∂ωnD±(ω, k) are well-defined for any m,n ∈ N and can be computed

using a set of local cell problems. We shall now use these derivatives for deriving formulas for the group

velocity and all higher derivatives of the dispersion relation when prescribing DtN transparent boundary

conditions at the top and bottom boundaries Γ+
0 and Γ−

0 .

Let us start with the first derivative of the dispersion curve, the so-called group velocity. Differentiat-

ing (6.49) with respect to k gives

bC0
(dkuj(k), v;ωj(k), k)− d(dkuj(k), v;ωj(k), k) = f

(1)
DtN(v) (6.50)

for all v ∈ H1
1p(C0) with the linear form

f
(1)
DtN(v; k, ωj , ω

′
j , uj) = f(1)(v; k, ωj , ω

′
j , uj) + ω′

jdω(uj , v;ω, k) + dk(uj , v;ω, k),

where f(1) was already defined in Eq. (4.4) and reads

f(1)(v; k, ωj , ω
′
j , uj) = −2kmα

C(uj , v)− cα,1C (uj , v) + 2ωjω
′
jm

β
C(uj , v),

and the sesquilinear forms dω and dk are defined as

dω(u, v;ω, k) =

∫
Γ+
0

D+
ω (ω, k)u v ds(x) +

∫
Γ−
0

D−
ω (ω, k)u v ds(x),

dk(u, v;ω, k) =

∫
Γ+
0

D+
k (ω, k)u v ds(x) +

∫
Γ−
0

D−
k (ω, k)u v ds(x)
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with the derivatives D±
ω and D±

k of the DtN operators defined in Eq. (6.12). Due to Proposition 6.23 we

can test Eq. (6.50) with v = u and find

f
(1)
DtN(u) = 0,

which yields the group velocity

ω′
j(k) =

2kmα
C(uj , uj) + cα,1C (uj , uj)− dk(uj , uj ;ωj , k)

2ωjm
β
C0

(uj , uj) + dω(uj , uj ;ωj , k)
. (6.51)

In comparison to the formula (4.5) of the group velocity for problems with periodic boundary conditions,

Eq. (6.51) only has one additional term in the numerator and one additional term in the denominator

that are both related to the DtN transparent boundary conditions on Γ±
0 .

In order to extend the procedure to higher order derivatives, recall the short notations for the derivatives

of dispersion curves and eigenmodes, that we introduced in Chapter 4, i. e.

ω
(n)
j (k) :=

∂nωj(k)

∂kn
and dnkuj(· ; k) :=

dnuj(· ; k)
dkn

,

n ∈ N0. Then the n-th derivative of (6.49) with respect to k reads

dn

dkn
bC0(uj(k), v;ωj(k), k)−

dn

dkn
d(uj(k), v;ωj(k), k) = 0. (6.52)

The first term is equivalent to the n-th derivative of Eq. (4.1) in Section 4.2, i. e.

dn

dkn
bC0

(uj(k), v;ωj(k), k) = bC0
(dnkuj(k), v;ωj(k), k)− f(n)(v),

where the linear form f(n) = f(n)(· ; k, ω(0)
j , . . . , ω

(n)
j , u

(0)
j , . . . , u

(n−1)
j ) reads

f(n)(v) =
n−1∑
p=0

n−p∑
q=0

n!

p! q! (n− p− q)!
ω
(n−p−q)
j ω

(q)
j mβ

C0
(u

(p)
j , v)

− n cα,1C0
(u

(n−1)
j , v)− 2nkmα

C0
(u

(n−1)
j , v)− n(n− 1)mα

C0
(u

(n−2)
j , v),

cf. Eq. (4.8), with the auxiliary functions u
(m)
j (k), 1 ≤ m ≤ n−1, associated to the eigenmode derivatives

dmk uj(k) and with u
(0)
j (k) = uj(k). As elaborated in Section 4.2.2 it is sufficient to compute the auxiliary

functions u
(m)
j (k) instead of properly defining and computing the derivatives dmk uj(k).

The evaluation of the second term in (6.52), however, is more involved. Recall that we employed a

multivariant version [CS96] of Faà di Bruno’s formula in Chapter 5 to express the n-th total derivative of

a matrix-valued function, cf. Eq. (5.15). As an alternative way to evaluate the n-th total derivative, we

proposed the recursive Algorithm 5.1. Let us focus on the latter possibility in this section. Introducing

the sesquilinear forms

d(n)(u, v;ω, k) =

∫
Γ+
0

dnD+(ω, k)

dkn
u v ds(x) +

∫
Γ−
0

dnD−(ω, k)

dkn
u v ds(x),

d(n)ω (u, v;ω, k) =

∫
Γ+
0

dnD+
ω (ω, k)

dkn
u v ds(x) +

∫
Γ−
0

dnD−
ω (ω, k)

dkn
u v ds(x),

d
(n)
k (u, v;ω, k) =

∫
Γ+
0

dnD+
k (ω, k)

dkn
u v ds(x) +

∫
Γ−
0

dnD−
k (ω, k)

dkn
u v ds(x),

n ∈ N0, we expand

dn

dkn
d(uj(k), v;ωj(k), k) =

n∑
m=0

(
n

m

)
d(n)(dn−m

k uj(k), v;ωj(k), k),

and write

d(n)(· , · ;ωj(k), k) =
dn−1

dkn−1

(
ω′
jd

(0)
ω (· , · ;ωj(k), k) + d

(0)
k (· , · ;ωj(k), k)

)
=

n−1∑
m=0

(
n− 1

m

)
ω
(m+1)
j d(n−m−1)

ω (· , · ;ωj(k), k) + d
(n−1)
k (· , · ;ωj(k), k), (6.53)
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which is the analogue of the recursion formula (5.19) in Chapter 5 that motivated Algorithm 5.1. Then

we can rewrite (6.54) and find that the n-th derivative dnku(k) ∈ H1
1p(C0) of the eigenmode uj(k) corre-

sponding to ωj(k) satisfies

bC0(d
n
kuj , v;ωj , k)− d(dnkuj , v;ωj , k) = f

(n)
DtN(v) (6.54)

for all v ∈ H1
1p(C0), with the linear form

f
(n)
DtN(v) = f(n)(v) +

n∑
m=1

(
n

m

)
d(m)(u

(n−m)
j , v;ωj , k),

where we replaced the derivatives dmk uj , 1 ≤ m ≤ n−1, of the eigenmode uj by the auxiliary functions u
(m)
j

using the convention u
(0)
j = uj . The total derivatives d

(m)(· , · ;ωj(k), k), 1 ≤ m ≤ n−1, of d(· , · ;ωj(k), k)

with respect to k can be evaluated recursively using (6.53) as sketched in Algorithm 5.1. Testing Eq. (6.54)

with v = u and considering Proposition 6.23 yields

f
(n)
DtN(u) = 0,

from which — together with (6.53) — we obtain the n-th derivative of the dispersion relation

ω
(n)
j (k) =

(
2ωjm

β
C0

(uj , uj) + dω(uj , uj ;ωj , k)
)−1

·

[
n(n− 1)mα

C0
(u

(n−2)
j , uj) + 2nkmα

C0
(u

(n−1)
j , uj) + n cα,1C0

(u
(n−1)
j , uj)

−
n−1∑
p=1

n−p∑
q=0

n!

p!q!(n− p− q)!
ω
(n−p−q)
j ω

(q)
j mβ

C0
(u

(p)
j , uj)

−
n−1∑
q=1

(
n

q

)
ω
(n−q)
j ω

(q)
j mβ

C0
(uj , uj)

−
n−1∑
q=1

(
n

q

)
d(q)(u

(n−q)
j , uj ;ωj , k)

−
n−1∑
q=1

(
n− 1

q − 1

)
ω
(q)
j d(n−q)

ω (uj , uj ;ωj , k)

− d
(n−1)
k (uj , uj ;ωj , k)

]
.

(6.55)

Analogously to the argumentation in Section 4.2, we note that (6.54) is ill-posed. However, by addi-

tionally requiring H1(C0)-orthogonality to all linearly independent eigenmodes uj,1(·; k), . . . , uj,m(·; k) ∈
H1

1p(C0) we can compute a particular solution u
(n)
j (·; k) ∈ H1

1p(C0) of Eq. (6.54). Again — for simplic-

ity — let us assume that there exists only one linearly independent eigenmode uj(·; k) corresponding

to the eigenvalue ω2
j (k). Then we seek the auxiliary function u

(n)
j (·; k) ∈ H1

1p(C0) and the Lagrange

multiplier λ ∈ C such that

bC0(u
(n)
j , v;ωj , k)− d(u

(n)
j , v;ωj , k) + λ⟨uj , v⟩H1(C0) = f

(n)
DtN(v),

⟨u(n)j , uj⟩H1(C0) = 0,

for all v ∈ H1
1p(C0).

The formula (6.55) is very technical and looks complicated. However, recall that we sketched in

Algorithm 5.1 a scheme to compute the total derivatives

d(n)(· , · ;ωj(k), k) =
dn

dkn
d(· , · ;ωj(k), k),

d(n)ω (· , · ;ωj(k), k) =
dn

dkn
dω(· , · ;ωj(k), k)
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and

d
(n)
k (· , · ;ωj(k), k) =

dn

dkn
dk(· , · ;ωj(k), k)

for all n ∈ N. Alternatively, the derivatives can be evaluated using a multivariant version of Faà di

Bruno’s formula for which the reader is referred to Chapter 5. With these derivatives at hand, Eq. (6.55)

is only slightly more complicated than the formula (4.9) for the n-th derivative of the dispersion curves

in the case with periodic boundary conditions.

6.2.4 Discretization

For the FE discretization of the nonlinear eigenvalue problem in variational formulation (6.44) we need

the FE spaces Sp1p(C0) and Sp1p(Γ
±
0 ), that were already introduced in Section 6.1.5. Recall that the basis

functions bC0,n, n = 1, . . . , N(C0), of S
p
1p(C0) are ordered such that

• the basis functions with index n ∈ S(C0,Γ
+
0 ) = {1, . . . , N(Γ+

0 )} vanish on Γ−
0 , but their traces on

Γ+
0 build a basis of Sp1p(Γ

+
0 ),

• the basis functions with index n ∈ S(C0,Γ
−
0 ) = {N(Γ+

0 ) + 1, . . . , N(Γ+
0 ) +N(Γ−

0 )} vanish on Γ+
0 ,

but their traces on Γ−
0 build a basis of Sp1p(Γ

−
0 ), and

• the basis functions with index n ∈ S(C0, C0) = {N(Γ+
0 ) +N(Γ−

0 ) + 1, . . . , N(C0) vanish on Γ±
0 .

Thus, the traces of the basis functions of Sp1p(C0) on Γ±
0 and the basis functions of Sp1p(Γ

±
0 ) satisfy

bΓ+
0 ,n =

N(Γ+
0 )∑

m=1

Q+
C0,mnbC0,m|Γ+

0
,

bΓ−
0 ,n =

N(Γ−
0 )∑

m=1

Q−
C0,mnbC0,N(Γ+

0 )+m|Γ−
0
,

with permutation matrices Q+
C0

∈ RN(Γ+
0 )×N(Γ+

0 ) and Q−
C0

∈ RN(Γ−
0 )×N(Γ−

0 ), cf. Eq. (6.28).

This relation is important for deriving the discrete form of the variational formulation (6.44). The

sesquilinear form d is related to the solution in the two semi-infinite strips which is represented by the

DtN maps D±(ω, k). When inserting the basis functions bΓ±
0 ,n of Sp1p(Γ

±
0 ) into each of the two integrals

in d and using the characterization of the DtN operators (6.9) we obtain the matrices as presented in

Eq. (6.41), i. e.

D±(ω, k) = −T±
00(ω, k)−T±

10(ω, k)P
±(ω, k) ∈ CN(Γ±

0 )×N(Γ±
0 ).

However, stating the variational formulation (6.44) in Sp1p(C0) ⊂ H1
1p(C0) we have to insert in d rather

the traces of the basis functions bC0,n on Γ±
0 . We introduce the matrix

BC0
(ω, k) = Aα

C0
+ kCα,1

C0
+ k2Mα

C0
− ω2Mβ

C0
∈ CN(C0)×N(C0) (6.56)

where the matrices Aα
C0
,Cα,1

C0
,Mα

C0
,Mβ

C0
∈ RN(C0)×N(C0) have entries

Aα
C0,mn = aαC0

(bC0,n, bC0,m), (6.57a)

Cα,1
C0,mn = cα,1C0

(bC0,n, bC0,m), (6.57b)

Mα
C0,mn = mα

C0
(bC0,n, bC0,m), (6.57c)

Mβ
C0,mn = mβ

C0
(bC0,n, bC0,m), (6.57d)

m,n = 1, . . . , N(C0), with the sesquilinear forms as given in Eq. (6.45). Then the discrete form of the

nonlinear eigenvalue problem (6.44) reads

(BC0(ω, k)−DC0(ω, k))u(ω, k) = 0 (6.58)
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where u(ω, k) ∈ CN(C0) is the coefficient vector of the discrete eigenmode uh(· ;ω, k) ∈ Sp1p(C0), and

D(ω, k) ∈ CN(C0)×N(C0) is a block matrix of the form

DC0(ω, k) =

⎛⎝(Q+
C0

)TD+(ω, k)Q+
C0

0 0

0 (Q−
C0

)TD−(ω, k)Q−
C0

0

0 0 0

⎞⎠ .

An important issue of the discretization of eigenvalue problems is its stability, i. e. the existence of a

minimal dimension of the FE space, such that the standard asymptotic convergence estimates hold for

any dimension larger than this threshold. To the best of our knowledge, this issue has not yet been

solved for the specific nonlinear eigenvalue problem (6.44). However, numerical evidence shows that the

standard asymptotic convergence estimates hold true.

Thus, we can use p-FEM on a coarse grid such as the one sketched in Figure 6.1 for the computa-

tion of guided modes in PhC waveguides with smooth material boundaries and can expect exponential

convergence.

6.2.5 Numerical solution of the nonlinear eigenvalue problem

Since the DtN operators are differentiable with respect to both, the frequency ω as well as the quasi-

momentum k to any order, the nonlinear, matrix-valued function

NC0
: (ω, k) BC0

(ω, k)−DC0
(ω, k), (6.59)

is holomorphic in ω and k as long as ω2 /∈ σess
h (k) and ω2 is not a global or local Dirichlet eigen-

value. Hence, we can apply all methods introduced in Section 3.2 to solve the nonlinear eigenvalue

problem (6.58) in both formulations, the ω-formulation, where we fix the quasi-momentum and look for

frequency eigenvalues, and the k-formulation, where we fix the frequency and search for eigenvalues of

the quasi-momentum. In particular, we will employ the method of successive linear problems (MSLP)

and the Chebyshev interpolation. While the former is an iterative scheme to compute a single eigenvalue,

the latter is a representative of direct methods, that allow for a simultaneous computation of several

eigenvalues. The Chebyshev interpolation is a very elegant procedure to solve the nonlinear eigenvalue

problem (6.58). However, it comes with the drawback that one needs to be sure that the Chebyshev

nodes (in particular the two endpoints) are sufficiently far away from the essential spectrum σess(k).

This implies that one needs to have a priori knowledge of the spectra σ±(k) of the operators A±(k)

related to the PhCs on top and bottom of the guide. This is similar to the supercell method, where one

needs at least a posteriori knowledge of the essential spectrum σess(k) to exclude spurious modes.

The Newton-type method, that we proposed in Section 3.3 for eigenvalue problems like (6.58) in ω-

formulation, is an alternative to the techniques mentioned above. In contrast to the presentation of the

Newton method in Section 3.3, the matrix NC0 is a function of two parameters, the frequency ω and the

quasi-momentum k. Thus, two different versions of this algorithm are possible, i. e. the ω-formulation

and the k-formulation. To this end, we shall recall the methodology of Section 3.3, explicitly presenting

the algorithms for the problem under consideration.

As a first step towards the Newton-type procedure to solve the nonlinear eigenvalue problem (6.58)

we introduce a “simplified” eigenvalue problem with fixed DtN operators. Let (ω2
D, kD) ∈ R+ ×B, with

ω2
D /∈ σess

h (kD), be arbitrary but fixed. Then the problem: find ω2 = ω2(ωD, kD) ∈ R+ and a non-trivial

u ∈ CN(C0) \ {0} such that(
Aα

C0
+ kDC

α,1
C0

+ k2DM
α
C0

− ω2Mβ
C0

−DC0
(ωD, kD)

)
u = 0 (6.60)

is a linear eigenvalue problem, whose solution coincides with the one of (6.58) if ω2 = ω2
D. For this linear

eigenvalue problem we state the following important results.

Proposition 6.24. Let (ω2
D, kD) ∈ R+ × B with ω2

D /∈ σess
h (kD). Then the eigenvalues ω2

j (ωD, kD),

1 ≤ j ≤ N(C0), of the linear eigenvalue problem (6.60) are real.
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Proof. This result, which is a discrete corollary of Proposition 4.8 in [Fli13], follows directly from the fact

that the matrices Mβ
C0

and
(
Aα

C0
+ kDC

α,1
C0

+ k2DM
α
C0

−DC0
(ωD, kD)

)
are self-adjoint for all (ω2

D, kD) ∈
R+ ×B with ω2

D /∈ σess
h (kD).

Since the DtN operators are differentiable with respect to the frequency and the quasi-momentum so

is the matrix DC0 . Hence, we can apply the perturbation theory for linear, self-adjoint operators in

finite-dimensional spaces, see Chapter 2 in [Kat95], and deduce

Proposition 6.25. Let (ω2
D, kD) ∈ R+ × B with ω2

D /∈ σess
h (kD). Then the eigenvalues ω2

j (ωD, kD),

1 ≤ j ≤ N(C0), of the linear eigenvalue problem (6.60) can be ordered such that the functions

(ωD, kD) ω2
j (ωD, kD)

and the corresponding eigenvectors uj(ωD, kD) are continuously differentiable with respect to ωD and kD.

Thanks to Proposition 6.25 we can introduce differentiable signed distance functions

dj(ωD, kD) = ω2
D − ω2

j (ωD, kD) ∈ R. (6.61)

Due to the differentiability of the signed distance functions with respect to ωD and kD we can apply

Newton’s method to compute its roots. As elaborated above, these roots are then also the eigenvalues of

the nonlinear eigenvalue problem (6.58).

Let us now introduce the global signed distance function

dg(ωD, kD) = dj∗(ωD, kD) (6.62)

where

j∗ = j∗(ωD, kD) = arg min
1≤j≤N(C0)

|dj(ωD, kD)|.

As shown in the numerical results in Section 6.3 this function is not continuous due to sign changes, and

hence, not differentiable, however, we shall also see in Section 6.3 that the numerical results of the Newton

method applied to the global signed distance function dg are reasonable when using the derivatives of the

continuously differentiable signed distance function dj∗ with respect to ωD or kD, respectively. Applying

the Newton method to the differentiable signed distance functions dj , on the other hand, is not possible,

since the ordering of the eigenvalues, such that ω2
j (ωD, kD) are differentiable is not known in advance.

Proposition 6.25 only guarantees that there exists an ordering but it does not say anything about how to

find it. For this one can, for example, apply the adaptive path following of dispersion curves as proposed

in Chapter 5. However, this implies a huge computational overhead compared to simply applying the

Newton method to the global signed distance function.

Algorithm 6.1. Newton’s method applied to global signed distance function in ω-formulation.

1: Fix kD ∈ B and choose start value ω(0) ∈ R+.

2: for n = 0, . . . do

3: if (ω(n))2 ∈ σess
h (kD) then

4: exit (and restart with new start value ω(0) ∈ R+)

5: end if

6: Solve linear eigenvalue problem (6.60) for ω2 with ωD = ω(n).

7: Evaluate global signed distance function dg(ω(n), kD).

8: if dg(ω(n), kD) ≈ 0 then

9: exit

10: end if

11: Compute new value ω(n+1) = ω(n) −
(

∂
∂ωD

dj∗(ω
(n), kD)

)−1

dg(ω(n), kD).

12: end for

The iterative scheme in ω-formulation, i. e. keeping kD ∈ B fixed and searching for a root ω ∈ R+

of dg(·, kD), then works as shown in Algorithm 6.1, where the derivative of dj∗ with respect to ωD can
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either be approximated by a difference quotient, or computed with the help of a closed formula, that

can be derived using the facts that the DtN operators are differentiable with respect to the frequency,

cf. Proposition 6.9, and that the eigenvalues ω2
j (ωD, kD) of the linear eigenvalue problem (6.60) and their

corresponding eigenvectors uj(ωD, kD) are continuously differentiable with respect to ωD, cf. Proposi-

tion 6.25. Then we can proceed as in Section 3.3 and obtain

∂ωj(ωD, kD)

∂ωD
= −

uH
j ∂ωDC0(ωD, kD)uj

2ωjuH
j M

β
C0

uj

,

cf. Eq. (3.10). Hence, the derivative of the signed distance function dj with respect to ωD reads

∂

∂ωD
dj(ωD, kD) = 2ωD +

uH
j ∂ωDC0

(ωD, kD)uj

uH
j M

β
C0

uj

.

Algorithm 6.2. Newton’s method applied to global signed distance function in k-formulation.

1: Fix ωD ∈ R+ and choose start value k(0) ∈ B.

2: for n = 0, . . . do

3: if ω2
D ∈ σess

h (k(n)) then

4: exit (and restart with new start value k(0) ∈ B)

5: end if

6: Solve linear eigenvalue problem (6.60) for ω2 with kD = k(n).

7: Evaluate global signed distance function dg(ωD, k
(n)).

8: if dg(ωD, k
(n)) ≈ 0 then

9: exit

10: end if

11: Compute new value k(n+1) = k(n) −
(

∂
∂kD

dj∗(ωD, k
(n))
)−1

dg(ωD, k
(n)).

12: end for

The iterative scheme in k-formulation, i. e. keeping ωD ∈ R+ fixed and searching for a root k ∈ B of

dg(ωD, ·), works analogously to the ω-formulation and is presented in Algorithm 6.2. Again, the derivative

of dj∗ with respect to kD can either be approximated by a difference quotient, or computed with the

help of a closed formula, that can be derived using the facts that the DtN operators are differentiable

with respect to the quasi-momentum, cf. Proposition 6.9, and that the eigenvalues ω2
j (ωD, kD) of the

linear eigenvalue problem (6.60) as well as their corresponding eigenvectors uj(ωD, kD) are continuously

differentiable with respect to kD, cf. Proposition 6.25. Then we can differentiate (6.60) with respect to

kD and multiply it from the left with the conjugate transpose of uj , which yields, similarly to above,

∂ωj(ωD, kD)

∂kD
= −

uH
j

(
Cα,1

C0
+ 2kDM

α
C0

+ ∂kDC0
(ωD, kD)

)
uj

2ωjuH
j M

β
C0

uj

,

and hence, the derivative of the signed distance function dj with respect to kD reads

∂

∂kD
dj(ωD, kD) =

uH
j

(
Cα,1

C0
+ 2kDM

α
C0

+ ∂kDC0
(ωD, kD)

)
uj

uH
j M

β
C0

uj

.

The selection of the start values ω(0) and k(0) is of particular importance for the convergence of the

Newton method. Suppose that for some k ∈ B the eigenvalues of the nonlinear eigenvalue problem (6.44)

are known. Due to the analyticity of the dispersion curves with respect to ω, cf. Section 6.2.3, it seems

reasonable to choose these eigenvalues as start values for the Newton method applied to dg(·, k + h),

i. e. the ω-formulation at the quasi-momentum k + h with some small perturbation h of k. For the k-

formulation, however, there generally does not exist such a possibility since the group velocity can be

identical to zero, which implies that the inverse of the dispersion curves are in general not analytic in R+.
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We only mention here an approach that is computationally expensive, but can be applied to both, the

k-formulation and the ω-formulation. If the results of the supercell method (possibly with a small number

of periodicity cells to reduce computation costs) is available, they can deal as start values for the Newton

method.

6.3 Numerical results

In this section we present numerical results of the proposed methods to solve the nonlinear eigenvalue

problem (6.58) with DtN maps. The numerical example we will discuss in this section is the one presented

in Example 2 in Chapter 2, i. e. we study the TE mode band structure of a PhC W1 waveguide with

hexagonal lattice, relative permittivity ε = 11.4, and holes of relative radius r
a1

= 0.31. Unless otherwise

stated, the polynomial degree of the FE computations is set to p = 5.

6.3.1 Numerical results of the proposed Newton method

The Newton method, that we proposed in Section 3.3 and specified above in Section 6.2.5 when applied

to the nonlinear eigenvalue problem (6.58) with DtN maps, follows the idea of computing the roots of

the global signed distance function dg defined in (6.62). To give a first orientation, the magnitude of the

global signed distance function dg is plotted in in Figure 6.3. The dark lines indicate to small magnitudes

of dg and hence, they show guided modes. The areas left blank correspond to the essential spectrum

σess
h (k).
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Figure 6.3: Magnitude of global signed distance function dg in logarithmic scale evaluated on a grid of

350× 500 (ω, k)-points. The areas left blank correspond to the essential spectrum, i. e. ω2 ∈ σess
h (k). The

crosses mark the locations of the two guided modes for which we present numerical results in Figures 6.6

and 6.9.

As elaborated above, we know that the global signed distance function dg is discontinuous. This can be

seen, for example, in Figure 6.4, where the results of the global signed distance function dg are resolved

on a fine scale with respect to the frequency ω for a fixed quasi-momentum k = 0.3 · 2π
a1
, see Figure 6.4a,

and with respect to the quasi-momentum k for a fixed frequency ω = 0.25 · 2πc
a1

, see Figure 6.4b.

Note that for the particular example shown in Figure 6.4, the global signed distance function dg is

smooth in a neighbourhood of its roots. However, when two dispersion curves cross, there will not exist

a smooth neighbourhood of the global signed distance function, but it will be continuous at this point,

since it will tend to zero from both sides. Hence, the application of the Newton method to find the roots

of the global signed distance functions, as proposed in Section 6.2.5, is reasonable as long as the start

value is sufficiently close to the root.

In the following numerical results we will use the global signed distance function dg in ω-formulation,

i. e. we keep the quasi-momentum k ∈ B fixed and search for roots ω ∈ R+ of dg(·, k).
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Figure 6.4: Global signed distance function dg evaluated on an equidistant grid of frequencies ω in the

interval [0.22 · 2πc
a1
, 0.30 · 2πc

a1
] for a fixed value of k = 0.3 · 2π

a1
(a), and evaluated on an equidistant grid of

quasi-momenta k in the irreducible Brillouin zone B̂ = [0, π
a1
] for a fixed value of ω = 0.25 · 2πc

a1
(b).
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Figure 6.5: Number of iterations (a) and average convergence rate (b) of the proposed Newton method

(blue crosses) and of the MSLP (red circles) for a sample of 100 start values in the second band gap at

k = 0.3 · 2π
a1
. The dashed vertical lines show the locations of the three guided modes in the band gap.

In our first numerical test of the proposed Newton method, we study the convergence of the Newton

method in ω-formulation and compare the results with convergence of the frequently used MSLP, which

we briefly introduced in Section 3.2. Like the Newton method applied to distance functions, the MSLP is

an iterative procedure to solve nonlinear eigenvalue problems, that is supposed to converge quadratically.

For a sample of 100 start values of the frequency ω in the second band gap at k = 0.3 · 2π
a1

we present in

Figure 6.5a the number of iterations that are needed until the step size of the Newton method and the

MSLP, respectively, are below a threshold of 10−13. The dashed vertical lines show the locations of the

three guided modes in the band gap for which the real parts of the magnetic field components are shown

in Figure 6.7. Apart from a small number of start values, both, the proposed Newton method and the

MSLP need three to five iterations. For most start values the number of iterations needed by the Newton

method is identical to the number of iterations of the MSLP. Only for the twelve smallest start values

the MSLP constantly needs more iterations than the Newton method and for the start value closest to

the lower band edge, the MSLP does not converge at all. This behaviour of the MSLP is linked to the
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6 Dirichlet-to-Neumann transparent boundary conditions

existence of global Dirichlet eigenvalues and will be explained later in Section 6.3.5. For the same sample

of start values, Figure 6.5b shows the average convergence rate, i. e. the average of the numbers q(n) that

satisfy ⏐⏐ω(n+1) − ωref

⏐⏐⏐⏐ω(n) − ωref

⏐⏐q(n)
= 1

for all iterations n = 0, 1, . . . , N − 1, where the reference solution ωref is chosen to be the solution of the

respective method after N iterations, i. e. the number that is shown in Figure 6.5a. The rates differ from

start value to start value and from method to method but they stay within the interval [1.5, 3.1] around

the expected rate of two. However, the average of all rates is approximately the same as the expected

rate. The Newton method shows an average rate of 2.0684 and the MSLP’s average convergence rate

is 2.1004.
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Figure 6.6: Convergence of Newton method with respect to the polynomial degree p when applied to the

computation of a well-confined mode (blue) and a mode close to a band edge (green). The reference

solution ωref is computed taking a polynomial degree of p = 20.

From Figure 6.5b it seems that for either method the convergence towards the well-confined mode,

marked with a blue cross in Figure 6.3, seems of larger rate than the convergence towards the mode

close to the band edge, that is marked with a green cross in Figure 6.3. In order to study this seemingly

dependence on the confinement of the guided modes in more detail, we show convergence results of the

Newton method in ω-formulation with respect to the polynomial degree in Figure 6.6. The reference

solution is computed by setting the polynomial degree to p = 20 and applying the same iterative scheme.

Note that there is no value for the error of the mode close to the band edge for the lowest polynomial

degree p = 3 since for this degree the mode is inside the approximative essential spectrum and can

therefore not be captured. As expected for p-FEM, we can observe exponential convergence with the

same convergence rate for both modes independent of their confinement.

This result demonstrates that the DtN transparent boundary conditions, as introduced in this chapter,

resolve the problem of the frequently used supercell method, which is known to introduce a modelling

error that depends on the confinement of the guided mode and for which we will present numerical results

in the following section.

6.3.2 Comparison to the numerical results of the supercell method

The supercell method, that we briefly introduced in Section 2.4, provides approximations to guided

modes. The application of the supercell method to the setting of Example 2 was already presented

in [SK10]. It was shown that p-FEM converges exponentially when the numerical results are compared

to a reference solution that is also obtained with the same supercell. In this section we will to show that
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(a) Well-confined, even mode at

ω ≈ 0.235 · 2πc
a1

.

(b) Well-confined, odd mode at

ω ≈ 0.255 · 2πc
a1

.

(c) Odd mode close to band edge

at ω ≈ 0.299 · 2πc
a1

.

Figure 6.7: Real parts of the magnetic field components of the three guided modes in the second band

gap at k = 0.3 · 2π
a1
.

this convergence cannot be expected when comparing the results with a reference solution obtained using

DtN transparent boundary conditions that do not introduce a modelling error.
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Figure 6.8: Magnitude of global signed distance function dg in logarithmic scale evaluated on a grid of

350× 500 (ω, k)-points, and results of the supercell method with five rows of periodicity cells on top and

bottom (green lines).

First of all we show a comparison of the supercell band structure with the results of the global signed

distance function dg, that were already presented in Figure 6.3. In Figure 6.8 the green lines correspond

to the dispersion curves obtained when using the supercell S5 with five rows of holes on top and bottom

of the line defect as shown in Figure 2.8. We can see that inside the band gaps the green lines match well

with the dark lines of the global signed distance function dg, that indicate small values of its magnitude

|dg|.
The convergence results of the supercell method when applied to the computation of the well-confined

mode at k = 0.3 · 2π
a1

(blue cross in Figure 6.3) and the mode close to the band edge (green cross

93



6 Dirichlet-to-Neumann transparent boundary conditions

in Figure 6.3) are presented in Figure 6.9. On the left we observe an exponential convergence of the

results of the supercell method with polynomial degree p = 7 towards the roots of the global signed

distance function of the nonlinear eigenvalue problem (6.58) with DtN maps and the same polynomial

degree p = 7, when increasing the number of periodicity cells on top and bottom. However, the rates

of convergence differ significantly. The rate of the mode close to the band edge (green) is much smaller

than the rate of the well-confined mode (blue), see Figure 6.9a. At this point we have to note that

the FE mesh of the supercell method is significantly larger than the mesh of the DtN method sketched

in Figure 6.1, see for example the mesh of the supercell with five periodicity cells on top and bottom

presented in Figure 2.8 in Chapter 2. Figure 6.9b, on the other hand, where the number of periodicity

cells is kept fixed to n = 3 and n = 7 while the polynomial degree is increased from p = 3 to p = 12,

shows that the error of the supercell method only converges exponentially towards the solution of the

roots of the global signed distance function of the nonlinear eigenvalue problem (6.58) with DtN maps

and polynomial degree p = 20 until a certain error plateau is reached. This error plateau, which is due

to the modelling error introduced by the supercell approach, is significantly larger for the mode close

the band edge compared to the well-confined mode. These results clearly demonstrate that the supercell

method is a good approximation of the exact DtN method for well-confined modes but for modes close

to the band edge it produces errors of significantly larger orders.
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(b) Fixed number of periodicity cells n = 3 (dashed

lines) and n = 7 (solid lines).

Figure 6.9: Convergence of the well-confined mode (blue) and the mode close to the band edge (green)

with respect to the number of the periodicity cells n while keeping the polynomial degree p fixed (a), and

with respect to the polynomial degree p while keeping the number of periodicity cells n fixed (b). The

reference solution ωref is computed using the iterative DtN method with a polynomial degree p = 7 (a)

and p = 20 (b).

6.3.3 Numerical results of the direct procedure

Let us now come to the numerical results of the direct Chebyshev interpolation to solve the nonlinear

eigenvalue problem (6.58). Recall from Section 6.2.5 that the Chebyshev interpolation requires a priori

knowledge of the essential spectrum σess
h (k), since the analyticity of the nonlinear matrix function NC0

in Eq. (6.59) can only be guaranteed in the band gaps, i. e. outside the essential spectrum. Thus, this

method is particularly interesting, if we apply it to the k-formulation at frequencies ω that are in a band

gap for all k ∈ B, i. e. ω2 /∈ σess
h (k) for all k ∈ B. The convergence of the Chebyshev interpolation is

shown in Figure 6.10, where the results of the direct procedure to compute the eigenvalues in the band

gap [0.22 · 2πca1
, 0.28 · 2πca1

] using the Chebyshev interpolation is compared to a reference solution computed

with Newton’s method. We observe an exponential convergence of the mean error of the eigenvalues

computed at a sample of 200 frequencies in the band gap. Note that convergence is not monotone. This
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, that has magnitude
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is due to the fact that the Chebyshev nodes are not hierarchical and hence, the error of the Chebyshev

interpolation can increase when using more nodes.
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Figure 6.12: Real part (a) and imaginary part (b) of the eigenvalues µ of the propagation matrix P± at

k = 0.3 · 2π
a1

near the band edge at ω ≈ 0.2135 · 2πc
a1

, that have magnitude equal to one in the essential

spectrum and strictly less than one (blue) and strictly larger than one (red) in the band gap. Hence, the

blue curves correspond to the magnitude shown in Figure 6.11.

Analogously, we can observe exponential convergence towards the iterative solution if the direct proce-

dure is applied to the ω-formulation, as done in [KS14a], where we proposed to employ the adaptive path

following algorithm introduced in Chapter 5 to compute the essential spectrum σess(k) for all k ∈ B.

However, we have to take care that the ω-interval is sufficiently far away from the band edge, since the

magnitude of the eigenvalue µ of the propagation operator, that changes from |µ| = 1 to |µ| < 1 at the

band edge, has a root-like singularity at the band edge as shown in Figures 6.11 and 6.12, and hence,

its derivative with respect to ω becomes arbitrarily large near the band edge, which will dominate the

derivative of the DtN operator. This drawback of the Chebyshev interpolation is of smaller significance

in the k-formulation as long as the chosen frequency interval is not arbitrarily close to the band edge at

any k ∈ B, as demonstrated in the convergence analysis in Figure 6.10.
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6 Dirichlet-to-Neumann transparent boundary conditions

6.3.4 Condition of system and Dirichlet-to-Neumann matrices

Recall that the DtN operators D± are not well-defined, if the Dirichlet problems (6.1) in the semi-

infinite strips S± are not well-posed, which is the case at so called global Dirichlet eigenvalues of (6.1).

Furthermore, recall that the local Dirichlet cell problems (6.8), that we introduced for the characterization

of the DtN operators, are ill-posed at so called local Dirichlet eigenvalues. Hence, we expect the nonlinear

eigenvalue problem (6.58) to show numerical artifacts at these values.
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Figure 6.13: Condition number (a) and maximum eigenvalue (b) of the system matrix NC0
in the second

band gap at k = 0.4 · 2π
a1
. The vertical dashed line show the frequency of the global Dirichlet eigenvalue

(GD), the local Dirichlet eigenvalue (LD) and the frequencies of the guided modes (GM).

We start by analysing the condition number and the maximum eigenvalue of the matrix NC0
. Inside

the second band gap at k = 0.4 · 2π
a1
, for which the results are presented in Figure 6.13, there are three

guided modes, one local Dirichlet eigenvalue and one global Dirichlet eigenvalue. As can be seen from

Figure 6.13a the condition number increases at the guided modes (dashed lines labeled “GM”). This is

the expected behaviour since by definition the guided modes are eigenvalues of (6.58) and hence, the

minimum eigenvalue of NC0
tends to zero when approaching the guided modes. Apart from these three

peaks, the condition number of the system matrix NC0 also increases in the vicinity of the global Dirichlet

eigenvalue (dashed line labeled “GD”), which is due to an increasing maximum eigenvalue of NC0
, see

Figure 6.13b. Note that from Figure 6.13a it seems that the local Dirichlet eigenvalue (dashed line labeled

“LD”) has no influence on the condition number of NC0
. However, we shall study its influence on the

condition number in more detail in Figure 6.16.

The location of the local Dirichlet eigenvalues can be determined from a simple linear eigenvalue

problem in the cell C±
1 with homogeneous Dirichlet boundary conditions. In Figure 6.15 the dispersion

curves of the local Dirichlet eigenvalue problem are shown in comparison to the values of the global

signed distance function dg. The computation of the global Dirichlet eigenvalues, on the other hand,

is not as easy as the computation of the local Dirichlet eigenvalues, as the global Dirichlet eigenvalue

problem is posed on the infinite half-strips S±, and hence, the domain needs to be truncated which

cannot be done with DtN transparent boundary conditions. In Chapter 7 we will show how to solve the

Dirichlet eigenvalue problem in the infinite half-strips S± by truncating the domain using RtR operators,

see Figure 7.2 for the dispersion curves of global Dirichlet eigenvalues.

The increase of the maximum eigenvalue of the system matrix NC0
near the global Dirichlet eigenvalue

is due to an increase of the maximum eigenvalue of the DtN matrix D± as shown in Figure 6.14a.

While the condition number of the DtN matrix also does not seem to be influenced by the existence of a

local Dirichlet eigenvalue, its minimum eigenvalue decreases at some point between the second and third

guided mode, see Figure 6.14b. At this point the PhC half-strip problem with homogeneous Neumann

boundary condition has an eigenvalue — a global Neumann eigenvalue. However, this decreasing minimum
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Figure 6.14: Maximum (a) and minimum (b) eigenvalue of the DtN matrix D± in the second band gap

at k = 0.4 · 2π
a1
. The vertical dashed line show the frequency of the global Dirichlet eigenvalue (GD), the

local Dirichlet eigenvalue (LD) and the frequencies of the guided modes (GM).

eigenvalue of the DtN matrix does not influence the condition number of the system matrix due to the

matrix BC0 in the nonlinear eigenvalue problem (6.58).

Now let us study the condition number of the system and DtN matrices in a very small vicinity of the

local Dirichlet eigenvalue in more detail. Figure 6.16 shows the condition numbers of the two matrices in

dependence on the distance to the local Dirichlet eigenvalue. While we could not observe an effect of the

local Dirichlet eigenvalue on the condition number of NC0
in Figure 6.13a, we can see from Figure 6.16

that condition numbers of both matrices, the system matrix NC0
and the DtN matrix D±, increase

significantly near the local Dirichlet eigenvalues. However, note that this significant increase is restricted

to a very narrow vicinity of the local Dirichlet eigenvalue. The minimum eigenvalues of the local DtN

matrices T±
ij , i, j = 0, 1, decrease in a larger vicinity of the local Dirichlet eigenvalues. However, the

generalized eigenvalue problem (6.38), that we have to solve to obtain the propagation matrix P± can

be solved using, e. g. Matlab’s eig function, an implementation of the generalized Schur decomposition,

without any numerical artifacts up to a very narrow vicinity of the local Dirichlet eigenvalue.

The effect of global and local Dirichlet eigenvalues will now also be studied in the next two sections,

where we will compare the results of the proposed Newton method with the iterative MSLP, and show

convergence results of the Newton method and the Chebyshev interpolation in the vicinity of global and

local Dirichlet eigenvalues.

6.3.5 Computation of eigenvalues in vicinity of global Dirichlet eigenvalues

As elaborated above, we expect that global Dirichlet eigenvalues influence the performance of our numer-

ical schemes for solving the nonlinear eigenvalue problem (6.58). In order to analyse this influence, let

us now compare the proposed Newton-like method with the MSLP. We already showed in Section 6.3.1

that both methods converge with comparable convergence rates.

In Figure 6.17 we present the step sizes of the MSLP and the proposed Newton method in the second

band gap at k = 0.4 · 2πa1
when using different frequencies ω as start value. The vertical, dashed lines show

the locations of the guided modes, i. e. the eigenvalues of the nonlinear eigenvalue problem (6.58). Both

step size curves have roots at the guided modes and their slopes are negative at these roots which implies

that the methods will converge well to the eigenvalues. While the step size of the Newton method does

not change its behaviour at the global Dirichlet eigenvalue at ω ≈ 0.218 · 2πc
a1

, the step size of the MSLP

has another root at the global Dirichlet eigenvalue. This can be explained by the fact that not only the

maximum eigenvalue of the system matrix NC0
tends to infinity at the global Dirichlet eigenvalue, see

Figure 6.13b, but also the maximum eigenvalue of the derivative ∂ωNC0 of the system matrix. Hence,
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Figure 6.15: Magnitude of global signed distance

function dg in logarithmic scale evaluated on a
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the location of the eigenvalue for which conver-

gence results are shown in Figure 6.19.
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Figure 6.16: Condition number of the system ma-

trix NC0 (solid line) and the DtN matrix D±

(dashed line) in the vicinity of the local Dirichlet

eigenvalue in the second band gap at k = 0.4 · 2π
a1
.

if ∂ωNC0
has an arbitrarily large eigenvalue, the generalized eigenvalue problem to be solved for the

MSLP step size, see Algorithm 3.1, has an eigenvalue zero. However, the slope of the MSLP step size at

the global Dirichlet eigenvalue is positive, which means that the MSLP does not converge to the global

Dirichlet eigenvalue. But the sign change of the MSLP step size at the global Dirichlet eigenvalue implies

that the radius of convergence of the MSLP towards the guided mode at ω ≈ 0.222 · 2πca1
is bounded by the

global Dirichlet eigenvalue at ω ≈ 0.218 · 2πc
a1

, whereas the radius of convergence of the proposed Newton

method is not affected by the global Dirichlet eigenvalue.

This demonstrates that our proposed Newton method is preferable to other iterative solvers like the

MSLP whose radius of convergence is bounded by infinite eigenvalues of the derivative of the nonlinear

matrix.
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Figure 6.18: Absolute error of the Chebyshev in-
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computation of the guided mode in the second
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The ω-interval of the interpolation is chosen to

be [0.215 · 2πc
a1
, 0.245 · 2πc

a1
].
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Now let us apply the linearization based on Chebyshev interpolation to the computation of the guided

mode in the second band gap at k = 0.4 · 2π
a1

that is closest to the global Dirichlet eigenvalue at ω ≈
0.218 · 2πc

a1
. We employ the Chebyshev interpolation in ω-formulation and choose the interval [0.215 ·

2πc
a1
, 0.245 · 2πca1

], that comprises both, an eigenvalue of the nonlinear eigenvalue problem (6.58) as well as a

global Dirichlet eigenvalue. In Figure 6.18 we present the error in the normalized frequency with respect to

the number of Chebyshev nodes. Even though the chosen interval is relatively small, especially compared

to the irreducible Brillouin zone used for the Chebyshev interpolation in ω-formulation presented in

Figure 6.10, the Chebyshev interpolation does not converge. This is due to the fact that the interval

contains a global Dirichlet eigenvalue, which implies that for any sufficiently large number of Chebyshev

nodes there will be a Chebyshev node that is very close to the global Dirichlet eigenvalue and hence,

the nonlinear matrix function NC0 , that is evaluated at all Chebyshev nodes, has a prohibitively large

condition number that spoils the eigenvalue computation. This means that the Chebyshev interpolation

will always fail to identify eigenvalues that are close to global Dirichlet eigenvalues.

6.3.6 Computation of eigenvalues in vicinity of local Dirichlet eigenvalues

Now let us analyse the behaviour of the Newton method and the Chebyshev interpolation close to a

local Dirichlet eigenvalue. Since the condition number of the DtN matrices D± and the system matrix

NC0
only increase in a very narrow vicinity of the local Dirichlet eigenvalue, see Figure 6.16, we can only

expect the local Dirichlet eigenvalue to influence the performance of the numerical schemes in this narrow

vicinity. To this end, we shall study in the section the convergence of the numerical schemes towards a

common eigenvalue of the nonlinear eigenvalue problem (6.58) and the local Dirichlet problem in the cell

C±
1 . The blue cross in Figure 6.15 at (ω, k) ≈ (0.248 · 2πc

a1
, 0.405 · 2π

a1
) marks such a common eigenvalue

for which we will now present numerical results.

In Figure 6.19a the magnitude of the global signed distance function is shown in dependence on the

number of iterations of the Newton method when using the start value ω(0) = 0.263 · 2πca1
at k ≈ 0.405 · 2πa1

.

We see that the method does not converge to the common eigenvalue ω ≈ 0.248 · 2πc
a1

of the nonlinear

eigenvalue problem (6.58) and the local Dirichlet problem in the cell C±
1 . Instead the magnitude of the

global signed distance function remains almost constant after two iterations at a level of 10−3. This is

due to the fact that the local Dirichlet problems are ill-posed at the Dirichlet eigenvalues. The closer

one comes to such a Dirichlet eigenvalue the larger the condition number of the local DtN matrices T±
ij ,

i, j = 1, 2, becomes and hence, the more the error of the DtN matrices increases.
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].

Figure 6.19: Convergence of the Newton method in ω-formulation (a) and the Chebyshev interpolation in

k-formulation (b) applied to the computation of the common eigenvalue (ω, k) ≈ (0.248 · 2πc
a1
, 0.405 · 2π

a1
)

of the Dirichlet cell problem and the nonlinear eigenvalue problem with DtN transparent boundary

conditions, see blue cross in Figure 6.15.
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6 Dirichlet-to-Neumann transparent boundary conditions

Now we want to apply the Chebyshev interpolation in k-formulation to the computation of the common

eigenvalue (ω, k) ≈ (0.248 · 2πc
a1
, 0.405 · 2π

a1
) of the nonlinear eigenvalue problem with DtN transparent

boundary conditions and the local Dirichlet problem, i. e. we fix the frequency to ω ≈ 0.248 · 2πca1
and chose

the irreducible Brillouin zone B̂ = [0, π
a1
] as interval for the Chebyshev interpolation. In Figure 6.19b

the error in the normalized frequency is shown in comparison to the number of Chebyshev nodes. We

can see that error decreases exponentially, where we again have to point out that the convergence is not

monotone since the Chebyshev nodes are not hierarchical.

The observed convergence of the Chebyshev interpolation towards a common eigenvalue of the nonlinear

eigenvalue problem with DtN transparent boundary conditions and the local Dirichlet problem stands

in contrast to the diverging Newton method. The reason for this is that the condition numbers of

the DtN matrices D± and the system matrix NC0
only increase in a very narrow vicinity of the local

Dirichlet eigenvalue, see Figure 6.16. While this anyhow effects the Newton method, while approaching

this Dirichlet eigenvalue, the Chebyshev interpolation is not effected by the increasing condition number

since all Chebyshev nodes, even for larger orders, are sufficiently far away from the Dirichlet eigenvalue.

This situation, however, changes if — in addition to the local Dirichlet eigenvalue — there exists a

global Dirichlet eigenvalue inside the interval of the Chebyshev interpolation as our numerical results in

Section 6.3.5 showed. We shall analyse this in more detail in the next chapter in Section 7.3.4, where we

will apply the Chebyshev interpolation also in ω-formulation which turns out to be problematic in this

case.

6.3.7 Adaptive path following of dispersion curves

Finally, we want to apply the adaptive path following algorithm based on piecewise Taylor expansions of

the dispersion curves, that we introduced in Chapter 5, to the nonlinear eigenvalue problem (6.58) with

DtN transparent boundary conditions. For this we employ the formulas for the group velocity and higher

derivatives of the dispersion curves, that we derived in Section 6.2.3.

Let n ∈ N be the order of the Taylor expansions. As done in Chapter 5, we select a start value k(0) ∈ B

and compute the eigenvalues in a frequency interval Iω ⊂ R+ \ σess
h (k(0)) within a band gap. We employ

the direct method based on Chebyshev interpolation for the simultaneous computation of all eigenvalues

of (6.58) in Iω. For all eigenvalues, that were found in Iω, we proceed as presented in Algorithm 5.2 for

the case without backward check or as presented in Algorithm 5.3 including backward check, i. e.

(i) we compute the dispersion curve derivatives up to order n+ 1 using Eq. (6.55),

(ii) we evaluate the acceptable step size (5.29) of the Taylor expansion of order n,

(iii) we add the step size to and subtract it from the current node to obtain the next nodes of the

quasi-momentum,

(iv) we compute an approximation to the eigenvalue at the next nodes using the Taylor expansion of

order n around the current node,

(v) we employ the proposed Newton-like method, or some other iterative scheme, in ω-formulation for

the computation of an eigenvalue using the expected location as start value, and then

(vi) we continue to follow the dispersion curve to the left and right, possibly applying additional refine-

ment checks such as the backward check, see Section 5.4.2.

In contrast to the situation in Chapter 5, where we applied the adaptive path following to the supercell

approximation, we now have to take the essential spectrum implicitly into account. In Chapter 5 we

could simply continue to follow the dispersion curves when they entered the essential spectrum. Now,

when using DtN transparent boundary conditions, we cannot continue to follow the dispersion curves

across band edges since the DtN operators are not well-defined in the essential spectrum. We resolve

this problem as follows: as soon as we find that the expected location of the frequency eigenvalue is

outside the band gap, or if an iterative scheme for the computation of the eigenvalue of (6.58), such as

the proposed Newton-like method, does not converge in the band gap, we reduce the step size of the path

following algorithm, e. g. by the factor 1
2 . If the step size decreases below some threshold εedgetol during

this refinement, we stop to follow the dispersion curve, taking it as granted that the dispersion curve hits

the band edge.
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6.3 Numerical results
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(a) Dispersion curves in the second band gap.
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Figure 6.20: Adaptive Taylor scheme of order n = 5 with backward check of tolerance εbwd
tol = 10−2

applied to the dispersion curves in the second band gap. The error tolerance of the step size computation

is εsteptol = 10−4, the minimum step size of the band edge refinement is εedgetol = 10−5, and the start value

of the iteration is set to k(0) = π
2a1

.

In Figure 6.20 we present the results of the adaptive Taylor expansion of order n = 5 including the

additional backward check of tolerance εbwd
tol = 10−2. Similarly to the results in Chapter 5, the dots

indicate the location of the values of k for which the eigenvalues ω(k) of (6.58) and the dispersion curve

derivatives ω′(k), ω(2)(k), . . . , ω(6)(k) were computed. The lines connecting the dots result from the post-

processing, where we again chose the weighted Taylor expansion (5.30).

Note that the red dispersion curve hits the band edge. For this curve the band edge refinement

technique, that we described above, was employed with minimum step size εedgetol = 10−5. A detailed view

of the dispersion curve at the band edge is shown in Figure 6.20b.
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Figure 6.22: Magnitude of the n-th derivatives,

n = 2, . . . , 5, of the red dispersion curve in Fig-

ure 6.20 in dependence on the distance to the band
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Most notable is the tangential behaviour of the dispersion curve at the band edge, i. e. the group

velocity of the dispersion curve converges to the slope of the band edge, see Figure 6.21. This surprising

behaviour raises the question if the numerical results of the DtN method are reliable or if the results
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6 Dirichlet-to-Neumann transparent boundary conditions

shown in Figure 6.20b are spurious. First we note that the condition number of the DtN matrix D± does

not increase at the band edges, which can bee seen from the maximum and minimum eigenvalues of D±

presented in Figure 6.14. However, in Section 6.3.3 we pointed out that the results of the Chebyshev

interpolation are not reliable if the Chebyshev nodes are too close to the band edge, which is due to

the behaviour of the eigenvalue of the propagation matrix P± that has magnitude strictly less than one

in the band gap and magnitude equal to one in the essential spectrum, see Figure 6.11. As argued in

Section 6.3.3 this behaviour leads to arbitrarily large derivatives of the propagation operator, and hence,

of the DtN operator. In fact, this can also be observed from the numerical results, and it is linked to the

increase of the magnitudes of the derivatives of the dispersion curves in the vicinity of the band edge,

as presented in Figure 6.22. Nevertheless, as long as the computation of the two close eigenvalues of

the propagation matrix P±, presented in Figure 6.12, is reliable, which seems to be the case even when

using standard procedures such as Matlab’s eig function, which is — as mentioned already above — an

implementation of the generalized Schur decomposition, we can expect that the nonlinear matrix NC0
of

the nonlinear eigenvalue problem (6.58) is also reliable in the vicinity of band edges. Thus, the red dots

in Figure 6.20b can expected to be in fact eigenvalues of the nonlinear eigenvalue problem (6.58) and

therefore, the tangential behaviour of the dispersion curve at the band edge, as shown in Figure 6.20b, is

correct. Finally, let us note that this behaviour cannot be captured by the supercell method due to its

prohibitively large modelling error in the vicinity of band edges. This is shown in Figure 6.23, where we

compare the results of the adaptive Taylor scheme, that we presented in Figure 6.20, with the result of

the supercell method. In Figure 6.23a we can see that the results when using a supercell with n = 5 cells

on top and bottom of the defect cell C0 (green) differ in the vicinity of the band edge from the results

when using DtN transparent boundary conditions (red). However, at the exact position of the band edge,

the difference is again very small. This effect is studied in more detail in Figure 6.23b, where we compare

our results of the adaptive Taylor expansion with DtN transparent boundary conditions from Figure 6.20

with supercell results, when using = 5, 10, 20, 30 cells on top and bottom of the defect cell C0. It becomes

clear that the position of the dispersion curve entering the essential spectrum is modelled correctly by

the supercell method, but the group velocity of the dispersion curve is not. The larger the supercell the

smaller is the error in the group velocity, but also for a supercell with n = 30 cells on top on bottom of

C0 (black line) the group velocity is far from being identical to the slope of the band edge.
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Figure 6.23: Comparison of the results of the adaptive Taylor scheme with DtN transparent boundary

conditions (red), that were presented already in Figure 6.20, with the results of the supercell method

(green, cyan, blue, black) in the vicinity of the band edge.

With the adaptive path following of dispersion curves for the problem (6.58) we developed an algorithm

that is both, efficient and exact. Moreover, we can with the help of this algorithm effectively reduce the
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6.4 Conclusions

influence of local and global Dirichlet eigenvalues. In the previous numerical examples, we showed that

the proposed Newton-like method does not converge towards common eigenvalues of (6.58) and the local

Dirichlet problems, see Section 6.3.6, and that the convergence towards eigenvalues of (6.58) in the vicinity

of global Dirichlet eigenvalues is not possible using the Chebyshev interpolation or limited to small radii

of convergence when using the MSLP. If there is a global Dirichlet eigenvalue in the frequency interval

Iω at the selected start value k(0), the Chebyshev interpolation, that we suggested for the simultaneous

computation of all eigenvalues of (6.58) in Iω at k(0), is not applicable. In other words, if the condition

number of the matrix NC0
(ω, k(0)) evaluated at one of the Chebyshev nodes in Iω exceeds some threshold,

e. g. 106, we cannot expect the Chebyshev interpolation to deliver reasonable results. In this case we

perform a pointwise evaluation of the global signed distance function in Iω to find appropriate start

values for the computation of all eigenvalues of (6.58) in Iω at k(0) using the Newton method. In the view

of the numerical results presented in Figure 6.17 we can expect that the Newton method also converges to

eigenvalues of (6.58) even if they are very close to global Dirichlet eigenvalues. If the case of the unlikely

event that an eigenvalue of (6.58) at k(0) is simultaneously a global Dirichlet eigenvalue, which implies

that convergence towards this of any method is lost, we have to choose a different value for k(0). If during

the adaptive algorithm a node turns out to be too close to a local or global Dirichlet eigenvalue, we can

simply shift the node by a small amount to restore convergence of the proposed Newton method, or any

other iterative scheme.

6.4 Conclusions

In this chapter we showed the high-order FE discretization and numerical solution of the DtN approach,

that was presented in [Fli13] for the exact computation of guided modes in PhC waveguides. DtN maps

for periodic media are computed by solving local Dirichlet problems and a quadratic eigenvalue problem.

Using these DtN maps we transformed the eigenvalue problem for the computation of guided modes, that

is posed in an unbounded domain, to a nonlinear eigenvalue problem in a unit cell.

We pointed out that the DtN maps are not well-defined at global Dirichlet eigenvalues and their

computation is ill-posed at local Dirichlet eigenvalues, and showed that these Dirichlet eigenvalues lead

to ill-conditioned matrices of the nonlinear eigenvalue problem, which implies that — depending on the

numerical scheme — convergence towards eigenvalues of the nonlinear eigenvalue problem, that are very

close to local or global Dirichlet eigenvalues, can be lost.

We showed that the DtN operators are differentiable with respect to the frequency and the quasi-

momentum which is a requirement of nonlinear eigenvalue solvers. Moreover, we discussed the compu-

tation of the derivatives of the DtN operators to any order. We also explained the computation of the

derivatives of the DtN operators to arbitrary orders.

We applied the iterative Newton method, that we proposed in Chapter 3, to the nonlinear eigenvalue

problem and found that it overcomes a problem of other iterative solvers, like the MSLP, that is related

to the existence of global Dirichlet eigenvalues. As an alternative to the iterative solvers we applied the

Chebyshev interpolation as a direct procedure to solve the nonlinear eigenvalue problem, which proves

especially useful in the k-formulation. Numerical examples showed an exponential convergence for p-FEM

independent of the confinement of the guided mode, which stands in contrast to the supercell method for

which we showed numerically a significant dependence on the confinement of the guided mode.

We extended the theory in Chapter 4 and derived formulas for the group velocity of guided modes and

any higher order derivative of the dispersion curves in the case of DtN transparent boundary conditions.

We applied these derivatives in an adaptive Taylor expansion of the dispersion curves, which was proposed

in Chapter 5. For this we introduced a band edge check that is needed to follow the dispersion curves

that leave the band gap. With this adaptive path following of dispersion curves of the problem with

DtN transparent boundary conditions we developed an algorithm for PhC waveguide band structure

calculations that is both, efficient and exact. It overcomes the problem of the modelling error introduced

by the supercell method, since the DtN transparent boundary conditions model the exterior, periodic

domain exactly, and it is time-efficient due to the adaptive selection of nodes for the piecewise Taylor

expansion, and only a very little number of nonlinear eigenvalue problems have to be solved. In particular,
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6 Dirichlet-to-Neumann transparent boundary conditions

we showed that our adaptive scheme is able to resolve the behaviour of the dispersion curves in the vicinity

of band edges, which is not possible with the supercell method.

The question that remains is the question of how to overcome the problem of local and global Dirichlet

eigenvalues. This is addressed in the following chapter, where we will introduce RtR transparent boundary

conditions for periodic media.
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7 Robin-to-Robin transparent boundary

conditions

RtR transparent boundary conditions for periodic media resolve the problem of global and local Dirichlet

eigenvalues, that limit the application of DtN transparent boundary conditions, that we presented in the

previous chapter.

We will introduce RtR operators, that are used to truncate the infinite periodic medium of PhC

waveguides, and show that the eigenvalue problem (2.19) of finding guided modes in PhC waveguides,

that is posed in the infinite strip S, is equivalent to a nonlinear eigenvalue problem with RtR transparent

boundary conditions, that is posed in the defect cell C0. In contrast to the case with DtN transparent

boundary conditions as discussed in the previous chapter, this equivalence also holds true at global and

local Dirichlet eigenvalues.

The numerical realization of RtR transparent boundary conditions, that we will discuss in this chapter,

was first published together with S. Fliss and K. Schmidt [FKS15]. In this work, however, we propose an

alternative why for the characterization of the RtR operators. Moreover, we discuss the differentiability of

the RtR operators with respect to the frequency and quasi-momentum and elaborate on the computation

of the derivatives. This was not published in [FKS15] but it is needed for the numerical solution of the

resulting nonlinear eigenvalue problem, in particular when applying the adaptive path following algorithm

proposed in Chapter 5.

The outline of this chapter is similar to one of Chapter 6. In Section 7.1 we introduce the RtR operators,

discuss their characterization and differentiability, and comment on their FE discretization. In Section 7.2

we present the nonlinear eigenvalue problem, that is equivalent to (2.19), show its FE discretization and

comment on its numerical solution, before we present numerical results in Section 7.3 and give concluding

remarks in Section 7.4.

7.1 The Robin-to-Robin operators

In this section we define the RtR operators, show there characterization using local cell problems and a

quadratic operator equation, and prove their differentiability. Finally, we will elaborate on the discretiza-

tion of the RtR operators and the local cell problems.

7.1.1 Definition of the Robin-to-Robin operators

The RtR operators are defined through Robin problems in the infinite half-strips S±. But before we

introduce these problems, let us give some introductory remarks on the RtR operators and all other

operators that we will introduce later in this section and that map a Robin trace to another Robin trace.

We will classify Robin traces in this work by forward and backward. Note that any Robin trace can

be split into a Neumann trace, that has a certain direction, and a Dirichlet trace. We will denote a

Robin trace as forward, if its Neumann trace points away from the line defect, and, on the other hand,

the Robin trace is called backward, if its Neumann trace points towards the line defect. For example,

let v ∈ H1
1p(∆, S, α), then α∂2v is a forward Robin trace in the infinite half-strip S+ whereas it is a

backward Robin trace in S−. While the directions of the Neumann traces vary in this work (either

forward or backward), the Dirichlet traces are always the same. The Robin traces that we will deal with

in this work always take the form ±α∂2v + iρv with some constant ρ ∈ R \ {0}.
Now let us come to the Robin problems in the infinite half-strips S±. For any forward Robin trace
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7 Robin-to-Robin transparent boundary conditions

φ ∈ H
−1/2
1p (Γ±

0 ) we seek u±(φ) ≡ u±(· ;ω, k, φ) ∈ H1
1p(∆, S

±, α) such that

−(∇+ ik(10)) · α(∇+ ik(10))u
±(φ)− ω2 β u±(φ) = 0 in S±, (7.1a)

(±α∂2 + iρ)u±(φ) = φ on Γ±
0 . (7.1b)

The following result, that was proved in [Fli09], is the main advantage of the RtR method compared

to the DtN method.

Theorem 7.1. If ω2 /∈ σ±(k), the half-strip problems (7.1) are well-posed in H1
1p(∆, S

±, α).

Theorem 7.1 guarantees well-posedness of (7.1) for all frequencies ω2 /∈ σ±(k), i. e. in particular also

for global Dirichlet eigenvalues for which the half-strip problem (6.1) with Dirichlet boundary conditions

at Γ±
0 is not well-posed.

Then, for any forward Robin trace φ ∈ H
−1/2
1p (Γ±

0 ) on Γ±
0 , the RtR operators R±(ω, k) ∈ L(H

−1/2
1p (Γ±

0 ))

are defined as the backward Robin trace of u±(· ;ω, k, φ) on Γ±
0 , i. e.

R±(ω, k)φ = (∓α∂2 + iρ)u±(· ;ω, k, φ) |Γ±
0
. (7.2)

The following result will prove useful for the characterization of the RtR operators.

Lemma 7.2. Let ω2 /∈ σ±(k). Then the RtR operators R±(ω, k) are invertible.

Proof. Let us introduce the auxiliary half-strip problems: for any backward Robin trace φ ∈ H
−1/2
1p (Γ±

0 )

find ũ±(φ) ≡ ũ±(· ;ω, k, φ) ∈ H1
1p(∆, S

±, α) such that

−(∇+ ik(10)) · α(∇+ ik(10))ũ
±(φ)− ω2 β ũ±(φ) = 0 in S±, (7.3a)

(∓α∂2 + iρ)ũ±(φ) = φ on Γ±
0 . (7.3b)

Like (7.1) these problems are well-posed in H1
1p(∆, S

±, α) if ω2 /∈ σ±(k), cf. Theorem 7.1. This implies

that

u±((±α∂2 + iρ)ũ±(φ)) = ũ±(φ) (7.4a)

and

ũ±((∓α∂2 + iρ)u±(φ)) = u±(φ) (7.4b)

for all φ ∈ H
−1/2
1p (Γ±

0 ). Now we introduce

R̃±(ω, k)φ = (±α∂2 + iρ)ũ±(· ;ω, k, φ) |Γ±
0
. (7.5)

Using (7.5), the definition of the RtR operators (7.2), and the identities (7.4), we conclude that

R̃±(ω, k)R±(ω, k)φ = (±α∂2 + iρ)ũ±((∓α∂2 + iρ)u±(φ) |Γ±
0
) |Γ±

0
= (±α∂2 + iρ)u±(φ) |Γ±

0
= φ

and

R±(ω, k)R̃±(ω, k)φ = (∓α∂2 + iρ)u±((±α∂2 + iρ)ũ±(φ) |Γ±
0
) |Γ±

0
= (∓α∂2 + iρ)ũ±(φ) |Γ±

0
= φ

for all φ ∈ H
−1/2
1p (Γ±

0 ), which finishes the proof.

7.1.2 Characterization of the Robin-to-Robin operators

In this subsection we explain how we can compute the RtR operators using local cell problems and a

quadratic operator equation.

First, we note that the infinite strips S± on top and bottom of the guide can be expressed as union

of an infinite number of periodicity cells C±
n , n ∈ N, i. e. S± =

⋃∞
n=1 (C

±
n ∪ Γ±

n ), cf. Figure 2.3b. The

top and bottom boundaries of these cells C±
n shall be denoted by Γ±

n−1 and Γ±
n , i. e. Γ

±
0 = C0 ∩C±

1 and
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7.1 The Robin-to-Robin operators

Γ±
n = C±

n ∩ C±
n+1 for n ≥ 1. We also note that — due to the periodicity and the infinity of the half

strips — all cells C±
n can be identified by the first cell C±

1 and all boundaries Γ±
n can be identified by

the first boundary Γ±
0 . This implies that we can identify all functions of C±

n by functions of C±
1 , and,

similarly, all functions of Γ±
n by functions of Γ±

0 . Analogously to Chapter 6 we introduce shift operators

S±
n ∈ L(C∞(Γ±

0 ),C
∞(Γ±

n )), n ∈ N, defined by

S±
n φ(x) = φ(x∓ na±2 ) (7.6)

By a density argument of C∞(Γ±
n ) in H

1/2
1p (Γ

±
n ) and H

−1/2
1p (Γ±

n ), respectively, we can extend the shift

operators S±
n to functions in H

1/2
1p (Γ

±
n ) and H

−1/2
1p (Γ±

n ). For simplicity of notation we shall write S± := S±
1 .

Furthermore, we introduce the inverse (S±)−1 of S± which is simply given by

(S±)−1φ(x) = φ(x± a±2 ). (7.7)

We start by introducing two propagation operators.

• The forward-forward propagation operator P±
ff (ω, k) ∈ L(H

−1/2
1p (Γ±

0 )), defined by

P±
ff (ω, k)φ = (S±)−1(±α∂2 + iρ)u±(· ;ω, k, φ) |Γ±

1
,

maps the forward Robin trace φ ∈ H
−1/2
1p (Γ±

0 ) on Γ±
0 to the forward Robin trace of the infinite half-

strip solution u±(φ) of (7.1) on Γ±
1 shifted to Γ±

0 . As argued in [FKS15], this operator is compact,

injective and its spectral radius is strictly less than one.

• The forward-backward propagation operator P±
fb(ω, k) ∈ L(H

−1/2
1p (Γ±

0 )), defined by

P±
fb(ω, k)φ = (S±)−1(∓α∂2 + iρ)u±(· ;ω, k, φ) |Γ±

1
,

maps the forward Robin trace φ ∈ H
−1/2
1p (Γ±

0 ) on Γ±
0 to the backward Robin trace of the infinite

half-strip solution u±(φ) on Γ±
1 shifted to Γ±

0 .

Now we define local cell problems: for any forward Robin trace φ ∈ H
−1/2
1p (Γ±

0 ) on Γ±
0 and any backward

Robin trace ψ ∈ H
−1/2
1p (Γ±

1 ) on Γ±
1 find u±loc(φ,ψ) ≡ u±loc(· ;ω, k, φ, ψ) ∈ H1

1p(∆, C
±
1 , α) as solution of

−(∇+ ik(10)) · α(∇+ ik(10))u
±
loc(φ,ψ)− ω2β u±loc(φ,ψ) = 0 in C±

1 , (7.8a)

(±α∂2 + iρ)u±loc(φ,ψ) = φ on Γ±
0 , (7.8b)

(∓α∂2 + iρ)u±loc(φ,ψ) = ψ on Γ±
1 . (7.8c)

These local cell problems are well-posed for all (ω2, k) ∈ R+ × B. The corresponding Dirichlet cell

problems (6.8), however, that we used in Chapter 6 to characterize the DtN operators, are only well-

posed if we exclude for each k ∈ B the countable set of local Dirichlet eigenvalues, i. e. eigenvalues of (6.8a)

with homogeneous homogeneous Dirichlet boundary conditions at Γ±
0 and Γ±

1 .

With the solutions of the local cell problems (7.8) we define

• the local forward-backward RtR operator

T ±
fb (ω, k)φ = (∓α∂2 + iρ)u±loc(φ, 0) |Γ±

0
, (7.9a)

which maps the forward Robin trace φ on Γ±
0 to the backward Robin trace of the local cell solution

u±loc(φ, 0) on Γ±
0 ,

• the local forward-forward RtR operator

T ±
ff (ω, k)φ = (S±)−1(±α∂2 + iρ)u±loc(φ, 0) |Γ±

1
, (7.9b)

which maps the forward Robin trace φ on Γ±
0 to the forward Robin trace of the local cell solution

u±loc(φ, 0) on Γ±
1 shifted to Γ±

0 ,
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• the local backward-backward RtR operator

T ±
bb(ω, k)φ = (∓α∂2 + iρ)u±loc(0,S

±φ) |Γ±
0
, (7.9c)

which maps the backward Robin trace φ on Γ±
0 to the backward Robin trace of the local cell solution

u±loc(0,S±φ) on Γ±
0 , and

• the local backward-forward RtR operator

T ±
bf (ω, k)φ = (S±)−1(±α∂2 + iρ)u±loc(0,S

±φ) |Γ±
1
, (7.9d)

which maps the backward Robin trace φ on Γ±
0 to the forward Robin trace of the local cell solution

u±loc(0,S±φ) on Γ±
1 shifted to Γ±

0 .

With the help of the local cell solutions and the propagation operators P±
ff and P±

fb we can express the

infinite half strip solution u±(φ) in the cell C±
n , n ∈ N, as

u±(φ) |C±
n
= u±loc((P

±
ff )n−1φ,S±P±

fb(P
±
ff )n−1φ)

= u±loc((P
±
ff )n−1φ, 0) + u±loc(0,S

±P±
fb(P

±
ff )n−1φ),

(7.10)

since the solutions of the local cell problems (7.8) are linear in the data (φ,ψ). Evaluating the forward

Robin trace of the infinite half-strip solution u±(φ) on Γ±
1 using Eq. (7.10), we obtain an equation for

the forward-forward propagation operator P±
ff in terms of the local RtR operators T ±

ff and T ±
bf , and the

forward-backward propagation operator P±
fb

P±
ff (ω, k)φ = (S±)−1(±α∂2 + iρ)u±(φ) |Γ±

1

= (S±)−1(±α∂2 + iρ)u±loc(φ, 0) |Γ±
1
+(S±)−1(±α∂2 + iρ)u±loc(0,S

±P±
fbφ) |Γ±

1

= T ±
ff φ+ T ±

bf P
±
fbφ.

(7.11)

On the other hand, identifying the backward Robin trace of the infinite half-strip solution u±(φ) on Γ±
1

by the backward Robin trace of the infinite half-strip solution u±(P±
ff φ) on Γ±

0 , and evaluating this trace

using Eq. (7.10), we obtain an equation for the forward-backward propagation operator P±
fb in terms of

the local RtR operators T ±
fb and T ±

bb, and the forward-forward propagation operator P±
ff

P±
fb(ω, k)φ = (S±)−1(∓α∂2 + iρ)u±(φ) |Γ±

1

= (∓α∂2 + iρ)u±(P±
ff φ) |Γ±

0

= (∓α∂2 + iρ)u±loc(P
±
ff φ, 0) |Γ±

0
+(∓α∂2 + iρ)u±loc(0,S

±P±
fbP

±
ff φ) |Γ±

0

= T ±
fb P

±
ff φ+ T ±

bbP
±
fbP

±
ff φ.

(7.12)

Using the local RtR operators T ±
fb (ω, k) and T ±

bb(ω, k), as well as the forward-backward propagation

operator P±
fb(ω, k), we can characterize the RtR operator R±(ω, k) defined in (7.2), which maps a forward

Robin trace on Γ±
0 to a backward Robin trace on Γ±

0 , by

R±(ω, k) = T ±
fb (ω, k) + T ±

bb(ω, k)P
±
fb(ω, k). (7.13)

Now let us come to the problem of computing the forward-backward propagation operator P±
fb(ω, k).

In [FKS15] we argued that the local backward-forward RtR operator T ±
bf (ω, k) is invertible for all (ω

2, k) ∈
R+×B, and its inverse can be computed with the help of the auxiliary local cell problem: for any forward

Robin traces φ ∈ H
−1/2
1p (Γ±

0 ) on Γ±
0 and ψ ∈ H

−1/2
1p (Γ±

1 ) on Γ±
1 find ũ±loc(φ,ψ) ≡ ũ±loc(· ;ω, k, φ, ψ) ∈

H1
1p(∆, C

±
1 , α) as solution of

−(∇+ ik(10)) · α(∇+ ik(10))ũ
±
loc(φ,ψ)− ω2β ũ±loc(φ,ψ) = 0 in C±

1 , (7.14a)

(±α∂2 + iρ)ũ±loc(φ,ψ) = φ on Γ±
0 , (7.14b)

(±α∂2 + iρ)ũ±loc(φ,ψ) = ψ on Γ±
1 . (7.14c)
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However, this auxiliary local cell problem is not well-posed for all (ω2, k) ∈ R+ ×B, and hence, the local

backward-forward RtR operator T ±
bf (ω, k) is not invertible for all (ω2, k) ∈ R+ × B. Thus, we cannot

proceed as presented in [FKS15] and express the forward-backward propagation operator P±
fb(ω, k) for

all (ω2, k) ∈ R+ ×B in terms of the forward-forward propagation operator P±
ff (ω, k) by simply applying

the inverse of T ±
bf (ω, k) to Eq. (7.11), and then using this identity together with Eq. (7.12) to obtain a

quadratic operator equation for the forward-forward propagation operator P±
ff (ω, k).

Instead, we directly insert (7.11) into (7.12) and obtain the quadratic operator equation

T ±
bbP

±
fbT

±
bf P

±
fb + T ±

bbP
±
fbT

±
ff +

(
T ±
fb T

±
bf − I

)
P±
fb + T ±

fb T
±
ff = 0 (7.15)

for the forward-backward propagation operator P±
fb(ω, k), where we omitted — for simplicity of presen-

tation — the (ω, k)-dependence of the operators.

This quadratic operator equation does not uniquely define the forward-backward propagation operator

P±
fb(ω, k). A characterization of P±

fb(ω, k) using (7.15) is particularly difficult since the forward-backward

propagation operator P±
fb(ω, k) — in contrast to the forward-forward propagation operator P±

ff (ω, k)

— does not necessarily have spectral radius strictly less than one. Therefore, it will prove useful, to

additionally present the characterization of the RtR operators using the quadratic operator equation for

the forward-forward propagation operator P±
ff (ω, k), which is — as argued above — only valid if (7.14)

is well-posed.

Lemma 7.3. Let the auxiliary local cell problem (7.14) be well-posed. Then local RtR operator T ±
bf (ω, k)

is invertible.

Proof. Let T̃ ±
fb (ω, k) be defined for all φ ∈ H

−1/2
1p (Γ±

0 ) by

T̃ ±
fb (ω, k)φ = (S±)−1(∓α∂2 + iρ)ũ±loc(0,S

±φ) |Γ±
1
. (7.16)

Note that T̃ ±
fb (ω, k) is well-defined, since by assumption the solution ũ±loc(· ;ω, k, 0,S±φ) of the auxiliary

local cell problem (7.14) exists and is unique. Since the usual local cell problem (7.8) is also well-posed,

we can deduce that

ũ±loc(0, (±α∂2 + iρ)u±loc(0,S
±φ) |Γ±

1
) = u±loc(0,S

±φ)

for all φ ∈ H
−1/2
1p (Γ±

0 ). Using the definition (7.9d) of the local backward-forward RtR operator T ±
bf (ω, k),

we deduce that

(S±)−1(∓α∂2 + iρ)ũ±loc(0,S
±T ±

bf (ω, k)φ) |Γ±
1
= φ

for all φ ∈ H
−1/2
1p (Γ±

0 ), which implies by definition of T̃ ±
fb (ω, k) that

T̃ ±
fb (ω, k)T

±
bf (ω, k)φ = φ

for all φ ∈ H
−1/2
1p (Γ±

0 ). On the other hand, we can also show that

(S±)−1(±α∂2 + iρ)u±loc(0,S
±T̃ ±

fb (ω, k)φ) |Γ±
1
= φ

for all φ ∈ H
−1/2
1p (Γ±

0 ), i. e.

T ±
bf (ω, k)T̃

±
fb (ω, k)φ = φ

for all φ ∈ H
−1/2
1p (Γ±

0 ), which finishes the proof.

Let the auxiliary local cell problem (7.14) be well-posed. Using Lemma 7.3 we can then rewrite (7.11)

in the form

P±
fbφ =

(
T ±
bf

)−1 (P±
ff φ− T ±

ff φ
)
. (7.17)

Inserting this equality into Eq. (7.12) yields a quadratic operator equation, the so-called Riccati equation,

T ±
bb

(
T ±
bf

)−1 (P±
ff

)2
+
(
T ±
fb −

(
T ±
bf

)−1 − T ±
bb

(
T ±
bf

)−1 T ±
ff

)
P±
ff +

(
T ±
bf

)−1 T ±
ff = 0. (7.18)
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Proposition 7.4. Let ω2 /∈ σ±(k) and let the auxiliary local cell problem (7.14) be well-posed. Then the

forward-forward propagation operator P±
ff (ω, k) is the unique solution of the Riccati equation (7.18) with

spectral radius strictly less than one.

Proof. We showed already that P±
ff (ω, k) is solution of the Riccati equation (7.18). To show that it is the

unique solution, we use the same ideas as in [JLF06, Fli09] and suppose that P̃±
ff is also a solution. Let

us introduce

P̃±
fb =

(
T ±
bf

)−1
(P̃±

ff − T ±
ff )

and define for all φ ∈ H
−1/2
1p (Γ±

0 )

v±(φ) |C±
n
= u±loc((P̃

±
ff )n−1φ,S±P̃±

fb(P̃
±
ff )n−1φ).

We can see easily that v±(φ) satisfies the boundary condition (7.1b) and is solution of (7.1a) in each cell

C±
n . We can also show the continuity of the forward and the backward traces on each Γ±

n because P̃±
ff is

solution of (7.18) and by definition of P̃±
fb. Finally, v±(φ) ∈ L2(S±) because the spectral radius of P̃±

fb

is strictly less than one. Due to well-posedness of (7.1), v±(φ) is necessarily equal to u±(φ) for each φ,

and in particular their traces on Γ±
1 coincide. Hence, the operator P̃±

ff is identical to P±
ff .

With the help of Proposition 7.4 we can deduce a similar result for the forward-backward propagation

operator P±
fb(ω, k).

Corollary 7.5. Let ω2 /∈ σ±(k) and let the auxiliary local cell problem (7.14) be well-posed. Then the

forward-backward propagation operator P±
fb(ω, k) is the unique solution of the quadratic operator equa-

tion (7.15) such that

P±
ff (ω, k) = T ±

ff (ω, k) + T ±
bf (ω, k)P

±
fb(ω, k)

has spectral radius strictly less than one.

Proof. By construction of the quadratic operator equation (7.15), it is clear that P±
fb(ω, k) is a solution.

On the other hand, uniqueness directly follows from Proposition 7.4 and the fact that the mapping

X T ±
ff (ω, k) + T ±

bf (ω, k)X ,

that is needed to compute the forward-forward propagation operator P±
ff (ω, k) from the forward-backward

propagation operator P±
fb(ω, k), cf. Eq. (7.11), is injective if and only if the auxiliary local cell prob-

lem (7.14) is well-posed and hence, the local backward-forward RtR operator T ±
bf (ω, k) is invertible.

Thanks to Corollary 7.5 the unique characterization of the forward-backward propagation operator

P±
fb(ω, k) is now clear as long as the auxiliary local cell problem (7.14) is well-posed. In this case, we can

also compute the forward-forward propagation operator P±
ff (ω, k), which is uniquely characterized by the

Riccati equation (7.18) due to Proposition 7.4, and then employ (7.17) for the unique computation of the

forward-backward operator P±
fb(ω, k).

If, on the other hand, the auxiliary local cell problem (7.14) is not well-posed, and hence, the local

backward-forward RtR operator T ±
bf (ω, k) is not invertible, a unique characterization of the forward-

backward propagation operator P±
fb(ω, k) using the quadratic operator equation (7.15) is still possible.

However, we cannot argue like in Corollary 7.5 since the local backward-forward RtR operator T ±
bf (ω, k) is

not injective. Instead we shall use the RtR operator R±(ω, k) to map between the propagation operators.

For this, we insert (7.13) into (7.12), which gives

P±
fb(ω, k) = R±(ω, k)P±

ff (ω, k). (7.19)

Since the RtR operator is invertible, see Lemma 7.2, we can prove the following result.

Proposition 7.6. Let ω2 /∈ σ±(k). Then the forward-backward propagation operator P±
fb(ω, k) is the

unique solution of the quadratic operator equation (7.15) such that

P±
ff (ω, k) =

(
R±(ω, k)

)−1 P±
fb(ω, k) (7.20)

has spectral radius strictly less than one.
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Proof. The fact that the forward-backward propagation operator P±
fb(ω, k) is a solution of (7.15) is clear

from the construction of (7.15). To show uniqueness, we can proceed exactly like in the proof of Propo-

sition 7.4, additionally taking into account that the forward-forward propagation operator P±
ff (ω, k) is

uniquely defined by Eq. (7.20) since the RtR operator is invertible for all ω2 /∈ σ±(k), see Lemma 7.2.

Now we are able to uniquely characterize the RtR operator R±(ω, k) using (7.13) no matter if the

auxiliary local cell problem (7.14) is well-posed.

However, note that the auxiliary local cell problem (7.14) can be chosen to be well-posed for specific

(ω2, k) ∈ R+×B by carefully selecting the constant ρ ∈ R\{0}. It has to be mentioned, that for the sake

of differentiability of the operators, which is a crucial prerequisite of all numerical schemes for the solution

of the resulting nonlinear eigenvalue problem, the coefficient ρ has to be differentiable with respect to ω

and k. However, allowing ρ to vary smoothly, will yield significantly more complicated formulas for the

derivatives of the operators. This explains why it is beneficial to assume that ρ is in fact a constant for

all (ω2, k) ∈ R+ × B. Nevertheless, it might be possible to select this constant such that the auxiliary

local cell problem (7.14) is well-posed for all (ω2, k) in a subdomain of R+ × B, that is of interest in

the numerical computation. This will be demonstrated later in the numerical experiments presented in

Section 7.3.

It remains to comment on the numerical solution of the quadratic operator equations (7.15) and (7.18).

For the numerical solution of the discrete version of the Riccati equation (7.18) we shall propose later

in Section 7.1.5 an eigendecomposition, that we already proposed in Chapter 6 for the computation of

the Dirichlet propagation operators involved in the characterization of DtN operators. For the numerical

solution of the discrete version of the quadratic operator equation (7.15), on the other hand, we will

propose in Section 7.1.5 a Newton method similar to the procedure described in [JLF06] for the compu-

tation of the Dirichlet propagation operators, that implicitly takes the condition on the spectral radius

of P±
ff (ω, k) into account.

Finally, let us come to an important result on the relation of the proposed RtR approach and the DtN

approach as presented in Chapter 6. To this end, we recall the Dirichlet problems (6.1) in the infinite half-

strips S±. In order to distinguish between the solutions u±(φ) of the Robin problems (7.1) in the infinite

half-strips S± and the solutions of the Dirichlet problems (6.1), we shall denote the latter by u±DtN(φDtN) ≡
u±DtN(· ;ω, k, φDtN) ∈ H1

1p(∆, S
±, α) with some Dirichlet trace φDtN ∈ H

1/2
1p (Γ

±
0 ). Recall that this Dirichlet

problem is only well-posed for (ω2, k) ∈ R+×B with ω2 /∈ σ±(k) except a countable set of frequencies —

the global Dirichlet eigenvalues, i. e. eigenvalues of (7.1a) with homogeneous Dirichlet boundary condition

at Γ±
0 . Furthermore, let P±

DtN(ω, k) ∈ L(H
1/2
1p (Γ

±
0 )) denote the Dirichlet propagation operator (6.6) of

the DtN approach, i. e. for φDtN ∈ H
1/2
1p (Γ

±
0 ) we define P±

DtNφDtN = (S±)−1u±DtN(φDtN) |Γ±
1
. Then we can

show the following result.

Proposition 7.7. Let (ω2, k) ∈ R+ × B with ω2 /∈ σ±(k) and let the Dirichlet problems (6.1) on

the infinite half-strips S± be well-posed. Then the following holds true: If µ±
DtN ∈ C is an eigenvalue

of P±
DtN(ω, k) with associated eigenfunction φ±

DtN ∈ H
1/2
1p (Γ

±
0 ), i. e. P±

DtN(ω, k)φ
±
DtN = µ±

DtNφ
±
DtN, then

µ±
DtN is also an eigenvalue of the forward-forward RtR propagation operator P±

ff (ω, k) with associated

eigenfunction

φ± = ±α∂2u±DtN(φ
±
DtN) |Γ±

0
+iρφ±

DtN ∈ H
−1/2
1p (Γ±

0 ).

Proof. Let µ±
DtN ∈ C be an eigenvalue of P±

DtN(ω, k) with associated eigenfunction φ±
DtN ∈ H

1/2
1p (Γ

±
0 ).

Then u±DtN(φ
±
DtN) solves the Robin problem (7.1) with φ± = φ±

RtR := ±α∂2u±DtN(φ
±
DtN) |Γ±

0
+iρφ±

DtN.

But this implies that u±(φ±
RtR) ≡ u±DtN(φ

±
DtN) and hence,

P±
ff (ω, k)φ±

RtR = (S±)−1(±α∂2 + iρ)u±(φ±
RtR) |Γ±

1

= (S±)−1(±α∂2 + iρ)u±DtN(φ
±
DtN) |Γ±

1

= µ±
DtN(±α∂2 + iρ)u±DtN(φ

±
DtN) |Γ±

0

= µ±
DtN(±α∂2 + iρ)u±(φ±

RtR) |Γ±
0

= µ±
DtNφ

±
RtR,
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which finishes the proof.

7.1.3 Derivatives of the Robin-to-Robin operators

In this part of the section on the RtR operators we will show their differentiability with respect to

the frequency ω and the quasi-momentum k, and present the characterization of the derivatives. The

derivatives are needed in Section 7.2.6 where we introduce numerical techniques to solve a nonlinear

eigenvalue problem with RtR operators, that we will introduce later in Section 7.2.

Recall that we assume the coefficient ρ to be constant. This implies, in particular, that ρ does not

dependent on ω and k.

Differentiability of the Robin-to-Robin operators

Let u±(φ) ∈ H1
1p(∆, S

±, α) be the unique solution of the Robin problem (7.1) with forward Robin trace

φ ∈ H
−1/2
1p (Γ±

0 ) on Γ±
0 . Then we introduce u±ω (φ) ≡ u±ω (· ;ω, k, φ) as the unique solution in H1

1p(∆, S
±, α)

of

−(∇+ ik(10)) · α(∇+ ik(10))u
±
ω (φ)− ω2β u±ω (φ) = 2ωβu±(φ) in S±, (7.21a)

(±α∂2 + iρ)u±ω (φ) = 0 on Γ±
0 , (7.21b)

and u±k (φ) ≡ u±k (· ;ω, k, φ) as the unique solution in H1
1p(∆, S

±, α) of

−(∇+ ik(10)) · α(∇+ ik(10))u
±
k (φ)− ω2β u±k (φ) = (2α (−k + i∂1) + i∂1α)u

±(φ) in S±, (7.22a)

(±α∂2 + iρ)u±ω (φ) = 0 on Γ±
0 . (7.22b)

Following exactly the same argumentation as in the proofs of Proposition 6.7 and Theorem 6.8 we

deduce the two following results.

Proposition 7.8. Let ω2 /∈ σ±(k). Then the source problems (7.21) and (7.22) are well-posed.

Theorem 7.9. Let ω2 /∈ σ±(k). Then for any φ ∈ H
−1/2
1p (Γ±

0 ) the unique solution u±(· ;ω, k, φ) of the

infinite half-strip problem (7.1) is Fréchet-differentiable with respect to ω and k, and

∂u±(· ;ω, k, φ)
∂ω

= u±ω (· ;ω, k, φ) and
∂u±(· ;ω, k, φ)

∂k
= u±k (· ;ω, k, φ).

Using the definition (7.2) of the RtR operators R±(ω, k), we deduce their Fréchet-differentiability with

respect to ω and k.

Corollary 7.10. Suppose that ω2 /∈ σ±(k). Then the RtR operators R±(ω, k) are differentiable with

respect to the frequency ω and the quasi-momentum k, and for all φ ∈ H
−1/2
1p (Γ±

0 )

∂R±

∂ω
(ω, k)φ = (∓α∂2 + iρ)u±ω (· ;ω, k, φ) |Γ±

0
(7.23a)

and

∂R±

∂k
(ω, k)φ = (∓α∂2 + iρ)u±k (· ;ω, k, φ) |Γ±

0
. (7.23b)

Remark 7.11. Iteratively repeating the above procedure, we find that the RtR operators R±(ω, k) are

differentiable to any order with respect to the frequency ω and the quasi-momentum k if ω2 /∈ σ±(k).

Characterization of the derivatives of Robin-to-Robin operators

For the characterization of the derivatives (7.23) of the RtR operators we employ the same concepts

as in Section 7.1.2 for the characterization of the RtR operators. First we will show that the forward-

forward propagation operators P±
ff (ω, k) and the forward-backward propagation operators P±

fb(ω, k) are

differentiable with respect to ω and k. Then we note that the same is true for the local RtR operators
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T ±
ij (ω, k), i, j ∈ {f,b}, and present their derivatives with respect to ω and k. Finally, we show how to

compute the derivatives of the RtR operators with respect to the frequency and the quasi-momentum.

Analogously to the differentiability of the RtR operators in Corollary 7.10 we obtain the differentiability

of the forward-forward propagation operators P±
ff (ω, k) and the forward-backward propagation operators

P±
fb(ω, k).

Corollary 7.12. Suppose that ω2 /∈ σ±(k). Then the propagation operators P±
ff (ω, k) and P±

fb(ω, k) are

differentiable with respect to the frequency ω and the quasi-momentum k, and for all φ ∈ H
−1/2
1p (Γ±

0 )

∂P±
ff

∂ω
(ω, k)φ = (S±)−1(±α∂2 + iρ)u±ω (· ;ω, k, φ) |Γ±

1
,

P±
fb

∂ω
(ω, k)φ = (∓α∂2 + iρ)u±ω (· ;ω, k, φ) |Γ±

1
,

∂P±
ff

∂k
(ω, k)φ = (S±)−1(±α∂2 + iρ)u±k (· ;ω, k, φ) |Γ±

1
,

P±
fb

∂k
(ω, k)φ = (∓α∂2 + iρ)u±k (· ;ω, k, φ) |Γ±

1
.

Now it remains to characterize the derivatives of the propagation operators and the derivatives of the

RtR operators by means of local cell problems.

First, let us introduce the local cell solutions u±loc,ω(φ,ψ) ≡ uloc,ω(· ;ω, k, φ, ψ) as the unique solution

in H1
1p(∆, C

±
1 , α) of

−(∇+ ik(10)) · α(∇+ ik(10))u
±
loc,ω(φ,ψ)− ω2β u±loc,ω(φ,ψ) = 2ωβu±loc(φ,ψ) in C±

1 , (7.24a)

(±α∂2 + iρ)u±loc,ω(φ,ψ) = 0 on Γ±
0 , (7.24b)

(∓α∂2 + iρ)u±loc,ω(φ,ψ) = 0 on Γ±
1 , (7.24c)

where u±loc(φ,ψ) ≡ u±loc(· ;ω, k, φ, ψ) are the unique solutions of the local cell problems (7.8). Analogously

as above, we can show that the local RtR operators T ±
fb (ω, k), T ±

ff (ω, k), T ±
bb(ω, k) and T ±

bf (ω, k) are

Fréchet-differentiable with respect to ω, and for all φ ∈ H
−1/2
1p (Γ±

0 ) we have

∂T ±
fb

∂ω
(ω, k)φ = (∓α∂2 + iρ)u±loc,ω(φ, 0) |Γ±

0
,

∂T ±
ff

∂ω
(ω, k)φ = (S±)−1(±α∂2 + iρ)u±loc,ω(φ, 0) |Γ±

1
,

∂T ±
bb

∂ω
(ω, k)φ = (∓α∂2 + iρ)u±loc,ω(0,S

±φ) |Γ±
0
,

∂T ±
bf

∂ω
(ω, k)φ = (S±)−1(±α∂2 + iρ)u±loc,ω(0,S

±φ) |Γ±
1
.

Differentiating the quadratic operator equation (7.15) for the computation of the forward-backward

propagation operator P±
fb(ω, k) with respect to ω yields the derivatives of the forward-backward propa-

gation operators P±
fb(ω, k) as solution of

T ±
bb

∂P±
fb

∂ω
P±
ff +

(
R±T ±

bf − I
) ∂P±

fb

∂ω

=
∂T ±

bb

∂ω
P±
fbT

±
bf P

±
fb + T ±

bbP
±
fb

∂T ±
bf

∂ω
P±
fb +

∂T ±
bb

∂ω
P±
fbT

±
ff + T ±

bbP
±
fb

∂T ±
ff

∂ω

+
∂T ±

fb

∂ω
T ±
bf P

±
fb + T ±

fb

∂T ±
bf

∂ω
P±
fb +

∂T ±
fb

∂ω
T ±
ff + T ±

fb

∂T ±
ff

∂ω
, (7.25)

where we omitted — for simplicity of notation — the (ω, k)-dependence of the operators. The form of

this linear operator equation is equivalent to the one of (6.14) for the computation of the derivatives

of the Dirichlet propagation operators in Chapter 6. The techniques for solving the linear operator

equation (7.25) on a discrete level are hence also equivalent to the DtN case presented in Chapter 6 and

will be revisited in Section 7.1.5.
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It remains to verify that the derivatives
∂P±

fb

∂ω (ω, k) of the forward-backward propagation operators

P±
fb(ω, k) are uniquely defined by (7.25). This however, remains an open question, since we have not been

able to prove injectivity of the mapping

X T ±
bbXP±

ff +
(
R±T ±

bf − I
)
X . (7.26)

However, numerical evidence shows, that injectivity on a discrete level is guaranteed.

Finally, the derivatives of the RtR operators R±(ω, k) with respect to ω are obtained by differentiating

Eq. (7.2), which yields

∂R±

∂ω
=
∂T ±

fb

∂ω
+
∂T ±

bb

∂ω
P±
fb + T ±

bb

∂P±
fb

∂ω
. (7.27)

The derivatives of the propagation operator P±
fb(ω, k) and the RtR operator R±(ω, k) with respect

to k are characterized similarly by simply replacing all ω-derivatives in Eqs. (7.25) and (7.27) by k-

derivatives. On the other hand, the k-derivatives of the local RtR operators T ±
ij (ω, k), i, j ∈ {f,b}, are

for any φ ∈ H
−1/2
1p (Γ±

0 ) given by

∂T ±
fb

∂k
(ω, k)φ = (∓α∂2 + iρ)u±loc,k(φ, 0) |Γ±

0
,

∂T ±
ff

∂k
(ω, k)φ = (S±)−1(±α∂2 + iρ)u±loc,k(φ, 0) |Γ±

1
,

∂T ±
bb

∂k
(ω, k)φ = (∓α∂2 + iρ)u±loc,k(0,S

±φ) |Γ±
0
,

∂T ±
bf

∂k
(ω, k)φ = (S±)−1(±α∂2 + iρ)u±loc,k(0,S

±φ) |Γ±
1
,

where u±loc,k(φ,ψ) ≡ u±loc,k(· ;ω, k, φ, ψ) with φ ∈ H
−1/2
1p (Γ±

0 ) and ψ ∈ H
−1/2
1p (Γ±

1 ) are the unique solutions

in H1
1p(∆, C

±
1 , α) of

−(∇+ ik(10)) · α(∇+ ik(10))u
±
loc,k(φ,ψ)− ω2β u±loc,k(φ,ψ)

= (2α (−k + i∂1) + i∂1α)u
±
loc(φ,ψ) in C±

1 , (7.28a)

(±α∂2 + iρ)u±loc,k(φ,ψ) = 0 on Γ±
0 , (7.28b)

(∓α∂2 + iρ)u±loc,k(φ,ψ) = 0 on Γ±
1 . (7.28c)

Extension to higher order derivatives

In Remark 7.11 we pointed out that the RtR operators are differentiable with respect to ω and k up to

any order. We can conclude that the same holds true for the local RtR operators and the propagation

operators. Hence, we can characterize the partial derivatives of the RtR operators with respect to ω and

k of any order similarly to the first order derivatives.

Let us introduce u
±,(m,n)
loc (φ,ψ) ≡ u

±,(m,n)
loc (· ;ω, k, φ, ψ) ∈ H1

1p(∆, C
±
1 , α), m,n ∈ N0, m+n ≥ 1, as the

unique solution of

−(∇+ ik(10)) · α(∇+ ik(10))u
±,(m,n)
loc (φ,ψ)− ω2β u

±,(m,n)
loc (φ,ψ) = f in C±

1 , (7.29a)

(±α∂2 + iρ)u
±,(m,n)
loc (φ,ψ) = 0 on Γ±

0 , (7.29b)

(∓α∂2 + iρ)u
±,(m,n)
loc (φ,ψ) = 0 on Γ±

1 (7.29c)

with

f = 2mωβu
±,(m−1,n)
loc (φ,ψ) +m(m− 1)βu

±,(m−2,n)
loc (φ,ψ)

+ n (2α(−k + i∂1) + i∂1α)u
±,(m,n−1)
loc (φ,ψ)− n(n− 1)αu

±,(m,n−2)
loc (φ,ψ)
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and the convention

u
±,(0,0)
loc (· ;ω, k, φ, ψ) = u±loc(· ;ω, k, φ, ψ),

u
±,(1,0)
loc (· ;ω, k, φ, ψ) = u±loc,ω(· ;ω, k, φ, ψ),

u
±,(0,1)
loc (· ;ω, k, φ, ψ) = u±loc,k(· ;ω, k, φ, ψ).

Using the short notation

T ±,(m,n)
fb (ω, k) :=

∂m+nT ±
fb (ω, k)

∂ωm∂kn
,

T ±,(m,n)
ff (ω, k) :=

∂m+nT ±
ff (ω, k)

∂ωm∂kn
,

T ±,(m,n)
bb (ω, k) :=

∂m+nT ±
bb(ω, k)

∂ωm∂kn
,

T ±,(m,n)
bf (ω, k) :=

∂m+nT ±
bf (ω, k)

∂ωm∂kn
,

the partial derivatives of the local RtR operators read

T ±,(m,n)
fb (ω, k)φ = (∓α∂2 + iρ)u

±,(m,n)
loc (φ, 0) |Γ±

0
,

T ±,(m,n)
ff (ω, k)φ = (S±)−1(±α∂2 + iρ)u

±,(m,n)
loc (φ, 0) |Γ±

1
,

T ±,(m,n)
bb (ω, k)φ = (∓α∂2 + iρ)u

±,(m,n)
loc (0,S±φ) |Γ±

0
,

T ±,(m,n)
bf (ω, k)φ = (S±)−1(±α∂2 + iρ)u

±,(m,n)
loc (0,S±φ) |Γ±

1

for all m,n ∈ N0 with m+ n ≥ 1.

With the help of these local RtR operators we can compute any partial derivative

P±,(m,n)
fb (ω, k) :=

∂m+nP±
fb(ω, k)

∂ωm∂kn
,

m, n ∈ N0, m+ n ≥ 1, of the forward-backward propagation operator P±
fb(ω, k) with respect to ω and k.

Taking the m-th derivative with respect to ω and the n-th derivative with respect to k of the quadratic

operator equation (7.15) yields

0 =
∂m+n

∂ωm∂ωn

[
T ±
bbP

±
fbT

±
bf P

±
fb + T ±

bbP
±
fbT

±
ff +

(
T ±
fb T

±
bf − I

)
P±
fb + T ±

fb T
±
ff

]
=− P±,(m,n)

fb

+
∑

(m,n)∈N4(m,n)

(
m

m

)(
n

n

)
T ±,(m1,n1)
bb P±,(m2,n2)

fb T ±,(m3,n3)
bf P±,(m4,n4)

fb

+
∑

(m,n)∈N3(m,n)

(
m

m

)(
n

n

)
T ±,(m1,n1)
bb P±,(m2,n2)

fb T ±,(m3,n3)
ff

+
∑

(m,n)∈N3(m,n)

(
m

m

)(
n

n

)
T ±,(m1,n1)
fb T ±,(m2,n2)

bf P±,(m3,n3)
fb

+
∑

(m,n)∈N2(m,n)

(
m

m

)(
n

n

)
T ±,(m1,n1)
fb T ±,(m2,n2)

ff ,

with multinomial coefficients as given defined Eq. (6.19). This can be brought into a similar form

115
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like (7.25), i. e.

T ±
bbP

±,(m,n)
fb P±

ff +
(
R±T ±

bf − I
)
P±,(m,n)
fb

= −
∑

(m,n)∈Ñ4
{2,4}(m,n)

(
m

m

)(
n

n

)
T ±,(m1,n1)
bb P±,(m2,n2)

fb T ±,(m3,n3)
bf P±,(m4,n4)

fb

−
∑

(m,n)∈Ñ3
{2}(m,n)

(
m

m

)(
n

n

)
T ±,(m1,n1)
bb P±,(m2,n2)

fb T ±,(m3,n3)
ff

−
∑

(m,n)∈Ñ3
{3}(m,n)

(
m

m

)(
n

n

)
T ±,(m1,n1)
fb T ±,(m2,n2)

bf P±,(m3,n3)
fb

−
∑

(m,n)∈N2(m,n)

(
m

m

)(
n

n

)
T ±,(m1,n1)
fb T ±,(m2,n2)

ff , (7.30)

where we omitted — for simplicity of presentation — the (ω, k)-dependence of the operators, and the

sets N2 and Ñd
J , d = 3, 4, J = {2}, {3}, {2, 4}, are defined in Eqs. (6.20) and (6.22), respectively.

Finally, differentiating Eq. (7.13) m times with respect to ω and n times with respect to k, we deduce

that the derivatives

R±,(m,n)(ω, k) :=
∂m+nR±(ω, k)

∂ωm∂kn

of the RtR operators read

R±,(m,n) = T ±,(m,n)
fb +

∑
(m,n)∈N2(m,n)

(
m

m

)(
n

n

)
T ±,(m1,n1)
bb P±,(m2,n2)

fb (7.31)

with the set N2(m,n) defined in (6.20).

7.1.4 Variational formulation of the local cell problems

The derivation of the weak formulation of the local cell problem (7.8) is straightforward. Rewriting the

boundary conditions (7.8b) and (7.8c) in the form

∓α∂2u±loc(φ,ψ) = iρ u±loc(φ,ψ)− φ on Γ±
0 , (7.32a)

±α∂2u±loc(φ,ψ) = iρ u±loc(φ,ψ)− ψ on Γ±
1 , (7.32b)

we can deduce that Eq. (7.8) is equivalent to: for given forward Robin trace φ on Γ±
0 and backward

Robin trace ψ on Γ±
1 find u±loc(φ,ψ) ∈ H1

1p(C
±
1 ) such that

bC±
1
(u±loc(φ,ψ), v;ω, k)− iρ

∑
j=0,1

∫
Γ±
j

u±loc(φ,ψ) v ds(x) = −
∫
Γ±
0

φ v ds(x)−
∫
Γ±
1

ψ v ds(x) (7.33)

for all v ∈ H1
1p(C

±
1 ), with the sesquilinear form bC±

1
as given in Eq. (6.25a).

Once the local cell solutions u±loc(φ,ψ) are known, we can compute the local RtR operators by insert-

ing (7.32) into the definition (7.9) of the local RtR operators which yields

T ±
fb (ω, k)φ = 2iρ u±loc(φ, 0) |Γ±

0
−φ, (7.34a)

T ±
ff (ω, k)φ = 2iρ (S±)−1u±loc(φ, 0) |Γ±

1
, (7.34b)

T ±
bb(ω, k)φ = 2iρ u±loc(0,S

±φ) |Γ±
0
, (7.34c)

T ±
bf (ω, k)φ = 2iρ (S±)−1u±loc(0,S

±φ) |Γ±
1
−φ (7.34d)

for any φ ∈ H
−1/2
1p (Γ±

0 ).
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We proceed with the variational formulation of the local cell problems (7.29) for the computation of

the ω- and k-derivatives of the local cell solutions u±loc(φ,ψ). Similarly to Eq. (6.27) we find that (7.29)

is equivalent to: seek u
±,(m,n)
loc (φ,ψ) ∈ H1

1p(C
±
1 ) such that

bC±
1
(u

±,(m,n)
loc (φ,ψ), v;ω, k)− iρ

∑
j=0,1

∫
Γ±
j

u
±,(m,n)
loc (φ,ψ) v ds(x)

= 2mωmβ

C±
1

(u
±,(m−1,n)
loc (φ,ψ), v) +m(m− 1)mβ

C±
1

(u
±,(m−2,n)
loc (φ,ψ), v)

− 2nkmα
C±

1
(u

±,(m,n−1)
loc (φ,ψ), v)− n cα,1

C±
1

(u
±,(m,n−1)
loc (φ,ψ), v)

− n(n− 1)mα
C±

1
(u

±,(m,n−2)
loc (φ,ψ), v) (7.35)

for all v ∈ H1
1p(C

±
1 ) and m,n ∈ N0 with m + n ≥ 1. Then the derivatives of the local RtR operators

applied to φ ∈ H
−1/2
1p (Γ±

0 ) read

T ±,(m,n)
fb (ω, k)φ = 2iρ u

±,(m,n)
loc (φ, 0) |Γ±

0
,

T ±,(m,n)
ff (ω, k)φ = 2iρ (S±)−1u

±,(m,n)
loc (φ, 0) |Γ±

1
,

T ±,(m,n)
bb (ω, k)φ = 2iρ u

±,(m,n)
loc (0,S±φ) |Γ±

0
,

T ±,(m,n)
bf (ω, k)φ = 2iρ (S±)−1u

±,(m,n)
loc (0,S±φ) |Γ±

1

for any m,n ∈ N0 with m+ n ≥ 1.

7.1.5 Discretization

In Section 7.1.4 we introduced a variational formulation for the local cell problems to compute the local

RtR operators (7.9). In this section we now want to describe the computation of the discrete RtR maps.

For this, we employ the FE spaces Sp1p(C
±
1 ) and Sp1p(Γ

±
0 ), that were introduced in Section 6.1.5 as

subspaces of H1
1p(C

±
1 ) and H

1/2
1p (Γ

±
0 ) with polynomial degree p and dimensions N(C±

1 ) and N(Γ±
0 ), re-

spectively. As we shall assume that permittivity εwg and thus, the coefficient functions do not jump on

the boundaries Γ±
0 we can expect the Neumann and Robin traces on Γ±

0 to be in H
1/2
1p (Γ

±
0 ) and hence,

Sp1p(Γ
±
0 ) is an appropriate FE subspace of the dual space H

−1/2
1p (Γ±

0 ) of the Neumann and Robin traces

on Γ±
0 . If this additional smoothness condition of the coefficient functions is not satisfied, we shall use

the biorthogonal basis proposed by Wohlmuth [Woh01] as subspace of H
−1/2
1p (Γ±

0 ). Finally, recall that

we defined the meshes M(C±
1 ) to be periodic in direction a±2 and thus, the basis functions of Sp1p(Γ

±
0 )

shifted to Γ±
1 build a basis of the corresponding FE subspace of H

1/2
1p (Γ

±
1 ). The same is valid for the FE

subspaces of H
−1/2
1p (Γ±

0 ) and H
−1/2
1p (Γ±

1 ). Recall, in particular, that this implies that the basis functions

bC±
1 ,n, n = 1, . . . , N(C±

1 ), of the FE spaces Sp1p(C
±
1 ) can be ordered such that

• the basis functions with index n ∈ S(C±
1 ,Γ

±
0 ) = {1, . . . , N(Γ±

0 )} vanish on Γ±
1 , but their traces on

Γ±
0 build a basis of Sp1p(Γ

±
0 ),

• the basis functions with index n ∈ S(C±
1 ,Γ

±
1 ) = {N(Γ±

0 )+1, . . . , 2N(Γ±
0 )} vanish on Γ±

0 , but their

traces on Γ±
1 shifted to Γ±

0 , using the shift operator (S±)−1 build a basis of Sp1p(Γ
±
0 ) as well, and

• the basis functions with index n ∈ S(C±
1 , C

±
1 ) = {2N(Γ±

0 ) + 1, . . . , N(C±
1 )} vanish on Γ±

0 and Γ±
1 .

Thus, the traces of the basis functions of Sp1p(C
±
1 ) on Γ±

i , i = 0, 1, are related to the basis functions bΓ±
0 ,n,

n = 1, . . . , N(Γ±
0 ), of S

p
1p(Γ

±
0 ) such that

bΓ±
0 ,n =

N(Γ±
0 )∑

m=1

Q0
C±

1 ,mn
bC±

1 ,m|Γ±
0
=

N(Γ±
0 )∑

m=1

Q1
C±

1 ,mn
bC±

1 ,N(Γ±
0 )+m|Γ±

1
,

with permutation matrices Qi
C±

1

∈ RN(Γ±
0 )×N(Γ±

0 ), i = 0, 1, cf. Eq. (6.30).
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Discretization of the local cell problems

In this subsection we aim to compute the discrete versions of the local RtR operators T ±
fb , T

±
ff , T ±

bb and

T ±
bf in order to access the discrete forward-forward propagation operators and discrete RtR operators in

the following subsections.

Using the FE spaces Sp1p(C
±
1 ) and Sp1p(Γ

±
0 ) we derive a discrete form of the local cell problems (7.8):

for given forward Robin trace φh ∈ Sp1p(Γ
±
0 ) on Γ±

0 and backward Robin trace ψh = S±φ̃, φ̃ ∈ Sp1p(Γ
±
0 ),

on Γ±
1 find u±loc,h(φh, ψh) ∈ Sp1p(C

±
1 ) such that

bC±
1
(u±loc,h(φh, ψh), vh;ω, k)− iρ

∑
j=0,1

∫
Γ±
j

u±loc,h(φh, ψh) vh ds(x)

= −
∫
Γ±
0

φh vh ds(x)−
∫
Γ±
1

ψh vh ds(x) (7.36)

for all vh ∈ Sp1p(C
±
1 ), cf. Eq. (7.33). These discrete local cell problems are well-posed as long as the mesh

width h is chosen small enough and the polynomial degree p is large enough [SS11, Thm. 4.2.9], [MS11].

The discrete local RtR operators are then defined as

T ±
fb,h(ω, k)φh = 2iρ u±loc,h(φh, 0) |Γ±

0
−φh, (7.37a)

T ±
ff,h(ω, k)φh = 2iρ (S±)−1u±loc,h(φh, 0) |Γ±

1
, (7.37b)

T ±
bb,h(ω, k)φh = 2iρ u±loc,h(0,S

±φh) |Γ±
0
, (7.37c)

T ±
bf,h(ω, k)φh = 2iρ (S±)−1u±loc,h(0,S

±φh) |Γ±
1
−φh, (7.37d)

cf. Eq. (7.34). Since the discrete local cell problems (7.36) are well-posed, it follows that the discrete local

RtR operators (7.37) inherit their properties from the continuous local RtR operators (7.9). In particular,

T ±
bf,h is invertible as long as the discrete auxiliary local cell problem, find ũ±loc,h(0, ψh) ∈ Sp1p(C

±
1 ) such

that

bC±
1
(ũ±loc,h(0, ψh), vh;ω, k)− iρ

∫
Γ±
0

ũ±loc,h(0, ψh) vh ds(x) + iρ

∫
Γ±
1

ũ±loc,h(0, ψh) vh ds(x)

=

∫
Γ±
1

ψh vh ds(x) (7.38)

for all vh ∈ Sp1p(C
±
1 ), is well-posed.

Now we want to transform the discretized local cell problems (7.36) into linear systems of equations,

and represent the discrete local RtR operators (7.37) in terms of matrices. With the help of the basis

functions bΓ±
0 ,n, n ∈ {1, . . . , N(Γ±

0 )}, of the discrete space Sp1p(Γ
±
0 ), we seek matrix representations of

the discrete local RtR operators T ±
ij,h, i, j ∈ {f,b}, i. e. we search for matrices T±

ij ∈ CN(Γ±
0 )×N(Γ±

0 ) with

entries T±
ij,mn, m,n ∈ {1, . . . , N(Γ±

0 )} such that

T ±
ij,hbΓ±

0 ,n =

N(Γ±
0 )∑

m=1

T±
ij,mnbΓ±

0 ,m ∈ Sp1p(Γ
±
0 ), i, j ∈ {f,b}. (7.39)

We recall the matrix BC±
1
∈ CN(C±

1 )×N(C±
1 ) from Eq. (6.32), and introduce the matrices MC±

1 ,Γ±
i

∈
RN(C±

1 )×N(C±
1 ), i = 0, 1, with entries

MC±
1 ,Γ±

i ,mn =

∫
Γ±
i

bC±
1 ,n bC±

1 ,m ds(x), i = 0, 1,

m, n ∈ {1, . . . , N(C±
1 )}, related to the boundary integrals in Eq. (7.36). Furthermore, we define the

matrix

SC±
1
(ω, k) := BC±

1
(ω, k)− iρ

∑
j=0,1

MC±
1 ,Γ±

j
,
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7.1 The Robin-to-Robin operators

and introduce the notation MC±
1 ,Γ±

i
(Γ±

i ) ∈ RN(C±
1 )×N(Γ±

0 ) i = 0, 1, for the block matrix of MC±
1 ,Γ±

i
with

column indices S(C±
1 ,Γ

±
i ).

Let e
N(Γ±

0 )
n ∈ RN(Γ±

0 ), n ∈ {1, . . . , N(C±
1 )} denote the n-th unit vector of dimension N(C±

1 ). Then the

matrix form of the discrete local cell problem (7.33) reads

SC±
1
(ω, k)u±

loc,h(bΓ±
0 ,m, bΓ±

0 ,n) = −MC±
1 ,Γ±

0
(Γ±

0 )Q
0
C±

1
e
N(Γ±

0 )
m −MC±

1 ,Γ±
1
(Γ±

1 )Q
1
C±

1
e
N(Γ±

0 )
n , (7.40)

withm,n ∈ {1, . . . , N(Γ±
0 )}, where u

±
loc,h(bΓ±

0 ,m, bΓ±
0 ,n) ∈ CN(C±

1 ) are the coefficient vectors of the discrete

local cell solutions uloc,h(· ;ω, k, bΓ±
0 ,m, bΓ±

0 ,n) ∈ Sp1p(C
±
1 ) with respect to the basis functions of Sp1p(C

±
1 ).

Collecting the vectors u±
loc,h(bΓ±

0 ,m, 0), m ∈ {1, . . . , N(Γ±
0 )}, in matrices U±

loc,h,0∈ CN(C±
1 )×N(Γ±

0 ) sat-

isfying

SC±
1
(ω, k)U±

loc,h,0 = −MC±
1 ,Γ±

0
(Γ±

0 )Q
0
C±

1
,

and the vectors u±
loc,h(0, bΓ±

0 ,n), n ∈ {1, . . . , N(Γ±
0 )}, in matrices U±

loc,h,1∈ CN(C±
1 )×N(Γ±

0 ) satisfying

SC±
1
(ω, k)U±

loc,h,1 = −MC±
1 ,Γ±

1
(Γ±

1 )Q
1
C±

1
,

we can — using Eq. (7.37) and Eq. (7.39) — deduce

T±
fb = 2iρQ0

C±
1
U±

loc,h,0(Γ
±
0 )− I,

T±
ff = 2iρQ1

C±
1
U±

loc,h,0(Γ
±
1 ),

T±
bb = 2iρQ0

C±
1
U±

loc,h,1(Γ
±
0 ),

T±
bf = 2iρQ1

C±
1
U±

loc,h,1(Γ
±
1 )− I,

where U±
loc,h,i(Γ

±
j ), i, j ∈ {0, 1}, denotes the block matrix of U±

loc,h,i with row indices S(C±
1 ,Γ

±
j ).

To summarize, it is sufficient to solve the block system⎛⎜⎝ SC±
1
(ω, k) 0 0

−2iρQ0
C±

1

I(Γ±
0 , C

±
1 ) I 0

−2iρQ1
C±

1

I(Γ±
1 , C

±
1 ) 0 I

⎞⎟⎠
⎛⎜⎝U±

loc,h,0 U±
loc,h,1

T±
fb T±

bb

T±
ff T±

bf

⎞⎟⎠=

⎛⎜⎝−MC±
1 ,Γ±

0
(Γ±

0 )Q
0
C±

1

−MC±
1 ,Γ±

1
(Γ±

1 )Q
1
C±

1

−I 0

0 −I

⎞⎟⎠
for the matrices T±

fb, T
±
ff , T

±
bb and T±

bf , where the rectangular matrices I(Γ±
i , C

±
1 ) ∈ RN(Γ±

0 )×N(C±
1 ),

i ∈ {0, 1}, are the block matrices of the N(C±
1 )×N(C±

1 ) identity matrix with row indices S(C±
1 ,Γ

±
i ).

Finally, we note that the matrices T±
ij , i, j ∈ {f,b}, map coefficient vectors of FE functions in Sp1p(Γ

±
0 )

onto coefficient vectors of other FE functions in Sp1p(Γ
±
0 ), i. e. they map in strong sense. Hence, products

of local RtR operators, as they appear in the Riccati equation (7.18) and the formula (7.13) for the

computation of the RtR operator, can be realized by simply multiplying the matrices T±
ij , i, j ∈ {f,b}.

This is in contrast to the matrices of the local DtN operators in Chapter 6, which are computed in weak

sense, and hence, cannot be multiplied directly.

Computation of the discrete propagation operators

In this subsection we face the problem of computing discrete approximations to the forward-forward

propagation operators P±
ff (ω, k) and the forward-backward propagation operators P±

fb(ω, k).

If the discrete auxiliary local cell problem (7.38) is well-posed and hence, the discrete local backward-

forward operator T ±
bf,h(ω, k) is invertible, we search for discrete operators P±

ff,h(ω, k) ∈ L(Sp1p(Γ
±
0 )) with

spectral radius strictly less than one that satisfy the discrete operator equation

T ±
bb,h

(
T ±
bf,h

)−1(
P±
ff,h

)2
+

(
T ±
fb,h −

(
T ±
bf,h

)−1

− T ±
bb,h

(
T ±
bf,h

)−1

T ±
ff,h

)
P±
ff,h +

(
T ±
bf,h

)−1

T ±
ff,h = 0, (7.41)

cf. Eq. (7.18). Similarly, we introduce the discrete forward-backward propagation operator P±
fb,h(ω, k) ∈

L(Sp1p(Γ
±
0 )) by

P±
fb,h =

(
T ±
bf,h

)−1 (
P±
ff,h − T ±

ff,h

)
,
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7 Robin-to-Robin transparent boundary conditions

cf. Eq. (7.17).

Using the basis of Sp1p(Γ
±
0 ) we want to express the discrete forward-forward propagation operator P±

ff,h

in matrices P±
ff ∈ CN(Γ±

0 )×N(Γ±
0 ) with coefficients P±

ff,mn, m,n ∈ {1, . . . , N(Γ±
0 )}, that satisfy

P±
ff,hbΓ±

0 ,n =

N(Γ±
0 ))∑

m=1

P±
ff,mnbΓ±

0 ,m. (7.42)

Using this definition and the definition of the matrices T±
ij , i, j ∈ {f,b}, in (7.39) we can write Eq. (7.41)

as a quadratic matrix-valued equation

T±
bb

(
T±

bf

)−1 (
P±

ff

)2
+
(
T±

fb −
(
T±

bf

)−1 −T±
bb

(
T±

bf

)−1
T±

ff

)
P±

ff +
(
T±

bf

)−1
T±

ff = 0. (7.43)

Considering that the discretization preserves the periodicity properties of C±
1 in a2-direction we de-

duce that the forward-forward propagation matrix P±
ff is the unique matrix satisfying Eq. (7.43) with

eigenvalues whose magnitudes are strictly less than one.

Similarly, we express the discrete forward-backward propagation operator P±
fb,h in matrices P±

fb ∈
CN(Γ±

0 )×N(Γ±
0 ) with coefficients P±

fb,mn, m,n ∈ {1, . . . , N(Γ±
0 )}, that satisfy

P±
fb,hbΓ±

0 ,n =

N(Γ±
0 ))∑

m=1

P±
fb,mnbΓ±

0 ,m. (7.44)

Then we can rewrite Eq. (7.1.5) in terms of matrix equation

P±
fb =

(
T±

bf

)−1 (
P±

ff −T±
ff

)
.

Analogously to Chapter 6 for the computation of the discrete Dirichlet propagation operator, we

propose a spectral decomposition to compute P±
ff . Even though we cannot guarantee that P±

ff is diago-

nalizable the spectral decomposition has proven to be an efficient and reliable approach to compute P±
ff .

If, however, the propagation matrix P±
ff is in fact of Jordan type and hence, cannot be diagonalized, we

can still use this spectral method in a generalized form by identifying the Jordan blocks and computing

the Jordan chains, as shown in [Fli09] for the DtN method.

Thus, we want to find eigenvalues µ±(ω, k) ∈ C with magnitude strictly less than one and their

corresponding eigenvectors ψ±(ω, k) ∈ CN(Γ±
0 ) of the quadratic eigenvalue problem[

T±
bb

(
T±

bf

)−1(
µ±)2 + (T±

fb −
(
T±

bf

)−1−T±
bb

(
T±

bf

)−1
T±

ff

)
µ± +

(
T±

bf

)−1
T±

ff

]
ψ±= 0, (7.45)

which can be transformed into the generalized linear eigenvalue problem(
−
(
T±

fb −
(
T±

bf

)−1 −T±
bb

(
T±

bf

)−1
T±

ff

)
−
(
T±

bf

)−1
T±

ff

I 0

)
Ψ± = µ±

(
T±

bb

(
T±

bf

)−1
0

0 I

)
Ψ±, (7.46)

cf. [TM01], with Ψ± =

(
µ±ψ±

ψ±

)
.

Now let us present an important result of the spectral decomposition. If ω2 ∈ R+ \ σess(k) is not

a global or local Dirichlet eigenvalue, i. e. an eigenvalue of the infinite half-strip problem (7.1a) or the

local cell problem (7.8a) with homogeneous Dirichlet boundary conditions, the following result is a direct

consequence of Proposition 7.7 and Proposition 6.15 in Chapter 6. If, however, ω2 is such a global or

local Dirichlet eigenvalue we conjecture that the result still holds true.

Conjecture 7.13. If µ±(ω, k) ∈ C \ {0} is an eigenvalue of (7.45), then
(
µ±(ω, k)

)−1

is also an

eigenvalue.

As a by-product and analogously to the case with DtN operators, the spectral decomposition of the

propagation matrix P±
ff (ω, k) yields information whether ω2 is inside the discrete approximation of the

essential spectrum σess(k).
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7.1 The Robin-to-Robin operators

Definition 7.14. We call the set of numbers ω2 for which the quadratic eigenvalue problem (7.45)

has eigenvalues with magnitude one approximative spectrum σ±
h (k). Furthermore, we define σess

h (k) :=

σ+
h (k) ∪ σ

−
h (k).

With the help of Conjecture 7.13 and Definition 7.14 it is now clear how to compute the spectral

decomposition of the propagation matrix P±
ff (ω, k). We solve the general eigenvalue problem (7.46) for

its 2N(Γ±
0 ) eigenvalues µ±(ω, k). If there exist eigenvalues with magnitude equal to one we stop our

computation as we know from Definition 7.14 that this means that ω2 is in the approximative essential

spectrum σess
h (k). Otherwise, and in accordance to Conjecture 7.13, the 2N(Γ±

0 ) eigenvalues µ
±(ω, k) split

into N(Γ±
0 ) eigenvalues with magnitude strictly less than one and N(Γ±

0 ) eigenvalues with magnitude

strictly larger than one. While discarding the N(Γ±
0 ) eigenvalues with magnitude strictly larger than

one, the N(Γ±
0 ) eigenvalues µ±(ω, k) with magnitude strictly less than one and their corresponding

eigenvectors ψ±(ω, k) form the spectral decomposition of the propagation matrix P±
ff (ω, k).

Now let us discuss the procedure for the case where the discrete auxiliary local cell problem (7.38) is

not well-posed. Then the discrete local backward-forward RtR operator T ±
bf,h is not invertible and hence,

we cannot compute the discrete forward-backward propagation operator P±
fb,h by first solving (7.41) for

the discrete forward-forward propagation operator P±
ff,h with spectral radius strictly less than one, and

then using Eq. (7.1.5). Instead we have to solve

T ±
bb,hP

±
fb,hT

±
bf,hP

±
fb,h + T ±

bb,hP
±
fb,hT

±
ff,h +

(
T ±
fb,hT

±
bf,h − I

)
P±
fb,h + T ±

fb,hT
±
ff,h = 0, (7.47)

i. e. the discrete version of the quadratic operator equation (7.15), for the discrete forward-backward

propagation operator P±
fb,h(ω, k) ∈ L(Sp1p(Γ

±
0 )). Using the matrix notation introduced above, Eq. (7.47)

can be rewritten in matrix form

F(P±
fb) := T±

bbP
±
fbT

±
bfP

±
fb +T±

bbP
±
fbT

±
ff +

(
T±

fbT
±
bf − I

)
P±

fb +T±
fbT

±
ff = 0. (7.48)

Since T±
bf is singular, we cannot uniquely compute P±

fb from Eq. (7.48) by additionally requiring the

matrix

P±
ff = T±

ff +T±
bfP

±
fb

to have spectral radius strictly less than one. Instead, we take Proposition 7.6 into account and assume

that the discretization preserves the invertibility of the RtR operator R±(ω, k), cf. Lemma 7.2. Then we

may argue that P±
fb is the unique solution of (7.48) such that

P±
ff =

(
T±

fb +T±
bbP

±
fb

)−1
P±

fb

has spectral radius strictly less than one. Employing this observation, we propose a heuristic numerical

scheme for the computation of P±
fb, that is motivated by the Newton method presented in [JLF06]. For

this, we need the directional derivative of the matrix function F in (7.48) with respect to P±
fb. It reads

DF(P±
fb)H = T±

bbHT±
bfP

±
fb +T±

bbP
±
fbT

±
bfH+T±

bbHT±
ff +

(
T±

fbT
±
bf − I

)
H.

The Newton method for the computation of P±
fb works as shown in Algorithm 7.1.

In Chapter 6 we argued that the spectral decomposition is preferable compared to the heuristic Newton

method for the computation of the discrete Dirichlet propagation operator since its results have a physical

meaning. The same is true for the computation of the discrete forward-forward propagation operator

as explained in Definition 7.14. Hence, we shall prefer this procedure as long as we can guarantee that

the discrete auxiliary local cell problem (7.38) is well-posed. As mentioned already above, the constant

ρ ∈ R \ {0} may be chosen such that (7.38) is well-posed for all values of (ω2, k) ∈ R+ × B under

consideration, as we shall demonstrate in the numerical results in Section 7.3.

Definition of the discrete Robin-to-Robin operators

Considering Eq. (7.13) for the characterization of the RtR operators R±(ω, k), we can define the discrete

RtR operators

R±
h (ω, k) = T ±

fb,h(ω, k) + T ±
bb,h(ω, k)P

±
fb,h(ω, k) ∈ L(Sp1p(Γ

±
0 )).
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7 Robin-to-Robin transparent boundary conditions

Algorithm 7.1. Newton’s method for the computation of the discrete forward-backward propagation

operator.

1: Choose start matrix P±
fb,(0) ∈ CN(Γ±

0 )×N(Γ±
0 ), e. g. P±

fb,(0) = 0.

2: Choose tolerance ε > 0 for the stopping criterion.

3: for i = 0, 1, . . . do

4: Compute H ∈ CN(Γ±
0 )×N(Γ±

0 ) as solution of

DF(P±
fb,(i))H = F(P±

fb,(i)).

5: if ∥H∥ < ε then

6: exit

7: end if

8: Set P̃ = P±
fb,(i) −H.

9: Compute spectral radius s of
(
T±

fb +T±
bbP̃

)−1

P̃.

10: if s ≤ 1 then

11: Set P±
fb,(i+1) = P̃.

12: else

13: Set P±
fb,(i+1) =

1
s P̃.

14: end if

15: end for

Using the matrix representations of the discrete local RtR operators and the discrete propagation opera-

tors, we can compute RtR matrices R±(ω, k) ∈ CN(Γ±
0 )×N(Γ±

0 ) with entries R±
mn, m,n ∈ {1, . . . , N(Γ±

0 )},
that satisfy

R±
h (ω, k)bΓ±

0 ,n =

N(Γ±
0 )∑

m=1

R±
mnbΓ±

0 ,m,

such that

R± = T±
fb +T±

bbP
±
fb,

cf. Eq. (7.13).

Definition and computation of the derivatives of the discrete Robin-to-Robin operators

The derivatives of the discrete local RtR operators (7.37) of order m ∈ N0 with respect to ω and order

n ∈ N0 with respect to k, m+ n ≥ 1, are defined by

T ±,(m,n)
fb,h (ω, k)φh = 2iρ u

±,(m,n)
loc,h (φh, 0) |Γ±

0
, (7.49a)

T ±,(m,n)
ff,h (ω, k)φh = 2iρ (S±)−1u

±,(m,n)
loc,h (φh, 0) |Γ±

1
, (7.49b)

T ±,(m,n)
bb,h (ω, k)φh = 2iρ u

±,(m,n)
loc,h (0,S±φh) |Γ±

0
, (7.49c)

T ±,(m,n)
bf,h (ω, k)φh = 2iρ (S±)−1u

±,(m,n)
loc,h (0,S±φh) |Γ±

1
, (7.49d)

for any φ ∈ Sp1p(Γ
±
0 ), where u

±,(m,n)
loc,h (φh, ψh) ∈ Sp1p(C

±
1 ) satisfy

bC±
1
(u

±,(m,n)
loc,h (φh, ψh), v;ω, k)− iρ

∑
j=0,1

∫
Γ±
j

u
±,(m,n)
loc,h (φh, ψh) v ds(x)

= 2mωmβ

C±
1

(u
±,(m−1,n)
loc,h (φh, ψh), v) +m(m− 1)mβ

C±
1

(u
±,(m−2,n)
loc,h (φh, ψh), v)

− 2nkmα
C±

1
(u

±,(m,n−1)
loc,h (φh, ψh), v)− n cα,1

C±
1

(u
±,(m,n−1)
loc,h (φh, ψh), v)

− n(n− 1)mα
C±

1
(u

±,(m,n−2)
loc,h (φh, ψh), v) (7.50)
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for all vh ∈ Sp1p(C
±
1 ). Then we search for matrices T

±,(m,n)
ij ∈ CN(Γ±

0 )×N(Γ±
0 ) with entries T

±,(m,n)
ij,pq ,

p, q ∈ {1, . . . , N(Γ±
0 )} such that

T ±,(m,n)
ij,h bΓ±

0 ,q =

N(Γ±
0 )∑

p=1

T
±,(m,n)
ij,pq bΓ±

0 ,q, i, j ∈ {f,b}.

To this end, we solve (7.50) for u
±,(m,n)
loc,h (bΓ±

0 ,ℓ, 0) and u
±,(m,n)
loc,h (0, bΓ±

0 ,ℓ), 1 ≤ ℓ ≤ N(Γ±
0 ), and collect the

coefficient vectors with respect to the basis bC±
1 ,1, . . . , bC±

1 ,N(C±
1 ) in matrices U

±,(m,n)
loc,h,0 ∈ CN(C±

1 )×N(Γ±
0 )

and U
±,(m,n)
loc,h,1 ∈ CN(C±

1 )×N(Γ±
0 ), respectively, i. e. we solve

SC±
1
(ω, k)U

±,(m′,n′)
loc,h,i = Mβ

C±
1

(
2m′ωU

±,(m′−1,n′)
loc,h,i +m′(m′ − 1)U

±,(m′−2,n′)
loc,h,i

)
−Mα

C±
1

(
2n′kU

±,(m′,n′−1)
loc,h,i + n′(n′ − 1)U

±,(m′,n′−2)
loc,h,i

)
− n′Cα

C±
1
U

±,(m′,n′−1)
loc,h,i

for all m′ = 0, . . . ,m and n′ = 0, . . . , n with m′ + n′ ≥ 1, where U
±,(0,0)
loc,h,i = U±

loc,h,i, i = 0, 1. According

to (7.49) we have

T
±,(m,n)
fb = 2iρQ0

C±
1
U

±,(m,n)
loc,h,0 (Γ±

0 ),

T
±,(m,n)
ff = 2iρQ1

C±
1
U

±,(m,n)
loc,h,0 (Γ±

1 ),

T
±,(m,n)
bb = 2iρQ0

C±
1
U

±,(m,n)
loc,h,1 (Γ±

0 ),

T
±,(m,n)
bf = 2iρQ1

C±
1
U

±,(m,n)
loc,h,1 (Γ±

1 ),

where U
±,(m,n)
loc,h,i (Γ±

j ), i, j ∈ {0, 1}, denote the block matrices of U
±,(m,n)
loc,h,i with row indices S(C±

1 ,Γ
±
j ).

The matricesP
±,(m,n)
fb (ω, k) ∈ CN(Γ±

0 )×N(Γ±
0 ), i. e. the discrete versions of the derivatives of the forward-

backward propagation operators, can simply be obtained when transferring the linear operator equa-

tion (7.30) into discrete form by replacing all operators with their corresponding matrices. Similarly to

the procedure discussed in Chapter 6 for the computation of the derivatives of the Dirichlet propagation

matrices, the resulting linear matrix equation can be transformed into a linear system of equation with

(N(Γ±
0 ))

2 unknowns, i. e. the entries of P
±,(m,n)
ff (ω, k), see [Lan70] for more details.

Finally, we obtain the derivatives of the discrete RtR operators

R±,(m,n) = T
±,(m,n)
fb +

∑
(m,n)∈N2(m,n)

(
m

m

)(
n

n

)
T

±,(m1,n1)
bb P

±,(m2,n2)
fb (7.51)

cf. Eq. (7.31), with the set N2(m,n) defined in (6.20).

7.2 Nonlinear eigenvalue problem with Robin-to-Robin operators

In the previous section we introduced RtR operators for periodic media, explained their computation and

discretization. In this section we now want to show how to employ these operators in order to transform

the linear (or quadratic) eigenvalue problem (2.19) on the unbounded domain S to a nonlinear eigenvalue

problem posed in the defect cell C0. We will start with the problem in strong formulation. After

introducing a variational formulation, we will elaborate on the discretization of this nonlinear eigenvalue

problem and finally, we present numerical solution techniques to solve the nonlinear eigenvalue problem

in discretized form.

7.2.1 Main theorem

We start with the main result of the RtR method [Fli09].
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7 Robin-to-Robin transparent boundary conditions

Theorem 7.15. The eigenvalue problem (2.19) posed in the unbounded domain S is equivalent to:

find eigenvalue couples (ω2, k) ∈ R+ × B, with ω2 /∈ σess(k), such that there exists a non-trivial

u ∈ H1
1p(∆, C0, α) that satisfies

−(∇+ ik(10)) · α(∇+ ik(10))u− ω2β u = 0 in C0, (7.52a)

(∓α∂2 + iρ)u = R±(ω, k)(±α∂2 + iρ)u on Γ±
0 . (7.52b)

Note that the problem (7.52) — in comparison to problem (2.19) — is posed in the bounded domain C0

but it is nonlinear with respect to ω and k due to the highly nonlinear dependence of the RtR operators

on ω and k.

7.2.2 Mixed variational formulation

In order to derive a variational formulation of the nonlinear eigenvalue problem (7.52) with RtR operators,

we introduce Lagrange multipliers λ± ∈ H
−1/2
1p (Γ±

0 ) defined by

λ± = ±α∂2u |Γ±
0

for the Neumann trace on Γ±
0 . Using the linearity of the RtR operators, we deduce that the Robin

boundary condition (7.52b) can be rewritten in the form

(I +R±(ω, k))
(
±α∂2u |Γ±

0

)
= iρ(I −R±(ω, k))u |Γ±

0
, (7.53)

where I denotes the identity operator. Thus, a mixed variational formulation of the nonlinear eigenvalue

problem (7.52) reads: find eigenvalue couples (ω2, k) ∈ R+ × B with ω2 /∈ σess(k), and associated

eigenmodes (u, λ+, λ−) ∈ H1
1p(C0)× H

−1/2
1p (Γ+

0 )× H
−1/2
1p (Γ−

0 ) such that

bC0(u, v;ω, k)−
∫
Γ+
0

λ+ v ds(x)−
∫
Γ−
0

λ− v ds(x) = 0, (7.54a)

iρ

∫
Γ+
0

(
I −R+(ω, k)

)
u ψ+ ds(x)−

∫
Γ+
0

(
I +R+(ω, k)

)
λ+ ψ+ ds(x) = 0, (7.54b)

iρ

∫
Γ−
0

(
I −R−(ω, k)

)
u ψ− ds(x)−

∫
Γ−
0

(
I +R−(ω, k)

)
λ− ψ− ds(x) = 0, (7.54c)

for all (v, ψ+, ψ−) ∈ H1
1p(C0)×H

1/2
1p (Γ

+
0 )×H

1/2
1p (Γ

−
0 ), where the sesquilinear form bC0

is given in Eq. (6.45a).

7.2.3 Variational formulation with Dirichlet-to-Neumann operators

Now we aim to derive an alternative variational formulation which employs DtN operators and which

is — in contrast to the mixed variational formulation (7.54) — symmetric with respect to the trial and

test spaces. However, this formulation is not well-posed at all frequencies in the band gap as one has to

exclude the global Dirichlet eigenvalues.

Again, we use the fact that the RtR operators R±(ω, k) are linear and the Robin boundary condi-

tion (7.52b) can be rewritten in the form (7.53). Then we present an important result [Fli09] on the

operator (I +R±(ω, k)), which also appears in Eqs. (7.54b)–(7.54c), where it is applied to the Lagrange

multipliers λ±.

Proposition 7.16. Let k ∈ B and ω2 ∈ R+ \ σess(k). Furthermore, we assume that ω2 is not a

global Dirichlet eigenvalue, i. e. an eigenvalue of the infinite half-strip problem (7.1a) with homogeneous

Dirichlet boundary condition on Γ±
0 . Then the operator (I +R±(ω, k)) is invertible.

Proof. By definition of the RtR operator and the Robin problems in the infinite half-strips, the operator

(I +R±(ω, k)) satisfies

(I +R±(ω, k)) φ = 2iρ u±(· ;ω, k, φ) |Γ±
0
∈ H

1/2
1p (Γ

±
0 ),
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for any φ ∈ H
−1/2
1p (Γ±

0 ) where u±(· ;ω, k, φ) is the unique solution of (7.1). Using the same ideas as in

Lemma 7.3, we can show that for any φDtN ∈ H
1/2
1p (Γ

±
0 ) the inverse of (I +R±(ω, k)) is defined by

φDtN
(±α∂2 + iρ)

2iρ
u±DtN(φDtN) |Γ±

0
, (7.55)

where u±DtN(φDtN) is the unique solution of the infinite half-strip problem (6.1) with Dirichlet boundary

condition on Γ±
0 . Note that the solution u±DtN(φDtN) of (6.1) is in fact unique since we assume that

ω2 /∈ σess(k) is not a global Dirichlet eigenvalue. Hence, (I +R±(ω, k)) is invertible with inverse (7.55)

if ω2 /∈ σess(k) is not a global Dirichlet eigenvalue.

Using Proposition 7.16 and Eq. (7.53), we can deduce that the Robin boundary condition (7.52b) is

equivalent to the Neumann boundary condition

±α∂2u = D±
RtR(ω, k)u on Γ±

0 ,

cf. Eq. (6.43b), with the DtN operator

D±
RtR(ω, k) = iρ (I +R±(ω, k))−1 (I −R±(ω, k)), (7.56)

if ω2 is not a global Dirichlet eigenvalue.

Then the derivation of the corresponding weak formulation of the problem with DtN operators is

straightforward: find eigenvalue couples (ω2, k) ∈ R+ ×B, with ω2 /∈ σess(k), and associated eigenmodes

u ∈ H1
1p(C0) such that

bC0
(u, v;ω, k)− dRtR(u, v;ω, k) = 0 (7.57)

for all v ∈ H1
1p(C0), with the sesquilinear form

dRtR(u, v;ω, k) :=

∫
Γ+
0

D+
RtR(ω, k)u v ds(x) +

∫
Γ−
0

D−
RtR(ω, k)u v ds(x), (7.58)

cf. Eq. (6.45b).

Remark 7.17. Let k ∈ B and ω2 ∈ R+ \ σess(k). Furthermore, let us assume that ω2 is not a global

Dirichlet eigenvalue, i. e. an eigenvalue of the infinite half-strip problem (7.1a) with homogeneous Dirichlet

boundary condition on Γ±. Then the DtN operator D±
RtR(ω, k) is well-defined and can be computed

according to Eq. (7.56). If, additionally, ω2 is not equal to a local Dirichlet eigenvalue, i. e. an eigenvalue

of the local cell problem (7.8a), then the DtN operator (6.9) denoted by D±(ω, k), that is based on the DtN

approach as described in Chapter 6 and can be computed using local Dirichlet problems, exists and is well-

defined. This implies — according to Theorem 7.15 and its analogue for the DtN approach, Theorem 6.18

— that D±
RtR(ω, k) = D±(ω, k) for all (ω2, k) ∈ R+ × B with ω2 /∈ σess(k) except for a countable set of

frequencies — the global and local Dirichlet eigenvalues.

7.2.4 Group velocity and higher derivatives of dispersion curves

In Section 6.2.3 we derived formulas for the group velocity and higher derivatives of the dispersion

curve for problems with DtN transparent boundary conditions. This means that the formulas derived in

Section 6.2.3 can directly be applied to the variational eigenvalue problem (7.57) with DtN transparent

boundary conditions based on local Robin problems. For this, we only need to explain how we compute the

partial derivatives of the DtN operators D±
RtR with respect to the frequency ω and the quasi-momentum k

from the partial derivatives of the RtR operators R±, whose computation was explained in Section 7.1.3.

For the differentiation of (7.56) we can either apply Faà di Bruno’s formula [FdB57] in combination

with multinomial expansions, or we apply a recursion algorithm similar to Algorithm 5.1. Since the

former approach leads to very complicated formulas, we prefer the second approach even though it does

not yield closed formulas. First using binomial expansions, we find that the m-th ω- and n-th k-derivative

D±,(m,n)
RtR (ω, k) :=

∂m+nD±
RtR(ω, k)

∂ωm∂kn
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of D±
RtR reads

D±,(m,n)
RtR = iρ

m∑
m′=0

n∑
n′=0

(
m

m′

)(
n

n′

)
∂m

′

ω ∂n
′

k

(
(I +R±)−1

)
∂m−m′

ω ∂n−n′

k (I −R±). (7.59)

While the second term in (7.59) can simply be expressed as

∂m−m′

ω ∂n−n′

k (I −R±) =

{
I −R±, if m′ = m and n′ = n,

−R±,(m−m′,n−n′), otherwise,

the evaluation of the first term is more involved. For this, we first note that for all ℓ ∈ N

∂nk
(
(I +R±)−ℓ

)
= ∂n−1

k

(
−ℓ(I +R±)−ℓ−1∂ωR±)

= −ℓ
n−1∑
n′=0

(
n− 1

n′

)
∂n

′

k

(
(I +R±)−ℓ−1

)
∂n−n′

ω R±. (7.60)

Recursively applying (7.60), we find that we can express ∂nk
(
(I +R±)−1

)
in a sum of products of

(I + R±)−1 and (higher order) partial derivatives of R± with respect to k. Note that this can be

obtained analogously by applying Faà di Bruno’s formula to ∂nk
(
(I +R±)−1

)
. Now it remains to take

the m-th derivative with respect to ω of this sum. Each summand is a product of several terms of

(I + R±)−1 and ∂n
′

k R±, n′ ∈ N. Hence, the m-th derivative with respect to ω of each product can be

expressed in terms of a multinomial expansion.

For the mixed variational eigenvalue problem (7.54) with RtR operators, however, we have to extend

the procedure, that was developed in Chapter 4 and transferred to problems with DtN transparent

boundary conditions in Section 6.2.3, to non-self-adjoint problems. This was already done in discrete

sense in Chapter 5, where we do not require the nonlinear matrix function to be Hermitian. Therefore,

we shall refrain from revisiting the procedure developed in Chapter 5 and transferring it into variational

sense.

However, we would like to comment on the requirements of the procedure in Chapter 5, and whether

these are fulfilled in our case. Most important is the analyticity of the dispersion curves and the differ-

entiability of the corresponding eigenmodes to any order. In Section 6.2.3 we argued that the analyticity

of the dispersion curves and their corresponding eigenmodes of the variational formulation of the linear

eigenvalue problem (2.19) in the infinite strip S, that was discussed in Chapter 4, directly transfers to

variational problems of the form (6.44) with DtN transparent boundary conditions due to the equivalence

of the variational formulations in the sense of Remark 6.19. Considering Theorem 7.15, the same is true

for the dispersion curves and their corresponding eigenmodes of the eigenvalue problem (7.52) with RtR

operators and the linear eigenvalue problem (2.19) in the infinite strip S. Assuming that this property is

preserved by the mixed variational formulation (7.54), we can analogously to the case of DtN transparent

boundary conditions, derive formulas for the group velocity and any higher derivative of the dispersion

curves. For this we use the fact that the RtR operators are differentiable to any order with respect to

the frequency ω and the quasi-momentum k, see Section 7.1.3.

7.2.5 Discretization

Now let us elaborate on the discretization of the variational formulations introduced above. In addition to

the FE space Sp1p(Γ
±
0 ) of polynomial degree p and dimensionN(Γ±

0 ), that was already used in Section 7.1.5

as discrete subspace of H
1/2
1p (Γ

±
0 ), we recall Sp1p(C0) as the FE subspace of H1

1p(C0) with total polynomial

degree p and dimension N(C0) as introduced in Section 6.1.5. Furthermore, recall that we assumed in

Section 7.1.5 that the material coefficients do not jump on the boundaries Γ±
0 which implies that the

Neumann and Robin traces on Γ±
0 are in H

1/2
1p (Γ

±
0 ) and hence, we shall take Sp1p(Γ

±
0 ) as discrete subspace

of H
−1/2
1p (Γ±

0 ). Recall from Section 6.1.5 that we ordered the basis functions bC0,n, n = 1, . . . , N(C0), of

Sp1p(C0) such that

• the basis functions with index n ∈ S(C0,Γ
+
0 ) = {1, . . . , N(Γ+

0 )} vanish on Γ−
0 , but their traces on

Γ+
0 build a basis of Sp1p(Γ

+
0 ),
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• the basis functions with index n ∈ S(C0,Γ
−
0 ) = {N(Γ+

0 ) + 1, . . . , N(Γ+
0 ) +N(Γ−

0 )} vanish on Γ+
0 ,

but their traces on Γ−
0 build a basis of Sp1p(Γ

−
0 ), and

• the basis functions with index n ∈ S(C0, C0) = {N(Γ+
0 ) +N(Γ−

0 ) + 1, . . . , N(C0) vanish on Γ±
0 .

With this ordering of the basis functions of Sp1p(C0), their traces on Γ±
0 and the basis functions bΓ±

0
,

n = 1, . . . , N(Γ±
0 ), of S

p
1p(Γ

±
0 ) are related through

bΓ+
0 ,n =

N(Γ+
0 )∑

m=1

Q+
C0,mnbC0,m|Γ+

0
,

bΓ−
0 ,n =

N(Γ−
0 )∑

m=1

Q−
C0,mnbC0,N(Γ+

0 )+m|Γ−
0
,

with permutation matrices Q+
C0

∈ RN(Γ+
0 )×N(Γ+

0 ) and Q−
C0

∈ RN(Γ−
0 )×N(Γ−

0 ), cf. Eq. (6.28).

Analogously to the discretization of the local cell problems in Section 7.1.5, we recall the matrix

BC0
(ω, k) ∈ CN(C0)×N(C0) from Eq. (6.56), and introduce the matrices MC0,Γ

±
0

∈ RN(Γ±
0 )×N(Γ±

0 ) with

entries

MC0,Γ
±
0 ,mn(k) =

∫
Γ±
0

bC0,n bC0,m ds(x),

m, n ∈ S(C0,Γ
±
0 ), related to the boundary integrals in Eq. (7.54).

With these definitions and the special ordering of the basis functions bC0,n of the space Sp1p(C0) de-

scribed above, the discretization of the mixed variational formulation (7.54) reads⎛⎜⎝ BC0
−I(C0,Γ

+
0 )M

C0,Γ
+
0
(Q+

C0
)T −I(C0,Γ

−
0 )M

C0,Γ
−
0
(Q−

C0
)T

iρI(Γ+
0 ,C0)MC0,Γ

+
0
(Q+

C0
)T(I−R+) −M

C0,Γ
+
0
(Q+

C0
)T(I+R+) 0

iρI(Γ−
0 ,C0)MC0,Γ

−
0
(Q−

C0
)T(I−R−) 0 −M

C0,Γ
−
0
(Q−

C0
)T(I+R−)

⎞⎟⎠
⎛⎝ u

λ+
h

λ−
h

⎞⎠= 0, (7.61)

where u = u(ω, k) ∈ CN(C0) is the coefficient vector of the discrete eigenmode uh(· ;ω, k) ∈ Sp1p(C0) with

respect to the basis functions bC0,n of Sp1p(C0), and λ
±
h = λ±

h (ω, k) ∈ CN(Γ±
0 ) are the coefficient vectors

of the discrete Lagrange multipliers λ±h (·;ω, k) ∈ Sp1p(Γ
±
0 ) with respect to the basis functions bΓ±

0 ,n of

Sp1p(Γ
±
0 ), and the rectangular matrices I(Γ±

0 , C0) ∈ RN(Γ±
0 )×N(C0) and I(C0,Γ

±
0 ) ∈ RN(C0)×N(Γ±

0 ) are the

block matrices of the N(C0)×N(C0) identity matrix with row, respectively column, indices S(C0,Γ
±
0 ).

If we choose the variational formulation (7.57) with DtN operators instead of the mixed variational

formulation (7.54) we obtain the discrete equation

(BC0(ω, k)−DC0,RtR(ω, k))u = 0, (7.62)

where the matrix DC0,RtR(ω, k) ∈ CN(C0)×N(C0) is given by

DC0,RtR(ω, k) =

⎛⎝D+
RtR(ω, k) 0 0

0 D−
RtR(ω, k) 0

0 0 0

⎞⎠
with

D±
RtR(ω, k) = iρMC0,Γ

±
0
(Q±

C0
)T
(
I+R±(ω, k)

)−1 (
I−R±(ω, k)

)
Q±

C0
∈ CN(Γ±

0 )×N(Γ±
0 ). (7.63)

On the continuous level we showed that the operator (I + R±(ω, k)) is only invertible if ω2 is not a

global Dirichlet eigenvalue, cf. Proposition 7.16. As long as the FE discretization is fine enough, we can

equivalently observe that the matrix (I+R±(ω, k)) has full rank if and only if ω2 is not a global Dirichlet

eigenvalue. This implies that the DtN matrix (7.63) is only well-defined if ω2 is not a global Dirichlet

eigenvalue.

Again we have to note that — to the best of our knowledge — the stability of the FE discretizations

of the two formulations has not yet been studied. However, numerical evidence shows that the standard

asymptotic convergence estimates hold true for both formulations and thus, we can again use p-FEM on

a coarse grid, cf. Figure 6.1, and can expect exponential convergence.
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7.2.6 Numerical solution of the nonlinear eigenvalue problem

The numerical solution of the nonlinear eigenvalue problem (7.62) with DtN operators based on local

Robin problems can be obtained analogously to the solution of the nonlinear eigenvalue problem (6.58)

with DtN operators based on local Dirichlet problems. Since the RtR operatorsR±(ω, k) are differentiable

with respect to ω and k, cf. Section 7.1.3, so are the DtN operators D±
RtR(ω, k), and hence, all methods

introduced in Section 3.2, in particular, the MSLP and the Chebyshev interpolation, can be applied

to (7.62). But also the iterative Newton method, proposed in Section 3.3 and discussed in Section 6.2.5

for the case with DtN operators can be applied to (7.62).

On the other hand, the discretized nonlinear eigenvalue problem (7.61) with RtR operators can also

be solved iteratively and directly. Due to the differentiability of the RtR operators the block matrix

in (7.61) is differentiable with respect to ω and k up to any order. Hence, it is possible to apply the

direct and indirect methods introduced in Section 3.2 in both formulations, the ω-formulation and the

k-formulation.

Applying the Newton-like method, that we proposed in Section 3.3, to the nonlinear eigenvalue prob-

lem (7.61) is also possible. However, we cannot proceed analogously to Section 6.2.5, where we applied it to

the nonlinear problem (6.58) with DtN transparent boundary conditions. The main ideas of the proposed

Newton-type method is to transform the nonlinear eigenvalue problem into fixpoint problem. For this we

introduce a linear eigenvalue problem with fixed RtR operators. Let kR ∈ B and ω2
R ∈ R+ \ σess(kR) be

arbitrary but fixed. Then the problem: find ω2 = ω2(ωR, kR) ∈ R and a non-trivial u(ω) ∈ CN(C0) \ {0}
that satisfies (

Ã(ωR, kR)− ω2B̃
)⎛⎝ u

λ+
h

λ−
h

⎞⎠ = 0, (7.64)

is a linear eigenvalue problem with matrices

Ã(ωR, kR) =

⎛⎜⎝ Aα
C0

+kRCα,1
C0

+k2
RMα

C0
−I(C0,Γ

+
0 )M

C0,Γ
+
0
(Q+

C0
)T −I(C0,Γ

−
0 )M

C0,Γ
−
0
(Q−

C0
)T

iρI(Γ+
0 ,C0)MC0,Γ

+
0
(Q+

C0
)T(I−R+) −M

C0,Γ
+
0
(Q+

C0
)T(I+R+) 0

iρI(Γ−
0 ,C0)MC0,Γ

−
0
(Q−

C0
)T(I−R−) 0 −M

C0,Γ
−
0
(Q−

C0
)T(I+R−)

⎞⎟⎠
and

B̃ =

(
Mβ

C0
0 0

0 0 0
0 0 0

)
,

where Aα
C0
,Cα,1

C0
,Mα

C0
,Mβ

C0
∈ RN(C0)×N(C0) are defined in (6.57) and R̃± = R±(ωR, kR). However,

this linear eigenvalue problem does not satisfy the requirements given in Section 3.3 as B̃ is not regular.

Hence, we shall instead substitute λ = −ω−2 and solve the linear eigenvalue problem(
B̃+ λÃ(ωR, kR)

)
ũ = 0 (7.65a)

with right eigenvector ũ ∈ CN(C0)+N(Γ+
0 )+N(Γ−

0 )

ṽH
(
B̃+ λÃ(ωR, kR)

)
= 0 (7.65b)

with left eigenvector ṽ ∈ CN(C0)+N(Γ+
0 )+N(Γ−

0 ). Numerical evidence shows that the matrix Ã(ωR, kR) is

regular for all ωR ∈ R+ and kR ∈ B with ω2
R /∈ σess

h (kR), as long as the discretization is fine enough, and

hence, we can solve (7.65) for its eigenvalue λ closest to λR := −ω−2
R using a shift and invert strategy.

If λ is an eigenvalue of (7.65) with λ = −ω−2
R , then (ω2

R, kR) is an eigenvalue couple of the nonlinear

eigenvalue problem (7.61).

In Chapter 6 we also introduced a linear eigenvalue problem with fixed DtN operators, see Eq. (6.60).

For that problem we could show that the eigenvalues are real and continuously differentiable with re-

spect to both parameters ωD and kD. For the case of RtR transparent boundary conditions, numeri-

cal evidence shows that the eigenvalues of (7.65) are real and can be ordered such that the functions
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(ωR, kR) λj(ωR, kR) are continuously differentiable, but we cannot give a rigorous proof for these

results. We can only note that, considering the equivalence of the DtN and RtR approach in the sense

of Eq. (7.56) and Remark 7.17, we deduce that the desired properties also hold true for the nonlinear

eigenvalue problem (7.54) in mixed variational formulation if ω2
R is not a global or local Dirichlet eigen-

value, i. e. an eigenvalue of the infinite half-strip problem (7.1a) with homogeneous Dirichlet boundary

conditions, or an eigenvalue of the local cell problem (7.8a) with homogeneous Dirichlet boundary con-

ditions, respectively. Numerical evidence then shows that these properties are inherited by the discrete

eigenvalue problem (7.65).

Let us now directly introduce the global signed distance function

dgRtR(ωR, kR) = ω2
R − ω2

j∗(ωR, kR) (7.66)

where

j∗ = j∗(ωR, kR) = arg min
1≤j≤N(C0)+N(Γ+

0 )+N(Γ−
0 )

|ω2
R − ω2

j (ωR, kR)|

and

ω2
j (ωR, kR) = −λ−1/2

j (ωR, kR). (7.67)

Similarly to the global signed distance function (6.62) for the case with DtN operators, dgRtR can at

most be piecewise differentiable.

The Newton method applied to dgRtR works similarly to the case with DtN operators as sketched in

Algorithm 6.1 for the ω-formulation, i. e. when keeping kR fixed and searching for a frequency such that

dgRtR = 0, or as in Algorithm 6.2 for the k-formulation, i. e. when keeping ωR fixed and searching for a

quasi-momentum such that dgRtR = 0.

However, the computation of the derivative of the global signed distance function is slightly more

involved due to the substitution (7.67) and the fact that (7.65) is not Hermitian, which implies that we

have to solve (7.65) also for its left eigenvectors ṽ. Considering that

∂

∂λR
Ã =

∂ωR

∂λR

∂

∂ωR
Ã = −1

2
ω3
R

∂

∂ωR
Ã,

and ∂
∂λR

B̃ = 0, we obtain

∂

∂ωR
dgRtR(ωR, kR) = 2ωR − ω2

j∗
ṽH
j∗ÃωR(ωR, kR)ũj∗

ṽH
j∗Ã(ωR, kR)ũj∗

,

where

ÃωR(ωR, kR) =

( 0 0 0
−iρI(Γ+

0 ,C0)MC0,Γ
+
0
(Q+

C0
)TR̃+

ω −M
C0,Γ

+
0
(Q+

C0
)TR̃+

ω 0

−iρI(Γ−
0 ,C0)MC0,Γ

−
0
(Q−

C0
)TR̃−

ω 0 −M
C0,Γ

−
0
(Q−

C0
)TR̃−

ω

)
.

On the other hand, the derivative of dgRtR with respect to the parameter kR reads

∂

∂kR
dgRtR(ωR, kR) = −ω2

j∗
ṽH
j∗ÃkR(ωR, kR)ũj∗

ṽH
j∗Ã(ωR, kR)ũj∗

,

where

ÃkR(ωR, kR) =

⎛⎝ Cα,1
C0

+2kRMα
C0

0 0

−iρI(Γ+
0 ,C0)MC0,Γ

+
0
(Q+

C0
)TR̃+

k −M
C0,Γ

+
0
(Q+

C0
)TR̃+

k 0

−iρI(Γ−
0 ,C0)MC0,Γ

−
0
(Q−

C0
)TR̃−

k 0 −M
C0,Γ

−
0
(Q−

C0
)TR̃−

k

⎞⎠.
Note that the fact that B̃ is singular also implies that (7.65) has 2N(Γ±

0 ) zero eigenvalues and, hence,

the computation of the eigenvalues of (7.65) with smallest magnitude is not meaningful, i. e. we always

should assign a non-zero shift when applying a shift and invert strategy.
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7.3 Numerical results

In the numerical examples we want to study the performance of the RtR method in comparison to the

DtN method when applied to the computation of eigenvalues that are close to local or global Dirichlet

eigenvalues. The DtN operators are not well-defined at global Dirichlet eigenvalues and their computation

using local Dirichlet problems is ill-posed at local Dirichlet eigenvalues. In the numerical results of the

DtN method presented in Section 6.3 we showed that DtN transparent boundary conditions based on

local Dirichlet problems in fact lead to severe convergence problems when solving for the eigenvalues of

the nonlinear eigenvalue problem.

The setup that we will discuss in this section is again the one presented in Example 2, i. e. we study the

TE mode band structure of a PhC W1 waveguide with hexagonal lattice, relative permittivity ε = 11.4

and holes of relative radius r
a1

= 0.31. The polynomial degree of the FE computations set to p = 5 in all

following numerical experiments.

As mentioned in Section 7.1.2, we aim to choose the constant ρ ∈ R\{0} such that the auxiliary local cell

problem (7.14) is well-posed for all values of (ω2, k) under consideration. For the setup described above

ρ = 3 seems to be a reasonable choice as can be seen from Figure 7.1, where we show the eigenvalues of the

auxiliary local cell problem (7.14) in comparison to the global signed distance function dgRtR representing

the band structure of the PhC waveguide. Note that there are no eigenvalues of the auxiliary local cell

problem in the second band gap of the PhC waveguide, which is the area we will focus in all following

numerical experiments.
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Figure 7.1: Magnitude of global signed distance function dgRtR in logarithmic scale evaluated on a grid of

350× 500 (ω, k)-points. The areas left blank correspond to the essential spectrum, i. e. ω2 ∈ σess
h (k). The

green curves represent eigenvalues of the auxiliary local cell problem (7.14).

7.3.1 Computation of global Dirichlet eigenvalues

Before we will analyse the convergence towards eigenvalues of the nonlinear eigenvalue problem (7.61),

that are close to global or local Dirichlet eigenvalues, we consider the computation of global Dirichlet

eigenvalues, i. e. Dirichlet eigenvalues in semi-infinite periodic strips. By construction, this computation

is not possible when using DtN transparent boundary conditions. Using RtR transparent boundary

conditions, however, resolves this problem, and global Dirichlet eigenvalues can be computed. Global

Dirichlet eigenvalues also have a certain physical meaning. If the periodic medium of a semi-infinite 2d

PhC is connected to a perfectly conducting magnetic (TE mode) or electric (TM mode) material, this

can be modelled mathematically by homogeneous Dirichlet boundary conditions at the interface. The

eigenmodes corresponding to global Dirichlet eigenvalues are confined at the surface of the semi-infinite

2d PhC. In this respect these eigenmodes can be called surface modes. However, since the term surface

mode usually refers to modes that are confined at the interface towards air or vacuum [JJWM08], we
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shall denote the eigenmodes associated to global Dirichlet eigenvalues by Dirichlet surface modes.

Using RtR operators as introduced in this chapter, the Dirichlet surface mode problem can be reduced

to a nonlinear eigenvalue problem on the interface, i. e. to a problem in 1d. However, for the sake

of simplicity and in order to reuse the procedures proposed for PhC waveguides, we consider the 2d

problem. This means we assume the permittivity of the defect cell C0 to be identical to the permittivity

of the cells C−
i , i ∈ N, of the semi-infinite PhC below the line defect, which is now — to be precise —

not a line defect anymore. Then we impose homogeneous Dirichlet boundary conditions at Γ+
0 and RtR

transparent boundary conditions at Γ−
0 . On a discrete level this can be realized by replacing the second

block of rows in the system matrix of Eq. (7.61) by(
MC0,Γ

+
0
(Q+

C0
)T 0

)
∈ RN(Γ+

0 )×(N(C0)+N(Γ+
0 )+N(Γ−

0 ).
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Figure 7.2: Magnitude of global signed distance

function dgRtR in logarithmic scale of Dirichlet sur-

face mode problem evaluated on a grid of 350×500

(ω, k)-points.
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Figure 7.3: Convergence of the signed distance

function |dgRtR| when applying the Newton method

in ω-formulation to the computation of the Dirich-

let surface mode at ω ≈ 0.218· 2πca1
and k = 0.4· 2πa1

.

The start value of the iterative schemes is chosen

to be ω(0) = 0.24 · 2πc
a1

.

In Figure 7.2 we show the magnitude of the global signed distance function dgRtR. Recall that the dark

lines correspond to small values of |dgRtR|, and hence represent Dirichlet surface modes.

For the Dirichlet surface mode in the second band gap at k = 0.4 · 2π
a1

we show exemplarily the

convergence of the Newton method as proposed in Section 7.2.6. The results are presented in Figure 7.3,

where we chose the start value ω(0) = 0.24 · 2πca1
. We can see the method converges exponentially towards

the eigenvalue at ω ≈ 0.218 · 2πc
a1

with rate slightly larger than quadratic.

In Figure 7.4 the real part of the Dirichlet surface mode at ω ≈ 0.218 · 2πc
a1

and k = 0.4 · 2π
a1

is plotted.

It demonstrates well that Dirichlet surface modes are modes that are guided at the surface and decay

exponentially in the periodic medium.

7.3.2 Condition of system and Dirichlet-to-Neumann matrices

Similarly to Section 6.3.4, where we studied the condition of the system matrix and the DtN matrix of the

problem (6.58) with DtN transparent boundary conditions based on local Dirichlet problems, let us now

analyse the condition of the corresponding matrices in the case of RtR transparent boundary conditions

and DtN transparent boundary conditions based on local Robin problems, respectively.

Let NDtN denote the system matrix of the left hand side of the nonlinear eigenvalue problem (6.58)

with DtN maps that are based on local Dirichlet problems. On the other hand, we shall denote the

system matrix of the nonlinear eigenvalue problem (7.61) with RtR maps by NRtR.
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Figure 7.4: Real part of the Dirichlet surface mode at ω ≈ 0.218 · 2πc
a1

and k = 0.4 · 2π
a1
.
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Figure 7.5: Condition number (a) and maximum eigenvalue (b) of the system matrix NDtN with DtN

maps (blue) and the system matrix NRtR with RtR maps (red) in the second band gap at k = 0.4 · 2π
a1
.

The vertical dashed lines show the frequency of the global Dirichlet eigenvalue (GD), the local Dirichlet

eigenvalue (LD) and the frequencies of the guided modes (GM).

In Figure 6.13 we presented the condition number and the maximum eigenvalue of the DtN system

matrix NDtN in the second band gap at k = 0.4 · 2πa1
. In Figure 7.5 we show the condition number and the

maximum eigenvalue of the RtR system matrix NRtR in comparison to the results for NDtN. Again the

vertical dashed lines show the location of the three guided modes (labeled “GM”), the global Dirichlet

eigenvalue (labeled “GD”) and the local Dirichlet eigenvalue (labeled “LD”). Similarly to NDtN the

condition number of NRtR increases at the guided modes, see Figure 7.5a, since the minimum eigenvalue

decreases in the vicinity of an eigenvalue of the nonlinear eigenvalue problem (7.61). As we already saw

in Chapter 6, the condition number of the system matrix NDtN with DtN maps also increases in the

vicinity of the global Dirichlet eigenvalue, which is due to an increasing maximum eigenvalue of NDtN,

that is presented in 7.5b. On the other hand, the condition number of the system matrix NRtR with RtR

maps as well as its maximum eigenvalue do not increase in the vicinity of the global Dirichlet eigenvalue.

In fact, the maximum eigenvalue of NRtR remains almost constant in the band gap, see Figure 7.5b.

Now let us study the condition number of the system matrix of the problem (7.62) with DtN maps

based on local Robin problems and the condition number of the corresponding DtN matrices D±
C0,RtR in

a very small vicinity of the local Dirichlet eigenvalue in more detail. We already saw in Section 6.3.4 that

the condition numbers of their counterparts based on local Dirichlet problems increase significantly in a

very small vicinity of the local Dirichlet eigenvalue. Figures 7.6a and 7.6b show the condition numbers of
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Figure 7.6: Condition numbers of the system matrices (a) of the problem (6.58) with DtN transpar-

ent boundary conditions based on local Dirichlet problems (blue) and of the problem (7.62) with DtN

transparent boundary conditions based on local Robin problems (red), and condition numbers of the

corresponding DtN matrices (b) in the vicinity of the local Dirichlet eigenvalue in the second band gap

at k = 0.4 · 2π
a1
.

the two matrices in dependence on the distance to the local Dirichlet eigenvalue and in comparison to the

results of the matrices based on local Dirichlet problems, that were already presented in Figure 6.16. As

expected, the condition numbers of the matrices related to local Robin problems remain constant in the

vicinity of the local Dirichlet eigenvalue, while the condition numbers of the matrices that are based on

local Dirichlet problems increase dramatically in a small vicinity of the local Dirichlet eigenvalue. Again

we want to point out that the increase of the condition number of the matrices that are based on local

Dirichlet problems is limited to a very narrow vicinity of the local Dirichlet eigenvalue.

7.3.3 Computation of eigenvalues in vicinity of global Dirichlet eigenvalues

In Section 6.3.5 we showed that the proposed Newton-like method applied to the nonlinear eigenvalue

problem (6.58) with DtN transparent boundary conditions does not show any convergence problems

even in the presence of global Dirichlet eigenvalues, see Figure 6.17. However, we could show that the

frequently used MSLP suffers from a reduced radius of convergence that is limited by the global Dirichlet

eigenvalue.

For the nonlinear eigenvalue problem (7.61) with RtR transparent boundary conditions we do not expect

such a behaviour, since we could see in the previous section that the condition number of the system

matrix of (7.61) does not increase in the vicinity of the global Dirichlet eigenvalue, see Figure 7.5a.

In Figure 7.7 we present the step sizes of the MSLP and the Newton method in the second band gap at

k = 0.4 · 2πa1
. The vertical, dashed lines show the locations of the guided modes, i. e. the eigenvalues of the

nonlinear eigenvalue problem (7.61). Similarly to the results for DtN transparent boundary conditions

presented in Figure 6.17, both step size curves have roots with negative slope at the guided modes which

means that the methods will converge to these eigenvalues. As expected the two curves do not change

their behaviour at the global Dirichlet eigenvalue at ω ≈ 0.218 · 2πc
a1

, which is in contrast to the results

with DtN transparent boundary conditions, where the step size curve of the MSLP has another root.

Now let us study the behaviour of the Chebyshev interpolation for the computation of the guided mode

in the second band gap at k = 0.4 · 2π
a1

that is closest to the global Dirichlet eigenvalue at ω ≈ 0.218 · 2πc
a1

.

In Figure 6.18 we saw that the Chebyshev interpolation applied to the problem with DtN transparent

boundary conditions does not converge. Since the system matrix NRtR is not spoilt by the presence

of the global Dirichlet eigenvalue, see Figure 7.5, we expect the Chebyshev interpolation applied to

the problem (7.61) with RtR transparent boundary conditions to converge. In Figure 7.8 we show
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Figure 7.8: Absolute error of the Chebyshev in-

terpolation in ω-formulation when applied to the

nonlinear eigenvalue problem with DtN maps

(blue) and RtR maps (red) for the computation

of the guided mode in the second band gap at

k = 0.4 · 2π
a1

that is closest to the global Dirichlet

eigenvalue at ω ≈ 0.218· 2πca1
. The ω-interval of the

interpolation is chosen to be [0.215· 2πca1
, 0.245· 2πca1

].

the magnitude of the error in the normalized frequency of the Chebyshev interpolation applied to the

problem with DtN maps (blue) and with RtR maps (red). In fact, we see that the error of the Chebyshev

interpolation applied to (7.61) converges, while the error of the Chebyshev interpolation applied to the

problem with DtN transparent boundary conditions does not converge. Again note that also in the case

of RtR maps, the error does not decrease monotonically since the Chebyshev nodes are not hierarchical.

The results in Figures 7.7 and 7.8 show that RtR transparent boundary conditions effectively resolve

the convergence problems of the numerical schemes applied to the nonlinear eigenvalue problem with

DtN transparent boundary conditions in the vicinity of global Dirichlet eigenvalues.

7.3.4 Computation of eigenvalues in vicinity of local Dirichlet eigenvalues

Finally, we want to analyse the behaviour of the Newton method close to a local Dirichlet eigenvalue

when applied to the nonlinear eigenvalue problem (7.62) with DtN transparent boundary conditions, that

are based on local Robin problems, and when applied to the nonlinear eigenvalue problem (6.58) with

DtN transparent boundary conditions, that are based on local Dirichlet problems.

In Section 6.3.6 we already saw that the Newton method applied to the problem (6.58) with DtN

transparent boundary conditions, that are based on local Dirichlet problems, does not converge to a

common eigenvalue of the nonlinear eigenvalue problem and the local Dirichlet problem, see Figure 6.19a.

On the other hand, we also showed in Section 6.3.6, that the Chebyshev interpolation may converge to

such a common eigenvalue, even though when applied to the nonlinear eigenvalue problem with DtN

transparent boundary conditions based on local Dirichlet problems, see Figure 6.19b.

Since the computation of DtN maps using local Robin problems is — in contrast to the computation of

DtN maps using local Dirichlet problems — not ill-posed at local Dirichlet eigenvalues, we expect either

method to converge to a common eigenvalue of the nonlinear eigenvalue problem and the local Dirichlet

problem.

For orientation we show in Figure 7.9 the magnitude of the global signed distance function dgRtR.

The dark lines indicate small values of |dgRtR| and therefore, represent the eigenvalues of the nonlinear

eigenvalue problem (7.61). The green lines, on the other hand, show the local Dirichlet eigenvalues.

In Figure 7.10 we present the convergence of the Newton method to the common eigenvalue ω ≈

134



7.3 Numerical results

n
o
rm

a
li
z
e
d

fr
e
q
u
e
n
c
y
ω
a
1
/
2
π
c

 

 

0.0 0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

−2.5

−2.0

−1.5

−1.0

−0.5

  0.0

  0.5

normalized quasi-momentum ka1 / 2π

Figure 7.9: Magnitude of global signed distance

function dgRtR in logarithmic scale evaluated on a

grid of 350×500 (ω, k)-points. The green lines rep-

resent the local Dirichlet eigenvalues, i. e. eigen-

values of the local cell problem (7.8a) with ho-

mogeneous Dirichlet boundary conditions. The

blue cross indicates the location of the eigenvalue

for which convergence results are shown in Fig-

ures 7.10, 7.11 and 7.12.
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Figure 7.10: Convergence of the signed distance

function |dg| when applying the Newton method

with DtN operators based on local Dirichlet prob-

lems (blue) and local Robin problems (red) to the

computation of the common eigenvalue (ω, k) ≈
(0.248 · 2πc

a1
, 0.405 · 2π

a1
) of the Dirichlet cell prob-

lem and the nonlinear eigenvalue problem (blue

cross in Figure 7.9). The start value of the itera-

tive schemes is chosen to be ω(0) = 0.263 · 2πc
a1

.

0.248 · 2πc
a1

at k ≈ 0.405 · 2π
a1

of the local Dirichlet problem and the nonlinear eigenvalue problem of the

PhC waveguide, whose location in the band structure is marked with a blue cross in Figure 7.9. The red

curve represents the error of the Newton method applied to the problem with DtN maps based on local

Robin problems. For comparison we show in Figure 7.10 again the error of the Newton method applied to

the problem with DtN maps based on local Dirichlet problems (blue curve), that we presented already in

Figure 6.19a. While the latter error only converges until it reaches an error level of order 10−3, the error

of the Newton method applied to the problem (7.62) with DtN transparent boundary conditions based

on Robin problems converges exponentially below 10−10. This is due to the fact that the local Dirichlet

problems are ill-posed at Dirichlet eigenvalues, while the local Robin problems are not. The closer one

comes to such a Dirichlet eigenvalue the larger the error of the DtN maps become when computing them

with local Dirichlet problems.

Now we want to compare the two sorts of DtN transparent boundary conditions when applying the

direct method based on a Chebyshev interpolation. Again we aim to compute the common eigenvalue

of the local Dirichlet problem and the nonlinear eigenvalue problem, that is marked as a blue cross in

Figure 7.9. Analogously to the numerical test presented in Figure 6.19b for the case of DtN transparent

boundary conditions based on local Dirichlet problems, we choose the k-formulation, fix the frequency

to ω ≈ 0.248 · 2πc
a1

and set the k-interval to the irreducible Brillouin zone B̂ = [0, π
a1
]. In Figure 7.11 a

comparison of the convergence of the Chebyshev interpolation is shown for the case with DtN transparent

boundary conditions based on Dirichlet cell problems (blue) and Robin cell problems (red). We can see

that the rate of convergence is in both cases the same, where we again want to point out that the

convergence is not monotone since the Chebyshev nodes are not hierarchical.

In Section 6.3.6 we elaborated that the observed convergence for the case of DtN transparent boundary

conditions based on local Dirichlet problems is due to the fact that all Chebyshev nodes are sufficiently far

away from the local Dirichlet eigenvalue, which is reasonable since the increase of the condition number

of the system and DtN matrices close to a local Dirichlet eigenvalue is limited to a very narrow vicinity,

see Figure 7.6.

From Figure 7.2 we can see that there does not exist a global Dirichlet eigenvalue in the irreducible

Brillouin zone at ω ≈ 0.248 · 2πc
a1

such that the results of the Chebyshev interpolation in the interval
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Figure 7.11: Absolute error of the Chebyshev in-

terpolation in k-formulation when applied to the

problem with DtN maps based on local Dirichlet

problems (blue) and local Robin problems (red)

for the computation of the common eigenvalue

of the local Dirichlet problem and the nonlinear

eigenvalue problem at (ω, k) ≈ (0.248 · 2πc
a1
, 0.405 ·

2π
a1
), that is marked with a blue cross in Figure 7.9.

The interval of the interpolation is chosen to be

the irreducible Brillouin zone B̂ = [0, π
a1
].
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Figure 7.12: Absolute error of the Chebyshev in-

terpolation in ω-formulation when applied to the

problem with DtN maps (blue) and RtR maps

(red) for the computation of the common eigen-

value of the local Dirichlet problem and the non-

linear eigenvalue problem at (ω, k) ≈ (0.248 ·
2πc
a1
, 0.405 · 2π

a1
), that is marked with a blue cross

in Figure 7.9. The interval of the interpolation is

chosen to be [0.235 · 2πc
a1
, 0.265 · 2πc

a1
] (solid lines)

and [0.215 · 2πc
a1
, 0.265 · 2πc

a1
] (dashed lines).

B̂ are not spoilt by the presence of global Dirichlet eigenvalues. Figure 7.12 shows the error of the

Chebyshev interpolation in ω-formulation when choosing the interval [0.235 · 2πc
a1
, 0.265 · 2πc

a1
] (solid lines)

and [0.215 · 2πc
a1
, 0.265 · 2πc

a1
] (dashed lines). Now the blue curves show the errors of the Chebyshev

interpolation when applied to the problem (7.62) with DtN transparent boundary conditions based on

local Robin problems, while the red curves represent the corresponding results when applied to the

problem (7.61) with RtR transparent boundary conditions. While for the smaller interval both methods,

the DtN and the RtR method, converge nicely, we observe that convergence is lost for the larger interval

when using DtN transparent boundary conditions. The difference is that the larger interval contains a

global Dirichlet eigenvalue, see Figure 7.2.

This puts the numerical results on the Chebyshev interpolation applied to the problem (6.58) with DtN

transparent boundary conditions based on local Dirichlet problems, that were presented in Section 6.3.6

and also in Figure 7.11, into perspective. In general, we do not have a priori knowledge about the location

of global Dirichlet eigenvalues and hence, cannot argue that the Chebyshev interpolation converges in

either case towards a common eigenvalues of the nonlinear eigenvalue problem and the local Dirichlet

problem.

Note that this problem also transfers to the computation of guided modes that are not equal to local

or global Dirichlet eigenvalues when using the Chebyshev interpolation of the nonlinear problem with

DtN transparent boundary conditions in an interval that is not sufficiently far away from global Dirichlet

eigenvalues.

7.3.5 Adaptive path following of dispersion curves

Finally, we apply the adaptive path following algorithm based on piecewise Taylor expansions, that

was introduced in Chapter 5, to the nonlinear eigenvalue problem (7.61) with RtR transparent boundary

conditions. As elaborated already above in Section 7.2.4, it is very cumbersome to compute the derivatives

of the DtN operators D±
RtR, that are based on local Robin problems, which makes the application of the

piecewise Taylor expansion to the nonlinear eigenvalue problem (7.62) very involved and, due to the need
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of a recursive procedure to compute the derivatives of D±
RtR, also inefficient. Moreover, the eigenvalue

problem (7.62) with DtN transparent boundary conditions does not resolve the problem related to global

Dirichlet eigenvalues. Therefore, we shall refrain from applying the adaptive path following algorithm

to (7.62) and concentrate instead on the nonlinear eigenvalue problem (7.61) with RtR transparent

boundary conditions.

In Section 7.2.4 we discussed the analyticity of the dispersion curves of (7.61), which is a key requirement

of the adaptive path following algorithm, see Assumption 5.1, and we commented on the computation of

the dispersion curve derivatives, that we will need for the piecewise Taylor expansions.

In Section 6.3.7 we applied the adaptive path following to the problem (6.58) with DtN transparent

boundary conditions that are based on local Dirichlet problems. In addition to the procedure described

Algorithm 5.2 for an adaptive path following without backward check or as presented in Algorithm 5.3

including backward check, we introduced the band edge check in Section 6.3.7, that was needed due to

the fact, that the DtN operators are not well-defined outside the band gaps and hence, the path following

has to stop at band edges. The same is true for the case with RtR transparent boundary conditions.

The RtR operators are only well-defined in the band gaps and hence, we need to employ the band edge

refinement as described in Section 6.3.7.

Again let us sketch briefly the adaptive path following algorithm: Let n ∈ N be the order of the

Taylor expansions. We select a start value k(0) ∈ B̂, e. g. k(0) = π
2a1

, and compute the eigenvalues in a

frequency interval Iω ⊂ R+\σess
h (k(0)). Then we employ the Chebyshev interpolation for the simultaneous

computation of all eigenvalues of (7.61) in Iω. For all computed eigenvalues at k(0) ∈ B̂ we proceed as

presented in Algorithm 5.2 for the case without backward check or as presented in Algorithm 5.3 including

backward check, i. e.

(i) we compute the dispersion curve derivatives up to order n+ 1,

(ii) we evaluate the acceptable step size (5.29) of the Taylor expansion of order n,

(iii) we add the step size to and subtract it from the current node to obtain the next nodes of the

quasi-momentum,

(iv) we compute an approximation to the eigenvalue at the next nodes using the Taylor expansion of

order n around the current node,

(v) we employ the proposed Newton-like method, or some other iterative scheme, in ω-formulation for

the computation of an eigenvalue using the expected location as start value, and then

(vi) we continue to follow the dispersion curve to the left and right, possibly applying additional refine-

ment checks such as the backward check, see Section 5.4.2, until we either reach the boundaries of

B̂ or a band edge, which is identified by the band edge refinement proposed in Section 6.3.7.

In Figure 7.13 we present the results of the adaptive Taylor expansion of order n = 5 including backward

check of tolerance εbwd
tol = 10−2. Recall that the dots indicate the location of the values of k for which the

eigenvalues ω(k) of (7.61) and the dispersion curve derivatives ω′(k), ω(2)(k), . . . , ω(6)(k) were computed.

The lines connecting the dots result from the post-processing, where we again chose the weighted Taylor

expansion (5.30). Note that the red dispersion curve hits the band edge. For this dispersion curve the

band edge refinement technique, that we described in Section 6.3.7, was employed with minimum step

size εedgetol = 10−5. The detailed view of this dispersion curve in the vicinity of the band edge, which

we present in Figure 7.13b, again shows that the group velocity of the dispersion curve converges to the

slope of the band edge as we discussed already in Section 6.3.7.

With the adaptive path following of dispersion curves for the problem (7.61) with RtR transparent

boundary conditions, we resolved the problem related to global and local Dirichlet eigenvalues while

restoring the efficiency of the computation. In Section 6.3.7 we argued that the adaptive path following

of dispersion curves applied to the problem (6.58) with DtN transparent boundary conditions based on

local Dirichlet problems effectively reduces the influence of global and local Dirichlet eigenvalues. In fact,

the difference of the results for the case with DtN operators, that were presented in Figure 6.20, and for

the case with RtR operators as shown above in Figure 7.13 is negligible. Thus, for the adaptive path

following of the two dispersion curves in the second band gap it seems that there is no need to switch

to the more involved RtR transparent boundary conditions. Moreover, one has to take into account that

the computation of the derivatives of the RtR operators R± requires the evaluation of larger sums than
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Figure 7.13: Adaptive Taylor scheme of order n = 5 with backward check of tolerance εbwd
tol = 10−2

applied to the dispersion curves in the second band gap of the nonlinear eigenvalue problem (7.61) with

RtR transparent boundary conditions . The error tolerance of the step size computation is εsteptol = 10−4,

the minimum step size of the band edge refinement is εedgetol = 10−5, and the start value of the iteration

is set to k(0) = π
2a1

.

the computation of the derivatives of the DtN operators D±. Depending on the implementation, this

may significantly reduce the efficiency compared to the case with DtN transparent boundary conditions.

Furthermore, the problem (7.61) with RtR transparent boundary conditions is not Hermitian, which

implies that we need to solve (7.61) also for its left eigenvectors in order to evaluate the dispersion

curve derivatives. This is not the case for the Hermitian, nonlinear eigenvalue problem (6.58) with DtN

transparent boundary conditions, that we only need to solve for its right eigenvectors.

To this end, we propose to resolve the major difficulty of the adaptive path following when applied to

the eigenvalue problem (6.58) with DtN transparent boundary conditions, that is related to the existence

of global Dirichlet eigenvalues in the frequency interval Iω at the start value k(0) of the adaptive scheme.

Recall that the Chebyshev interpolation applied to (6.58) may yield inaccurate eigenvalues due to the

presence of global Dirichlet eigenvalues in the interval Iω, see Section 7.3.3. Therefore, we suggest to

use the Chebyshev interpolation of the nonlinear problem (7.61) with RtR operators to simultaneously

identify all eigenvalues in Iω at the start value k(0), and then proceed with the adaptive path following

applied to the eigenvalue problem (6.58) with DtN transparent boundary conditions. With this we

keep the efficiency of the adaptive path following as proposed in Section 6.3.7 whilst resolving its major

problem, since the adaptive selection of the nodes can be altered slightly such that the convergence of

the iterative scheme is not effected by the presence of local or global Dirichlet eigenvalues during the

computation.

7.4 Conclusions

In this chapter we showed the high-order FE discretization of RtR operators based on local cell problems

with given Robin data. These operators are then employed for the exact computation of guided modes in

2d PhC waveguides and Dirichlet surface modes in semi-infinite 2d PhCs by transforming the problems

to nonlinear eigenvalue problems with RtR transparent boundary conditions.

The RtR operators are well-defined and the local Robin problems are well-posed at all frequencies in

band gaps and therefore, resolve the problems related to local and global Dirichlet eigenvalues when using

DtN transparent boundary conditions based on local Dirichlet problems as introduced in Chapter 6.

As an alternative to the problem with RtR transparent boundary conditions we introduced a problem

with DtN transparent boundary conditions whose DtN maps are based on local Robin problems. With this
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problem we recover the benefits of problems with DtN transparent boundary conditions, in particular self-

adjointness, whilst resolving the problem related to local Dirichlet eigenvalues. However, this problem

is by definition not well-defined at global Dirichlet eigenvalues, which leaves the nonlinear eigenvalue

problem with RtR transparent boundary condition as the only problem statement that is well-defined for

all values in band gaps.

We showed that the RtR operators are differentiable with respect to the frequency and the quasi-

momentum which is a requirement of various nonlinear eigenvalue solvers, for example the MSLP and

the Chebyshev interpolation. Moreover, we discussed the computation of the derivatives of the RtR

operators up to any order. As first order derivatives can be computed fairly straightforward with only

little more effort than the computation of the corresponding derivatives of the DtN operators presented

in Chapter 6, methods for the solution of the nonlinear eigenvalue problem such as the MSLP and the

new Newton-like method proposed in Section 3.3, that require access to the first order derivatives of the

RtR operators, can easily be applied.

We also extended the computation of the derivatives of the RtR operators to arbitrary orders, which

we employed in an adaptive path following of the dispersion curves. However, in comparison to the case

with DtN transparent boundary conditions, the computation of higher order derivatives is more involved

as there are considerably larger sums to be computed. Moreover, the fact that the problem with RtR

operators is not self-adjoint decreases the efficiency of the path following algorithm since also the left

eigenvectors of the nonlinear eigenvalue problems have to be computed at all nodes of the piecewise Taylor

expansion. Therefore, we came to the conclusion that the usage of the DtN method in an adaptive path

following of dispersion curves of PhC waveguide band structures can be reasonable, since the adaptive

selection of the nodes of the piecewise Taylor expansions reduces the problematic effect of local and global

Dirichlet eigenvalues, as we already argued in Chapter 6.

What remains to be done in the future is to develop a deeper understanding of the properties of the

(local) RtR operators such that the injectivity of the mapping (7.26) can be proved. Similarly, this

deeper understanding is needed for a proof of Conjecture 7.13, where we claimed that the eigenvalues of

the discrete forward-forward propagation operator come in complex conjugate pairs.
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8 Conclusions and outlook

The main objective of this thesis was to develop a numerical scheme for the accurate and efficient

approximation of 2d PhC waveguide band structures. For this we proposed

(i) a high-order FE discretization of DtN and RtR transparent boundary conditions, and

(ii) an adaptive path following of dispersion curves of PhC and PhC waveguide band structures.

Let us now in Section 8.1 point out the main contributions of this thesis related to these two aspects,

before we will comment in Section 8.2 on the perspectives of future research in the field of PhC waveguide

band structure calculations.

8.1 Contributions of this work

High-order FE discretization of DtN transparent boundary conditions In Chapter 6 we developed

a high-order FE discretization of DtN transparent boundary conditions for the periodic medium of 2d

PhC waveguides. The presented DtN transparent boundary conditions for waveguides were proposed by

S. Fliss [Fli13] and are based on DtN operators that were introduced by P. Joly and co-workers [JLF06]

for 2d PhCs with local defects. We explained in Chapter 6 the discretization of these operators by

means of high-order FE spaces. Since we assume the holes/rods of the PhCs to be perfectly circular,

we can resolve the computational domain with the help of coarse meshes of cells with curved edges.

These coarse meshes need no further refinement since p-FEM converges exponentially in this case. The

DtN transparent boundary conditions are employed to truncate the unbounded domain of the eigenvalue

problem related to PhC waveguide band structure calculations. The resulting eigenvalue problem is,

however, nonlinear. In comparison to the frequently used supercell method, that gives approximations to

guided modes in PhC waveguides, DtN transparent boundary conditions are exact in the sense that they

do not introduce an additional modelling error. For the numerical solution of the nonlinear eigenvalue

problem, in particular when using the adaptive path following algorithm, differentiability of the DtN

operators is crucial. We showed in Chapter 6 that the DtN operators are differentiable to any order with

respect to the frequency and quasi-momentum, and explained the computation of their derivatives. The

drawback of the DtN transparent boundary conditions, apart form the fact that the eigenvalue problem

becomes nonlinear, is that the DtN operators are not well-defined at global Dirichlet eigenvalues and

their computation is ill-posed at local Dirichlet eigenvalues.

High-order FE discretization of RtR transparent boundary conditions In Chapter 7 we developed a

high-order FE discretization of RtR transparent boundary conditions for the periodic medium of 2d PhC

waveguides, that resolve the problems of DtN transparent boundary conditions related to global and

local Dirichlet eigenvalues. The approach, that goes back to the PhD thesis of S. Fliss [Fli09], is very

similar to DtN transparent boundary conditions. Instead of solving local cell problems with Dirichlet

data, we solve local cell problems with Robin data, which resolves the problem related to local Dirichlet

eigenvalues. For the discretization of these local cell problems with given Robin data we can reuse

the high-order FE spaces, that were already introduced in Chapter 6 for the FE discretization to the

DtN transparent boundary conditions. Similarly to the DtN operators, we proved in Chapter 7 that

the RtR operators are differentiable to any order with respect to the frequency and quasi-momentum,

and we explained the computation of their derivatives, which are needed in the numerical solution of

the nonlinear eigenvalue problem with RtR transparent boundary conditions. Similarly to the DtN

transparent boundary conditions, the RtR transparent boundary conditions are employed to truncate the

unbounded computational domain of the eigenvalue problem related to PhC waveguide band structure
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calculations. The resulting eigenvalue problem is also nonlinear but — in contrast to the problem with

DtN transparent boundary conditions — it is non-Hermitian.

Newton-like method for iteratively solving nonlinear eigenvalue problems In Chapter 3 we proposed

a new iterative solver for nonlinear eigenvalue problems, that is based on Newton’s method. This method,

which aims to find the roots of a signed distance function, i. e. the difference of the parameter plugged

into the nonlinear matrix function and the eigenvalue of an associated parameterized, linear eigenvalue

problem, is comparable in convergence and effort with the well-known MSLP. We employed this Newton-

like method for the numerical solution of the nonlinear eigenvalue problems with DtN and RtR transparent

boundary conditions and compared its results with the ones of the MSLP and of a linearization technique

based on Chebyshev interpolation. In particular for the case with DtN transparent boundary conditions

our proposed method is preferable compared to the MSLP since its radius of convergence is not spoilt by

the presence of global Dirichlet eigenvalues.

Computation of dispersion curve derivatives In Chapter 4 we developed closed formulas for the group

velocity and any higher derivative of the dispersion curves of PhC and PhC waveguide band structures.

We generalized this procedure to the computation of eigenpath derivatives of general, nonlinear matrix

eigenvalue problems in Chapter 5. Subject that the eigenpaths and their associated eigenvectors are dif-

ferentiable with respect to the parameter, the procedure for the computation of the eigenpath derivatives

can be applied to Hermitian as well as non-Hermitian problems. For non-Hermitian problems we only

need to compute — in addition to the right eigenvectors — also the left eigenvectors of the nonlinear

eigenvalue problem. In this respect, the procedure can be applied to the linear problems in 2d PhCs

and 2d PhC waveguides using the supercell approach as well as to the nonlinear problems of 2d PhC

waveguides with DtN or RtR transparent boundary conditions.

Adaptive path following for parameterized, nonlinear eigenvalue problems In Chapter 5 we proposed

an adaptive path following algorithm for the eigenpaths of parameterized, nonlinear eigenvalue problems.

This algorithm is based on a weighted, piecewise Taylor expansion for which we employ the derivatives

of the eigenpaths. The selection of the parameter values for which a Taylor expansion is computed is

done by estimating the remainder of the Taylor expansion. This procedure yields small step sizes when

the eigenpaths change their behaviour on a small scale, and larger step sizes otherwise. The quality

of this adaptive approximation is improved by employing additional refinement checks. The backward

check ensures that the Taylor expansion around each node gives a good approximation to its adjacent

nodes. The crossing check is a post-processing procedure to validate crossings of eigenpaths and to

distinguish them from avoided crossings. We employed this algorithm to the adaptive approximation of

dispersion curves of PhC and PhC waveguide band structures when using the supercell approach and

demonstrated the ability to correctly identify mini-stopbands, i. e. avoided crossings of dispersion curves.

We showed that this algorithm effectively reduces the computational costs of band structure calculations.

In Chapters 6 and 7 we applied the adaptive scheme to the problems with DtN and RtR transparent

boundary conditions, where an additional band edge check is needed, since the DtN and RtR operators

are only well-defined in the band gap. Hence, developed an algorithm for accurate and efficient PhC

waveguide band structure calculations. This algorithm is accurate in the sense that — in contrast to the

case of the supercell method — no additional modelling error is introduced, and it is efficient since there

are only a little number of nonlinear eigenvalue problems to be solved to approximate the dispersion

curves with the help of our adaptive Taylor expansion. In particular, it allows for studying the behaviour

of dispersion curves in the vicinity of band edges, which is not possible with the supercell method.

8.2 Outlook

Finally, let us summarize the open questions, that we could not address in this thesis, and mention some

perspectives for future research in the field of PhC waveguide band structure calculations.
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Numerical analysis of the formulas for the eigenpath derivatives In thesis we did not discuss the nu-

merical analysis of the formulas for the eigenpath derivatives. We only presented numerical results for the

convergence of the group velocity formula when increasing the mesh refinement of our FE approximation,

see Figure 4.2. The numerical analysis should also address the problem related to the ill-posed source

problems in the vicinity of crossings, that need to be solved for the computation of eigenpath derivatives

of order two or larger. We resolved this problem by adding additional orthogonality conditions. These

extra constraints, however, yield that the source problem is not solved exactly. We showed numerically

that this does not spoil the computation of the derivatives but a better understanding of this effect is

needed.

Numerical analysis of the DtN and RtR transparent boundary conditions There has not been done

any numerical analysis of the DtN and RtR transparent boundary conditions. For example, we argued

in Chapters 6 and 7 that numerical evidence shows that the standard asymptotic convergence estimates

hold true for the discretized, nonlinear eigenvalue problems with DtN and RtR transparent boundary

conditions. However, to the best of our knowledge, a rigorous proof of this observation has not been

found.

Properties of RtR operators For the computation of the derivatives of the RtR operators we intro-

duced a mapping, see Eq. (7.26), which we use to characterize the derivatives of the forward-backward

propagation operators. This characterization is only unique if (7.26) is injective, which is numerically

evident but which has not been shown analytically. Similarly, a deeper understanding of the properties of

the RtR and local RtR operators is needed such that we can prove Conjecture 7.13, where we claim that

the eigenvalues of the discrete forward-forward propagation operator come in complex conjugate pairs.

Radiation losses in vertical direction of PhC slabs Another interesting topic of future research, that

was out of scope in this thesis, is to study radiation losses in vertical direction of PhC slabs. The vertical

direction of realistic PhC waveguides cannot be assumed to be invariant. Index guiding as used for 2d

PhC waveguides, see for example the 2d PhC W1 slab waveguide sketched in Figure 1.5, reduces the

effect of vertical radiation, but it cannot be neglected completely. Instead, a mathematical analysis of the

vertical radiation losses in a similar fashion like done in [JH08, JHN12] for homogeneous, open waveguides

is needed for PhC slabs.
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Palaiseau, France, 2009. (Cited on pages 3, 4, 66, 67, 78, 106, 110, 120, 123, 124, and 141.)

146



References

[Fli13] S. Fliss. A Dirichlet-to-Neumann approach for the exact computation of guided modes in

photonic crystal waveguides. SIAM J. Sci. Comput., 35(2):B438–B461, 2013. (Cited on

pages 3, 13, 14, 65, 66, 81, 88, 103, and 141.)

[FCB10] S. Fliss, E. Cassan, and D. Bernier. Computation of light refraction at the surface of a

photonic crystal using DtN approach. JOSA B, 27(7):1492–1503, 2010. (Cited on page 3.)

[FJ09] S. Fliss and P. Joly. Exact boundary conditions for time-harmonic wave propagation in

locally perturbed periodic media. Appl. Numer. Math., 59(9):2155–2178, 2009. (Cited on

page 3.)

[FJL10] S. Fliss, P. Joly, and J.-R. Li. Exact boundary conditions for wave propagation in periodic

media containing a local perturbation. In M. Ehrhardt, editor, Wave propagation in periodic

media, volume 1, chapter 5, pages 108–134. Bentham Science Publishers, Sharjah, UAE,

2010. (Cited on pages 3, 66, and 67.)

[FKS15] S. Fliss, D. Klindworth, and K. Schmidt. Robin-to-Robin transparent boundary conditions

for the computation of guided modes in photonic crystal wave-guides. BIT, 55(1):81–115,

2015. (Cited on pages 105, 107, 108, and 109.)

[FL02] P. Frauenfelder and C. Lage. Concepts — an object-oriented software package for partial

differential equations. ESAIM: Math. Model. Numer. Anal., 36(5):937–951, 2002. (Cited on

page 18.)

[GG12] S. Giani and I.G. Graham. Adaptive finite element methods for computing band gaps in

photonic crystals. Numer. Math., 121(1):31–64, 2012. (Cited on page 2.)

[Giv99] D. Givoli. Recent advances in the DtN FE method. Arch. Comput. Methods Eng., 6(2):71–

116, 1999. (Cited on page 3.)

[GVL96] G.H. Golub and C.F. Van Loan. Matrix computations. Johns Hopkins University Press,

Baltimore, MD, USA, 3rd edition, 1996. (Cited on page 21.)

[HKSW07] J.M. Harrison, P. Kuchment, A. Sobolev, and B. Winn. On occurrence of spectral edges

for periodic operators inside the Brillouin zone. J. Phys. A, 40(27):7597, 2007. (Cited on

page 10.)

[HFBW01] D. Hermann, M. Frank, K. Busch, and P. Wölfe. Photonic band structure computations.

Opt. Express, 8(3):167–172, 2001. (Cited on pages 4 and 29.)

[HPW09] V. Hoang, M. Plum, and C. Wieners. A computer-assisted proof for photonic band gaps. Z.

Angew. Math. Phys., 60(6):1035–1052, 2009. (Cited on page 2.)

[HS13] T. Hohage and S. Soussi. Riesz bases and Jordan form of the translation operator in semi-

infinite periodic waveguides. J. Math. Pures Appl., 100(1):113–135, 2013. (Cited on page 78.)

[HL08] Z. Hu and Y.Y. Lu. Improved Dirichlet-to-Neumann map method for modeling extended

photonic crystal devices. Opt. Quantum Electron., 40(11-12):921–932, 2008. (Cited on

page 4.)

[Jac98] J.D. Jackson. Classical electrodynamics. John Wiley & Sons, New York, NY, USA, 3rd

edition, 1998. (Cited on page 5.)

[Jan94] M.S. Jankovic. Exact nth derivatives of eigenvalues and eigenvectors. J. Guid. Control

Dynam., 17(1):136–144, 1994. (Cited on page 43.)

[Jar12] E. Jarlebring. Convergence factors of Newton methods for nonlinear eigenvalue problems.

Linear Algebra Appl., 436(10):3943–3953, 2012. (Cited on page 23.)

147



References

[JMR15] E. Jarlebring, G. Mele, and O. Runborg. The waveguide eigenvalue problem and the tensor

infinite Arnoldi method. Technical report, arXiv:1503.02096, 2015. (Cited on page 23.)

[JMM12] E. Jarlebring, W. Michiels, and K. Meerbergen. A linear eigenvalue algorithm for the

nonlinear eigenvalue problem. Numer. Math., 122(1):169–195, 2012. (Cited on page 23.)

[JH08] C. Jerez-Hanckes. Modeling elastic and electromagnetic surface waves in piezoelectric trans-

ducers and optical waveguides. PhD thesis, École doctorale de l’École Polytechnique,
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